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1 Introduction

In a series of papers [2, 11, 14] we studied the absence of correlations between the coefficients of certain

automorphic L-functions and trace functions of prime moduli.

More precisely, given q a prime number, let

K : Fq = Z/qZ → C

be the trace function associated to a suitable ℓ-adic middle extension sheaf F on the affine line A1
Fq
,

geometrically irreducible and pure of weight 0; this implies in particular that the supnorm satisfies

∥K∥∞ 6 C(F),

where C(F) denotes the analytic conductor of F , a numerical invariant attached to the Galois

representation underlying F . We now view K as a q-periodic function on Z via the obvious projection.

Let

L(π, s) =
∑
n>1

λπ(n)

ns
=

∏
p

L(πp, s), Re s > 1
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be an automorphic L-function of some degree d > 2 (normalized so that Re s = 1/2 is the critical line).

For V a smooth, compactly supported function on R>0, we consider the problem of obtaining non-trivial

bounds for the correlation sums

SV (K;X) =
∑
n>1

λπ(n)K(n)V

(
n

X

)
≪ X1−η as q,X → ∞; (1.1)

here η > 0 is some positive constant and the above bound depends implicitly on π, V and C(F). Under

relatively mild conditions on F it is not too difficult to obtain non-trivial bounds like (1.1) as long as

X > qd/2+δ

for some δ > 0 (with the exponent δ depending on η) and so the first challenging range is

X ≍ qd/2. (1.2)

This range is called the convexity range as it corresponds to the critical range for the subconvexity problem

in the large q-aspect for the twisted L-function L(π×χ, s) for χ (mod q) a non-trivial Dirichlet character.

In the three papers mentioned above, a non-trivial bound (1.1) was obtained for X at and below the

convexity range. Specifically,

• [2] considered the situation where L(π, s) is the standard L-function of a GL2,Q automorphic

representation (the L-function of a Hecke eigenform) and obtained (under some suitable assumptions

on F) (1.1) as long as

X > q1−1/4+δ, δ > 0. (1.3)

• [11] considered the situation where L(π, s) is the standard L-function of a GL3,Q automorphic

representation (of level 1) and obtained (again under some mild assumptions on F) (1.1) as long as

X > q3/2−1/6+δ, δ > 0. (1.4)

• [14] considered the situation where L(π, s) is the Rankin-Selberg L-function attached to a pair (φ, f)

of GL3,Q and GL2,Q automorphic forms (both of level 1). More precisely, λπ is given by

λπ(n) =
∑

mr2=n

λφ(m, r)λf (m). (1.5)

In that case (1.1) can be obtained for K a trace function associated with a suitably “good” sheaf K (see

[14, Section 1] for the definition of the goodness) as long as

X > q3−1/4+δ, δ > 0. (1.6)

1.1 Applications to large arithmetic progressions

There is some genuine interest in trying to obtain (1.1) for even shorter ranges. One possible motivation

is the study of the distribution of the sequences (λπ(n))n6X in an arithmetic progression n ≡ a (mod q)

for (a, q) = 1 when q 6 X: set

∆(λπ, X, a; q) :=
∑
n>1

n≡a (mod q)

λπ(n)V

(
n

X

)
− 1

φ(q)

∑
n>1

(n,q)=1

λπ(n)V

(
n

X

)
. (1.7)

Assuming that a Ramanujan-Petersson type bound for the coefficients of L(π, s), λπ(n) ≪ no(1) holds,

one obtains the trivial bound

∆(λπ, X, a; q) ≪ (qX)o(1)
X

q
, (1.8)

and the question is to improve this bound for q as large as possible relative to X.
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The second term on the right-hand side of (1.7) is easily evaluated in terms of the order of the pole of

L(π, s) as s = 1. As for the first term∑
n>1

n≡a (mod q)

λπ(n)V

(
n

X

)
=

∑
n>1

λπ(n)δa (mod q)(n)V

(
n

X

)
,

the Dirac function δa (mod q)(n) is not a trace function in the above sense1) but an application of the

functional equation for the character twists L-functions L(π × χ, s) for χ varying over the Dirichlet

characters of modulus q transforms the left-hand side of (1.7) into a sum essentially of the shape

X

q
d+1
2

∑
n>1

λπ(n)Kld(an; q)V̌

(
n

qd/X

)
. (1.9)

Here V̌ (x) denotes a rapidly decreasing function which is a suitable integral transform of V (depending

on d and the Gamma factors of π) and

Kld(n; q) =
1

q
d−1
2

∑∑
x1,...,xd∈(Z/qZ)×

x1···xd=n

e

(
x1 + · · ·+ xd

q

)

denotes the d-th hyper-Kloosterman sum. As is well known, Kloosterman sums are trace functions (see

[9]) and they satisfy Deligne’s bound

|Kld(n; q)| 6 d.

Therefore, possibly subject to the Ramanujan-Petersson conjecture, one obtains that the dual sum can

be bounded as
X

q
d+1
2

∑
n>1

λπ(n)Kld(an; q)V̌

(
n

qd/X

)
≪ (qX)o(1)q

d−1
2 .

This bound improves (1.8) as long as

q 6 Xθd−δ, δ > 0, (1.10)

where

θd =
2

d+ 1
. (1.11)

We call the exponent θd the standard level of distribution of the sequence (λπ(n))n>1 for individual

(prime) moduli.

Remark 1.1. For d = 2 this reasoning is due to Selberg in the case of the divisor function while for

higher values of d it can be found in the work of Luo, Rudnick and Sarnak [15].

In the three cases described above we obtain

θ2 = 2/3, θ3 = 1/2, θ6 = 2/7.

A natural question is then whether one can enlarge the standard level of distribution θd. Considering

the limit case

X = q1/θd = q
d+1
2 ,

we see that it would amount to obtaining (1.1) for K(n) = Kld(an; q) in any range shorter than

X̌ ≍ qd/X = q
d−1
2 .

This range, which we call the a.p. range, is shorter than the convexity range (1.2) by a factor q1/2.

Remark 1.2. The three results [2,11,14] mentioned above, while improving over the convexity range,

fall short of reaching the a.p. range.

1) Although the scaled function q1/2δa (mod q)(n) might reasonably be considered as such.
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Inspired by a recent work of Huang [8], we provide an example in degree 4 for which the standard level

of distribution θ4 = 2/5 can be improved:

Theorem 1.3. Let f be either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form of

full level whose Hecke eigenvalues are denoted as (λf (n))n>1 and let ϖf > 0 be such that the following

bound holds

|λf (n)| 6 nϖf+o(1), n → ∞, (1.12)

and let

θf =
21

52(1 + 4ϖf )
. (1.13)

Let q be a prime and a > 1 be an integer such that (a, q) = 1. For any X > 1 and η > 0 satisfying

q 6 Xθf−η, (1.14)

we have ∑
n>1

n≡a (mod q)

λf (n)
2V

(
n

X

)
− 1

φ(q)

∑
n>1

(n,q)=1

λf (n)
2V

(
n

X

)
≪f,V,η (X/q)1−δ

for some δ = δ(η) > 0. In particular, if f is holomorphic, then ϖf = 0 and

θf = 21/52 = 2/5 + 1/260.

Remark 1.4. The Ramanujan-Petersson conjecture for cusp forms predicts that for any f ,

ϖf = 0.

The best known bound, due to Kim and Sarnak [10, Proposition 2] is

ϖf 6 7/64.

This is unfortunately not sufficient to insure that θf > θ4 = 2/5. For this we would need 7/64 to be

replaced by any exponent smaller than 1/416.

We also observe that the closely related Theorem 1.6 below is independent of any approximation toward

the Ramanujan-Petersson conjecture.

In the work [8], Huang improved the error term for the sharp-cut sum∑
n6X

λf (n)
2

from O
(
X3/5

)
to O(X3/5−1/560+o(1)), resolving a long-standing problem going back to Rankin and

Selberg. In that Archimedean case Huang was able to avoid the use of the pointwise bound (1.12).

1.2 Factorable arithmetic functions

The proof of Theorem 1.3 builds on the fact that the arithmetic function n 7→ λf (n)
2 is a Dirichlet

convolution.

Indeed, returning to the general problem (1.1), if the arithmetic function (λπ(n))n>1 is factorable, i.e.,

is the Dirichlet convolution of two (or more) arithmetic functions (they themselves being coefficients of

automorphic L-functions):

λπ(n) = λπ1 ⋆ λπ2(n) =
∑
lm=n

λπ1(l)λπ2(m),

then one can expect that the bilinear structure presented in the sum

SV (K;X) =
∑∑

l,m

λπ1(l)λπ2(m)K(lm; q)V

(
lm

X

)
,
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will help in improving the range for (1.1) as one would be able to apply different treatments to the

variables l and m: using Cauchy’s inequality and Poisson summation formula and eventually the problem

is reduced to bounds like (1.1) for different X’s and arithmetic functions of lower complexity. Here it is

also a good occasion to recall the work of Chen [1], who introduced for the first time a bilinear structure to

the reminder terms in the application of the linear sieve and non-trivially treated those reminder terms;

Chen’s idea in [1] had inspired many far-reaching subsequent developments on sieve methods and their

applications in the theory of prime numbers.

The above principle is hardly new and has already been exploited multiple times. A particularly

striking example is the work of Friedlander and Iwaniec [6] (see also [3, 7] for subsequent improvements)

who improved the standard level of distribution θ3 = 1/2, of the ternary divisor function

d3(n) = 1 ⋆ 1 ⋆ 1(n) =
∑∑
klm=n

1.

In that case, the ultimate goal is to bound non-trivially the trilinear sum

∑∑
k,l,m

Kl3(aklm; q)V

(
klm

X

)

near the a.p. range X = q. This was achieved by different methods depending on the relative sizes of the

variables k, l and m; the critical case was

kl = q1/2−η+o(1), m = q1/2−η+o(1)

for η > 0 and small enough; this roadblock was overcome by using a shifting technique dating back at

least to Vinogradov and Korobov, supplemented by sharp bounds on rather complicated sums of products

of Kloosterman sums due to Birch and Bombieri building on Deligne’s work on the Riemann Hypothesis

over finite fields.

Remark 1.5. This work [6] of Friedlander and Iwaniec was recently extended in [12, 13] to Dirichlet

convolutions of the form

1 ⋆ λf (n) =
∑∑
lm=n

λf (m)

for f a Hecke cuspform; again the critical range was

l = q1/2−η+o(1), m = q1/2−η+o(1).

Notice that (d3(n))n>1 and (1 ⋆ λf (n))n>1 are the coefficients attached to GL3,Q Eisenstein series

representations (the isobaric sums 1� 1� 1 and 1� πf , respectively) and by the same methods, one can

improve the standard level of distribution θ3 = 1/2 of (λπ(n))n>1 for π any fixed GL3,Q Eisenstein series

representation. Doing the same for π a cuspidal representation seems to be a serious challenge.

To prove Theorem 1.3 we use the fact that n 7→ λf (n)
2 is (essentially) a Dirichlet convolution: we have

the well-known identity

L(f × f, s) := ζ(2s)
∑
n>1

λf (n)
2

ns
= ζ(s)

∑
m>1

λsym2f (m)

ms
=: ζ(s)L(sym2f, s),

where sym2f denotes the GL3,Q symmetric square lift of (the automorphic representation attached to) f

and L(sym2f, s) is the standard L-function associated to it. Therefore we obtain

λf (n)
2 =

∑
d2k=n

µ(d)× λ1�sym2f
(k) =

∑
d2lm=n

µ(d)λsym2f (m). (1.15)

Theorem 1.3 is then a simple consequence of the following theorem.
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Theorem 1.6. Let π be a GL3,Q cuspidal automorphic representation of conductor 1 and (λπ(n))n>1

be the coefficient of its standard L-function. Set

λ1�π(n) := 1 ⋆ λπ(n) :=
∑
lm=n

λπ(m).

Let q be a prime and a > 1 be an integer such that (a, q) = 1. For any η > 0 and X satisfying

q 6 X21/52−η = X2/5+1/260−η, (1.16)

we have ∑
n>1

n≡a (mod q)

λ1�π(n)V

(
n

X

)
− 1

φ(q)

∑
n>1

(n,q)=1

λ1�π(n)V

(
n

X

)
≪π,V,η (X/q)1−δ

for some δ = δ(η) > 0.

Remark 1.7. Unlike (1.14), the exponent in (1.16) is independent of any approximation to the

Ramanujan-Petersson conjecture for GL3 automorphic representations.

2 Proof of Theorem 1.3

In this section, we deduce Theorem 1.3 from Theorem 1.6.

Set π = sym2f (which is cuspidal since f has level 1 and is therefore not CM). Given a, d > 1 integers

coprime with q, we denote by a′ = a′(a, d, q) any integer such that d2a′ ≡ a (mod q). Using (1.7) and

(1.15), we have

∆(λ2
f , X; a, q) =

∑
(d,q)=1

µ(d)∆(λ1�π, X/d2, a′; q)

=
∑
d6D

µ(d)∆(λ1�π, X/d2, a′; q) +
∑
d>D

µ(d)∆(λ1�π, X/d2, a′; q),

where D = Xη′
for some η′ > 0 small enough (we will choose η′ =

2ϖf

1+4ϖf
+ η later) so that

q 6 (X/D2)21/52−η/10. (2.1)

We bound the first sum
∑

d6D(· · · ) by applying Theorem 1.6 to the inner term. Indeed, for δ < 1/2 we

have ∑
d6D

µ(d)∆(λ1�π, X/d2, a′; q) ≪
∑
d6D

(
X

d2q

)1−δ

≪ (X/q)1−δ.

For the second sum we apply the trivial bound

∆(λ1�π, X/d2, a′; q) ≪
(X/d2)maxn≪X/d2 |λ1�π(n)|

q
≪ Xo(1) (X/d2)(X/d2)2ϖf

q
,

where we used |λsym2f (n)| ≪ n2ϖf+o(1) with ϖf satisfying (1.12). Since q 6 X
21

52(1+4ϖf )
−η

, we see that

(2.1) is satisfied for D = X
2ϖf

1+4ϖf
+η

. We obtain∑
d>D

µ(d)∆(λ1�π, X/d2, a′; q) ≪ X1+o(1)(X/D2)2ϖf

Dq
≪ (X/q)1−δ′

for some δ′ = δ′(η) > 0.

Putting the two bounds together we conclude that

∆(λ2
f , X; a, q) ≪ (X/q)1−min(δ,δ′).

This completes the proof of Theorem 1.3.
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3 Proof of Theorem 1.6

More generally, let π be a cuspidal automorphic representation of GL3,Q of level 1, we want to show that

for (a, q) = 1, ∑
n>1

n≡a (mod q)

λ1�π(n)V

(
n

X

)
=

1

φ(q)

∑
n>1

(n,q)=1

λ1�π(n)V

(
n

X

)
+Oπ,V,η((X/q)1−δ)

holds for q < X2/5+1/260−η.

If we write

K(n; q) = q1/2δn≡a (mod q), Ǩ4(n) = Kl4(an; q),

decompose K(n; q) into a linear combination of Dirichlet characters χ (mod q) and apply the functional

equation for L((1�π)×χ, s) in a way similar to [14, Corollary 9.2], we find that the left-hand side above

is equal to

q−1/2
∑
n>1

λ1�π(n)K(n; q)V

(
n

X

)
=

1

φ(q)

∑
n>1

(n,q)=1

λ1�π(n)V

(
n

X

)
+

X

q5/2

∑
n>1

λ1�π(n)Kl4(an; q)V̌
4

(
n

q4/X

)

− X

q4φ(q)

∑
n>1

λ1�π(n)V̌
4

(
n

q4/X

)
; (3.1)

see Lemma 3.3 for a proof of this identity. Here

V̌ 4(y) =
1

2πi

∫
(3/2)

L∞(1� π, s+ κ)

L∞(1� π, 1− s+ κ)
Ṽ (1− s)y−sds

is a rapidly decreasing function of y and Ṽ (s) =
∫∞
0

V (y)ys dy
y denotes the Mellin transform of V .

Plugging in the definition

λ1�π(n) =
∑
lm=n

λπ(m)

and applying the Rankin-Selberg bound
∑

m6X |λπ(m)|2 ≪ X, it is easily seen that the last term on the

right-hand side of (3.1) contributes at most O(q−1+o(1)). As for the second term, we have

X

q5/2

∑
n>1

λ1�π(n)Kl4(an; q)V̌
4

(
n

q4/X

)
=

X

q5/2

∑
l,m>1

λπ(m)Kl4(alm; q)V̌ 4

(
lm

q4/X

)
.

By introducing a dyadic partition of unity, we are reduced to considering the sums of the form

X

q5/2

∑
l>1

∑
m>1

λπ(m)Kl4(alm; q)V1

(
l

L

)
V2

(
m

M

)
(3.2)

for O(log2 X) many real numbers L,M > 1 satisfying

LM ≪ q4

X
. (3.3)

Since |Kl4(alm; q)| 6 4 and
∑

m6M |λπ(m)|2 6π M , the trivial bound is

X1+o(1)

q

(
LM

q3/2

)
, (3.4)

which is good enough if q 6 X2/5−η, and that henceforth one assumes that q > X2/5−η. In particular,

we may assume that

LM > q3/2−η (3.5)
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for some fixed η > 0 that can be chosen as small as necessary. In particular, L+M > q3/4−η.

To obtain the nontrivial cancellation for the sum (3.2), we split the argument into several cases. This

strategy of the proof has been somehow carried out in [11, Section 10] with λπ(m) denoted λφ(1,m). For

completeness we include the details below.

For any function K(·) on Z/qZ, we denote

K̂(n) =
1

q1/2

∑
x (mod q)

K(x)e

(
nx

q

)
, e(·) = exp(2πi·) (3.6)

its unitarily normalized Fourier transform; likewise, for V a Schwartz function on R, we denote its Fourier
transform by

V̂ (y) =

∫
R
V (x)e(−xy)dx.

The treatment of these depends on the relative sizes of L and M .

3.1 The case M >>> q4/3

If M is that long, we may apply [11, Theorem 1.3] in two different ways depending on the size of L

compared with q.

If L is small (say L 6 q1/2), we apply [11, Theorem 1.3] directly (note that M 6 LM 6 q2), getting

X

q5/2

∑
l>1

( ∑
m>1

λπ(m)Kl4(alm; q)V2

(
m

M

))
V1

(
l

L

)

≪π
X1+o(1)

q5/2

∑
l>1

∥K̂l4∥∞q2/9M5/6

∣∣∣∣V1

(
l

L

)∣∣∣∣ ≪ X1+o(1)

q

(
L3q37

X15

)1/18

. (3.7)

The last step follows from the identity

K̂l4(al•; q)(m̃) = δ(m̃,q)=1Kl3(−alm̃; q) + q−2 (3.8)

and LM ≪ q4/X.

In particular, this bound is suitable as long as q 6 X15/37−ηL−3/37 for some fixed η > 0.

Remark 3.1. In particular, since L > 1, this implies that q 6 X15/37 (which is the limit of our

method, fortunately 15/37 > 2/5).

In view of this and (3.3) we may assume that LM 6 q4−37/15 = q23/15 which implies (since we have

assumed M > q4/3) that L 6 q1/5.

3.2 The case L>>> q1/2

In that situation, we can improve over the trivial bound by applying the Poisson summation formula in

the l variable: using (3.8),

X

q5/2

∑
m>1

λπ(m)

(∑
l>1

Kl4(alm; q)V1

(
l

L

))
V2

(
m

M

)

=
X

q5/2

∑
m>1

λπ(m)

(
L

q1/2

∑
l̃∈Z

(δ(l̃,q)=1Kl3(−aml̃; q) + q−2)V̂1

(
l̃

q/L

))
V2

(
m

M

)

≪ X1+o(1)

q5/2
Mq1/2 =

X1+o(1)

q

M

q
. (3.9)

This bound is good as long as

M 6 q1−η, η > 0,

which occurs as soon as

L > q8/15+η. (3.10)
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3.3 The case L666 q1−η (η>0)

We can also have some gain by applying the Cauchy-Schwarz inequality with l inside the square, followed

with the Poisson inequality in the m-variable. Indeed, we have

X

q5/2

∑
m>1

λπ(m)

(∑
l>1

Kl4(alm; q)V1

(
l

L

))
V2

(
m

M

)

≪ X

q5/2

( ∑
m>1

|λπ(m)|2V2

(
m

M

))1/2( ∑
m>1

∣∣∣∣∑
l>1

Kl4(alm; q)V1

(
l

L

)∣∣∣∣2V2

(
m

M

))1/2

≪ XM1/2

q5/2

( ∑
l1,l2>1

V1

(
l1
L

)
V1

(
l2
L

) ∑
m>1

Kl4(al1m; q)Kl4(al2m; q)V2

(
m

M

))1/2

. (3.11)

We consider two subcases.

3.3.1 The case where l1 = l2 := l

The sum inside the parentheses above can be simply bounded by∑
l>1

∣∣∣∣V1

(
l

L

)∣∣∣∣2 ∑
m>1

|Kl4(alm; q)|2V2

(
m

M

)
≪ LM.

3.3.2 The case where l1 ̸= l2

We apply the Poisson summation in the m-variable, getting∑
m>1

Kl4(al1m; q)Kl4(al2m; q)V2

(
m

M

)
=

M

q1/2

∑
m̃∈Z

Ca(m̃, l1, l2; q)V̂2

(
m̃

q/M

)
,

where

Ca(m̃, l1, l2; q) :=
1

q1/2

∑
x∈(Z/qZ)×

Kl4(al1x; q)Kl4(al2x; q)e

(
xm̃

q

)
.

By [4, Corollary 3.2], we have the following bound,

Ca(m̃, l1, l2; q) ≪ q1/2δm̃≡0 (mod q)
l1≡l2 (mod q)

+ 1.

Since we have assumed that l1, l2 < q, we also have l1 ̸≡ l2 (mod q) and the m-sum is bounded by

M

q1/2

∑
m̃

∣∣∣∣Ca(m̃, l1, l2; q)V̂2

(
m̃

q/M

)∣∣∣∣ ≪ q1/2+o(1),

and the original sum can be bounded as follows,

X

q5/2

∑
l>1

∑
m>1

λπ(m)Kl4(alm; q)V1

(
l

L

)
V2

(
m

M

)
≪ X1+o(1)M1/2

q5/2
(LM + L2q1/2)1/2

≪ X1+o(1)

q

(
LM2

q3
+

L2M

q5/2

)1/2

≪ X1+o(1)

q

(
1

L

q5

X2
+ L

q3/2

X

)1/2

. (3.12)

In view of (3.10), we will apply this bound only when L 6 q8/15+η for η > 0 small enough (in particular

so that q8/15+η 6 q1−η). Assuming this, the second term in the parentheses on the right-hand side of

(3.12) satisfies

L
q3/2

X
6 X−13/74+η.

Therefore, under these conditions, (3.12) is good as soon as

q 6 X2/5−ηL1/5. (3.13)
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3.4 Putting it all together

Let

L0 = X1/52

be the solution of the equation

X15/37L
−3/37
0 = X2/5L

1/5
0 = X21/52 = X2/5+1/260.

We need to show that for any small enough η > 0 and any prime q satisfying

X2/5−η 6 q 6 X21/52−η,

one has

∆(λ1�π, X, a; q) ≪ (X/q)1−δ

for some δ = δ(η) > 0.

It is sufficient to show that this bound holds for any of the sums (3.2) for L and M satisfying

1 6 LM 6 q4/X.

• If M 6 q4/3 and L 6 L0, then LM 6 q3/2−δ for some δ = δ(η) > 0, and we just use the trivial bound

(3.4).

• If M 6 q4/3 and L0 6 L 6 q8/15+η, we use (3.12).

• If M 6 q4/3 and L > q8/15+η, we use (3.9).

• If M > q4/3 and L 6 L0, we use (3.7).

• If M > q4/3 and L > L0, then L 6 q1/5, and we use again (3.12).

Remark 3.2. The above proof can be carried out for more general convolutions 1⋆λπ for λπ of degree

d > 2 such that (1.1) can be obtained near and below the convexity range qd/2: let X = q
d+2
2 be the a.p.

range for 1 ⋆ λπ. By duality and a dyadic decomposition, one has to bound non-trivially bilinear sums of

the shape ∑
l∼L

∑
m∼M

λπ(m)Kld+1(lm; q)

for L,M > 1 such that LM 6 qd/2. Let us assume for simplicity that LM = qd/2.

(1) If L 6 qη for η > 0 small enough then the m-sum∑
m∼M

λπ(m)Kld+1(lm; q)

can be bounded non-trivially since M > qd/2−η is near the convexity range for λπ.

(2) If L > qd/2−η the linear sum ∑
l∼L

Kld+1(lm; q)

can be bounded non-trivially after applying the Poisson summation formula (as d/2 − η > 1/2 because

d > 2).

(3) In the remaining range we have

min(L;M) > qη, max(L,M) > q
d
4 .

• If d > 3 we can then apply the Cauchy-Schwarz inequality to this bilinear sum with the shorter

variable inside the square and the longer variable being smoothed; since the longer variable is well above

the Pólya-Vinogradov range q1/2 (since qd/4 > q3/4), there will be some saving from the sums of the

products of the Kloosterman sums and we are done.

• In the case d = 2, then in the last situation we obtain only max(L,M) > q1/2 which is the Pólya-

Vinogradov range and the above approach does not provide any saving if L = M = q1/2. However, using
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a technique going back to Vinogradov-Korobov developed in this context by Friedlander and Iwaniec

in [6], one can still bound non-trivially the bilinear form of Kloosterman sums and eventually get some

saving (see [12,13]).

For example, the above method can be applied to the convolution of degree 1 + 6 = 7,

1 ⋆ λπ,

to pass above the standard distribution exponent θ7 = 2/(7 + 1) = 1/4 for 1 ⋆ λπ with λπ(n) given by

(1.5). The main point is that the Kloosterman sheaf Kℓ7 is a “good” sheaf in the sense of [14, Section 1]

so that (1.1) holds for K(•) = Kl7(l•; q) at or slightly below the convexity range q6/2 = q3 (see [14,

Theorem 1.1]).

Lemma 3.3. Proof of the functional equation (3.1).

Proof. The proof is exactly the same as that of [14, Corollary 9.2]. We denote κ = 0 if χ(−1) = 1 and

κ = 1 if χ(−1) = −1 and denote

εχ = q−1/2
∑

x∈F×
q

χ(x)e

(
x

q

)
the normalized Gauss sum.

Recall that

λ1�π(n) := 1 ⋆ λπ(n) :=
∑
lm=n

λπ(m).

The L-function

L((1� π)× χ, s) =
∑
n>1

λ1�π(n)χ(n)

ns
= L(χ, s)L(π × χ, s)

has analytic continuation to C and satisfies a functional equation of the following form:

Λ((1� π)× χ, s) = ε4χΛ((1� π)× χ, 1− s), (3.14)

where

Λ((1� π)× χ, s) = q2sL∞(1� π, s+ κ)L((1� π)× χ, s)

is the completed L-function and

L∞(1� π, s) =
4∏

i=1

ΓR(s− µi), ΓR(s) = π−s/2Γ(s/2)

with

{µi, i = 1, 2, 3, 4} = {0, ν2 − ν1, 2ν1 + ν2 − 1, 1− ν1 − 2ν2}

denoting the local Archimedean factor of 1� π.

We have

V (x) =
1

2πi

∫
Ṽ (s)x−sds

(the integration is along the vertical line Re s = 1 + 1/14) so that∑
n>1

n≡a (mod q)

λ1�π(n)V

(
n

X

)

=
1

φ(q)

∑
χ (mod q)

χ(a)
∑
n>1

λ1�π(n)χ(n)V

(
n

X

)

=
1

φ(q)

∑
n>1

(n,q)=1

λ1�π(n)V

(
n

X

)
+

1

φ(q)

∑
χ (mod q)

χ ̸=χ0

χ(a)
1

2πi

∫
Ṽ (s)

Λ((1� π)× χ, s)

L∞(1� π, s+ κ)

(
X

q2

)s

ds.
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By applying the functional equation (3.14), the second term above equals

q2

φ(q)

∑
χ (mod q)

χ ̸=χ0

χ(a)ε4χ
1

2πi

∫
Ṽ (s)L((1� π)× χ, 1− s)

L∞(1� π, 1− s+ κ)

L∞(1� π, s+ κ)

(
X

q4

)s

ds.

In the integral we make the change of variable s ↔ 1− s to get

X

q2φ(q)

∑
χ (mod q)

χ ̸=χ0

χ(a)ε4χ
1

2πi

∫
(−1/14)

L((1� π)× χ, s)
L∞(1� π, s+ κ)

L∞(1� π, 1− s+ κ)
Ṽ (1− s)

(
X

q4

)−s

ds,

and shifting the contour back to Re s = 3/2 without hitting any poles, we obtain the sum

X

q2φ(q)

∑
n>1

λ1�π(n)

( ∑
χ (mod q)

χ ̸=χ0

χ(an)ε4χ

)
1

2πi

∫
(3/2)

L∞(1� π, s+ κ)

L∞(1� π, 1− s+ κ)
Ṽ (1− s)

(
nX

q4

)−s

ds

=
X

q2φ(q)

∑
n>1

λ1�π(n)(φ(q)q
−1/2Kl4(an; q)− q−2)V̌ 4

(
n

q4/X

)
.

This completes the proof of (3.1).
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2 Fouvry É, Kowalski E, Michel P. Algebraic twists of modular forms and Hecke orbits. Geom Funct Anal, 2015, 25:

580–657
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