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Abstract

An n-vertex graph is Hamiltonian if it contains a cycle that covers all of its vertices and it is

pancyclic if it contains cycles of all lengths from 3 up to n. A celebrated meta-conjecture of Bondy

states that every non-trivial condition implying Hamiltonicity also implies pancyclicity (up to possibly

a few exceptional graphs). We show that every graph G with κ(G) > (1+ o(1))α(G) is pancyclic. This

extends the famous Chvátal-Erdős condition for Hamiltonicity and proves asymptotically a 30-year old

conjecture of Jackson and Ordaz.

1 Introduction

The notion of Hamiltonicity is one of most central and extensively studied topics in Combinatorics.

Since the problem of determining whether a graph is Hamiltonian is NP-complete, a central theme in

Combinatorics is to derive sufficient conditions for this property. A classic example is Dirac’s theorem

[14] which dates back to 1952 and states that every n-vertex graph with minimum degree at least n/2

is Hamiltonian. Since then, a plethora of interesting and important results about various aspects of

Hamiltonicity have been obtained, see e.g. [1, 11, 12, 13, 19, 26, 27, 28, 32], and the surveys [21, 30].

Besides finding sufficient conditions for containing a Hamilton cycle, significant attention has been

given to conditions which force a graph to have cycles of other lengths. Indeed, the cycle spectrum of

a graph, which is the set of lengths of cycles contained in that graph, has been the focus of study of

numerous papers and in particular gained a lot of attention in recent years [2, 3, 15, 20, 22, 25, 29, 31, 35].

Among other graph parameters, the relation of the cycle spectrum to the minimum degree, number of

edges, independence number, chromatic number and expansion of the graph have been studied.

We say that an n-vertex graph is pancyclic if the cycle spectrum contains all integers from 3 up to n.

In the cycle spectrum of an n-vertex graph, it is usually hardest to guarantee the existence of the longest

cycle, i.e. a Hamilton cycle. This intuition was captured in Bondy’s famous meta-conjecture [6] from

1973, which asserts that any non-trivial condition which implies Hamiltonicity, also implies pancyclicity

(up to a small class of exceptional graphs). As a first example, he proved in [7] an extension of Dirac’s

theorem, showing that minimum degree at least n/2 implies that the graph is either pancyclic or that it

is the complete bipartite graph Kn
2
,n
2
. Further, Bauer and Schmeichel [5], relying on previous results of

Schmeichel and Hakimi [34], showed that the sufficient conditions for Hamiltonicity given by Bondy [8],

Chvátal [10] and Fan [18] all imply pancyclicity, up to a certain small family of exceptional graphs.

Another classic condition which implies Hamiltonicity is given by the famous theorem of Chvatál and

Erdős [11]. It states that if the connectivity of a graph G is at least as large as its independence number,

that is, κ(G) ≥ α(G), then G is Hamiltonian. The pancyclicity counterpart of this result has also been

investigated - see, e.g., [4] and the surveys [23, 33]. In fact, in 1990, Jackson and Ordaz [23] conjectured

that G must be pancyclic if κ(G) > α(G), which if true would confirm Bondy’s meta-conjecture for this

classical instance. One can use an old result of Erdős [16] to show pancyclicity if κ(G) is large enough

function of α(G). A first linear bound on κ(G) was given only in 2010 by Keevash and Sudakov [25], who

∗Department of Mathematics, ETH, Zürich, Switzerland. Research supported in part by SNSF grant 200021 196965.
Emails: {nemanja.draganic,david.munhacanascorreia, benjamin.sudakov}@math.ethz.ch.

1



showed that κ(G) ≥ 600α(G) is enough. In this paper, we resolve the conjecture of Jackson and Ordaz

asymptotically, by showing that κ(G) > (1 + o(1))α(G) is already enough to guarantee pancyclicity.

Theorem 1.1. Let ε > 0 and let n be sufficiently large. Then, every n-vertex graph G for which we have

κ(G) ≥ (1 + ε)α(G) is pancylic.

Next we briefly discuss some of the key steps in the proof of this theorem. It will be convenient for us to

consider different ranges of cycle lengths whose existence we want to show, and for each range we have

a separate subsection which deals with it. This is done in Section 3. In order to find these different

cycle lengths we will combine various tools on shortening/augmenting paths and finding consecutive path

lengths between two fixed vertices.

For example, for finding consecutive path lengths we crucially use that since κ(G) > α(G), it must

be that G contains triangles - moreover, it contains a path with triangles attached to many of its edges

(see Definition 2.3), which trivially implies the existence of many consecutive path lengths between the

endpoints of such a path. For shortening/augmenting paths, we also introduce new tools. One of them

is used to shorten paths using only the minimum degree of the graph (Lemma 2.8), while another one

augments paths using both the independence and connectivity number (Lemma 2.10). Furthermore, we

will also use a novel result proven in [15] using the Gallai-Milgram theorem, in order to shorten paths

using the independence number of the graph (Lemma 2.9). In Section 2 we present these tools, together

with some other useful results of a similar flavour. After that, in Section 3, we prove Theorem 1.1. The

general proof strategy is to find a cycle of appropriate length which consists of two paths, one of which

has many edges to which triangles are attached. Then we apply our shortening/augmenting results to the

other path. Combining the consecutive path lengths from the first path with the path lengths obtained

from the second path (see Observation 2.2), we will get all possible cycle lengths. Finally, in Section 4 we

make some concluding remarks.

2 Preliminaries

2.1 Notation and definitions

We mostly use standard graph theoretic notation. Let G be a finite graph. Denote by V (G) its vertex

set, and let S1, S2 ⊆ V (G). We denote by G[S1] the subgraph of G induced by S1, and by E[S1, S2] the

set of edges with one endpoint in S1 and the other in S2. Let H be a subgraph of G. We denote by

G[H] the graph G[V (H)]. A path P = (x0, x1, . . . , xℓ) of length ℓ is a graph on vertex set {x0, x1, . . . , xℓ}
with an edge between xi−1 and xi for all i ∈ [ℓ]. We say that x0 and xℓ are the endpoints of P , and we

call P an x0xℓ-path. Given disjoint sets of vertices A,B, we say that P is a path going from A to B if

x0 ∈ A, xl ∈ B and xi /∈ A ∪ B for all 0 < i < l. We denote by α(G) the independence number of G.

The connectivity κ(G) of a connected graph G is the minimum number of vertices whose removal makes

G disconnected or reduces it to a trivial graph.

Given sets A1, A2 ⊂ N, we denote by A1 + A2 the set of integers c such that c = a1 + a2 for some

a1 ∈ A1 and a2 ∈ A2. Throughout the paper we omit floor and ceiling signs for clarity of presentation,

whenever it does not impact the argument.

Definition 2.1. Let a, b, p be positive real numbers. Given a graph G, and two vertices x and y, we say

that the pair xy is p-dense in the interval [a, b] if for every subinterval [a′, b′] with b′ − a′ ≥ p there is an

integer ℓ ∈ [a′, b′] and an xy-path in G of length ℓ. Note that, in particular, xy is 0-dense in [a, b] if there

are paths of all lengths in [a, b] between x and y.

We now give a trivial observation which will be used in the proof of Theorem 1.1. It states that appropriate
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combinations of internally vertex-disjoint paths of different lengths imply the existence of cycles of many

different lengths.

Observation 2.2. Let G be a graph whose vertex set contains t disjoint sets S1, . . . , St and another set

of t vertices v1, . . . , vt outside of
⋃t

i=1 Si. For each i ∈ [t], let Ai ⊂ N and suppose that for every i the

induced subgraph G[vi ∪ Si ∪ vi+1] is such that it contains a vivi+1-path of length ℓ for each ℓ ∈ Ai (with

vt+1 = v1). Then for every ℓ ∈ A1 + . . .+At, the graph G contains a cycle of length ℓ.

2.2 Cycles and paths with triangles

One of the crucial objects which are used in our proof will be cycles which have triangles attached to

some of their edges. Evidently, one can increase the length of such a cycle by precisely one, by using the

two edges of a triangle, instead of the edge which lies on the cycle.

Definition 2.3. Define the graph Cr
ℓ to be the graph formed by a cycle v1v2 . . . vlv1 of length ℓ with the

additional edges v1v3, v3v5, . . . , v2r−1v2r+1 (if r = 0, then it is just a cycle of length l). We will refer to

this as a cycle of length ℓ with r triangles. Similarly define P r
ℓ and refer to it as a path of length l with r

triangles, where P 0
0 is just a vertex.

The following is an easy starting point for the existence of the graphs Cr
ℓ with appropriate parameters,

as subgraphs in graphs G with κ(G) ≥ α(G).

Lemma 2.4. Every n-vertex graph G with κ(G) ≥ α(G) contains a Cr
l for all r such that 0 ≤ r ≤

κ(G)−α(G)
2 and some l with l− 2(r+1) ≤ max

(
n

κ(G)−2r+1 ,
n

κ(G)−1

)
. In particular, it contains a P r

2r for all

such r.

Proof. We will first show that G must always contain a P r′
2r′ for r′ :=

⌊
κ(G)−α(G)

2

⌋
- we construct such

a path greedily. Suppose that we have the vertices v1v2v3 . . . v2i+1 which form a P i
2i, so that the edges

v1v3, . . . , v2i−1v2i+1 are also present. Provided that i < r′, we can augment this path as follows. Consider

the set S := N(v2i+1) \ {v1, . . . , v2i} - by assumption, this has size at least δ(G) − 2i > κ(G) − 2r′ ≥
α(G). Therefore, it must contain an edge v2i+2v2i+3. Clearly, v2i+1v2i+2v2i+3 forms a triangle and thus,

v1v2v3 . . . v2i+1v2i+2v2i+3 is a P i+1
2i+2. Continuing with this procedure until i = r′, gives the desired P r′

2r′ .

Now, fix r with the given condition. If r = 0, then take an edge xy in G. By Menger’s theorem, there

exist at least κ(G) internally vertex-disjoint xy-paths in G and thus, at least κ(G)−1 of these are not the

edge xy. Therefore, there is such a path with at most n
κ(G)−1 + 2 vertices, which together with the edge

xy, then creates a cycle of length at most n
κ(G)−1 + 2. If r ≥ 1, by the previous paragraph, G contains a

P r
2r - let x, y be its endpoints. By Menger’s theorem, there exist at least κ(G) internally vertex-disjoint

xy-paths in G. Since at most 2r − 1 of these intersect P r
2r \ {x, y}, there exists one which is disjoint to

P r
2r \ {x, y} and contains at most n

κ(G)−2r+1 internal vertices. This produces the desired Cr
l .

We can also use this type of cycles to extend the celebrated Chvátal-Erdős theorem [11].

Theorem 2.5 (Chvátal-Erdős [11]). If for a graph G we have that κ(G) ≥ α(G), then G is Hamiltonian.

Our resut states that if the Chvátal-Erdős condition is satisfied, then we can find a Hamilton cycle with a

certain number of triangles, depending on the discrepancy between the connectivity and the independence

number.

Theorem 2.6. Every n-vertex graph G such that κ(G) ≥ α(G) contains a Cr
n with r =

⌊
κ(G)−α(G)

2

⌋
.
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Proof. Suppose for contradiction that some ℓ < n is maximal such that there exists a copy of Cr
ℓ in G.

Note that ℓ exists by Lemma 2.4. Order the cycle as v1v2 . . . vℓv1 so that the edges v1v3, v3v5, . . . , v2r−1v2r+1

are also present. Since ℓ < n, there is a vertex v not in Cr
l . Moreover, as κ(G) ≥ α(G) + 2r, there exist

α(G) paths contained in V (G) \ {v1, . . . , v2r}, all of which go from v to Cr
l and are vertex-disjoint apart

from the initial vertex v. Let us denote these paths as Pi1 , Pi2 , . . . so that vj = Pj ∩Cr
l . Consider the set

S := {vi1+1, vi2+1, . . .} with indices taken modulo l, so that |S| ≥ α(G). Observe (as illustrated in Figure

1) that then there must be an edge contained in S ∪ {v} and that any such edge can be used to augment

Cr
l to a Cr

l′ with l′ > l, contradicting the maximality of l.

.v1

.
v2r+1

..

..

..

..
.
.
.
. .v

.

.

.

.vik+1

vik

vil
vil+1

Figure 1: An illustration of how an edge between two elements vik+1, vil+1 of S can
be used to construct a new Cr

l′ .

We finish this section with the following partitioning lemma - it will allow us to transform even cycles

found by standard density considerations into odd cycles.

Lemma 2.7. Let G be an n-vertex graph with κ(G) > α(G). Then, there exists X ⊆ V (G) and a set of

edges E contained in G[X] such that the following hold.

• |E| ≥
(
κ(G)−α(G)

8

)
n.

• For every edge e = xy ∈ E there is a z ∈ V (G) \X such that xzy is a triangle in G.

Proof. First, since every vertex set in G of size at least α(G) + 1 contains an edge, every vertex v in G

is such that its neighbourhood N(v) contains a matching of size at least δ(G)−α(G)
2 ≥ κ(G)−α(G)

2 - let r

denote this quantity. For each v, fix such a matching Mv.

Now, let X be a random subset of V (G) where each vertex is chosen independently at random with

probability 1/2. Let E denote the set of edges e = xy with the following property: x, y ∈ X and there

is some z /∈ X such that yz ∈ Mx or xz ∈ My. Clearly, E satisfies the second condition of the lemma.

We need only to estimate the expected value of |E| in order to prove than the first condition is satisfied

for some X. Indeed, note that for an edge e = xy to be present in E we must have that there is some

z such that yz ∈ Mx or xz ∈ My. Further, if at least one of these options holds, it is clear that then

P(e ∈ E) ≥ 1
8 ; since that is the probability that x, y ∈ X and z /∈ X. To finish, note that the number of

such edges is at least 1
2

∑
v 2|Mv| =

∑
v |Mv| ≥ nr. Indeed, for each vertex x ∈ G, every vertex y in the

matching Mx, gives such an edge xy, but since we possibly double counted (x might be in the matching

My), the total number of such edges is at least 1
2

∑
v 2|Mv|. Hence, E[|E|] ≥ nr/8, so there must exist

such an E with |E| ≥ nr/8 as desired.
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2.3 Path shortening/augmenting tools

In this section, we describe some tools for shortening paths. First, we show the following lemma which

uses only the minimum degree of the graph.

Lemma 2.8. Let G be an n-vertex graph, δ := δ(G) and P a path in G with endpoints x, y such that

|P | > 20n/δ. Then there is an xy-path P ′ such that |P | − 20n/δ ≤ |P ′| < |P |.

Proof. Suppose for sake of contradiction that no such path P ′ exists. Let P := v1v2 . . . vl−1vl with

v1 = x, vl = y and let <P denotes the given ordering of the path P as v1 <P v2 <P . . . <P vl. Since

|P | > 10n/δ, we can partition P into sub-paths Q1, Q2, . . . , Qk such that |Qk| ≤ 10n/δ and |Qi| = 10n/δ

for all i < k. Moreover, we have k =
⌈

|P |
10n/δ

⌉
. Now, consider the vertices in Q1 and take a subset Q′

1 ⊆ Q1

of size ⌊|Q1|/3⌋ ≥ 3n/δ such that no two vertices in Q′
1 are at distance at most 2 in P . Consider then

the set of edges incident to Q′
1, that is, E[Q′

1, V (G)]; by the minimum degree condition, there are at least

|Q′
1| · δ ≥ 3n such edges.

Now, clearly there cannot exist an edge spanned by Q1 which does not belong to P since this edge

could be used to shorten P by at most |Q1| ≤ 10n/δ. Hence, e(Q′
1, Q1) ≤ 2|Q′

1|. Similarly, the following

must hold.

Claim. e(Q′
1, V (G) \ P ) ≤ n− |P |.

Proof. Suppose otherwise. Then there is a vertex v ∈ V (G)\P with at least 2 neighbours in Q′
1 - denote

these by u,w. Note that since by construction u,w are at distance at least 2 and at most |Q1| ≤ 10n/δ

in P , this is a contradiction, since it produces the desired P ′ by substituting the sub-path of P between

u and w by the path uvw.

To give an upper bound on the total number of edges incident to Q′
1 which are contained in V (P ), we

also use the following claim.

Claim. For all i > 1, we have e(Q′
1, Qi) < |Q′

1|+ |Qi|.

Proof. Suppose otherwise. This implies that there is a cycle in G[Q′
1, Qi] and hence, there must exist

two crossing edges in this bipartite graph, that is, edges a1b1 and a2b2, with a1 <P a2 and both in Q′
1, and

b1 <P b2 both in Qi. These can clearly be used to shorten P (see Figure 2) by at most |Q1|+ |Qi| ≤ 20n/δ,

which is a contradiction as it produces the desired P ′.

The above claim implies that∑
i>1

e(Q′
1, Qi) <

∑
i>1

(
|Q′

1|+ |Qi|
)
≤ (k − 1)|Q′

1|+ (|P | − |Q1|) < 2|P | − 2|Q′
1|.

y..x
a1 a2 b2b1

. . ..
Figure 2: Shortening of the path P using the crossing edges a1b1 and a2b2. The
resulting path is P ′ and is drawn in red.
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To conclude, we now must have the following

e(Q′
1, V (G)) = e(Q′

1, Q1) + e(Q′
1, V (G) \ P ) +

∑
i>1

e(Q′
1, Qi) < 2|Q′

1|+ (n− |P |) + (2|P | − 2|Q′
1|) < 2n.

which contradicts the previous observation that e(Q′
1, V (G)) ≥ 3n.

Conversely, the following lemma gives a way to shorten a path using only its independence number. It

was proven in [15] and was used to solve an old conjecture of Erdős [16] - see Proposition 2.9 in [15] and

let U = ∅ and c =
⌈20α2/|P |⌉+3

4 .

Lemma 2.9. Let G be an n-vertex graph with independence number α, let P be a path in G with endpoints

x, y such that |P | > 4α. Then there is an xy-path P ′ such that |P | − ⌈20α2/|P |⌉ ≤ |P ′| < |P |.

We finish this section with a lemma which contrarily to the previous lemmas, will allow us to slightly

augment a path between two vertices. Further, it will use both the connectivity and the independence

number of the graph, and it will be used when the size of the path P we are considering is not suitable

to apply the first two lemmas of this subsection.

Lemma 2.10. Let G be an n-vertex graph with connectivity κ and independence number α, and let

r ∈ N. Let P be a path in G with endpoints x, y and with |P | < n. Then, there is an xy-path P ′ such that

|P | < |P ′| ≤ |P |+ r provided that |P | > 80α
r , and α > r > 80α

r ·max
(
1, |P |

κ−α

)
, while κ > α+ 2r.

Proof. Consider a vertex u not contained in P and denote P as v1v2 . . . vℓ with x = v1, y = vℓ. By

Menger’s theorem, there exist min(κ, |P |) paths going from u to V (P ) which are vertex-disjoint apart

from the vertex u. Let S ⊆ V (P ) be the endpoints of these paths, and for each vi ∈ S let Pi denote the

corresponding path from u to vi.

We first consider the case when S = V (P ). Note that if for all i, since vi, vi+1 are consecutive in P ,

we can substitute the edge vivi+1 by the paths Pi, Pi+1 to form an xy-path of length |P |+ |Pi|+ |Pi+1|.
Hence, if |Pi| + |Pi+1| < r for some i, then we have constructed the desired P ′. Otherwise, at least half

of the paths Pi with i ≤ 20α
r have |Pi| ≥ r/2. Moreover, we can assume that the Pi are induced paths

since if not, their length can be shortened. Let S′ be the set of vertices vi which are the endpoints of

those paths, and note that |S′| ≥ 10α
r . For each such Pi, let Qi denote the subpath of Pi formed by its

r/4 vertices in positions r/4 + 1, . . . , r/2, viewed in the direction vi → u. Since Qi is an induced path, it

contains an independent set Ii of size |Qi|/2 ≥ r/8. Then we have∣∣∣∣∣∣
⋃

vi∈S′

Ii

∣∣∣∣∣∣ ≥ |S′|r
8
> α,

hence there is an edge (ua, ub) between Ia and Ib for some va, vb ∈ S′. This now completes the proof,

as we can replace the part of the path in P between va and vb by the path obtained by concatenating

the vaua-path in Pa, the edge uaub and the ubvb-path in Pb, thus obtaining a path of length at least

|P |+ 2 · r/4− 20α
r > |P | and at most |P |+ 2 · r

2 which completes this case.

Let us now consider the case when |S| = κ. First we show the following simple claim.

Claim. If at least α+ 1 paths Pi are such that |Pi| < r/2, then such a P ′ exists.

Proof. For each one of the endpoints vi ∈ V (P )− {y} of the paths Pi, let v
′
i denote its neighbour on P

which is closer to y. Let X be the set of those at least α vertices, together with the vertex u. Then there

is an edge between two vertices in X. This gives an xy-path which is strictly longer than P , but by at

most r (see Fig. 1 for an illustration of an analogous operation).
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By the above claim, we can assume that at least κ − α vertices vij ∈ S are such that |Pij | ≥ r/2 -

and moreover, we can assume that they are induced paths (since otherwise they can be shortened). Let

S′ be the set of those vertices in S, so that |S′| ≥ κ − α. Now, by letting t = 20α|P |
r(κ−α) we conclude

by averaging that P contains an interval Q of length t with at least t
2|P |(κ − α) = 10α

r vertices in S′.

By repeating the argument above – finding the independent sets Ii ⊂ Pi for each of the 10α
r paths Pi

which end in Q, and then finding an edge between a pair Ii and Ij – we get a path P ′ of length at least

|P |−|Q|+2 · r4 ≥ |P |− t+ r
2 > |P | by our assumption on r, and length at most |P |+2 · r2 , which completes

the last case of the proof.

3 Proof of Theorem 1.1

Let G be a graph on n vertices, let α denote its independence number and κ its connectivity number.

Let ε > 0 and for convenience we may assume that ε is sufficiently small so that all our calculations go

through. Suppose that n is sufficiently large in terms of ε and that κ ≥ (1 + ε)α. This immediately

implies that α is also sufficiently large in terms of ε since otherwise, we would have n ≥ 4(α+ 1)4 which

by an old result of Erdős [16] would already imply pancyclicity.

Upper range: min
(

105n
ε2κ

, 100α
ε

)
to n

We will first construct cycles of all lengths from m := min
(
105n
ε2κ

, 100αε

)
to n. First, apply Theorem 2.6

to G, which implies that it contains a Cr1
n with r1 = εα/2. Note that if m = 105n

ε2κ
, then we also have

r1 ≥ 100n
κ =: r2, since in that case 105n

ε2κ
≤ 100α

ε . Hence, in that case G trivially contains Cr2
ℓ .

Now, let us denote the Hamilton cycle in Cr
n by v1v2 . . . vnv1, with the edges v1v3, v3v5, . . . , v2r−1v2r+1

present, where r = r1 if m = 100α
ε , and r = r2 if m = 105n

ε2κ
. Let Q denote the path v1v2 . . . v2r+1, and let

P denote the path v2r+1v2r+2 . . . vnv1. Note that in the subgraph G[Q], the pair (v1, v2r+1) is 0-dense in

the interval [r, 2r]. We will now show that the same pair is r/2-dense in the interval [m − 2r, n] in the

graph G[P ]. Observation 2.2 then implies that G contains cycles of all lengths from m to n.

In order to show that (v1, v2r+1) is r/2-dense in the interval [m − 2r, n] in the graph G[P ], a simple

application of either Lemma 2.8 or Lemma 2.9 suffices, depending on the where the minimumm is attained.

Indeed, let G′ := G[P ] and note that it has minimum degree at least δ′ ≥ δ(G)−(2r−1) ≥ κ−εα > (1−ε)κ

and α(G′) ≤ α. Assume first that m = 105n
ε2κ

≤ 100α
ε , which implies that 20n/δ′ ≤ 20n/(1 − ε)κ < r/2.

Therefore, we can apply Lemma 2.8 to find a v2r+1v1-path P ′ in G′ such that |P | − r/2 ≤ |P | − 20n/δ′ ≤
|P ′| < |P |. Further, we can repeat this on P ′ and continue applying Lemma 2.8 in such a manner, until

we are left with a path on at most 105n
ε2κ

−2r vertices. Note that we can do this, since for every application

of the lemma, we will have that the path will be of size at least 105n
ε2κ

− 2r ≥ 105n
ε2κ

− 200n
κ ≥ 20n/δ′. This

implies that (v1, v2r+1) is r/2-dense in the interval
[
105n
ε2κ

− 2r, n
]
as desired.

Assume now that 105n
ε2κ

≥ 100α
ε . Then, we can apply Lemma 2.9 to find a v2r+1v1-path P ′ in G′ such

that |P | − r/2 ≤ |P | − ⌈20α2/|P |⌉ ≤ |P ′| < |P |. We can repeat this on P ′ and iteratively apply the same

lemma in such a way, until we are left with a path P0 with at most 100α
ε − 2r = 100α

ε − εα > 99α
ε vertices,

so that for all previous paths P in this iteration we have ⌈20α2/|P |⌉ < r/2. This shows that (v1, v2r+1)

is r/2-dense in the interval
[
100α
ε − 2r, n

]
as desired.

Lower range: 3 to max(εα/2000, n/α)

Now we deal with the lower range. Let us first show that G contains the three smallest cycles.
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Claim. G contains a C3, a C4 and a C5.

Proof. Note that G contains C3 since δ(G) ≥ κ ≥ α + 1, so the neighbourhood of a vertex necessarily

spans an edge. Suppose now for sake of contradiction that G does not contain a C4. Then, it must be

that for every vertex v, the graph induced by its neighbourhood G[N(v)] has maximum degree 1 - indeed,

otherwise it contains a path on three vertices, which together with v forms a C4. Moreover, this implies

that N(v) contains an independent set Iv of size at least |N(v)|/2 ≥ κ/2 ≥ (1 + ε)α/2. Now, take two

adjacent vertices u, v in G. Since G contains no C4, it must be that |Iu∩Iv| ≤ 1 and thus, (Iu∆Iv)\{u, v}
has at least (1 + ε)α − 3 > α vertices. To finish, note that there can be no edge between Iu \ {v} and

Iv \ {u} since together with uv it would form a C4. Hence, the set (Iu∆Iv) \ {u, v} is an independent set

of size larger than α, which contradicts the assumption on G.

Finally, suppose for sake of contradiction that G contains no C5. Much like before, note that it must

be that for every vertex v, G[N(v)] has no path on four vertices since this together with v forms a C5.

Therefore, N(v) contains an independent set Iv of size at least |N(v)|/3 ≥ κ/3 ≥ (1 + ε)α/3. Now,

take a vertex v, and let x1y1, x2y2, x3y3 be disjoint edges contained in N(v) - note these exist since

|N(v)| ≥ κ ≥ α+ 7. Consider also the neighbourhoods N(x1), N(x2), N(x3) and note that they must be

disjoint (except for v) – indeed, if e.g., z ∈ N(x1) ∩ N(x2) then vy1x1zx2v is a C5 (see Figure 3 for an

illustration). Note also that there cannot exist an edge zz′ with z ∈ N(xi), z
′ ∈ N(xj) for some i ̸= j -

indeed, then vxizz
′xjv is a C5. Concluding, note that it must be that Ix1 ∪ Ix2 ∪ Ix3 is an independent

set and has size at least |Ix1 |+ |Ix2 |+ |Ix3 | > α, which is a contradiction.

.v

.

.

.

.

.

.x1
x2

x3

y1

y2

y3

.z

Figure 3: An illustration of the cycle vy1x1zx2v.

For the remaining cycle lengths, let us assume first that n/α ≥ εα/2000, thus implying that n ≥ εα2/2000.

Showing that G contains all cycles of lengths between 6 and n/α boils down to the study of cycle-complete

Ramsey numbers. Namely, the cycle-complete Ramsey number r(Cℓ,Ks) is the smallest number N such

that every graph on N vertices either contains a copy of Cℓ or an independent set of size s. The following

result of Erdős, Faudree, Rousseau and Schelp [17], along with a more recent result by Keevash, Long

and Skokan [24] cover the mentioned range of cycle lengths we need.

Theorem 3.1 ([17]). Let ℓ ≥ 3 and s ≥ 2. Then r(Cℓ,Ks) ≤
(
(ℓ− 2)(s1/x + 2) + 1

)
(s − 1), where

x = ⌊ ℓ−1
2 ⌋.

The next result by Keevash, Long and Skokan gives the precise behaviour of cycle-complete Ramsey

numbers in a wide range of parameters, and proves a conjecture from [17].

Theorem 3.2 ([24]). There exists C ≥ 1 so that r(Cℓ,Ks) = (ℓ−1)(s−1)+1 for s ≥ 3 and ℓ ≥ C log s
log log s .

Note that since G contains no independent set of size larger than α and n ≥ εα2/2000 (and by assumption

α is sufficiently large in terms of ε), Theorem 3.1 implies the existence of a cycle of length ℓ for every

ℓ ∈ [6, logα], while Theorem 3.2 covers the range of [logα, n/α].

8



Now assume that εα/2000 > n/α, implying that α > 40
√
n/ε. We need to find all cycles from 6 to

εα/2000. For this, we use the following classic result by Bondy and Simonovits.

Theorem 3.3 ([9]). Let G be an n-vertex graph with e(G) ≥ max(20ln1+1/l, 200nl). Then, G contains a

cycle of length 2l.

We can now utilise this together with Lemma 2.7 to get the desired cycle. Indeed, apply this lemma to G

to obtain a set X and edge-set E of edges contained in X, such that |E| ≥ κ−α
8 ·n ≥ εαn/8, and for every

edge (x, y) ∈ E there exists z ∈ V (G)−X such that x, y and z form a triangle. Let G′ := (X,E) be the

graph consisting of these edges. Observe that it is sufficient for us to show that for all 3 ≤ ℓ ≤ εα/2000,

there is a cycle of length 2ℓ in G′ - indeed, such a cycle can then be transformed into a cycle of length

2ℓ+1 in G by substituting an edge xy of the cycle by the path xzy which is guaranteed to exist by Lemma

2.7. Finally, we find these even cycles in G′ by applying Theorem 3.3, which gives cycles of lengths 2ℓ,

for any ℓ such that max(200nl, 20ln1+1/l) ≤ εαn/8. Since α > 40
√
n/ε, this holds for all ℓ ∈ [3, εα/2000],

which completes the proof.

Middle range: max (εα/2000, n/α) to min
(

105n
ε2κ

, 100α
ε

)
To finish the proof of Theorem 1.1, we will now consider the middle range of cycle lengths. First, observe

that we may assume that max(εα/2000, n/α) < min
(
105n
ε2κ

, 100αε

)
, as otherwise this range is empty. Hence

we have that n/α < 100α/ε, which is equivalent to α > 1
10

√
εn. Further, we have εα/2000 < 105n

ε2κ
, and

since we have κ > α, this gives α < 105
√

n/ε3. Observe that this implies that α = Θε(
√
n).

Now, first observe that by Lemma 2.4, G contains a C2r
ℓ with r = ε10α = Θε(

√
n) and with ℓ such

that

4r + 1 ≤ ℓ ≤ n

κ(G)− 4r + 1
+ 4r + 2 ≤ n

(1 + ε/2)α
+ 10ε10α ≤ n

α
,

where we used that 105
√

n/ε3 > α > 1
10

√
εn.

Note that this cycle C2r
ℓ can also be viewed as a Cr

ℓ by omitting some triangles. Let P then be the

path consisting of the first 2r + 1 vertices of this Cr
ℓ (recall that P forms a P r

2r), and let P ′ be the other

path inside of the cycle with the same endpoints, denoted by x, y - so that |P ′| = l − 2r ≥ r. We will

iteratively apply Lemma 2.10 to the path P ′ inside of the graph G′ = G−(V (P )−{x, y}), with parameter

r defined as above, and connectivity κ′ ≥ κ− 2r. Indeed, note that |P ′| ≥ r ≥ 80α
r , while r ≥ 80α

r · |P ′|
κ′−α

and κ′ > α+2r and so, there is an xy-path P ′′ in G′ with |P ′| < |P ′′| ≤ |P ′|+r. We can continue applying

Lemma 2.10 to the newly obtained path inside of the same graph, each time getting a path which is by at

most r longer than the previous one. Note that the conditions of the lemma are still satisfied as long as the

current path is of length 100α
ε . This implies that the pair xy is r-dense in [ℓ− 2r, 100α/ε] in the graph G′.

Now, since xy is also 0-dense in [r, 2r] in G[P ], this gives all cycle lengths in [ℓ, 100α/ε] ⊇ [n/α, 100α/ε]

by Observation 2.2, as desired.

4 Concluding remarks

In this paper we showed that if a graph G satisfies κ(G) ≥ (1+ o(1))α(G) then G is pancyclic. Moreover,

the o(1) error term can be made to be α(G)−c for some small constant c > 0. This extends the classic

theorem of Chvátal and Erdős, which states that κ(G) ≥ α(G) implies that G is Hamiltonian, confirming

asymptotically Bondy’s meta-conjecture for this celebrated result. Nevertheless, it would be very inter-

esting to prove the Jackson-Ordaz conjecture in full generality, or at least to show that it holds when

κ(G) ≥ α(G) + C for some constant C > 0.
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