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Abstract. This is an expository account of the proof of the theorem of Bourgain, Gli-
bichuk and Konyagin which provides non-trivial bounds for exponential sums over very
small multiplicative subgroups of prime finite fields.

... this peaking of the whale’s flukes is perhaps the
grandest sight to be seen in all animated nature,

H. Melville, Moby-Dick, Ch. lxxxvi.

1. Introduction

In the theory of exponential sums in number theory, the study of “short” sums remains
one of the most mysterious. Truly robust methods, suitable for the variety of sums that
appear in applications, are lacking in many cases.

This note is an exposition of the proof by Bourgain, Glibichuk and Konyagin of a remark-
able estimate of this kind. It concerns exponential sums over “small” subgroups of F×

p , and
is especially noteworthy for the techniques, based on additive combinatorics, which enter
into the proof.

The precise result is the following:

Theorem 1.1 (Bourgain, Glibichuk and Konyagin). Let γ > 0 be a real number. There
exists a real number ν > 0, depending only on γ, such that for any prime number p and any
subgroup H ⊂ F×

p with |H| ⩾ pγ, we have∑
x∈H

e
(ax
p

)
≪ |H|p−ν

for any a ∈ F×
p , where the implied constant depends only on γ.

Theorem 1.1 has an equivalent formulation in terms of Gauss sums

Gd(a; p) =
∑
x∈Fp

e
(axd

p

)
with exponent d | p− 1. Indeed, considering the subgroup

Hd = {xd | x ∈ F×
p }
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of order (p− 1)/d, we have

Gd(a; p) = 1 +
∑
x∈F×

p

e
(axd

p

)
= 1 + d

∑
y∈Hd

e
(ay
p

)
= 1 + p− 1

|Hd|
∑
y∈H

e
(ay
p

)
since each y ∈ Hd is of the form y = xd for d different values of x ∈ F×

p . Hence we see
that the estimate of the theorem is equivalent to the bound Gd(a; p) ≪ p1−ν , valid provided
d ⩽ (p− 1)p−γ for some γ > 0.

Similarly, let H be a subgroup of F×
p . We can write∑

y∈H

e
(ay
p

)
= |H|

p− 1
∑

H⊂ker(χ)

∑
y∈Fp

χ(y)e
(ay
p

)
,

where χ runs over the subgroup of characters trivial on H (which has order (p − 1)/|H|);
using the fact that Gauss sums for non-trivial characters have modulus √

p, we see that the
sums in Theorem 1.1 have modulus at most √p. This is non-trivial for |H| a bit larger than√
p. (See Remark 5.2, (3) for a different proof of this which does not use Gauss sums.)

Remark 1.2. (1) Using similar methods in combination with significant other ingredients,
a number of generalizations of this bound have been obtained, among which we single out
the result of Bourgain [3] where non-trivial estimates are obtained for the sums∑

x∈F×
p

e
(f(x)

p

)
for f ∈ Z[X] of possibly very large degree, provided the degrees of the non-zero monomials
appearing in f satisfy suitable conditions relative to p.

We focus on Theorem 1.1 for definiteness and clarity.
(2) One can wonder about even smaller subgroups, but some restriction is certainly needed

since H could be of bounded order. For instance, if p is odd, there is always a subgroup of
order 2, namely {−1, 1}, for which the behavior of the sums is quite clearly rather different.

It would be interesting to see if one could say something interesting for subgroups H of
size ≍ (log p)C for some constant C > 0.

(3) The dependency of the exponent ν on γ can be made explicit in Theorem 1.1; currently
the sharpest result (whose proof involves new ideas) is due to Shkredov [11, Cor. 16].

Remark 1.3. Some of the motivation, generalizations and applications of Theorem 1.1 are
discussed in a talk at IAS by Bourgain in December 2008, which is available online [2].

P. Kurlberg [9] has already written a detailed account of the proof of Theorem 1.1, from
which we benefited a lot. The first version of the present text was written as part of lecture
notes for an introductory course on additive combinatorics taught in the Fall Semester 2023
at ETH Zürich (see [8] for the current draft), but the current presentation is also quite
different from that.

Some of the changes we make in comparison with the original paper of Bourgain, Glibichuk
and Konyagin (and with Kurlberg’s account) are the following:
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– The argument, which was originally phrased in terms of probability measures on Fp

is presented in probabilistic language. At least for some readers (starting from the
author), this focus brings some additional insights and intuition.

– In addition, we order and phrase the main steps of the proof rather differently (com-
pare Proposition 5.1 with [9, Prop. 3.1], for instance; these are the places in the proof
where the sum-product theorem is applied). This is done partly to highlight a read-
ing of the proof which has recognizable connections with more “classical” analytic
number theory.

– We also include a full proof of one of the two basic ingredients from additive com-
binatorics that occur in the proof of Theorem 1.1. This is a version of the Balog–
Szemerédi–Gowers Theorem (see Theorem 2.2 below), for which Schoen has recently
given a short proof (see [10]); our presentation is based on an unpublished note of
B. Green. This proof also has a clear probabilistic flavor, and thus fits our presen-
tation very well. (On the other, we only quote the sum-product theorem over finite
fields of Bourgain, Katz and Tao [1], which is the other key ingredient from additive
combinatorics.)

– On a more technical level, we use the same basic probabilistic lemma to verify the
assumptions in the two applications of the Balog–Szemerédi–Gowers Theorem in the
proof (see Section 4), and we streamline or uniformize a few other small steps. This
should hopefully make the ideas easier to memorize or digest.

Notation

We use f = O(g) and f ≪ g (or g ≫ f) synonymously: for functions f and g defined
on a set X, this means that there exists a real number C ⩾ 0, called sometimes the implied
constant, such that |f(x)| ⩽ g(x) for all x ∈ X.

We denote by |X| the cardinality of a set X.
We denote by 1Y the characteristic function of a subset Y of a set X.
We note that although we did not attempt to keep track of the constants in the final

estimate, we have done so for the “easier” steps. The values of these constants (e.g. in
Proposition 6.1) are of course not very important in themselves.

Acknowledgements

We thank B. Green for sending his account of Schoen’s result. We also especially thank all
the students of the “Additive Combinatorics” class for their interest and active participation
in the course, and C. Bortolotto for organizing the exercise sessions. Thanks to A. Gamburd
for sending the link to Bourgain’s talk [2] and to I. Shkredov for pointing out his improved
bound in [11].

2. Preliminaries

We summarize here the background results used in the proof of Theorem 1.1. This section
can be skipped until needed during the proof of the theorem.

3



Lemma 2.1. Let X be a bounded non-negative random variable. Let M ⩾ 0 be such that
X ⩽ M. Assume that

E(X) ⩾ (1 − δ)M
for some δ > 0. We then have

P
(

X ⩾ (1 − γ)M
)
⩾ 1 − δ

γ

for any γ such that 0 < γ ⩽ 1.
In particular, if E(X) ⩾ α−1M for some α ⩾ 1, then

(2.1) P
(

X ⩾
M
2α

)
⩾

1
2α

.

Proof. We use Chebychev’s inequality to obtain the complementary upper-bound:

P
(

X ⩽ (1 − γ)M
)

= P(M − X ⩾ γM) ⩽ E(M − X)
γM

⩽
δ

γ
.

In the final assertion, we have 1 − δ = α−1 and 1 − γ = 1 − 1
2α

−1, so that

1 − δ

γ
=

1
2α

−1

1 − 1
2α

−1 ⩾
1

2α
,

and the second inequality follows. □

We now discuss the version of the Balog–Szemerédi–Gowers Theorem that we will use.
We first fix some notation, to be used throughout.

Given a group G (not necessarily abelian, although this will be the case in the applications
below) and finite subsets A and B ⊂ G, we denote by rA·B the representation function for
the product set A · B = {ab | (a, b) ∈ A × B}, namely

rA·B(x) =
∑

(a,b)∈A×B
ab=x

1.

This function satisfies 0 ⩽ rA·B(x) ⩽ |A| for all x ∈ G, and∑
x∈G

rA·B(x) = |A||B|.

Moreover, its second moment is the so-called multiplicative energy (or just energy) of
(A,B), which we denote E(A,B):

E(A,B) =
∑
x∈G

rA·B(x)2 = |{(a1, a2, b1, b2) ∈ A2 × B2 | a1b1 = a2b2}|.

If A and B are non-empty, we denote by e(A,B) the normalized energy, defined by

e(A,B) = E(A,B)
(|A||B|)3/2 .

Finally, we denote by A−1 the set of inverses of elements of A. If G is abelian, then since
ab = cd is equivalent to ac−1 = db−1, it follows that E(A,A) = E(A,A−1).

4



Theorem 2.2. Let G be a group and A ⊂ G a non-empty finite subset. Let α ⩾ 1 be such
that e(A) ⩾ α−1. There exists a subset B ⊂ A such that

(2.2) |B| ⩾ |A|
4α

, |B · B−1| ⩽ 214α6|B|,

where the implied constant is absolute.

We will give the proof below.
The last (and crucial) part of the proof is the sum-product theorem of Bourgain, Katz

and Tao [1].

Theorem 2.3 (Bourgain–Katz–Tao). For any γ > 0, there exists δ > 0 such that for any
prime number p and any set A ⊂ Fp such that |A| ⩽ p1−γ, we have

(2.3) max(|A + A|, |A · A|) ≫ |A|1+δ,

where the implied constant depends only on γ.

Remark 2.4. The original version of the theorem includes also the assumption that |A| ⩾ pγ,
but this was found to be unnecessary by Konyagin (although it would pose no problem in
the application to Theorem 1.1). Two proofs, written in similar style to this paper, can be
found in the lecture notes [8, § 4.2] (besides the proof in [1], these notes contain a proof based
on ideas of Breuillard [6] related to growth in the affine-linear group).

We finish this section by giving the proof of Theorem 2.2, following essentially a write-up
by B. Green of the argument of Schoen [10]. Again, readers who want to focus on the proof
of Theorem 1.1 may skip to the beginning of the next section.

The key step is to find a large subset X of A such that the elements of X ·X−1 have a large
number of representations as elements of A · A−1. The precise statement is the following:

Proposition 2.5. Let G be a group and A ⊂ G a non-empty finite subset. Let α ⩾ 1 be such
that e(A) ⩾ α−1. Fix a real number δ such that 0 < δ < 1. Denote by r the representation
function for A · A−1.

There exists x ∈ G such that

(2.4) |A ∩ A · x| ⩾ |A|
2α

and

(2.5)
∣∣∣{(a, b) ∈ (A ∩ A · x)2 | r(ab−1) ⩾ δ|A|

2α2

}∣∣∣ ⩾ (1 − δ)|A ∩ A · x|2.

Proof. The key idea is to take x “at random”, but not according to the uniform probability
measure on G. Rather, we pick a given element x with probability proportional to r(x).
More precisely, since ∑

x∈G

r(x) = |A||A−1| = |A|2,

we let X be a G-valued random variable such that

P(X = x) = r(x)
|A|2
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for any x ∈ G. We further denote B = A ∩ A · X, which is a random subset of G, contained
in A.

Let γ > 0 be a parameter to be chosen later. We define
Y = {(a, b) ∈ A × A | r(ab−1) < γ|A|}.

We will show that for γ = δ/(2α2), the inequality

(2.6) E
(
|B|2 − δ−1|(B × B) ∩ Y|

)
⩾

|A|2

2α2

holds. It implies the existence of some element x ∈ G such that

|A ∩ A · x|2 − δ−1|(A ∩ A · x)2 ∩ Y| ⩾ |A|2

2α2 ,

and from this we deduce, on the one hand, that |A∩A ·x|2 ⩾ |A|2/(2α2), which implies (2.4),
and on the other hand that

|(A ∩ A · x)2 ∩ Y| ⩽ δ|A ∩ A · x|2,
which is equivalent to (2.5).

To prove (2.6), we first find a lower-bound for E(|B|2). By the Cauchy–Schwarz inequality,
we have E(|B|2) ⩾ E(|B|)2, and the expectation of the size of B is

E(|B|) =
∑
a∈A

P(a ∈ A · X) =
∑
a∈A

∑
b∈A

P(X = b−1a) = 1
|A|2

∑
a∈A

∑
b∈A

r(b−1a),

by definition of X. By replacing r(b−1a) by its definition, we compute
1

|A|2
∑
a∈A

∑
b∈A

r(b−1a) = 1
|A|2

∑
a∈A

∑
b∈A

∑
(x,y)∈A2

xy−1=b−1a

1 = E(A,A)
|A|2

= |A|e(A).

Using the assumption e(A) ⩾ α−1, we therefore get the lower bound

E(|B|2) ⩾ |A|2

α2 .

We now handle separately an upper bound for the expectation of (B×B)∩Y. We simply
write

E(|(B × B) ∩ Y|) ⩽ |A|2 max
(a,b)∈Y

P({a, b} ⊂ B),

and estimate the probability that {a, b} ⊂ B for each (a, b) ∈ Y separately. Since Y ⊂ A2,
this is

P(a ∈ B and b ∈ B) = P(a ∈ A · X and b ∈ A · X) = P(X ∈ A−1 · a ∩ A−1 · b).

From the crude bound r(x) ⩽ |A|, it follows that P(X = x) ⩽ 1/|A| for any x ∈ G, and
we deduce that

P(X ∈ A−1 · a ∩ A−1 · b) ⩽ 1
|A|

|A−1 · a ∩ A−1 · b|.

We now note that
|A−1 · a ∩ A−1 · b| = |{(x, y) ∈ A2 | xy−1 = ab−1}|
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(because of the bijection f which sends an element w ∈ A−1 · a ∩ A−1 · b to (aw−1, bw−1),
with inverse (x, y) 7→ a−1x = b−1y). Thus we get

P(a ∈ B and b ∈ B) ⩽ 1
|A|

∑
(x,y)∈A2

xy−1=ab−1

1 = r(ab−1)
|A|

,

and by definition of Y, this is < γ|A|. Thus we have

E
(
|B|2 − δ−1|(B × B) ∩ Y|

)
⩾

|A|2

α2 − γ|A|2

δ
,

and this is ⩾ |A|2/(2α2) if we take γ = δ/(2α2), as claimed. □

Proof of Theorem 2.2. We apply Proposition 2.5 with δ = 1/10; we denote by C the set
A ∩ A · x which it provides, and let

Y =
{
y ∈ G | r(y) ⩾ δ|A|

2α2

}
,

where r is again the representation function for A · A−1. We note that

(2.7) |Y| ⩽ 20α2|A|

by Chebychev’s inequality. Further, for any element a ∈ A, we denote by N(a) the set of
b ∈ C such that ab−1 ∈ Y.

We have 0 ⩽ |N(c)| ⩽ |C| for any c ∈ C; moreover, by (2.5), we have
1
|C|

∑
c∈C

|N(c)| ⩾ (1 − δ)|C|,

and this implies that N(c) must often be quite close to its maximal value. Precisely, from
Lemma 2.1 (with X the random variable c 7→ N(c) on C with uniform probability), we get

|{c ∈ C | N(c) ⩾ (1 − γ)|C|}| ⩾
(

1 − δ

γ

)
|C|,

whenever 0 < γ < 1. Taking γ =
√
δ, we find that there are at least (1 −

√
δ)|C| elements

of C such that |N(c)| ⩾ (1 −
√
δ)|C|.

Let B be the subset of C (hence of A) defined by this condition on N(c); since Proposi-
tion 2.5 implies that |C| ⩾ |A|/(2α), we already get

|B| ⩾ (1 −
√
δ)|C| ⩾ |C|

2
⩾

|A|
4α

.

To conclude the proof, we claim that

(2.8) B · B−1 ⊂
{
x ∈ G | s(x) ⩾ |C|

3

}
,

where s is the representation function for Y · Y−1. Assuming this, we observe that the
right-hand set satisfies ∣∣∣{x ∈ G | s(x) ⩾ |C|

3

}∣∣∣ ⩽ 3|Y|2

|C|
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(by Chebychev’s inequality again). Using |C| ⩾ |A|/(2α) together with (2.7), we deduce

|B · B−1| ⩽ 3|Y|2

|C|
⩽ 6 · 202 · α5|A| ⩽ 4 · 6 · 202 · α6|B| ⩽ 214|B|,

which finishes the proof of the theorem.
To prove (2.8), pick any a and b in B; we need a lower bound for s(ab−1), or in other words

for the size of the set
{(u, v) ∈ Y × Y | uv−1 = ab−1}.

There is an injective map

N(a) ∩ N(b) → {(u, v) ∈ Y × Y | uv−1 = ab−1}

defined by f(z) = (az−1, bz−1) (the crucial point here is that this map is well-defined: we
have (az−1, bz−1) ∈ Y × Y by definition of N(a) and N(b)). Hence s(ab−1) ⩾ |N(a) ∩ N(b)|.
But, by definition, |N(a)| and |N(b)| are very large, and so is their intersection. In fact, we
get

|N(a) ∩ N(b)| ⩾ (1 − 2
√
δ)|C| ⩾ |C|

3
,

(recall that δ = 1/10), so that s(ab−1) ⩾ |C|/3, as desired. □

3. Two probabilistic constructions

We already mentioned that we will present the proof of Theorem 1.1 in probabilistic
language. This relies on two elementary constructions which we present here, in greater
generality than required.

We consider a finite group G. Given a G-valued random variable X (defined on some
probability space Ω which we need not specify precisely), we will denote by ϱX its “density”
function, i.e., ϱX : G → R is the function such that ϱX(x) = P(X = x) for all x ∈ X.

Stepping. We say that a G-valued random variable Y is a stepping of X if Y = X1X−1
2 ,

where (X1,X2) are independent random variables, both independent of X and distributed
like X. In particular, X and Y are then independent. We have

ϱY(y) = P(Y = y) = P(X1X−1
2 = y) =

∑
x∈G

P(X = x)P(X = x−1y),

and in particular

(3.1) ϱY(0) =
∑
x∈G

P(X = x)2.

Applying the Cauchy–Schwarz inequality to the formula for ϱY(x), we see that ϱY(x) ⩽
ϱY(0) for all x ∈ G.

Remark 3.1. In additive notation, we have Y = X1 −X2 with (X,X1,X2) independent and
identically distributed.
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Peaking. We now assume that G is commutative, with additive notation, and we denote
by Ĝ its character group. For any G-valued random variable X, we denote by φX the “char-
acteristic function” of X (in the probabilistic sense, hence essentially its Fourier transform),
namely the function on Ĝ defined by

φX(χ) = E(χ(X))

for χ ∈ Ĝ. We have φ−X = φX, and if X1 and X2 are independent, then φX1+X2 = φX1φX2 .
Let now Y = X1 − X2 be a stepping of X. According to the above, we have φY = |φX|2.

In particular, since φY = |φX|2 ⩾ 0, and since φY(0) = 1, we can consider a random variable
Ŷ on Ĝ such that

P(Ŷ = χ) = φY(χ)
MX

= |φX(χ)|2

MX

for χ ∈ Ĝ, where
MX =

∑
χ∈Ĝ

|φX(χ)|2.

Moreover, we may (and do) insist that Ŷ is independent from (X,X1,X2), hence also
from Y. (Similarly, whenever we consider Ẑ for some other random variable Z, it will be
understood that Ẑ is independent of any previously described random variables.)

Intuitively, the random variable Ŷ emphasizes the characters χ where φX(χ) is large, and
for this reason we will say that Ŷ is a peaking of Y, or of X.

Remark 3.2. If G = Z/qZ for some integer q ⩾ 1, we can identify as usual the character
group with G by associating to a ∈ Z/qZ the character x 7→ e(ax/q). Thus we also identify
the characteristic function φX with a function Z/qZ → C, with

φX(a) = E
(
e
(aX

q

))
.

Steppings and peakings are related by a simple but crucial formula, which reflects the
Fourier duality. We identify as usual the dual group of Ĝ with G, the element x ∈ G
corresponding to the character χ 7→ χ(x) of Ĝ.

Lemma 3.3. Let G be a finite commutative group. For any G-valued random variable X,
with stepping Y and peaking Ŷ, and for any y ∈ G, we have

ϱY(y) = MX

|G|
φŶ(y),

where the characteristic function of Ŷ is identified with a function on G.

Proof. We use the orthogonality of characters to represent the (set-theoretic!) characteristic
function of an element y ∈ G by

1
|G|

∑
χ∈Ĝ

χ(x− y) =

{
1 if x = y

0 if x ̸= y,
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and get

ϱY(y) = E
( 1
|G|

∑
χ∈Ĝ

χ(Y − y)
)

= 1
|G|

∑
χ∈Ĝ

χ(−y)φY(χ) = MX

|G|
φŶ(−y),

by definition of Ŷ. This proves the lemma since ϱY(−y) = ϱY(y). □

In particular, we note the formula

(3.2) ϱY(0) = MX

|G|
.

Remark 3.4. If X is uniformly distributed on G, then Y is also uniformly distributed on G,
and Ŷ is a Dirac mass at the unit element 1 of G. Conversely, if X is a Dirac mass at
some x ∈ G, then Y is a Dirac mass at 1, and Ŷ is uniformly distributed on Ĝ.

4. Probabilistic lemmas

In order to apply Theorem 2.2, we will use two lemmas giving probabilistic conditions that
guarantee large energy. We use the definition of a “stepping” of a random variable from the
previous section.

Lemma 4.1. Let G be a finite group and let A be a non-empty subset of G. Let X be a
G-valued random variable and Y a stepping of X. We assume that β ⩾ 1 is such that

E(rA·A−1(X)) ⩾ β−1|A|.

We then have
e(A) ⩾ 1

4β4ϱY(0)|A|
.

Proof. Let
L = {x ∈ G | rA·A−1(x) ⩾ 1

2β
−1|A|},

so that we have the lower-bound
E(A) =

∑
x∈G

rA·A−1(x)2 ⩾
∑
x∈L

rA·A−1(x)2 ⩾ β−2|A|2|L|.

Noting that rA·A−1(x) ⩽ |A| for all x, the assumption implies that

P(L) = P
(
rA·A−1(X) ⩾ |A|

2β

)
⩾

1
2β

(see (2.1)), but the Cauchy–Schwarz inequality and positivity imply that

P(L) =
∑
x∈L

P(X = x) ⩽ |L|1/2
(∑
x∈G

P(X = x)2
)1/2

= |L|1/2ϱY(0)1/2,

and hence |L| ⩾ (2β)−2ϱY(0)−1. The previous lower-bound gives
E(A) ⩾ 2−2β−4ϱY(0)−1|A|2,

which implies the desired result. □
10



The second and final lemma uses this to conclude that the energy of the set of “elements
with large probability” will be big if those sets are of “typical” size.

Lemma 4.2. Let G be a finite group. Let X be a G-valued random variable and let Y =
X1X−1

2 be a stepping of X. Let α ⩾ 1 and define

A =
{
x ∈ G | P(Y = x) ⩾ ϱY(0)

α

}
.

Let B ⊂ A and let β > 0 be such that

|B| ⩾ 1
βϱY(0)

.

We have then
e(B) ⩾ 1

4α9β4 .

Proof. Let r = rB·B−1 be the representation function for B · B−1. We have

E(r(Y)) =
∑
a,b∈B

P(Y = ab−1) =
∑
a,b∈A

P(X1a
−1 = X2b

−1),

and this implies that

E(r(Y)) =
∑
y∈G

∑
a,b∈B

P(X1a
−1 = y and X2b

−1 = y)

=
∑
y∈G

∑
a,b∈B

P(X1a
−1 = y)P(X2b

−1 = y) =
∑
y∈G

P(X1 ∈ yB)2.

The “reversed” Cauchy–Schwarz inequality now shows that for any choice of f(y) ⩾ 0 for
y ∈ G, not all zero, we have

E(r(Y)) ⩾ V2

W
with

V =
∑
y∈G

f(y)P(X1 ∈ yB), W =
∑
y∈G

f(y)2.

We pick f(y) = P(X2 = y); in this case, we have

V = P(Y ∈ B), W = P(Y = 0),

and therefore

E(r(Y)) ⩾ P(Y ∈ B)2

ϱY(0)
⩾

ϱY(0)
α2 |B|2,

where the last step follows from the assumption that B ⊂ A, so that P(Y = y) ⩾ α−1ϱY(0)
for y ∈ B. Since we also assumed that ϱY(0)|B| ⩾ β−1, this gives E(r(Y)) ⩾ α−2β−1|B|.

Applying Lemma 4.1 to the random variable Y and the set B, we get

e(B) ⩾ 1
4α8β4ϱZ(0)|B|

,

11



where Z is a stepping of Y. But we have

ϱZ(0) = P(Z = 0) =
∑
y∈G

P(Y = y)2 ⩽ P(Y = 0)
∑
y∈G

P(Y = y) = P(Y = 0) = ϱY(0),

and thus ϱZ(0)|B| ⩽ ϱY(0)|A|, which is ⩽ α by Chebychev’s inequality, so we get finally the
lower bound

e(B) ⩾ 1
4α8β4ϱY(0)|B|

⩾
1

4α9β4 ,

as claimed. □

5. Main steps of the proof

We will describe in this section the strategy of the proof of Theorem 1.1, extracting two
intermediate steps before the final conclusion.

Step 1. The first step is an estimate for a specific average of values of the discrete Fourier
transform of random variables on Fp, which involves the “peaking” of Section 3.

Proposition 5.1. Let p be a prime number. Let X be an Fp-valued random variable, and
let Y = X1 − X2 be a stepping of X and Ŷ a peaking of X.

Let η > 0 be a real number. There exists β > 0, depending only on η, such that

(5.1) E(|φX(XŶ)|2) ≪ ϱX(0) + ϱY(0)β + p−1+η

ϱY(0)
.

Remark 5.2. (1) To get a feeling for this inequality, note the obvious lower bounds

E(|φX(XŶ)|2) ⩾ P(X = 0), E(|φX(XŶ)|2) ⩾ P(Ŷ = 0).

The term ϱX(0) on the right-hand side of (5.1) accounts for the first of these, and the third
term accounts for (a quantity larger than) the second, since by (3.2), we have

P(Ŷ = 0) = 1
MX

= p−1

ϱY(0)
.

(2) Although the bound (5.1) may look conventional enough, it is in its proof that additive
combinatorics is crucial. In other words: if (5.1) could be proved “with classical means”, i.e.
without invoking the sum-product phenomenon, or the Balog–Szemerédi–Gowers Theorem,
or other results from additive combinatorics, then this would give a “classical” proof of
Theorem 1.1.

(3) In “concrete” terms, without probabilistic notation, the quantity E(|φX(XŶ)|2) is the
average

1
M2

X

∑
x∈Fp

∑
a∈Fp

ϱX(x)|φX(a)|2|φX(ax)|2.

From an analytic number theory point of view, this can be interpreted as a kind of “am-
plified” average of the values of |φX|2. To see why this can be useful, take the random
variable X to be uniformly distributed over a subgroup H of F×

p . Observe (as we will repeat
12



later) that φX(ah) = φX(a) for any h ∈ H and a ̸= 0; it follows that ϱY(0) = 1/|H|, and a
simple computation shows that XŶ is distributed like Y and that

MX =
∑
a∈Fp

∣∣∣1
p

∑
x∈H

e
(ax
p

)∣∣∣2 = p

|H|
.

Therefore, for any a ∈ F×
p , we have a lower bound

E(|φX(XŶ)|2) ⩾ |φX(a)|2P(XŶ ∈ H) ⩾ |φX(a)|2 × |H| |φX(a)|2

MX
= |φX(a)|4 |H|2

p
.

This shows that even the trivial bound E(|φX(XŶ)|2) ⩽ 1 is sufficient to deduce that
|φX(a)|4 ⩽ p|H|−2, which is non-trivial as soon as H has size a bit larger than √

p – the same
range in which a “direct” use of Gauss sums leads to a non-trivial bound.

Furthermore, if we apply Proposition 5.1 instead of the trivial bound, with η = γ/2, say,
then we get some β > 0 such that

|H|2

p
|φX(a)|4 ≪ 1

|H|
+ 1

|H|1+β
+ |H|pη

p

hence
|φX(a)|4 ≪ p1−3γ + p1−(2+β)γ + p−γ/2,

which proves Theorem 1.1 when |H| = pγ with γ > max(1
3 ,

1
2+β

), hence also for γ slightly
smaller than 1/2. This is already a highly non-trivial fact. A result of that type was first
proved by Shparlinski [12] (for |H| a bit larger than p3/7), using estimates of Garcia and
Voloch on the number of points on Fermat curves over finite fields, also combined with a
fourth moment computation.

Step 2. We now describe for which random variables we will apply Proposition 6.1.
Let H ⊂ F×

p be a multiplicative subgroup. We fix a random variable S which is uniformly
distributed on H (so that ϱS(x) = 0 unless x ∈ H, in which case ϱS(x) = 1/|H|). We denote
by (Sk)k⩾1 a sequence of independent random variables, all independent from S and also
uniformly distributed on H.

We will consider the random variables
Xk = S1 − S2 + · · · + S2k−1 − S2k

for k ⩾ 1. Probabilistically, these correspond to a simple random walk on Fp where the steps
are taken alternately from H and from −H (so the picture could be simplified a bit in the
case where −1 ∈ H, since then each Si would be distributed in the same way as −Si, and we
would have a “standard” random walk). Note that

φXk
(a) = |φS(a)|2k,

by independence; moreover, note that
X2k = (S1 − S2 + · · · + S2k−1 − S2k) − (S2k+2 − S2k+1 + · · · + S4k − S4k−1),

which shows that X2k is a stepping of Xk.
For ν > 0, we define the set

Λν = {a ∈ Fp | |φS(a)| > p−ν}.
13



Note that 0 ∈ Λν in all cases, and that, since

φS(a) = 1
|H|

∑
x∈H

e
(ax
p

)
,

we can restate Theorem 1.1 as claiming the existence of some ν > 0 such that Λν only
contains 0. This is therefore our objective. The following simple lemma encapsulates the
specific property of the distribution of the random variable S.

Lemma 5.3. For any x ∈ H, the random variable xS is uniformly distributed on H.
In particular the following properties hold:
(1) For any a ∈ Fp, we have φS(ax) = φS(a), and hence also φXk

(ax) = φXk
(a).

(2) The set Λν {0} is either empty or is a union of H-cosets. In the second case, we
have |Λν | ⩾ |H|.

Proof. The first statement simply reflects the fact that H is a multiplicative subgroup of F×
p .

The equality φS(ax) = φS(a) follows, and it means that aH ⊂ Λν whenever a ∈ Λν {0},
which gives the last fact. □

The content of the second step is as follows:

Proposition 5.4. Let θ > 0 be a real number. If p is a large enough prime number,
depending only on θ, then there exist a positive real number ν < 1

2θ, depending only on θ,
and an integer k ⩾ 1 such that
(5.2) p−1−θ|Λν | ⩽ ϱX2k(0) ⩽ p−1+θ|Λν |
and
(5.3) E(|φXk

(XkX̂2k)|2) ⩾ p−10θ.

Step 3. We now conclude the proof of Theorem 1.1. Recall that |H| ⩾ pγ by assumption;
we pick θ > 0 such that 10θ < γ. Applying Proposition 5.4 and then Proposition 5.1, for
some η > 0 to be determined later, we find random variables X = Xk and Y = X2k satisfying
the bounds (5.2) and such that

p−10θ ⩽ E(|φX(XŶ)|2) = E(|φXk
(XkX̂2k)|2) ≪ ϱX(0) + ϱY(0)β + p−1+η

ϱY(0)
,

for some β > 0.
The first term is easily handled: by induction on k, we find that

P(Xk = 0) ⩽ max
x∈Fp

P(S = x) = 1
|H|

for any k ⩾ 1, hence the assumption |H| ⩾ pγ gives

p−10θ ≪ p−γ + ϱY(0)β + p−1+η

ϱY(0)
.

Using (5.2) to estimate ϱY(0) in terms of |Λν |, this becomes

p−10θ ≪ p−γ +
( |Λν |
p1−θ

)β

+ pη+θ

|Λν |
.

14



We always have |Λν | ⩽ p1+2ν |H|−1 by Chebychev’s inequality. Moreover, if we assume
that Λν is not reduced to 0, then this set contains at least |H| ⩾ pγ elements. Recalling that
2ν < η, we would then get the bounds

p−10θ ≪ pβ(2ν+θ−γ) + pη+θ−γ ≪ pβ(η+θ−γ) + pη+θ−γ,

which is impossible for p large enough if η is chosen small enough in terms of γ. Thus we
must have Λν = {0}, and (by definition) this means that∣∣∣ 1

|H|
∑
x∈H

e
(ax
p

)∣∣∣ ⩽ p−ν

for all a ∈ F×
p , provided p is large enough.

6. Completion of the proof

We now prove Propositions 5.1 and 5.4. The sum-product theorem appears decisively in
the proof of the first of these, and more precisely in the following key proposition.

Proposition 6.1. Let p be a prime number. Let X be an Fp-valued random variable, and
let Y = X1 − X2 be a stepping of X as above. Let α ⩾ 1 be a real number such that

(6.1) E(ϱY(XY)) ⩾ ϱY(0)
α

.

Assuming that

(6.2) P(X = 0) ⩽ 1
4α

, P(Y = 0) ⩽ 1
4α

,

there exists a subset A ⊂ F×
p such that

1
231α10ϱY(0)

⩽ |A| ⩽ 8α
ϱY(0)

with the property that
max(|A + A|, |A · A|) ⩽ 2878α294|A|.

Remark 6.2. As already indicated, the constants should really be interpreted as being of
the form cαd for some absolute constants c > 0 and d > 0.

Remark 6.3. The use of the random variable Ŷ (which emphasizes values a ∈ Fp where
|φX(a)|2 is “large”) is reminiscent of the similar use of a non-uniform distribution in the
proof of Theorem 2.2.

Proof. We will use frequently the fact that ϱY(y) ⩽ ϱY(0) for all y ∈ Fp, which we already
mentioned.

We define
A1 =

{
y ∈ Fp | ϱY(y) ⩾ ϱY(0)

8α

}
and A2 = A1 {0} ⊂ F×

p (note that 0 ∈ A1). The main properties of A2 are given by the
next lemma.
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Lemma 6.4. We have

(6.3) 1
4αϱY(0)

⩽ |A2| ⩽
8α

ϱY(0)
,

and the representation function r2 for A2 · A−1
2 satisfies

(6.4) E(r2(X)) ⩾ |A2|
32α2 .

Proof. First, simply by Chebychev’s inequality, we have

(6.5) |A2| ⩽ |A1| ⩽
8α

ϱY(0)
.

We now claim that the assumption (6.1), namely

E(ϱY(XY)) ⩾ ϱY(0)
α

,

together with (6.2), implies that

(6.6) E(ϱY(XY)1X ̸=0,Y∈A1∩X−1A1) ⩾ ϱY(0)
2α

.

This is a matter of showing that the contributions to E(ϱY(XY)) from the complementary
event, where X = 0 or Y /∈ A1, or XY /∈ A1, are small enough. And indeed, first of all the
first part of (6.2) gives the upper bound

E
(
ϱY(XY)1X=0

)
= ϱY(0)P(X = 0) ⩽ ϱY(0)

4α
,

while
E(ϱY(XY)1X ̸=0, XY/∈A1) ⩽ 1

8α
E(ϱY(XY)) ⩽ ϱY(0)

8α
.

To bound the last contribution with X ̸= 0 and Y /∈ A1, we write

E(ϱY(XY)1X ̸=0, Y/∈A1) =
∑
y/∈A1

E(ϱY(XY)1X ̸=0,Y=y) =
∑
y/∈A1

E(ϱY(yX)1X ̸=0,Y=y).

Using the independance of X and Y, we deduce that

E(ϱY(XY)1X ̸=0, Y/∈A1) =
∑

y∈Fp A1

P(Y = y)E(ϱY(yX)1X ̸=0)

⩽
ϱY(0)

8α
E
(∑
y/∈A1

ϱY(yX)1X ̸=0

)
⩽

ϱY(0)
8α

E
(∑
y∈Fp

ϱY(yX)1X ̸=0

)
⩽

ϱY(0)
8α

,

using in the last step the fact that, for any given x ̸= 0, we have∑
y∈Fp

ϱY(yx) = P(Y ̸= 0) ⩽ 1.

We next deduce from (6.6) a lower-bound for |A1| complementing the upper-bound (6.5),
namely

(6.7) 1
2αϱY(0)

⩽ |A1| ⩽
8α

ϱY(0)
,
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which in turn implies that |A1| ⩾ 2 (by (6.2) since ϱY(0) = P(Y = 0)), and therefore also
|A2| = |A1| − 1 ⩾ 1

2 |A1|, hence
1

4αϱY(0)
⩽ |A2| ⩽

8α
ϱY(0)

,

Indeed, we obtain (6.7) by noting that, by (6.6), we have
ϱY(0)

2α
⩽ E(ϱY(XY)1X ̸=0, Y∈A1) ⩽ ϱY(0)P(Y ∈ A1) ⩽ ϱY(0)2|A1|.

The next step is to relate the bound (6.6) to the representation function r2 for A2 · A−1
2 .

For this, we start with the formula

E(r2(X)) =
∑

y,z∈A2

P(X = y−1z) =
∑
y∈A2

E
(∑
z∈A2

P(yX = z)
)

=
∑
y∈A2

P(yX ∈ A2).

On the other hand, by independance of X and Y, we have

E(ϱY(XY)1X ̸=0,Y∈A1∩X−1A1) =
∑
y∈A1

ϱY(y)E(ϱY(yX)1X ̸=0, yX∈A1)

⩽ ϱY(0)2E
(∑
y∈A1

1X ̸=0, yX∈A1

)
= ϱY(0)2

∑
y∈A1

P(X ̸= 0 and yX ∈ A1).

Isolating the contribution of y = 0 ∈ A1, we then have∑
y∈A1

P(X ̸= 0 and yX ∈ A1) = P(X ̸= 0) + E(r2(X)) ⩽ 1 + E(r2(X)),

and thus (6.6) implies that
ϱY(0)

2α
⩽ ϱY(0)2E(r2(X)) + ϱY(0)2.

The assumption P(Y = 0) = ϱY(0) ⩽ (4α)−1 (see (6.2)) now leads to the lower-bound

E(r2(X)) ⩾ 1
4αϱY(0)

⩾
|A2|
32α2 ,

concluding the proof. □

Using (6.4), we can apply Lemma 4.1 to the random variable X on F×
p , with β = 32α2;

we obtain
e(A2) ⩾

1
222α8ϱY(0)|A2|

⩾
1

225α9 ,

and therefore, by the Balog–Szemerédi–Gowers Theorem (Theorem 2.2, applied to A2 ⊂ F×
p ),

there exists a subset A3 ⊂ A2 with

|A2| ⩽ 4(225α9)|A3| = 227α9|A3|, |A3 · A3| ⩽ 214(225α9)6|A3| = 2164α54|A3|.

But we can also control the additive properties of A3. Precisely, we can apply Lemma 4.2
to the group Fp, the random variables X and Y, and the set B = A3, with parameters

17



(α, β) = (8α, 229α10), since A3 ⊂ A1 and

|A3| ⩾
|A2|

227α9 ⩾
1

229α10ϱY(0)
thanks to (6.3). The conclusion is that

e(A3) ⩾
1

4(8α)9(229α10)4 = 1
2144α49 .

Applying Theorem 2.2 to A3 ⊂ Fp, we find a subset A4 ⊂ A3 with |A3| ⩽ 4α|A4| and

|A4 + A4| ⩽ 214(2144α49)6|A4| = 2878α294|A4|.

Since, in addition, we have

|A4 · A4| ⩽ |A3 · A3| ⩽ 2164α54|A3| ⩽ 2166α55|A4|,

and
1

231α10ϱY(0)
⩽

|A3|
4α

⩽ |A4| ⩽ |A3| ⩽
8α

ϱY(0)
,

we finally have proved Proposition 6.1 with the set A equal to A4. □

In order to prove Proposition 5.1, we combine this with a consequence of Lemma 3.3, using
Fourier analysis to obtain a “diophantine” interpretation of E(|φX(XŶ)|2).

Lemma 6.5. We have
E(ϱY(XY)) = ϱY(0)E(|φX(XŶ)|2).

Proof. Using the formula ϱY(0) = MX/p and Lemma 3.3, we have

E(ϱY(XY)) = ϱY(0)E(φŶ(XY)),

and it only remains to appeal to the symmetry formula

E(φŶ(XY)) = E(|φX(XŶ)|2)

to conclude. This last identity can be seen as a (very simple) instance of Fubini’s formula:

E(φŶ(XY)) = E
(

E
(
e
(XYŶ

p

)))
= E

(
E
(
e
(X(X1 − X2)Ŷ

p

)))
= E

(∣∣∣E(
e
(XX1Ŷ

p

))∣∣∣2) = E(|φX(X1Ŷ))|2),

leading to the conclusion since X and X1 are identically distributed. □

Proof of Proposition 5.1. We define α ⩾ 1 by E(|φX(XŶ)|2) = α−1. By Lemma 6.5, we have
then

E(ϱY(XY)) = ϱY(0)
α

.

If the conditions (6.2) are not valid, then by construction this implies that the bound

E(|φX(XŶ)|2) = α−1 ⩽ 4(ϱX(0) + ϱY(0))
18



holds. On the other hand, if these conditions are satisfied, then we can apply Proposition 6.1
to deduce the existence of A ⊂ F×

p with

max(A + A,A · A) ≪ αd|A|

and
1

αdϱY(0)
≪ |A| ≪ α

ϱY(0)
,

where d and the implied constants are absolute (and explicit).
Let η > 0. We distinguish two further cases:
(1) If |A| ⩽ p1−η, then denoting by δ > 0 the exponent in Theorem 2.3 for γ = η, we have

αd ≫ |A|δ. It follows that αd ≫ α−dδϱY(0)−δ, and hence

E(|φX(XŶ)|2) = α−1 ≪ ϱY(0)δ/(d+dδ).

(2) If |A| > p1−η, then

E(|φX(XŶ)|2) = α−1 ≪ 1
|A|ϱY(0)

≪ p−1+η

ϱY(0)
.

All three of the bounds thus obtained imply that the estimate (5.1) holds (with β =
min(1, δ/(d + dδ))), concluding the proof. □

We now come to the proof of Proposition 5.4. Only in the last step will the specific
properties of the distribution of S be important.

Proof of Proposition 5.4. We recall the definition

Xk =
k∑

i=1

(S2i−1 − S2k), k ⩾ 1,

of the random walk and the formula φXk
= |φS|2k.

We observe first that for any integer k ⩾ 1 and ν > 0, provided the condition 4kν ⩽ θ is
satisfied, the estimate

(6.8) ϱX2k(0) = MXk

p
= 1

p

∑
a∈Fp

|φS(a)|4k ⩾ |Λν |p−1−θ

holds by (3.2) and the definition of Λν .
We now claim that if p is large enough, depending only on θ, then we can find some

integer k ⩾ 1 and ν < 1
2θ, independent of p, such that 4kν ⩽ θ and

(6.9) p−θ ⩽
|Λν |
MXk

,

which, together with (6.8) and the formula ϱX2k(0) = MXk
/p, ensures that (5.2) holds for

these choices of k and ν.
To prove the claim, we first note that there is a general upper bound

MXk
⩽ |Λ1/k| + p · (p−4k)k = |Λ1/k| + p−3 ⩽ |Λ1/k|(1 + p−3),
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valid for any integer k ⩾ 1. Now, given k ⩾ 1, we denote k+ = ⌈ θ
k2 ⌉. If the inequality

MXk
> pθ|Λ1/k+| holds, then it follows that

|Λ1/k+ | ⩽ |Λ1/k|p−θ(1 + p−3).

Iterating this observation m times, starting from k = 4, we see that either we find k ⩾ 1
such that (6.9) holds for ν = 1/k+, or we have

|Λ1/k| ⩽ p1−mθ(1 + p−3)m

for m ⩾ 1 and some k depending on m. But for suitable m, we obtain |Λ1/k| < 1, which is a
contradiction since 0 ∈ Λν for all ν.

Our next goal is the inequality

(6.10) E(|φXk
(aXk)|2) ⩾ φS(a)4k

for all k ⩾ 1 and a ∈ Fp, and this will depend on the specific choice of the random walk.
Indeed, we first have

E(|φXk
(aXk)|2) = E(φXk

(aX2k)) = E(|φS(aX2k)|2k) ⩾ E(φS(aX2k))2k,

by Jensen’s inequality. However, by a discrete Fubini, we have

E(φS(aX2k)) = E(|φXk
(aS)|2)

and E(|φXk
(aS)|2) = φXk

(a)2 since φXk
(aS) = φXk

(a) (the crucial fact from Lemma 5.3),
which gives (6.10).

We can then finally deduce (5.3). From (6.9) and the condition 4kν ⩽ θ, we deduce the
lower bound

P(X̂2k ∈ Λν) ⩾ p−θ |Λν |
MXk

⩾ p−2θ,

and then from (6.10), we get

E(|φXk
(XkX̂2k)|2) ⩾ E(φXk

(X̂2k)4k) ⩾ p−4k2νP(X̂2k ∈ Λν) ⩾ p−4k2ν−2θ ⩾ p−10θ.

□

7. Remarks

We conclude with a few brief remarks.
(1) One interpretation of Theorem 1.1 is that it is one more avatar of the fact that

the additive and multiplicative structures of a finite field (or of the integers) are fairly
“independent”: it concerns the additive Fourier transform of a multiplicative subgroup. In
this sense, it is of a flavor comparable with the sum-product theorem.

One may however then wonder about exchanging the role of addition and multiplication.
And whereas the sum-product theorem is fully symmetric, the “dual” of Theorem 1.1 would
become the problem of estimating sums of multiplicative (Dirichlet) characters modulo p
over very short intervals in Fp – a problem which is intimately related with the General-
ized Riemann Hypothesis and properties of Dirichlet L-functions. (We see short intervals
as analogues of small multiplicative subgroups in view of their additive properties, which
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makes them behave quite similarly to non-existent small additive subgroups; this is reason-
able especially because Theorem 1.1 does extend to geometric progressions in addition to
multiplicative subgroups.)

Could the proof of Theorem 1.1 give insight about such character sums? This doesn’t
seem to be likely, because there is no analogue of Lemma 5.3 (e.g., the existence of one
large character sum for a non-trivial character does not, a priori, lead to the existence
of any other). Ultimately, this reflects the fact that addition and multiplication are not
symmetric in the definition of a field: multiplication is distributive with respect to addition,
and not the opposite, so that multiplication by non-zero elements give automorphisms of the
additive group of a field, leading to symmetry properties of the additive Fourier transform
of multiplicative subgroups.

(2) One can also ask if there are echoes in this proof of more classical ideas in the study
of exponential sums (such as those of Weyl, van der Corput and Vinogradov, see e.g. [7,
Ch. 8]).

We see at least two clear links of this type:
– The use of |φS|2 and higher powers is very much in the spirit of “creating new points

of summation” or Weyl differencing.
– The link in Lemma 6.5, based on harmonic analysis, between averages of the Fourier

transform and averages of the “density” ϱY is an example of reduction of averages of
exponential sums to point counting.

One related remark is that if we consider, instead of the crucial expression E(|φX(XŶ)|2)
in Proposition 5.1, the simpler E(|φX(Ŷ)|2), then we get (up to normalization) simply the
fourth moment of φX(a), instead of a kind of average “twisted” fourth moment.

(3) Another parallel is with the work of Bourgain and Gamburd [5] on expansion properties
of Cayley graphs of SL2(Fp), which is almost contemporary with Theorem 1.1. For instance,
the crucial “L2-flattening lemma” of Bourgain and Gamburd [5, Prop. 2] can be interpreted as
a quantitative statement of decay of P(Y = 0) for a stepping Y of certain random variables X
on SL2(Fp). Lemma 5.3 also has a similar flavor to the use of the “pseudo-randomness” of
SL2(Fp) (i.e., the absence of non-trivial irreducible representations of small dimension) in [5,
Prop. 1].
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