Quasimodular forms from Betti numbers

Pierrick Bousseau

ETH-ITS Zurich
3 June 2020

ETH Zoominar

Introduction

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.

Introduction

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^{2}.

Introduction

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^{2}.
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ ('local \mathbb{P}^{2} ': non-compact Calabi-Yau 3-fold).

Introduction

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^{2}.
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ ('local \mathbb{P}^{2} ': non-compact Calabi-Yau 3-fold).
- Refined genus 0 Gopakumar-Vafa invariants of $K_{\mathbb{P}^{2}}$.

Introduction

- Based on arXiv:1909.02985, arXiv:1909.02992, and, joint with Honglu Fan, Shuai Guo, Longting Wu, arXiv:2001.05347.
- Main result: quasimodularity result for generating series constructed from Betti numbers of moduli spaces of one-dimensional semistable sheaves on \mathbb{P}^{2}.
- Refined Donaldson-Thomas invariants for one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ ('local \mathbb{P}^{2} ': non-compact Calabi-Yau 3-fold).
- Refined genus 0 Gopakumar-Vafa invariants of $K_{\mathbb{P}^{2}}$.
- Conjecture of Huang-Klemm (around 2010) on the Nekrasov-Shatashvili limit of refined topological string theory on $K_{\mathbb{P}^{2}}$.

Modularity

- $\left(a_{n}\right)$ a sequence of numbers (of geometric, number theoretic,... interest)

Modularity

- $\left(a_{n}\right)$ a sequence of numbers (of geometric, number theoretic,... interest)
- Form a generating series

$$
\sum_{n} a_{n} q^{n}
$$

formal power series in a formal variable q.

Modularity

Often, a miracle happens, $\sum_{n} a_{n} q^{n}$ is the q-series expansion of a modular function, that is:

Modularity

Often, a miracle happens, $\sum_{n} a_{n} q^{n}$ is the q-series expansion of a modular function, that is:

- Writing $q=e^{2 i \pi \tau}, f(\tau):=\sum_{n} a_{n} q^{n}$ is a holomorphic function on the upper half-plane $\mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$

Modularity

Often, a miracle happens, $\sum_{n} a_{n} q^{n}$ is the q-series expansion of a modular function, that is:

- Writing $q=e^{2 i \pi \tau}, f(\tau):=\sum_{n} a_{n} q^{n}$ is a holomorphic function on the upper half-plane $\mathbb{H}:=\{\tau \in \mathbb{C} \mid \operatorname{Im} \tau>0\}$
- Symmetry property of $f(\tau)$ with respect to the natural action of $S L(2, \mathbb{Z})$ on $\mathbb{H}: \tau \mapsto \frac{a \tau+b}{c \tau+d}, a, b, c, d \in \mathbb{Z}, a d-b c=1$. More precisely, $f(\tau)$ is modular of weight k for $S L(2, \mathbb{Z})$ if

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

for every

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z})
$$

Modularity

Variants:

- For Γ a subgroup of finite index in $S L(2, \mathbb{Z})$, define modularity for Γ by restrcting to elements

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

- The group $\Gamma:=\Gamma_{1}(3)$ will appear later:

$$
\Gamma_{1}(3):=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{Z}) \left\lvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & * \\
0 & 1
\end{array}\right) \bmod 3\right.\right\},
$$

Modularity

Variants:

Modularity

Variants:

- $f(\tau)$ is quasimodular of weight k for Γ if there exists finitely many non-zero holomorphic functions $f_{j}(\tau)$ such that

$$
(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)=\sum_{j \geq 0}\left(\frac{c}{c \tau+d}\right)^{j} f_{j}(\tau)
$$

for every

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

Modularity

Variants:

- $f(\tau)$ is quasimodular of weight k for Γ if there exists finitely many non-zero holomorphic functions $f_{j}(\tau)$ such that

$$
(c \tau+d)^{-k} f\left(\frac{a \tau+b}{c \tau+d}\right)=\sum_{j \geq 0}\left(\frac{c}{c \tau+d}\right)^{j} f_{j}(\tau)
$$

for every

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \Gamma
$$

- Example:

$$
E_{2}(\tau):=1-24 \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}}
$$

is quasimodular of weight 2 for $S L(2, \mathbb{Z})$ (not modular).

Modularity

- Quasimodular form: quasimodular function holomorphic at the cusps.

Modularity

- Quasimodular form: quasimodular function holomorphic at the cusps.

$$
\begin{gathered}
A(\tau):=\left(\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}+27 \frac{\eta(3 \tau)^{9}}{\eta(\tau)^{3}}\right)^{\frac{1}{3}}, \quad B(\tau):=\frac{1}{4}\left(E_{2}(\tau)+3 E_{2}(3 \tau)\right) \\
C(\tau):=\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}
\end{gathered}
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

is the Dedekind eta function.

Modularity

- Quasimodular form: quasimodular function holomorphic at the cusps.

$$
\begin{gathered}
A(\tau):=\left(\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}+27 \frac{\eta(3 \tau)^{9}}{\eta(\tau)^{3}}\right)^{\frac{1}{3}}, \quad B(\tau):=\frac{1}{4}\left(E_{2}(\tau)+3 E_{2}(3 \tau)\right) \\
C(\tau):=\frac{\eta(\tau)^{9}}{\eta(3 \tau)^{3}}
\end{gathered}
$$

where

$$
\eta(\tau):=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

is the Dedekind eta function.

- The functions A, B, and C are quasimodular forms for $\Gamma_{1}(3)$. More precisely, A and C are modular respectively of weight 1 and 3 , and B is quasimodular of weight 2 . In fact, A, B, and C freely generate the ring of quasimodular forms of $\Gamma_{1}(3)$:

$$
\operatorname{QMod}\left(\Gamma_{1}(3)\right)=\mathbb{C}[A, B, C] .
$$

Moduli spaces

- Complex projective plane \mathbb{P}^{2}

Moduli spaces

- Complex projective plane \mathbb{P}^{2}
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^{2}

Moduli spaces

- Complex projective plane \mathbb{P}^{2}
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^{2}
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.

Moduli spaces

- Complex projective plane \mathbb{P}^{2}
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^{2}
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus $g, \operatorname{Pic}^{n}(C)$: moduli space of lines bundles L on C with $\chi(L)=n$, abelian variety of dimension g.

Moduli spaces

- Complex projective plane \mathbb{P}^{2}
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^{2}
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus $g, \operatorname{Pic}^{n}(C)$: moduli space of lines bundles L on C with $\chi(L)=n$, abelian variety of dimension g.
- Relative version of Pic^{n} over the open locus in $|\mathcal{O}(d)|$ of smooth projective curves.

Moduli spaces

- Complex projective plane \mathbb{P}^{2}
- Linear system $|\mathcal{O}(d)|$ of degree d curve in \mathbb{P}^{2}
- General curve in $|\mathcal{O}(d)|$ is a smooth projective curve of genus $\frac{(d-1)(d-2)}{2}$.
- C smooth projective curve of genus $g, \operatorname{Pic}^{n}(C)$: moduli space of lines bundles L on C with $\chi(L)=n$, abelian variety of dimension g.
- Relative version of Pic^{n} over the open locus in $|\mathcal{O}(d)|$ of smooth projective curves.
- Compactification over $|\mathcal{O}(d)|$?

Moduli spaces

- Consider coherent sheaves on \mathbb{P}^{2} with one-dimensional support.

Moduli spaces

- Consider coherent sheaves on \mathbb{P}^{2} with one-dimensional support.
- Numerical invariants: degree $d(F)$, Euler characteristic $\chi(F)$.

Moduli spaces

- Consider coherent sheaves on \mathbb{P}^{2} with one-dimensional support.
- Numerical invariants: degree $d(F)$, Euler characteristic $\chi(F)$.
- F coherent sheaf on \mathbb{P}^{2} with one-dimensional support is called Gieseker semistable (resp. stable) if F is pure (every non-zero subsheaf of F has one-dimensional support) and, for every non-zero strict subsheaf F^{\prime} of F, we have $\frac{\chi\left(F^{\prime}\right)}{d\left(F^{\prime}\right)} \leq \frac{\chi(F)}{d(F)}\left(\right.$ resp. $\left.\frac{\chi\left(F^{\prime}\right)}{d\left(F^{\prime}\right)}<\frac{\chi(F)}{d(F)}\right)$.

Moduli spaces

- Consider coherent sheaves on \mathbb{P}^{2} with one-dimensional support.
- Numerical invariants: degree $d(F)$, Euler characteristic $\chi(F)$.
- F coherent sheaf on \mathbb{P}^{2} with one-dimensional support is called Gieseker semistable (resp. stable) if F is pure (every non-zero subsheaf of F has one-dimensional support) and, for every non-zero strict subsheaf F^{\prime} of F, we have $\frac{\chi\left(F^{\prime}\right)}{d\left(F^{\prime}\right)} \leq \frac{\chi(F)}{d(F)}\left(\right.$ resp. $\left.\frac{\chi\left(F^{\prime}\right)}{d\left(F^{\prime}\right)}<\frac{\chi(F)}{d(F)}\right)$.
- Moduli space (good moduli space for the Artin stack of Gieseker semistable sheaves):
$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

- (Simpson, Le Potier, around 1990) $M_{d, n}$ irreducible algebraic projective variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, n)=1$, singular in general.

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

- (Simpson, Le Potier, around 1990) $M_{d, n}$ irreducible algebraic projective variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, n)=1$, singular in general.
- $\pi: M_{d, n} \rightarrow|\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F)$.

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

- (Simpson, Le Potier, around 1990) $M_{d, n}$ irreducible algebraic projective variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, n)=1$, singular in general.
- $\pi: M_{d, n} \rightarrow|\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F)$.
- $\pi^{-1}(C)=\operatorname{Pic}^{n}(C)$ if C is smooth.

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

- (Simpson, Le Potier, around 1990) $M_{d, n}$ irreducible algebraic projective variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, n)=1$, singular in general.
- $\pi: M_{d, n} \rightarrow|\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F)$.
- $\pi^{-1}(C)=\operatorname{Pic}^{n}(C)$ if C is smooth.
- Fiber $\pi^{-1}(C)$ complicated if C is singular.

Moduli spaces

$M_{d, n}=\{$ S-equivalence classes of Gieseker semistable coherent sheaves

$$
\left.F \text { on } \mathbb{P}^{2} \text { with } d(F)=d, \chi(F)=n\right\},
$$

- (Simpson, Le Potier, around 1990) $M_{d, n}$ irreducible algebraic projective variety of dimension $d^{2}+1$, smooth if $\operatorname{gcd}(d, n)=1$, singular in general.
- $\pi: M_{d, n} \rightarrow|\mathcal{O}(d)|, F \mapsto \operatorname{supp}(F)$.
- $\pi^{-1}(C)=\operatorname{Pic}^{n}(C)$ if C is smooth.
- Fiber $\pi^{-1}(C)$ complicated if C is singular.
- The global topology of $M_{d, n}$ is non-trivial.
- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular). It is known that $b_{j}\left(M_{d, n}\right)$ only depends on $n \bmod d$. Conjecturally, $b_{j}\left(M_{d, n}\right)$ is independent of n.

Moduli spaces

$$
\begin{gathered}
M_{d, n}=\left\{F \text { Gieseker semistable coherent sheaf on } \mathbb{P}^{2}\right. \\
\text { with } d(F)=d, \chi(F)=n\},
\end{gathered}
$$

- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular).

Moduli spaces

$$
\begin{gathered}
M_{d, n}=\left\{F \text { Gieseker semistable coherent sheaf on } \mathbb{P}^{2}\right. \\
\text { with } d(F)=d, \chi(F)=n\},
\end{gathered}
$$

- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d, n} \simeq M_{d, n+d}$, so the Betti numbers $b_{j}\left(M_{d, n}\right)$ only depends on $n \bmod d$.

Moduli spaces

$$
\begin{gathered}
M_{d, n}=\left\{F \text { Gieseker semistable coherent sheaf on } \mathbb{P}^{2}\right. \\
\text { with } d(F)=d, \chi(F)=n\},
\end{gathered}
$$

- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d, n} \simeq M_{d, n+d}$, so the Betti numbers $b_{j}\left(M_{d, n}\right)$ only depends on $n \bmod d$.
- Conjecturally, $b_{j}\left(M_{d, n}\right)$ is independent of n.

Moduli spaces

$$
\begin{gathered}
M_{d, n}=\left\{F \text { Gieseker semistable coherent sheaf on } \mathbb{P}^{2}\right. \\
\text { with } d(F)=d, \chi(F)=n\},
\end{gathered}
$$

- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d, n} \simeq M_{d, n+d}$, so the Betti numbers $b_{j}\left(M_{d, n}\right)$ only depends on $n \bmod d$.
- Conjecturally, $b_{j}\left(M_{d, n}\right)$ is independent of n.
- Define

$$
b_{j}\left(M_{d}\right):=\frac{1}{d} \sum_{n} \sum_{\bmod d} b_{j}\left(M_{d, n}\right)
$$

Examples

- $\sum_{j} b_{j}\left(M_{1}\right) y^{\frac{j}{2}}=1+y+y^{2}$

Examples

- $\sum_{j} b_{j}\left(M_{1}\right) y^{\frac{j}{2}}=1+y+y^{2}$
- $\sum_{j} b_{j}\left(M_{2}\right) y^{\frac{j}{2}}=1+y+y^{2}+y^{3}+y^{4}+y^{5}$

Examples

- $\sum_{j} b_{j}\left(M_{1}\right) y^{\frac{j}{2}}=1+y+y^{2}$
- $\sum_{j} b_{j}\left(M_{2}\right) y^{\frac{j}{2}}=1+y+y^{2}+y^{3}+y^{4}+y^{5}$
- $\sum_{j} b_{j}\left(M_{3}\right) y^{\frac{j}{2}}=1+2 y+3 y^{2}+3 y^{3}+3 y^{4}+3 y^{5}+3 y^{6}+3 y^{7}+3 y^{8}+2 y^{9}+y^{10}$

Examples

- $\sum_{j} b_{j}\left(M_{1}\right) y^{\frac{j}{2}}=1+y+y^{2}$
- $\sum_{j} b_{j}\left(M_{2}\right) y^{\frac{j}{2}}=1+y+y^{2}+y^{3}+y^{4}+y^{5}$
- $\sum_{j} b_{j}\left(M_{3}\right) y^{\frac{j}{2}}=1+2 y+3 y^{2}+3 y^{3}+3 y^{4}+3 y^{5}+3 y^{6}+3 y^{7}+3 y^{8}+2 y^{9}+y^{10}$
- $\sum_{j} b_{j}\left(M_{4}\right) y^{\frac{j}{2}}=1+2 y+6 y^{2}+10 y^{3}+14 y^{4}+15 y^{5}+16 y^{6}+16 y^{7}+$ $16 y^{8}+16 y^{9}+16 y^{10}+16 y^{11}+15 y^{12}+14 y^{13}+10 y^{14}+6 y^{15}+2 y^{16}+y^{17}$

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.
- Negativity of $\mathcal{O}(-3)$ implies that Gieseker semistable one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ are scheme-theoretically supported on \mathbb{P}^{2}.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.
- Negativity of $\mathcal{O}(-3)$ implies that Gieseker semistable one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ are scheme-theoretically supported on \mathbb{P}^{2}.
- $M_{d, n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^{2}}$.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.
- Negativity of $\mathcal{O}(-3)$ implies that Gieseker semistable one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ are scheme-theoretically supported on \mathbb{P}^{2}.
- $M_{d, n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^{2}}$.
- $\operatorname{Ext}^{2}(E, E)=0$ if E Gieseker semistable with one-dimensional support.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.
- Negativity of $\mathcal{O}(-3)$ implies that Gieseker semistable one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ are scheme-theoretically supported on \mathbb{P}^{2}.
- $M_{d, n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^{2}}$.
- $\operatorname{Ext}^{2}(E, E)=0$ if E Gieseker semistable with one-dimensional support.
- Connection between intersection cohomology and DT invariants under the Ext ${ }^{2}$-vanishing assumption: Meinhardt-Reineke, Meinhardt.

DT invariants

- Donaldson-Thomas invariants: sheaf counting on Calabi-Yau 3-folds.
- Calabi-Yau 3-fold ? $K_{\mathbb{P}^{2}}$, total space of the canonical line bundle $\mathcal{O}(-3)$ of \mathbb{P}^{2}.
- Negativity of $\mathcal{O}(-3)$ implies that Gieseker semistable one-dimensional sheaves on $K_{\mathbb{P}^{2}}$ are scheme-theoretically supported on \mathbb{P}^{2}.
- $M_{d, n}$ is a moduli space of coherent sheaves on $K_{\mathbb{P}^{2}}$.
- $\operatorname{Ext}^{2}(E, E)=0$ if E Gieseker semistable with one-dimensional support.
- Connection between intersection cohomology and DT invariants under the Ext ${ }^{2}$-vanishing assumption: Meinhardt-Reineke, Meinhardt.
- $b_{j}\left(M_{d, n}\right)$ are refined DT invariants of the non-compact Calabi-Yau 3-fold $K_{\mathbb{P}^{2}}$.

GV invariants

- Unrefined limit: replace Betti numbers by Euler characteristic.

$$
e\left(M_{d}\right):=\sum_{j} b_{j}\left(M_{d}\right)(-1)^{j}
$$

GV invariants

- Unrefined limit: replace Betti numbers by Euler characteristic.

$$
e\left(M_{d}\right):=\sum_{j} b_{j}\left(M_{d}\right)(-1)^{j}
$$

- $e\left(M_{d}\right)=(-1)^{d-1} n_{0, d}^{K_{\mathbb{P} 2}}$
- $n_{0, d}^{K_{\mathbb{P}}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^{2}}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^{2}}$.

GV invariants

- Unrefined limit: replace Betti numbers by Euler characteristic.

$$
e\left(M_{d}\right):=\sum_{j} b_{j}\left(M_{d}\right)(-1)^{j}
$$

- $e\left(M_{d}\right)=(-1)^{d-1} n_{0, d}^{K_{\mathbb{P} 2}}$
- $n_{0, d}^{K_{\mathbb{P}^{2}}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^{2}}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^{2}}$.
- Katz's conjecture, known for $K_{\mathbb{P}^{2}}$ by MNOP+Toda+Konishi.

GV invariants

- Unrefined limit: replace Betti numbers by Euler characteristic.

$$
e\left(M_{d}\right):=\sum_{j} b_{j}\left(M_{d}\right)(-1)^{j}
$$

- $e\left(M_{d}\right)=(-1)^{d-1} n_{0, d}^{K_{\mathbb{P}}}$
- $n_{0, d}^{K_{\mathbb{P}^{2}}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^{2}}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^{2}}$.
- Katz's conjecture, known for $K_{\mathbb{P}^{2}}$ by MNOP+Toda+Konishi.
- $n_{0,1}^{K_{\mathbb{P}} 2}=3, n_{0,2}^{K_{\mathbb{P} 2}}=-6, n_{0,3}^{K_{\mathbb{P} 2}}=27, n_{0,4}^{K_{\mathbb{P} 2}}=-192$.

GV invariants

- Unrefined limit: replace Betti numbers by Euler characteristic.

$$
e\left(M_{d}\right):=\sum_{j} b_{j}\left(M_{d}\right)(-1)^{j}
$$

- $e\left(M_{d}\right)=(-1)^{d-1} n_{0, d}^{K_{\mathbb{P}}{ }^{2}}$
- $n_{0, d}^{K_{\mathbb{P}^{2}}}$ genus 0 Gopakumar-Vafa of $K_{\mathbb{P}^{2}}$, encoding genus 0 Gromov-Witten theory of $K_{\mathbb{P}^{2}}$.
- Katz's conjecture, known for $K_{\mathbb{P}^{2}}$ by MNOP+Toda+Konishi.
- $n_{0,1}^{K_{\mathbb{P} 2}}=3, n_{0,2}^{K_{\mathbb{P} 2}}=-6, n_{0,3}^{K_{\mathbb{P} 2}}=27, n_{0,4}^{K_{\mathbb{P} 2}}=-192$.
- Think about $\sum_{j} b_{j}\left(M_{d}\right) y^{\frac{j}{2}}$ as a refined genus 0 Gopakumar-Vafa invariant.

Moduli spaces

$$
\begin{gathered}
M_{d, n}=\left\{F \text { Gieseker semistable coherent sheaf on } \mathbb{P}^{2}\right. \\
\text { with } d(F)=d, \chi(F)=n\},
\end{gathered}
$$

- Betti numbers $b_{j}\left(M_{d, n}\right)$ (for the intersection cohomology if $M_{d, n}$ is singular).
- $F \mapsto F \otimes \mathcal{O}(1)$ induces isomorphisms $M_{d, n} \simeq M_{d, n+d}$, so the Betti numbers $b_{j}\left(M_{d, n}\right)$ only depends on $n \bmod d$.
- Conjecturally, $b_{j}\left(M_{d, n}\right)$ is independent of n.
- Define

$$
b_{j}\left(M_{d}\right):=\frac{1}{d} \sum_{n} \sum_{\bmod d} b_{j}\left(M_{d, n}\right)
$$

Generating series

- 'Obvious' generating series

$$
\sum_{d \geq 1} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{j}{2}} Q^{d}
$$

Generating series

- 'Obvious' generating series

$$
\sum_{d \geq 1} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{j}{2}} Q^{d}
$$

- 'Almost obvious' generating series (from the DT point of view)

$$
i \sum_{d \geq 1} \sum_{\ell \geq 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}\left(d^{2}+1\right)} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{\ell j}{2}}}{y^{\frac{\ell}{2}}-y^{-\frac{\ell}{2}}} Q^{\ell d}
$$

Generating series

- 'Obvious' generating series

$$
\sum_{d \geq 1} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{j}{2}} Q^{d}
$$

- 'Almost obvious' generating series (from the DT point of view)

$$
i \sum_{d \geq 1} \sum_{\ell \geq 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}\left(d^{2}+1\right)} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{\ell j}{2}}}{y^{\frac{\ell}{2}}-y^{-\frac{\ell}{2}}} Q^{\ell d}
$$

- Not obvious step at all (string theory prediction of Huang and Klemm): write $y=e^{i \hbar}$ and expand in powers of \hbar.

Theorem: Quasimodularity

Define series $F_{g}^{N S}(Q) \in \mathbb{Q}[[Q]]$ by the change of variables $y=e^{i \hbar}=\sum_{n \geq 0} \frac{(i \hbar)^{n}}{n!}$:

$$
\begin{gathered}
i \sum_{d \geq 1} \sum_{\ell \geq 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}\left(d^{2}+1\right)} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{\ell j}{2}}}{y^{\frac{\ell}{2}}-y^{-\frac{\ell}{2}}} Q^{\ell d} \\
=\sum_{g \geq 0} F_{g}^{N S}(Q)(-1)^{g} \hbar^{2 g-1}
\end{gathered}
$$

Theorem: Quasimodularity

Define series $F_{g}^{N S}(Q) \in \mathbb{Q}[[Q]]$ by the change of variables $y=e^{i \hbar}=\sum_{n \geq 0} \frac{(i \hbar)^{n}}{n!}:$

$$
\begin{gathered}
i \sum_{d \geq 1} \sum_{\ell \geq 1} \frac{(-1)^{d-1}}{\ell} \frac{y^{-\frac{\ell}{2}\left(d^{2}+1\right)} \sum_{j} b_{j}\left(M_{d}\right) y^{\frac{\ell j}{2}}}{y^{\frac{\ell}{2}}-y^{-\frac{\ell}{2}}} Q^{\ell d} \\
=\sum_{g \geq 0} F_{g}^{N S}(Q)(-1)^{g} \hbar^{2 g-1} .
\end{gathered}
$$

Theorem [B.,Fan,Guo,Wu, 2020]

- $F_{0}^{N S}$ and $F_{1}^{N S}$ can be 'explicitly' computed.
- There exists an explicit change of variables $Q \mapsto q=e^{2 i \pi \tau}$ such that, for every $g \geq 2, F_{g}^{N S}(\tau)$ is a weight 0 quasimodular function for $\Gamma_{1}(3)$.

Theorem: Quasimodularity

Theorem [B.,Fan, Guo, Wu, 2020]

More precisely, for every $g \geq 2$, we have

$$
F_{g}^{N S} \in C^{-(2 g-2)} \cdot \mathbb{Q}[A, B, C]_{6 g-6} .
$$

Moreover, we have $\operatorname{deg}_{B} F_{g}^{N S} \leq 2 g-3$.

Theorem: Quasimodularity

Theorem [B.,Fan, Guo, Wu, 2020]

More precisely, for every $g \geq 2$, we have

$$
F_{g}^{N S} \in C^{-(2 g-2)} \cdot \mathbb{Q}[A, B, C]_{6 g-6} .
$$

Moreover, we have $\operatorname{deg}_{B} F_{g}^{N S} \leq 2 g-3$.
Example:

$$
F_{2}^{N S}=\frac{1}{11520 C^{2}}\left(-37 A^{6}+5 A^{4} B+48 A^{3} C-16 C^{2}\right) .
$$

Theorem: Holomorphic anomaly equation

Theorem [B.,Fan,Guo,Wu, 2020]

For every $g \geq 2$, we have

$$
2 \frac{\partial}{\partial B} F_{g}^{N S}=\frac{1}{2} \sum_{j=1}^{g-1}\left(Q \frac{d}{d Q} F_{j}^{N S}\right)\left(Q \frac{d}{d Q} F_{g-j}^{N S}\right) .
$$

Context

- Previous results solve a special case (the 'refined genus 0 case' $=$ 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^{2}}$ (Huang-Klemm, 2010).

Context

- Previous results solve a special case (the 'refined genus 0 case' $=$ 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^{2}}$ (Huang-Klemm, 2010).
- First mathematical result in the 'refined' direction.

Context

- Previous results solve a special case (the 'refined genus 0 case' $=$ 'Nekrasov-Shatashvili limit') of physics conjectures about the refined topological string theory of $K_{\mathbb{P}^{2}}$ (Huang-Klemm, 2010).
- First mathematical result in the 'refined' direction.
- Unrefined topological string: higher genus Gromov-Witten theory of $K_{\mathbb{P}^{2}}$. Generating series of genus g Gromov-Witten invariants of $K_{\mathbb{P}^{2}}$:

$$
F_{g}^{G W}(Q):=\sum_{d \geq 1} N_{g, d}^{G W, K_{\mathbb{P}^{2}}} Q^{d}
$$

Context

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

- $F_{0}^{G W}$ and $F_{1}^{G W}$ explicitly known.

Context

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

- $F_{0}^{G W}$ and $F_{1}^{G W}$ explicitly known.
- There exists an explicit change of variables $Q \mapsto q=e^{2 i \pi \tau}$ such that, for every $g \geq 2, F_{g}^{G W}(\tau)$ is a weight 0 quasimodular function for $\Gamma_{1}(3): F_{g}^{G W} \in C^{-(2 g-2)} \cdot \mathbb{Q}[A, B, C]_{6 g-6}$.

Context

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

- $F_{0}^{G W}$ and $F_{1}^{G W}$ explicitly known.
- There exists an explicit change of variables $Q \mapsto q=e^{2 i \pi \tau}$ such that, for every $g \geq 2, F_{g}^{G W}(\tau)$ is a weight 0 quasimodular function for $\Gamma_{1}(3): F_{g}^{G W} \in C^{-(2 g-2)} \cdot \mathbb{Q}[A, B, C]_{6 g-6}$.
- For every $g \geq 2$, we have

$$
2 \frac{\partial}{\partial B} F_{g}^{G W}=\frac{1}{2} \sum_{j=1}^{g-1}\left(Q \frac{d}{d Q} F_{j}^{G W}\right)\left(Q \frac{d}{d Q} F_{g-j}^{G W}\right)+\frac{1}{2}\left(Q \frac{d}{d Q}\right)^{2} F_{g-1}^{G W} .
$$

Context

Theorem (Lho-Pandharipande, Coates-Iritani, 2017-2018)

- $F_{0}^{G W}$ and $F_{1}^{G W}$ explicitly known.
- There exists an explicit change of variables $Q \mapsto q=e^{2 i \pi \tau}$ such that, for every $g \geq 2, F_{g}^{G W}(\tau)$ is a weight 0 quasimodular function for

$$
\Gamma_{1}(3): F_{g}^{G W} \in C^{-(2 g-2)} \cdot \mathbb{Q}[A, B, C]_{6 g-6} .
$$

- For every $g \geq 2$, we have

$$
2 \frac{\partial}{\partial B} F_{g}^{G W}=\frac{1}{2} \sum_{j=1}^{g-1}\left(Q \frac{d}{d Q} F_{j}^{G W}\right)\left(Q \frac{d}{d Q} F_{g-j}^{G W}\right)+\frac{1}{2}\left(Q \frac{d}{d Q}\right)^{2} F_{g-1}^{G W} .
$$

Example:

$$
F_{2}^{G W}=\frac{1}{8640 C^{2}}\left(-8 A^{6}+30 A^{4} B-45 A^{2} B^{2}+25 B^{3}+2 A^{3} C-4 C^{2}\right)
$$

Context: refinement

- Gromov-Witten/stable pairs correspondence (MNOP), the series $\bar{F}_{g} K_{\mathbb{P} 2}$ can be described in terms of the stable pairs invariants $P_{d, n}$ of $K_{\mathbb{P}^{2}}$:

$$
1+\sum_{d \geq 1} \sum_{n \in \mathbb{Z}} P_{d, n}(-x)^{n} Q^{d}=\exp \left(\sum_{g \geq 0} F_{g}^{G W} u^{2 g-2}\right)
$$

where $x=e^{i u}$.

Context: refinement

- Gromov-Witten/stable pairs correspondence (MNOP), the series $\bar{F}_{g} K_{\mathbb{P} 2}$ can be described in terms of the stable pairs invariants $P_{d, n}$ of $K_{\mathbb{P}^{2}}$:

$$
1+\sum_{d \geq 1} \sum_{n \in \mathbb{Z}} P_{d, n}(-x)^{n} Q^{d}=\exp \left(\sum_{g \geq 0} F_{g}^{G W} u^{2 g-2}\right)
$$

where $x=e^{i u}$.

- The stable pairs invariants $P_{d, n}$ are expected to admit a refinement $P_{d, n, j}$ (various approaches: cohomological, K-theoretic...) The refined topological string free energies $F_{g_{1}, g_{2}}^{K_{\mathbb{P}_{2}}, \text { ref }}$ are then defined by the expansion

$$
\begin{equation*}
1+\sum_{d \geq 1} \sum_{n, j \in \mathbb{Z}} P_{d, n, j} y^{j}(-x)^{n} Q^{d}=\exp \left(\sum_{g \geq 0} F_{g_{1}, g_{2}}^{\mathrm{ref}}\left(\epsilon_{1}+\epsilon_{2}\right)^{2 g_{1}}\left(-\epsilon_{1} \epsilon_{2}\right)^{g_{2}-1}\right) \tag{1}
\end{equation*}
$$

where $x=e^{i \frac{\epsilon_{1}-\epsilon_{2}}{2}}$ and $y=e^{i \frac{\epsilon_{1}+\epsilon_{2}}{2}}$.

Context: refinement

- Unrefined limit: Gromov-Witten theory, $F_{0, g}^{\text {ref }}=F_{g}^{G W}$.

Context: refinement

- Unrefined limit: Gromov-Witten theory, $F_{0, g}^{\text {ref }}=F_{g}^{G W}$.
- Genus-0/Nekrasov-Shatashvili limit: (conjectural) description in terms of moduli spaces of one-dimensional sheaves, $F_{g, 0}^{\text {ref }}=F_{g}^{N S}$.

Context: refinement

- Unrefined limit: Gromov-Witten theory, $F_{0, g}^{\text {ref }}=F_{g}^{G W}$.
- Genus-0/Nekrasov-Shatashvili limit: (conjectural) description in terms of moduli spaces of one-dimensional sheaves, $F_{g, 0}^{\text {ref }}=F_{g}^{N S}$.
- Remark: $F_{0,0}^{\text {ref }}=F_{0}^{G W}=F_{0}^{N S}$.

Context: refinement

Conjecture (Huang-Klemm, 2010)

- After the change of variabes $Q \mapsto q=e^{2 i \pi \tau}$, for every g_{1}, g_{2} with $g_{1}+g_{2} \geq 2, F_{g_{1}, g_{2}}^{\text {ref }}(\tau)$ is a weight 0 quasimodular function for $\Gamma_{1}(3)$: $F_{g_{1}, g_{2}}^{\text {ref }} \in C^{-\left(2\left(g_{1}+g_{2}\right)-2\right)} \cdot \mathbb{Q}[A, B, C]_{6\left(g_{1}+g_{2}\right)-6}$.

Context: refinement

Conjecture (Huang-Klemm, 2010)

- After the change of variabes $Q \mapsto q=e^{2 i \pi \tau}$, for every g_{1}, g_{2} with $g_{1}+g_{2} \geq 2, F_{g_{1}, g_{2}}^{\text {ref }}(\tau)$ is a weight 0 quasimodular function for $\Gamma_{1}(3)$: $F_{g_{1}, g_{2}}^{\text {ref }} \in C^{-\left(2\left(g_{1}+g_{2}\right)-2\right)} \cdot \mathbb{Q}[A, B, C]_{6\left(g_{1}+g_{2}\right)-6}$.
- For every g_{1}, g_{2} with $g_{1}+g_{2} \geq 2$, we have

$$
\begin{aligned}
2 \frac{\partial}{\partial B} F_{g_{1}, g_{2}}^{\mathrm{ref}}=\frac{1}{2} & \sum_{\substack{0 \leq j_{1} \leq g_{1} \\
0 \leq j_{2} \leq g_{2} \\
\left(j_{1}, j_{2}\right)+(0,0) \\
\left(j_{1}, j_{2}\right) \neq\left(g_{1}, g_{2}\right)}}^{g-1}\left(Q \frac{d}{d Q} F_{j_{1}, j_{2}}^{\mathrm{ref}}\right)\left(Q \frac{d}{d Q} F_{\left(g_{1}-j_{1}, g_{2}-j_{2}\right)}^{\mathrm{ref}}\right) \\
& +\frac{1}{2}\left(Q \frac{d}{d Q}\right)^{2} F_{g_{1}, g_{2}-1}^{G W} .
\end{aligned}
$$

Why does it seem difficult?

- The proof of quasimodularity and holomorphic anomaly equation for $F_{0, g}^{\text {ref }}=F_{g}^{G W}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.

Why does it seem difficult?

- The proof of quasimodularity and holomorphic anomaly equation for $F_{0, g}^{\text {ref }}=F_{g}^{G W}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.
- In general, $F_{\left(g_{1}, g_{2}\right)}^{\text {ref }}$ is defined via the sheaf side and exponential changes of variables. The geometric interpretation of the parameters g_{1} and g_{2} is unclear.

Why does it seem difficult?

- The proof of quasimodularity and holomorphic anomaly equation for $F_{0, g}^{\text {ref }}=F_{g}^{G W}$ (Lho-Pandharipande, Coates-Iritani) uses the Gromov-Witten side, where the parameter g has a clear geometric meaning as genus parameter. No known proof starting from the sheaf side.
- In general, $F_{\left(g_{1}, g_{2}\right)}^{\text {ref }}$ is defined via the sheaf side and exponential changes of variables. The geometric interpretation of the parameters g_{1} and g_{2} is unclear.
- It would be useful to have a Gromov-Witten-like interpretation of the series $F_{\left(g_{1}, g_{2}\right)}^{\text {ref }}$. "No known worldsheet definition of the refined topological string".

Why does it seem difficult?

- Key point of the story: we can find a Gromov-Witten interpretation of the series $F_{g}^{N S}=F_{g, 0}^{\text {ref }}$.

Why does it seem difficult?

- Key point of the story: we can find a Gromov-Witten interpretation of the series $F_{g}^{N S}=F_{g, 0}^{\mathrm{ref}}$.
- We don't know how to do that for $F_{g_{1}, g_{2}}^{\text {ref }}$ with $\left(g_{1}, g_{2}\right) \neq 0$

Why does it seem difficult?

- Key point of the story: we can find a Gromov-Witten interpretation of the series $F_{g}^{N S}=F_{g, 0}^{\mathrm{ref}}$.
- We don't know how to do that for $F_{g_{1}, g_{2}}^{\text {ref }}$ with $\left(g_{1}, g_{2}\right) \neq 0$
- How to find a Gromov-Witten definition of $F_{g}^{N S}$? We know that it is not Gromov-Witten theory of $K_{\mathbb{P}^{2}}: F_{g}^{N S} \neq F_{g}^{G W}$. Need to look at Gromov-Witten theory of a different geometry.

New geometry

- New geometry: fix E a smooth cubic curve in \mathbb{P}^{2}.

New geometry

- New geometry: fix E a smooth cubic curve in \mathbb{P}^{2}.
- $N_{g, d}$: Gromov-Witten invariant for genus g degree d curves in \mathbb{P}^{2} intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold $\mathbb{P}^{2} \times \AA^{1} / E \times \mathbb{A}^{1}$.

New geometry

- New geometry: fix E a smooth cubic curve in \mathbb{P}^{2}.
- $N_{g, d}$: Gromov-Witten invariant for genus g degree d curves in \mathbb{P}^{2} intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold $\mathbb{P}^{2} \times \AA^{1} / E \times \mathbb{A}^{1}$.

$$
N_{g, d}:=\int_{\left[\bar{M}_{g}\left(\mathbb{P}^{2} / E, d\right)\right]^{\text {ir }}}(-1)^{g} \lambda_{g}
$$

New geometry

- New geometry: fix E a smooth cubic curve in \mathbb{P}^{2}.
- $N_{g, d}$: Gromov-Witten invariant for genus g degree d curves in \mathbb{P}^{2} intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold $\mathbb{P}^{2} \times \AA^{1} / E \times \mathbb{A}^{1}$.

$$
N_{g, d}:=\int_{\left[\bar{M}_{g}\left(\mathbb{P}^{2} / E, d\right)\right]^{\text {ir }}}(-1)^{g} \lambda_{g}
$$

Theorem (B, 2019)

For every $g \geq 0$, we have

$$
F_{g}^{N S}=\sum_{d \geq 1} \frac{(-1)^{d-1}}{3 d} N_{g, d} Q^{d}
$$

New geometry

- New geometry: fix E a smooth cubic curve in \mathbb{P}^{2}.
- $N_{g, d}$: Gromov-Witten invariant for genus g degree d curves in \mathbb{P}^{2} intersecting E in a single point, viewed in the relative Calabi-Yau 3-fold $\mathbb{P}^{2} \times \AA^{1} / E \times \mathbb{A}^{1}$.
-

$$
N_{g, d}:=\int_{\left[\bar{M}_{g}\left(\mathbb{P}^{2} / E, d\right)\right]^{\text {ir }}}(-1)^{g} \lambda_{g}
$$

Theorem (B, 2019)

For every $g \geq 0$, we have

$$
F_{g}^{N S}=\sum_{d \geq 1} \frac{(-1)^{d-1}}{3 d} N_{g, d} Q^{d}
$$

- Correspondence between refined DT invariants and higher genus GW invariants of two different geometries (different from previously known GW/DT correspondence).

Proof

- How to prove such sheaf/Gromov-Witten correspondence?

Proof

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.

Proof

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.
- Scattering diagram: collections of rays decorated with generated functions, algorithmically produced from initial rays.

Proof

- How to prove such sheaf/Gromov-Witten correspondence?
- No direct geometric connection. Use a combinatorial/algebraic intermediate step: scattering diagram.
- Scattering diagram: collections of rays decorated with generated functions, algorithmically produced from initial rays.
- The same algorithm compute the sheaf and the Gromov-Witten sides.

Scattering diagram

Algorithm on the sheaf side

- Compute the Betti numbers $b_{j}\left(M_{d}\right)$ by moving in the space of Bridgeland stability conditions on $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$ and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).

Algorithm on the sheaf side

- Compute the Betti numbers $b_{j}\left(M_{d}\right)$ by moving in the space of Bridgeland stability conditions on $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$ and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on \mathbb{P}^{2}, not just one-dimensional sheaves, but also positive ranks sheaves.

Algorithm on the sheaf side

- Compute the Betti numbers $b_{j}\left(M_{d}\right)$ by moving in the space of Bridgeland stability conditions on $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$ and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on \mathbb{P}^{2}, not just one-dimensional sheaves, but also positive ranks sheaves.
- Initial data: line bundles $\mathcal{O}(n)$, generating the derived category $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$.

Algorithm on the sheaf side

- Compute the Betti numbers $b_{j}\left(M_{d}\right)$ by moving in the space of Bridgeland stability conditions on $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$ and applying the Kontsevich-Soibelman formula (natural from the DT Calabi-Yau 3-dimensional point of view).
- Need to consider arbitrary classes of coherent sheaves on \mathbb{P}^{2}, not just one-dimensional sheaves, but also positive ranks sheaves.
- Initial data: line bundles $\mathcal{O}(n)$, generating the derived category $D^{b} \operatorname{Coh}\left(\mathbb{P}^{2}\right)$.
- Scattering diagram: organization of moves in the space of stability conditions.

Algorithm on the Gromov-Witten side

- Compute the Gromov-Witten $N_{g, d}$ using tropical geometry (combinatorial description of degenerations). Holomorphic curves degenerate to tropical curves.
- Correspondence theorem between counts of holomorphic maps and counts of tropical maps (Mikhalkin, Nishinou-Siebert, Gabele for $g=0$, B. for $g>0$).
- Scattering diagram: organization of the tropical computation.

Scattering diagram

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Degeneration argument. Degeneration of \mathbb{P}^{2} to the normal cone of E. Line bundle defined by the family of divisors E. General fiber: $K_{\mathbb{P}^{2}}=\mathcal{O}(-E)$. Special fiber: $\mathbb{P}^{2} \times \mathbb{A}^{1}$, glued along $E \times \AA^{1}$ to a non-trivial line bundle over $\mathbb{P}\left(N_{E \mid \mathbb{P}^{2}} \oplus \mathcal{O}\right)$.

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Degeneration argument. Degeneration of \mathbb{P}^{2} to the normal cone of E. Line bundle defined by the family of divisors E. General fiber: $K_{\mathbb{P}^{2}}=\mathcal{O}(-E)$. Special fiber: $\mathbb{P}^{2} \times \mathbb{A}^{1}$, glued along $E \times \AA^{1}$ to a non-trivial line bundle over $\mathbb{P}\left(N_{E \mid \mathbb{P}^{2}} \oplus \mathcal{O}\right)$.
- Localization on the bubble $\mathbb{P}\left(N_{E \mid \mathbb{P}^{2}} \oplus \mathcal{O}\right)$: reduction to equivariant Gromov-Witten theory of $N_{E \mid \mathbb{P}^{2}} \oplus N_{E \mid \mathbb{P}^{2}}^{\vee} \rightarrow E$ with stationary descendent insertions.

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Degeneration argument. Degeneration of \mathbb{P}^{2} to the normal cone of E. Line bundle defined by the family of divisors E. General fiber: $K_{\mathbb{P}^{2}}=\mathcal{O}(-E)$. Special fiber: $\mathbb{P}^{2} \times \mathbb{A}^{1}$, glued along $E \times \grave{A}^{1}$ to a non-trivial line bundle over $\mathbb{P}\left(N_{E \mid \mathbb{P}^{2}} \oplus \mathcal{O}\right)$.
- Localization on the bubble $\mathbb{P}\left(N_{E \mid \mathbb{P}^{2}} \oplus \mathcal{O}\right)$: reduction to equivariant Gromov-Witten theory of $N_{E \mid \mathbb{P}^{2}} \oplus N_{E \mid \mathbb{P}^{2}}^{\vee} \rightarrow E$ with stationary descendent insertions.
- Use Grothendieck-Riemann-Roch (in Coates-Givental form) to reduce to Gromov-Witten theory of E with stationary descendent insertions.

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Upshot: formula computing Gromov-Witten invariants $N_{g, d}$ of $\left(\mathbb{P}^{2}, E\right)$ in terms of Gromov-Witten invariants of $K_{\mathbb{P}^{2}}$ and the elliptic curve E (Higher-genus version of the log/local correspondence of van Garrel-Graber-Ruddat for a smooth divisor).

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Upshot: formula computing Gromov-Witten invariants $N_{g, d}$ of $\left(\mathbb{P}^{2}, E\right)$ in terms of Gromov-Witten invariants of $K_{\mathbb{P}^{2}}$ and the elliptic curve E (Higher-genus version of the log/local correspondence of van Garrel-Graber-Ruddat for a smooth divisor).

$$
\begin{gathered}
F_{g}^{G W}=(-1)^{g} F_{g}^{N S}+ \\
\sum_{\substack{n \geq 0}}^{\sum_{\substack{g=h+g_{1}+\cdots+g_{n}, \mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z} \sum_{2} \\
\left(a_{j}, g_{j}\right) \neq(0,0), \sum_{j=1}^{n} a_{j}=2 h-2}} \frac{(-1)^{h-1} F_{h, \mathbf{a}}^{E}}{|\operatorname{Aut}(\mathbf{a}, \mathbf{g})|} \prod_{j=1}^{n}(-1)^{g_{j}-1} D^{a_{j}+2} F_{g_{j}}^{N S} .}
\end{gathered}
$$

- $F_{h, \mathbf{a}}^{E}$: Gromov-Witten theory of E with stationary descendent insertions.

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve
- Use quasimodularity and holomorphic anomaly equation for Gromov-Witten invariants of $K_{\mathbb{P}^{2}}$ (Lho-Pandharipande, Coates-Iritani, 2018).

Modularity from the Gromov-Witten side (with Fan, Guo, Wu, 2020)

- Use quasimodularity (Okounkov-Pandharipande, 2003) and holomorphic anomaly equation (Oberdieck-Pixton 2017) for Gromov-Witten invariants of the elliptic curve
- Use quasimodularity and holomorphic anomaly equation for Gromov-Witten invariants of $K_{\mathbb{P}^{2}}$ (Lho-Pandharipande, Coates-Iritani, 2018).
- Slightly miraculous combination of these modularity results gives the desired result.

Thank you for your attention!

