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Abstract. We consider the problem of approaching real numbers with rational numbers
with prime denominator and with a single numerator allowed for each denominator. We
then present a simple application, related to possible correlations between trace functions
and dynamical sequences.

1. Introduction

The following statement is motivated by certain specific applications concerning possi-
ble correlations between “trace functions” and “dynamical” sequences (see Section 5 for a
concrete statement and the notes [9] for a more general perspective).

Theorem 1.1. Let c > 0 be a real number with c ⩽ 1/2. There exist sequences (ap) indexed
by prime numbers, with ap an integer such that 0 ⩽ ap < p for all p, such that for almost all
x ∈ [0, 1], the set of primes p with ∣∣∣x− ap

p

∣∣∣ ⩽ c

p

is infinite.

So, informally, we consider a problem of diophantine approximation where, for each de-
nominator, only one numerator is allowed (and with the additional restriction, coming from
the original motivation, that the denominators are primes). The approximation is of course
then worse than what is allowed by varying the numerator (and of course not every choice
of numerator can be successful).

We will give three proofs in Sections 2, 3 and 4. The first is (probably unsurprisingly) very
elementary, but has some nice aspects, especially an analogy with sieve. The second proof
is more straightforward in principle, but involves more sophisticated ingredients, especially
about the distribution of primes. The third proof (suggested by Manuel Hauke) simplifies
the second proof by exploiting a lemma of Cassels, which removes the need for serious
understanding of the distribution of primes, but involves Lebesgue’s density theorem instead.

This simple result suggests some questions:
(1) Can one describe an explicit sequence (ap) which has the desired property? Note that

the second proof will show that it is a generic property (in the sense of the natural
probability measure on the space of sequences (ap), described below).

(2) More specifically, if we define (ap) using the “greedy” algorithm (taking ap for suc-
cessive primes so as to always maximize the measure of the union of the intervals up
to that point), does it work? Hauke, in an email, pointed out that a variant of this
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construction is successful for c = 2, and yields a deterministic sequence that “works”
for all c > 0.

(3) For a given value of c, the “exceptional set” always contain rational numbers with
denominators < 1/c. Are there other elements in this exceptional set? If Yes, can
we describe the elements that belong to it, or compute its Hausdorff dimension?

(4) For suitable (ap) and x, can we estimate asymptotically as X → +∞ the number
of primes p ⩽ X such that |x − ap/p| ⩽ c/p? Heuristically, one can hope to have
something like

2c
∑
p⩽X

1
p
∼ 2c log log X

such primes ⩽ X; can this be established for suitable choices of the ap? The first proof
provides some weaker quantitative information, with high probability (with respect
to x).

(5) What about multidimensional versions? Variants on manifolds?

Remark 1.2. Although problems of this kind do not seem to be standard in diophantine
approximation, one can interpret the question roughly as asking whether there exists a
sequence (ap) such that the set of points ap/p is “eutaxic” with respect to the radii c/p (see,
e.g., the survey of Durand [2, Ch. 8], and also Bugeaud’s book [1, Ch. 6]).

A related, but more delicate, question was solved by Shepp [10] (after previous work of
Dvoretzky and others), who found a sharp criterion which ensures that a non-increasing
sequence (ℓn)n⩾1 of positive real numbers has the property that, almost surely, the union of
arcs of length ℓn with independent and uniform centers will cover entirely a circle of length 1.
Shepp proved that this holds if and only if∑

n⩾1

1
n2 exp(ℓ1 + · · · + ℓn) = +∞.

As observed by Dvoretzky [3], this is a different condition than asking that the union
covers almost all points of the circle, which occurs if and only if the series

∑
ℓn diverges, by

an elementary argument as in Section 3.

Notation. We use the Vinogradov notation f ≪ g (for complex-valued functions f and
g defined on some set X): it means that there exists a real number c ⩾ 0 (the “implied
constant”) such that |f(x)| ⩽ cg(x) for all x ∈ X.

Acknowledgements. Thanks to Y. Bugeaud for interesting comments and references, in
particular to the work of Shepp, and thanks to M. Hauke for sending his argument based on
the lemma of Cassels, and his remark concerning the “greedy” construction.

2. First proof

We denote by λ the Lebesgue measure. For a sequence a = (ap) with 0 ⩽ ap < p for all
primes p, define

Aa = {x ∈ [0, 1] |
∣∣∣x− ap

p

∣∣∣ ⩽ c

p
for infinitely many p}.
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We thus want to find a with λ(Aa) = 1. For real parameters X and Y with 1 ⩽ X < Y,
we consider the set

ΩX,Y(a) =
{
x ∈ [0, 1] |

∣∣∣x− ap
p

∣∣∣ > c

p
for X < p ⩽ Y

}
.

We observe that the set A of all sequences a is naturally a compact set, as a product of
finite sets. In particular, there is a natural product probability measure on this set, where
each ap is uniform over the integers from 0 to p− 1. We will use the notation P(·) and E(·)
below to indicate probability and expectation according to this measure.

The crucial lemma is the following. We view it as a kind of sieve statement, on average
over A .

Lemma 2.1. Let
HX,Y =

∑
X<p⩽Y

1
p
.

We have
E(λ(ΩX,Y)) ≪ 1

HX,Y
,

where the implied constant depends only on c.

Proof. Let φp : [0, 1] → {0, 1} denote the characteristic function of the interval Ip(ap) =
[ap/p − c/p, ap/p + c/p], each being viewed as random variables on A (the φp are random
functions, the Ip are random intervals). Let

NX,Y =
∑

X<p⩽Y

φp,

again a random variable on A . We denote also

νX,Y =
∫ 1

0
NX,Y(x)dx

and note that νX,Y = 2cHX,Y, independently of the value of a.
Noting that ΩX,Y is the set of those x where NX,Y = 0, we deduce from Markov’s inequality

(on [0, 1] with the Lebesgue measure) the upper bound

λ(ΩX,Y) ⩽ λ
({
x ∈ [0, 1] | |NX,Y(x) − νX,Y| ⩾ νX,Y

})
⩽
αX,Y

ν2
X,Y

where

αX,Y =
∫ 1

0

(
NX,Y(x) − νX,Y

)2
dx

(again a random variable on A ).
We have

αX,Y =
∫ 1

0

( ∑
X⩽p⩽Y

(
φp(x) − 2c

p

))2
dx =

∑
X<p1,p2⩽Y

∫ 1

0

(
φp1(x) − 2c

p

)(
φp2(x) − 2c

p

)
dx.
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For p1 = p2, the integral is equal to∫ 1

0

(
φp1(x) − 2c

p1

)2
dx = 2c

p1

(
1 − 2c

p1

)
⩽

2c
p1

(variance of a Bernoulli random variable with probability of success 2c/p1), again indepen-
dently of a. Thus ∑

X<p1⩽Y

E
(∫ 1

0

(
φp1(x) − 2c

p1

)2
dx

)
⩽ 2cHX,Y.

We now suppose that p1 ̸= p2. We then have

(2.1)
∫ 1

0

(
φp1(x) − 2c

p1

)(
φp2(x) − 2c

p2

)
dx = λ(Ip1 ∩ Ip2) − 4c2

p1p2
,

where the first term depends on a.
We next estimate the expectation

E
(
λ(Ip1 ∩ Ip2)

)
over a. For this purpose, we may (and do) assume that p1 < p2. We then have the formula

E
(
λ(Ip1 ∩ Ip2)

)
= 1
p1p2

∑
0⩽a<p1

λ
(

Ip1(a) ∩
⋃

0⩽b<p2

[ b
p2

− c

p2
,
b

p2
+ c

p2

])
.

Drawing a picture if need be, we get

E
(
λ(Ip1 ∩ Ip2)

)
= 1
p1p2

× p1 ×
(4c2

p1
+ O

( 1
p2

))
= 4c2

p1p2
+ O

( 1
p2

2

)
.

Combined with (2.1), this leads to∑
X⩽p1<p2⩽Y

E
(∫ 1

0

(
φp1(x) − 2c

p1

)(
φp2(x) − 2c

p2

)
dx

)
≪ HX,Y.

Multiplying by two to account for the case p1 > p2 and adding the contribution where
p1 = p2, we conclude that E(αX,Y) ≪ HX,Y, and hence

E(λ(ΩX,Y)) ≪ H−1
X,Y,

as claimed. □

Remark 2.2. The start of the argument is essentially of form of sieve inequality, especially
similar to those used in certain geometric group theory works by Lubotzky and Meiri, see
for instance the account in [8, Th. 5.3.1].

More generally, sieve methods in analytic number theory lead to bounds (also sometimes
lower bounds) for the sizes of sets of the form

{n ⩽ N | n (mod p) /∈ Ip for p ⩽ X}
for suitable choices of subsets Ip ⊂ Z/pZ and of parameters N and X. It was pointed out
in [7] that in fact some of the basic techniques (e.g., the so-called “large sieve”) can be
extended to much more general settings than the integers, and the lemma above provides
another illustration.
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We now conclude the proof of the theorem. Since

lim
Y→+∞

HX,Y =
∑
p>X

1
p

= +∞

for any X ⩾ 1 (one of the most elementary quantitative forms of the infinitude of primes,
already known to Euler), Lemma 2.1 implies that for any X ⩾ 2 and any ε > 0, we can find
(ap)X<p⩽Y (with 0 ⩽ ap < p) such that

λ
({
x ∈ [0, 1] |

∣∣∣x− ap
p

∣∣∣ ⩽ c

p
for some prime p with X < p ⩽ Y

})
⩾ 1 − ε.

Let X1 = 1. Apply the previous remark first with (say) X = 1 and ε = 1/2, and denote
X2 a suitable value of Y. Then apply the assumption with X = X2 and ε = 1/4, calling X3
the value of Y; repeating, we obtain a strictly increasing sequence (Xn)n⩾1 of integers and a
sequence (ap) ∈ A such that the set

Bn =
{
x ∈ [0, 1] |

∣∣∣x− ap
p

∣∣∣ ⩽ c

p
for some prime p with Xn < p ⩽ Xn+1

}
satisfies λ(Bn) ⩾ 1 − 2−n for any n ⩾ 1.

If x ∈ [0, 1] belongs to infinitely sets Bn, then x ∈ Aa. On the other hand, since∑
n⩾1

λ([0, 1] Bn) < +∞,

the easy Borel–Cantelli Lemma shows that almost every x ∈ [0, 1] belongs at most to finitely
many sets [0, 1] Bn.

3. Second proof

We now give the second proof. This is based on an application of Fubini’s Theorem (which
is a standard approach, as in the first few lines of Dvoretzky’s paper [3]).

We write again Ip(a) = [ap/p− c/p, ap/p+ c/p], viewed as random intervals on the prob-
ability space A to which P(·) and E(·) refer. Let x ∈ [0, 1]. We then have

P(x ∈ Ip) = 1
p

∑
0⩽a<p

|x−a/p|<c/p

1

and hence P(x ∈ Ip) is either 0 or 1/p, depending on whether there exists an integer a such
that the fractional part of xp is < c, or not.

It is a non-trivial fact from the distribution of primes that, if x is irrational, then we have

(3.1)
∑

{xp}<c

1
p

= +∞

(precisely, this follows by summation by parts from the much more precise results of Vino-
gradov [11, Ch. XI] which give an asymptotic formula for the number of primes p ⩽ X
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satisfying {xp} < c; we note in passing that this result has been improved since then, no-
tably by Vaughan). Thus, since the events {x ∈ Ip} are independent by construction, the
non-trivial direction of the Borel–Cantelli Lemma implies

P(x ∈ Ip for infinitely many p) = 1

for any irrational x.
Now by Fubini’s Theorem, we obtain

E(λ(Aa)) = E
(∫ 1

0
1{x∈Ip for infinitely many p} dx

)
=

∫ 1

0
P(x ∈ Ip for infinitely many p)dx = 1,

and since λ(Aa) ⩽ 1, this means that Aa has measure 1 for almost all sequences (ap).

Remark 3.1. We do not require the full force of Vinogradov’s theorem, but in any case,
the formula (3.1) for an arbitrary irrational number x seems to be comparable to the similar
divergence of the sum of inverses of primes in an arithmetic progression.

It would also be enough to know that the divergence of the series (3.1) holds for almost
all x (instead of all irrationals), and it is quite likely that this can be proved more easily.

4. Third proof

The key ingredient is the third proof is the following result of Cassels, which was pointed
out by Hauke.

Proposition 4.1. Let (In)n⩾1 be a sequence of intervals in R/Z with length λ(In) converging
to 0 as n → +∞. Assume that almost every x ∈ R/Z is contained in infinitely many In’s.
Fix some positive real number δ. Let Xn ⊂ In be arbitrary measurable subsets such that
λ(Xn) ⩾ δλ(In) for all n ⩾ 1. Then almost every x ∈ R/Z is contained in infinitely many
Xn’s.

See, e.g., the accounts by Gallagher [4, Lemma 2] or Harman [5, Lemma 2.1] for the proof.
This relies in an essential way on the existence of density points (in the sense of Lebesgue)
for sets of positive measure.

Assuming the result, we see that it is enough to prove Theorem 1.1 for c = 2 (or even for
larger values of c). We can then implement the second proof, where we will have

P(x ∈ Ip) = 1
p

∑
0⩽a<p

|x−a/p|<2/p

1 = 1
p

for all p. Thus the Borel–Cantelli and Fubini steps follow using only the fact that the sum
of 1/p over primes diverges, as in the first proof.

Remark 4.2. More generally, the lemma of Cassels implies that the set of sequences (ap)
for which Theorem 1.1 applies is independent of c. In particular, any “deterministic” con-
struction which applies for one value of c will also apply for any other.
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5. Application

Let X = (R/Z)2 and µ the Lebesgue measure on X. Further, let f : X → X be the map
defined by f(x, y) = (x+ y, y). We have f∗µ = µ. Define φ : X → C by φ(x, y) = e(x).

We chose a sequence (ap) as in Theorem 1.1 with c = 1/2. For p prime and n ∈ Z,
we define tp(n) = e(−nap/p). (This is a trace function modulo p, but this aspect is not
important here.)

Proposition 5.1. For p prime, define sp : X → C by

sp(x, y) = 1
p

∑
0⩽n<p

tp(n)φ(fn(x, y)).

The following properties hold:
(1) The sequence (sp) does not converge almost everywhere as p→ +∞.
(2) If P is an infinite set of primes such that∑

p∈P

log p
p

< +∞,

then the sequence (sp)p∈P converges almost everywhere to 0.

Proof. Since fn(x, y) = (x+ ny, y) for all integers n ∈ Z, we can compute sn by summing a
finite geometric progression, and we obtain

sp(x, y) = e(x)
p

sin(πp(y − ap/p))
sin(π(y − ap/p))

e
((p− 1)

2
(y − ap/p)

)
.

It follows that sp(x, y) → 0 along any infinite set P of primes such that

lim
p→+∞
p∈P

p
∣∣∣y − ap

p

∣∣∣ = +∞.

Thus (2) follows because the assumption there implies that almost all (x, y) satisfy∣∣∣y − ap
p

∣∣∣ ⩾ log p
p

for all but finitely many p ∈ P, by the easy Borel–Cantelli lemma.
We now prove (1). Note that if (sp) converges almost everywhere, the limit must be zero

according to (2). But the formula for sp and the defining property of (ap) imply that for
all x and almost all y ∈ R/Z, we have |sp(x, y)| ≫ 1 for infinitely many primes p. Thus
there is almost surely a subsequence which does not converge to 0. □

Remark 5.2. The condition in (2) can be replaced by∑
p∈P

ψp

p
< +∞,

where (ψp)p is an arbitrary sequence of non-negative real numbers such that ψp → +∞.
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