A Numéraire-Independent Version of the Fundamental Theorems of Asset Pricing

Johannes Ruf

University College London

Joint work (in progress) with Travis Fisher and Sergio Pulido

Financial and Insurance Mathematics, ETH Zurich
February 2015
Executive summary: First FTAP as a bridge between the mathematics and the finance
Executive summary: First FTAP as a bridge between the mathematics and the finance

- martingale measure
- expectation
- valuation operator
- “absence of arbitrage”
- pricing
- NFLVR for allowable strategies
• We aim to widen the bridge to cover cleanly the case when there are multiple financial assets, any of which may potentially lose all value relative to the others.

• To do this we shift away from having a pre-determined numéraire to a more symmetrical point of view where all assets have equal priority.
• We aim to widen the bridge to cover cleanly the case when there are multiple financial assets, any of which may potentially lose all value relative to the others.
• To do this we shift away from having a pre-determined numéraire to a more symmetrical point of view where all assets have equal priority.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

“Quadratic normal volatility” (stopped when hitting zero)

- Calibration usually yields strict local martingale dynamics.
- Let’s assume a complete market and zero interest rate.
- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \) (if we price according to risk-neutral expectations)
- This yields issues with put-call parity, which is a market convention.
- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

“Quadratic normal volatility” (stopped when hitting zero)

- Calibration usually yields strict local martingale dynamics.
- Let’s assume a complete market and zero interest rate.
- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \) (if we price according to risk-neutral expectations)
- This yields issues with put-call parity, which is a market convention.
- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

"Quadratic normal volatility" (stopped when hitting zero)
- Calibration usually yields strict local martingale dynamics.
- Let's assume a complete market and zero interest rate.
- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \) (if we price according to risk-neutral expectations)
- This yields issues with put-call parity, which is a market convention.
- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

“Quadratic normal volatility” (stopped when hitting zero)

- Calibration usually yields strict local martingale dynamics.
- Let’s assume a complete market and zero interest rate.
- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \) (if we price according to risk-neutral expectations)
- This yields issues with put-call parity, which is a market convention.

- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

“Quadratic normal volatility” (stopped when hitting zero)
- Calibration usually yields strict local martingale dynamics.
- Let’s assume a complete market and zero interest rate.
- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \)
 (if we price according to risk-neutral expectations)
- This yields issues with put-call parity, which is a market convention.
- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
Our own motivation

- Popular model in FX:

\[S_{1,2}(t) = S_{1,2}(0) + \int_0^t (aS_{1,2}(u)^2 + bS_{1,2}(u) + c) \, dW(u) \]

“Quadratic normal volatility” (stopped when hitting zero)

- Calibration usually yields strict local martingale dynamics.

- Let’s assume a complete market and zero interest rate.

- Superreplication cost of \(S_{1,2}(T) \) is strictly smaller than \(S_{1,2}(0) \) (if we price according to risk-neutral expectations)

- This yields issues with put-call parity, which is a market convention.

- Possible ways out:
 - Use a different model.
 - Change the concept of pricing operator.
New pricing operators

- **Lewis**: “add correction term” to risk-neutral expectation when pricing calls.
- **Madan & Yor**: Exchange expectations and limits.
- **Cox & Hobson**: Restrict class of admissible strategies.
- **Carr & Fisher & Ruf**:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:

- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
New pricing operators

- **Lewis**: “add correction term” to risk-neutral expectation when pricing calls.
- **Madan & Yor**: Exchange expectations and limits.
- **Cox & Hobson**: Restrict class of admissible strategies.
- **Carr & Fisher & Ruf**:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:

- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
New pricing operators

- Lewis: “add correction term” to risk-neutral expectation when pricing calls.
- Madan & Yor: Exchange expectations and limits.
- Cox & Hobson: Restrict class of admissible strategies.
- Carr & Fisher & Ruf:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:

- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
New pricing operators

- Lewis: “add correction term” to risk-neutral expectation when pricing calls.
- Madan & Yor: Exchange expectations and limits.
- Cox & Hobson: Restrict class of admissible strategies.
- Carr & Fisher & Ruf:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:

- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
New pricing operators

• Lewis: “add correction term” to risk-neutral expectation when pricing calls.
• Madan & Yor: Exchange expectations and limits.
• Cox & Hobson: Restrict class of admissible strategies.
• Carr & Fisher & Ruf:
 • Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 • Then consider the minimal superreplication cost under both measures (the original one and the new one).
 • Yields an explicit formula for the correction term.

Issues:

• Correction term seems non-symmetric in currencies.
• What to do in an incomplete market??
• What to do with more than two currencies??
New pricing operators

- **Lewis**: “add correction term” to risk-neutral expectation when pricing calls.
- **Madan & Yor**: Exchange expectations and limits.
- **Cox & Hobson**: Restrict class of admissible strategies.
- **Carr & Fisher & Ruf**:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:
- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
New pricing operators

- Lewis: “add correction term” to risk-neutral expectation when pricing calls.
- Madan & Yor: Exchange expectations and limits.
- Cox & Hobson: Restrict class of admissible strategies.
- Carr & Fisher & Ruf:
 - Note that a change of numéraire via strict local martingale $S_{1,2}$ yields non-equivalent measure.
 - Then consider the minimal superreplication cost under both measures (the original one and the new one).
 - Yields an explicit formula for the correction term.

Issues:

- Correction term seems non-symmetric in currencies.
- What to do in an incomplete market??
- What to do with more than two currencies??
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...
Related literature — an incomplete list

- Herdegen (2014)
- Tehranchi (2014): Non-existence of numéraire
- Kardaras (2014): Exchange options
- Carr & Fisher & Ruf (2014)
- Schönbucher’s survival measure (credit risk)
- Yan (1998): Basket numéraire
- Delbaen & Schachermayer (199x): FTAP, changes of numéraires, ...
- ...

Outline

1. Underlying objects: scenarios, price processes, ...
2. Valuation operator: maps future random (scenario-dependent) payoffs to present deterministic prices
3. Notions of arbitrage
4. Bringing everything together: Fundamental Theorems of Asset Pricing
5. Aggregation and disaggregation in different currencies

Warning: Work in progress ...
Outline

1. Underlying objects: scenarios, price processes, ...
2. Valuation operator: maps future random (scenario-dependent) payoffs to present deterministic prices
3. Notions of arbitrage
4. Bringing everything together: Fundamental Theorems of Asset Pricing
5. Aggregation and disaggregation in different currencies

Warning: Work in progress ...
Relative prices are modelled by an exchange matrix

- \(d \): number of currencies
- \(s_{i,j} \): units of currency \(i \) per unit of currency \(j \)
- values 0 and \(\infty \) for \(s_{i,j} \) are allowed!
- **Exchange matrix**: A \(d \times d \)-dimensional matrix \(s = (s_{i,j})_{i,j} \) taking values in \([0, \infty]^{d \times d} \) such that
 1. \(s_{i,i} = 1 \)
 2. \(s_{i,j} s_{j,k} = s_{i,k} \), whenever the product is defined.
- Note: there exists always a *strongest* currency \(i^* \) with \(\sum_j s_{i^*,j}(t) \leq d \).
Relative prices are modelled by an exchange matrix

- d: number of currencies
- $s_{i,j}$: units of currency i per unit of currency j
- values 0 and ∞ for $s_{i,j}$ are allowed!
- Exchange matrix: A $d \times d$-dimensional matrix $s = (s_{i,j})_{i,j}$ taking values in $[0, \infty]^{d \times d}$ such that
 1. $s_{i,i} = 1$
 2. $s_{i,j} s_{j,k} = s_{i,k}$, whenever the product is defined.
- Note: there exists always a strongest currency i^* with $\sum_j s_{i^*,j}(t) \leq d$.
Relative prices are modelled by an exchange matrix

- \(d \): number of currencies
- \(s_{i,j} \): units of currency \(i \) per unit of currency \(j \)
- values 0 and \(\infty \) for \(s_{i,j} \) are allowed!
- Exchange matrix: A \(d \times d \)-dimensional matrix \(s = (s_{i,j})_{i,j} \) taking values in \([0, \infty]\) such that
 1. \(s_{i,i} = 1 \)
 2. \(s_{i,j} s_{j,k} = s_{i,k} \), whenever the product is defined.
- Note: there exists always a strongest currency \(i^* \) with \(\sum_j s_{i^*,j}(t) \leq d \).
Relative prices are modelled by an exchange matrix

- \(d \): number of currencies
- \(s_{i,j} \): units of currency \(i \) per unit of currency \(j \)
- values 0 and \(\infty \) for \(s_{i,j} \) are allowed!
- Exchange matrix: A \(d \times d \)-dimensional matrix \(s = (s_{i,j})_{i,j} \) taking values in \([0, \infty]^{d \times d}\) such that
 1. \(s_{i,i} = 1 \)
 2. \(s_{i,j}s_{j,k} = s_{i,k} \), whenever the product is defined.
- Note: there exists always a strongest currency \(i^* \) with \(\sum_j s_{i^*,j}(t) \leq d \).
Underlying objects

- Filtered space $(\Omega, \mathcal{F}, \mathbb{F})$: representing possible scenarios and a flow of information.
- $S_{i,j}(t) \in [0, \infty]$ denotes the price of the j:th currency in terms of the i:th currency.
- $S(\cdot) = (S_{i,j}(\cdot))_{i,j}$ is an \mathbb{F}–progressive, càdlàg process such that $S(t)$ is a $d \times d$ exchange matrix:
 \[S_{i,j}(t)S_{j,k}(t) = S_{i,k}(t) \quad \text{(whenever defined)} \]
- Define: $\mathcal{A}(t) = \{ i : \sum_j S_{i,j}(t) < \infty \} \neq \emptyset$.

Underlying objects

- Filtered space \((\Omega, \mathcal{F}, \mathbb{F})\): representing possible scenarios and a flow of information.
- \(S_{i,j}(t) \in [0, \infty]\) denotes the price of the \(j\):th currency in terms of the \(i\):th currency.
- \(S(\cdot) = (S_{i,j}(\cdot))_{i,j}\) is an \(\mathbb{F}\)-progressive, càdlàg process such that \(S(t)\) is a \(d \times d\) exchange matrix:
 \[
 S_{i,j}(t)S_{j,k}(t) = S_{i,k}(t) \quad \text{(whenever defined)}
 \]
- Define: \(\mathcal{A}(t) = \{i : \sum_j S_{i,j}(t) < \infty\} \neq \emptyset\).
Underlying objects

- Filtered space \((\Omega, \mathcal{F}, \mathbb{F})\): representing possible scenarios and a flow of information.
- \(S_{i,j}(t) \in [0, \infty]\) denotes the price of the \(j\):th currency in terms of the \(i\):th currency.
- \(S(\cdot) = (S_{i,j}(\cdot))_{i,j}\) is an \(\mathbb{F}\)-progressive, càdlàg process such that \(S(t)\) is a \(d \times d\) exchange matrix:
 \[
 S_{i,j}(t)S_{j,k}(t) = S_{i,k}(t) \quad \text{(whenever defined)}
 \]
- Define: \(\mathcal{A}(t) = \{i : \sum_j S_{i,j}(t) < \infty\} \neq \emptyset\).
Value vector

- A value vector $\nu = (\nu_i)_i$ (with respect to $S(t)$) encodes the price of an asset in terms of the d currencies.
- The i:th component describes the price of an asset in terms of the i:th currency.
- ν satisfies consistency condition:
 $$S_{i,j}(t)\nu_j = \nu_i \quad (\text{whenever defined})$$

$$\mathcal{U}^t = \left\{ C : \mathcal{F}(t)-\text{measurable value vector s.t.} \right\}$$
 $$\exists K > 0 \text{ with } C_i \geq -K \sum_j S_{i,j} \text{ for all } i$$

$$\mathcal{D}^t = \mathcal{U}^t \cap (-\mathcal{U}^t).$$
Value vector

- A value vector \(v = (v_i) \) (with respect to \(S(t) \)) encodes the price of an asset in terms of the \(d \) currencies.
- The \(i \):th component describes the price of an asset in terms of the \(i \):th currency.
- \(v \) satisfies consistency condition:
 \[
 S_{i,j}(t)v_j = v_i \quad \text{(whenever defined)}
 \]

\[
\mathcal{U}^t = \left\{ C : \mathcal{F}(t)\text{–measurable value vector s.t.} \right. \\
\exists K > 0 \text{ with } C_i \geq -K \sum_j S_{i,j} \text{ for all } i \left. \right\}.
\]
\[
\mathcal{D}^t = \mathcal{U}^t \cap (-\mathcal{U}^t).
\]
Value vector

- A value vector \(v = (v_i)_i \) (with respect to \(S(t) \)) encodes the price of an asset in terms of the \(d \) currencies.
- The \(i \):th component describes the price of an asset in terms of the \(i \):th currency.
- \(v \) satisfies consistency condition:
 \[
 S_{i,j}(t)v_j = v_i \quad \text{(whenever defined)}
 \]

\[
\mathcal{U}^t = \left\{ C : \mathcal{F}(t)\text{–measurable value vector s.t.} \right. \\
\left. \exists K > 0 \text{ with } C_i \geq -K \sum_j S_{i,j} \text{ for all } i \right\}.
\]

\[
\mathcal{D}^t = \mathcal{U}^t \cap (-\mathcal{U}^t).
\]
Valuation operator

- A *valuation operator* relates future random prices to present deterministic prices.

- Concept goes back to Harrison & Pliska (1981); see also Biagini & Cont (2006) and literature on risk measures.

We say that a family of operators $\mathbb{V} = (\mathbb{V}^{r,t})_{0 \leq r \leq t \leq T}$, with

$$\mathbb{V}^{r,t} : \mathcal{D}^{t} \rightarrow \mathcal{D}^{r},$$

is a valuation operator with respect to S if it satisfies:

1. Positivity
2. Linearity
3. Continuity from below
4. Time consistency
5. Martingale property
6. Redundancy
Valuation operator

- A *valuation operator* relates future random prices to present deterministic prices.
- Concept goes back to Harrison & Pliska (1981); see also Biagini & Cont (2006) and literature on risk measures.

We say that a family of operators $\mathcal{V} = (\mathcal{V}^{r,t})_{0 \leq r \leq t \leq T}$, with

$$\mathcal{V}^{r,t} : \mathcal{D}^t \to \mathcal{D}^r,$$

is a valuation operator with respect to S if it satisfies:

1. Positivity
2. Linearity
3. Continuity from below
4. Time consistency
5. Martingale property
6. Redundancy
Valuation operator — the conditions

1. (Positivity) If $C \in D^{T}$ and $C \geq 0$ then $V^{0,T}(C) \geq 0$.
2. (Linearity) If $H \in L^{\infty,r}$, and $C, C' \in D^{t}$ then
 \[V^{r,t}(H1_{\{H \neq 0\}}C + C') = H1_{\{H \neq 0\}}V^{r,t}(C) + V^{r,t}(C'). \]
3. (Continuity from below) If $(C_{n})_{n \in \mathbb{N}} \subset D^{T}$ is a nondecreasing sequence of nonnegative value vectors converging to $C \in D^{T}$, then $V^{0,t}(C_{n})$ converges to $V^{0,t}(C)$.
4. (Time consistency) For $C \in D^{T}$,
 \[V^{r,t}(V^{t,T}(C)) = V^{r,T}(C). \]
5. (Martingale property) $V^{t,T}(S_{.,i}(T)) = S_{.,i}(t)1_{\{i \in \mathcal{A}(t)\}}$.
6. (Redundancy) For $C \in D^{t}$ with $C_{i} = 0$ for some i, $V^{r,t}(C) = 0$.
Valuation operator — the conditions

1. (Positivity) If \(C \in \mathcal{D}^T \) and \(C \geq 0 \) then \(\mathbb{V}^{0,T}(C) \geq 0 \).

2. (Linearity) If \(H \in \mathcal{L}^{\infty,r} \), and \(C, C' \in \mathcal{D}^t \) then

\[
\mathbb{V}^r,t(H1_{\{H \neq 0\}}C + C') = H1_{\{H \neq 0\}}\mathbb{V}^r,t(C) + \mathbb{V}^r,t(C').
\]

3. (Continuity from below) If \((C_n)_{n \in \mathbb{N}} \subset \mathcal{D}^T \) is a nondecreasing sequence of nonnegative value vectors converging to \(C \in \mathcal{D}^T \), then \(\mathbb{V}^{0,t}(C_n) \) converges to \(\mathbb{V}^{0,t}(C) \).

4. (Time consistency) For \(C \in \mathcal{D}^T \),

\[
\mathbb{V}^r,t(\mathbb{V}^{t,T}(C)) = \mathbb{V}^r,T(C).
\]

5. (Martingale property) \(\mathbb{V}^{t,T}(S_{.,i}(T)) = S_{.,i}(t)1_{\{i \in \mathbb{A}(t)\}} \).

6. (Redundancy) For \(C \in \mathcal{D}^t \) with \(C_i = 0 \) for some \(i \),

\[
\mathbb{V}^r,t(C) = 0.
\]
Valuation operator — the conditions

1. (Positivity) If $C \in \mathcal{D}^T$ and $C \geq 0$ then $\mathbb{V}^{0,T}(C) \geq 0$.
2. (Linearity) If $H \in \mathcal{L}^{\infty,r}$, and $C, C' \in \mathcal{D}^t$ then

 $$\mathbb{V}^{r,t}(H1_{\{H \neq 0\}} C + C') = H1_{\{H \neq 0\}} \mathbb{V}^{r,t}(C) + \mathbb{V}^{r,t}(C').$$

3. (Continuity from below) If $(C_n)_{n \in \mathbb{N}} \subset \mathcal{D}^T$ is a nondecreasing sequence of nonnegative value vectors converging to $C \in \mathcal{D}^T$, then $\mathbb{V}^{0,t}(C_n)$ converges to $\mathbb{V}^{0,t}(C)$.
4. (Time consistency) For $C \in \mathcal{D}^T$,

 $$\mathbb{V}^{r,t}(\mathbb{V}^{t,T}(C)) = \mathbb{V}^{r,T}(C).$$

5. (Martingale property) $\mathbb{V}^{t,T}(S_{\cdot, i(T)}) = S_{\cdot, i(t)}1_{\{i \in \mathcal{A}(t)\}}$.
6. (Redundancy) For $C \in \mathcal{D}^t$ with $C_i = 0$ for some i, $\mathbb{V}^{r,t}(C) = 0$.

Valuation operator — the conditions

1. (Positivity) If $C \in \mathcal{D}^T$ and $C \geq 0$ then $\mathbb{V}^{0,T}(C) \geq 0$.
2. (Linearity) If $H \in \mathcal{L}^{\infty,r}$, and $C, C' \in \mathcal{D}^t$ then
 \[\mathbb{V}^{r,t}(H 1_{\{H \neq 0\}} C + C') = H 1_{\{H \neq 0\}} \mathbb{V}^{r,t}(C) + \mathbb{V}^{r,t}(C'). \]

3. (Continuity from below) If $(C_n)_{n \in \mathbb{N}} \subset \mathcal{D}^T$ is a nondecreasing sequence of nonnegative value vectors converging to $C \in \mathcal{D}^T$, then $\mathbb{V}^{0,t}(C_n)$ converges to $\mathbb{V}^{0,t}(C)$.
4. (Time consistency) For $C \in \mathcal{D}^T$,
 \[\mathbb{V}^{r,t}(\mathbb{V}^{t,T}(C)) = \mathbb{V}^{r,T}(C). \]

5. (Martingale property) $\mathbb{V}^{t,T}(S_.i(t)) = S_.i(t) 1_{\{i \in \mathfrak{A}(t)\}}$.
6. (Redundancy) For $C \in \mathcal{D}^t$ with $C_i = 0$ for some i, $\mathbb{V}^{r,t}(C) = 0$.
Valuation operator — the conditions

1. (Positivity) If $C \in \mathcal{D}^T$ and $C \geq 0$ then $\mathbb{V}^{0,T}(C) \geq 0$.
2. (Linearity) If $H \in \mathcal{L}_{\infty,r}$, and $C, C' \in \mathcal{D}^t$ then
 \[
 \mathbb{V}^{r,t}(H 1_{\{H \neq 0\}} C + C') = H 1_{\{H \neq 0\}} \mathbb{V}^{r,t}(C) + \mathbb{V}^{r,t}(C').
 \]
3. (Continuity from below) If $(C_n)_{n \in \mathbb{N}} \subset \mathcal{D}^T$ is a nondecreasing sequence of nonnegative value vectors converging to $C \in \mathcal{D}^T$, then $\mathbb{V}^{0,t}(C_n)$ converges to $\mathbb{V}^{0,t}(C)$.
4. (Time consistency) For $C \in \mathcal{D}^T$,
 \[
 \mathbb{V}^{r,t}(\mathbb{V}^{t,T}(C)) = \mathbb{V}^{r,T}(C).
 \]
5. (Martingale property) $\mathbb{V}^{t,T}(S_{.,i(T)}) = S_{.,i(t)} 1_{\{i \in \mathbb{A}(t)\}}$.
6. (Redundancy) For $C \in \mathcal{D}^t$ with $C_i = 0$ for some i, $\mathbb{V}^{r,t}(C) = 0$.
Introduction of a probability measure

- Let \mathbb{P} be a probability measure on (Ω, \mathcal{F}).
- We say \mathbb{P} satisfies (PSmg) if there exists $(A_i)_i$ with $\bigcup_i A_i = \Omega$ such that for each i, $\mathbb{P}(A_i) > 0$ and S_i is a \mathbb{P}_i–semimartingale, where $\mathbb{P}_i(\cdot) = \mathbb{P}(\cdot | A_i)$ for each i.
Trading strategies and wealth processes

- Let \mathbb{P} satisfy (PSmg).
- Let h denote a predictable process. Then V^h is a value vector process with $V^h_i(t) = \sum_j h_j S_{i,j}(t)$.
- h is called a \mathbb{P}–trading strategy if $h \in L(S_i, \mathbb{P}_i)$ and the self-financing condition holds:
 $$V^h_i - V^h_i(0) = h \cdot \mathbb{P}_i S_i.$$
- h is \mathbb{P}–allowable if there exists $\varepsilon > 0$ such that $V_i(t) \geq -\varepsilon \sum_j S_{i,j}(t)$.
Trading strategies and wealth processes

- Let \mathbb{P} satisfy (PSmg).
- Let h denote a predictable process. Then V^h is a value vector process with $V^h_i(t) = \sum_j h_j S_{i,j}(t)$.
- h is called a \mathbb{P}–trading strategy if $h \in L(S_i, \mathbb{P}_i)$ and the self-financing condition holds:
 $$V^h_i - V^h_i(0) = h \cdot \mathbb{P}_i S_i.$$
- h is \mathbb{P}–allowable if there exists $\varepsilon > 0$ such that $V_i(t) \geq -\varepsilon \sum_j S_{i,j}(t)$.
Trading strategies and wealth processes

- Let \mathbb{P} satisfy (PSmg).
- Let h denote a predictable process. Then V^h is a value vector process with $V^h_i(t) = \sum_j h_j S_{i,j}(t)$.
- h is called a \mathbb{P}–trading strategy if $h \in L(S_i, \mathbb{P}_i)$ and the self-financing condition holds:

$$V^h_i(t) - V^h_i(0) = h \cdot \mathbb{P}_i S_i.$$

- h is \mathbb{P}–allowable if there exists $\varepsilon > 0$ such that $V_i(t) \geq -\varepsilon \sum_j S_{i,j}(t)$.
No-arbitrage condition

Assume that \(\mathbb{P} \) satisfies (PSmg). We say that \(S \) satisfies *NFLVR for \(\mathbb{P} \)-allowable strategies* if for any sequence of \(\mathbb{P} \)-allowable strategies \((h^n) \) with \(V^{h^n}(0) \leq 0 \) and such that there exist \((\xi^n) \in L^\infty(\mathbb{R}, \mathbb{P}) \) satisfying

\[
V_i^{h^n}(T) \geq \xi^n \sum_j S_i.j(T),
\]

the following conclusion holds:

\[
\xi = \lim_{n \to \infty} \xi^n \text{ exists and } \mathbb{P}(\xi \geq 0) = 1 \implies \mathbb{P}(\xi = 0) = 1.
\]

Here, the limit is taken in \(L^\infty(\mathbb{R}, \mathbb{P}) \).
No-arbitrage condition

Assume that \mathbb{P} satisfies (PSmg). We say that S satisfies NFLVR for \mathbb{P}–allowable strategies if for any sequence of \mathbb{P}–allowable strategies (h^n) with $V^{h^n}(0) \leq 0$ and such that there exist $(\xi^n) \in L^\infty(\mathbb{R}, \mathbb{P})$ satisfying

$$V_i^{h^n}(T) \geq \xi^n \sum_j S_{i,j}(T),$$

the following conclusion holds:

$$\xi = \lim_{n \uparrow \infty} \xi^n \text{ exists and } \mathbb{P}(\xi \geq 0) = 1 \implies \mathbb{P}(\xi = 0) = 1.$$

Here, the limit is taken in $L^\infty(\mathbb{R}, \mathbb{P})$.
First fundamental theorem

Write $\mathbb{P} \sim \mathbb{V}$ if for a nonnegative $C = (C_i); \in \mathcal{D}^T$, we have $\mathbb{V}^{0,T}(C) = 0$ if and only if $\sum_i 1\{c_i=0\} > 0 \mathbb{P}$–almost surely.

1. If \mathbb{P} satisfies (PSmg) and S satisfies NFLVR for \mathbb{P}–allowable strategies then there exists a valuation operator $\mathbb{V} \sim \mathbb{P}$.

2. If there exists a valuation operator \mathbb{V} then there exists a probability measure $\mathbb{P} \sim \mathbb{V}$ that satisfies (PSmg) and such that S satisfies NFLVR for \mathbb{P}–allowable strategies.
First fundamental theorem

Write $\mathbb{P} \sim \mathbb{V}$ if for a nonnegative $C = (C_i); \in \mathcal{D}^T$, we have $\mathbb{V}^{0,T}(C) = 0$ if and only if $\sum_i 1_{\{C_i=0\}} > 0 \, \mathbb{P}$–almost surely.

1. If \mathbb{P} satisfies (PSmg) and S satisfies NFLVR for \mathbb{P}–allowable strategies then there exists a valuation operator $\mathbb{V} \sim \mathbb{P}$.

2. If there exists a valuation operator \mathbb{V} then there exists a probability measure $\mathbb{P} \sim \mathbb{V}$ that satisfies (PSmg) and such that S satisfies NFLVR for \mathbb{P}–allowable strategies.
First fundamental theorem

Write $\mathbb{P} \sim \mathbb{V}$ if for a nonnegative $C = (C_i)_i \in D^T$, we have $\mathbb{V}^{0,T}(C) = 0$ if and only if $\sum_i 1\{c_i=0\} > 0 \, \mathbb{P}$–almost surely.

1. If \mathbb{P} satisfies (PSmg) and S satisfies NFLVR for \mathbb{P}–allowable strategies then there exists a valuation operator $\mathbb{V} \sim \mathbb{P}$.

2. If there exists a valuation operator \mathbb{V} then there exists a probability measure $\mathbb{P} \sim \mathbb{V}$ that satisfies (PSmg) and such that S satisfies NFLVR for \mathbb{P}–allowable strategies.
Second fundamental theorem

Suppose that there exists a valuation operator \tilde{V} with respect to S. Then, the market is complete if and only if \tilde{V} is the unique valuation operator equivalent to \tilde{V}.

Moreover, if a valuation operator exists, then

$$\inf\{\tilde{V}^h(0) : h \text{ super-replicates } C\}$$

$$= \sup\{\tilde{V}^0, T(C) : \tilde{V} \sim \tilde{V} \text{ is a valuation operator}\},$$

Furthermore, the infimum is obtained if the above expression is finite.
Second fundamental theorem

Suppose that there exists a valuation operator \mathcal{V} with respect to S. Then, the market is complete if and only if \mathcal{V} is the unique valuation operator equivalent to \mathcal{V}.

Moreover, if a valuation operator exists, then

$$\inf\{V^h(0) : h \text{ super-replicates } C\}$$

$$= \sup\{\tilde{V}^0, T(C) : \tilde{V} \sim \mathcal{V} \text{ is a valuation operator}\},$$

Furthermore, the infimum is obtained if the above expression is finite.
Disaggregation and aggregation

A family \((\mathbb{Q}_i)_i\) of probability measures such that \(S_i\) a \(\mathbb{Q}_i\)–supermartingale is called consistent if the following change-of-numéraire formula holds

\[
S_{j,i}(r)\mathbb{E}_{r,i}^\mathbb{Q}_i [S_{i,j}(t)X] = \mathbb{E}_{r}^{\mathbb{Q}_j} [X1_{\{S_{j,i}(t) > 0\}}],
\]

where \(X\) is a bounded, nonnegative random variable.

Given a valuation operator \(\mathbb{V}\) there exist a consistent family of supermartingale measures \((\mathbb{Q}_i)_i\) such that

\[
\mathbb{V}^{r,t}_{j,i}(C) = \sum_i S_{j,i}(r)\mathbb{E}_{r}^\mathbb{Q}_i \left[\frac{C_i}{\mathbb{A}(t)} \right]
\]

(1)

for all \(r \leq t, j \in \mathbb{A}(r), C \in \mathbb{D}^t\).

Conversely, given a consistent family of supermartingale measures \((\mathbb{Q}_i)_i\), (1) defines a valuation operator \(\mathbb{V} \sim \sum_i \mathbb{Q}_i\).
Disaggregation and aggregation

A family \((\mathbb{Q}_i)_i\) of probability measures such that \(S_i\) a \(\mathbb{Q}_i\)–supermartingale is called consistent if the following change-of-numéraire formula holds

\[S_{j,i}(r) \mathbb{E}_{\mathbb{Q}_i}^r [S_{i,j}(t)X] = \mathbb{E}_{\mathbb{Q}_j}^r [X1\{S_{j,i}(t)>0\}], \]

where \(X\) is a bounded, nonnegative random variable.

Given a valuation operator \(\mathbb{V}\) there exist a consistent family of supermartingale measures \((\mathbb{Q}_i)_i\) such that

\[\mathbb{V}_{r,t}^j (C) = \sum_i S_{j,i}(r) \mathbb{E}_{\mathbb{Q}_i}^r \left[\frac{C_i}{\mathcal{A}(t)} \right] \quad (1) \]

for all \(r \leq t, j \in \mathcal{A}(r), C \in \mathcal{D}^t\).

Conversely, given a consistent family of supermartingale measures \((\mathbb{Q}_i)_i\), (1) defines a valuation operator \(\mathbb{V} \sim \sum_i \mathbb{Q}_i\).
Disaggregation and aggregation

A family \((\mathbb{Q}_i)\) of probability measures such that \(S_i\) a \(\mathbb{Q}_i\)–supermartingale is called *consistent* if the following change-of-numéraire formula holds

\[
S_{j,i}(r)\mathbb{E}_{\mathbb{Q}_i}^{\mathbb{Q}_i}[S_{i,j}(t)X] = \mathbb{E}_{\mathbb{Q}_j}^{\mathbb{Q}_j}[X1\{S_{j,i}(t)>0\}],
\]

where \(X\) is a bounded, nonnegative random variable.

Given a valuation operator \(\mathbb{V}\) there exist a consistent family of supermartingale measures \((\mathbb{Q}_i)\) such that

\[
\mathbb{V}_{j,i}^{r,t}(C) = \sum_i S_{j,i}(r)\mathbb{E}_{\mathbb{Q}_i}^{\mathbb{Q}_i}\left[\frac{C_i}{\mathcal{A}(t)}\right]
\]

for all \(r \leq t, j \in \mathcal{A}(r), C \in \mathcal{D}_t\).

Conversely, given a consistent family of supermartingale measures \((\mathbb{Q}_i)\), (1) defines a valuation operator \(\mathbb{V} \sim \sum_i \mathbb{Q}_i\).
The appearance of strict local martingales

Consistent family \((\mathbb{Q}_i)_{i};\)

\[
S_{j,i}(r)\mathbb{E}^{\mathbb{Q}_i}_{r}[S_{i,j}(t)X] = \mathbb{E}^{\mathbb{Q}_j}_{r}[X1\{S_{j,i}(t)>0\}],
\]

- \(S_{i,j}\) is a \(\mathbb{Q}_i\)–martingale if and only if \(\mathbb{Q}_j(S_{j,i}(T) = 0) = 0\).
- \(S_{i,j}\) is a \(\mathbb{Q}_i\)–local martingale if and only if \(S_{j,i}(T)\) does not jump to zero under \(\mathbb{Q}_j\).
Consistent family \((\mathbb{Q}_i)_i\);

\[
S_{j,i}(r) \mathbb{E}_r^{\mathbb{Q}_i}[S_{i,j}(t)X] = \mathbb{E}_r^{\mathbb{Q}_j}[X 1\{S_{j,i}(t) > 0\}],
\]

- \(S_{i,j}\) is a \(\mathbb{Q}_i\)-martingale if and only if \(\mathbb{Q}_j(S_{j,i}(T) = 0) = 0\).
- \(S_{i,j}\) is a \(\mathbb{Q}_i\)-local martingale if and only if \(S_{j,i}(T)\) does not jump to zero under \(\mathbb{Q}_j\).
The case of two assets

d = 2, with \(C = (C_1, C_2)^T \)
E.g., \(C = ((S_{1,2}(T) - K)^+, (1 - KS_{2,1}(T))^+)^T \)

\[
\nabla_j^{r,t}(C) = S_{j,1}(r)E_{\eta_1}^{Q_1}\left[\frac{C_1}{\mathcal{A}(t)}\right] + S_{j,2}(r)E_{\eta_2}^{Q_2}\left[\frac{C_2}{\mathcal{A}(t)}\right] \\
= S_{j,1}(r)E_{\eta_1}^{Q_1}[C_1] + S_{j,2}(r)E_{\eta_2}^{Q_2}[C_2 \mathbf{1}_{\{s_{1,2}(t)=\infty\}}]
\]
The case of two assets

d = 2, with \(C = (C_1, C_2)^T \)
E.g., \(C = ((S_{1,2}(T) - K)^+, (1 - KS_{2,1}(T))^+)^T \)

\[
\mathbb{V}^{r,t}_j(C) = S_{j,1}(r)\mathbb{E}_r^{Q_1} \left[\frac{C_1}{\mathcal{L}(t)} \right] + S_{j,2}(r)\mathbb{E}_r^{Q_2} \left[\frac{C_2}{\mathcal{L}(t)} \right] \\
= S_{j,1}(r)\mathbb{E}_r^{Q_1}[C_1] + S_{j,2}(r)\mathbb{E}_r^{Q_2}[C_21\{s_{1,2}(t)=\infty\}]
\]
The concept of “no obvious devaluations”

We say that a probability measure \mathbb{P} on $(\Omega, \mathcal{F}(T))$ satisfies “No Obvious Devaluations” (NOD) if

$$\mathbb{P}(i \in \mathcal{A}(T) | \mathcal{F}(\tau)) > 0 \text{ on } \{\tau < \infty\} \cap \{i \in \mathcal{A}(\tau)\}$$

for all i and stopping times τ.
Aggregation without consistency

Let \((Q_i)_i\) be so that \(S_i\) is a \(Q_i\)-local martingale. Then there exists a martingale valuation operator \(\mathbb{V} \sim (\sum_i Q_i)\) if one of the following two conditions is satisfied:

1. \(S_i\) is a \(Q_i\)-martingale.

2. The following three conditions hold:
 2.1 \(\sum_i Q_i\) satisfies (NOD).
 2.2 \(Q_k|_{\mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\}} \sim \left(\sum_i Q_i\right)|_{\mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\}}\).
 2.3 There exist \(\epsilon > 0\), \(N \in \mathbb{N}\) and predictable times \(T_1 \leq T_2 \leq \cdots \leq T_N\) such that

\[
\left\{(t, \omega) : \sum_j S_{k,j} \text{ jumps to } \infty \right\} \cap \left\{(t, \omega) : \sum_j S_{k,j} \leq d + \epsilon \right\} \subset \bigcup_{n=1}^{N} [T_n].
\]
Aggregation without consistency

Let \((\mathbb{Q}_i)_i\) be so that \(S_i\) is a \(\mathbb{Q}_i\)-local martingale. Then there exists a martingale valuation operator \(V \sim (\sum_i \mathbb{Q}_i)\) if one of the following two conditions is satisfied:

1. \(S_i\) is a \(\mathbb{Q}_i\)-martingale.

2. The following three conditions hold:
 2.1 \(\sum_i \mathbb{Q}_i\) satisfies (NOD).
 2.2 \(\mathbb{Q}_k \mid \mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\} \sim \left(\sum_i \mathbb{Q}_i\right) \mid \mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\}\).
 2.3 There exist \(\epsilon > 0\), \(N \in \mathbb{N}\) and predictable times \(T_1 \leq T_2 \leq \cdots \leq T_N\) such that

\[
\left\{ (t, \omega) : \sum_j S_{k,j} \text{ jumps to } \infty \right\} \cap \left\{ (t, \omega) : \sum_j S_{k,j} \leq d + \epsilon \right\} \subset \bigcup_{n=1}^N [T_n].
\]
Aggregation without consistency

Let \((\mathbb{Q}_i)_i\) be so that \(S_i\) is a \(\mathbb{Q}_i\)-local martingale. Then there exists a martingale valuation operator \(\mathbb{V} \sim (\sum_i \mathbb{Q}_i)\) if one of the following two conditions is satisfied:

1. \(S_i\) is a \(\mathbb{Q}_i\)-martingale.

2. The following three conditions hold:
 2.1 \(\sum_i \mathbb{Q}_i\) satisfies (NOD).
 2.2 \(\mathbb{Q}_k | \mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\} \sim \left(\sum_i \mathbb{Q}_i\right) | \mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\}\).
 2.3 There exist \(\epsilon > 0\), \(N \in \mathbb{N}\) and predictable times \(T_1 \leq T_2 \leq \cdots \leq T_N\) such that

\[
\left\{(t, \omega) : \sum_j S_{k,j} \text{ jumps to } \infty \right\} \cap \left\{(t, \omega) : \sum_j S_{k,j} \leq d + \epsilon \right\} \subset \bigcup_{n=1}^{N} [T_n].
\]
Aggregation without consistency

Let \((Q_i)_i\) be so that \(S_i\) is a \(Q_i\)-local martingale. Then there exists a martingale valuation operator \(V \sim (\sum Q_i)\) if one of the following two conditions is satisfied:

1. \(S_i\) is a \(Q_i\)-martingale.

2. The following three conditions hold:

 2.1 \(\sum Q_i\) satisfies (NOD).

 2.2 \(\mathbb{Q}_k\big|\mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\} \sim \left(\sum Q_i\right)\big|\mathcal{F} \cap \{\sum_j S_{k,j}(T) < \infty\}\).

 2.3 There exist \(\varepsilon > 0\), \(N \in \mathbb{N}\) and predictable times \(T_1 \leq T_2 \leq \cdots \leq T_N\) such that

\[
\left\{(t, \omega) : \sum_j S_{k,j} \text{ jumps to } \infty\right\} \cap \left\{(t, \omega) : \sum_j S_{k,j} \leq d + \varepsilon\right\} \subset \bigcup_{n=1}^{N} [T_n].
\]
An example for lack of aggregation

- $d = 2$; probability measure \mathbb{P}
- R: a three-dimensional Bessel process:

$$R(t) = 1 + \int_0^t \frac{1}{R(s)}ds + W(t)$$

- Stopping time τ with $\mathbb{P}(\tau = \infty) > 0$
- $S_{1,2}(t) = 1$ for all $t < \tau$ and $S_{1,2}(t) = 1 + R(t) - R(\tau)$ for all $t \geq \tau$.
- $\mathbb{Q}_1(\cdot) = \mathbb{P}(\cdot|\tau = \infty)$ and $\mathbb{Q}_2 = \mathbb{P}$.
- Then $\mathbb{Q}_1(S_{1,2} \equiv 1) = 1$, $S_{2,1}$ is a \mathbb{Q}_2-local martingale, and $(\mathbb{Q}_1 + \mathbb{Q}_2) \sim \mathbb{P}$.
An example for lack of aggregation

- $d = 2$; probability measure \mathbb{P}
- R: a three-dimensional Bessel process:
 \[R(t) = 1 + \int_0^t \frac{1}{R(s)} \, ds + W(t) \]
- Stopping time τ with $\mathbb{P}(\tau = \infty) > 0$
- $S_{1,2}(t) = 1$ for all $t < \tau$ and $S_{1,2}(t) = 1 + R(t) - R(\tau)$ for all $t \geq \tau$.
- $Q_1(\cdot) = \mathbb{P}(\cdot | \tau = \infty)$ and $Q_2 = \mathbb{P}$.
- Then $Q_1(S_{1,2} \equiv 1) = 1$, $S_{2,1}$ is a Q_2–local martingale, and $(Q_1 + Q_2) \sim \mathbb{P}$.
An example for lack of aggregation

- $d = 2$; probability measure \mathbb{P}
- R: a three-dimensional Bessel process:

$$R(t) = 1 + \int_0^t \frac{1}{R(s)} ds + W(t)$$

- Stopping time τ with $\mathbb{P}(\tau = \infty) > 0$
- $S_{1,2}(t) = 1$ for all $t < \tau$ and $S_{1,2}(t) = 1 + R(t) - R(\tau)$ for all $t \geq \tau$.
- $\mathbb{Q}_1(\cdot) = \mathbb{P}(\cdot | \tau = \infty)$ and $\mathbb{Q}_2 = \mathbb{P}$.
- Then $\mathbb{Q}_1(S_{1,2} \equiv 1) = 1$, $S_{2,1}$ is a \mathbb{Q}_2–local martingale, and $(\mathbb{Q}_1 + \mathbb{Q}_2) \sim \mathbb{P}$.
An example for lack of aggregation

- \(d = 2 \); probability measure \(\mathbb{P} \)
- \(R \): a three-dimensional Bessel process:
 \[
 R(t) = 1 + \int_0^t \frac{1}{R(s)} \, ds + W(t)
 \]
- Stopping time \(\tau \) with \(\mathbb{P}(\tau = \infty) > 0 \)
- \(S_{1,2}(t) = 1 \) for all \(t < \tau \) and \(S_{1,2}(t) = 1 + R(t) - R(\tau) \) for all \(t \geq \tau \).
- \(Q_1(\cdot) = \mathbb{P}(\cdot | \tau = \infty) \) and \(Q_2 = \mathbb{P} \).
- Then \(Q_1(S_{1,2} \equiv 1) = 1 \), \(S_{2,1} \) is a \(Q_2 \)-local martingale, and \((Q_1 + Q_2) \sim \mathbb{P} \).
An example for lack of aggregation (cont’d)

• Obviously, no complete evaluations occur, thus (2.1) and (2.3) hold.

• We do not have

\[Q_k \bigg| \mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \} \sim \left(\sum_i Q_i \right) \bigg| \mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \} \]

• Indeed, no martingale valuation operator \(\mathbb{V} \sim (Q_1 + Q_2) \) exists.
An example for lack of aggregation (cont’d)

- Obviously, no complete evaluations occur, thus (2.1) and (2.3) hold.
- We do not have

\[\mathbb{Q}^k \mid \mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \} \sim \left(\sum_i \mathbb{Q}_i \right) \bigg|_{\mathcal{F} \cap \{ \sum_j S_{k,j}(T) < \infty \}}. \]

- Indeed, no martingale valuation operator \(\mathbb{V} \sim (\mathbb{Q}_1 + \mathbb{Q}_2) \) exists.
Conclusion

- We consider an exchange economy with d currencies, where each currency has the possibility to complete devaluate against any other currency.
- In such an economy, we introduce the concept of a valuation operator and link it to a no-arbitrage condition.
- We interpret the lack of martingale property of an asset price as a reflection of the possibility that the numéraire currency may devalue completely.
- We study conditions under which not necessarily equivalent measures, corresponding to different numéraires, may be aggregated to obtain a numéraire-independent valuation operator.
Conclusion

- We consider an exchange economy with \(d \) currencies, where each currency has the possibility to completely devaluate against any other currency.
- In such an economy, we introduce the concept of a valuation operator and link it to a no-arbitrage condition.
- We interpret the lack of martingale property of an asset price as a reflection of the possibility that the numéraire currency may devalue completely.
- We study conditions under which not necessarily equivalent measures, corresponding to different numéraires, may be aggregated to obtain a numéraire-independent valuation operator.
Many thanks for your attention!
Digression: Hyperinflation

- **Hyperinflation**: complete devaluation of the corresponding domestic numéraire and an explosion of the exchange rate with respect to any other currency.

- **Examples:**
 - The price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over 4500 in Austria from January 1919 to August 1922 and by a factor of over 10^{10} from January 1922 to December 1923 in Germany.
 - Hungary, August 1945 to July 1946. Prices soared by a factor of over 10^{27} in that 12-month period to which the month of July contributed a staggering raise of 4×10^{16} percent of prices.
 - Bolivia, August 1984 to August 1985: Price levels increased by 20,000 percent.
 - Zimbabwe, July 2009: for instance, prices increased by an annualized inflation rate of over 2×10^8 percent.
Digression: Hyperinflation

- *Hyperinflation*: complete devaluation of the corresponding domestic numéraire and an explosion of the exchange rate with respect to any other currency.

- **Examples:**
 - The price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over 4500 in Austria from January 1919 to August 1922 and by a factor of over 10^{10} from January 1922 to December 1923 in Germany.
 - Hungary, August 1945 to July 1946. Prices soared by a factor of over 10^{27} in that 12-month period to which the month of July contributed a staggering raise of 4×10^{16} percent of prices.
 - Bolivia, August 1984 to August 1985: Price levels increased by 20,000 percent.
 - Zimbabwe, July 2009: for instance, prices increased by an annualized inflation rate of over 2×10^{8} percent.
Digression: Hyperinflation

- **Hyperinflation**: complete devaluation of the corresponding domestic numéraire and an explosion of the exchange rate with respect to any other currency.
- **Examples**:
 - The price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over 4500 in Austria from January 1919 to August 1922 and by a factor of over 10^{10} from January 1922 to December 1923 in Germany.
 - Hungary, August 1945 to July 1946. Prices soared by a factor of over 10^{27} in that 12-month period to which the month of July contributed a staggering raise of 4×10^{16} percent of prices.
 - Bolivia, August 1984 to August 1985: Price levels increased by 20,000 percent.
 - Zimbabwe, July 2009: for instance, prices increased by an annualized inflation rate of over 2×10^8 percent.
Digression: Hyperinflation

- **Hyperinflation**: complete devaluation of the corresponding domestic numéraire and an explosion of the exchange rate with respect to any other currency.

- **Examples**:
 - The price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over 4500 in Austria from January 1919 to August 1922 and by a factor of over 10^{10} from January 1922 to December 1923 in Germany.
 - Hungary, August 1945 to July 1946. Prices soared by a factor of over 10^{27} in that 12-month period to which the month of July contributed a staggering raise of 4×10^{16} percent of prices.
 - Bolivia, August 1984 to August 1985: Price levels increased by 20,000 percent.
 - Zimbabwe, July 2009: for instance, prices increased by an annualized inflation rate of over 2×10^8 percent.
Digression: Hyperinflation

- Hyperinflation: complete devaluation of the corresponding domestic numéraire and an explosion of the exchange rate with respect to any other currency.
- Examples:
 - The price of one Dollar, measured in units of the respective domestic currency, went up by a factor of over 4500 in Austria from January 1919 to August 1922 and by a factor of over 10^{10} from January 1922 to December 1923 in Germany.
 - Hungary, August 1945 to July 1946. Prices soared by a factor of over 10^{27} in that 12-month period to which the month of July contributed a staggering raise of 4×10^{16} percent of prices.
 - Bolivia, August 1984 to August 1985: Price levels increased by 20,000 percent.
 - Zimbabwe, July 2009: for instance, prices increased by an annualized inflation rate of over 2×10^8 percent.