
UNMOTIVATED ERGODIC AVERAGES

EMMANUEL KOWALSKI

Abstract. We consider weighted ergodic averages indexed by primes, where the weight
depends on the prime, and is a “trace function” coming from algebraic geometry. We obtain
extensions of classical results, in both L2 and topological settings, and raise some further
problems.

1. Introduction

Let (X, µ, f) be a dynamical system: f is a measurable map f : X → X on a probability
space (X, µ) and f∗µ = µ, i.e., µ is an invariant measure.

In this paper, motivated largely by simple curiosity (though see also Remark 1.5 for one
arithmetical motivation), we consider weighted ergodic averages of triangular form1, namely
averages

(1.1) 1
p

∑
0⩽n<p

tp(n) (φ ◦ fn),

for some fixed function φ : X → C, where p is a prime and tp is a function on Z (depending
on p) “of algebraic origin”. Precisely, we are interested in the limit of such averages as
p→ +∞ when the functions tp are trace function modulo p or short linear combinations of
such functions.

We note that this type of triangular ergodic averages are quite natural from the point of
view of arithmetic; for instance, they are reminiscent of certain problems in homogeneous
dynamics, such as the work of Mozes and Shah [33], which consider limits of measures
that are invariant under unipotent subgroups without enforcing that they arise from a fixed
“source”.

Since the general theory of trace functions (as amplified by Fouvry, Kowalski and Michel
in particular) is probably not well-known to most readers, we present right away three basic
examples that will indicate the flavor of these averages.

Example 1.1. (1) The function tp(n) which is the characteristic function of the set of squares
modulo p (quadratic residues) is a linear combination

1
2

(
1 +

(n
p

))
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of two trace functions. Thus the average (1.1) is then the ergodic average where n is restricted
to be a square modulo p. Note the clear triangular feature: when the prime p changes, the
set of quadratic residues changes also.

(2) Let q ∈ Z[X] be a fixed monic polynomial. Then tp(n) = e(q(n)/p) is a trace function,
where e(z) = exp(2iπz) for any complex number z.

(3) Define tp(n) = Kl2(n; p) where

Kl2(n; p) = 1
√
p

∑
1⩽x⩽p−1

e
(nx+ x̄

p

)
,

where x̄ is the inverse of x modulo p. These are the classical Kloosterman sums, which are
of paramount importance in analytic number theory. The function tp is then also a trace
function.

More generally, we will explain below the definition of two norms ∥·∥t ⩽ ∥·∥tf on the
space C (Fp) of complex-valued functions on Fp = Z/pZ, which we identify with the interval
{0, . . . , p − 1}. For f : Fp → C, these norms measure the complexity of a decomposition
of f into sums of certain trace functions. In the three examples above, we have ∥tp∥tf ⩽ c,
where c is independent of p (but depends on the degree of q in the case of Example (2)), and
similarly ∥tp∥t ⩽ c′ for some constant c′, except in the case of polynomials q of degree 1 in
Example (2).

Then, exploiting the remarkable fundamental L2 properties of trace functions (which are
very deep, as they rely on Deligne’s most general version of the Riemann Hypothesis over
finite fields [11]), we will prove rather easily the following result.

Theorem 1.2 (L2-ergodic theorems). Let (tp)p be a sequence of functions tp : Fp → C,
indexed by an infinite subset P of the primes. Let (X, µ, f) be a dynamical system and let

π : L1(X, µ) → L1(X, µ)
be the projection given by the ergodic theorem (see [14, Th. 2.30]). Assume that there exists
a constant c ⩾ 0 such that either

(a) We have ∥tp∥tf ⩽ c for p ∈ P,
(b) The system (X, µ, f) is weakly-mixing and ∥tp∥t ⩽ c for p ∈ P.

Let φ ∈ L2(X, µ). Then the following results hold:
(1) We have

1
p

∑
0⩽n<p

tp(n)φ ◦ fn −
(1
p

∑
0⩽n<p

tp(n)
)
π(f) → 0

in L2(X, µ) as p → +∞ along P. Moreover, the convergence is uniform for φ in compact
sets of L2(X, µ).

(2) Suppose that

(1.2)
∑
p∈P

(log p)2

p
< +∞.

Then for µ-almost all x, we have
1
p

∑
0⩽n<p

tp(n)φ(fn(x)) −
(1
p

∑
0⩽n<p

tp(n)
)
π(f)(x) → 0

2



as p→ +∞ along P.
In addition, we consider the analogue of Sarnak’s Möbius randomness conjecture [37] (one

of the recent focus points at the intersection of analytic number theory and ergodic theory)
for our weighted averages. We can prove a version of this conjecture for certain specific
families of trace functions, but since their definition is non-trivial, we only state here some
representative examples.
Theorem 1.3 (Topological ergodic theorems). Let X be a locally compact topological space
and f : X → X a continuous map. Assume that either X is compact or that X is a metric
space and f uniformly continuous.

Assume that the topological entropy of f is zero. Then for all bounded2 continuous func-
tions φ : X → C and all x ∈ X, we have

lim
p→+∞

1
p

∑
0⩽n<p

Kl2(n; p)φ(fn(x)) = 0,

lim
p→+∞

1
p

∑
0⩽n<p

(n
p

)
φ(fn(x)) = 0.

Remark 1.4. (1) Sequences of the form (φ(fn(x)))n, where f has topological entropy 0 and
φ is continuous are called deterministic. Hence, the result shows that there is no deterministic
sequence which can correlate non-trivially with an infinite sequence of Kloosterman sums,
or Legendre symbols, modulo primes.

(2) We will show that these families may be replaced by a fairly wide class of trace
functions, but not all.

(3) See [8] for Bowen’s definition of topological entropy, which applies to uniformly continu-
ous maps between metric spaces, and [1] for the definition of Adler, Konheim and McAndrew
which applies to arbitrary compact spaces. It is known that these are equal (when both are
defined), see, e.g., [13, Satz 4.8].

(4) The special case of this theorem concerning Kloosterman sums was proved indepen-
dently by El Abdalaoui, Shparlinski and Steiner [15, Th. 2.8] (when X is compact).
Remark 1.5. From the arithmetic point of view, it is a crucial fact that there is no systematic
rule to construct or constrain the sequences of trace functions that are used in the averages
for each prime. We think that the sequence of Kloosterman sums or Legendre symbols are
natural, but the only constraint that we impose in Theorem 1.2 is the boundedness of the
trace norms of the functions (as in much previous work). We will see that the situation is
very unclear when the system (X, µ, f) is not weakly-mixing.

In general, the search for natural stronger conditions that “bind” a sequence (tp) of trace
functions is, for the author, a very natural arithmetic motivation for the study of our weighted
ergodic averages. In other words: is there a natural “coherence” condition for trace functions
modulo primes that would naturally distinguish examples like Kloosterman sums or Legendre
symbols?
Outline of the paper. We present some concrete “incarnations” of the results in Section 2.
Then Section 3 gives the definitions and basic background results concerning trace functions,
including defining the “trace norms” ∥·∥t and ∥·∥tf . Sections 4 and 5 prove the mean ergodic
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theorem, and Section 6 discusses the topological case. We then conclude with a discussion
section (including an easy maximal inequality in L2), and with some further questions that
may be of interest in probing further the links between these two subjects.

Notation. For basic references concerning ergodic theory, we will refer to the books of
Einsiedler and Ward [14] and of Einsiedler and Schmidt [13] (e.g., for topological entropy,
which is not discussed in [14]).

We will summarize in Section 3 the key facts concerning trace functions. More details and
examples can be found for instance in the surveys [18, 25] of Fouvry, Kowalski, Michel and
Sawin.

We will say that an infinite set P of primes that satisfies (1.2) is sparse. In order that P
be sparse, it is enough that there exists δ > 0 such that the counting function

π(x; P) =
∑
p⩽x
p∈P

1

satisfies
π(x; P) ≪ x

(log x)3+δ .

Remark on the text. The first draft of these notes was written in 2018/2019. At that
time, I put them aside: the absence of applications diminished the interest of the questions,
and moreover the results did not seem strong enough (or the proofs conceptually interesting
enough) to compensate this fault.

I came back to the text in 2023, first because the appearance of the preprint [15] of El
Abdalaoui, Shparlinski and Steiner showed that at least a few other mathematicians did
consider similar questions, and then because I decided to talk about this at least once, in
the Number Theory Seminar of the University of Turku (where I was present to be the
opponent in the PhD defense of O. Järvienemi). Although the defects discussed above still
apply,3 there is (I think) one interesting outcome from working on this topic, namely the
diophantine approximation result of Lemma 10.2, which was actually stated without proof
in the 2019 draft.

Acknowledgements. Thanks to M. Einsiedler for discussions about ergodic theory, and
to L. Pierce for discussions concerning maximal theorems. Thanks to K. Matomäki for the
invitation to be the opponent of O. Järvienemi, which provided me with the occasion to
revise these notes, and Y. Bugeaud for remarks and references concerning Lemma 10.2.

2. Examples of results

Many of our results may be interpreted as leading to cancellation properties for certain
sums involving trace functions. These are often of interest in analytic number theory, and
we therefore state in this section a few examples with concrete choices of trace functions
and of dynamical systems (X, µ, f). We also present examples which show that some of the
assumptions of Theorems 1.2 and 1.3 are needed.

3 In addition to the fact that there might be lurking mistakes and imprecisions, and that there are
significant redundancies in certain arguments.
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Example 2.1. We give first some examples related to continued fraction expansions. Let
(]0, 1[, µ, f) be the continued fraction dynamical system (see [14, Ch. 3]), in other words

µ = 1
log(2)

dx

1 + x
, f(x) = 1

x
−
⌊1
x

⌋
.

This system is ergodic (loc. cit.) and f has positive entropy.
For x ∈ [0, 1], let (an(x)) be the sequence of partial quotients in the continued fraction

expansion of x. We have an+1(x) = an(f(x)).
Maybe the simplest result that we can deduce from this work is that for a fixed integer

k ⩾ 0, and for almost all x, we have
1
p

∣∣∣{1 ⩽ n < p |
(n
p

)
= 1 and an(x) = k

}∣∣∣ → 1
2 log 2

log
( (k + 1)2

k(k + 2)

)
as p → +∞ along a sparse sequence, where (n/p) is the Legendre symbol. This is one half
of the density of occurence of an(x) = k, see [14, Cor. 3.8].

This result follows from Theorem 1.2, (2) when we take

tp(n) = 1
2

(
1 +

(n
p

))
,

for p odd, and φ the characteristic function of a1(x) = k, since φ ◦ fn is the characteristic
function of an(x) = k, and moreover we have ∥tp∥tf ≪ 1 and

1
p

∑
n∈Fp

tp(n) = 1
2
.

Example 2.2. For p prime, let tp be the Kloosterman sum function modulo p (Example 1.1,
(3)). We have ∥tp∥tf ≪ 1 and

1
p

∑
n∈Fp

tp(n) = 0.

Define X = SL2(Z)\ SL2(R) and denote by µ the invariant probability measure on X
(induced by a normalized Haar measure on SL2(R)). Consider the dynamical system with

f(g) = g

(
2 0
0 1/2

)
for g ∈ X (a part of the geodesic flow). It is known that (X, µ, f) is ergodic and that f has
positive topological entropy (see TODO).

Let φ : X → C be an L2-function. Applying Theorem 1.2, (2), we deduce that for almost
all z ∈ X, we have

1
p

∑
1⩽n<p

Kl2(n; p)φ
(
z

(
2n 0
0 2−n

))
→ 0

as p→ +∞ along a sparse subsequence.
On the other hand, let

f̃(g) = g

(
1 1
0 1

)
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for g ∈ X (part of the horocycle flow). Then (X, µ, f̃) is ergodic and has zero entropy
(note that X is not compact, but f̃ is uniformly continuous, so Bowen’s definition of entropy
applies). Thus we have

1
p

∑
1⩽n<p

Kl2(n; p)φ
(
z

(
1 n
0 1

)
z
)
→ 0

for any bounded continuous function φ on X and any z ∈ X by Theorem 1.3.

Example 2.3. It is not surprising that pointwise convergence may fail in full generality, since
this means considering arbitrary sequences an instead of φ(fn(x)) (using the shift on [−1, 1]
on the space of bounded sequences). As a simple example, consider again tp(n) = (n/p) (the
Legendre symbol modulo p).

Let (pk) be an increasing sequence of primes with pk+1/pk → +∞; the set of primes thus
defined is of course sparse. Define a sequence an by

an =

{
1 if n is a square modulo pk+1

0 if n is not a square modulo pk+1,

where pk ⩽ n < pk+1. Then
1
pk

∑
0⩽n<pk

tpk(n)an = 1 + O
(pk−1

pk

)
→ 1.

This example can, for instance, be embedded in the continued fraction setting, and can
be adapted to pretty arbitrary sequences of trace functions.

Example 2.4. Let p be a prime and tp(n) = e(apn/p) for some ap ∈ Fp. These are trace
functions, but we will show that Theorem 1.3 does not hold with Kl2(n; p) replaced by tp(n),
at least if (ap) is chosen in a suitable manner.

Pick θ ∈ R/Z which is irrational. There exists δ > 0 such that there are infinitely many
approximations ap/p by rational numbers with prime denominators with

(2.1)
∣∣∣θ − ap

p

∣∣∣ ⩽ 1
p1+δ .

Indeed, this was proved by Vinogradov for arbitrary δ < 1/5, and the best-known result
by Matomäki [31] applies for any δ < 1/3. The irrational translation f(x) = x + θ on R/Z
has entropy zero; pick the starting point x = 0 and the continuous function φ(α) = e(α) on
R/Z. Then, for primes p for which (2.1) holds, we get

1
p

∑
0⩽n<p

e
(
−nap

p

)
e(nθ) = 1

p

1 − e(p(θ − ap/p))
1 − e(θ − ap/p)

→ 1

as p→ +∞ along this sequence.
We note in passing that Theorem 1.2 does not apply here (the system is not weakly-mixing,

and the norms ∥tp∥tf are not bounded).
(Also, we note that one could obtain easier examples using the fact that (2.1) holds with

δ = 1 for almost all θ ∈ [0, 1], which goes back at least to Duffin and Schaeffer [12].)
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Example 2.5. Here are some additional standard examples of functions on Z that arise as
trace functions modulo p with bounded conductor, and which moreover are “geometrically
irreducible” (an important property which means essentially that their mean-square average
modulo p is close to 1). More examples are found, e.g., in [18]. This should give an idea of
the variety of ergodic averages that we are considering.

(1) For any a modulo p, the additive character n 7→ e(an/p) is a trace function of a
so-called Artin-Schreier sheaf; it has conductor uniformly bounded.

(2) For any non-trivial multiplicative character χ modulo p, extended by 0 to Z/pZ, the
corresponding Dirichlet character is a trace function of a so-called Kummer sheaf; it has
conductor uniformly bounded.

(3) More generally, let f ∈ Z[X] be a non-constant polynomials. The functions n 7→
e(f(n)/p) and n 7→ χ(f(n)) are trace functions with conductor bounded in terms of the
degree of f only. Similarly if f is a non-constant rational function, with the trace function
having value 0 at poles of f , and with conductor depending on the degrees of the numerator
and denominators of f .

(4) If tp is a geometrically irreducible trace function modulo p, and is not proportional to
an additive character, then its normalized Fourier transform

t̂p(n) = 1
√
p

∑
0⩽m<p

e
(mn
p

)
tp(m)

is also a trace function with conductor bounded only in terms of that of tp (see [19, Prop. 8.2]).
So for instance, the fact that the Kloosterman sums used above (see Example 1.1), namely

tp(n) = 1
√
p

1
√
p

∑
1⩽x⩽p−1

e
(nx+ x̄

p

)
,

define a geometrically irreducible trace function modulo p with bounded conductor follows
from this principle applied to the trace function n 7→ e(n̄/p) (extended by 0 for n = 0),
which is a special case of Example (3).

As a final remark, we emphasize that trace functions behave in many ways like random
functions (e.g., they often have Gowers norms that are as small as those of random functions,
as shown by Fouvry, Kowalski and Michel in [21]), and one can think of them in these terms
in a first reading.

3. Properties of trace functions

We summarize here the properties of trace functions that we will use. These are essentially
related to the Fourier transform (which was already mentioned in Example 2.5, (4), as an
operation preserving trace functions).

First, we fix throughout the paper a prime number ℓ, and impose that all other prime
numbers we consider below are different from ℓ (one can take ℓ = 2 and only consider odd
primes). We fix an isomorphism ι : Qℓ → C. We first clarify our terminology and conventions
concerning sheaves:

Definition 3.1 (Sheaves and uniform sheaves). Let p ̸= ℓ be a prime.
(1) A sheaf F modulo p is a middle extension Qℓ-sheaf on A1

Fp
, pure of weight 0. A Fourier

sheaf modulo p is a sheaf modulo p that is of Fourier type in the sense of Katz [27, 7.3.4],
7



in other words, none of its geometrically irreducible components is geometrically isomorphic
to an Artin-Schreier sheaf.

(2) The trace function tF of a sheaf F modulo p is the complex-valued function on Z
defined by

tF (x) = ι(Tr(Frx,Fp |Fx̄))
where Frx,Fp is the Frobenius at x ∈ Fp, and x̄ is a geometric point above x.

(3) Let F be a sheaf modulo p and let k ⩾ 0 be an integer. We say that F is k-uniform
if no geometrically irreducible component of F is geometrically isomorphic to a sheaf of the
type Lψ(P) where ψ is a non-trivial additive character of Fp and P ∈ Fp[X] is a polynomial
of degree ⩽ k.

(4) We say that F is almost k-uniform with average µ if F ≃ µQℓ ⊕ G where G is
k-uniform.

Note that speaking of geometrically irreducible components of a sheaf F modulo p is
legitimate, since such sheaves (being pure of some weight) are geometrically semisimple by
work of Deligne.

Example 3.2. To say that F is 0-uniform (resp. 1-uniform) means that F has no trivial
geometrically irreducible component (resp. is of Fourier type in the sense of Katz [27, 7.3.5]).

Let F be a sheaf modulo p. Fouvry, Kowalski and Michel defined its conductor c(F )
in [19, Def. 1.13]; it is a positive integer which vanishes if and only if F is zero.

The conductor measures quantitatively the complexity of a sheaf in many estimates.. One
essential property is a bound on the size of the trace function: for any sheaf F modulo p,
and any x ∈ Z, we have
(3.1) |tF (x)| ⩽ c(F ).

Using the conductor, we define the trace norms as follows.

Definition 3.3 (Trace norms). Let p be a prime different from ℓ. Let C (Fp) denote the
vector space of C-valued functions on Fp.

For f ∈ C (Fp), we define

∥f∥t = inf
{∑

i

c(Fi)|ai| | f =
∑
i

aitFi
, Fi geometrically irreducible

}
,

and

∥f∥tf = inf
{∑

i

c(Fi)|ai| | f =
∑
i

aitFi
, Fi geometrically irreducible Fourier

}
.

In both cases, the infimum runs over decompositions of f in linear combinations of trace
functions of sheaves of the indicated type.

It is straightforward that both of these are norms, and clear that ∥f∥t ⩽ ∥f∥tf .

Remark 3.4. Although we mentioned that trace functions can be thought of as “random”
functions, one should note that for most simple models of random functions f : Fp → C
(e.g., taking all f(n) to be independent and uniform over the unit disc), the norm ∥f∥t will
in fact be very large, as explained in a paper of Fouvry, Kowalski and Michel (see [22, Th.
5.1]).
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We now state some of the fundamental analytic properties of trace functions, starting with
the general form of the “completion method” for short sums of trace functions.

Proposition 3.5 (Completion method). Let F be a Fourier sheaf modulo p and t : Z → C
its trace function. For any interval I in Z of length ⩽ p, we have∑

n∈I

t(n) ≪ √
p(log p)

where the implied constant depends only on the conductor of F .

See [24, §1.1, §2.2] for the argument, which is straightforward, granted the very deep fact
(a case of Deligne’s Riemann Hypothesis in its strongest form) that the normalized discrete
Fourier transform of t is the trace function of a sheaf FT(F ), which is also a middle-extension
of weight 0, with conductor ⩽ 10 c(F )2 (this last important estimate is proved by Fouvry,
Kowalski and Michel in [19, Prop. 8.2]).

Proposition 3.6. Let F and G be middle-extension ℓ-adic sheaves of weight 0 modulo p.
(1) The additive middle convolution F ∗! G is a middle-extension ℓ-adic sheaf of weights

⩽ 0, and it has conductor bounded in terms of the conductors of F and G .
(2) Suppose that F is a Fourier sheaf. The additive middle convolution F ∗!D(F ) contains

no Artin-Schreier sheaf as geometrically irreducible component.

Proof. For (1), the first assertion follows from the definition of the middle convolution and
from Deligne’s Riemann Hypothesis. To estimate the conductor, it is simplest here to appply
the Fourier transform, which is an exact functor transforming middle-convolution into tensor
product, so that

F ∗! G = FT(FT(F ) ⊗ FT(G )).
We can then apply the estimate [19, Prop. 8.2] for the conductor of a Fourier transform.

For (2), applying the Fourier transform, a hypothetical injection Lψ(ax) ↪→ F ∗! D(F )
would imply the existence of an injection

δa ↪→ FTψ(F ) ⊗ D(FTψ(F ))
of a punctual skyscraper sheaf into FTψ(F ) ⊗ D(FTψ(F )). However, since both FTψ(F )
and its dual are middle-extension sheaves when F is a middle-extension, their tensor product
has no punctual part. □

The following definition will be convenient in some places.

Definition 3.7. A family (Fp)p of sheaves modulo p indexed by (a subset of) the primes
̸= ℓ is an almost Fourier family if the conductor of Fp is bounded independently of p, and
if there exists an integer r ⩾ 0 such that Fp = rQℓ ⊕ F̃p for all p, where F̃p is a Fourier
sheaf modulo p. We say that r is the mean of the family.

For an almost Fourier family, the trace functions tp of Fp satisfy
tp(x) = r + t̃p(x)

where t̃p is the trace function of F̃p.
The following proposition will be only be used for polynomials P of degree 1, but since

it is of independent interest, we state and prove it in general (see [15, Th. 2.7] for a special
case).
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Proposition 3.8. Let k ⩾ 1 be an integer and define γk = 2−k. Let p be a prime and let F
be a k-uniform ℓ-adic sheaf modulo p with trace function t(n). Let P ∈ R[X] be a polynomial
of degree ⩽ k. Let I be an interval in Z of length |I| ⩾ 1. We have

(3.2)
∑
n∈I

t(n)e(P(n)) ≪ c(F )2
(
|I|1−2γkpγk + |I|p−γk

)
(log p)2γk

where the implied constant is absolute.

For k ⩾ 2, the proof will use the following lemma; readers only interested in main results
of this paper may skip this in a first reading.

Lemma 3.9. Let k ⩾ 1 be an integer and p a prime. Let F be a geometrically isotypic
k-uniform ℓ-adic sheaf modulo p for some integer k ⩾ 1. Let h ∈ Fp be such that the set of
singularities of [+h]∗F and D(F ) are disjoint. If p > k and c(F ) < p, and if h ̸= 0, then
[+h]∗F ⊗ D(F ) is a (k − 1)-uniform ℓ-adic sheaf modulo p with conductor ≪ c(F )2.

Proof. This is implicit in the work of Fouvry, Kowalski and Michel in [21, §5]. Precisely,
under the assumption on h, the tensor product [+h]∗F ⊗ D(F ) is an ℓ-adic sheaf modulo
p (the key point is that it is a middle-extension, see [21, Lemma 2.2]). If the conclusion
does not hold, we deduce from the definition of (k − 1)-uniform sheaf that there exists a
polynomial P of degree ⩽ k − 1 such that

F ≃ [+h]∗F ⊗ Lψ(P)

(see [21, Lemma 5.3 (2)]). From this, we see first that c(F ) ⩾ p, if F is not lisse on A1
Fp

(because the orbit of a singularity under x 7→ x + h is contained in the set of singularities,
so there are at least p of them, each of which contributes at least 1 to the sum of drops
of F ). Otherwise, since p > k, by [21, Lemma 5.4 (2)], it follows that either c(F ) ⩾ p
(because of the contribution of the Swan conductor at ∞) or F is isomorphic to Lψ(Q) for
some polynomial of degree ⩽ k. The lemma follows, by contraposition. □

Proof. We first consider the case |I| ⩽ p. We then need to show that

(3.3)
∑
n∈I

t(n)e(P(n)) ≪ c(F )2|I|1−2γkpγk(log p)2γk ,

and we may assume (by additive change of variable) that I is contained in {0, . . . , p− 1}.
We assume (as we may) that P(0) = 0. If we decompose the arithmetic semisimplification

of F in arithmetically irreducible components, say Fi, then one of the following is true
(see [21, Lemma 5.3]):

(1) For some n ⩾ 2, the sheaf Fi is induced from some irreducible sheaf on Spec(Fpn) by
pushforward along the map Spec(Fpn) → Spec(Fp); in this case, the trace function ti of Fi

is identically 0 (see [21, Lemma 5.3] or [19, Proof of Prop. 8.3]), so that the estimate (3.2)
is trivial.

(2) The sheaf Fi is geometrically isotypic.
Since the estimate (3.2) is linear in F , we see that we may reduce the proof to the case

where F is geometrically isotypic.
We now proceed by induction on k. The key tool is Weyl differencing. Assume first that

k = 1 and that P(n) = θn (here we do not need to assume that F is isotypic). By discrete
10



Fourier inversion, we obtain ∑
n∈I

t(n)e(θn) =
∑

0⩽h<p

t̂(h)αp(h, θ)

where
αp(h, θ) = 1

√
p

∑
n∈I

e
(
n
(h
p

+ θ
))
, t̂(h) = 1

√
p

∑
0⩽n<p

t(n)e
(nh
p

)
.

Since F is 1-uniform, it is a Fourier sheaf, and we have |t̂(h)| ⩽ c(FT(F )) ≪ c(F )2

(by [19, Prop. 8.2]). On the other hand, by summing the geometric sum, we have

|αp(h, θ)| ⩽ min
( |I|
√
p
,

1
√
p

1
∥h
p

+ θ∥

)
,

where ∥ · ∥ on the right-hand side is the distance to the nearest integer. We use the first
bound for that value h0 of h where |h0/p + θ| ⩽ 1/p, and the other values of αp(h, θ) are
then bounded by √

p

2
, · · · ,

√
p

p
,

so that ∑
0⩽h<p

|αp(h, θ)| ≪
√
p(log p),

with an absolute implied constant. Combining these results we obtain∣∣∣ ∑
0⩽h<p

t̂(h)αp(h, θ)
∣∣∣ ≪ c(F )√p log p,

with an absolute implied constant, which implies the bound (3.3) for k = 1.
Now assume that deg(P) = k ⩾ 2 and that the proposition is true for polynomials of

degree k − 1; assume (as we saw that we may) that F is geometrically isotypic. We write∣∣∣∑
n∈I

t(n)e(P(n))
∣∣∣2 =

∑
n,m∈I

t(n)t(m)e(P(n) − P(m))

=
∑
h∈I−I

∑
m∈Ih

t(m+ h)t(m)e(P(m+ h) − P(m))

=
∑
h

∑
m∈Ih

t(m+ h)t(m)e(Qh(m))

where Qh = P(X + h) − P(X) is a polynomial of degree ⩽ k − 1 and Ih is an interval,
depending on h, of length |Ih| ⩽ |I|.

For h ∈ I − I such that the set of singularities of [+h]∗F and D(F ) are not disjoint, we
use the trivial bound ∣∣∣∑

m∈Ih

t(m+ h)t(m)e(Qh(m))
∣∣∣ ⩽ c(F )2|I|.

Note that there are at most n2 values of h with this property, where n ⩽ c(F ) is the number
of singularities of F .

11



Now suppose that the set of singularities of [+h]∗F and D(F ) are disjoint. The function

m 7→ t(m+ h)t(m)

is the trace function of the sheaf [+h]∗F ⊗ D(F ), which is (k − 1)-uniform by Lemma 3.9.
Hence, by induction, we have∑

m∈Ih

t(m+ h)t(m)e(Qh(m)) ≪ c(F )2|Ih|1−2γk−1pγk−1(log p)2γk−1

where the implied constant is absolute. Finally, gathering the estimates together, since
|I − I| ⩽ 2|I| and |Ih| ⩽ |I|, we obtain∣∣∣∑

n∈I

t(n)e(P(n))
∣∣∣2 ≪ c(F )4|I| + c(F )2|I|2−2γk−1pγk−1(log p)2γk−1 ,

and (3.3) follows for degree k by taking the square root since γk−1 = 2γk.
We now assume that |I| > p. We can decompose the interval I into ⌊|I|/p⌋ intervals of

length p and one remaining interval J of length |J| ⩽ p. Using shifts, each of these sums is of
the type above for a shifted sheaf, with the same conductor, and an interval of length ⩽ p.
The previous case therefore implies∑

n∈I

t(n)e(P(n)) ≪ c(F )2 |I|
p

× p1−2γkpγk(log p)2γk

(since the implied constant is independent of the coefficients of P), and this is of the desired
shape for |I| > p. □

Corollary 3.10. Let F be a Fourier sheaf modulo p with trace function tp, and θ ∈ R/Z.
We have ∑

0⩽n<p

tp(n)e(−θn) ≪ √
p log p,

where the implied constant depends only on the conductor of F .

Remark 3.11. (1) The estimate of Proposition 3.8 cannot be improved without some addi-
tional assumption, since t(n) = e(nk/p) is the trace function of a sheaf that is (k−1)-uniform
but not k-uniform.

(2) Estimates similar to that of Proposition 3.8 have been proved by a number of authors
when t(n) = χ(n) is a multiplicative character, beginning with Enflo [16]; more recent works
include those of Chang [10], Heath-Brown and Pierce [26] and Pierce [35]. In that special
case, rather stronger results hold; as far as the size of I is concerned, they are comparable to
the Burgess bound for short character sums, i.e., non-trivial provided that I is a bit larger
than p1/4.

(3) If θ = a/p for some integer a, then the estimate of Corollary 3.10 holds without the
factor log p, by the existence of Deligne’s Fourier transform. It would be interesting to know
if this factor is really needed in general.
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4. The mean ergodic theorem in the Fourier case

This section considers the mean ergodic theorem in L2. As can be expected from the good
L2 properties of trace functions, a very satisfactory theory exists, and it is reasonably easy
to derive. Roughly speaking, we will see that non-trivial interactions arise only from the
Artin-Schreier components (on the side of trace functions) and from the Kronecker factor
(on the dynamical side). So if either the Artin-Schreier component or the Kronecker factor is
trivial (the latter means that the dynamical system is weakly-mixing), then the statements
are particularly clear.

We fix a measurable dynamical system (X, µ, f). We denote by

uf : L2(X, µ) → L2(X, µ)

the associated unitary operator, defined by uf (φ) = φ ◦ f for all φ.
We also fix a family (Fp)p of sheaves modulo p with bounded conductor, indexed by an

infinite set of primes P. We denote by tp the trace function of Fp, viewed as a function on Z.
Finally, we denote by

vp = 1
p

∑
0⩽n<p

tp(n) unf

the ergodic averaging operator with weight tp acting on L2(X, µ).

Proposition 4.1. Suppose that Fp is a Fourier sheaf for all p. The endomorphisms (vp)p
of L2(X, µ) converge to 0 as p→ +∞ with respect to the operator norm. In fact, we have

(4.1) ∥vp∥ ≪ p−1/2(log p),

where the implied constant depends only on c(Fp).

Although the proof may seem rather trivial, it relies on the Riemann Hypothesis over
finite fields.

Proof. Let φ ∈ L2(X, µ) have norm 1. Let ν be the spectral measure of the unitary op-
erator uf relative to the unit vector φ, i.e., the Borel probability measure on R/Z such
that ∫

R/Z
ϱ(e(θ))dν(θ) = ⟨ϱ(uf )φ|φ⟩

for any continuous function ϱ on S1 (see, e.g., [4, Déf. 4, p. 268]). We obtain in particular

∥vp(φ)∥2 =
∫ 1

0

∣∣∣1
p

∑
0⩽n<p

tp(n)e(nθ)
∣∣∣2dν(θ).

Applying Corollary 3.10, we get

∥vp(φ)∥2 ≪ (log p)2

p

where the implied constant depends only on the conductor of Fp. This concludes the proof.
□
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This implies the first part of Theorem 1.2, in the case of Fourier sheaves (with uniform
convergence over bounded sets), because

1
p

∑
0⩽n<p

tp(n) ≪ 1
√
p
→ 0

in that case.
For arbitrary functions tp : Fp → C, provided they satisfy Assumption (a), namely ∥tp∥tf ≪

1, we can represent tp as a finite combination (with coefficients bounded in ℓ1) of trace func-
tions of Fourier sheaves, and obtain the same result by linearity.

Moreover, this also implies the second part, still in the case of Fourier sheaves, by a
standard trick: if p ranges over a sparse set of primes P, then for any fixed φ ∈ L2(X, µ), the
series ∑

p

∥vp(φ)∥2

converges (by (4.1) and the definition by sparseness), and this implies that the function

x 7→
∑
p

|vp(φ)(x)|2

is finite almost surely, hence that vp(φ)(x) converges to 0 for almost all x. Once again, this
gives the second part of Theorem 1.2 under Assumption (a) by linearity.

Remark 4.2. For the sake of variety, here is an argument which provides a proof of the
weaker result

∥vp∥ ≪ p−1/4(log p)1/2,

without using the spectral theorem. Let φ ∈ L2(X, µ) and

ψp = vp(φ) = 1
p

∑
0⩽n<p

tp(n) unf (φ).

We compute

∥ψp∥2 = 1
p2

∑
0⩽n<p
0⩽m<p

tp(n)tp(m)⟨unf (φ)|umf (φ)⟩

= 1
p2

∑
|h|<p

⟨uhf (φ)|φ⟩
∑

0⩽n,m<p
n−m=h

tp(n)tp(m).

The contribution coming from h = 0 is
∥φ∥2

p2

∑
x∈Fp

|tp(x)|2 ⩽ c(Fp)2∥φ∥2p−1

by (3.1). Now fix h with 1 ⩽ |h| < p. The corresponding summand is ⟨uhf (φ)|φ⟩σh, where

σh =
∑

0⩽n,m<p
n−m=h

tp(n)tp(m) =
∑

max(0,h)⩽n<min(p,p+h)

tp(n)tp(n− h).

14



By completion and by the properties of the additive convolution of trace functions of Fourier
sheaves (see Proposition 3.5 and Proposition 3.6), we have

σh ≪
√
p(log p)

for all h ̸= 0, where the implied constant depends only on c(Fp). Therefore we derive

∥ψp∥2 ≪ ∥φ∥2p−1 + ∥φ∥2p−1/2(log p)

where the implied constant depends only on c(Fp). This gives the result.

We can immediately extend the mean-ergodic theorem for Fourier sheaves to Lr when
1 ⩽ r ⩽ 2. For r > 2, see Section 7.

Corollary 4.3. Suppose that Fp is a Fourier sheaf for all p. Let r ∈ [1, 2]. The endomor-
phisms

ṽp = 1
p

∑
0⩽n<p

tp(n) unf

of Lr(X, µ) converge to 0 as p→ +∞ in the norm topology.

Proof. Suppose first that φ is bounded. Since r ⩽ 2 an µ is a probability measure, we have

∥ṽp(φ)∥rr =
∫

X

∣∣∣1
p

∑
0⩽n<p

tp(n)φ(fn(x))
∣∣∣rdµ(x) ⩽

(∫
X

∣∣∣1
p

∑
0⩽n<p

tp(n)φ(fn(x))
∣∣∣2dµ(x)

)r/2
,

hence ∥ṽp∥ ⩽ ∥vp∥, which tends to 0. □

Recall that we denote by π the ergodic projection L1(X, µ) → L1(X, µ). It restricts to the
orthogonal projection on the 1-eigenspace of L2(X, µ). The standard mean-ergodic theorem
in L2 implies that

1
p

∑
0⩽n<p

unf → π

in the space of endomorphisms of L2(X, µ) with the topology of pointwise convergence (see,
e.g., [14, Th. 2.21]).

Recall further that almost Fourier families are defined in Definition 3.7.

Corollary 4.4. Assume that the family (Fp) is almost Fourier with mean r ⩾ 0. Then the
sequence of endomorphisms (vp) of L2(X, µ) converges to rπ as p→ +∞ with respect to the
topology of uniform convergence on compact subsets of L2(X, µ).

Proof. The assumption implies that tp = r + t̃p, where t̃p is the trace function of a Fourier
sheaf with conductor ⩽ c(Fp), and we may combine Proposition 4.1, applied to t̃p, with the
usual mean-ergodic theorem to derive the convergence of vp to rπ in the topology of pointwise
convergence. Moreover, since ∥vp∥ ⩽ c(Fp) for all p, the family (vp) is equicontinuous, and
hence the convergence holds in fact uniformly over compact subsets of L2(X, µ) (see [3,
p. 16, th. 1]). □

Example 4.5. Let Sp be the set of quadratic residues modulo p. Assume that f is µ-ergodic,
so that the 1-eigenspace is spanned by the constant function 1 and π(φ) =

∫
X φdµ for all
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φ ∈ L2(X, µ). We then have
1
p

∑
0⩽n<p
n∈Sp

φ ◦ fn → 1
2

∫
X
φdµ

uniformly for φ ∈ L2(X, µ) in compact subsets of L2(X, µ). Indeed, the characteristic function
of Sp, for p ⩾ 3, is

1
2

(1 + χp)

where χp is the Legendre character modulo p, and the latter is the trace function of a rank
1 non-trivial Kummer sheaf.

Using [20, §6.2], one can extend straightforwardly this result by replacing Sp with the set
Sq,p = q(Fp) of the values modulo p of a fixed polynomial q ∈ Z[X] (except that the leading
constant 1/2 might be replaced by a value depending on p).

5. Weakly-mixing systems

It remains to prove Theorem 1.2 under Assumption (b). By linearity, it suffices to treat
the case of trace functions of (geometrically irreducible) sheaves modulo primes p ∈ P with
bounded conductor.

We keep the notation of the previous section concerning the dynamical system and the
family (Fp) as well as the operator uf . We write

αp = 1
p

∑
0⩽n<p

tp(n).

We use a suitable decomposition of the trace function tp. We write tp = tAS
p + t̃p, where

tAS
p is the Artin-Schreier component and t̃p is the trace function of a Fourier sheaf F̃p with

bounded conductor. Using the Riemann Hypothesis, we can express further

tAS
p = αp + t̃AS

p + O(p−1/2),

for all p, where t̃AS
p is the trace function of an Artin-Schreier sheaf Ap with no trivial geomet-

rically irreducible component and with bounded conductor, and where the implied constant
depends only on c(Fp).

Proposition 5.1. Suppose that the system (X, µ, f) is ergodic and that the Kronecker factor
of (X, µ, f) is trivial, or in other words that (X, µ, f) is weakly mixing.

The endomorphisms

vp − αpπ = 1
p

∑
0⩽n<p

tp(n) unf − αpπ

of L2(X, µ) converge to 0 in the topology of uniform convergence on compact subsets, and
1
p

∑
0⩽n<p

tp(n)φ(fn(x)) − αp → 0

for almost all x.
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Proof. Using the decomposition
tp = αp + t̃p + t̃AS

p ,

we have
1
p

∑
0⩽n<p

t̃p(n) unf (φ) → 0

by Proposition 4.1 applied to the sheaves F̃p, and
1
p

∑
0⩽n<p

αp u
n
f (φ) − αpπ(φ) → 0

by the classical mean-ergodic theorem [14, Th. 2.21].
Similarly, the pointwise convergence holds almost surely for these two components by

Theorem 1.2 and the classical pointwise ergodic theorem (see, e.g., [14, Th. 2.30]).
We now use the assumption that the dynamical system is weakly mixing: a result of

Bourgain (the uniform Wiener–Wintner Theorem, see the proof by Assani [2, Th. 6]) then
implies that

1
p

∑
0⩽n<p

e(nθ)φ(fn(x)) → 0

for almost all x, uniformly for θ ∈ [0, 1]. Since the trace function of t̃AS
p is a finite linear,

combination with coefficients of size 1, of additive characters n 7→ e(an/p), it follows that
1
p

∑
0⩽n<p

t̃AS
p (n)φ(fn(x)) → 0

almost surely (although that the number of such additive characters may depend on p, this
doesn’t affect this argument).

This concludes the proof of the pointwise part of Theorem 1.2 for weakly mixing systems.
The mean-ergodic convergence follows by the dominated convergence theorem. □

Besides this proof, we now give an alternative argument for the mean-ergodic theorem in
this case, which does not use the uniform Wiener–Wintner Theorem. This can be skipped
(we include it since these are informal notes, and the arguments were elaborated before we
were aware of this result of Bourgain).

We will need the following definition to state the basic technical fact.

Definition 5.2. Let θ ∈ R/Z and let (ap)p be a sequence of integers, indexed by an infinite
set of primes. We say that ap/p converges emphatically to θ if

lim sup
p→+∞

p
∣∣∣ap
p

− θ
∣∣∣ < +∞,

and if moreover no subsequence of (p|ap
p
− θ|)p converges to a positive integer.

Remark 5.3. If ap/p converges emphatically to θ, then ap/p converges to θ. If θ = 0, then
one sees that the condition means that ap = 0 for all but finitely many p.

For any θ0 ∈ R/Z, there is a sequence (ap) indexed by primes such that (ap) converges
emphatically to θ0, by taking ap/p the closest to θ0, so that p|ap

p
− θ0| < 1.
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Proposition 5.4. Let (ap) be a sequence of integers indexed by an infinite subset of primes.
Assume that ap/p converges to θ0 in R/Z. Let φ ∈ L2(X, µ) of norm 1 and define

ψp = 1
p

∑
0⩽n<p

e
(
−nap

p

)
unf (φ).

(1) Suppose that θ0 ̸= 0 in R/Z. If the sequence (∥ψp∥) converges to a non-zero number,
then the sequence (ap/p) converges emphatically to θ0, and e(θ0) is an eigenvalue of uf .

(2) Suppose that θ0 = 0 and p ∤ ap for all p. Then ψp → 0.

Proof. As before, let ν be the spectral measure of the unitary operator uf relative to the
unit vector φ. We obtain

∥ψp∥2 =
∫

R/Z

∣∣∣1
p

∑
0⩽n<p

e
(
n
(
θ − ap

p

))∣∣∣2dν(θ) =
∫

R/Z

1
p

Fp
(
θ − ap

p

)
dν(θ),

where Fp is the Fejér kernel: Fp(0) = p and

Fp(θ) = 1
p

(sin(πpθ)
sin(πθ)

)2

for θ ̸= 0.
Recall that 0 ⩽ Fp ⩽ p, so p−1|Fp| ⩽ 1. Moreover, Fp(θ) → 0 uniformly on the complement

of any neighborhood of 0 in R/Z. Thus, using the limit assumption ap/p→ θ0, we have

Fp
(
θ − ap

p

)
→ 0

as p → +∞ for any fixed θ ̸= θ0, and a fortiori we have the same limit after dividing the
left-hand side by p.

We first prove (2), and thus assume that θ0 = 0 and p ∤ ap. Then

Fp(θ0 − ap
p

) = Fp(−ap
p

) = 0,

for all p, hence we obtain ∥ψp∥ → 0 by the dominated convergence theorem.
Now we prove (1), and assume that θ0 ̸= 0 and that ∥ψp∥ converges to a non-zero number.

If the sequence (p|ap
p
− θ0|) is unbounded, then using the assumption θ0 ̸= 0 and the formula

defining Fp, we see that there is a subsequence of primes such that
1
p

Fp
(
θ0 −

ap
p

)
≪ 1

p2
∣∣θ0 − ap

p

∣∣2 → 0

as p → +∞. We conclude using the dominated convergence theorem that ∥ψp∥2 → 0 along
this subsequence, contrary to the assumption.

Thus we have
sup
p→+∞

p
∣∣∣ap
p

− θ0

∣∣∣ = C < +∞.

Consider any subsequence of primes where the sequence (p|ap
p
− θ0|)p converges to some real

number c ⩾ 0. Then
1
p

Fp
(
θ0 −

ap
p

)
→

(sin(πc)
πc

)2
,
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hence, along this subsequence, the dominated convergence theorem gives

lim
p→+∞

∥ψp∥2 =
(sin(πc)

πc

)2
ν({θ0}).

Since we assumed that the left-hand side exists and is non-zero, we conclude that θ0 is an
atom of ν. As is well-known, this implies that e(θ0) is an eigenvalue of uf (because it implies
that the spectral projector relative to {e(θ0)} is non-zero; see, e.g., [4, p. 279, Cor.]). □

Corollary 5.5. Suppose that the system (X, µ, f) is ergodic and that the Kronecker factor
of (X, µ, f) is trivial, or in other words that (X, µ, f) is weakly mixing. Let

αp = 1
p

∑
0⩽n<p

tp(n).

Then the endomorphisms

vp − αpπ = 1
p

∑
0⩽n<p

tp(n) unf − αpπ

of L2(X, µ) converge to 0 in the topology of uniform convergence on compact subsets.

Proof. Since |αp| ⩽ c(Fp), the family of endomorphisms vp − αpπ is equicontinuous, hence
it suffices to prove pointwise convergence to 0 for all φ ∈ L2(X, µ). We may further assume
that φ has norm 1.

We write tp = tAS
p + t̃p, where tAS

p is the Artin-Schreier component and t̃p is the trace
function of a Fourier sheaf F̃p with bounded conductor. Using the Riemann Hypothesis, we
can express further

tAS
p = αp + t̃AS

p + O(p−1/2),

for all p, where t̃AS
p is the trace function of an Artin-Schreier sheaf Ap with no trivial geomet-

rically irreducible component and with bounded conductor, and where the implied constant
depends only on c(Fp). Then we have

1
p

∑
0⩽n<p

t̃p(n) unf (φ) → 0

by Proposition 4.1 applied to the sheaves F̃p, and
1
p

∑
0⩽n<p

αp u
n
f (φ) − αpπ(φ) → 0

by the classical mean-ergodic theorem [14, Th. 2.21].
We are now done unless Ap has rank ⩾ 1 for an infinite sequence of primes. We now

assume this and consider only such primes. Let

ψp = 1
p

∑
0⩽n<p

t̃AS
p (n) unf (φ).

The sequence (∥ψp∥)p is bounded by the maximum of the ranks of the sheaves Ap. Let
c ⩾ 0 be a limiting value, obtained for a subsequence of primes which we omit from the
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notation. Assume that c > 0. By passing to a further subsequence, we may assume that the
rank of Ap is a constant r ⩾ 1. We have geometric isomorphisms

Ap ≃
r⊕
j=1

Lψ(−ap,jx)

for some integers 0 < ap,j < p. There must exist some fixed j such that the norm of

ψ̃p = 1
p

∑
0⩽n<p

e
(
−ap,jn

p

)
unf (φ)

does not converge to 0, as otherwise we would obtain c = 0. We may then assume, again
by passing to a subsequence, that −ap,j/p converges to some θ0 ∈ R/Z. Since ψ̃p does not
converge to 0, we have θ0 ̸= 0 by Proposition 5.4, (2).

Now, by definition (see [14, Th. 2.36 or §6.4]), the assumption on (X, µ, f) means that uf
has no eigenvalue different from 1 (and that 1 is an eigenvalue of multiplicity one). We have
then a contradiction to Proposition 5.4, (1). This means that all limit points of the bounded
sequence (∥ψp∥)p are equal to 0, hence it converges to 0. □

Using linearity, this corollary implies Theorem 1.2, (1) under Assumption (b). It remains
to deal with the pointwise ergodic theorem in this case. (TODO)

Example 5.6. Examples of weakly mixing systems (X, µ, f) are Bernoulli shifts, ergodic
automorphisms of compact abelian groups (e.g., elements of SLd(Z) acting on (R/Z)d which
have no root of unity as an eigenvalue) or the Gauss map in the theory of continued frac-
tions [34].

Another important class arises in homogeneous dynamics. Let G be a locally compact
group, Γ a lattice in G and consider the action of G on X = Γ\G. Denote by µX the G-
invariant probability measure on X. Assume that the action is mixing [14, § 8.1]. Let x ∈ G
be such that xn → +∞ in G as n → +∞. Then defining f(Γy) = Γyx, we obtain a system
(X, µX, f) that is mixing by definition, hence weakly mixing. This applies for instance to
G = SL2(R) and x a non-trivial unipotent element.

6. The topological case

In this section, we prove Theorem 1.3. Thus let X be a compact topological space and
f : X → X a continuous map, such that the topological entropy h(f) is zero (see, e.g, [13, §4]
for an introduction to topological entropy). Let φ : X → C be continuous and x ∈ X. The
goal is to find conditions on a family (Fp) of sheaves modulo p with bounded conductor
which imply that

lim
p→+∞

1
p

∑
0⩽n<p

tp(n)φ(fn(x)) = 0,

with no exceptions or sparseness assumption. The claim of Theorem 1.3 is that this is the
case when the family consists of Kloosterman sheaves or Kummer sheaves associated to real
characters, for which tp(n) = Kl2(n; p) or tp(n) = (n

p
), respectively.

The proof is in fact a straightforward adaptation of the combinatorial argument that
shows that decay of multiple correlations of the Möbius function (what is called the Chowla
conjecture) implies Sarnak’s conjecture, as presented e.g. on Tao’s blog [38], and extends
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to a certain class of sheaves introduced in [23] under the name of “bountiful sheaves” ([23,
Def. 1.2]). For a clearer perspective, we make the following definition:

Definition 6.1. Let (Fp) be a family of sheaves modulo p with bounded conductor. We
say that it has positive monodromy-entropy if for any integers k ⩾ 1 and H ⩾ 1, the number
Np(k,H) of tuples of non-negative integers (h1, . . . , hk, h

′
1, . . . , h

′
k) with hi, hj ⩽ H such that

k⊗
i=1

[+hi]∗Fp ⊗
k⊗
i=1

[+h′i]∗ D(Fp)

contains a geometrically trivial irreducible component satisfies
Np(k,H) ≪ (2k)kHk.

A key point in this definition is that the number Np(k,H) is bounded independently of p,
but it is also important that the exponent of H is no larger than k.

Here is our general statement:

Proposition 6.2. Let (Fp)p be a family of sheaves modulo p with positive monodromy-
entropy and bounded conductor.

Let X be a locally compact topological space and f : X → X a continuous map. Assume
that either X is compact or that X is a metric space and f uniformly continuous.

Assume that the topological entropy of f is zero. Then for all bounded4 continuous func-
tions φ : X → C and all x ∈ X, we have

(6.1) lim
p→+∞

1
p

∑
0⩽n<p

tp(n)φ(fn(x)) = 0.

This implies Theorem 1.3 in view of the following lemma:

Lemma 6.3. (1) If (Fp)p is a family of bountiful sheaves, then it has positive monodromy-
entropy.

(2) If (Fp)p is a family such that Fp is a non-trivial Kummer sheaf for all p, then it has
positive monodromy-entropy.

Proof. In case (1), this follows immediately from [23, Def. 1.2,Th. 1.5] and elementary combi-
natorics, taking into account the definitions of normal and r-normal tuples (see [23, Def. 1.3]).

In case (2), if Fp = Lχ, where χ has order d | p− 1, with d ⩾ 2, then note that
k⊗
i=1

[+hi]∗Fp ⊗
k⊗
i=1

[+h′i]∗ D(Fp) = Lχ(G/H),

where G and H are the polynomials

G =
k∏
i=1

(X + hi), H =
k∏
j=1

(X + h′j).

This contains a geometrically trivial component if and only if G/H is a d-th power of a
rational function. The bound on Np(k,H) is therefore clear (the worse case is when d = 2,
and then the estimate is the same as that for normal tuples, as in [23, Def. 1.5, (1)]). □

4Check
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We now prove Proposition 6.2, following closely [38]. The next statement, which provides
the analogue of decay of multiple correlations of the Möbius function, could also be derived
from the work of Perret-Gentil [32] in most cases of interest.

Proposition 6.4. Let (Fp)p be a family of sheaves modulo p with positive monodromy-
entropy and bounded conductor. Let (αn)n⩾0 be a sequence of complex numbers bounded
by 1.

Fix an integer m ⩾ 1. There exists a absolute constant C > 0 such that, for any ε > 0,
we have

1
p

∣∣∣{0 ⩽ n < p |
∣∣∣ ∑
0⩽i<m

tp(n+ i)αi
∣∣∣ ⩾ εm}

∣∣∣ ⩽ C exp
(
−ε

2m

C

)
+ O(ε−ε2mp−1/2),

where the implied constant depends only on the conductor of (Fp).

Proof. Let k ⩾ 1 be an integer to be chosen later. We have

1
p
|{0 ⩽ n < p |

∣∣∣ ∑
0⩽i<m

tp(n+ i)αi
∣∣∣ ⩾ εm}| ⩽ 1

(εm)2k
1
p

∑
0⩽n<p

∣∣∣ ∑
0⩽i<m

tp(n+ i)αi
∣∣∣2k.

Since |αi| ⩽ 1, if we expand the right-hand side, we obtain the upper bound

1
(εm)2k

∑∑
0⩽a1,...,ak<m
0⩽b1,...,bk<m

1
p

∑
0⩽n<p

tp(n+ a1) · · · tp(n+ ak)tp(n+ b1) · · · tp(n+ bk).

Because of the monodromy-entropy assumption and the Riemann Hypothesis (see [23,
Prop. 1.1]), the inner sum is ≪ p−1/2, with implied constant depending only on k and
c(Fp), for all but ⩽ (2k)kmk tuples (ai, bj).

It follows that
1
p
|{0 ⩽ n < p |

∣∣∣ ∑
0⩽i<m

tp(n+ i)αi
∣∣∣ ⩾ εm}| ⩽ 1

(εm)2k

(
(2k)kmk + O

(m2k
√
p

))
where the implied constant depends only on k and c(Fp). Taking k to be the closest integer
⩽ ε2m/10, the result follows. □

The crucial feature of this estimate is the fact that the first term decays exponentially
with respect to m. We sketch the argument for completeness. We may assume that φ is
real-valued and bounded by 1. Let 0 < ε < 1 be fixed, and let (φε(n)) be a sequence with
values in Zε, such that |φε(n)| ⩽ 1 and |φ(fn(x)) − φε(n)| ⩽ ε for all n ⩾ 0. Fix an integer
m ⩾ 1. Define κε(m) so that the tuples

(6.2) (φε(n), . . . , φε(n+m− 1)) ∈ (Zε ∩ [−1, 1])m

take exp(κε(m)) values as n ranges over the non-negative integers. The fact that the topo-
logical entropy of f is zero (i.e, the sequence (φ(fn(x)))n is deterministic) implies that

lim
m→+∞

κε(m)
m

= 0.
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Let p be a large prime. For any tuple (6.2), say (α0, . . . , αm−1), Proposition 6.4 shows that
we have

1
p

∣∣∣{0 ⩽ n < p |
∣∣∣ ∑
0⩽i<m

tp(n+ i)αi
∣∣∣ ⩾ εm}

∣∣∣ ⩽ C exp
(
−ε

2m

C

)
+ O(ε−ε2mp−1/2),

and hence
1
p

∣∣∣{0 ⩽ n < p |
∣∣∣ ∑
0⩽i<m

tp(n+ i)φε(n+ i)
∣∣∣ ⩾ εm}

∣∣∣
⩽ C exp

(
−ε

2m

C
+ κε(m)

)
+ O(ε−ε2meκε(m)p−1/2).

Since κε(m)/m→ 0, we may take m large enough (depending on ε) so that this implies
1
p

∣∣∣{0 ⩽ n < p |
∣∣∣ ∑
0⩽i<m

tp(n+ i)φε(n+ i)
∣∣∣ ⩾ εm}

∣∣∣ ⩽ ε+ o(1)

as p→ +∞. But then we deduce that∣∣∣1
p

∑
0⩽n<p

1
m

∑
0⩽i<m

tp(n+ i)φε(n+ i)
∣∣∣ ⩽ 2ε+ o(1)

because |φε| ⩽ 1 (write the average as the sum of a term where it is > ε, handled by the
above inequality, and one where it is ⩽ ε, which has a contribution ⩽ ε).

Now notice that for 0 ⩽ i < m, we have
1
p

∑
0⩽n<p

tp(n+ i)φε(n+ i) = 1
p

∑
0⩽n<p

tp(n)φε(n) + O
(m c(Fp)

p

)
with an absolute implied constant, so we get∣∣∣1

p

∑
0⩽n<p

tp(n)φε(n)
∣∣∣ ⩽ 2ε+ o(1),

hence ∣∣∣1
p

∑
0⩽n<p

tp(n)φ(fn(x))
∣∣∣ ⩽ 3ε+ o(1).

The limit (6.1) follows.

7. Mean-ergodic theorems in Lr

This section may be skipped in a first reading. Our goal is to extend the mean-ergodic
theorem to the spaces Lr(X, µ) when r > 2. We will achieve this goal, however, only for
sheaves satisfying an extra condition.

Proposition 7.1. Suppose that (Fp) is a family of sheaves with positive monodromy-entropy.
Let r > 2 be fixed. The endomorphisms

ṽp = 1
p

∑
0⩽n<p

tp(n) unf

of Lr(X, µ) converge to 0 as p→ +∞.
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Proof. Using monotonicity, as in Corollary 4.3, it is enough to prove this when r = 2k for
some integer k ⩾ 2 to deduce it for r ⩽ 2k.

Let φ ∈ L2k(X, µ) and denote ψp = ṽp(φ). We have

∥ψp∥2k
2k = 1

p2k

∑
n1,...,nk
0⩽ni<p

∑
m1,...,mk
0⩽mj<p

tp(n1) · · · tp(nk)tp(m1) · · · tp(mk)

⟨un1
f (φ) · · ·unk

f (φ), um1
f (φ) · · ·umk

f (φ)⟩.
Since uf is isometric, we have

⟨un1
f (φ) · · ·unk

f (φ), um1
f (φ) · · ·umk

f (φ)⟩ = ⟨φ · · ·unk−n1
f (φ), um1−n1

f (φ) · · ·umk−n1
f (φ)⟩.

Hence, we may sum over h = n1 first, obtaining

∥ψp∥2k
2k = 1

p2k

∑
n2,...,nk

∑
m1,...,mk

⟨φ un2
f (φ) · · ·unk

f (φ), um1
f (φ) · · ·umk

f (φ)⟩∑
h

tp(h)tp(h+ n1) · · · tp(h+ nk)tp(h+m1) · · · tp(h+mk),

where the sum is over integers 0 ⩽ h < p such that
0 ⩽ h+ ni < p, 0 ⩽ h+mj < p

for 2 ⩽ i ⩽ k and 1 ⩽ j ⩽ k, respectively. This is a sum over an interval of length < p. The
assumption on Fp then implies that∑

h

tp(h)tp(h+ n1) · · · tp(h+ nk)tp(h+m1) · · · tp(h+mk) ≪ p1/2(log p),

where the implied constant depends only on c(Fp) and k, unless (0, n2, . . . , nk) is a permu-
tation of (m1, . . . ,mk) (see [23, Th. 1.5]). This occurs for ≪ pk−1 tuples (n2, . . . ,mk), and
for these we have a bound ≪ p for the sum, where the implied constant depends only on
c(Fp) and k. Thus we derive

∥ψp∥2k
2k ≪ p−1/2(log p) + p−k−1.

This shows that ∥ṽp∥ → 0 in the space of endomorphisms of L2k(X, µ), and concludes the
proof. □

Remark 7.2. Analyzing the proof of the proposition further, we can reach a stronger conclu-
sion and indeed derive a slightly stronger pointwise statement than the one in Theorem 1.2,
although under assumptions that are reasonable in principle, but difficult to check.

We take the case k = 2 of the proposition, and rewrite the first steps above: for φ ∈
L4(X, µ), we have

∥ψp∥4
4 = 1

p4

∑
b

∑
c,d

⟨φ ubf (φ), ucf (φ)udf (φ)⟩
∑
a

tp(a)tp(a+ b)tp(a+ c)tp(a+ d).

We rewrite the sum in the form

∥ψp∥4
4 = 1

p7/2

∑
c,d

⟨φ ubf (φ), ucf (φ)udf (φ)⟩τc,d(b)
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where
τc,d(b) = 1

√
p

∑
a

tp(a)tp(a+ b)tp(a+ c)tp(a+ d),

hence
∥ψp∥4

4 = 1
p5/2

∑
c,d

⟨wp,c,d(φ), φ̄ ucf (φ)udf (φ)⟩

where
wp,c,d(φ) = 1

p

∑
0⩽b<p

τc,d(b)φ ◦ f b.

Now assume that φ ∈ L6(X, µ), which implies that φ̄ ucf (φ)udf (φ) belongs to L2(X, µ) and
has norm ≪ 1. Assume moreover that the family (Fp) satisfies the condition that for most
(c, d), with ≪ p exceptions, the function τc,d is a trace function of a Fourier sheaf, with
weights ⩽ 0. By Quantitative Sheaf Theory (see [36, Th. 1.1, Cor. 7.4]), the conductor of τc,d
is ≪ 1.

Under these conditions, by Proposition 4.1, we obtain

∥wp,c,d(φ)∥2
2 ≪ p−1/2 log p,

for most (c, d), and hence conclude that

∥ψp∥4
4 ≪ p−1 log p.

If we assume that the family (Fp) is indexed by a set of primes P such that∑
p∈P

log p
p

< +∞,

then this result means that ∑
p

∥ψp∥4
4 < +∞,

or in other words that the non-negative function∑
p

|ψp|4

is integrable on X. This imples that ψp = ṽp(φ) converges almost everywhere to 0, a pointwise
theorem. This is a bit stronger than the pointwise part of Theorem 1.2, but the latter does not
require any extra condition, and hence we do not pursue the verification that the assumption
above holds in reasonable situations.

8. Maximal inequalities in L2

We now consider maximal inequalities in L2, i.e., we endeavor to estimate functions like

Mφ : x 7→ sup
p

∣∣∣1
p

∑
0⩽n<p

tp(n) φ(fn(x))
∣∣∣
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in L2-norm, where we have fixed the dynamical system (X, µ, f) and the family of sheaves
(Fp) with bounded conductor, and with trace functions tp. In fact, we will need to restrict
the supremum to sparse subsets of the primes, and so we use the notation

MP(φ)(x) = sup
p∈P

∣∣∣1
p

∑
0⩽n<p

tp(n) φ(fn(x))
∣∣∣

for any set P of primes. We write

s(P) =
∑
p∈P

(log p)2

p
,

which is finite if and only if P is sparse.

Proposition 8.1. Suppose that (Fp)p is an almost Fourier family (Definition 3.7) with mean
r ⩾ 0. Suppose further that P is sparse. Let φ ∈ L2(X, µ). We have

∥MPφ∥2 ⩽ C2∥φ∥2

for some constant C2 depending only on the conductor of (Fp) and on s(P).

The method that we use is a direct adaptation of that of Bourgain [5, §2, §3] (it is in fact
much simpler). In the remainder of this section, we fix the sparse set P, and we will omit it
from the notation unless it is required for context.

The first step is to transfer the problem to Z. For any bounded function ϖ on Z, we define
M̃(ϖ) : Z → C by

M̃(ϖ)(k) = sup
p∈P

∣∣∣1
p

∑
0⩽n<p

tp(n) ϖ(k + n)
∣∣∣.

Lemma 8.2. Suppose that there exists C3 ⩾ 0, depending only on the conductor of (Fp)
and on s(F), such that

∥M̃ϖ∥2 ⩽ C3∥ϖ∥2

for all ϖ bounded on Z. Then Proposition 8.1 holds with C2 = C3.

Proof. We use the classical method of transfer to Z. It suffices to prove that for all P ⩾ 2
and all φ ∈ L∞(X, µ), we have

∥MPφ∥2 ⩽ 2C3∥φ∥2

where
MP(φ) = sup

p⩽P

∣∣∣1
p

∑
0⩽n<p

tp(n) (φ ◦ fn)
∣∣∣ ∈ L2(X, µ).

Fix such a P and φ bounded and measurable on X. Let λ > 1 be a parameter and Q = λP.
Let x ∈ X. Define φ̃ : Z → C by

φ̃(n) =

{
φ(fn(x)) if 0 ⩽ n < Q
0 otherwise.

Note that for any prime p ⩽ P and n, k such that 0 ⩽ n+ k < Q, we have

φ̃(n+ k) = φ(fn+k(x)) = φ(fn(fk(x)))
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so that for 0 ⩽ k < Q − P, we get

MP(φ)(fk(x)) = sup
p⩽P

∣∣∣1
p

∑
0⩽n<p

tp(n) (φ(fn(fk(x))))
∣∣∣

= sup
p⩽P

∣∣∣1
p

∑
0⩽n<p

tp(n) φ̃(k + n)
∣∣∣ = M̃P(φ̃)(k),(8.1)

say. By assumption, we have ∥M̃P(φ̃)∥2 ⩽ ∥M̃(φ̃)∥2 ⩽ C3∥φ̃∥2. This means that∑
k∈Z

|M̃P(φ̃)(k)|2 ⩽ C2
3

∑
n∈Z

|φ̃(n)|2 = C2
3

∑
0⩽n<Q

|φ(fn(x))|2,

hence by (8.1), we obtain∑
0⩽k<Q−P

|MP(φ)(fk(x))|2 ⩽ C2
3

∑
0⩽n<Q

|φ(fn(x))|2.

This inequality is valid for all x ∈ X. After integrating over X, we get∑
0⩽k<Q−P

∥MP(φ) ◦ fk∥2
2 ⩽ C2

3

∑
0⩽n<Q

∥φ ◦ fn∥2
2.

But µ is f -invariant, and therefore both sums are sums of equal terms, which means that

(λ− 1)P∥MP(φ)∥2 ⩽ C2
3λP∥φ∥2.

The result follows by taking λ→ +∞. □

Proof of Proposition 8.1. We will prove Lemma 8.2. Since (Fp)p is an almost Fourier family
of mean r, we have

tp(n) = r + τp(n)
where τp is the trace function of Fourier sheaves with bounded conductor.

Let ϖ be a function on Z with finite support. We denote by

ϖ̂(θ) =
∑
k∈Z

ϖ(k)e(−kθ),

and
v̂p(θ) = 1

p

∑
0⩽n<p

τp(n)e(nθ)

the Fourier transforms on R/Z of the function ϖ and of the discrete measures corresponding
to the average τp(n). We have

(8.2) 1
p

∑
0⩽n<p

τp(n)ϖ(n+ k) =
∫

R/Z
ϖ̂(θ)v̂p(θ)e(kθ)dθ

for all k ∈ Z.
For any k ∈ Z, we have

sup
p

1
p

∣∣∣ ∑
0⩽n<p

tp(n)ϖ(n+ k)
∣∣∣ ⩽ sup

p

1
p

∣∣∣ ∑
0⩽n<p

ϖ(n+ k)
∣∣∣ +

(∑
p

∣∣∣1
p

∑
0⩽n<p

τp(n)ϖ(n+ k)
∣∣∣2)1/2
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(where p always ranges over P). Hence

∥M̃(ϖ)∥2
2 =

∑
k∈Z

sup
p

1
p

∣∣∣ ∑
0⩽n<p

tp(n)ϖ(n+ k)
∣∣∣2

⩽ 2
∑
k∈Z

sup
p

1
p

∣∣∣ ∑
0⩽n<p

ϖ(n+ k)
∣∣∣2 + 2

∑
k∈Z

∑
p

∣∣∣1
p

∑
0⩽n<p

τp(n)ϖ(n+ k)
∣∣∣2.

The first expression is ⩽ C′
3∥ϖ∥2

2 by the classical maximal ergodic theorem in L2 for functions
on Z (see [14, § 2.6]). By (8.2) and the Plancherel formula, we estimate the second one as
follows:∑

k∈Z

∑
p

∣∣∣1
p

∑
0⩽n<p

τp(n)ϖ(n+ k)
∣∣∣2 =

∑
k∈Z

∑
p

∣∣∣∫
R/Z

ϖ̂(θ)v̂p(θ)e(kθ)dθ
∣∣∣2

=
∑
p

∫
R/Z

|ϖ̂(θ)v̂p(θ)|2dθ ⩽
(∑

p

∥v̂p(θ)∥2
∞

)
∥ϖ∥2

2.

Applying Corollary 3.10, we have∑
p

∥v̂p(θ)∥2
∞ ≪

∑
p∈P

(log p)2

p
= s(P),

where the implied constant depends only on the conductor of (Fp), and the result follows. □

9. Pointwise ergodic theorem

We give in this section a second proof of Theorem 1.2, (2), arguing using a transfer principle
as in the previous section. This is obviously more complicated than our first proof, but it is
interesting that the sparseness condition turns out to be the same in both arguments.

We consider a dynamical system (X, µ, f) and a family of sheaves (Fp) with bounded
conductor as in the previous section, with trace functions tp, defined for p in a sparse set P.
We assume that the family is almost Fourier (Definition 3.7) of mean r ⩾ 0.

Proposition 9.1. Let φ ∈ L2(X, µ). Then
1
p

∑
0⩽n<p

tp(n) φ(fn(x))

converges for µ-almost all x ∈ X. If r = 0, or in other words, if all sheaves Fp are Fourier
sheaves, or if (X, µ, f) is weakly mixing, then the limit is zero.

For the proof, we reduce to the shift by means of an intermediate inequality. For a function
ϖ on Z, we write as before

up(ϖ)(k) = 1
p

∑
0⩽n<p

tp(n)ϖ(n+ k).

Lemma 9.2. Assume that for any infinite subset Q ⊂ P, there exists a constant C4 such
that, for any function ϖ on Z with bounded support, we have∑

ℓ∈Q

∥∥∥ sup
ℓ<p<ℓ+

|up(ϖ) − uℓ+(ϖ)|
∥∥∥2

2
⩽ C4∥ϖ∥2,
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where ℓ+ is the element following ℓ in the subset Q, and p ranges over elements in P. Then
Proposition 9.1 holds.

Proof. This has two steps. First, in the same manner that Lemma 8.2 is proved, the state-
ment, if it holds, implies the corresponding bound∑

ℓ∈Q

∥∥∥ sup
ℓ<p<ℓ+

|up(φ) − uℓ+(φ)|
∥∥∥2

2
⩽ C4∥φ∥2,

for any φ ∈ L2(X, µ), for any infinite subset Q.
Next, one argues by contradiction that this last set of bounds, for a given φ, implies that

up(φ) converges µ-almost everywhere. □

Finally, we prove the auxiliary bounds.

Proposition 9.3. Let Q ⊂ P be an infinite subset. There exists a constant C4 such that,
for any function ϖ on Z with bounded support, we have∑

ℓ∈Q

∥∥∥ sup
ℓ<p<ℓ+

|up(ϖ) − uℓ+(ϖ)|
∥∥∥2

2
⩽ C4∥ϖ∥2.

Proof. Writing tp(n) = r + τp(n), where τp(n) is the trace function of a Fourier sheaf of
bounded conductor, and applying the known behavior from the standard pointwise ergodic
theory to the first term, we are reduced to showing that∑

ℓ∈Q

∥∥∥ sup
ℓ<p<ℓ+

|νp(ϖ) − νℓ+(ϖ)|
∥∥∥2

2
⩽ C5∥ϖ∥2.

for some constant C5, where νp is the averaging operator for the trace function τp. The
left-hand side of the inequality is equal to∑
ℓ∈Q

∑
k∈Z

(
sup

ℓ<p<ℓ+
|νp(ϖ)(k) − νℓ+(ϖ)(k)|

)2
≪

∑
ℓ∈Q

∑
k∈Z

∑
ℓ<p<ℓ+

|νp(ϖ)(k)|2 +
∑
ℓ∈Q

∑
k∈Z

|νℓ+(ϖ)(k)|2

where the implied constant is absolute. The first sum here is larger than the second, and it
is at most ∑

p∈P

∑
k∈Z

|νp(ϖ)(k)|2 =
∑
p∈P

∫
R/Z

|ϖ̂(θ)ν̂p(θ)|2dθ

by the Plancherel formula and (8.2). Using Corollary 3.10, we obtain the desired bound. □

10. Is sparseness necessary?

It is now natural to ask whether the restriction to sparse sets of primes necessary in the
maximal and pointwise ergodic theorems, or not.

The first remark is that, for a classical (even weighted) sequence of ergodic averages

uN(x) = 1
N

∑
0⩽n<N

w(n)φ(fn(x)),

convergence along sparse sequences of N implies convergence of the whole sequence. For
instance, assume that there is convergence to 0 for N growing at least like a geometric
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progression with ratio 1+δ > 0, and assume that w and φ are bounded. For an arbitrary N ⩾
1, pick M ⩾ 1 such that M ⩽ N < (1 + δ)M. We obtain an obvious upper bound

|uN| ⩽ |uM| + CδM
N

⩽ |uM| + δC

for some constant C ⩾ 0, so that
lim sup
N→+∞

|uN| ⩽ δC,

and if this holds for any δ > 0, we obtain uN → 0. Here the key point is that the restriction of
the weight w(n) to a shorter interval is the same as the weight used for the average over that
interval – this property fails for “triangular” averages like those appearing in our situation.

Here is an abstract example which could be a guide to an example where almost everywhere
convergence is not true in our setting.5 Let X be the product over primes ℓ of copies of R/Z,
viewed as a compact topological group and as a probability space with its Haar measure µ.
For ℓ prime, fix an arbitrary measurable subset Aℓ ⊂ R/Z with measure (log ℓ)2/ℓ (in R/Z).

Now, for p prime, let φp be the characteristic function of the set Yp ⊂ X of all (θℓ) ∈ X
such that the p-component θp belongs to Ap. Thus µ(Yp) = (log p)2/p.

We claim that:
(1) the sequence (φp) does not converge almost everywhere;
(2) but, for any sparse set of primes P, the subsequence (φp)p∈P converges almost every-

where to 0.
Indeed, the first assertion results from the independence of the functions φp (in probabilis-

tic terms, they are independent random variables on X) and from the non-trivial direction
of the Borel-Cantelli lemma, since∑

p

µ(Yp) =
∑
p

(log p)2

p
= +∞,

∑
p

µ(X Yp) =
∑
p

(
1 − (log p)2

p

)
= +∞,

which shows that for almost all θ = (θℓ) in X, we have θ ∈ Yp (resp. θ /∈ Yp) for infinitely
many p, so both φp(θ) = 0 and φp(θ) = 1 occur infinitely often.

The second assertion results from the easy direction of the Borel-Cantelli lemma, which
implies that if P is a sparse set of primes, then µ-almost every element θ = (θℓ) ∈ X belongs
only to finitely many Yp for p ∈ P, so that φp(θ) = 0 for all p large enough in P.

The question is now whether such a model situation can arise in ergodic averages with
trace functions (of sheaves with bounded conductor). Roughly speaking, this would amount
to having a dynamical system (X, µ, f) and a function φ on X such that

1
p

∑
0⩽n<p

tp(n)φ(fn(x)) →

{
1 with probability (log p)2/p,

0 with probability 1 − (log p)2/p,

and the respective sets of x where these limits hold should be asymptotically independent
enough to apply the Borel-Cantelli lemma (exact independence is not necessary, e.g., a
sufficient amount of pairwise independence suffices, as in the Erdős-Rényi version of the
Borel-Cantelli theorem, see [17, § 1]). (Moreover, the limits could obviously be different, it

5This is related to the well-known fact that convergence almost everywhere is not convergence with respect
to any topology.
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is enough that the two possibilities be separated enough that both occuring infinitely often
excludes convergence).

It does not seem impossible to have such a configuration, especially since the trace function
is a priori ours to select, with the condition that the conductors remain bounded, which
might make it possible to exploit the frequent rough independence of primes.

Remark 10.1. (1) We would also show that convergence does not hold almost surely if
the ergodic average converges to 1 with probability 1/p (instead of (log p)2/p), which would
allow for convergence over all sets of primes with∑

p∈P

1
p
< +∞.

This configuration is maybe more likely to be possible.
(2) If we have a system where the ergodic averages converge everywhere for all sparse

subsets of the primes, then they converge everywhere. (Indeed, the limit ψ would have to
be independent of the sparse subset, since the union of two sparse sets is sparse, and then
by contraposition, if the sequence was not convergent to ψ, some subsequence would avoid
a fixed neighborhood of ψ, and some further subsequence would be sparse.)

The following is currently the closest example that we know. It doesn’t quite address the
main question, since it involves non-Fourier sheaves and systems with non-trivial Kronecker
factors.

Let X = (R/Z)2 (viewed as column vectors) with the Haar measure µ. Let f(x, y) =
(x + y, y), so that f is the action of an SL2(Z)-matrix, and therefore preserves µ. For
(x, y) ∈ X, we have

fn(x, y) = (x+ ny, y).
Define φ : X → C by φ(x, y) = e(x). The ergodic averages are therefore

1
p

∑
0⩽n<p

tp(n)φ(fn(x, y)) = e(x)
p

sin(πp(y − ap/p))
sin(π(y − ap/p))

e
((p− 1)

2
(y − ap/p)

)
.

Lemma 10.2. There exists a sequence (ap)p of integers such that 0 ⩽ ap < p for all primes p,
with the following property: for almost all θ ∈ R/Z, there exist infinitely many p such that
|θ − ap/p| ⩽ 1/(100p).

Proof. Here is one quick proof using fairly standard (but non-trivial) facts about the distri-
bution of primes. Another more elementary argument is explained in the note [29] for the
simple proof, which also has some more discussion of this somewhat unusual diophantine
approximation statement.

Let A be the product over primes of the sets {0, . . . , p− 1}; it is a probability space with
the product of the uniform probability measures.

Let c = 1/100 (any other positive constant would work). For any prime p and a ∈ A , we
write Ip(a) = [ap/p− c/p, ap/p+ c/p], viewed as random intervals on A . Let x ∈ [0, 1]. We
then have

P(x ∈ Ip) = 1
p

∑
0⩽a<p

|x−a/p|<c/p

1
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and hence P(x ∈ Ip) is either 0 or 1/p, depending on whether there exists an integer a such
that the fractional part of xp is < c, or not.

It is known that if x is irrational, then we have

(10.1)
∑

{xp}<c

1
p

= +∞

(precisely, this follows by summation by parts from the more precise results, first proved
by Vinogradov, which give an asymptotic formula with main term cπ(X) for the number of
primes p ⩽ X satisfying {xp} < c, as X → +∞; see [39, Ch. XI], and note that this result has
been improved and simplified since then). Thus, since the events {x ∈ Ip} are independent
by construction, the Borel–Cantelli Lemma implies

P(x ∈ Ip for infinitely many p) = 1
for any irrational x.

Now by Fubini’s Theorem, we obtain

E(λ(Aa)) = E
(∫ 1

0
1{x∈Ip for infinitely many p} dx

)
=

∫ 1

0
P(x ∈ Ip for infinitely many p)dx = 1,

and since λ(Aa) ⩽ 1, this means that Aa has measure 1 for almost all sequences (ap). □

Now fix a sequence (ap) as given by that lemma and define tp(n) = e(−apn/p). These
are trace functions of Artin-Schreier sheaves with bounded conductor. Let P be any set of
primes with ∑

p∈P

log p
p

< +∞.

Then, for almost all (x, y), we have∣∣∣y − ap
p

∣∣∣ ⩾ log p
p

for all but finitely many p ∈ P, by the easy Borel–Cantelli lemma, hence
1
p

∑
0⩽n<p

tp(n)φ(fn(x, y)) → 0

almost surely along P. (And note that sparseness could be measured with log p replaced by
any function tending to infinity with p.)

On the other hand, for almost all (x, y) ∈ X, the properties of the sequence (ap) prove
that there exists a subsequence of primes for which

1
p

∑
0⩽n<p

tp(n)e(nθ) ≫ 1,

hence for which
1
p

∑
0⩽n<p

tp(n)φ(fn(x, y))
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does not converge to 0 along the primes. Since the result for sparse sequences mean that
this sequence could only converge to 0 almost surely, we conclude that the ergodic averages

1
p

∑
0⩽n<p

tp(n)φ ◦ fn

do not converge almost surely.

11. Questions

The following further natural questions arise from this note:
(1) Are there maximal and pointwise ergodic theorems with trace functions for φ ∈ Lp

where p ̸= 2, especially for p = 1? For p > 1, one can certainly expect to be able
to prove theorems in Lp by adapting the ideas of Bourgain [7]. The case p = 1
might well be the most interesting; we recall here that Buczolich and Mauldin [9]
have proved that there is no maximal or pointwise ergodic theorem in L1 for averages
along the squares (see also LaVictoire’s generalization of this fact [30], which relies
on non-trivial arithmetic information).

(2) Are there similar results for “classical non-conventional averages” with trace func-
tions, such as

1
p

∑
0⩽n<p

tp(n) (φ ◦ fn) (φ ◦ f 2n) · · · (φ ◦ fkn)

(where k is fixed; these occur without weights in Furstenberg’s approach to Sze-
merédi’s Theorem, see [14, Ch. 7]) or

1
p

∑
0⩽n<p

tp(n) φ ◦ fn2
,

and other polynomials in place of n2? The versions without weights are parts of
Bourgain’s celebrated work [6, 7, 5].

The first type of averages is intriguing, if only because trace functions are known
to satisfy a very strong from of the inverse theorem for Gowers norms (by work of
Fouvry, Kowalski and Michel [21]).

(3) Maybe most important: are there interesting applications of such ergodic averages?
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