Quasimodular forms from Betti numbers

Pierrick Bousseau

ETH-ITS Zurich

3 June 2020

ETH Zoominar

Pierrick Bousseau (ETH-ITS) Quasimodular forms from Betti numbers

• Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^2 .

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^2 .
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on *K*_{ℙ²} ('local ℙ²': non-compact Calabi-Yau 3-fold).

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^2 .
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on $\mathcal{K}_{\mathbb{P}^2}$ ('local \mathbb{P}^2 ': non-compact Calabi-Yau 3-fold).
- Refined genus 0 Gopakumar-Vafa invariants of $K_{\mathbb{P}^2}$.

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^2 .
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on *K*_{ℙ²} ('local ℙ²': non-compact Calabi-Yau 3-fold).
- Refined genus 0 Gopakumar-Vafa invariants of $K_{\mathbb{P}^2}$.
- Conjecture of Huang-Klemm (around 2010) on the Nekrasov-Shatashvili limit of refined topological string theory on K_P².

• (*a_n*) a sequence of numbers (of geometric, number theoretic,... interest)

- (*a_n*) a sequence of numbers (of geometric, number theoretic,... interest)
- Form a generating series

$$\sum_{n} a_{n}q^{n}$$

formal power series in a formal variable q.

Often, a miracle happens, $\sum_{n} a_n q^n$ is the *q*-series expansion of a modular function, that is:

Often, a miracle happens, $\sum_{n} a_n q^n$ is the *q*-series expansion of a modular function, that is:

• Writing $q = e^{2i\pi\tau}$, $f(\tau) := \sum_n a_n q^n$ is a holomorphic function on the upper half-plane $\mathbb{H} := \{\tau \in \mathbb{C} \mid \text{Im}\tau > 0\}$

Often, a miracle happens, $\sum_{n} a_n q^n$ is the *q*-series expansion of a modular function, that is:

- Writing $q = e^{2i\pi\tau}$, $f(\tau) := \sum_n a_n q^n$ is a holomorphic function on the upper half-plane $\mathbb{H} := \{\tau \in \mathbb{C} \mid \text{Im}\tau > 0\}$
- Symmetry property of $f(\tau)$ with respect to the natural action of $SL(2,\mathbb{Z})$ on $\mathbb{H}: \tau \mapsto \frac{a\tau+b}{c\tau+d}$, $a, b, c, d \in \mathbb{Z}$, ad bc = 1. More precisely, $f(\tau)$ is modular of weight k for $SL(2,\mathbb{Z})$ if

$$f\left(\frac{a\tau+b}{c\tau+d}\right)=(c\tau+d)^kf(\tau)\,,$$

for every

$$\begin{pmatrix} \mathsf{a} & \mathsf{b} \\ \mathsf{c} & \mathsf{d} \end{pmatrix} \in SL(2,\mathbb{Z})$$

Variants:

 For Γ a subgroup of finite index in SL(2, Z), define modularity for Γ by restrcting to elements

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

• The group $\Gamma := \Gamma_1(3)$ will appear later:

$$\Gamma_1(3) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2,\mathbb{Z}) | \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 3 \right\},$$

Pierrick Bousseau (ETH-ITS)

Variants:

イロト イヨト イヨト イ

Variants:

• $f(\tau)$ is quasimodular of weight k for Γ if there exists finitely many non-zero holomorphic functions $f_i(\tau)$ such that

$$(c\tau+d)^{-k}f\left(\frac{a\tau+b}{c\tau+d}\right)=\sum_{j\geq 0}\left(\frac{c}{c\tau+d}\right)^{j}f_{j}(\tau)$$

for every

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

Variants:

• $f(\tau)$ is quasimodular of weight k for Γ if there exists finitely many non-zero holomorphic functions $f_i(\tau)$ such that

$$(c\tau+d)^{-k}f\left(\frac{a\tau+b}{c\tau+d}\right)=\sum_{j\geq 0}\left(\frac{c}{c\tau+d}\right)^{j}f_{j}(\tau)$$

for every

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$$

• Example:

$$E_2(\tau) \coloneqq 1 - 24 \sum_{n \ge 1} \frac{nq^n}{1 - q^n}$$

is quasimodular of weight 2 for $SL(2,\mathbb{Z})$ (not modular).

• Quasimodular form: quasimodular function holomorphic at the cusps.

Quasimodular form: quasimodular function holomorphic at the cusps.

$$\begin{split} A(\tau) &\coloneqq \left(\frac{\eta(\tau)^9}{\eta(3\tau)^3} + 27\frac{\eta(3\tau)^9}{\eta(\tau)^3}\right)^{\frac{1}{3}}, \quad B(\tau) \coloneqq \frac{1}{4} \left(E_2(\tau) + 3E_2(3\tau)\right), \\ C(\tau) &\coloneqq \frac{\eta(\tau)^9}{\eta(3\tau)^3}, \end{split}$$

where

$$\eta(\tau) \coloneqq q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n),$$

is the Dedekind eta function.

Quasimodular form: quasimodular function holomorphic at the cusps.

$$\begin{split} A(\tau) &\coloneqq \left(\frac{\eta(\tau)^9}{\eta(3\tau)^3} + 27\frac{\eta(3\tau)^9}{\eta(\tau)^3}\right)^{\frac{1}{3}}, \quad B(\tau) \coloneqq \frac{1}{4} \left(E_2(\tau) + 3E_2(3\tau)\right), \\ C(\tau) &\coloneqq \frac{\eta(\tau)^9}{\eta(3\tau)^3}, \end{split}$$

where

$$\eta(\tau) \coloneqq q^{\frac{1}{24}} \prod_{n=1}^{\infty} (1-q^n),$$

is the Dedekind eta function.

The functions A, B, and C are quasimodular forms for Γ₁(3). More precisely, A and C are modular respectively of weight 1 and 3, and B is quasimodular of weight 2. In fact, A, B, and C freely generate the ring of quasimodular forms of Γ₁(3):

$$\operatorname{QMod}(\Gamma_1(3)) = \mathbb{C}[A, B, C].$$

 \bullet Complex projective plane \mathbb{P}^2

- \bullet Complex projective plane \mathbb{P}^2
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^2

- Complex projective plane \mathbb{P}^2
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^2
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.

- Complex projective plane \mathbb{P}^2
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^2
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus g, Picⁿ(C): moduli space of lines bundles L on C with χ(L) = n, abelian variety of dimension g.

- Complex projective plane \mathbb{P}^2
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^2
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus g, Picⁿ(C): moduli space of lines bundles L on C with χ(L) = n, abelian variety of dimension g.
- Relative version of Picⁿ over the open locus in |O(d)| of smooth projective curves.

- Complex projective plane \mathbb{P}^2
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^2
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus g, Picⁿ(C): moduli space of lines bundles L on C with χ(L) = n, abelian variety of dimension g.
- Relative version of Picⁿ over the open locus in |O(d)| of smooth projective curves.
- Compactification over |O(d)|?

 \bullet Consider coherent sheaves on \mathbb{P}^2 with one-dimensional support.

- \bullet Consider coherent sheaves on \mathbb{P}^2 with one-dimensional support.
- Numerical invariants: degree d(F), Euler characteristic $\chi(F)$.

- \bullet Consider coherent sheaves on \mathbb{P}^2 with one-dimensional support.
- Numerical invariants: degree d(F), Euler characteristic $\chi(F)$.
- F coherent sheaf on P² with one-dimensional support is called Gieseker semistable (resp. stable) if F is pure (every non-zero subsheaf of F has one-dimensional support) and, for every non-zero strict subsheaf F' of F, we have ^{χ(F')}/_{d(F')} ≤ ^{χ(F)}/_{d(F)} (resp. ^{χ(F')}/_{d(F')} < ^{χ(F)}/_{d(F)}).

- \bullet Consider coherent sheaves on \mathbb{P}^2 with one-dimensional support.
- Numerical invariants: degree d(F), Euler characteristic $\chi(F)$.
- F coherent sheaf on P² with one-dimensional support is called Gieseker semistable (resp. stable) if F is pure (every non-zero subsheaf of F has one-dimensional support) and, for every non-zero strict subsheaf F' of F, we have ^{χ(F')}/_{d(F')} ≤ ^{χ(F)}/_{d(F)} (resp. ^{χ(F')}/_{d(F')} < ^{χ(F)}/_{d(F)}).
- Moduli space (good moduli space for the Artin stack of Gieseker semistable sheaves):

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

- 4 ∃ ▶

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

•
$$\pi: M_{d,n} \to |\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F).$$

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

•
$$\pi: M_{d,n} \to |\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F).$$

•
$$\pi^{-1}(C) = \operatorname{Pic}^{n}(C)$$
 if C is smooth.

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

• (Simpson, Le Potier, around 1990) $M_{d,n}$ irreducible algebraic projective variety of dimension $d^2 + 1$, smooth if gcd(d, n) = 1, singular in general.

•
$$\pi: M_{d,n} \to |\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F).$$

•
$$\pi^{-1}(C) = \operatorname{Pic}^{n}(C)$$
 if C is smooth.

• Fiber $\pi^{-1}(C)$ complicated if C is singular.

$$F$$
 on \mathbb{P}^2 with $d(F) = d, \chi(F) = n$,

•
$$\pi: M_{d,n} \to |\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F).$$

•
$$\pi^{-1}(C) = \operatorname{Pic}^{n}(C)$$
 if C is smooth.

- Fiber $\pi^{-1}(C)$ complicated if C is singular.
- The global topology of $M_{d,n}$ is non-trivial.
- Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular). It is known that $b_j(M_{d,n})$ only depends on $n \mod d$. Conjecturally, $b_j(M_{d,n})$ is independent of n.

 $M_{d,n} = \{F \text{ Gieseker semistable coherent sheaf on } \mathbb{P}^2$

with
$$d(F) = d, \chi(F) = n$$
,

• Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular).

 $M_{d,n} = \{F \text{ Gieseker semistable coherent sheaf on } \mathbb{P}^2$

with
$$d(F) = d, \chi(F) = n$$
,

- Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d,n} \simeq M_{d,n+d}$, so the Betti numbers $b_j(M_{d,n})$ only depends on $n \mod d$.

 $M_{d,n} = \{F \text{ Gieseker semistable coherent sheaf on } \mathbb{P}^2$

with
$$d(F) = d, \chi(F) = n$$
,

- Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d,n} \simeq M_{d,n+d}$, so the Betti numbers $b_j(M_{d,n})$ only depends on $n \mod d$.
- Conjecturally, $b_j(M_{d,n})$ is independent of n.

 $M_{d,n} = \{F \text{ Gieseker semistable coherent sheaf on } \mathbb{P}^2$

with
$$d(F) = d, \chi(F) = n$$
,

- Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d,n} \simeq M_{d,n+d}$, so the Betti numbers $b_j(M_{d,n})$ only depends on $n \mod d$.
- Conjecturally, $b_j(M_{d,n})$ is independent of n.
- Define

$$b_j(M_d) \coloneqq \frac{1}{d} \sum_{n \mod d} b_j(M_{d,n}).$$

•
$$\sum_{j} b_{j}(M_{1})y^{\frac{j}{2}} = 1 + y + y^{2}$$

•
$$\sum_{j} b_{j}(M_{1})y^{\frac{j}{2}} = 1 + y + y^{2}$$

• $\sum_{j} b_{j}(M_{2})y^{\frac{j}{2}} = 1 + y + y^{2} + y^{3} + y^{4} + y^{5}$

•
$$\sum_{j} b_{j}(M_{1})y^{\frac{j}{2}} = 1 + y + y^{2}$$

• $\sum_{j} b_{j}(M_{2})y^{\frac{j}{2}} = 1 + y + y^{2} + y^{3} + y^{4} + y^{5}$
• $\sum_{j} b_{j}(M_{3})y^{\frac{j}{2}} = 1 + 2y + 3y^{2} + 3y^{3} + 3y^{4} + 3y^{5} + 3y^{6} + 3y^{7} + 3y^{8} + 2y^{9} + y^{10}$

•
$$\sum_{j} b_{j}(M_{1})y^{\frac{j}{2}} = 1 + y + y^{2}$$

• $\sum_{j} b_{j}(M_{2})y^{\frac{j}{2}} = 1 + y + y^{2} + y^{3} + y^{4} + y^{5}$
• $\sum_{j} b_{j}(M_{3})y^{\frac{j}{2}} = 1 + 2y + 3y^{2} + 3y^{3} + 3y^{4} + 3y^{5} + 3y^{6} + 3y^{7} + 3y^{8} + 2y^{9} + y^{10}$
• $\sum_{j} b_{j}(M_{4})y^{\frac{j}{2}} = 1 + 2y + 6y^{2} + 10y^{3} + 14y^{4} + 15y^{5} + 16y^{6} + 16y^{7} + 16y^{8} + 16y^{9} + 16y^{10} + 16y^{11} + 15y^{12} + 14y^{13} + 10y^{14} + 6y^{15} + 2y^{16} + y^{17}$

• Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .
- Negativity of O(-3) implies that Gieseker semistable one-dimensional sheaves on K_{P²} are scheme-theoretically supported on P².

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .
- Negativity of O(-3) implies that Gieseker semistable one-dimensional sheaves on K_{P²} are scheme-theoretically supported on P².
- $M_{d,n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^2}$.

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .
- Negativity of O(-3) implies that Gieseker semistable one-dimensional sheaves on K_{P²} are scheme-theoretically supported on P².
- $M_{d,n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^2}$.
- $Ext^2(E, E) = 0$ if E Gieseker semistable with one-dimensional support.

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .
- Negativity of O(-3) implies that Gieseker semistable one-dimensional sheaves on K_{P²} are scheme-theoretically supported on P².
- $M_{d,n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^2}$.
- $Ext^2(E, E) = 0$ if E Gieseker semistable with one-dimensional support.
- Connection between intersection cohomology and DT invariants under the Ext²-vanishing assumption: Meinhardt-Reineke, Meinhardt.

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^2}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^2 .
- Negativity of O(-3) implies that Gieseker semistable one-dimensional sheaves on K_{P²} are scheme-theoretically supported on P².
- $M_{d,n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^2}$.
- $Ext^2(E, E) = 0$ if E Gieseker semistable with one-dimensional support.
- Connection between intersection cohomology and DT invariants under the Ext²-vanishing assumption: Meinhardt-Reineke, Meinhardt.
- $b_j(M_{d,n})$ are refined DT invariants of the non-compact Calabi-Yau 3-fold $K_{\mathbb{P}^2}$.

$$e(M_d) \coloneqq \sum_j b_j(M_d)(-1)^j$$

$$e(M_d) \coloneqq \sum_j b_j(M_d)(-1)^j$$

•
$$e(M_d) = (-1)^{d-1} n_{0,d}^{K_{\mathbb{P}^2}}$$

n^{K_{P2}}_{0,d} genus 0 Gopakumar-Vafa of K_{P2}, encoding genus 0 Gromov-Witten theory of K_{P2}.

$$e(M_d) \coloneqq \sum_j b_j(M_d)(-1)^j$$

•
$$e(M_d) = (-1)^{d-1} n_{0,d}^{K_{\mathbb{P}^2}}$$

- $n_{0,d}^{K_{\mathbb{P}^2}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^2}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^2}$.
- Katz's conjecture, known for $K_{\mathbb{P}^2}$ by MNOP+Toda+Konishi.

$$e(M_d) \coloneqq \sum_j b_j(M_d)(-1)^j$$

•
$$e(M_d) = (-1)^{d-1} n_{0,d}^{K_{\mathbb{P}^2}}$$

- $n_{0,d}^{K_{\mathbb{P}^2}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^2}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^2}$.
- Katz's conjecture, known for $K_{\mathbb{P}^2}$ by MNOP+Toda+Konishi.

•
$$n_{0,1}^{K_{\mathbb{P}^2}} = 3$$
, $n_{0,2}^{K_{\mathbb{P}^2}} = -6$, $n_{0,3}^{K_{\mathbb{P}^2}} = 27$, $n_{0,4}^{K_{\mathbb{P}^2}} = -192$.

$$e(M_d) \coloneqq \sum_j b_j(M_d)(-1)^j$$

•
$$e(M_d) = (-1)^{d-1} n_{0,d}^{K_{\mathbb{P}^2}}$$

- $n_{0,d}^{K_{\mathbb{P}^2}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^2}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^2}$.
- Katz's conjecture, known for $K_{\mathbb{P}^2}$ by MNOP+Toda+Konishi.

•
$$n_{0,1}^{K_{\mathbb{P}^2}} = 3$$
, $n_{0,2}^{K_{\mathbb{P}^2}} = -6$, $n_{0,3}^{K_{\mathbb{P}^2}} = 27$, $n_{0,4}^{K_{\mathbb{P}^2}} = -192$.

• Think about $\sum_{j} b_{j}(M_{d})y^{\frac{j}{2}}$ as a refined genus 0 Gopakumar-Vafa invariant.

 $M_{d,n} = \{F \text{ Gieseker semistable coherent sheaf on } \mathbb{P}^2$

with
$$d(F) = d, \chi(F) = n$$
,

- Betti numbers $b_j(M_{d,n})$ (for the intersection cohomology if $M_{d,n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d,n} \simeq M_{d,n+d}$, so the Betti numbers $b_j(M_{d,n})$ only depends on $n \mod d$.
- Conjecturally, $b_j(M_{d,n})$ is independent of n.
- Define

$$b_j(M_d) \coloneqq \frac{1}{d} \sum_{n \mod d} b_j(M_{d,n}).$$

• 'Obvious' generating series

$$\sum_{d\geq 1}\sum_j b_j(M_d)y^{\frac{j}{2}}Q^d.$$

• 'Obvious' generating series

$$\sum_{d\geq 1}\sum_j b_j(M_d)y^{\frac{j}{2}}Q^d.$$

• 'Almost obvious' generating series (from the DT point of view)

$$i \sum_{d \ge 1} \sum_{\ell \ge 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}(d^2+1)} \sum_j b_j(M_d) y^{\frac{\ell_j}{2}}}{y^{\frac{\ell}{2}} - y^{-\frac{\ell}{2}}} Q^{\ell d}$$

• 'Obvious' generating series

$$\sum_{d\geq 1}\sum_j b_j(M_d)y^{\frac{j}{2}}Q^d.$$

• 'Almost obvious' generating series (from the DT point of view)

$$i \sum_{d \ge 1} \sum_{\ell \ge 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}(d^2+1)} \sum_j b_j(M_d) y^{\frac{\ell_j}{2}}}{y^{\frac{\ell}{2}} - y^{-\frac{\ell}{2}}} Q^{\ell d}$$

• Not obvious step at all (string theory prediction of Huang and Klemm): write $y = e^{i\hbar}$ and expand in powers of \hbar .

Theorem: Quasimodularity

Define series $F_g^{NS}(Q) \in \mathbb{Q}[[Q]]$ by the change of variables $y = e^{i\hbar} = \sum_{n \ge 0} \frac{(i\hbar)^n}{n!}$:

$$i \sum_{d \ge 1} \sum_{\ell \ge 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}(d^2+1)} \sum_j b_j(M_d) y^{\frac{\ell_j}{2}}}{y^{\frac{\ell}{2}} - y^{-\frac{\ell}{2}}} Q^{\ell d}$$
$$= \sum_{g > 0} F_g^{NS}(Q) (-1)^g h^{2g-1}.$$

A (1) > A (2) > A

Theorem: Quasimodularity

Define series $F_g^{NS}(Q) \in \mathbb{Q}[[Q]]$ by the change of variables $y = e^{i\hbar} = \sum_{n \ge 0} \frac{(i\hbar)^n}{n!}$:

$$i \sum_{d \ge 1} \sum_{\ell \ge 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}(d^2+1)} \sum_j b_j(M_d) y^{\frac{\ell_j}{2}}}{y^{\frac{\ell}{2}} - y^{-\frac{\ell}{2}}} Q^{\ell d}$$
$$= \sum_{g > 0} F_g^{NS}(Q) (-1)^g h^{2g-1}.$$

Theorem [B.,Fan,Guo,Wu, 2020]

- F_0^{NS} and F_1^{NS} can be 'explicitly' computed.
- There exists an explicit change of variables Q → q = e^{2iπτ} such that, for every g ≥ 2, F^{NS}_g(τ) is a weight 0 quasimodular function for Γ₁(3).

Theorem [B., Fan, Guo, Wu, 2020]

More precisely, for every $g \ge 2$, we have

$$F_g^{NS} \in C^{-(2g-2)} \cdot \mathbb{Q}[A, B, C]_{6g-6}.$$

Moreover, we have $\deg_B F_g^{NS} \le 2g - 3$.

Theorem [B., Fan, Guo, Wu, 2020]

More precisely, for every $g \ge 2$, we have

$$F_g^{NS} \in C^{-(2g-2)} \cdot \mathbb{Q}[A, B, C]_{6g-6}.$$

Moreover, we have $\deg_B F_g^{NS} \le 2g - 3$.

Example:

$$F_2^{NS} = \frac{1}{11520C^2} \left(-37A^6 + 5A^4B + 48A^3C - 16C^2 \right).$$

Theorem [B., Fan, Guo, Wu, 2020]

For every $g \ge 2$, we have

$$2\frac{\partial}{\partial B}F_{g}^{NS} = \frac{1}{2}\sum_{j=1}^{g-1} \left(Q\frac{d}{dQ}F_{j}^{NS}\right) \left(Q\frac{d}{dQ}F_{g-j}^{NS}\right)$$

• Previous results solve a special case (the 'refined genus 0 case' = 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^2}$ (Huang-Klemm, 2010).

- Previous results solve a special case (the 'refined genus 0 case' = 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^2}$ (Huang-Klemm, 2010).
- First mathematical result in the 'refined' direction.

- Previous results solve a special case (the 'refined genus 0 case' = 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^2}$ (Huang-Klemm, 2010).
- First mathematical result in the 'refined' direction.
- Unrefined topological string: higher genus Gromov-Witten theory of K_{P2}. Generating series of genus g Gromov-Witten invariants of K_{P2}:

$$F_g^{GW}(Q) \coloneqq \sum_{d\geq 1} N_{g,d}^{GW,K_{\mathbb{P}^2}} Q^d$$
.

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

• F_0^{GW} and F_1^{GW} explicitly known.

→ ∃ →

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

• F_0^{GW} and F_1^{GW} explicitly known.

There exists an explicit change of variables Q → q = e^{2iπτ} such that, for every g ≥ 2, F^{GW}_g(τ) is a weight 0 quasimodular function for Γ₁(3): F^{GW}_g ∈ C^{-(2g-2)} · ℚ[A, B, C]_{6g-6}.

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

• F_0^{GW} and F_1^{GW} explicitly known.

- There exists an explicit change of variables Q → q = e^{2iπτ} such that, for every g ≥ 2, F^{GW}_g(τ) is a weight 0 quasimodular function for Γ₁(3): F^{GW}_g ∈ C^{-(2g-2)} · ℚ[A, B, C]_{6g-6}.
- For every $g \ge 2$, we have

$$2\frac{\partial}{\partial B}F_{g}^{GW} = \frac{1}{2}\sum_{j=1}^{g-1} \left(Q\frac{d}{dQ}F_{j}^{GW}\right) \left(Q\frac{d}{dQ}F_{g-j}^{GW}\right) + \frac{1}{2}\left(Q\frac{d}{dQ}\right)^{2}F_{g-1}^{GW}.$$

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

• F_0^{GW} and F_1^{GW} explicitly known.

- There exists an explicit change of variables Q → q = e^{2iπτ} such that, for every g ≥ 2, F^{GW}_g(τ) is a weight 0 quasimodular function for Γ₁(3): F^{GW}_g ∈ C^{-(2g-2)} · ℚ[A, B, C]_{6g-6}.
- For every $g \ge 2$, we have

$$2\frac{\partial}{\partial B}F_{g}^{GW} = \frac{1}{2}\sum_{j=1}^{g-1} \left(Q\frac{d}{dQ}F_{j}^{GW}\right) \left(Q\frac{d}{dQ}F_{g-j}^{GW}\right) + \frac{1}{2}\left(Q\frac{d}{dQ}\right)^{2}F_{g-1}^{GW}.$$

Example:

$$F_2^{GW} = \frac{1}{8640C^2} (-8A^6 + 30A^4B - 45A^2B^2 + 25B^3 + 2A^3C - 4C^2)$$

Context: refinement

Gromov–Witten/stable pairs correspondence (MNOP), the series F
<sup>K<sub>P²</sup></sup>_g can be described in terms of the stable pairs invariants P_{d,n} of K_{P²}:
</sup></sub>

$$1 + \sum_{d \ge 1} \sum_{n \in \mathbb{Z}} P_{d,n}(-x)^n Q^d = \exp\left(\sum_{g \ge 0} F_g^{GW} u^{2g-2}\right)$$

where $x = e^{iu}$.

Context: refinement

Gromov–Witten/stable pairs correspondence (MNOP), the series F
<sup>K<sub>P²</sup></sup>_g can be described in terms of the stable pairs invariants P_{d,n} of K_{P²}:
</sup></sub>

$$1 + \sum_{d \ge 1} \sum_{n \in \mathbb{Z}} P_{d,n}(-x)^n Q^d = \exp\left(\sum_{g \ge 0} F_g^{GW} u^{2g-2}\right)$$

where $x = e^{iu}$.

• The stable pairs invariants $P_{d,n}$ are expected to admit a refinement $P_{d,n,j}$ (various approaches: cohomological, K-theoretic...) The refined topological string free energies $F_{g_1,g_2}^{K_{\mathbb{P}^2},\text{ref}}$ are then defined by the expansion

$$1 + \sum_{d \ge 1} \sum_{n, j \in \mathbb{Z}} P_{d, n, j} y^{j} (-x)^{n} Q^{d} = \exp\left(\sum_{g \ge 0} F_{g_{1}, g_{2}}^{\text{ref}} (\epsilon_{1} + \epsilon_{2})^{2g_{1}} (-\epsilon_{1} \epsilon_{2})^{g_{2} - 1}\right)$$
(1)
where $x = e^{i\frac{\epsilon_{1} - \epsilon_{2}}{2}}$ and $y = e^{i\frac{\epsilon_{1} + \epsilon_{2}}{2}}$.

• Unrefined limit: Gromov-Witten theory, $F_{0,g}^{\text{ref}} = F_g^{GW}$.

- Unrefined limit: Gromov-Witten theory, $F_{0,g}^{ref} = F_g^{GW}$.
- Genus-0/Nekrasov-Shatashvili limit: (conjectural) description in terms of moduli spaces of one-dimensional sheaves, $F_{g,0}^{\text{ref}} = F_g^{NS}$.

- Unrefined limit: Gromov-Witten theory, $F_{0,g}^{\text{ref}} = F_g^{GW}$.
- Genus-0/Nekrasov-Shatashvili limit: (conjectural) description in terms of moduli spaces of one-dimensional sheaves, $F_{g,0}^{\text{ref}} = F_g^{NS}$.
- Remark: $F_{0,0}^{\text{ref}} = F_0^{GW} = F_0^{NS}$.

Context: refinement

Pierrick Bousseau (ETH-ITS)

Conjecture (Huang-Klemm, 2010)

• After the change of variabes $Q \mapsto q = e^{2i\pi\tau}$, for every g_1, g_2 with $g_1 + g_2 \ge 2$, $F_{g_1,g_2}^{\text{ref}}(\tau)$ is a weight 0 quasimodular function for $\Gamma_1(3)$: $F_{g_1,g_2}^{\text{ref}} \in C^{-(2(g_1+g_2)-2)} \cdot \mathbb{Q}[A, B, C]_{6(g_1+g_2)-6}$.

Conjecture (Huang-Klemm, 2010)

- After the change of variabes $Q \mapsto q = e^{2i\pi\tau}$, for every g_1, g_2 with $g_1 + g_2 \ge 2$, $F_{g_1,g_2}^{\text{ref}}(\tau)$ is a weight 0 quasimodular function for $\Gamma_1(3)$: $F_{g_1,g_2}^{\text{ref}} \in C^{-(2(g_1+g_2)-2)} \cdot \mathbb{Q}[A, B, C]_{6(g_1+g_2)-6}$.
- For every g_1, g_2 with $g_1 + g_2 \ge 2$, we have

$$2\frac{\partial}{\partial B}F_{g_{1},g_{2}}^{\text{ref}} = \frac{1}{2}\sum_{\substack{0 \le j_{1} \le g_{1} \\ 0 \le j_{2} \le g_{2} \\ (j_{1},j_{2}) \ne (0,0) \\ (j_{1},j_{2}) \ne (g_{1},g_{2})}} \left(Q\frac{d}{dQ}F_{j_{1},j_{2}}^{\text{ref}}\right)\left(Q\frac{d}{dQ}F_{(g_{1}-j_{1},g_{2}-j_{2})}^{\text{ref}}\right) + \frac{1}{2}\left(Q\frac{d}{dQ}\right)^{2}F_{g_{1},g_{2}-1}^{GW}.$$

• The proof of quasimodularity and holomorphic anomaly equation for $F_{0,g}^{\text{ref}} = F_g^{GW}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.

- The proof of quasimodularity and holomorphic anomaly equation for $F_{0,g}^{\text{ref}} = F_g^{GW}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.
- In general, $F_{(g_1,g_2)}^{\text{ref}}$ is defined via the sheaf side and exponential changes of variables. The geometric interpretation of the parameters g_1 and g_2 is unclear.

- The proof of quasimodularity and holomorphic anomaly equation for $F_{0,g}^{\text{ref}} = F_g^{GW}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.
- In general, $F_{(g_1,g_2)}^{\text{ref}}$ is defined via the sheaf side and exponential changes of variables. The geometric interpretation of the parameters g_1 and g_2 is unclear.
- It would be useful to have a Gromov-Witten-like interpretation of the series F^{ref}_(g1,g2). "No known worldsheet definition of the refined topological string".

• Key point of the story: we can find a Gromov-Witten interpretation of the series $F_g^{NS} = F_{g,0}^{\text{ref}}$.

- Key point of the story: we can find a Gromov-Witten interpretation of the series $F_g^{NS} = F_{g,0}^{\text{ref}}$.
- We don't know how to do that for $F_{g_1,g_2}^{\mathrm{ref}}$ with $(g_1,g_2) \neq 0$

- Key point of the story: we can find a Gromov-Witten interpretation of the series $F_g^{NS} = F_{g,0}^{ref}$.
- We don't know how to do that for $F_{g_1,g_2}^{\mathrm{ref}}$ with $(g_1,g_2) \neq 0$
- How to find a Gromov-Witten definition of F_g^{NS} ? We know that it is not Gromov-Witten theory of $K_{\mathbb{P}^2}$: $F_g^{NS} \neq F_g^{GW}$. Need to look at Gromov-Witten theory of a different geometry.

• New geometry: fix E a smooth cubic curve in \mathbb{P}^2 .

- New geometry: fix E a smooth cubic curve in \mathbb{P}^2 .
- N_{g,d}: Gromov-Witten invariant for genus g degree d curves in P² intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold P² × Å¹/E × A¹.

۲

- New geometry: fix E a smooth cubic curve in \mathbb{P}^2 .
- N_{g,d}: Gromov-Witten invariant for genus g degree d curves in P² intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold P² × Å¹/E × A¹.

$$N_{g,d}\coloneqq \int_{[\overline{M}_g(\mathbb{P}^2/E,d)]^{vir}} (-1)^g \lambda_g\,.$$

- New geometry: fix E a smooth cubic curve in \mathbb{P}^2 .
- N_{g,d}: Gromov-Witten invariant for genus g degree d curves in P² intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold P² × Å¹/E × A¹.

$$N_{g,d} \coloneqq \int_{[\overline{M}_g(\mathbb{P}^2/E,d)]^{vir}} (-1)^g \lambda_g \, .$$

Theorem (B, 2019)

For every $g \ge 0$, we have

$$F_g^{NS} = \sum_{d \ge 1} \frac{(-1)^{d-1}}{3d} N_{g,d} Q^d \,.$$

- New geometry: fix E a smooth cubic curve in \mathbb{P}^2 .
- N_{g,d}: Gromov-Witten invariant for genus g degree d curves in P² intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold P² × Å¹/E × A¹.

$$N_{g,d} \coloneqq \int_{[\overline{M}_g(\mathbb{P}^2/E,d)]^{vir}} (-1)^g \lambda_g \, .$$

Theorem (B, 2019)

For every $g \ge 0$, we have

$$F_g^{NS} = \sum_{d \ge 1} \frac{(-1)^{d-1}}{3d} N_{g,d} Q^d \, .$$

 Correspondence between refined DT invariants and higher genus GW invariants of two different geometries (different from previously known GW/DT correspondence).

27 / 36

• How to prove such sheaf/Gromov-Witten correspondence?

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.
- Scattering diagram: collections of rays decorated with generated functions, algorithmically produced from initial rays.

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.
- Scattering diagram: collections of rays decorated with generated functions, algorithmically produced from initial rays.
- The same algorithm compute the sheaf and the Gromov-Witten sides.

Scattering diagram

 Compute the Betti numbers b_j(M_d) by moving in the space of Bridgeland stability conditions on D^b Coh(P²) and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).

- Compute the Betti numbers b_j(M_d) by moving in the space of Bridgeland stability conditions on D^b Coh(P²) and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on P², not just one-dimensional sheaves, but also positive ranks sheaves.

- Compute the Betti numbers b_j(M_d) by moving in the space of Bridgeland stability conditions on D^b Coh(P²) and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on P², not just one-dimensional sheaves, but also positive ranks sheaves.
- Initial data: line bundles $\mathcal{O}(n)$, generating the derived category $D^b \operatorname{Coh}(\mathbb{P}^2)$.

- Compute the Betti numbers b_j(M_d) by moving in the space of Bridgeland stability conditions on D^b Coh(P²) and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on P², not just one-dimensional sheaves, but also positive ranks sheaves.
- Initial data: line bundles $\mathcal{O}(n)$, generating the derived category $D^b \operatorname{Coh}(\mathbb{P}^2)$.
- Scattering diagram: organization of moves in the space of stability conditions.

- Compute the Gromov-Witten $N_{g,d}$ using tropical geometry (combinatorial description of degenerations). Holomorphic curves degenerate to tropical curves.
- Correspondence theorem between counts of holomorphic maps and counts of tropical maps (Mikhalkin, Nishinou-Siebert, Gabele for g = 0, B. for g > 0).
- Scattering diagram: organization of the tropical computation.

Scattering diagram

Degeneration argument. Degeneration of P² to the normal cone of E. Line bundle defined by the family of divisors E. General fiber:
 K_{P2} = O(-E). Special fiber: P² × A¹, glued along E × Å¹ to a non-trivial line bundle over P(N_{E|P2} ⊕ O).

- Degeneration argument. Degeneration of P² to the normal cone of E. Line bundle defined by the family of divisors E. General fiber:
 K_{P²} = O(-E). Special fiber: P² × A¹, glued along E × Å¹ to a non-trivial line bundle over P(N_{E|P²} ⊕ O).
- Localization on the bubble $\mathbb{P}(N_{E|\mathbb{P}^2} \oplus \mathcal{O})$: reduction to equivariant Gromov-Witten theory of $N_{E|\mathbb{P}^2} \oplus N_{E|\mathbb{P}^2}^{\vee} \to E$ with stationary descendent insertions.

- Degeneration argument. Degeneration of P² to the normal cone of E. Line bundle defined by the family of divisors E. General fiber:
 K_{P2} = O(-E). Special fiber: P² × A¹, glued along E × Å¹ to a non-trivial line bundle over P(N_{E|P2} ⊕ O).
- Localization on the bubble $\mathbb{P}(N_{E|\mathbb{P}^2} \oplus \mathcal{O})$: reduction to equivariant Gromov-Witten theory of $N_{E|\mathbb{P}^2} \oplus N_{E|\mathbb{P}^2}^{\vee} \to E$ with stationary descendent insertions.
- Use Grothendieck-Riemann-Roch (in Coates-Givental form) to reduce to Gromov-Witten theory of *E* with stationary descendent insertions.

• Upshot: formula computing Gromov-Witten invariants $N_{g,d}$ of (\mathbb{P}^2, E) in terms of Gromov-Witten invariants of $\mathcal{K}_{\mathbb{P}^2}$ and the elliptic curve E (Higher-genus version of the log/local correspondence of van Garrel-Graber-Ruddat for a smooth divisor).

• Upshot: formula computing Gromov-Witten invariants $N_{g,d}$ of (\mathbb{P}^2, E) in terms of Gromov-Witten invariants of $\mathcal{K}_{\mathbb{P}^2}$ and the elliptic curve E (Higher-genus version of the log/local correspondence of van Garrel-Graber-Ruddat for a smooth divisor).

$$\begin{split} F_g^{GW} &= (-1)^g F_g^{NS} + \\ \sum_{n \geq 0} \sum_{\substack{g = h + g_1 + \dots + g_n, \\ \mathbf{a} = (a_1, \dots, a_n) \in \mathbb{Z}_{\geq 0}^n \\ (a_j, g_j) \neq (0, 0), \sum_{j=1}^n a_j = 2h-2}} \frac{(-1)^{h-1} F_{h, \mathbf{a}}^E}{|\operatorname{Aut}(\mathbf{a}, \mathbf{g})|} \prod_{j=1}^n (-1)^{g_j - 1} D^{a_j + 2} F_{g_j}^{NS} \,. \end{split}$$

• $F_{h,\mathbf{a}}^E$: Gromov-Witten theory of *E* with stationary descendent insertions.

۵

• Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve

- Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve
- Use quasimodularity and holomorphic anomaly equation for Gromov-Witten invariants of K_P² (Lho-Pandharipande, Coates-Iritani, 2018).

- Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve
- Use quasimodularity and holomorphic anomaly equation for Gromov-Witten invariants of K_P² (Lho-Pandharipande, Coates-Iritani, 2018).
- Slightly miraculous combination of these modularity results gives the desired result.

Thank you for your attention !