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1 Introduction

This short course is devoted to a few statistical problems related to the observation of a
given process on a fixed time interval, when the observations occur at regularly spaced
discrete times. This kind of observations may occur in many different contexts, but they
are particularly relevant in finance: we do have now huge amounts of data on the prices
of various assets, exchange rates, and so on, typically ”tick data” which are recorded at
every transaction time. So we are mainly concerned with the problems which arise in this
context, and the concrete applications we will give are all pertaining to finance.

In some sense they are not ”standard” statistical problems, for which we want to
estimate some unknown parameter. We are rather concerned with the ”estimation” of
some random quantities. This means that we would like to have procedures that are as
model-free as possible, and also that they are in some sense more akin to nonparametric
statistics.

Let us describe the general setting in some more details. We have an underlying
process X = (X;)¢>0, which may be multi-dimensional (its components are then denoted
by X1, X?2,...). This process is defined on some probability space (2, F,P). We observe
this process at discrete times, equally spaced, over some fixed finite interval [0, T, and we
are concerned with asymptotic properties as the time lag, denoted by A,, goes to 0. In
practice, this means that we are in the context of high frequency data.

The objects of interest are various quantities related to the particular outcome w which
is (partially) observed. The main object is the volatility, but other quantities or features
are also of much interest for modeling purposes, for example whether the observed path
has jumps and, when this is the case, whether several components may jump at the same
times or not.

All these quantities are related in some way to the probabilistic model which is assumed
for X: we do indeed need some model assumption, otherwise nothing can be said. In
fact, any given set of observed values Xo, XA, ,- -, XA, , -, with A, fixed, is of course
compatible with many different models for the continuous time process X: for example
we can suppose that X is piecewise constant between the observation times, or that it
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is piecewise linear between these times. Of course neither one of these two models is in
general compatible with the observations if we modify the frequency of the observations.

So in the sequel we will always assume that X is an [t6 semimartingale, that is a
semimartingale whose characteristics are absolutely continuous with respect to Lebesgue
measure. This is compatible with virtually all semimartingale models used for modeling
quantities like asset prices or log-prices, although it rules out some non-semimartingale
models sometimes used in this context, like the fractional Brownian motion.

Before stating more precisely the questions which we will consider, and in order to be
able to formulate them in precise terms, we recall the structure of It6 semimartingales.
We refer to [13], Chapter I, for more details.

Semimartingales: We start with a basic filtered probability space (2, F, (F¢)e>0,P), the
family of sub-o-fields (F;) of F being increasing and right-continuous in ¢. A semimartin-
gale is simply the sum of a local martingale on this space, plus an adapted process of
finite variation (meaning, its paths are right-continuous, with finite variation on any finite
interval). In the multidimensional case it means that each component is a real-valued
semimartingale.

Any multidimensional semimartingale can be written as

thXo+Bt+Xf+/0t/Rd ﬁ(x)(,u—l/)(ds,dx)—i—/ot /Rd k' (x)u(ds,dr). (1.1)

In this formula we use the following notation:

- p is the “jump measure” of X: if we denote by AX; = X; — X;_ the size of the
jump of X at time ¢ (recall that X is right-continuous with left limits), then the set
{t : AX;(w) # 0} is at most countable for each w, and p is the random measure on
(0,00) x R defined by

w(w; dt, dr) = Z E(s,AXs(w)) (dt,dz), €, = the Dirac measure sitting at a.
§>0: AX(w)#0

- v is the “compensator” (or, predictable compensator) of . This is the unique random
measure on (0,00) x R? such that, for any Borel subset A of R? at a positive distance of
0, the process v((0,t] x A) is predictable and the difference p((0,¢] x A) — v((0,¢] x A) is
a local martingale.

- Kk is a “truncation function”, that is a function: RY — R? bounded with compact
support, such that x(z) = x for all  in a neighborhood of 0. This function is fixed
throughout, and we choose it to be continuous for convenience.

- k' is the function £'(z) = x — k().
- B is a predictable process of finite variation, with By = 0.

- X¢is a continuous local martingale with X§ = 0, called the “continuous martingale
part” of X.

With this notation, the decomposition (1.1) is unique (up to null sets), but the process
B depends on the choice of the truncation function x. The continuous martingale part



does not depend on the choice of k. Note that the first integral in (1.1) is a stochastic
integral (in general), whereas the second one is a pathwise integral (in fact for any ¢ is is
simply the finite sum ) __, k' (AX,)). Of course (1.1) should be read “componentwise” in
the multidimensional setting.

In the sequel we use the shorthand notation x to denote the (possibly stochastic)
integral w.r.t. a random measure, and also e for the (possibly stochastic) integral of a
process w.r.t. a semimartingale. For example, (1.1) may be written more shortly as

X = Xog+ B+ X+ k*x(u—v)+rK *pu. (1.2)

The ”*” symbol will also be used, as a superscript, to denote the transpose of a vector or
matrix (no confusion may arise).

Another process is of great interest, namely the quadratic variation of the continuous
martingale part X¢, which is the following R¢ ® R%valued process:

C = (X% X), that is, componentwise, C% = (X¢ XI), (1.3)

This is a continuous adapted process with Cy = 0, which further is increasing in the set
./\/l:lr of symmetric nonnegative matrices, that is C; — Cs belongs to M;“ for all t > s.

The triple (B, C,v) is called the triple of characteristics of X, this name coming from
the fact that in “good cases” it completely determines the law of X.

The fundamental example of semimartingales is the case of Lévy processes. We say
that X is a Lévy process if it is adapted to the filtration, with right-continuous and left-
limited paths and Xg = 0, and such that Xy, s — X; is independent of F; and has the same
law as X for all s,t > 0. Such a process is always a semimartingale, and its characteristics
(B,C,v) are of the form

Bi(w) =bt, Cy=ct, v(w;dt,dxr)=dt® F(dz). (1.4)

Here b € R? and ¢ € /\/l;i|r and F is a measure on R? which does not charge 0 and integrates
the function z +— ||z||2 A 1. The triple (b,c, F') is connected with the law of the variables
X; by the formula (for all u € R%)

E(ewXe)) = expt(i(u, b) — %(u, cu) + /F(dac) (ei<u7w> —1—i(u, /1(37»))7 (1.5)

called Lévy-Khintchine’s formula. So we sometimes call (b, ¢, F') the characteristics of X
as well, and it is the Lévy-Khintchine characteristics of the law of X; in the context of
infinitely divisible distributions. b is called the drift, ¢ is the covariance matrix of the
Gaussian part, and F' is called the Lévy measure.

As seen above, for a Lévy process the characteristics (B, C,v) are deterministic, and
they do characterize the law of the process. Conversely, if the characteristics of a semi-
martingale X are deterministic one can show that X has independent increments, and if
they are of the form (1.4) then X is a Lévy process.

It6 semimartingales. By definition, an [té semimartingale is a semimartingale whose
characteristics (B, C,v) are absolutely continuous with respect to Lebesgue measure, in



the following sense:

Bt(w):/o bs(w)ds, Ct(w):/o cs(w)ds, v(w;dt,dz) =dt F,(dx). (1.6)

here we can always choose a version of the processes b or ¢ which is optional, or even
predictable, and likewise choose F' in such a way that F;(A) is optional, or even predictable,
for all Borel subsets A of R%.

It turns out that It6 semimartingales have a nice representation in terms of a Wiener
process and a Poisson random measure, and this representation will be very useful for us.
Namely, it can be written as follows (where for example x’(0) * p1, denotes the value at
time ¢ of the integral process /(0) * p):

¢ t
X, :X0+/ bsds+/ osdWy +’i(5)*(#—2)t+/€/(5)*ﬂt- (1.7)
0 0 - .

In this formula W is a standard d’-dimensional Wiener process and y is a Poisson random

measure on (0,00) x E with intensity measure v(dt, dx) = dt ® A(dx), where X is a o-finite
and infinite measure without atom on an auxiliary measurable set (E, ).

Of course the process b; is the same in (1.6) and in (1.7), and 0 = (0¥)1<;<q1<j<a 18
an R? @ RY -valued optional (or predictable, as one wishes to) process such that ¢ = oo™,
and § = 0(w,t,z) is a predictable function on 2 x [0,00) x E (that is, measurable with
respect to P®E, where P is the predictable o-field of 2 x [0, 00)). The connection between
d above and F in (1.6) is that F} , is the image of the measure A by the map « — §(w,t, x),
and restricted to R\ {0}.

Remark 1.1 One should be a bit more precise in characterizing W and pu: W is an
(Fi)-Wiener process, meaning it is F; adapted and W; s — W, is independent of F; (on
top of being Wiener, of course). Likewise, p is an (F;)-Poisson measure, meaning that

1((0,t] x A) is Fi-measurable and u((t,t + s] x A) is independent of 7, for all A€ £. O

Remark 1.2 The original space (2, F,P) on which X is defined may be too small to
accommodate a Wiener process and a Poisson measure, so we may have to enlarge the
space. Such an enlargement is always possible. O

Remark 1.3 When the matrix ¢;(w) is of full rank for all (w,¢) and d’ = d, then it
has a unique “square-root” o(w), which further is invertible. In this case we have W =
(o)~ e X¢. Otherwise, there are many ways of choosing ¢ such that co* = ¢, hence many
ways of choosing W and its dimension d’ (which can always be taken such that d’ < d).

In a similar way, we have a lot of freedom for the choice of u. In particular we can
choose at will the space (E, &) and the measure A, subject to the above conditions, and
for example we can always take F = R with A\ the Lebesgue measure, although in the
d-dimensional case it is somewhat more intuitive to take E = R%. O

Of course a Lévy process is an Itd6 semimartingale (compare (1.2) and (1.6)). In this
case the two representations (1.2) and (1.7) coincide if we take £ = R? and A\ = F (the



Lévy measure) and p = p (the jump measure of a Lévy process is a Poisson measure)
and d(w,t,z) = x, and also if we recall that in this case the continuous martingale (or
“Gaussian”) part of X is always of the form X¢ = o¢W, with oo* = c.

The setting of It6 semimartingales encompasses most processes used for modeling
purposes, at least in mathematical finance. For example, solutions of stochastic differential
equations driven by a Wiener process, or a by a Lévy process, or by a Wiener process plus a
Poisson random measure, are all [td6 semimartingales. Such solutions are obtained directly
in the form (1.7), which of course implies that X is an It6 semimartingale.

The volatility. In a financial context, the process ¢; is called the volatility (sometimes
it is oy which is thus called). This is by far the most important quantity which needs
to be estimated, and there are many ways to do so. A very widely spread way of doing
so consists in using the so-called “implied volatility”, and it is performed by using the
observed current prices of options drawn on the stock under consideration, by somehow
inverting the Black-Scholes equation or extensions of it.

However, this way usually assumes a given type of models, for example that the stock
prices is a diffusion process of a certain type, with unknown coefficients. Among the
coefficients there is the volatility, which further may be “stochastic”, meaning that it
depends on some random inputs other than the Wiener process which drives the price
itself. But then it is of primary importance to have a sound model, and this can be
checked only by statistical means. That is, we have to make a statistical analysis, based
on series of (necessarily discrete) observations of the prices.

In other words, there is a large body of work, essentially in the econometrical literature,
about the (statistical) estimation of the volatility. This means finding good methods for
estimating the path ¢ — ¢;(w) for t € [0, T], on the basis of the observation of X;a,, (w) for
all i =0,1,---,[T/A,].

In a sense this is very similar to the non-parametric estimation of a function c(t), say
in the 1-dimensional case, when one observes the Gaussian process

y, = /Otmdws

(here W is a standard 1-dimensional Wiener process) at the time iA,, and when A, is
“small” (that is, we consider the asymptotic A, — 0). As is well known, this is possible
only under some regularity assumptions on the function c¢(t), whereas the “integrated”
value fg ¢(s)ds can be estimated as in parametric statistics, since it is just a number. On
the other hand, if we know fg c(s)ds for all ¢, then we also know the function ¢(t), up
to a Lebesgue-null set, of course: it should be emphasized that if we modify ¢ on such a
null set, we do not change the process Y itself; the same comment applies to the volatility
process ¢ in (1.6).

This is why we mainly consider, as in most of the literature, the problem of estimating
the integrated volatility, which with our notation is the process C;. One has to be aware
of the fact that in the case of a general It6 semimartingale, this means “estimating” the
random number or matrix Ci(w), for the observed w, although of course w is indeed not
“fully” observed.



Let us consider for simplicity the 1-dimensional case, when further X is continuous,
that is

¢ ¢
X; = Xo—i—/ bsds+/ osdW, (1.8)
0 0

and o; (equivalently, ¢; = o7) is random. It may be of the form oy(w) = o(X;(w)), it can
also be by itself the solution of another stochastic differential equation, driven by W and
perhaps another Wiener process W/, and perhaps also some Poisson measures if it has
jumps (even though X itself does not jump).

By far, the simplest thing to do is to consider the “realized” integrated volatility, or
“approximate quadratic variation”, that is the process
[t/An]
B(2,An) = > |AFXP, where APX = Xia, — X(_1)a,- (1.9)
i=1

Then if (1.8) holds, well known results on the quadratic variation (going back to It6 in
this case), we know that

B(2,An) — C, (1.10)
(convergence in probability), and this convergence is even uniform in ¢ over finite intervals.

Further, as we will see later, we have a rate of convergence (namely 1/4/A,,) under some
appropriate assumptions.

Now what happens when X is discontinuous ? We no longer have (1.10), but rather

B(2,An): — Ci+ > |AX,[? (1.11)

s<t

(the right side above is always finite, and is the quadratic variation of the semimartingale
X, also denoted [X, X];). Nevertheless we do want to estimate Cy: a good part of these
notes is devoted to this problem. For example, we will show that both quantities

[t/An] [t/An]
B(1,1,An): = Z |AF X[ AL X, B(2,m,a); = Z |AT X 1fjar x|<anz)
i=1 i—1

(1.12)
converge in probability to % Cy and Cy respectively, and as soon as w € (0,1/2) and o > 0
for the second one.

Inference for jumps. Now, when X is discontinuous, there is also a lot of interest about
jumps and, to begin with, are the observations compatible with a model without jumps,
or should we use a model with jumps 7 More complex questions may be posed: for a
2-dimensional process, do the jumps occur at the same times for the two components or
not ? Is there infinitely many (small) jumps ? In this case, what is the “concentration”
of the jumps near 0 7

Here again, the analysis is based on the asymptotic behavior of quantities involving
sums of functions of the increments A? X of the observed process. So, before going to the
main results in a general situation, we consider first two very simple cases: when X = oW



for a constant ¢ > 0, and when X = ¢W +Y when Y is a compound Poisson process. It is
also of primary importance to determine which quantities can be “consistently estimated”
when A,, — 0, and which ones cannot be. We begin with the latter question.

2 What can be estimated ?

Recall that our underlying process X is observed at discrete times 0, A,,2A,, -, up to
some fixed time 7. Obviously, we cannot have consistent estimators, as A, — 0, for
quantities which cannot be retrieved when we observe the whole path ¢t +— X;(w) for
t € [0,T7], a situation referred to below as the “complete observation scheme”.

We begin with two simple observations:

1) The drift b; can never be identified in the complete observation scheme, except in
some very special cases, like when X; = X + fot bsds.

2) The quadratic variation of the process is fully known in the complete observation
scheme, up to time T of course. This implies in particular that the integrated volatility
Cy is known for all ¢ < T, hence also the process ¢; (this is of course up to a P-null set for
Ct, and a P(dw) ® dt-null set for ¢;(w)).

3) The jumps are fully known in the complete observation scheme, up to time 7" again.

Now, the jumps are not so interesting by themselves. More important is the “law” of
the jumps in some sense. For Lévy processes the law of jumps is in fact determined by the
Lévy measure. In a similar way, for a semimartingale the law of jumps can be considered
as known if we know the measures F; ,, since these measures specify the jump coefficient
0 in (1.7). (Warning: this specification is in a “weak” sense, exactly as ¢ specifies o; we
may have several square-root of ¢, as well as several § such that F; is the image of A\, but
all choices of o; and § which are compatible with a given ¢; and F}; give rise to equations
that have exactly the same weak solutions).

Consider Lévy processes first. Basically, the restriction of F' to the complement of
any neighborhood of 0, after normalization, is the law of the jumps of X lying outside
this neighborhood. Hence to consistently estimate F' we need potentially infinitely many
jumps far from 0, and this possible only if 7" — oco. In our situation with 7" fixed there is
no way of consistently estimating F'.

We can still say something in the Lévy case: for the complete observation scheme, if
there is a jump then F is not the zero measure; if we have infinitely many jumps in [0, 7]
then F' is an infinite measure; in this case, we can also determine for which r > 0 the sum
> s<r |AX;[" is finite, and this is also the set of 7’s such that f{|$|<oo} |z|" F(dx) < oo.

The same statements also hold for more general semimartingales: we can decide for
which 7’s the sum > . |AX,|" is finite, and also if we have zero, or finitely many, or
infinitely many jumps. Those are “characteristics” of the model which are of much interest
for modelling purposes.



Hence we will be interested, when coming back to the actual discrete observation
scheme, in estimating Cy for ¢ < T, and whether there are zero or finitely many or
infinitely many jumps in [0, 7.

3 Some simple limit theorems for Wiener plus compound
Poisson processes

This section is about a very particular case: the underlying process is X = ¢ X + Y for
some o > 0, and Y a compound Poisson process independent of W. And in the first
subsection we even consider the most elementary case of X = ¢W. In these two cases we
state all limit theorems that are available about sums of a function of the increments. We
do not give the full proofs, but heuristic reasons for the results to be true. The reason for
devoting a special section to this simple case is to show the variety of results that can be
obtained, whereas the full proofs can be easily reconstructed without annoying technical
details.

Before getting started, we introduce some notation, to be used also for a general d-
dimensional semimartingale X later on. Recall the increments A?X in (1.9). First for
any p > 0 and 57 < d we set

[t/An] |
Bp.j, A = 3 AKX, (3.1)
=1

In the 1-dimensional case this is written simply B(p, A,,)s. Next if f is a function on R,
the state space of X in general, we set

V(A = S8 parx),

s (3.2)
V/(f,An) = S8 parx)VA,).

The reason for introducing the normalization 1/v/A,, will be clear below. These functionals
are related one of the other by the trivial identity V'(f, A,) = V(fn, An) with f,(z) =
f(z/v/A,,). Moreover, with the notation

yeR — hyly) = |yP, zr=(xj) € R? — hg,(x) = |z, (3.3)

we also have B(p,j,Ay) = V(h%, Ay) = A;p/2V’(h{;, A,). Finally if we need to empha-
size the dependency on the process X, we write these functionals as B(X;p,j,A,) or
V(X5 f,An) or V(X5 f, Ay).

3.1 The Wiener case.

Here we suppose that X = oW for some constant ¢ > 0, so d = 1. Among all the
previous functionals, the simplest ones to study are the functionals V'(f,A,) with f a
fixed function on R. We need f to be Borel, of course, and “not too big”, for example
with polynomial growth, or even with exponential growth. In this case, the results are



straightforward consequences of the usual law of large numbers (LNN) and central limit
theorem (CLT).

Indeed, for any n the variables (A?X/y/A,, : i > 1) are i.i.d. with law A'(0,0?). In the
formulas below we write p, for the law A/(0,02) and also p,(g) the integral of a function g
with respect to it. Therefore, with f as above, the variables f(AX/\/A,) when i varies
are i.i.d. with moments of all orders, and their first and second moments equal p,(f) and
po(f?) respectively. Then the classical LLN and CLT give us that

A V(D) — tpo(f)

7 (B0 VU A =t () 5 N(0.1000(5) = o)), (34

We clearly see here why we have put the normalizing factor 1/4/A,, inside the function f.

The reader will observe that, contrary to the usual LNN, we get convergence in prob-
ability but not almost surely in the first part of (3.4). The reason is as follows: let (;
be a sequence of i.i.d. variables with the same law than f(X;). The LLN implies that

Zy = [t/tAn] ZEZ?"} ¢; converges a.s. to tp,(f). Since A, V'(f,A,): has the same law as
Z, we deduce the convergence in probability in (3.4) because, for a deterministic limit,
convergence in probability and convergence in law are equivalent. However the variables
V'(f,An): are connected one with the others in a way we do not really control when n

varies, so we cannot conclude to A, V'(f; An)e — tps(f) a.s.

(1.9) gives us the convergence for any time ¢, but we also have functional convergence:

1) First, recall that a sequence g,, of nonnegative increasing functions on Ry converging
pointwise to a continuous function g also converges locally uniformly; then, from the first
part of (1.9) applied separately for the positive and negative parts f* and f~ of f and
using a “subsequence principle” for the convergence in probability, we obtain

An V/(f, An)t = tpa(f) (35)

where Z' ““% Z; means ”convergence in probability, locally uniformly in time”: that is,
SUpg<; |28 — Zs| L, 0 for all ¢ finite.

2) Next, if instead of the 1-dimensional CLT we use the “functional CLT”, or Donsker’s
Theorem, we obtain

(= AV ra0=1(n)) & Vel PI=nP W 36

where W’ is another standard Wiener process, and £, stands for the convergence in law
of processes (for the Skorokhod topology). Here we see a new Wiener process W' appear.
What is its connection with the basic underlying Wiener process W ? To study that, one
can try to prove the “joint convergence” of the processes on the left side of (3.6) together
with W (or equivalently X)) itself.

This is an easy task: consider the 2-dimensional process Z" whose first component
is the left side of (3.6) and second component is XA /A, (the discretized version of



. . . t/An
X, which converges pointwise to X). Then Z" takes the form Z]' = A, Zgz/l ] i
where the (;* are 2-dimensional i.i.d. variables as ¢ varies, with the same distribution as
(91(X1),92(X1)), where g1(x) = f(x) — po(f) and ga(z) = z. Then the 2-dimensional

version of Donsker’s Theorem gives us that

(= (v —tan).x) £ (B.x) (3.7

and the pair (B, X) is a 2-dimensional (correlated) Wiener process, characterized by its
variance-covariance at time 1, which is the following matrix:

po(f2) = ps(f)? po(fg2)
< po(fg2) o? ) (3:8)

(note that 02 = p,(g3) and also p,(g2) = 0, so the above matrix is semi-definite positive).
Equivalently, we can write B as B = \/p,(f2) — ps(f)2 W' with W’ a standard Brow-
nian motion (as in (3.7))) which is correlated with W, the correlation coefficient being

po(f92)/0\/ e (F2) — ps(f)2.

Now we turn to the processes B(p,A,). Since B(p,A,) = A;p/QV’(hp,An) this is
just a particular case of (3.5) and (3.7), which we reformulate below (m, denotes the pth
absolute moment of the normal law A/(0,1)):

AL B(p A S torm,, 39
1 (ALPPB(p, A, — toP )X) £ (BX)

(\/r( n Bl Ba)e —totmy ). Xe) = (B X)), (3.10)
with B a Wiener process unit variance o?? (map — mz), independent of X

(the independence comes from that fact that p,(g) = 0, where g(z) = x|z|P).

Finally for the functionals V(f, A,,), the important thing is the behavior of f near 0,
since the increments A7 X are all going to 0 as A, — 0. In fact, sup;</a, A7 X| — 0
pointwise, so when the function f vanishes on a neighborhood of 0, for all n bigger than
some (random) finite number N depending also on ¢ we have

V(f,Ap)s = 0 Vs<t. (3.11)

For a “general” function f we can combine (3.9) with (3.11): we easily obtain that (3.9)
holds with V' (f,A,) instead of B(p,A,) as soon as f(z) ~ |z|P as  — 0, and the same
holds for (3.10) if we further have f(z) = |z|” on a neighborhood of 0.

Of course these results do not exhaust all possibilities for the convergence of V'(f; A,).
For example on may prove the following:

AL-P/2 1
— p n u.C.p. _ - p
f(z)=|zPlog|z| = 7log(1/An) V(f,A,) — 5 toPmy, (3.12)

and a CLT is also available in this situation. Or, we could consider functions f which
behave like 2P as z || 0 and like (—2)? as z 17 0, with p # p/. However, we essentially
restrict our attention to functions behaving like h,: for simplicity first, and since more
general functions do not really occur in the applications we have in mind, and also because
the extension to processes X more general than the Brownian motion is not easy for other
functions.
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3.2 The Wiener plus compound Poisson case.

Our second example is when the underlying process X has the form X = cW + Y, where
as before ¢ > 0 and W is a Brownian motion, and Y is a compound Poisson process
independent of W. We will write X’ = oW. Recall that Y has the form

Yi = ) @l (3.13)

p=1
where the T},’s are the successive arrival times of a Poisson process, say with parameter 1
(they are finite stopping times, positive, strictly increasing with p and going to oo), and
the ®,’s are i.i.d. variables, independent of the 7,’s, and with some law G. Note that in

(3.13) the sum, for any given t, is actually a finite sum.

The processes V'(f, A,), which were particularly easy to study when X was a Wiener
process, are not so simple to analyze now. This is easy to understand: let us fix ¢; at stage
n, we have A’ X = A’ X’ for all ¢ < [t/A,], except for those finitely many ¢’s corresponding
to an interval ((i — 1)A,,A,] containing at least one of the T,’s. Furthermore, all those
exceptional intervals contain exactly one T}, as soon as n is large enough (depending on
(w,t)). Therefore for n large we have

VI(f,Ap)e = V(X5 f, An)e + A7, where

At = th:/f"] > o1 (1) A, <Tp<ing} (f((q)p + AP X )WAL) — f(A?X,/\/Tn))'
(3.14)
The double sum in A} is indeed a finite sum, with as many non-zero entries as the number
of Tp,’s less than Ay [t/A,].

Therefore the behavior of V/(f, A,) depends in an essential way on the behavior of f
near infinity. There are essentially two possibilities:

1) The function f is bounded, or more generally satisfies | f(z)| < K(1+ |z[P) for some
p < 2. Then |A}"| above is ”essentially” smaller than K > gr,<(1+ \<I>p|7"A,:p/2) for some
constant K, and thus A, A} — 0. So obviously the convergence (3.5) holds.

If further p < 1 we even have /A, A7* — 0. Therefore (3.7) holds. Observe that

in this situation, the presence of the jumps does not modify the results that held for the
Brownian case; this will be the rule for more general processes X as well.

2) The function f is equivalent to |z|P at infinity, for some p > 2. Then in (3.14)
the leading term becomes A}, which is approximately equal to A,” /2 D oe<t [AX|P. So

Af’/ 2y (f,A,)¢ converges in probability to the variable
Bp) = |AX,P (3.15)
s<t

(we have just "proved” the convergence for any given ¢, but it is also a functional conver-
gence, for the Skorokhod topology, in probability).

Again, these cases do not exhaust the possible behaviors of f, and further we have
not given a CLT in the second situation above. But, when f is not bounded it looks a
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bit strange to impose a specific behavior at infinity, and without this there is simply no
convergence result for V'(f, Ap)t, not to speak about CLTs.

Now we turn to the processes V(f,Ay,). To begin with, we observe that, similar to
(3.14), we have

V(f,An) =V (X', f,An): + A7, where

n A N . (3.16)
A= Z[t/ szl L-nan<t,<inny (f((pp + AYX") = f(A] X’))-

The first - fundamental - difference with the continuous case is that (3.11) fails now
when f vanishes on a neighborhood of 0. In this case, though, for each given ¢ and all n
bigger than some number depending on (w,t), we have V(X'; f,A)s = 0 for all s <t by
(3.11), hence

[s/An]
V(AR = D0 Y a-nann<ing [(@p+ AFX), Vs <t. (3.17)

i=1 p>1

Then, as soon as f is continuous and vanishes on a neighborhood of 0, we get

V(£ A = V(e = ) f(AX,) (3.18)

s<t

Here — means ” convergence for the Skorokhod topology”, pointwise in w (the reason for
which we have convergence in the Skorokhod sense will be explained later; what is clear
at this point is that we have the - pointwise in w - convergence for all ¢ such that X is
continuous at ¢; we also have for each ¢ an almost sure convergence above).

Next, we consider the case where f is still continuous and, say, coincides with h,, for
some p > 0 on a neighborhood of 0. For any given € > 0 we can write f = f. + fs with f.
and f. continuous, and f.(z) = h p(2) if |x] < e/2 and fe( ) =0if |z| > e and |f;] < hy
everywhere. Since f. vanishes around 0, we have V( fo A n)t — V(ﬁ)t by (3.18), and
V(j?s)t converges to V(f); as e — 0. On the other hand the process A™ associated with f.
by (3.16) is the sum of summands smaller than 2P, the number of them being bounded
for each (w,t) by a number independent of e: hence A} is negligible and V'(fz, A,,) and
V(X'; f-, A) behave essentially in the same way. This means heuristically that, with the
symbol = meaning “approximately equal to”, we have

V(fév An)t = V(f)t7 V(f€7 An)t = AZ;L/2_1tUp mp' (319)
Adding these two expressions, we get
V(A = V(£ if p>2
V(A = V(f) +to? if p=2 (3.20)
ALYy V(f,An): % toP/?m, it p<2.

This type of LLN, which shows a variety of behaviors according to how f behaves near 0,
will be found for much more general processes later, in (almost) exactly the same terms.
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Now we turn to the CLT. Here again we single out first the case where f vanishes in a
neighborhood of 0. We need to find out what happens to the difference V(f, A,) — V(f).
It is easier to evaluate is the difference V(f, An)t — V(f)a,t/A,)» since by (3.17) we have

[s/An]
V(A= V(oo = Z1{(i71)An<Tp§iAn}(f(q)p"i_A?X/)_f((I)p)) (3.21)

i=1 p>1

for all s < ¢, as soon as n is large enough. Provided f is C', with derivative f’, the pth sum-
mand above is approximately f'(®,)A?X’. Now the normalized increment A?X’/\/A,,
for the value of i such that (i — 1)A, < T}, < iA,, has the law N(0,0?) (because X’ and
Y are independent), and it is asymptotically independent of the process X (more details
are to be found later). Thus if (Up)p>1 denotes a sequence of i.i.d. N(0,1) variables,
independent of X, it is not difficult to see that

L

1 _
A <V(f7 An)t - V(f)An[t/An]> - B(f)t = Z f/(q)p)aUzw (3-22)
VA,
p:Tp<t
and in fact, this convergence in law (for the Skorokhod topology) is even stable (denoted
Eé;), a stronger property than the mere convergence in law, which will be defined later

only but nevertheless is used in the statements below.

When now f coincide with h,, for some p > 0 on a neighborhood of 0 and is still C*
outside 0, exactly as for (3.19) we obtain heuristically that

V(e A)e X V() anit/an + VA UPy V(fer M)y = AR LigPm, + AB2-L20n,

where U™ and U™ converge stably in law to the right side of (3.22) and to the process B
of (3.10), respectively. We then have two conflicting rates, and we can indeed prove that,
with B(f) as in (3.22) and B as in (3.10) (thus depending on r):

Za (VA = V(Dawan) 5 B if p>3

ﬁ(v(f, Ap)t — V(f)An[t/An]> == to’ms+ B(f); if p=3

W (V(f, An) — V(f)An[t/An]) R if 2<p<3

A (VU A = V(Dauian —t0?) 52 Bi+B(f) if p=2 (3.23)
sk (APPV (s Ay — tormy) T V(P it 1<p<o

ﬁ(x/ﬁin V(f, An) — toml) £ V(f),+ By if p=1

A (AT A~ torm,) £ By it p<l.

Hence we obtain a genuine CLT), relative to the LLN (3.20), in the cases p > 3, p = 2 and
p < 1. When p = 3 and p = 1 we still have a CLT, with a bias. When 2 < p < 3 or
1 < p < 2 we have a “second order LNN”, and the associated genuine CLTs run as follows:

\/% (V(f’ An)t — V(f)An[t/An] — Aﬁ/z_ltapmp) L"Z_i E(f)t if 2< p < 3

(3.24)
_ L .
ﬁp/z{m (V(ﬂ An)t = V(f)ant/an] — AP/ 1t0pmp> = By if 1<p<2
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We see that these results exhibit again a large variety of behavior. This will be en-
countered also for more general underlying processes X, with of course more complicated
statements and proofs (in the present situation we have not really given the complete
proof, of course, but it is relatively easy along the lines outlined above). However, in the
general situation we will not give such a complete picture, which is useless for practical
applications. Only (3.20) and the cases r > 2 in (3.23) will be given.

4 Auxiliary limit theorems

The aims of this section are twofold: first we define the stable convergence in law, already
mentioned in the previous section. Second, we recall a number of limit theorems for partial
sums of triangular arrays of random variables.

1) Stable convergence in law. This notion has been introduced by Rényi in [22], for
the very same reasons as we need it here. We refer to [4] for a very simple exposition and
to [13] for more details.

It often happens that a sequence of statistics Z,, converges in law to a limit Z which
has, say, a mixed centered normal distribution: that is, Z = XU where U is an N(0,1)
variable and . is a positive variable independent of U. This poses no problem other than
computational when the law of ¥ is known. However, in many instances the law of ¥ is
unknown, but we can find a sequence of statistics X,, such that the pair (Z,, 3,) converges
in law to (Z,%); so although the law of the pair (Z,Y) is unknown, the variable Z,, /%,
converges in law to N'(0,1) and we can base estimation or testing procedures on this new
statistics Z,,/%,. This is where the stable convergence in law comes into play.

The formal definition is a bit involved. It applies to a sequence of random variables
Zy, all defined on the same probability space (2, F,P), and taking their values in the
same state space (E, &), assumed to be Polish (= metric complete and separable). We
say that Z,, stably converges in law if there is a probability measure 1 on the product
(Qx E,F®E), such that n(A x E) =P(A) for all A € F and

E(Yf(Zn) — /Y n(dw, dx) (4.1)

for all bounded continuous functions f on E and bounded random variables Y on (€2, F).

This is an “abstract” deﬁnition similar to the definition of the convergence in law
which says that E(f — [ f(z)p(dz) for some probablhty measure p. Now for the

convergence in law we usually want a hmlt, that is we say Z, L.z , and the variable Z is
any variable with law p, of course. In a similar way it is convenient to “realize” the limit
Z for the stable convergence in law.

We can always realize Z in the following way: take Q=QxEand F = FQE
and endow (Q, F ) with the probability 7, and put Z(w,z) = z. But, as for the simple
convergence in law, we can also consider other extensions of (€2, F, IP’) that is, we have
a probability space (Q F, IP’) where Q=0xQ and F = F @ F' for some auxiliary
measurable space (@, F') and P is a probability measure on (€2, F) whose first marginal
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is P, and we also have a random variable Z on this extension. Then in this setting, (4.1)
is equivalent to saying (with E denoting the expectation w.r.t. )

E(Y f(Z,)) — E(Yf(Z)) (4.2)

for all f and Y as above, as soon as P(AN{Z € B}) =n(Ax B) forall A€ F and B € €.
We then say that Z,, converges stably to Z, and this convergence is denoted by £

Clearly, when 7 is given, the property P(AN{Z € B}) = n(A x B) for all A € F
and B € £ simply amounts to specifying the law of Z, conditionally on the o-field F.

Therefore, saying Z,, £73 7 amounts to saying that we have the stable convergence in law
towards a variable Z, defined on any extension (2, F,P) of (2, F,P), and with a specified
conditional law knowing F.

Obviously, the stable convergence in law implies the convergence in law. But it implies

much more, and in particular the following crucial result: if Z, 75 7 and if Y, and Y
are variables defined on (€2, F,P) and with values in the same Polish space F', then

Y, %Y = (YaZ) =5 (Y,2) (4.3)

On the other hand, there are criteria for stable convergence in law of a given sequence
Zy. The o-field generated by all Z,, is necessarily separable, that is generated by a count-
able algebra, say G. Then if for any finite family (A4, : 1 < p < ¢) in G, the sequence
(Zn, (14,)1<p<q) of E x Ri-valued variables converges in law as n — oo, then necessarily
Zy converges stably in law.

2) Convergence of triangular arrays. Our aim is to prove the convergence of func-
tionals like in (3.1) and (3.2), which appear in a natural way as partial sums of triangular
arrays. We really need the convergence for the terminal time 7', but in most cases the
available convergence criteria also give the convergence as processes, for the Skorokhod
topology. So now we provide a set of conditions implying the convergence of partial sums
of triangular arrays, all results being in [13].

We are not looking for the most general situation here, and we restrict our attention to
the case where the filtered probability space (2, F, (F¢)e>0, P) is fixed. For each n we have
a sequence of R%valued variables (¢ : i > 1), the components being denoted by ¢ 7 for
j=1,---,d. The key assumption is that for all n,i the variable (] is F;a,-measurable,
and this assumption is in force in the remainder of this section.

Conditional expectations w.r.t. F;_1)a, will play a crucial role, and to simplify no-
tation we write it E?' | instead of E(. | F(;_1)a,), and likewise P{ ; is the conditional

probability.

Lemma 4.1 If we have

[t/An] b
dEL(ICH) — 0 V>0, (4.4)
=1
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then Z[t/A”] ¢ ==50. The same conclusion holds under the following two conditions:

[t/AR]

Z EP “en g, (4.5)

[t/An]

Z E™ (1<) 0  Vt>0. (4.6)

In particular when " is a martingale difference, that is EI' |((]) = 0, then (4.6) is enough
to imply Z[t/A =50,

Lemma 4.2 If we have
[t/An]

Z E" LA, (4.7)

for some continuous adapted Rd—valued process of finite variation A, and if further (4.6)

holds, then we have Z[t/A”] BB A,

Lemma 4.3 If we have (4.7) for some (deterministic) continuous R%-valued function of
finite variation A, and also the following two conditions:

[t/An]
Z (B (7GR ~ B (OB () -5 % ve> 0, jk=1,d, (48)

[t/An]

> ELG) S0 v (19)

where C' = (CF) is a (deterministic) function, continuous and increasing in M7, then
the processes Z[t/A"] ¢ converge in law to A + B, where B is a continuous centered
Gaussian R¥-valued process with independent increments with E(B] BF) = C’tljk.

(4.9) is a conditional Lindeberg condition, whose aims is to ensure that the limiting
process is continuous; other, weaker, conditions of the same type are available, but not
needed here. The conditions given above completely characterize, of course, the law of
the process B. Equivalently we could say that B is a Gaussian martingale (relative to the
filtration it generates), starting from 0, and with quadratic variation process C'.

3) Stable convergence of triangular arrays. The reader will have observed that the
conditions (4.7) and (4.8) in Lemma 4.3 are very restrictive, because the limits are non-
random. In the sequel, such a situation rarely occurs, and typically these conditions are
satisfied with A and C’ random. But then we need an additional condition, under which
it turns out that the convergence holds not only in law, but even stably in law.

Note that the stable convergence in law has been defined for variables taking values
in a Polish space, so it also applies to right-continuous and left limited d-dimensional
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processes: such a process can be viewed as a variable taking its values in the Skorokhod
space D(R?) of all functions from R, into RY which are right-continuous with left limits,
provided we endow this space with the Skorokhod topology which makes it a Polish space.
See [10] or Chapter VI of [13] for details on this topology. In fact, in Lemma 4.3 the
convergence in law is also relative to this Skorokhod topology. The stable convergence in

. L—s
law for processes is denoted as = below.

In the previous results the fact that all variables were defined on the same space
(Q, F, (Ft)t>0,P) and the (["’s were Fia,-measurable was essentially irrelevant. This is no
longer the case for the next result, for which this setting is fundamental.

Below we single out, among all martingales on (Q, F, ()¢>0,P), a possibly multidi-
mensional Wiener process W. The following lemma holds for any choice of W, and even
with no W at all (in which case a martingale “orthogonal to W” below means any mar-
tingale) but we will use it mainly with the process W showing in (1.7). The following is
a particular case of Theorem IX.7.28 of [13].

Lemma 4.4 Assume (4.7) for some continuous adapted R*-valued process of finite vari-
ation A, and (4.8) with some continuous adapted process C' = (C"*) with values in M;r
and increasing in this set, and also (4.9). Assume also

[t/An] .
Z E' (((PAPN) — 0 Vt>0 (4.10)

whenever N is one of the components of W or is a bounded martingale orthogonal to W.
Then the processes Z[t et converge . stably in law to A + B, where B is a continuous
process defined on an extension (Q F, IP) of the space (0, F,P) and which, conditionally

on the o-field F, is a centered Gaussian Re-valued process with independent increments
satisfying B(B]Bf | F) = C’;jk,

The conditions stated above completely specify the conditional law of B, knowing F,
so we are exactly in the setting explained in §1 above and the stable convergence in law is
well defined. However one can say even more: letting (J’Et) be the smallest filtration on Q
which make B adapted and which contains (F;) (that is, A x Q' € F; whenever A € Fi),
then B is a continuous local martingale on (£, F, (.7?75),520,@) which is orthogonal in the
martingale sense to any martingale on the space (Q, F, (F)¢>0,P), and whose quadratic
variation process is C’. Of course, on the extended space B is no longer Gaussian.

The condition (4.10) could be substituted with weaker ones. For example if it holds

when N is orthogonal to W, whereas Z[ /&n] E" (¢ AWY) converges in probability
to a continuous process for all indices j, we stlll have the stable convergence in law of

Z[t/A"] ¢j', but the limit has the form A + B + M, where the process M is a stochastic
integral with respect to W. Se [13] for more details.
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5 A first LNN (Law of Large Numbers)

At this stage we start giving the basic limit theorems which are used later for statistical
applications. Perhaps giving first all limit theorems in a purely probabilistic setting is not
the most pedagogical way of proceeding, but it is the most economical in terms of space...

We are in fact going to provide a version of the results of Section 3, and other con-
nected results, when the basic process X is an It0 semimartingale. There are two kinds
of results: first some LNNs similar to (3.5), (3.9), (3.18) or (3.20); second, some “central
limit theorems” (CLT) similar to (3.10) or (3.23). We will not give a complete picture,
and rather restrict ourselves to those results which are used in the statistical applications.

Warning: Below, and in all these notes, the proofs are often sketchy and sometimes
absent; for the full proofs, which are sometimes a bit complicated, we refer essentially
to [15] (which is restricted to the 1-dimensional case for X, but the multidimensional
extension is straightforward).

In this section, we provide some general results, valid for any d-dimensional semi-
martingale X = (X7)i<j<q, not necessarily It6. We also use the notation (3.1) and (3.2).
We start by recalling the fundamental result about quadratic variation, which says that

for any indices j, k, and as n — oo (recall A,, — 0):

[t/An]
ST oarxiArxE T xd XM, = ofF + 3 AxiaxEh, (5.1)
=1 s<t

This is the convergence in probability, for the Skorokhod topology, and we even have
the joint convergence for the Skorokhod topology for the d?-dimensional processes, when
1 < j,k <d. When further X has no fixed times of discontinuity, for example when it is
an [t6 semimartingale, we also have the convergence in probability for any fixed t.

Theorem 5.1 Let f be a continuous function from R into RY .
a) If f(z) = o(||z||*) as x — 0, then

V(fAn)e —2 frpme = Y fAX,). (5.2)

s<t

b) If f coincide on a neighborhood of O with the function g(x) = Z;l’k:l vikxjry (here

each 71 is a vector in RY), then
P d '
V(A == > 4G + > (5.3)
Jk=1

Moreover both convergences above also hold in probability for any fized t such that P(AX; =
0) =1 (hence for all t when X is an Ité6 semimartingale).

Proof. 1) Suppose first that f(z) = 0 when ||z| < ¢, for some € > 0. Denote by
S1, 59, -+ the successive jump times of X corresponding to jumps of norm bigger than
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€/2,s0 S, — oo. Fix T' > 0. For each w € Q there are two integers @ = Q(T,w) and
N = N(T,w) such that Sg(w) < T < Sg+1(w) and for all n > N and for any interval
(i—1)Ay,iAy] in [0, T] then either there is no S in this interval and ||A' X|| < ¢, or there
is exactly one S, in it and then we set oy = AP X — AXg,. Since f(z) = 0 when [|z|| < ¢
we clearly have for all t < T and n > N:

Vo - 3 roaxs)

q: Sq<An[t/An]

Q
| < D IF(AXs, +af) - FAXS,).
q=1

Then the continuity of f yields (5.2), because o' — 0 for all g.

q

2) We now turn to the general case in (a). For any 7 > 0 there is ¢ > 0 such that
we can write f = f. + f., where f. is continuous and vanishes for ||z| < e, and where
Il f2(z)]| < nllz||?. By virtue of (5.1) and the first part of the proof, we have

VLA < o a2 == g3 (X9, X9],
(f€7 ) —> fE*M

Moreover, f. xpu —5 fxp as € — 0 follows easily from Lebesgue convergence theorem
and the property f(x) =o(||z]|?) as z — 0, because ||x||? x pu; < oo for all t. Since n > 0
and € > 0 are arbitrarily small, we deduce (5.2) from V(f, A,) = V(fe, An) + V(fL, Ay).

3) Now we prove (b). Let f' = f — g, which vanishes on a neighborhood of 0. Then
if we combine (5.1) and (5. ) plus a classical property of the Skorokhod convergence, we
obtain that the pair (V(g,Ay), V(f’,Ay)) converges (for the 2d’-dimensional Skorokhod

topology, in probability) to the pair (Z;{k:l YikCI* + g p, ' * u), and by adding the
two components we obtain (5.3).

Finally the last claim comes from a classical property of the Skorokhod convergence,
plus the fact that an It6 semimartingale has no fixed time of discontinuity. O

In particular, in the 1-dimensional case we obtain (recall (3.1)):

p>2 = B(prA,) =% Bp) = Y |AXP. (5.4)

s<t

This result is due to Lépingle [18], who even proved the almost sure convergence. It
completely fails when r < 2 except under some special circumstances.

6 Some other LNNs

6.1 Hypotheses.

So far we have generalized (3.18) to any semimartingale, under appropriate conditions on
f. If we want to generalize (3.5) or (3.14) we need X to be an It6 semimartingale, plus
the fact that the processes (b;) and (o) and the function § in (1.7) are locally bounded
and (o) is either right-continuous or left-continuous.
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When it comes to the CLTs we need even more. So for a clearer exposition we gather
all hypotheses needed in the sequel, either for LNNs or CLTSs, in a single assumption.

Assumption (H): The process X has the form (1.7), and the volatility process oy is also
an [t6 semimartingale of the form

¢ t
o = 00+/ bsds—i-/ 3dWS—l—%(é)*(ﬁ—g)tﬁ-%/(é)*ﬁt. (6.1)
0 0

In this formula, oy (a d x d’ matrix) is considered as an R -valued process; by(w) and
o¢(w) are optional processes, respectively dd’ and dd'?-dimensional, and §(w, t, ) id a dd'-
dimensional predictable function on 2 x Ry x FE; finally k is a truncation function on R’
and ®'(z) = x — k(x).

Moreover, we have:

(a) The processes by(w) and sup,p W and sup,cp W are locally bounded,

where v and 7 are (non-random) nonnegative functions satisfying [} (v(z)*A1) A(dz) < oo
and [(¥(x)? A1) M(dz) < oo.

(b) All paths ¢ — by(w), t — &4(w), t — d(w,t,z) and t — 6(w,t,z) are left-continuous
with right limits. O

Recall that (Et) is locally bounded”, for example, means that there exists an increasing
sequence (T},) of stopping times, with T, — oo, and such that each stopped process
b/" = bynr, is bounded by a constant (depending on n, but not on (w,t)).

Remark 6.1 For the LNNs, and also for the CLTs in which there is a discontinuous limit
below, we need a weaker form of this assumption, namely Assumption (H’): this is as (H),
except that we do not require o; to be an It6 semimartingale but only to be cadlag (then
of course b, 7, § are not present), and b, is only locally bounded.

As a rule, we will state the results with the mention of this assumption (H’), when the
full force of (H) is not needed. However, all proofs will be made assuming (H), because it
simplifies the exposition, and because the most useful results need it anyway. |

Apart from the regularity and growth conditions (a) and (b), this assumption amounts
to saying that both X and the process o in (1.7) are It6 semimartingales: since the
dimension d' is arbitrary large (and in particular may be bigger than d), this accommodates
the case where in (1.7) only the first d components of W occur (by taking o, = 0 when
j > d), whereas in (6.1) other components of W come in, thus allowing o; to be driven
by the same Wiener process than X, plus an additional multidimensional process. In the
same way, it is no restriction to assume that both X and ¢ are driven by the same Poisson
measure .

So in fact this hypothesis accommodates virtually all models of stock prices or exchange
rates or interest rates, with stochastic volatility, including those with jumps, and allows
for correlation between the volatility and the asset price processes. For example if we
consider a g-dimensional equation

dY; = f(Yi-)dZ, (6.2)
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where Z is a multi-dimensional Lévy process, and f is a C? function with at most linear
growth, then if X consists in a subset of the components of Y, it satisfies Assumption
(H). The same holds for more general equations driven by a Wiener process and a Poisson
random measure.

6.2 The results.

Now we turn to the results. The first, and most essential, result is the following; recall that
we use the notation pc, for the law N(0,00%), and p@* denotes the k-fold tensor product.
We also write p&*(f) = [ f(z)p2*(dx) if f is a (Borel) function on (R?)k. With such a
function f we also assomate the followmg processes

[t/An]

V(£ k A) Z f(A”X/\/ oy ;;,C,IX/\/AH). (6.3)
Of course when f is a function on R?, then V'(f,1,A,) = V(f,A,), as defined by (3.2).

Theorem 6.2 Assume (H) (or (H’) only, see Remark 6.1)), and let f be a continuous
function on (RY* for some k > 1, which satisfies

k
[f(r, )] < Ko [T+ llzyllP) (6.4)

j=1
for some p > 0 and K. If either X is continuous, or if p < 2, we have A, V'™ (f, k, An)¢
u.c.p. t k d
- fo Po (f) U
In particular, if X is continuous and the function f on R? satisfies f(Ax) = AP f(x)
for all z € R and X\ > 0, then

t
APRV(FA,) 25 Opau<f>du. (6.5)

The last claim above may be viewed as an extension of Theorem 5.1 to the case when
the limit in (5.2) vanishes. The continuity of f can be somehow relaxed. The proof will
be given later, after we state some other LLNs, of two kinds, to be proved later also.

Recalling that one of our main objective is to estimate the integrated volatility Cg k,
we observe that Theorem 5.1 does not provide “consistent estimators” for C; when X is
discontinuous. There are two ways to solve this problem, and the first one is as follows:
when X has jumps, (5.1) does not give information on C; because of the jumps, essentially
the “big” ones. However a big jump gives rise to a big increment A?’X. So an idea,
following Mancini [19], [20], consists in throwing away the big increments. The cutoff level
has to be chosen carefully, so as to eliminate the jumps but keeping the increments which
are “mainly” due to the continuous martingale part X¢, and those are of order v/A,. So
we choose two numbers w € (0,1/2) and a > 0, and for all indices j, k < d we set

[t/An]
Vi@, a,An) = D (ATXIATXM) 1 ar x| <ans)- (6.6)
i=1
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More generally one can consider the truncated analogue of V'(f, k, A,) of (6.3). With
@ and « as above, and if f is a function on (R%)*, we set

V/(wv a; fu k‘, An)t -
[t/An]

Z f(A”X/ﬁ, AV 1X/\/7)lﬂ] 1,k tIA7

X|<ang}-  (6.7)

i+j—1

Theorem 6.3 Assume (H) (or (H’) only), and let f be a continuous function on (R?)
for some k > 1, which satisfies (6.4) for some p > 0 and some Ky > 0. Let also w €
(0, %) and o > 0. If either X is continuous, or X is discontinuous and p < 2 we have
AV™(w, o f k, Ap)e —5 fopgu

In particular, VI*(w, o, A,) ﬂ Cik.

This result has no real interest when X is continuous. When X jumps, and at the
expense of a more complicated proof, one could show that the result holds when p < 4,
and also when p > 4 and w > ﬁ when additionally we have [(y(z)" A1)A(dz) < oo
for some r € [0,2) (where v is the function occurring in (H)).

The (slight) improvement on the condition on p, upon the previous theorem, allows to
easily estimate not only Cy, but also the integral fg g(cs)ds for any polynomial g on the
set of d X d matrices. For example if we take

k
flzy, - xg) = H(a;;njx;”), (6.8)
j=1
for arbitrary indices m; and n; in {1,---,d}, then we get
AV ™M@, o5 f k, An)e =5 / H <" ds. (6.9)

The problem with this method is that we do not really know how to choose @ and « a
priori: empirical evidence from simulation studies leads to choose w to be very close to 1/2,
like w = 0.47 or 0.48, whereas « for estimating Ctjj , say, should be chosen between 2 and 5
times the “average v/ci7” (recall ¢ = 00™). So this requires a preliminary rough estimate
of the order of magnitude of ¢/7: of course for financial data this order of magnitude is
usually pretty much well known.

Another way, initiated by Barndorff-Nielsen and Shephard (see [6] and [7]) consists in
using the so-called bipower, or more generally multipower, variations. This is in fact a
particular case of the Theorem 6.2. Indeed, recalling that m,. is the rth absolute moment
of N'(0,1), we set for any r1,---,r; € (0,2) with r; +--- 4+ r; =2 (hence [ > 2):

ij(rla T ,Tl,A )t =

[t/An]
1 ) )
dmy,, - my, ) (H\Am (X7 4 XP)[re — H\Am (X7 — xRy “)(6.10)
" =1 v=1
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Then obviously this is equal to Ai V'(f,1,A,), where

n

l l

1 . .
[y, m) = T (H ] + 2™ — H |z, —1‘5\”> ;
T1 T

v=1 v=1

and p@(f) = (00*)?* by a simple calculation. Then we deduce from Theorem 6.2 the
following result:

Theorem 6.4 Assume (H) (or (H’) only)), and let vy, € (0,2) be such that v +
---+1;=2. Then ij(rL e Ay) u-c-ps Ct]k.

Now, the previous LNNs are not enough for the statistical applications we have in
mind. Indeed, we need consistent estimators for a few other processes than C;, and in
particular for the following one which appears as a conditional variance in some of the
forthcoming CLTs:

D) = Y fAX) (R + ) (6.11)

s<t

for indices j,k < d and a function f on RY with |f(z)| < K|z|? for ||z|| < 1, so the
summands above are non-vanishing only when AX, # 0 and the process D7*(f) is finite-
valued.

To do this we take any sequence k,, of integers satisfying
ky, — 00, koA, — 0, (6.12)

and we let [,,;(i) ={j e N: j#i:1<j<[t/A], |i —j| < kp} define a local window
in time of length k,A,, around time iA,,. We also choose w € (0,1/2) and o > 0 as in
(6.6). We will consider two distinct cases for f and associate with it the functions fy:

o f(z) = o(]|z[]*) asa —0, fa(@) = f(2) } (6.13)
o f(x)= Ziwzl YowTvTy on a neighborhood of 0,  fu(7) = f(2)1{g)>arz1- '

Finally, we set

[t/An]—kn
j 1 n n yJj n
Djk(f,w,a,ﬁn)t:f A Yo flAFX) Y (AFXT APXM)Lgiapx<ans)-
R LE€In,:(4)

(6.14)

Theorem 6.5 Assume (H) (or (H’) only), and let f be a continuous function on R?
satisfying (6.13), and j, k < d and w € (0,1/2) and o > 0. Then

P—sk

DI*(fw a,A,) — DIF(f). (6.15)

If further X is continuous and f(Ax) = NP f(x) for all A\ > 0 and x € R?, for some p > 2
(hence we are in the first case of (6.13)), then

t
AEPRDH(fma,8) =5 2 [ g, (el (6.16)
0
Before proceeding to the proof of all those results, we give some preliminaries.
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6.3 A localization procedure.

The localization is a simple but very important tool for proving limit theorems for dis-
cretized processes, over a finite time interval. We describe it in details in the setting of
the previous theorems, but it will also be used later for the CLTs.

The idea is that, for those theorems, we can replace the local boundedness assumptions
in (H-r) for example by boundedness (by a constant), which is a much stronger assumption.
More precisely, we set

Assumption (SH): We have (H) and also, for some constant A and all (w, ¢, z):

[l < A, llow@) <A, [X@I <A, @) <A, [5w)] <A } (6.17)

I6(w, t,2)]| < A(v(@) A1), [8(w,t,2)] < AG(z) A1)

If these are satisfied, we can of course choose v and 7 smaller than 1.

Lemma 6.6 If X satisfies (H) we can find a sequence of stopping times R, increasing
to +00 and a sequence of processes X (p) satisfying (SH) and with volatility process o(p),
such that

t < Rp = X(P)t = X4, J(p)t = 0¢. (618)

Proof. Let X satisfy (H). The processes by, gt, Ot, SUP,cR % and sup,cp ”%(’(t’;))” are

locally bounded, so we can assume the existence of a “localizing sequence” of stopping
times T}, (i.e. this sequence is increasing, with infinite limit) such that for p > 1:

t < Tp(w) . (6.19)

{ (@) <p. @)l <p, [G@)I < p,
[6(w, t, )| < py(z), [o(w,t,2)]| < py(e).

We also set S, = inf(t : || X¢|| > p or |lo¢|| > p), so R, = T, ASp is again a localizing
sequence, and we have (6.19) for ¢ < R, and also ||X¢|| < p and ||o¢|| < p for t < R,. Then
we set

b(o) by if t<R, o) b if t<R, 50) 5 if t<R,
= = g =
b 0 otherwise, Pt 0 otherwise, b 0 otherwise,

otherwise,

Ow,t,x) if ||6(w,t,z)|| <2pandt < R
5@)(&}’%@@:{ (w,ta) it 6w, t,0)] < 2 ,

- S(w,t,x) if ||6(w,t,2)]| <2pandt<R
o(p)(w, t,z) = { g

0 otherwise,

At this stage we define the process o(p) by (6.1) with the starting point o(p)o = oo if
lloo|| < p and o(p)o = 0 otherwise, and the coefficients b(p) and o(p) and §(p), and then
the process X (p) by (1.7) with the starting point Xo = X if || Xo]| < p and X (p)op = 0
otherwise, and the coefficients b(p) and o(p) (as defined just above) and d(p).
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We can write p as pp = ;- 1p(t) £ 3,) where D is the countable (random) support of
pand By is E-valued. Outside a P-null set N we have AX; = 1p(t) 6(t, ;) and AX (p); =
1p(t) 6(p)(t, Br), and since [|AX¢|| < 2p when t < R, we deduce AX; = AX(p); if t < Ry,
which implies that £'(d) x p = £'(6(p)) * p, for t < R;,. As for the two local martingales
k() * (u — v) and k(d(p)) * (4 — v), they have (a.s.) the same jumps on the predictable

interval [0, R,] as soon as k(z) = 0 when ||z|| > 2p (this readily follows from the definition
of 6(p), so they coincide a.s. on [0, R,)].

The same argument shows that 7/ (8) K, = 7 (0(p)) #p, for t < Ry, and HOE (p—v); =
R(5(p)) * (0 —v); for t < R, It first follows in an obvious way that o(p); = oy for all
t < Ry, and then X (p); = X; for all t < R, that is (6.18) holds.

Finally ny definition the coefficients b(p), b(p), 5(p), 6(p) and &(p) satisfy (6.17) with
A = 2p. Moreover the processes o(p) and X (p) are constant after time R, and they have
jumps bounded by 2P, so they satisfy (6.17) with A = 3p, and thus (SH) holds for X (p).O

Now, suppose that, for example, Theorem 6.2 has been proved when X satisfies (SH).
Let X satisfy (H) only, and (X(p), Rp) be as above. We then know that, for all p, T" and
all appropriate functions f,

t
sup [ A,V (X @) fk A = [ 2k (Dau] <0, (6.20)

t<T

On the set {R, > T'+1}, and if kA, < 1, we have V'™ (X (p); f, k, An)r = V™(X; f, k, Ap)s
and o(p); = oy for all t < T, by (6.18). Since P(R, > T+ 1} — 1 as p — o0, it readily
follows that A, V/™(X; f,k, An)e =5 [2 p2¥(f)du. This proves Theorem 6.2 under (H).

This procedure works in exactly the same way for all the theorems below, LNNs or
CLTs, and we will call this the ”localization procedure” without further comment.

Remark 6.7 If we assume (SH), and if we choose the truncation functions x and & in
such a way that they coincide with the identity on the balls centered at 0 and with radius
2A, in R? and R’ respectively, then clearly (1.7) and (6.1) can be rewritten as follows:

Xi = Xo+ [y bsds+ [y o5 dWs+ 5% (n— ),
- | (6.21)
t

o = 00+fggsds+f05dWs+g*(H—

6.4 Some estimates.

Below, we assume (SH), and we use the form (6.21) for X and 0. We will give a number
of estimates, to be used for the LLNs and also for the CLTs, and we start with some
notation. We set

n i+1)An
¥t = i ST, (beds + (00— 0 > ) dW)

/Bzﬂl = 0(i—-1)A, AZ‘HW/\/E, X;I? = \/7 A?—H(é* (H_Z))7 (6.22)
Xp = X0+ B =6 = X =X
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In particular, A} X = \/E(XZ[ + ﬁZl) It is well known that the boundedness of the
coefficients in (SH) yields, through a repeated use of Doob and Davis-Burkholder-Gundy
inequalities, for all ¢ > 0 (below, K denotes a constant which varies from line to line and
may depend on the constants occurring in (SH); we write it K, if we want to emphasize
its dependency on another parameter p):

E?—l(HA?Xch) < KqA%/2, E(”O’prs — O'th | ft) < _[('[1(91/\(‘1/2)7

1N 2
Ef o (1873]19) < Ko, Ef (Il < Ko, (6.23)
K A—(l—Q/QV : 1
By (Il + gl < o Datn o,y Bt
K, 1Ay if X is continuous

We also use the following notation, for n > 0:

1/17](.%') = ¢($/7’]), w a C'* function on Rd with 1{”ng1} < w(.%) < 1{||x||§2} (624)

Lemma 6.8 Assume (SH) and let r € [0,2] be such that [(y(z)" A1)A(dx) < oo, and oy,
a sequence of numbers with a, > 1 and an/A, — 0. Then

lim  sup ANl QEZH LINEIP Aa2) = o, (6.25)

n=00 i>1 weN

1
r<l = lim sup  Al/271gr-t Ky <‘\/F A?H((F*,u)‘/\ozn> = 0, (6.26)

n=00 i>1 weN

. . 1
lim limsup sup E (VA XZI”Q An?) = 0. (6.27)
=0 nooco i>1, we A

(When r < 1 above, the two integral processes ¢ x y and  x v are well defined, and of
finite variation).

Proof. It is enough to consider the 1-dimensional case. For any ¢ € (0,1] we have
d%(p—v) = N(e)+ M(e) + B(e), where (s is the truncation function in (1.1)).

N(e) = (01g5/>e) %, M(e) = (d1y5<ey) * (p — ), Ble) = —(01yjs>e}) x ¥

Then if v, = f{y(a:)ga} ~(z)"A(dz), we have by (SH):

]P)?Jrl 1( i+l ( ) 7é 0) < Zn+l71(A@n+l(1{7>g} *H)) — An/\({')/ > E}) < KAnE_T
By 1 (A7 M(0)%) < An fiymy<ey Y(@)*Ade) < Aps® T,
A B(e)] < KAn(l—i-f{v(z)x}(fy(x) Al)A(d;p)) < KA, e~ (=D

We also trivially have

P A < a1 ian, N2y + 317 + BATHAY M (e)]” + 3AL AL, B(e) .
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Therefore, using (6.23), we get

2A
E?+l—1(||XZz||2/\Oé%)§K< o + A+ Ty 4 AT n* )

Then since 7. — 0 as € — 0, (6.25) follows by taking € = &, = u2 (u; ' A (v4, )~ /*), where
1/2 \1/4
n

Uy = Qi — 0 (note that €, < uy,, hence v, <, )-

Next, suppose r < 1. Then d x u = N(g) + A(e), where A(e) = (d145<c}) * pt, and
obviously E" ;| (JA?, A(e)| < KAne'"v.. Moreover

1
| A ] Ao € auliag v + = AT A

17'>
Ye |

Therefore

il 1<’F ,+l(5*u)‘A1> < K<

and the same choice as above for € = ¢, gives (6.26).

Finally, we have for any n > 0:
VA, Xil? An? < 7721{A;1+ZN(6)¢0} + 30, X% + B|AT M (2)]? + 3|AY B(e)?,
hence if we take e = /1 above we get Ef!;_, (|\/E X?J|2 A 772) < KApg,,(n), where
gu(m) = 7 A+t TPy Ay
Since ¢/, (n) — ¢'(n) == n*>""/% + nl_r/Q'y\/ﬁ and 7. — 0 as € — 0, we readily get (6.27). O

Lemma 6.9 Assume (SH). Let k > 1 and | > 0 be integers and let ¢ > 0. Let f be a
continuous function on (RY)¥, satisfying (6.4) for some p >0 and Ky > 0.

a) If either X is continuous or if gp < 2, we have as n — 0o:

ATX AT,
sup ]En—— <‘f< £ P AN >—f n_ S n_ B
sl weq VA, VA, (B4 Liko1)

b) If qp < 2, and if o, is like in the previous lemma, we have as n — oo:

q) —0. (6.28)

n A?X A?Hc 1
g i <‘f (m VA, )1“1Sjs’c{ﬁ?+j_1)<lls%}
n n q
_f (ﬁi—ll?' ) i_l7l+k_1) ‘ ) — 0. (629)

Proof. For any A > 0, the supremum G 4(e) of |f(x1 + y1, -, 2 + yr) — f(x1,- -+, zk)|
over all ||z;]] < A and ||ly;|| < e goes to 0 as e — 0. We set g(x,y) = 1+ ||z||? + ||y||?. If
we want to prove (6.29) the sequence «, is of course as above, whereas if we want to prove
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(6.28) we put a,, = oo for all n. Then for all A > 1 and s > 0 and € > 0 and « € [1, x]
we have, by a (tedious) calculation using (6.4), the constant K depending on Ky, g, k:

|fl@r+y e+ ue) 1o flegli<on) — f(@1,0 )|

k
< GA(f)q + K Z ha,s,A,n($m7 ym) H g(a:j, yj) , (630)
m=1 jzl"")k7 ‘]?ﬁm
where
||Pa+1 y 21 y pg+s /\apq+8
ha,syA,n(xyy) = ”HA + ”:L‘HP‘I(”yH A 1) +APqH ”52 + H ” e n .

7
have if X is continuous or if pg < 2:

We apply these estimates with z; = 3, 1j—1 and y; = xi 0. In view of (6.23) we

i i—2(9(Bi i1 Xitr—1)) < K. (6.31)

3 n — n mn n 7
Next consider NieA = Ei+j—2(h5787147n(@L—l,l-ﬁ-j—l?Xi—l,l+j—1)) for an adequate choice of

s, to be done below. When X is continuous we take s = 1, and (6.23) and Cauchy-
Schwarz inequality yield ¢7%; . 4 < K(1/A+ VA, + A, AP/ €2). In the discontinuous case
when pg < 2 and o, = 0o we take s = 2 — pg > 0 and by (6.23) and Cauchy-Schwarz
again, plus (6.25) with » = 2, we get the existence on a sequence 0, — 0 such that
tiea S K(A/A+1/A° + AP45, /e?). Finally in the discontinuous case when o, < oo we
have pg < 2 and we take s = 0 and we still obtain (', _ 4, < K(1/A + AP45, /%) by the
same argument. To summarize, in all cases we have for all € > 0:

sup (- a(w) < ¥n(4e), where lim limsup,(A,e) = 0. (6.32)

—
w,t,] A—oo n—oo

At this stage, we make use of (6.30) and use the two estimates (6.31) and (6.32) and
take successive downward conditional expectations to get the left sides of (6.28) and (6.29)
are smaller than G 4(g)? + K, (A,€). This hold for all A > 1 and € > 0. Then by using
Ga(e) — 0 as € — 0 and the last part of (6.32), we readily get the results. a

Lemma 6.10 Under (SH), for any function (w, x) — g(w,z) on QxR which is Fli—1)a,®
R -measurable, and even and with polynomial growth in x, we have

i-1 (AN g(,8]") = 0 (6.33)

for N being any component of W, or being any bounded martingale orthogonal to W.

Proof. When N = W7 we have A'Ng(8!")(w) = h(oi—1)a,, AW)(w) for a function
h(w, x,y) which is odd and with polynomial growth in y, so obviously (6.33) holds.

Next assume that N is bounded and orthogonal to W. We consider the martingale
M, = E(g(., 8")|Ft), for t > (i — 1)A,. Since W is an (F;)-Brownian motion, and since
Bi is a function of o(;_1)a, and of AFW, we see that (M¢);>(i—1)a, is also, conditionally
on F;_1)a,, & martingale w.r.t. the filtration which is generated by the process W; —

n?’

28



Wi-1)a,- By the martingale representation theorem the process M is thus of the form
My = Mi_ya, + f(ti_l) A, nsdWs for an appropriate predictable process n. It follows that
M is orthogonal to the process Nj = Ny — N(;_1)a,, (for t > (i —1)A,), or in other words
the product M N’ is an (F);>(;—1)a, martingale. Hence

i1 (APN g(., \/E U(i—l)AnAan)) = ?—1(A?N,an) = ?—1A?N,A?M) =0,
and thus we get (6.33). O

6.5 Proof of Theorem 6.2.

When f(Az) = N f(z) we have V(f,A,) = AZ/ZV’(f, Ay), hence (6.5) readily follows
from the first claim. For this first claim, and as seen above, it is enough to prove it under
the stronger assumption (SH).

If we set
[t/An]

V”(f k A Z f z,O?"'ﬂ Zkfl)v

we have A, (V/(f, k,An) = V' (f, k,Ay)) uC—p> 0 by Lemma 6.9-(a) apphed with [ = 0 and
q = 1. Therefore it is enough to prove that A, V" (f, k, Ap)e —5 fo k(f,)dv. For this,
with I(n,t,l) denoting the set of all ¢ € {1,---,[t/Ay]} Wthh are equal to [ modulo k, it
is obviously enough to show that for [ =0,1,---,k — 1:

wep. 17
St mm g [ e, where qf = Auf(B e Bl ) (630
iel(ntl) 0
Observe that n;" is F(;;x—1)a,-measurable, and obviously
L) = A (), EL (W) < KAL
By Riemann integration, we have 3, ¢, , ;) Ei' ;1 (n]") =52 gpf?k(fv)dv, because t —
p2F(f) is right-continuous with left limits. Hence (6.34) follows from Lemma 4.1.

6.6 Proof of Theorem 6.3.

The proof is exactly the same as for Theorem 6.2, once noticed that in view of Lemma
6.9-(b) applied with a,, = ocAf_l/Q we have

An(V(@, s fLh, An)e = V' (f k, Ap))) =5 0.

6.7 Proof of Theorem 6.5.

Once more we may assume (SH). Below, j, k are fixed, as well as @ and a and the function
f, satisfying (6.13), and for simplicity we write D = D/*(f) and D" = D*(f, @, a, A,,).
Set also

An JANS n n ,J an,
Dy = = SR £ (AT X) Y er i BB

(6.35)
Anl—kn ) s
S P (B ) Srer o B8
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Lemma 6.11 We have D" Pos D.

Proof. a) Let 1. be as in (6.24) and

t/An]—kn
n 1 n n,J an n An n
Y(e)} = . Z (farhe) (A7 X) Z BB, ", Z(e)i = D =Y (e)f.
=14k, l€1n,:(4)

It is obviously enough to show the following three properties, for some suitable processes
Z(e):

lim limsup E(sup|Y(¢)s]) = O, (6.36)

e—0 n SSt
ce(0,1), n—oo = Z(E)" =¥ Z(), (6.37)
e—0 = ZkE) =% D. (6.38)

b) Let us prove (6.36) in the first case of (6.13). We have |(fv.)(z)| < é(g)||z||? for
some function ¢ such that ¢(¢) — 0 as ¢ — 0. Hence (6.23) yields EI" ; (|(fve)(A'X)]) <
K¢(e)A,. Now, Y(e) is the sum of less than 2k,[t/A,] terms, all smaller in absolute
value than é (fe)(ATX)]|| ﬁ?HQ for some i # j. By taking two successive conditional
expectations and by using again (6.23) the expectation of such a term is smaller than
K¢(e)A, /ky, hence the expectation in (6.36) is smaller than Kt¢(¢) and we obtain (6.36).

Next, consider the second case of (6.13). Then (f,1:)(z) = 9(7)1{aa® <|z|<c}, Where
g is an homogeneous polynomial of degree 2. Then if aA¥ < e < 1/2 we have

)+ )| < K (2272 + I A <?).
Using this with « = \/A,, 5" and y = A’ X', we deduce from (6.23) and (6.27) that
EY (| (fue)(A7X))) < KA (A7 +a(n,9)),
where lim._,g limsup,, . @(n,e) = 0. Then exactly as for the first case, we deduce that

the expectation in (6.36) is smaller than Kt(Al=2% 4+ a(n,¢)), and we obtain again (6.36).

c) Now we define Z(e). Let us call T (¢) for ¢ = 1,2, - - the successive jump times of
the Poisson process p([0,t] x {z : y(x) > £/2}), and set

ZEi= Y (fA=v))AXg,e) (G + o)

q:Ty(e)<t

Forallw e Q, ¢ > 1, &' € (0,¢) there is ¢’ such that Ty (e)(w) = Ty (¢')(w), whereas 1 — 1.
increases to the indicator of R%\{0}. Thus we obviously have (6.38).

d) It remains to prove (6.37). Fix ¢ € (0,1) and write T, = T(¢). Recall that for
u different from all T,’s, we have ||AX,|| < €/2. Hence, for each w and each ¢t > 0, we
have the following properties for all n large enough: there is no 7y in (0, k,A,], nor in
(t — (kn + 1)Ay, t]; there is at most one Tj, in an interval (( — 1)A,,iA,] with (A, <t,
and if this is not the case we have 1.(A?X) = 1. Hence for n large enough we have

Z(g)t = Z Cga

@ knAn<Ty<t—(kn+1)A,
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where

(FA =) (AL, 0 X) D> B8,

lEI’( ,q)
and i(n,q) = inf(i : iA,, > Ty) and I'(n,q) = {l: 1 #i(n,q),|l —i(n,q)| < kn}.

n 1
gq:?n

To get (6. 37) it is enough that ;' L, (f(1 =) (AXT,) (077,’:_ +C7TIZ) for any ¢. Since
(f(1 — b)) (AT _ X) — (f(1 =¢))(AXr,) pointwise, it remains to prove that
1 n.J n, P 1 1 TL,‘ 7, P j
kn Z gt — CYTIZ—’ ko > 878 £ = CJT]Z' (6.39)

lel” (n,q) " lel’ (n,q)

where I’ (n, q) and I’ (n, q) are the subsets of I'(n, ¢) consisting in those [ smaller, respec-
tively bigger, than i(n,q). Letting l(n, q) be the smallest [ in I’ (n,q), we see that the left
side of the first expression in (6.39) is U’ + U,", where

dl
j 7T 1
— Jr ks q —n B
o Z Ul(n,q)AnUl(n,q)AnUn(Tv 3)7 Uq (T‘, 5) AN

n
r,s=1

> ATWTAIWS,
" lel (n,g)
d 1
n r i ks nyfT ANTA7S
U = Z A Z (o {l DA Ul](n,q)An)(J(lfl)A Ul(nq) DATWIATWE.
rs=1" """ 1el (n,q)

On the one hand, the variables AW are i.i.d. N(0,A,Ly), so UZ(T, s) is distributed
as 1/k, times the sum of k,, i.i.d. variables with the same law as W] W7, hence obviously
ﬁg(r, s) converges in probability to 1 if r = s and to 0 otherwise. Since oy(,, A, — 07,

we deduce that Ug‘ E, C%ﬂk_.
q
On the other hand, due to (6.23) and by successive integrations we obtain

- 1
E(UF) < o X Ellog-na, = otnganl®) < Kknln

" lel’ (ng)

which goes to 0 by virtue of (6.12). Therefore we have proved the first part of (6.39), and
the second part is proved in a similar way. O

Lemma 6.12 If f is continuous and f(\x) = NP f(z) for all X > 0, x € R* and some
p > 2, we have A}L_p/Qﬁ;" N 2fg o () du.

Proof. First we observe that by polarization, and exactly as in the proof of Theorem 6.3, it
is enough to show the result when j = k, and of course when f > 0: then D is increasing
in ¢, and fo po. (F)AF du is also increasing and continuous. Then instead of proving the
local uniform convergence it is enough to prove the convergence (in probability) for any
given t.

With our assumptions on f, we have

[t/An)—kn

N VI S DI T

" i=ltkn 1€ln, (i)
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Moreover, A, Z,Lt/ﬁ_kn pa(iilmn(f)c];C k) A £, fot pau(f)ccﬁk du by Riemann integra-
tion. Therefore, it is enough to prove the following two properties:

[t/An)—kn
P

Z A po(z 1)An(f)) C]Zk 1—kn)An I 0, (640)

i=1+kn
A [t/An]—kn
" n n P n n J an

Y=t S 3T =0, where ¢= FBBB —clf 4y a,)- (6:41)

"=tk 1€1n(d)

Each summand, say (", in the left side of (6.40) is Fja,,-measurable with E ,(¢]*) =0
and E? ;((¢")?) < KAZ (apply (6.23) and recall that |f(z)] < K|z|” with our assump-
tions on f), so (6.40) follows from Lemma 4.1.

Proving (6.41) is a bit more involved. We set

[t/ An]—kn

n n n A
Gt = F(O(-1-k) 2, AW/ AR) (8 g - (z k)AL )" Y/ = . Z Z

" i=1tkn 1€1,4(3)

On the one hand, for any [ € I,+(i) (hence either [ < i or [ > i) and by successive
integration we have

‘E?flfkn(gz/jllﬂ = ‘pU(i—l—kn)An (f) ?flfkn(cglk_l)An (i— 1 kn) | < K\/ k A

by (6.23), the boundedness of o and [f(z)| < K|z|". Moreover Ef |, ((Cﬁ)Z) < K
is obvious. Therefore, since E((Y;™)?) is A?/k2 times the sum of all E(¢/? ¢/7,) for all
1+ky <i,i <[t/A,] =k, and | € I, 4(7) and I € I,,+(i"), by singling out the cases where
li —4'| > 2k, and |i — 4| < 2k, and in the first case by taking two successive conditional
expectations, and in the second case by using Cauchy-Schwarz inequality, we obtain that

AQ

B((Y")) < Ko

L (4ka[t/ Al (knln) + 4K2[E/A]) < K (8kpAn 4+ tA,) — 0.

In order to get (6.41) it remains to prove that Y;* — Y} 0. By Cauchy-Schwarz
inequality and (6.23), we have

1/2

E(IG = ¢/ < K (Epo, 1y, () = Poes s (D)

Then another application of Cauchy-Schwarz yields E(|Y;™ — Y/"|) < K¢/ an(t), where

[t/ An]
Ozn(t) - n Z Z ]E ’pa(l 1)Ap ) pO’(iflfkn)An <f)|2)
" i=ltkn 1€In, (i)

[t/ An]—kn

t
= 200 Y Elpeya, (F) = oo a (D) < 2 /0 gn(5)4ds,

i=1+ky,

g

o
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with the notation gn(s) = E((poy, @ speany (f) — p‘TAn[S/An](f))Q). Since ¢; is bounded
and f is with polynomial growth, we first have g,(s) < K. Since further ¢ — o; has no
fixed time of discontinuity and f is continuous and A,k, — 0, we next have g,(s) — 0
pointwise: hence a,(t) — 0 and we have the result. O

u.c.p.

Proof of (6.15). In view of Lemma 6.11 it is enough to prove that Dr — pn % 0, and
this will obviously follow if we prove that

sup — E(fa(AX)G]) — 0 as n— oo, (6.42)

where (' = A}‘XjA{‘Xkl{HA;LXHgaAg} - Anﬂln’jﬁln’k-

A simple computation shows that for z,y € R% and € > 0, we have

1
@5+ 33) @k + 9L sie) — Twel < K (Ml + el (lyl A2) + [yl A 2).

We apply this to z = /A, ' and y = VA, x]' and € = AT, and (6.23) and (6.27) with
1n = € and Cauchy-Schwarz inequality, to get

P (IG0]) < KA (A + an)

for some «,, going to 0. On the other hand, (SH) implies that A X is bounded by a con-
stant, hence (6.13) yields | f,(A?X)| < K|JArX || and (6.23) again gives E? | (|f,,(A?X)))
< KA,. Then, by taking two successive conditional expectations, we get E(] f,,(A? X))
< KA%L(A}/%W + o) as soon as [ # 4, and (6.42) follows. O

Proof of (6.16). In view of Lemma 6.12 it is enough to prove that A}L#/Q(ﬁ’" —Dn) =%
0, when X is continuous and f(Ax) = X" f(z) for some r > 2. With the notation (" of the
previous proof, this amounts to prove the following two properties:

sup ———7 E(|f(ATX)(]) — 0O as n — 0o, (6.43)
1#£l An
1 n mn
sup (A X) 1 garxisansy IB71) = 0 as n—oo.  (6.44)

Since X is continuous and |f(z)| < K||z||", we have E" ,(|f,(A?X)]) < KA:/Q, hence
the proof of (6.43) is like in the previous proof. By Bienaymé-Tchebycheff inequality and
(6.23) we also have EI" | (| f(AT X)[1gjanx|>anz}) < K A% for any ¢ > 0, hence (6.44)
follows. -

7 A first CLT

As we have seen after (3.14), we have the CLT (3.7) when X is the sum of a Wiener
process and a compound Poisson process, as soon as the function f in V'(f, A,,) satisfies
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f(z)/]z|P — 0 as |z| — oo, for some p < 1. In this section we prove the same result, and
even a bit more (the stable convergence in law) when X satisfies (H).

In other words, we are concerned with the CLT associated with Theorem 6.2. For
statistical purposes we need a CLT when the function f = (f1,-- -, fy) is multidimensional:
in this case, V'(f, k, Ay) is also multidimensional, with components V'(f;, k, A,). On the
other hand, we will strongly restrict the class of functions f for which we give a CLT:
although much more general situations are available, they also are much more complicated
and will not be used in the sequel. Let us however mention that the present setting does
not allow to consider the CLT for multipower variations in the interesting cases like in
(6.10): for this, we refer to [8] when X is continuous, and to [9] when X is a discontinuous
Lévy process. For discontinuous semimartingales which are not Lévy processes, essentially
nothing is known as far as CLT's are concerned, for processes like (6.10).

One of the difficulties of this question is to characterize the limit, and more specifically
the quadratic variation of the limiting process. To do this, we consider a sequence (U;)i>1
of independent N(0, I;) variables (they take values in R?, and I, is the unit d x d matrix).
Recall that p,, defined before (6.3), is also the law of oU;, and so p,(g) = E(g(cU;)). In a
similar way, for any g-dimensional function f = (f1,---, f,) on (R%)* say with polynomial
growth, we set for i, =1,--- ¢

k—1

RI(f,k) = ) E(fi(UUka"'aUUQk—l)fj(O'UH—ka"‘aUUl+2k—1))
I=—k+1
2k = VE(fy(oUL, -+, cUNES; (0T, - - oT).  (7.1)

One can of course express this in terms of integrals of f with respect to the measures p,
and their tensor powers, but this is very complicated. Let us just mention the special case
where k£ = 1:

R?(fv 1) - pa(fifj)_po(fi)pa<fj)' (7'2)

The main result goes as follows:

Theorem 7.1 Assume (H). Let f be a q-dimensional function on (RY)* for some k > 1,
which is even in each argument, that is

flae, -z, =z, g1, - xk) = f(T, -, @—1, T, Tig, - -5 Tk)

identically for all l. In the following two cases:
a) X is continuous, and f is C1 with derivatives having polynomial growth,
b) fis C} (bounded with first derivatives bounded), and [(y(x) A1)A(dz) < oo (hence

the jumps of X are summable over each finite interval),

the q-dimensional processes

1

VA,

converge stably in law to a continuous process V'(f, k) defined defined on an extension
(Q, F,P) of the space (2, F,P), which conditionally on the o-field F is a centered Gaussian

(Anv’(f, ky,Ap)t — /Ot pé‘?f(f)du)
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Re-valued process with independent increments, satisfying
~ t ..
BV (fi, )V (5, K)e) = / RY (f. k)du. (7.3)
0

Another, equivalent, way to characterize the limiting process V'(f, k) is as follows, see
[13]: for each o, the matrix R,(f,k) is symmetric nonnegative, so we can find a square-
root S, (f, k), that is Sy (f, k)S,(f, k)* = Rs(f, k), which as a function of o is measurable.
Then there exists a g-dimensional Brownian motion B = (B%);<, on an extension of the
space (2, F,P), independent of F, and V'(f, k) is given componentwise by

V'(fi k) = Z/ S¥ (f, k)dBi. (7.4)
j=1"0

As a consequence we obtain a CLT for estimating Ctj ¥ when X is continuous. It suffices
to apply the theorem with £ = 1 and the d x d-dimensional function f with components
fi(x) = xIz*. Upon a simple calculation using (7.2) in this case, we obtain:

Corollary 7.2 Assume (H) (or (H’) only,although it is not then a consequence of the
previous theorem) and that X is continuous. Then the d x d-dimensional process with

components
[t/ An]

! (> arxiapxt - ci¥)
\/E ; 7 ) t

converge stably in law to a continuous process (ij)lgj,kgd defined defined on an extension
(ﬁ, F, Iﬁ’) of the space (2, F,P), which conditionally on the o-field F is a centered Gaussian
R?-valued process with independent increments, satisfying

~ . AN t -1,/ -/ s -/ /
By = / (¥ ' 4 7', (7.5)
0

It turns out that this result is very special: Assumption (H) is required for Theorem
7.1, essentially because one needs that A, thz/f"] Pogi_1ya, (9) converges to fg po.(g)ds at a
rate faster than 1/1/A,,, and this necessitates strong assumptions on o (instead of assuming
that it is an It6 semimartingale, as in (H), one could require some Holder continuity of its
paths, with index bigger than 1/2). However, for the corollary, and due to the quadratic
form of the test function, some cancelations occur which allow to obtain the result under
the weaker assumption (H’) only. Although this is a theoretically important point, it is
not proved here.

There is a variant of Theorem 7.1 which concerns the case where in (6.3) on take the
sum over the i’s that are multiple of k. More precisely we set
[t/kAn]
V/(fkBa)e = 3 F(Af et XV B ARX/VA). (7.6)
i=1
The LLN is of course exactly the same as Theorem 6.2, except that the limit should be

divided by k in (6.5). As for the CLT, it runs as follows (and although similar to Theorem
7.1 1 is not a direct consequence):

35



Theorem 7.3 Under he same assumptions than in Theorem 7.1, the q-dimensional pro-

cesses
1

= (awvoran -1 | ()

converge stably in law to a continuous process V'(f, k) defined defined on an extension
(Q, F,P) of the space (2, F,P), which conditionally on the o-field F is a centered Gaussian
RY-valued process with independent increments, satisfying

BV (V" (f. k0 | F) = 1 /0 (PEECFL5) = PERCFIREE ) ). (77)

Theorem 7.1 does not allow to deduce a CLT associated with Theorem 6.4, since the
function f which is used in (6.10) cannot meet the assumptions above. Nevertheless such
a CLT is available when X is continuous: see [8], under the (weak) additional assumption
that 0.0} is everywhere invertible. When X is discontinuous and with the additional
assumption that [(y(z) A 1)A(dz) < oo, it is also available, see [9] for the case when in
addition X is a Lévy process.

We do however give the CLT associated with Theorem 6.3, although it is not a direct
consequence of the previous one.

Theorem 7.4 Assume (H), and also that X is continuous or that [(y(z)" A1)A(dz) < oo
for some r € [0,1). Then for all w € [ﬁ L) and o > 0 the d x d-dimensional process

—r) 2
with components

\/27 (ij(w, a, Ay — C’gk>

converge stably in law to the continuous process (ij)lgj,kgd defined in Corollary 7.2.

In the discontinuous case, this is not fully satisfactory since we need the assumption
about r < 1, which we a priori do not know to hold, and further w has to be bigger than
1

TPEmE In the continuous case for X the assumption is simply (H), but of course in this

case there is no reason to prefer the estimators V7*(w, a, A,,)¢ to Z[Zf"] APXIARXE.

7.1 The scheme of the proof of Theorem 7.1.

This theorem is rather long to prove, and quite technical. We first describe here the main
steps. Note that the localization argument expounded earlier works here as well, so we can
and will assume (SH) instead of (H), without special mention. Also, the multidimensional
case for f reduces to the 1-dimensional one by polarization, as in the proof of Theorem
6.3, so below we suppose that f is 1-dimensional (that is, ¢ = 1). These assumptions are
in force through the remainder of this section. We also denote by M’ the set of all d’ x d’
matrices bounded by K where K is a bound for the process ||o¢||.

We use the notation
("= fATX ) Ap, - AT XV A, = f( 0y B B_1), m— ¢,
First, we replace each normalized increment A7, X/v/A,, in (6.3) by 7; (notation (6.22)):

this is of course much simpler, and we have the following;:

36



Proposition 7.5 The processes
[t/An]

= VAL 2 (G, ) (738)

converge stably in law to the process V'(f, k), as defined in Theorem 7.1.

Next, we successively prove the following three properties:

[t/ An]

Z Er (¢m) =2, (7.9)

[t/An]

VAL X (dn L) o (7.10)

[t/An]

( Z pUz I)An /Otp?f(f)du) = 0. (7.11)

Obviously our theorem is a consequence of these three properties and of Proposition 7.5.
Apart from (7.10), which is a simple consequence of Lemma 6.9, all these steps are non
trivial, and the most difficult is (7.9).

7.2 Proof of (7.10).

We use the notation I(n,t,1) of the proof of Theorem 6.2, and it is of course enough to

prove
\/7 Z ( o _ n 1( /In)) ﬂ 0
i€l(n,t,l)
for each I = 0,---,k — 1. Since each ;" is F(i1_1)a,-measurable, by Lemma 4.1 it is

even enough to prove that

A, Z (¢™)?) =& 0.

i€l(n,t,l)

But this is a trivial consequence of Lemma 6.9 applied with ¢ = 2 and [ = 0: in case (a)
the function f obviously satisfies (6.4) for some r > 0 and X is continuous, whereas in
case (b) it satisfies (6.4) with r = 0.

7.3 Proof of (7.11).

Let us consider the function g(o) = p2*(f), defined on the set M’. (7.11) amounts to

[t/An]

u.c.p. n 1
Z =0, where 7" = /( (9(ow) — g(o@i-1)a,))du. (7.12)
i=1 —Hen




Since f is at least C'! with derivatives having polynomial growth, the function g is Cbl on
M. However, the problem here is that ¢ may have jumps, and even when it is continuous
its paths are typically Holder with index o > 1/2, but nor a = 1/2: so (7.12) is not trivial.

With Vg denoting the gradient of g (a d x d’-dimensional function), we may write
n = n" + n/™ where (with matrix notation)

1 1Ay
77;” = VQ(U(il)An)/ (Uu - U(z‘ﬂ)An) du,
(i—1)An

iAp
mo__ 1

V™

In view of (6.21) we can decompose further 7" as " = pf* + p*, where

1Ay u .
i =—= Vg(oi-1)a, / du/ bds,
. VA, ( G=ha ) (i—1)A, (i—1)An

iAp u
o= Vg(o,— / du / 0sdW
: VA, (@-na,) (i—1)An (i—1)A

L [T _V<dsdx>).

On the one hand, we have |p}'| < K AY? (recall that ¢ is C} and b is bounded), so
ZWA"] n 2B 0. On the other hand, we have E? | (u/*) = 0 and E? {((u")?) < KA2
by Doob and Cauchy—Schwarz inequalities, hence Z[t/ An] Wi =% 0 by Lemma 4.1.

(ou) — g(a(ifl)An) - VQ(U(ifl)An)(Uu - U(ifl)An)) du.

b
—~ D
Q 3

Finally since g is C} on the compact set M we have \g(a )—g(o) = Vg(o)(o' —0o)| <
K| o' — o||h(||e" — o]) for all 0,0’ € M, where h(e) — 0 as ¢ — 0. Therefore

1 [YANS
S g e onal) o otena, | v

i—1)A,

< e [ o | K I? du
~ Oy — O(i— " Oy —O(i— " .
Ay (i-1)A, G-Dha evAy (i-1)A, G-ha

Since h(e) is arbitrarily small we deduce from the above and from (6.23) that Zl[zlA"] E(|n/™) —
0. This clearly finishes to prove (7.12).

7.4 Proof of Proposition 7.5.

We prove the result when k = 2 only. The case k > 3 is more tedious but similar.

= Anl+1
Letting g1(z) = [ po,(dy)f(z,y), we have V"(f), = S5 nn 4 40 = NifAnl+1
where nf* = 7 —|— ™ and

W= VB (FE 0B~ [ s, (@B 002))
AW = VB ([ pra, @ Blo) = 052, ().
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Since obviously E(|y/"|) < K+/A,, it is enough to prove that V) = ZZ[ZzA"HI 0
converges stably in law to the process V'(f,2).

Note that n* is F;a,,-measurable, and a (tedious) calculation yields
i-1(n}') =0, 2a(()?) = Angl, Pt < KA, (7.13)

where ¢! = g((7 — 2)Ap, (i — 1)Ay, 6% ) and

o(6.60) = [ e (5600 + ( [ pata)021)) = ([ rosnsie.n))
~(r2)" = 26520 [ prlan)sta) + 2 [ pan)otd) oo S o002

(here, p is the law N (0, I)). Then if we can prove the following two properties:

t/An]+1
STOEM (AN ) = 0 (7.14)
=2

for any N which is a component of W or is a bounded martingale orthogonal to W, and

t/An]+1

t
A, n L, o (f, :
> /0 R (f.2)du (7.15)

(with the notation (7.1); here f is 1-dimensional, so R,(f,2) is also 1-dimensional), then
Lemma 4.4 will yield the stable convergence in law of V" to V! (f,2).

Let us prove first (7.14). Recall n" = 4 + +/", and observe that

W= VAL h(oG—g)n,, AT W/VAL ATW/VA,)
it = VAL W (oG-, AFW/VA),

where h(o,z,y) and h/(o,z) are continuous functions with polynomial growth in z an y,
uniform in o € M’. Then (7.14) when N is a bounded martingale orthogonal to W readily
follows from Lemma 6.10.

Next, suppose that N is a component of W, say W'. Since f is globally even and p,,
is a measure symmetric about the origin, the function h/(c,z) is even in x, so (o, x)x!
is odd in = and obviously EI' | (7/*A?W1) = 0. So it remains to prove that

(2

[t/An]+1
S¢S0 where (P =EL (FATWY). (7.16)
=2

An argument similar to the previous one shows that h(o,x,y) is globally even in (z,y),
so (' has the form A, k(oi_o)a,, Al W/V/Ay) where k(o,z) = [ ps(dy)h(o,z,y)y" is
odd in z, and also C! in = with derivatives with polynomial growth, uniformly in o € M.
Then E} ,(¢]") = 0 and E ,(|¢]"?) < KAZ. Since (' is also F(;_1)a,-measurable, we
deduce (7.16) from Lemma 4.1, and we have finished the proof of (7.14).
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Now we prove (7.15). Observe that ¢} is F(;_1)a,-measurable and

i—2(9) = (i = 2)An, (i = 1)An), La(0f?) < K,
where h(s,t) = [ ps,(dz)g(s,t, ). Then, by Lemma 4.1,the property (7.15) follows from
[t/An]

An Y h((i = 1A, iA,) — /tRUu(f,Q)du, (7.17)
i=1 0

o it remains to show (7.17). On the one hand we have |h(s,t)|] < K. On the other
hand, since f is continuous with polynomial growth and oy is bounded we clearly have
h(sn,tn) — h(t,t) for any sequences sy, t, — t which are such that o5, and o, converge
to oy: since the later property holds, for P-almost all w and Lebesgue-almost all ¢, for all
sequences Sy, t, — t, we deduce that

/8] t
A S (i = 1) id,) o /h(u,u)du.
i=1 0

Since
) = o207 = 3(520) 42 [ ) (Ao (02) £, £0.2),

is trivially equal to Ry, (f,2), as given by (7.1). Hence we have (7.17).

7.5 Proof of (7.9).

As said before, this is the hard part, and it is divided into a number of steps.

Step 1. For I =0,---,k — 1 we define the following (random) functions on R%:

A'X A X
n = i L, Tl . @(k—1-1) e
g%l(l‘) /f(\/Fn7 ) \/E y Ly LI4+1, axk—l) Pa(i_l)An (dxl-i-lv ’xk—l)

(for I = 0 we simply integrate f(z,x;y1,--,2_1), whereas for [ = k — 1 we have no
integration). As a function of w this is F(;1;_1)a,-measurable. As a function of x it is Ccl,
and further it has the following properties, according to the case (a) or (b) of Theorem
7.1 (we heavily use the fact that o; is bounded, and also (6.23)):

972 (@) + IV ()| < KZ{H (1 + [lz]7)  where

in case (a): r >0, EP (|Z]4P) < K, Vp>0, Z is F(iy1-92)a,-measurable (7.18)
in case (b): 7=0, Z =1

For all A > 1 there is also a positive function G 4(¢) tending to 0 as e — 0, such that with
Z7 as above:

[zl < A, Ziy < Ayl <6 = [[Vgin(e+y) = Ve (@)l < Gale). (7.19)
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Observing that ¢ is the sum over [ from 0 to k — 1 of

A?X AlJrlX n n AnX A?#»l 1
f( P i,l-l,-lv""ﬂi,k—l)_f( Ty

VA, VA, VA VA,

we have

7ﬂ7,nl7' '7ﬂ2k‘—1)7

") ZE <gzl (A7 X/ A) = g7y (8 )

Therefore it is enough to prove that for any [ > 0 we have

[t/An]

VA, Z B 1(911 AL XV D) = gi(8 ) =200. (7.20)

Step 2. In case (b) the process X has jumps, but we assume that [(y(z) A1)A(dz) < oo
hence the two processes § x  and 6 x v are well defined. Moreover (7.18) readily gives
lgiy(z +y) — g1 (z)| < K(|[yl| A1). Hence it follows from (6.26) with a,, =1 that

[t/An]

VAL YT B (9 ALX VB = g (AL X/ VB = AR (0 x p)/VA)) 2R
i=1

Therefore if we put

. AP XIVA, = B in case (a)
S = { H_ZX/F Az_H(é*u)/r ﬂ” in case (b), (7.21)
(7.20) amounts to
[t/An]
VAL 3 EL (g8 + €)= i (BR) =% 0. (7.22)

Step 3. At this stage, we set (for simplicity, in the forthcoming formulas we write
S =S3,lLn)=G+1-1)A, and T = T(i,l,n) = (i + )Ay; recall that  — (s, x) is
A-integrable (in case (a) because then 6 = 0, in case (b) because [0(s,.)| < K(yA1)):

:‘Tfl = /ST <bs —bs + / (0(s,x) — 5(5,:6)))\(dx))ds

+/S (/(b du + (&, — G5)dW.,) // u,@) = 3(8,2)) (1 — v) (du, dz) ) AW,
& = (bs—i—/E(S(S,x)/\(dx))A +/ Js/ dW, +/ / (S,) (1 — v)(du, d@)dW

In view of (7.21), we obviously have £, = (AZ"Z + EZ”I)/\/ATL

Consider the process Y = (32 A 1) % . This is an increasing pure jump Lévy process,
whose Laplace transform is

u — E(e Yo=Yy = exp t/(e‘“ﬁm%l —1) A(dx).
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If ¢ is a non zero integer, we compute the gth moment of Ys;; — Y by differentiating ¢
times its Laplace transform at 0: this is the sum, over all choices p1,...,p, of positive
integers with ZZ 1 Di = g, of suitable constants times the product for all ¢ = 1,...,k of
the terms ¢ f z)?Pi A 1)\(dx), each one being smaller than Kt. Then we deduce that
E((Yste — Y5)? | .7-" ) < K,t, and by interpolation this also holds for any real ¢ > 1.

Then, coming back to the definition of Efl and E;jl, and using the properties ||d(¢, )| <
K(v(z)A1) and ||5(¢,z)|| < K(3(x) A1), plus the fact that J(v(z) A1)A(dz) < oo when §

is not identically 0, and the boundedness of b, b, 0, o, we deduce from Burkholder-Davis-
Gundy and Holder inequalities that

(=22 = El (847 +Efy (6§ < KAF2, (7.23)

The same arguments, plus Cauchy-Schwarz inequality, yield that with notation

a

fo= ERaa( /T(nb — bs|? + 115, — Fsl* + / 135, 2) — 5(S, )|*A(dz)
/||5 s,7) — (8, :v)HA(d:c))ds),

then R
B (€02) < KA (A2 +afy). (7.24)

Next, since the restriction of p to (S,00) x E and the increments of W after time S
are independent, conditionally on Fg = FgV o(W; :t > 0), we get
T

E(&Y | F§) = bs+/65wk(dx))A +US/S (/Sdeu)dWs.

Hence the product of the right side above with h(3}';), where h is an odd function on R?

with polynomial growth, is a function of the form Y (w (W5+t —Ws)t>0) on QxC(R;,RY)
which is Fs®C-measurable (C is the Borel o-field on C(R,,R?)), and such that Y (w, w) =
Y (w, —w). Therefore we deduce

EP (€7 h(BY)) = 0. (7.25)

Step 4. Here we prove the following auxiliary result:

[t/An]

VAL, >\ /E(er) — 0. (7.26)
=1

Indeed, by Cauchy-Schwarz inequality the square of the left side of (7.26) is smaller than

[t/An] An(I+[t/An) 2 2
e3> By - ([ (162 = Bants/ant P + 1135~ Fia, o/l
=1

[7ANS

+/Hg(s,x)—S(An[s/An],x)H?A(dx)+/H<5(s,x)—5(An[s/An],x)HA(dx))ds>,
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which goes to 0 by the dominated convergence theorem and the bounds given in (SH) and

J(v(z) A1)A(dz) < o0

Step 5. By a Taylor expansion we can write

g (B + &) — g (BY) = Ve (BR)EN + (Vaiy(Bi) — Vaii(BR))EnN,
where 3} '] is some (random) vector lying on the segment between B and 57+ &Y. There-
fore we can write g7, (67, + &) — g;1(81)) = Z] 1674(4), where

n(1) = VoL (BrEn,  Cu(2) = Vol (BR)E,

1 1
VA, VA,
Gih(3) = (Vg (B) — Vi (Bi))EN-

Then at this point it remains to prove that we have, for j = 1,2, 3:

[t/An]

VA, Z E' L (C(5) =% o. (7.27)

For j = 1 this is obvious: indeed f is even in each of its (d-dimensional) arguments, so
the functions g, are even as well, hence Vg, is odd and by (7.25) the left side of (7.27)
is equal to 0.

Step 6) Now we prove (7.27) for j = 3. By (7.18) and (7.19) we have for all A > 1 and
e > 0:

IGHB) < Gale)lIEh Il + KZ5 (1 + 850" + 1€ 1MIEN
(Lgzn,>ay + qsn >4y + e 1>3)
< Ga@E&LII+ KZH(1+ ZY)
(1 + 187 (1 + Hﬂz‘,lH)THfZlH @+ 1BHIDIERIT gy I+
+ + + ).
A € A €

By (7.23) we have E?',_,(||¢/]7) < KA, if ¢ > 2. Then in view of (6.23) we get by
Holder inequality:

E 1 (1GR3 < Kv/A, (GA (L + Zfl)<il+A’l/6>>.

€

Then since E((Z7))?) < Kq for all ¢ > 0 we have

[t/An]

B(vA. X e

and (7.27) for j = 3 follows (choose A big and then ¢ small).

L c®)|) < KH(Gae) + A’ll/ﬁ),

Step 7) It remains to prove (7.27) for j = 2. By (7.18) we have
n K on
G (2)] < i t (L 1B IE -
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Hence by Cauchy-Schwarz inequality and (6.23),

E(|Ef(¢a@)|) < KE(Z(An+,/af)) < K(An+/E(r) ).

Then, in view of (7.26), the result is obvious.

7.6 Proof of Theorem 7.3.

The proof is exactly the same as above, with the following changes:

1) In Proposition 7.5 we substitute V" and V'(f, k) with

[t/kAn]

V= VA (G~ 5 e, ()
=1

and V" (f, k) respectively. The proof is then much shorter, because 1" = /A, ((E?_l) 1~

p?{fil)mn (f)) is Fika,-measurable. We have

Bl o) =0, ER_ ()2 = Mgl B ()Y < KA2,

with ¢ = p?(]fq)mn (f?)— p?(’fq)mn (f)?, and (7.17) is replaced by the obvious convergence

of ZEZ?A"] Eg_l)k((ny)g) to the right side of (7.7) (recall that we assumed ¢ = 1 here). We
also have B, ;. ((Nixa, —Ni—1)ka,)¢") = 0 when N is a bounded martingale orthogonal
to W by Lemma 6.10, and if NV is one of the components of W because then this conditional
expectation is the integral of a globally odd function, with respect to a measure on (]Rd/)k
which is symmetric about 0. So Lemma 4.4 readily applies directly, and the proposition

is proved.

2) Next, we have to prove the analogues of (7.9), (7.10) and (7.11), where we only take
the sum for those ¢ of the form i = (j — 1)k + 1, and where in (7.11) we divide the integral
by k. Proving the new version of (7.10) is of course simpler than the old one; the new
version of (7.11) is the old one for A,,, whereas for (7.9) absolutely nothing is changed.
So we are done.

7.7 Proof of Theorem 7.4.

For this theorem again we can essentially reproduce the previous proof, with k£ = 1, and
with the function f with components fj,(z) = 272™ (here m replaces the index k in the
theorem). Again it suffices by polarization to prove the result for a single pair (j, m).

Below we set a, = aAf_l/ 2, which goes to co. Introduce the function on R¢ defined

by gn(z) = 272, (7) (recall (6.24)), and set

W= = Yarxzasg) — 9a(AFX/VAL), 0l = gn(ATX/V/A) - BB
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Proposition 7.5 implies that the processes

[t/An]

VAl X (A0 =)

converges stably in law to V7™, and we also have (7.11), which here reads as

[t/ An]

(A Z el —/Ot((c;m)ucgycumm)du) e

Therefore it remains to prove the following three properties:

[t/An)
VALY g B0, (7.28)
i=1
[t/An]
V Z Ez 1 771 12) 07 (729)

[t/ An]

VA, Z ( e )> eB (), (7.30)

Proof of (7.28). Observe that |n}'| < (HA?XHz/An)1{aAg<||A;lXH§2aAg}; hence

Il < 2anlggn)sans2) + 40X a, 2<xn 1 <3an)
< 20, YIBMT+ +36(XF 1P A o)

for any ¢ > 0 (recall that A?X/v/A, = B+ x}'). Then we take ¢ such that (¢ —1)(1/2 —
w) > 2w — wr, and we apply (6.23) and (6.25) with «,, as above (so a, > 1 for n large
enough, and a, /A, — 0), to get E(|n?|) < KA2®~%"y,, where u,, — 0. Hence

[t/An]

VAL Y0 E(nf) < KAy P,
i=1

which goes to 0 if w > ( - Hence we have (7.28).

Proof of (7.29). From the properties of 1, the function v,, is differentiable and
VYo, (@) < (K/an)1{|z|<2a,}- Hence we clearly have ||[Vgn(z)|| < K(||z[| A o), and

thus
gn(z +y) —gn(@))] < Kan(llyll A an), }
’gn(m + y) - gn(x) - Vgn(x>y‘ < K”Z/HQ

If we use the first estimate above and (6.26) we obtain, as in Step 2 of the previous
proof (we use again w > ﬁ here), that

(7.31)

[t/An]

Z E ( z—HX/\/i H—lX/\/i z+l 5*:“ /\/7 )
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Then with the notation of (7.21), in order to prove (7.29) it is enough to prove (7.12)
with g, instead of g7, and | = 0. Then the second estimate in (7.31) allows to write

gn (B + €7 — gn(BY) = 301 CP(j), where

¢H(1) =

Van(B)Er,  M2) = VL (BMEY, I3 < K€l

1 1
VA, VA,
Then it remains to prove (7.27) for j = 1,2, 3, with (/*(j) instead of 7', (j).

Since gy, is even, this property for j = 1 follows from (7.25) exactly as in the previous
proof. The proof for j = 2 is the same as in Step 7 of the previous proof (here Z;'; =1and

r = 2). Finally by (7.23) we have E(|{] 0” ) < KA, so the result for j = 3 is immediate.

Proof of (7.30). Exactly as for (7.10) it is enough to prove that

[t/An]
A Z - wer, o (7.32)
First, we have
e ) [t/An]
> (- o)) < X B (101 g15an)
=1
/]
< KAL) NN R (|||t < KtA,,
i=1

by choosing appropriately ¢ for the last inequality.
Second, since ATX = VA, (B + &) + A7 (0 x ), we deduce from (7.31) that

(an( AT X/ /B0~ gu(80)) < KRl + Ko (IAF6 )l /v/B) A c).
Then by (6.26) and (7.23) again, we get
<(gn (ATX/VA) = gu(51)) > < K(02A, + ok " ALT2) < KAZE,

If we put together these estimates, we find that

[t/An]
A, Z E((n™)?) < Kt(A, +APE)=1),

which goes to 0 because w > Hence we have (7.32).

1
2"
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8 CLT with discontinuous limits

So far we have been concerned with CLTs associated with Theorems 6.2, 6.3 and 6.4, in
which the limiting processes are always continuous. Now, as seen in the case r = 3 of
(3.23) there are cases where the limit is a sum of jumps, and we are looking at this kind
of question here. In case r = 2 of (3.23) we even have a “mixed” limit with a continuous
and a purely discontinuous parts: this has less statistical interest, and we will state the
result without proof.

Here, more than in the continuous case even, it is important and not completely trivial
to define the limiting processes. This is the aim of the first subsection below. Throughout,
we assume (H), and we also fix an integer k > 2.

8.1 The limiting processes.

As for the case of continuous limits, we will have stable convergence in law, and the
limiting processes will be defined on an extension of the space (Q, F,P). To do this, it is
convenient to introduce another probability space (€', F',P’). We assume that this space
supports the following variables:

e four sequences (Up), (U,), (Up), (U;) of d’-dimensional N (0, Iy) variables;
e a sequence (kp) of uniform variables on [0, 1];

e a sequence (Ly) of uniform variables on the finite set {0,1,---,k — 1}, where k > 2
is some fixed integer;

and all these variables are mutually independent. Then we put
Q=0xQ, F=FoF, P=PoP. (8.1)

We extend the variables Xy, by, ... defined on Q and Uy, kp,... defined on €’ to the product
() in the obvious way, without changing the notation. We write IE for the expectation with
respect to PP.

Next, we need a filtration (ﬁt)tzo on our extension. To this effect, we first denote by
(Sp)p>1 a sequence of stopping times which exhausts the “jumps” of the Poisson measure
: this means that for each w we have Sy,(w) # Sq(w) if p # ¢, and that p(w, {t} x ) =1
if and only if ¢ = S,(w) for some p. There are many ways of constructing those stopping
times, but it turns out that what follows does not depend on the specific description of
them.

With a given choice of the above stopping times S}, we let (ft) be the smallest (right-
continuous) filtration of F containing the filtration (F;) and such that U,, Uy, Up, U;,
kp and L, are Fg -measurable for all p. Obviously, u is still a Poisson measure with

compensator v, and W and W is still a Wiener process on (Q, F, (j‘v—t)tzo, P). Finally we
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define the ¢-dimensional variables

Rp = \/R»p O'SP—Up +./1— Kp USPUP
Rl =\/L, 05, U+ \/k—1-L, 05,0, (8.2)
R, =R,+ R

If f is a CY function on R? we denote by V" f for < ¢ the tensor of its rth derivatives,
and if we want to be more specific, we write 0], L i the rh partial derivative with respect
to the components z,---, 277, and simply Vf and 0;f when r = 1. If f and ¢ are two
C' functions we set

d
Clf,9) = D > (0if0;9)(AX,) (¢ +¢¥). (8.3)
s<t 1,7=1
This makes sense (that is, the series above converges for all t) as soon as f(0) = 0,

because then ||V f(z)| < K||z| for ||z|| < 1 and the process ¢ is locally bounded and
> et IAX]|? < oo; the process C(f,g) is then of finite variation, and even increasing
when ¢ = f. In the same way, if f is C? and ||Vf(z)|| < K|=||> when ||z|| < 1, the
following defines a process of finite variation:

d
Clhi = > > ZfAX,) (¢ +cd). (8.4)

s<t i,j=1

In the following lemma we define and prove the existence of our limiting processes, at
the same time. We do it for a g-dimensional function f = (fi,---, fy), since it costs us
nothing.

Lemma 8.1 a) Let f be a g-dimensional C* function on R?, vanishing at 0. The formulas

d d
Z(he= Y, D 0fi(AXs,)R,, Z'(f)i= > Y, %ifilAXs,)R;  (85)

p: Sp<t i=1 p: Sp<t i=1

define two g-dimensional processes Z(f) = (Z(f1))i<q and Z'(f) = (Z'(f1))i<q, and con-
ditionally on F the pair (Z(f),Z'(f)) is a square-integrable martingale with independent
increments, zero mean and variance-covariance given by

E(Z(f)eZ(fu)e | F) = BE(Z(0Z (fu)e| F) = 5 Cfis firdes }
E(Z' (02! (fr)e | F) = § O fr)

Moreover, if X and ¢ have no common jumps, conditionally on F the process (Z(f), Z'(f))

is a Gaussian martingale.

b) Let f be a q-dimensional C? function on Re, with |V2f(z)|| < ||z|? for ||=|| < 1.
The formulas

(8.6)

Z(fi)e =3 s5,<t Zgjzl aigjfl(AXS”)R;’R% } (8.7)

Zl(fl)t = Zp: Sp<t Z?,j:l aizjfl(AXSp) RZRg
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define two q-dimensional processes Z(f) = (Z(f1))i<q and 7/(f) = (7/(fl))l§q of finite
variation, and with JF-conditional expectations given by

Emef>=§mmu}

_ _ (8.8)
E(Z (fi)e| F) = 5 C(fo

c¢) The processes (Z(f),Z'(f)) and (7(f),7/(f)) above depend on the choice of he
sequence (Sp) of stopping times exhausting the jumps of p, but their F-conditional laws
do not.

Proof. a) Among several natural proofs, here is an “elementary” one. We set a,(,1") =

Sy (8:i0i fr) (A X, ) (c g +cgz'p>, 50 C(fi fr)e = Y, 5, <1 (1, 1) We fix w € ©, and
we consider the g-dimensional variables ®,(w,.) and ®},(w,.) on (€', ') with components

d
<I>l (w,w") Z Ji(AX g, (w ))R;(w,w'), CI”Z (w,w") Ji(AX s, (w ))Rg(w,w’).

||M&

The variables (®,(w,.), ®},(w,.)) on (', F',P’) are independent as p varies, and a simple
calculation shows that they have zero mean and variance-covariance given by

B (0w, )8 (w,.) = E(@(w, )0F (@,)) = § ayll,liw)
E(®)(w, )@ (w,.) = & ap(l,l;w) ? } (8.9)

Since Zp: Sp(w)<t ap(l,';w) < oo, a standard criterion for convergence of series of inde-
pendent variables yields that the formulas

Z(fw )= S o), Z(fw) = S @lw)Rw,.)

p: Sp(w)<t p: Sp(w)<t

define a 2¢-dimensional process (', t) — (Z(f)(w,w), Z'(f)(w,w’);), which obviously is
a martingale with independent increments, and with ((2¢) x 2-dimensional) predictable
bracket being deterministic (that is, it does not depend on w’) and equal at time ¢ to
the sum over all p with S,(w) < t of the right sides of (8.9). That is, we can consider
(Z(f),Z'(f)) as a process on the extended space, and it satisfies (8.6). Since the law of a
centered martingale with independent increments depends only on its predictable bracket
we see that the law of (Z(f),Z'(f)), conditional on F, only depends on the processes
C(fi, fr) and thus does not depend on the particular choice of the sequence (Sy).

Moreover this martingale is purely discontinuous and jumps at times S,(w), and if X
and ¢ have no common jumps, the jump of (Z(f)(w,.), Z'(f)(w,.)) at Sp(w) equals

(V8 Xs)05,() (Vi Uy + Ty 7).
VI(8Xs,)0s, ) (i Up+ VT= 1y Up+ VT Uy + V= 1= I, U, ))

(we use here product matrix notation); this 2-dimensional variable is F-conditionally
Gaussian and centered, so in this case the pair (Z(f), Z'(f)) is F-conditionally a Gaussian
process.
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b) Since ]E(]R;Rﬁ | F) < K(|les, || + lles, [|), and the same with R}, it is obvious in
view of our assumption on f that the F-conditional expectation of the two variables

d
Z Z 97 fi(AXs,) Ry, RY|, Z Z 2 fi(AXs,) Ry R

p: Sp<t |i,5=1 p: Sp<t |i,j=1
is finite for all ¢. Then all claims are obvious.
It remains to prove (c) for the process (Z( f),?l( f)). For this, we observe that con-
ditionally on F this process is the sum of its jump and it has independent increments.

Moreover it jumps only when X jumps, and if 7" is a finite (F;)-stopping time such that
AX7 # 0, then its jump at time 7' is

d d
(Y BsAXDRL Y O f(AX)RY).
,5=1 i,j=1
where WRY = 2 op>1 R;Ri;l{sp:T} and a similar expression for R/, But the F-conditional

law of (ﬁ” ,WR'J) clearly depends only on o7_ and o7, but not on the particular choice
of the sequence (Sp). This proves the result. O

8.2 The results.

Now we proceed to giving a CLT associated with the convergence in (5.2), and as seen
already in (3.23) we need some smoothness for the test function f, and also that f(z)
goes to 0 faster than ||z||* instead of ||z|? as  — 0. As in Theorem 7.1 we also consider
a g-dimensional function f = (f1,---, fy)-

Theorem 8.2 Assume (H) (or (H’) only), and let f be a q-dimensional C? function on
RY satisfying f(0) = 0 and Vf(0) = 0 and V2f(x) = o(||z||) as z — 0. The pair of

q-dimensional processes

VA,

converges stably in law, on the product D(R4,R?) x D(Ry,R?) of the Skorokhod spaces, to
the process (Z(f), Z'(f))-

(= VU = Frmayan) o= VURAD = Frmapa,))  (510)

We have the (stable) convergence in law of the above processes, as elements of the
product functional space D(R,R?)2, but usually not as elements of the space D(R. , R??)
with the (2¢g-dimensional) Skorokhod topology, because a jump of X at time S, say, entails
a jump for both components above at two times S,, and S], which both converge to S but
are in general different (with a probability close to (k—1)/k, in fact): this prevents the 2¢-
dimensional Skorokhod convergence. In the same way, although S,, — S, we have S,, # S
and V(f,A,,) jumps at S,, whereas f % u jumps at S: this is why, if we want Skorokhod
convergence, we have to center V(f, A,) around the discretized version of f % p.

However, in most applications we are interested in the convergence at a given fixed time
t. Since P(AX; # 0) = 0 for all ¢, in view of the properties of the Skorokhod convergence
we immediately get the following corollary:
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Corollary 8.3 Under the assumptions of the previous theorem, for any fixed t > 0 the
2g-dimensional variables

1 1
(\/Fn (V(faAn)t_f*,ut)’\/Fn

converges stably in law to the variable (Z(f)e, Z'(f)t)-

(V(F,kAn)e = f 5 p))

Now, it may happen that f is such that fxpu = 0, and also (Vf) x u = 0: this is the
case when X is continuous, of course, but it may also happen when X is discontinuous,
as we will see in some statistical applications later. Then the above result degenerates,
and does not give much insight. So we need a further CLT, which goes as follows. There
is a general result in the same spirit as Theorem 8.2, but here we consider a very special
situation, which is enough for the applications we have in mind:

Theorem 8.4 Assume (H) (or (H’) only), and suppose that the two components X1 and
X2, say, never jump at the same times. Let f be the function f(x) = (x'z?)2. Then the
2-dimensional processes

(& V(A 5= V(EEA) (3.11)

converge stably in law, on the product D(Ry,R) x D(R4,R) of the Skorokhod spaces, to
the process

t t
(5 200+ [ (et + 2 Pan, L 20k [ (e +2 ) (512

Of course the same result holds for any two other components. More generally a similar
result holds when f is an homogeneous polynomial of degree 4, which satisfies outside a
P-null set:

fxp =0, (Vf)*p = 0. (8.13)

Finally as said before, we also state, without proof, the result about the quadratic
variation itself. Although not so important for statistical applications, it is of great theo-
retical significance. Exactly as in Corollary 7.2, only the weak assumption (H’) is required
here (see [15] for a proof, and [14] for an early version stated somewhat differently).

Theorem 8.5 Assume (H’), Then the d x d-dimensional process with components

[t/An]

— ( B e )

VA,

converge stably in law to V + Z(f), where V' is a s described in Corollary 7.2 and Z(f)
is as above with fjp(x) = xjrE, and conditionally on F the processes V and Z(f) are
independent.
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8.3 Some preliminary on stable convergence.

Once more, for the above results it is enough to prove them under (SH), which we assume
henceforth. The basis of the proof is a rather general result of stable convergence about
discontinuous processes, which cannot be found in a book form so far.

Although what follows does not depend on the choice of the sequence (S,), for con-
venience we make a specific choice. For any m > 1 we denote by (T'(m,r) : r > 1) the
successive jump times of the process N™ = 1¢y/pcy<1/(m—1)} * ¢ (note that N™ is an
homogeneous Poisson process with intensity A({z : = < y(z) < —15})). Then (S,) is a
reordering of the double sequence (T'(m,r) : r,m > 1) into a single sequence.

Next we introduce some notation. For any p > 1 the time S, is in one and only one
interval ((ik+7)Ay, (ik+7+1)A,], for somei > 0and j =0,---,k—1. So, we can define a
number of quantities by setting their values on each set {(ik+7)A, < Sy < (ik+j+1)A,}:

L(n,p) = j K(n,p) = 2= — (ik + j)
a(n,p) = \/15 (Ws, = Wik+i)a,)» 04+(n7p) = \/%7 Wiik+j+1)a, — Ws,)
B-(n,p) = 5= Wintja, — Wira,)

1

B(np) = 75 Wiirnka, = Wiiktina,)
A(n p) ( (nvp)7a+(n7p)7/8—(n7p)7ﬂ+(n7p))

~

Ry = a(lkﬂ Aa—(n,p) +or,ap(n,p), R =owa,B-(n,p)+or,0+(n,p)

(8.14)

Q

Ry = o= (X(ksjna, — Xawija, — AXs,)

Ry = \/% (X(i+vpa, = Xp+j+)a, + Xnepa, — Xiea,)-

In the next lemma, we consider the variables ©,, = A(n,p),>1 taking values in the
Polish space F' = (R*)Y", and also the variable © = (4,),>; taking values in F as well,

where A4, = (\/Fp Up, /1 — £ Up, \/Lp Up vk —1— 1L, U;) uses the variables introduced

at the beginning of this section.
Lemma 8.6 The sequence (0,,) of variables stably converges in law to ©.

Proof. We need to prove that
E(Zh(©,)) — E(Zh(©)) (8.15)

for any bounded F-measurable variable Z and any bounded continuous function h on F'.

Let G be the o-field of Q generated by the process W and the random measure u.
Each ©,, is G-measurable and © is G ® F'-measurable, so E(Zh(0©,)) = E(Z'h(0,)) and
E(Zh(©)) = E(Z'h(O)), where Z' = E(Z | G). Hence it suffices to prove (8.15) when Z is
G-measurable.

We can go further: recalling that u has the form p = szl £(s,,V,) for suitable E-
valued variables V, (¢, = Dirac mass at a), then G generated by W and the variables
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(Sp, Vp). Then by a density argument it is enough to prove (8.15) when

P
w) H gp(Sp)g;(V;,), ((zp)p=1) H hp(2p)
p=1

where f is continuous and bounded on the space of all continuous R -valued functions,
and the g,’s are continuous and bounded on R4 and the g;)’s are continuous and bounded
on F, and the h,’s are continuous and bounded on R%, and P is an integer.

Let W* = W, — 2521(W5p+2kAn — W(s,—2ka,)+). Clearly W" — W uniformly (for
each w), hence f(W") — f(W). If Q(n, P) = 0, preqi,.p}, p2p 1Sp — Spr| > kAL}, we
also have Q(n, P) — Q as n — oo. Therefore by Lebesgue theorem,

P P
E(S0) TT 90(S0)gp (V) n(A(,p) Tagnp)) = E(FW™) T] 90(S)95 (Vi) iy (A, ) )
p=1 p=1

goes to 0, and we are left to prove that

P P
E(S7) TT 9055 (V) ko (A(n. ) e py) = E(S V) TT 90800 (Vi)hn(Ay) ).

Now, W and p are independent, and with our choice of the sequence (S,) the two sequences
(Sp) and (V) are also independent. This implies that W", the family (V},) and the family
(A(n,p))p<p are independent as well. Therefore the left side above equals the product

of E(f(W") Hp 1 gp(V )) with E(H;):l 9p(Tp)hp(A(n, p)) 1Q(n7p)), and likewise for the
right side. So finally it remains to prove that

E(ﬁgpwp)hp( 2) logp)) — E(ng (4,)). (8.16)
p=1

At this stage, and by another application of the independence between W and u, we
observe that in restriction on the set Q(n, P), the sequence (A(n,p) : p = 1,---, P) has
the same law than the sequence (A'(n,p):p=1,---, P), where

Al(n,p) = (VK(n,p) Up,\/l— (n,p) Uq,\/L(n,p) U]',,\/k—l—L(n,p) U;)

Therefore (8.16) amounts to proving that the sequence ((Sy,, K(n,p), L(n,p)) :p=1---,P)
converges in law to ((Sp, kp, Lp) :p=1---,P).

To see this, on may introduce the fractional part G(n,p) of [S,/kAy], which equals
A (Sp—ikAy,) on the set {ikA, < S, < (i+1)kA,}. Since the family (S, :p=1,---, P)
admits a smooth density on its support in ]Ri (again because of our choice of (S,)), an
old result of Tukey in [23] shows that the sequences ((S,, G(n,p)) :p=1,---, P) converge
in law, as n — oo, to ((Sp,Gp) : p = 1,---, P) where the G)’s are independent one from
the other and from the S),’s and uniformly distributed on [0, 1] (Tukey’s result deals with
1-dimensional variables, but the multidimensional extension is straightforward). Since
K(n,p) and L(n,p) are respectively the fractional part and the integer part of G(n,p)/k,
and since the fractional part and the integer part of G),/k are independent and respectively
uniform on [0, 1] and uniform on {0, ---,k — 1}, the desired result is now obvious. O
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Lemma 8.7 The sequence of (R*)N -valued variables ((Ry, Ry") : p > 1) stably converges
in law to ((Rp, Ry) :p > 1) (see (8.2)).

Proof. This result is a consequence of one of the basic properties of the stable convergence
in law. Namely, if a sequence Y,, of E-variables defined on the space (2, F,P) stably
converges in law to Y (defined on an extension), and if a sequence Z,, of F-variables
defined on (92, F,P) again converges in probability to Z, then for any continuous function
f on E x F the variables f(Y,,, Z,) stably converge in law to f(Y, Z).

A first application of this property allows to deduce from the previous lemma and
from the fact that oy is right continuous with left limits is that ((}Aig, E;") :p > 1) stably
converges in law to ((Rp, R;) : p > 1). A second application of the same shows that, in
order to get our result, it is enough to prove that for each p > 1 we have

RI-R' =0, R"-R" Lo (8.17)

We will prove the first part of (8.17), the proof of the second part being similar. Recall
that S, = T'(m,r) for some r,m > 1, and set X' = X — X — (61(y51/m}) * p and

Ci (t) = \/%7 <f(i'—1)An (Uu - U(ifl)An)qu + ft (Uu - Ut)qu) 1((i71)An,iAn] (t)

G" = s AT

and observe that

Ri-R =Y (g, (S,) + ¢! )1D?, where DI = {(i — 1)A, < S, < iA,}.  (8.18)
i>1

There is a problem here: it is easy to evaluate the conditional expectations of |¢(¢)]
and [("] w.r.t. F;_1)a, and to check that they go to 0, uniformly in 4, but the set D}
is not F(;_1)a,-measurable. To overcome this difficulty we denote by (G)¢>0 the smallest
filtration such that G; contains F; and o(Sp). Then W and the restriction ' of p to the set
Ry x {2z :9(2) < 1/m} are still a Wiener process and a Poison random measure relative
to this bigger filtration (G;), and X' is driven by p'.

Therefore applying (6.25) with a,, = 1 and » = 2 and to the process X’ instead of X,
we get E(JATX| A1 | gl DA ) < en, where e, — 0. Since D' € gl 1)a, We then have

E(Z(\g{”\m 1Dn): (ZlD” (AL Gliya ><gn (Zan)_an (8.19)

i>1

By Doob inequality and the fact that W is an (F])-Wiener process, for any t € ((i —
1)A,,,iA,], the conditional expectation E(|¢/™(t)|? | g(i_mn)) is smaller than

t ) 1Ay )
!/
KE( [ llou—opa, Pt [ o= alldu| Gy, )

i—1)A,
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Then the same argument as above yields

<Z|Q p)l 1D"> <

i>1

Tp 9 An[Tp/An] 9 ,
KE( [ o = 0 -1ya, [Pdu+ [ low = oulPdu | Fi_ya,)).
An[Tp/An]-Ap Ty

This quantity goes to 0 by Lebesgue theorem, because o is right continuous with left limit,
so this together with (8.18) and (8.19) gives us the first part of (8.17). O

8.4 Proof of Theorem 8.2.

Step 1) We begin with some preliminaries, to be used also for the next theorem. We fix
m > 1 and let P, be the set of all p such that S, = T'(m/,r) for some r > 1 and some
m’ < 'm (see the previous subsection). We also set

X(m) = Xy = Y AXs, = Xy~ (0lys1/m)) * 4, (8.20)
PEPp: Tp<t

Observe that, due to (6.21), and with the notation b(m); = by — f{z:'y(z)>1/m} o(t, z2)\(dz),
we have X (m) = X'(m) + X”(m), where

X'(m)y = Xo—l—/o b(m)sds—l—/o osdWs, X"(m) = (61py<i/my) * (p—1v). (8.21)

Then we denote by €, (¢, m) the set of all w satisfying the following for all p > 1:

p,p € P, Sp(w) <t = |Sp(w) — Sy (w)| > kA, (8.22)
0<s<t, 0<u<kA, = | X(Mm)spu(w)—X(m)s(w)| <2/m. '
Since ||0]| < «, implying ||[AX (m)s]| < 1/m, we deduce that for all ¢ > 0 and m > 1:
Q,(t,m) — Q as. as n— 0. (8.23)
If g is C? with g(0) = 0 and Vg(0) = 0, for any integer [ > 1 and any d-dimensional
semimartingale Z, we write G"(Z, g, 1) = V(Z,9,18n)t =3 ia, 118, 9(AZs). Observe
that on the set €, (t,m) we have for all s <tandl=1or [l = k:
G"(X,9, )y = G"(X(m),g,1)+Y"(m,g,l), (8.24)

where

Y™m, 9,0t = Ypepn: sy<innit/ing $(9:Dp
Clg. 1) = g(AXs, + VA, R}) — g(AXs,) — g(v/A, RY) (8.25)
g, k)y = 9(AXs, +VAn (B + B")) — 9(AXs,) — g(VAn (B + By")).
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Step 2) Now we turn to the proof itself, with a function f satisfying the relevant as-
sumptions. Recall in particular that f(z)/||z| — 0 as  — 0. A Taylor expansion in the
expressions giving ((m, f,1); and Lemma 8.7 readily gives

1 1 L—s
) k:") ( AXg )Ry, Vf(AX R’)
(T SOz CURG) L, 55 (VHAXS) Ry VIAXs)R) )
(here, Vf(AXs,)R, for example stands for the g-dimensional vector with components
Zgzl i fi(AX, SP)R;). Since the sum giving Y"(m, f,[); has in fact finitely many entries,
we deduce from well known properties of the Skorokhod topology that, as n — oo:

>1

1 n _1_ yn
the processes (\/E Y™(m, f,1), VAL Y™ (m, f, k)) CONVerges (8.26)
stably in law, in D(R+,RY) x D(R+,RY), to the process (Z™(f), Z"(f))

where (Z™(f), Z"™(f)) is defined componentwise by (8.5), except that the sum is taken
over all p € P, only.
If we consider, say, the first component, we have by (8.6) and Doob’s inequality:

E(supl2™(f1)s = Z(f1)f2) = E(E(sup|2"(f1)s = Z(1)o | F))

s<t s<t

IN

d
4E( > Z(aiflajfl)(AXSp)(cgp_ +Ci5{9))‘

p¢Pm7 Spgt 1,j=1

The variable of which the expectation is taken in the right side above is smaller than
K Y o IAX P ax,j<1/m) (because ¢ is bounded and if p ¢ P, then [[AX,|| < 1/m),
so by Lebesgue theorem this expectation goes to 0 as m — co. The same argument works
for the other components, and thus we have proved that

(Z2™(f), 2™ (f) == (2(f),Z'(f)). (8.27)

Hence, in view of (8.26) and (8.27), and also of (8.23) and (8.24), it remains to prove

1
lim limsup P(Qn(t, m) N {sup

e nng sup = [G"(X (), frs Dl > uf) = 0. (829

Step 3) Now we proceed to proving (8.28), and we drop the index r, pretending that f
is 1-dimensional. It is also enough to consider the case [ = 1 (the case [ = k is the same,
upon replacing everywhere A,, by kA,). We set

k(x,y) = fx+y)— f(z) = fly),  g(x,y) =k(z,y) — Vf(z)y. (8.29)

Recall that f is C? and that (6.21) and (8.20) hold. Then we apply It6’s formula to the
process X(m)s — X (m);a, and the function f, for t > iA,, to get

1
VA

<G”(X(m), £.1) — GM(X (m), f. 1),An) = A(n,m, i) + M(n,m,i);,  (8.30)
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where M (n, m, 1) is a locally square-integrable martingale with predictable bracket A’(n,m, 1),
and with

t t
A(n,m,i), = / a(n,m, 1), du, Al(n,m,i); = / a'(n,m, 1), du, (8.31)
iAp iln
and
alnm, i) = A (S0 9 (X (m)i = X (m)ia, Jb(m)]

+5 30 3 F(X (m)y — X (m)ia, el

 Jair (<t pmy 9K (M) = X ()i, 6t 2)) Ad2) )
dmmile = 2 (Sho 0 AP X (m) = X (m)ia, )l

 Jzir(ey 1 pmy BX (M) = X ()i, (2 2))% A(dz) ).
Now we set T'(n,m,i) = inf(s > iA, : ||X(m)s — X(m)ia, || > 2/m). On the set

0, (t,m) we have by construction T'(n,m,i) > (i + 1)A,, for all i < [t/A,]. Therefore in
view of (8.30) we have on this set:

[t/An]
\/27 SSEI;|GH(X(m)7f7 1)8| < Z |A n, M, G — ) Ap)AT (n,m,i— 1)’
[t/An}
+ Z M(n,m, i — 1) A0 AT (nm,i—1) | -
i=1

Henceforth in order to get (8.28), it is enough to prove the following:

hmm—>oo lim Supy, (Z[t/An] ’A(na m,z - 1)(iAn)/\T(n,m,'ifl) |) = 07 (8 32)

limy, oo limsup, (Z[t/An] Al(n,m, i — 1)(iAn)/\T(n,m,i—1)> = 0.
Recall that f(0) = 0 and Vf(0) = 0 and ||V2f(z)|| = o(||z||) as z — 0, so we have
. 3 . .
i=012 |zl <— = V@) < am |z (8.33)

for some a,, going to 0 as m — oo, which implies

3 1
lzll < — Myl < — = |k(z,y)] < Kamlle| llyll, gz, y)| < Kam||z]] lylI?. (8.34)

Observe that 1 X (M) sar(nm,i) — X(m)ia, || < 3/m for s > iA, (because the jumps of
X(m) are smaller than 1/m). Then in view of (SH) and (8.34) and of the fact that
|b(m)]] < Km we obtain for iA,, <t <T(n,m,1):

{ la(n,m, i) < K& (|| X(m); — X(m)ia, | +m| X (m) — X (m)ia, %),
d/(n,m, i), < K00 || X (m), — X (m)ia, |I%

Now, exactly as for (6.23), one has E(||X (m)is — X (m)||P) < K,(s?/? + mPsP) for all

€ (0,2] and s,t > 0, under (SH). Applying this with p = 1 and p = 2, respectively, gives
that the two ”limsup” in (8.32) are smaller than Kta,, and Kta?, respectively. Then
(8.32) holds, and we are finished.
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8.5 Proof of Theorem 8.4.

We essentially reproduce the previous proof, with the same notation. Recall that f(x) =

(z12?)2.

Step1) The assumption that X' and X2 have no common jumps implies that f(AX 5,) =
0 and Vf(AXg,) = 0 for all p > 1, whereas f(z)/||z||*> — 0 as 2 — 0. Then a second
order Taylor expansion in the expressions giving ((m, f,l); and Lemma 8.7 gives

(Aln C(f, l)z7 Aln (f, k)?) L

p=1

d
(% > 02f(AXs, )RR}, 5 Z O f(AXs, ) RiR])

>1
ij=1 ij=1 p=

From this we deduce that, instead of (8.26), and as n — oo:

the processes (A%l Y™(m, f,1), = A Y™ (m, f, )> converges
stably in law, in D(R4,R) x D(R4,R), to the process %(ﬁ(f),i/m(f))

m

where (Z ( f),?lm( f)) is defined componentwise by (8.7), except that the sum is taken
over all p € P,,, only. By Lebesgue theorem, we readily obtain

!/

Z" (), Z™ () =% (Z(f),Z ()

Hence, in view of (8.23) and (8.24), and since here G(X(m), f,1) = V(X (m), f,l1Ay), it
remains to prove that with the notation C; = fo (clicl +2(cd)?)du we have for all £, > 0
and for [ =1 and [ = &:

lim  lim sup P(sup V(X (m), f,lAn)s—l@An[s/lAn}|>n>:0. (8.35)

m—0oo  n—oo s<t Ay,
Step 2) Recall (8.21), and set g(z) = ||=||*. By Theorem 6.2 applied to the process X'(m)
we have for each m > 1:

1 wep. = 1 wen. [*
V( ( )7 fa ZATL) : Ca V( ( )7g7lAn)t = Poy (g)du (836)
A, 1A, 0

Therefore for getting (8.35) it is enough to prove that

lim limsup ]P’(Sup V(X (m), f,1An)s — V(X' (m), f.1A)s| > n) 0. (8.37)

m—oo  p—oo s<t Ay

Here again, it is obviously enough to prove the result for [ = 1.

Now, the special form of f implies that for each € > 0 there is a constant K. with

[fl@+y) = f2)] < ellz]* + Kellz]* yl* + K f(y),

hence

|V(X(m)7f7An)_V(X/(m)’faAn” S €V(X/(m)7gvAn)+K€(Un+Um)7
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where

[t/An] [t/An]
U = Y (ARXm))ArX (m)*)?, Ut = Y AKX (m)|P|ATX (m)]|*.
i=1 =1
¢ > 0 being arbitrarily small, by the second part of (8.36) it is then enough to prove
1 1
lim limsup — E(U}") = 0, lim limsup — E(U/") = 0. (8.38)
m—0o0  n_00 An m—o0 np—oo An

Step 3) Exactly as in the proof of Lemma 6.8, we have

E([|[ X" (m)irs — X" (m)¢||*) < auns, where am:/ v(2)2\(dz).  (8.39)
{z7(2)<1/m}

Now, as for (8.30), we deduce from Itd’s formula that
iAnp
(APX" (m))? (APX"*(m))? = M(n,m,i)a, +/ a(n,m,i — 1)sds, (8.40)
(i-1)An

where M (n,m, i) is a martingale and a(n,m,i); = Hpy(X"(m); — X" (m);—1)a,,) and
Hale) = [ (£ +6(t.2)) ~ F(&) - VF()0(1.2))) Ald).
{z7(2)<1/m}

Now, since X' and X? have no common jumps, we have §(w,t,2)'0(w,t,2)?> = 0 for
A-almost all z. Therefore a simple calculation shows that

Hw = | (@)2(0(2.2)%) + @)2(3(t,2)")?) A=),
{zv(2)<1/m}

and thus
0 < Hp(z) < ozl

Recall also that E(||[ X" (m)is — X" (m)|?) < Kt. Then taking the expectation in (8.40)

gives us, with

1Ay

E((A7X (m))? (APX'(m)?)?) = E ( /(

Hyp (X" (m)s — X//(m)(i—l)An) ds | < amA.
i—1)An
Then, since «;, — 0 as m — oo, we readily deduce the first part of (8.38).
It remains to prove the second part of (8.38). It6’s formula again yields
iAn
IATX" ()P |AFX (m)|? = M(n,m, )ia,, + / d'(n,m,i—1)eds,  (8.41)
(i—1)An

where M'(n,m, i) is a martingale and a'(n, m,); = Hy,(X'(m);—X'(m)i-1)a,, X" (m); —
X"(m)(i-1)a,) and

d d
H,,(z,y) = 2HyHZZb(m)W+\yHZZc%’H!xHZ/{ " I8¢, 2)[1* A(d=),
i=1 i=1 =

<1/m}
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and thus

(Hy(w,9)] < K (a2l + ]2+ mljz])

because ||b(m)¢|]| < Km and ||c|| < K. Then using (8.39) and E(|| X’ (m)¢1s — X'(m)¢]|P) <
Kp(sp/ 2 + mPsP) for all p > 0, we deduce from Cauchy-Schwarz inequality, and by taking
the expectation in (8.41), that

E([A7X"(m)|* A7 X (m)]|?)

iAn
_E ( / H!(X (m)s — X' (m)_1ya,» X" (m)s — X"(m) 1)) ds)
(i-1)An

< KA2 (am(l +m2A,) + my amA, (1+ mAn)>

Then again since «a,,, — 0 as m — oo, we deduce the second part of (8.38), and the proof
is finished.

9 Estimation of the integrated volatility

At this point we have established the theoretical results which are needed for the statistical
problems we have in mind, and we can turn to these problems. We start by a warning,
which applies to all problems studied below:

The underlying process X is observed at times 0, A,,,2A,, - -- without measure-
ment errors.

This assumption is clearly not satisfied in general in the context of high-frequency data, at
least in finance where there is an important microstructure noise. However, dealing with
measurement errors involves a lot of complications which would go beyond the scope of
this course.

As said before the first and probably the most important question is the estimation of
the integrated volatility, at least when the underlying process is continuous. This is the
object of this section.

9.1 The continuous case.

Here we assume that the underlying process X is a continuous It6 semimartingale, i.e. is
of the form

t t
X, = X0+/ bsds+/ oo dWs. (9.1)
0 0

Most of the literature is concerned with the 1-dimensional case, but mathematically speak-
ing there is no complication whatsoever in considering the d-dimensional case: so above
W is a d’-dimensional Wiener process, and b; and o; are d and d x d’-dimensional (so
implicitly in (9.1) the second integral is in fact a sum of stochastic integrals w.r.t. the
various components W/ of W).
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Our aim is to "estimate” the integrated volatility, that is the quadratic variation-
covariation process of X:

. t .
it = /c?skds, where ¢ = oy07. (9.2)
0

Recall that the process X is observed at the discrete times 0, A,,24A,, -+ over a finite
interval [0, 7], and one wants to infer Cp, or sometimes the increments C; — C; for some
pairs (s,t) with 0 < s < ¢t < T. Each of these increments is a random variable taking
values in the set of d X d symmetric nonnegative matrices.

One point should be mentioned right away, and is in force not only for the integrated
volatility but for all quantities estimated in this course: although we speak about estimat-
ing the matrix Cr, it is not a statistical problem in the usual sense since the quantity to
estimate is a random variable; so the ”estimator”, say C7 (the "n” is here to emphasize
that it is a function of the observation (X;a, : 0 < i < [T'/A,])) does not estimate a pa-
rameter, but a variable which depends on the outcome w, and the quality of this estimator
is something which fundamentally depends on w as well.

Nevertheless we are looking for estimators which behave as in the classical case, asymp-
totically as n — oo (that is, as A,, — 0). We say that 5’55 is consistent if 5’55 converges
in probability to Cr (one should say ”weakly” consistent; of course in the present setting,
even more than in classical statistics, on would like to have estimators which converge
for all w, or at least almost surely, but this is in general impossible to achieve). Then
we also aim to a rate of convergence, and if possible to a limit theorem so as to allow
for quantitatively asserting the quality of the estimator and for constructing confidence
intervals, for example.

Two consistent estimators can be compared on the basis of their rates of convergence
and, if those are the same, on their asymptotic variances for example. However, unlike
in classical statistics, we do not have a theory for asymptotic optimality, like the LAN or
LAMN theory. The best one can do is to check whether our estimators are asymptotically
optimal (in the usual sense) when the problem reduces to a classical parametric problem,
that is when C7r is deterministic (this happens when for example the volatility o is not
random, like in the Black-Scholes model for the log-returns).

After these lengthy preliminaries we now introduce the estimator. Of course all au-
thors use the approximated quadratic variation given in (1.9), and often called "realized
volatility”. Since we are in the d-dimensional case, we have a matrix B(2,A,); with
components

' [t/An]
B2.A = Y arxiarxk, (9.3)
i=1
These estimators have the following properties:

Property 9.1 (Consistency) B(2,A,): 2, Cy.

Property 9.2 (Asymptotic normality-1) \/% <B(2, Ap) — C’t) converges in law to

a d x d-dimensional variable which, conditionally on the path of X over [0,t], is cen-
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tered normal with variance-covariance (F{klm) (the covariance of the (jk) and the (Im)
components) given by

™ = /0 (clct™ + ekt yds. (9.4)

These are obvious consequences of Theorem 5.1-(b) and Corollary 7.2: for the consis-
tency there is no assumption other than (9.1); for the asymptotic normality we need (H)
in these notes, but in fact it is enough that fot lles||?ds < oo a.s. (see [14]).

Property 9.2 gives a rate of convergence equal to 1/v/A,, but the name ”asymptotic
normality” is not really adequate since the limiting variable after centering and normaliza-
tion is not unconditionally normal, and indeed it has a law which is essentially unknown.
So it is useless in practice. But fortunately we not only have the convergence in law, but
also the stable convergence in law. That is, as soon as one can find a sequence I'} of vari-
ables, depending on the observations at stage n only, and which converge in probability
to the variance given by (9.4), then by normalizing once more by the square-root of the
inverse of I'} (supposed to be invertible), we get a limit which is standard normal.

The ”complete” result involving all components of C} at once is a bit messy to state.
In practice one is interested in the estimation of a particular component Cg k (often with
k = j even). So for simplicity we consider below the estimation of a given component
c! ¥ The asymptotic variance is F{kj b= fg (7 ckF 1 (cdF)2)ds and we need an estimator

for F{kj k, which is provided by Theorem 6.2. More specifically, this theorem implies that

[t/20]
D(A)M* = A Z (A7) Az, X5)? + APXTATXFAL XIAL, XF)  (9.5)

klkl
Ft

converges in probability to . Therefore we have the following standardized CLT :

Theorem 9.3 (Asymptotic normality-2) Assume (H). With the previous notation,
and in restriction to the set {T9** > 0}, the variables

1
A, T(A,)iRk

(B(Q, An)F - Cg"“) (9.6)

converge stably in law to an N'(0,1) random variable independent of F.

The reader will notice the proviso ”in restriction to the set A := {ngj ¥ > 0}”. This
set is in fact equal to the set where s — A and s — c** are not Lebesgue-almost surely
vanishing on [0, ], and also P-a.s. to the set where neither one of the two paths s — X?
and s +— XF is of finite variation over [0,¢]. So in practice A = Q and the above is the
mere (stable) convergence in law.

When A # Q, the stable convergence in law in restriction to A means that E(f(7,)Y) —
E(Y)E(f(U)) for all bounded continuous functions f and all F-measurable bounded vari-
ables Y vanishing outside A, and where T, is the statistics in (9.6) and U is N'(0,1).

This result is immediately applicable in practice, in contrast to Property 9.2: it may
be used to derive confidence intervals for example, in the customary way.
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Proof. As above, T), is the variable (9.6), and we also set S, = \/% <B(2, An)ik - Cgk>
We know that S,, converges stably in law to a variable which can be expressed as the

product ngjk U, where U is N(0,1) and independent of F. By the properties of the

. ' e
stable convergence in law, and since T'(A,,)/%/% =, pikik

of the pair (Sp, T(A)¥%) towards < R U T (A, )]k]k) Obviously this also holds in

, we also have stable convergence

restriction to the set A described above. Since T,, = S,/ F(An)gkjk and I“(An)gkj]c £,
T {kj ¥~ 0on A, the result follows from the continuous mapping theorem. o
Remark 9.4 When o4(w) = o is a constant matrix, so up to the drift the process X is
a Wiener process, then we are in the classical setting of estimation of a matrix-valued
parameter ¢ = oo*. In this case we have the LAN property, and it is well known that
the estimators B(2,A,,); are asymptotically efficient for estimating ¢ in this setting (and
when the drift vanishes, it is even the MLE). Note that c is identifiable, but usually not o
itself since there might be many square-roots ¢ for the matrix c. O

Remark 9.5 There are many ways, indeed, to find consistent estimators for ngj k, and
(9.5) is just possibility. A full set of consistent estimators is provided by the formulas below,
where ¢ is a non-zero integer (recall that m, is the rth absolute moment of A (0,1)):

[t/An]
ikijk 1
L(g, An){™" = a2l A > GMATX AL X A X, (9.7)
8my), i=1
where
2q ) 2q . 2q )
gy @y, wag) = H\foJriUﬂz/quH\x?—xﬂz/q—?H!fo\z/q

2H|xk|2/q—|—4H|x |2/a H lzk2a. (9.8)

1=q+1
Indeed a simple computation yields that p, (gék) = 8m (C“ Kkt (c] k) ), so the prop-

erty T(g, A,)J%% P, T/*F again follows from Theorem 6.2. And of course one could
make variations on this formula, like taking various powers summing up to' 4 instead of
the uniform power 2/q, or varying the order in which the components z] and :cf are

taken in the last term of (9.8): for example one could take 2 [[7_, |27 |2/4 HZ g1 |2k |2/a 4
2T1L, |=k|?/a H?iqﬂ |2J >/ instead of the last term in (9.8): then, with this substitution,
we have in fact I'(g, A,)7%* = TI'(A,,)7%* when ¢ = 2.

The important fact is that Theorem 9.3 is unchanged, if F(An){kj ¥ is substituted with
T(g, An){™". O

9.2 The discontinuous case.

Now we come back to the general situation, where X is an It6 semimartingale satisfying
(H). In this situation the integrated volatility is probably of less importance than in the
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continuous case because it captures only a part of the behavior of X and says nothing
about jumps, but still many people wish to estimate it.

In this case things are more complicated. For example B(2,A,); is no longer a con-
sistent estimator for Cy, as seen in (5.3). However we have constructed in Section 6 some
consistent estimators:

Property 9.6 (Consistency) Assuming (H), the truncated variation V7*(w, o, A,,); of
(6.6), and the multipower variation V7*(ry,--- r;, A,)s of (6.10) converge in probability
to C’gk, for all @« > 0 and w € (0, %) for the first one, and for all integer [ > 2 and all
r1,---,7; >0 with r; +--- + r; = 2 for the second one.

This is nice enough, but the associated CLTs need some more assumption, as seen in
Theorems 7.1 and 7.4. In Theorem 7.1 we need the test function f to be bounded when
X jumps, and this precludes the use of multipower variations; hence in these notes we
actually have a CLT for truncated powers only, as a consequence of Theorem 7.4 (we do
have a CLT for multipower variations as well, under the same assumption r < 1 as below,
but it is slightly too complicated to prove here; see however [9] for the Lévy case).

Property 9.7 (Asymptotic normality-1) Assume (H) and that [(v(2)" A 1)A(dz) <
oo for some r € [0,1). If « > 0 and w € [ﬁ, 1) then the d x d-dimensional processes

with components \/%n (ij(w,a,An)t — C’gk> converge in law to a d X d-dimensional
variable which, conditionally on the path of X over [0, ], is centered normal with variance-

covariance (9% given by (9.4).

The comments made after property 9.2, about the need for a standardized version of
the CLT, are in order here. We need a consistent estimator for Fikﬂ ¥ Of course (9.5) does
not any longer provide us with such an estimate, but we can use the "truncated” version

[t/An]
(@, a5 Ay)" = A Z ((Az XI)2 (A7, XM)?
" o=1

+A?XjA?X’“A?+1XjA?+1X’“)1{\\A?X||smﬁ,w X|<eagy  (9:9)

i+1

By virtue of (6.9), we have I (w, «; An){kjk N F{kjk. Then the same proof as for Theorem
9.3 gives:

Theorem 9.8 (Asymptotic normality-2) Assume (H) and that [(v(z)" A1)A(dz) <

0o for some v € [0,1). If a > 0 and @ € [55—,1). Then and in restriction to the set

- 2(2—r)’ 2
{T7%% > 0}, the variables
1
\/An I"(w, Q; An)ik]k

(V¥*(e, 05 807" - ) (9.10)

converge stably in law to an N(0,1) random variable independent of F.
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One could also use multipower variations to estimate Fik] k

Remark 9.9 The assumption [(y(z)" A 1)A(dz) < oo for some r € [0, 1) is quite restric-
tive, but so far there is no known estimator for C; with a rate 1/1/A,,, if this fails. However
we do have a (worse) rate in almost every situation. Namely, if [(v(z)" A1)A(dz) < oo for

some r € [0,2) then the sequence A@%)“ (ij(w, a, Ayt — Ctjk) is tight (or, bounded in

probability), see [15]. This does not. give a limit theorem, which we do not know to exist,
but it is a bound for the rate.

Note that the rate gets worse when r approaches 2, and does not exist when r = 2
(that is, with no special assumption on the jumps). This is because, when r — 2, the
discontinuous part k(J) * (1 — v) of the process X gets closer to a Brownian motion in
some sense. To take a more specific example, the symmetric stable processes of index
a € (0,2) (which satisfy the above assumption for » > « and not for » < «) converge to
the Brownian motion as o — 0. The fact that the rate worsens when r increases is not
surprising: it is more and more difficult to distinguish between the continuous part X°¢
and the discontinuous part when r approaches 2.

9.3 Estimation of the spot volatility.

If one is so much interested in the integrated volatility it is probably because one does
not really know how to estimate the volatility ¢; itself. In principle the knowledge of the
process C; entails the knowledge of its derivative ¢; as well. But practically speaking, with
discrete observations, the estimation of ¢; is quite another matter, and we are not going
to give here a serious account on the subject, which still features many open problems.

Let us just say a few words. This is very much like a non-parametric problem for which
one wants to estimate an unknown function f, for example the density of a sequence of n
i.i.d. variables. In this case, and depending of course of the kind of criterion one chooses
(one can consider the estimation error pointwise, or in some L?), the rate of convergence
of the best estimators strongly depends on the smoothness of the estimated function f,
although this smoothness is usually not known beforehand. More precisely, if f is "r-
Holder” (that is, Holder with index r when r € (0,1], and if » > 1 it means that f is
[r] times differentiable and its [r]th derivative is (r — [r])-Holder), typically the rate of
convergence of the best non-parametric estimators is n™/(1t27) | always smaller than n'/2.

Here, the unknown function is ¢t — ¢;(w), for a given w. If it were not dependent of
w and if X were simply (say, in the 1-dimensional case) X; = fot V/¢s dWy, the observed

increments A?X would be independent, centered, with variances f(zﬁ’{) A, csds. That is,
we would have a genuine non-parametric problem and the rate of convergence of ”good”
estimators would indeed be A,, r/(142r) with 7 being the smoothness of the function ¢; in
the above sense. Now of course ¢; is random, and possibly discontinuous, and X has also

a drift and possibly jumps.

When oy is an Itd semimartingale (hypothesis (H)) and is further continuous, then the
path of ¢ — ¢; are a.s. Holder with any index r < 1/2, and not Holder with index 1/2.
And worse, o, can be discontinuous. Nevertheless, one expects estimators which converge
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at the rate A, /4 (the rate when r» = 1/2). This is what happens for the most elementary
kernel estimators which are

1

n,jk
Ut = ha

Y AXIATXMLgjarx)<ang)s (9.11)
1€ (t)

where o and w are as before, and the sequence k,, of integers goes to oo with Ak, — 0
(as in (6.12)), and I,,(¢) is a set of k,, consecutive integers containing [t/A,]. This formula
should of course be compared with (6.14). The ”optimal” choice, as far as rates are
concerned, consists in taking k, ~ 1/y/A,, and it is even possible to prove that the

variables ﬁ (Utn ak _ c§k> converge in law under appropriate conditions (this is not a

functional CLT, and the limit behaves, as t varies, as a white noise) .

10 Testing for jumps

This section is about testing for jumps. As before we observe the process X at discrete
times 0, A,, - -- over a finite interval, and on the basis of these observations we want to
decide whether the process has jumps or not. This is a crucial point for modeling purposes,
and assuming that there are jumps brings out has important mathematical and financial
consequences (option pricing and hedging, portfolio optimization).

It would seem that a simple glance at the dataset should be sufficient to decide this
issue, and this is correct when a “big” jump occurs. Such big jumps usually do not belong
to the model itself, and either they are considered as breakdowns in the homogeneity of
the model, or they are dealt with using different methods like risk management. On the
other hand, a visual inspection of most time series in finance does not provide a clear
evidence for either the presence or the absence of small or medium sized jumps.

Determining whether a process has jumps has been considered by a number of authors.
Let us quote for example [1], [11], [7], [16], [12] and [17]. Here we closely follow the approach
initiated in [3].

10.1 Preliminary remarks.

The present problem is 1-dimensional: if X jumps then at least one of its components
jumps, so we can and will assume below that X is 1-dimensional (in the multidimensional
case one can apply the forthcoming procedure to each of the components successively).
We will also strengthen Hypothesis (H) in a rather innocuous way:

Assumption (K): We have (H); furthermore with the notation S = inf(¢ : AX; # 0), we
have:

(a) Ct > 0 when t > 0,
(b) t — [K(d(w,t,2))A(dz) is left-continuous with right limits on the set (0, S(w)]. O

(a) above is a non-degeneracy condition for the continuous martingale part X¢. As for
(b), it may appear as a strong assumption because it supposes that z — k(d(w,t, z)) is A-
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integrable if t < S(w). However one may remark that is ”empty” on the set where S(w) =
0, that is where X has infinitely many jumps near the origin. It is also automatically
implied by (H) when [(y(z) A 1)A(dz) < co. Moreover, if F = {(w,t,2) : 6(w,t,2) # 0},
the variable 1p % , is the number of jumps of X on the interval (0,t], so by the very
definition of S we have 1p x u g < 1. Since F' is predictable and v is the predictable
compensator of u, we have

E(/Osds/lp(s,z)/\(dz)) — B(lpxvs) = E(lprpy) < 1.

Therefore outside a P-null set we have fOS ds [ 1p(s,2)A(dz) < oo and thus, upon modifying
0 on a P-null set, z — k(d(w,t,2)) is A-integrable if ¢ < S(w). So the condition (b) is
really a very mild additional smoothness assumption, of the same nature as (b) of (H).

Before getting started we begin with a very important remark: Suppose that we are
in the ideal situation where the path of ¢t — X;(w) is fully observed over the time interval
[0,T]. Then we know whether the path jumps or not, but we know nothing about other
paths; so, exactly as for the integrated volatility in the previous section we can at the best
make an inference about the outcome w which is (partially) observed. But here there is
even more: if we find that there are jumps we should conclude to a model with jumps, of
course. But if we find no jump it does not really mean that the model should not have
jumps, only that our particular observed path is continuous (and, if jumps occur like for
a compound Poisson process, for instance, although the model should include jumps we
always have a positive probability that a path does not jump over [0,7]).

Therefore, the problem which we really try to solve here is to decide, on the basis of
the observations X;a,,, in which of the following two complementary sets the path which
we have discretely observed falls:

Q{F ={w: s+ X (w) is discontinuous on [0,7]} } (10.1)

Q0 ={w: s+ X (w) is continuous on [0, 77}.

10.2 The level and the power function of a test.

In view of (10.1) we have two possibilities for the "null hypothesis”, namely ”there are no
jumps” (that is, we are in Q%), and "there are jumps” (that is, we are in Q5.).

Consider for example the first case where the null hypothesis is ”no jump”. We are thus
going to construct a critical (rejection) region C%’n at stage n, which should depend only
on the observations Xo, Xa,, -, Xa,[t/a,]- We are not here in a completely standard
situation: the problem is asymptotic, and the hypothesis involves the outcome w.

In a classical asymptotic test problem, the unknown probability measure Py depends
on a parameter § € © (O can be a functional space), and the null hypothesis corresponds
to 6 belonging to some subset ©p of ©. At stage n one constructs a critical region C,.
The asymptotic level is

a = sup limsup Py(Cy), (10.2)
(ASSH) n
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whereas the asymptotic power function is defined on ©; = ©\©y as
B(0) = liminf Py(C,).

Sometimes one exchanges the supremum and the lim sup in (10.2), which is probably more
sensible but in general impossible to achieve, in the sense that often supycg, Po(Cr) = 1.
Moreover, usually a prescribed level ag is given, and the aim is to construct C), so that
(10.2) holds with o < vy (and if possible even, o = «y, which generally increases the power
function). Finally a ”good” asymptotic critical region satisfies 3(f) = 1 for all 6 € ©; (we
cannot hope for Py(C),) =1 if € O; at any stage n).

In the present situation we have no genuine parameter (although the law of X itself
can in a sense be considered as a parameter, or perhaps its characteristics (B, C,v) can).
Rather, the outcome w, or at least the fact that it lies in 2f or not, can be considered
as a kind of parameter. So, keeping the analogy with (10.2), we are led to consider the
following definition for the asymptotic level of our critical region Cf,;:

af = sup (limsup P(Ci, |A): AeF, AC Qf) (10.3)
n—oo
Here P(CY,, | A) is the usual conditional probability with respect to the set A, with the
convention that it vanishes if P(A) = 0. If P(Q) = 0 then of = 0, which is a rather
natural convention. It would seem better to define the level as the essential supremum «j¢
(in w) over Qf of limsup,, P(Cf, | F); the two notions are closely related and «;® > of,
but we cannot exclude a strict inequality here, whereas we have no way (so far) to handle
a;f. Note that af features some kind of ”uniformity” over all subsets A C Qf, in the spirit
of the uniformity in 6 € ©¢ in (10.2).

As for the asymptotic power function, we define it as
Gf = liminf P(Cy,, | F) (10.4)
n b

and of course only the restriction of this ”power function” (a random variable, indeed) to
the alternative set ] imports.

When on the opposite we take ”there are jumps” as our null hypothesis, that is Qi ,
in a similar way we associate to the critical region Cg,n the asymptotic level o and the

power function Qf (simply exchange everywhere Qf and Qi)

10.3 The test statistics.

First we recall the processes (3.1), except that here we do not specify the component since

X is 1-dimensional:
[t/An]

B(p Ay = 3 AIXP. (10.5)
i=1
The test statistics we will use to construct the critical regions, for both null hypotheses,

are the following ones:
g B(p, kAn):
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where k > 2 is an integer, and p > 3. Note that the numerator is obtained by considering
only the increments of X between successive intervals of length kA,,. Then we have (and
the assumption (K) is unnecessarily strong for this):

Theorem 10.1 Assume (K). For all ¢ > 0 we have the following convergence:

A P 1 on the set Qg
(10.7)

S b, kv An -
( ) kp/2-1 on the set 2f.

Proof. By Theorem 5.1 the two variables B(p, A,): and B(p,kA,); both converge in
probability to > st 1AX s|P (this is true as soon as p > 2, indeed), and the latter variable

is strictly positive on the set Q{ hence the convergence on the set Qi is obvious.

When X has no jump, we can apply (6.5) to obtain that A,ll_pﬂB(p, Ap)t, and of
course (kA,)"P/2B(p, kA,,); as well, converge to m,, fg c§/2ds, which by (H’)-(a) is not 0.
Then obviously we have the second limit in (10.7) when X is continuous.

This does not end the proof, however, except in the case 2f = ). It may happen that

0 < P(£2) < 1, so X is not (a.s.) continuous even on [0,t], but some of its path are.
However, suppose that we have proved the following;:

Xs = X! for all s <t, on the set Qf, where X' satisfies (K) and is continuous. (10.8)

Then obviously B(X,p, A,): = B(X',p,An): and B(X,p, kA, = B(X',p,kA,); on the
set Qf, and we get the result by applying (6.5) to X’ instead of X.

The construction of X’ involves the assumption (K)-(b). In fact we set
t t
X, = Xo +/ b.ds +/ osdWs (10.9)
0 0

where b = b — b and b = ([ £(6(t 2))Md2)) Ls<s). Then b is adapted, with left-
continuous and right limited paths, so X’ satisfies (K), and it is continuous. Now suppose
that we are in Qf. Then t < S, hence #/(6) x p_ = 0 for all s < ¢. As for the stochastic
integral k(0) * (u — v)s for s < t, we observe that in fact x(J) x v, is well-defined as an
ordinary integral and equals fos bl du; hence k() % K s also an ordinary integral, and since
s < S it actually vanishes: therefore we deduce that X, = X! if s < ¢ and we are done. O

We now turn to the central limit theorem. We introduce two processes, with ¢ > 0
and g > 2 respectively:

Awn = [ @Pan Dl = SIAX e+ o). (10.10)

s<t

Recalling that d = 1 here, these two processes are respectively the right side of (6.5) and
the process D (f) of (6.11), when we take the function f(x) = |z|?. For this function we
also write |x|? x p1 instead of f x p. In addition to the absolute moments m, used before,
we also set

map(k) = IE(|\/I<: —1U+ VP |V\p), (10.11)
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where U and V are two independent N (0, 1) variables. Finally we set

1 _ -
M(p, k) = iz (kp 2(1 4 k) (map — m2) — 2k7/> (mgp (k) — kp/Qm};)). (10.12)
When p = 4 we get M(p, k) = 16k(2k*> — k — 1)/35, and in particular M(4,2) = 22.

Theorem 10.2 Assume (K), and lett >0, p >3 and k < 2.

(a) In restriction to the set Q, the variables \/%n (S(p, k, An)t — 1) converge stably in

~

law to a variable S(p, k:)g which, conditionally on F, is centered with variance

(k—1)p* D(2p—2);
2 (P x )7

E((S(0})? | F) = (10.13)
Moreover if the processes o and X have no common jumps, the variable S(p, k)i s F-
conditionally Gaussian.

~

(b) In restriction to the set QS, the variables —A— (S(p,k, Ap): —2) converge stably in

V ATL
law to a variable S(p, k)§ which, conditionally on F, is centered Gaussian with variance
= A(2p)
E((S(p,k))? | F) = M(p,k . 10.14
(5571 7) = Mk) o0, (10.14)

We have already encountered in and explained after Theorem 9.3 the notion of stable
convergence in law in restriction to a subset of . It is also worth noticing that the
conditional variances (10.13) and (10.15), although of course random, are more or less
behaving in time like 1/t.

Proof. a) Write U,, = \/%7 (B(p, An)t — |x|Px ) and V,, = \/% (B(p, kAy) e — |z[P * ).
Then

a B(p, kAn)t Vn - Un
S(p,k, Ay —1 = 82ty A Yn T Un
(B e = 1= 50 A Bp, Ay

Since p > 3, Corollary 8.3 yields that V;, — U,, converges stably in law to Z'(f): — Z(f)¢,

and the result readily follows from (8.6), from the fact that B(p, Ap): N |z|P x e, and
from the last claim in Lemma 8.1.

b) Exactly as for Theorem 10.1 it is enough to prove the result for the process X’ of
(10.9). This amounts to assume that the process X itself is continuous, so Qf = 2. Write

U = ke (A "B, An) = Alp)) and V) = e (A" B(p.kA,) — K271 A(p),).
Then

S B A ! _ 1.p/2—1771
S(p, k, Ap)t — Ep/2-1 — M _ /21 \/E vV —k U’ |
Blp, An)e AP B(p, An)
Now we consider the 2-dimensional function f whose components are |z1|P+- - -+ |z [P and
|x1 + -+ xx|P. Recalling (7.6), the two components of \/% (V”(f, kA — % fg P?f(f))

are respectively U, + U] and V,,, where

Ul = /A, > |ATX|P.

K[t/ kAn)<i<[t/An]
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Obviously U/ — 0, hence Theorem 7.3 implies that the pair (U], V,) converges stably
in law to a vector which is F-conditionally centered Gaussian, with F-conditional co-
variance M A(2p);, where the entries of M are Mj; = 1 — mg/mgp and My = My =

(map(k) — m2)/myy, and My = kP~1(1 — m2/mgp). Therefore, using also the fact that
A,lz_p/QB(p, Ap)e =, A(p)s, we readily deduce the result. O

Exactly as for estimating the volatility, see Theorem 9.3, this CLT is useless in practice
and one has to standardize the test statistics so as to obtain a usable result. As usual, the
standardization is done by dividing by the square-root of any consistent estimators for the
conditional variances in (10.13) and (10.14). For the first one we can use again the fact

that B(p, Ap)t N |z|P % e, plus the following version of (6.14), which by Theorem 6.5
converges to D(q); if ¢ > 2:

t/An]—Fkn
1 2
Dlg.ma =g > IMX" 3 IAIXPlapxicanz) (1015
i=1+kn 713745 —1<kn

where o > 0 and @ € (0, 1), and k, satisfies (6.12).

For the right side of (10.14) we can use estimators of A(p):, as provided in Theorem
6.3; for example, with w and « as above, we can take

[t/ An]
A0, An)e = AL ST [ATXPLjanxi<ans), (10.16)
i=1
which converges to A(p); when X is continuous (and also when X has jumps, in restriction

to €f, as in the proof of Theorem 10.1). The variables ALP 2p (p, Ap)s also converge to
A(p): on Qf. Hence the next result follows from Theorem 10.2, with exactly the same
proof than for Theorem 9.3:

Theorem 10.3 Assume (K) and lett >0, p >3 and k > 2.
(a) In restriction to the set Q{, the variables Falt ) (§(p, k,Ap)e — 1), where

o

Ap(k—1)p? D(2p — 2,0, a,Ay);
(B(pa An)t)z
converge stably in law to a variable which, conditionally on F, is centered with variance

1, and which additionally is F-conditionally normal if the processes o and X have no
common jumps.

(b) In restriction to the set Qf, the variables Fl( ) (S(p, k, Ay)y — kP/27Y) | where

IV(t,n) =

(10.17)

c(t,n
either
Fc(t ) o AHM(p7 k) A(2p,w,a,An)t (10 18)
e (A(p7w7a7An)t)2 ’ '
re(,n) = 2K BOP An)i (10.19)

(B(p, An)i)?

converge stably in law to a variable which, conditionally on F, is N(0,1).
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We will see later that, although both choice of T'“(t,n) are asymptotically equivalent
for determining the level of our tests, it is no longer the case for the power function: the
second choice (10.19) should never prevail.

10.4 Null hypothesis = no jump.

We now use the preceding results to construct actual tests, either for the null hypothesis
that there are no jumps, or for the null hypothesis that jumps are present. We start with
the first one here. The null hypothesis is then ” €2¢”, and we are going to construct a
critical (rejection) region Cf,, for it. In view of Theorem 10.1 it is natural to take a region
of the form R

th,n = {S(pa ka An)t < 7150,71} (1020)

for some sequence ~;,, > 0, possibly even a random sequence. What we want, though, is
to achieve an asymptotic level « prescribed in advance. For this we need to introduce the
a-quantile of N (0, 1), that is P(U > z,) = a where U is N(0,1).

Theorem 10.4 Assume (K), and lett > 0, p > 3 and k > 2. For any prescribed level
a € (0,1) we define the critical region C7,, by (10.20), with

Vin = KPPz, T (10.21)

where I'°(t,n) is given either by (10.18) or by (10.19).

(a) The asymptotic level of for testing the null hypothesis of “no jump” is not bigger
than o and equal to o when P(2f) > 0; we even have P(Cf,, | A) — « for all A C Qf with
P(A) > 0.

b) The asymptotic power function 35 is a.s. equal to 1 on the complement o if we
( t [

use (10.18) for T°(t,n), with @ € (3 — %, 3), but this fails in general if we use (10.19).

Proof. For (a) it is enough to prove that if A € Qf has P(A) > 0, then P(Cf,, | A) — a.
Let U, = 1 (§(p, ky,Ap)e — kp/2_1). We know that this variable converges stably

in law, as n — o0, and in restriction to Qf, to an N(0,1) variable U independent of F.
Therefore for A as above we have

P(CE, NA) = P{Up < —2} NA) — PAPU < —z,) = aP(A),

and the result follows.

For (b) we can assume IP’(Q%) > 0, otherwise there is nothing to prove. Theorem 10.1
implies that S(p, k, Ap)e 1 on QJ. If we use the version (10.19) for T°(t,n), then
Theorem 5.1 implies that I'°(¢,n) converges in probability to a positive finite variable, on
Q{ again. Hence on this set the variable U, converges in probability to a limiting variable
U (equal in fact to (1 — kP/2)|2|P % 1y /\/M (p, k)|x|2P % f1¢ ). In general this variable is not
a.s. smaller than —z, on Qg, and thus the power function is not equal to 1 on this set.
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On the opposite, suppose that we have chosen the version (10.18), with @ € (% - ;1), %)
Suppose also that
A, A2 Ap)t
n A(2p @, o, ”2) ) (10.22)
(A(p7 w, &, A’n)t)

This means that I'“(¢, n) 2., 0. Since 1 — kP/271 < 0 we deduce that Uy, —s —cc on the
set QF. Then ‘ A '
P(CE, Q) = P{Un < =22} N Q) — P(Q).

This trivially implies P(Cf,, | F) L 1 on the set Q.

It remains to prove (10.22), and for this it is no restriction to assume (SH). The
reader will observe that when X is continuous this trivially follows from Theorem 6.3, but
unfortunately we need this property on ]. With the notation of (6.22), one easily check
that for all B > 0:

[t/An) [t/An)
AP AT X Plganxicyman — An Y 1B'] < KZu(B), (10.23)
i=1 i=1
where
[t/An]

Za(B) = A 3 (I8P iy BT (N2 A B) + 18217 (X2 A V).
=1

(6.23) and Bienaymé-Tchebycheff, plus (6.25) and Cauchy-Schwarz give us

Kt

= (10.24)

limsup E(Z,(B)) <

On the other hand we know that Ap */2 ZEZIA"] |6l P RN A(p):. Combining this with

the above estimates and (10.23), we obtain for all n, B > 0:

[t/Aq]
PLATP2 Y IAIX L anyicymasy < AW~ Za(B) =n | — 0.
=1

Now, for any B > 1 we have aA% > /BA, for all n large enough because w < 1/2.
Therefore we a fortiori have

P (A(p7w7 «, An)t < A(p)t - ZTL(B) - 77) — 0.
Now (10.24) imply that limp .o, limsup, P(Z,(B) > n) = 0, hence
P(A(p, @, 0, An)e < A(p)e = 21) — 0.

Since A(p): > 0 a.s., we finally deduce

P <A(p,w,a,An)t < A(p)t) 0. (10.25)
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At this stage, the proof of (10.22) is straightforward: since |[ATX|? < aP APF|ATX|P
when |A’X| < aAZ, one deduces from (10.16) that

AnACp @ 0 By) . KATHTP
A(p,w,a,An)% o A(pywaaaAn)t‘

Since pw + 1 — p/2 > 0, the result readily follows from (10.25). O

10.5 Null hypothesis = there are jumps.

In a second case, we set the null hypothesis to be that there are jumps, that is ” Qg 7.
Then we take a critical region of the form

for some sequence ’yg,n > 0. As in (10.3) and (10.4), the asymptotic level and power
functions are

ol = sup <limsup ]P’(Cgm |A): Ae F,AC Qi), Bl = limnianP’(C’g;n | F).

n

Theorem 10.5 Assume (K), and lett > 0, p > 3 and k > 2. Define TV(t,n) by (10.17),
and let o € (0,1) be a prescribed level.

(i) With the critical region C’tjm given by (10.26), with
; 1 ;
i _
Vi = 1+ L7(t,n), (10.27)
b \/7

the asymptotic level 04{ for testing the null hypothesis of “jumps” is not bigger than .
(i) With the critical region C{,, given by (10.26), with

YMn = 1+ za\/TI(t,n), (10.28)

and if further the two processes X and o do not jump at the same times, the asymptotic
level o] for testing the null hypothesis of "jumps” is not bigger than o, and equals to o
when P(Y) > 0; we even have P(C],, | A) — o for all A C Qf with P(A) > 0.

(iii) In both cases the asymptotic power function ﬂg s a.s. equal to 1 on the complement

QF of Q.

Since zo < 1/y/a the critical region is larger with the version (10.28) than with the
version (10.27). Hence, even though asymptotically the two power functions are equal, at
any stage n the power is bigger with (10.28) than with (10.27), so one should use (10.28)
whenever possible (however, when there are jumps, it is usually the case that the volatility
jumps together with X).

Proof. We know that the variables U,, = I‘Cl(t ) (S(p, k, Ap); — 1) converges stably in

law, as n — o0, and in restriction to Q{ , to a variable which conditionally on F is centered
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with variance 1, and is further A/(0,1) if X and o do not jump at the same times. Then
P(U > 1/y/a) < a, and also P(U > z,) = « in the latter case, the two statements (i) and
(ii) follow exactly as in Theorem 10.4.

For (iil) we can assume P(2f) > 0, otherwise there is nothing to prove. Then in restric-
tion to Qf the statistics S (p, k, Ay)+ converge in probability to kP/2~1 > 1. Moreover, on
this set again, both D(2p — 2, w, a, A,,); and B(p, A, ) are the same as if they were com-

puted on the basis of the continuous process X’ of (10.9). Therefore, by virtue of Theorems

6.2 and 6.5 we have that Al_p/2 B(p, Ap)t £, A(p)¢ and A?L_pD(2p —2,w, 0, Ayt F,

22 A(2p)s on QF. Since by (H’) we have A(p); > 0 it follows that TV (¢,n) 0 o0n

map
Qg Therefore we have U, =, 400 on Qf, and as in Theorem 10.4 we conclude that
P(CY, N Q) — P(QF), hence P(C{,, | F) —— 1 on the set Q. O

11 Testing for common jumps

This section is again about jumps. We suppose here that our underlying process is mul-
tidimensional, and that it has jumps, and we want to check whether any two components
have jumps occurring at the same time.

11.1 Preliminary remarks.

Clearly the problem at hand is 2-dimensional, since in the multidimensional situation
one can perform the tests below for any pair of components. So below we assume that
X = (X!, X?) is 2-dimensional. Exactly as in the previous section, we need a slightly
stronger assumption than (H):

Assumption (K’): We have (H); furthermore with the notation 7 = inf(t : AX} AX? #
0) (the infimum of all common jump times) and I' = {(w,t,z) : 6'(w,t,2)6%(w, t, ) # 0},
we have

()C’t;éOWhent>0

)t [K(d(w,t,2))1lr(w,t, 2)A(dz) is left-continuous with right limits on the interval
(0, 7(w ( )] O

(a) above is again a non-degeneracy assumption for X¢, similar in the 2-dimensional
case to (a) of (K). As for (b) here, we can state the same remarks as for (b) of (K): it
is "empty” on the set {7 = 0}, that is where X' and X? have infinitely many common
jumps near the origin. It is implied by (H) when [(y(z) A 1)A(dz) < oo. Moreover in all
generality, and outside a P-null set, z — k(d(w,t, z)) is A-integrable if ¢ < 7(w). So again
(b) is a very mild additional smoothness assumption, of the same nature as (b) of (H).

Next, and again like in the previous section, what we can really test on the basis
of discrete observations of X over a finite time interval [0,77] is whether the two paths
t — X}(w) and t — X?(w) have common jump times or not. That is, we can (hopefully)
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decide in which one of the following two disjoint subsets of {2 we are:

0f = {w: s+ X}(w) and s — X2(w) have common jumps on [0, 7]}
Q%j = {w: both s+ X}(w) and s — X2(w) have jumps, but they have (11.1)

no common jump, on [0,77]}.
The union of these two sets is not €2, but their global complement is

Q% = {w: both s — X!(w) and s — X%(w) are continuous on [0, 7]}. (11.2)

All three sets above may have a positive probability. However, we can first perform the
tests developed in the previous section, separately on both components, to decide whether
both of them jump. Then in this case only it makes sense to test for joint jumps. That
is, we suppose that this preliminary testing has been done and that we have decided that
we are not in QF.

At this point we again have two possible null hypotheses, namely ”common jumps”
(we are in Q) and ”disjoint jumps” (we are in QdT]) Exactly as in the previous section
we construct at stage n a critical region C7/ ,, for the null Q7 and a critical region C%J n

for the null lez. In the first case the asymptotic level and power function are respectively
0% = sup <limnsup P(Cf, | 4): AeFACQf), pf =lminf P(CF, | F). (113)
In the second case, they are

045}] = sup <limsup P(Cg{n |A): Ae F,AC Q%j), BY = lirr%inf P(Cg{n | F). (11.4)

11.2 The test statistics.

Three functions will be used in the construction of our test statistics (here x = (2!, 22) €
R2):

fl@) = (@2, q@) = @)Y gl) = (@) (11.5)
Then, with £ > 2 being an integer fixed throughout, we put
Tk, A, = SRS gy, VS gy
V(f, An)t VV (g1 An) V(g2 An):

These statistics will we used to construct respectively, the two critical regions ijn and

C%L. Unlike for simply testing jumps, we have to resort to two different statistics to deal
with our two cases.

We have now to determine the asymptotic behavior of these statistics, deriving an LLN
and a CLT for each one. To prepare for this we need to introduce a number of processes
to come in in the limiting variables. First we set

t
F = /(cilc§2+2(c§2)2)ds. (11.7)
0
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Second, on the extended space described in Subsection 8.1 and with the notation S,, R,
and R), of this subsection (recall (8.2), here R, and R, are 2-dimensional), we set

Di = s ((AXépRg))QJr(AXng}J)Z)

1 pr2y\2 2 P2 (11.8)
Dp = Sps,ee ((AXE R2)? + (AXE R1?).

If we are on the set ng it turns out (via an elementary calculation) that in fact D; =
Z(f):/2 and D} = ZI(f)t/Q forall t < T.

Theorem 11.1 Assume (K’).

(a) We have
Tk, Ap)y —— 1 on the set Q7 (11.9)

and fcj(k:, Ay converges stably in law, in restriction to the set ij, to

, D, + kF;
T (k) = —t—— 11.10
() = 2T (11.10)
which is a.s. different from 1.
(b) We have

. fxu g1 * pe)(ge* ) > 0 on the set QF
TU(An)e — o/ ) x i) . (11.11)

0 on the set Q.

The second part of (a) is a kind of LLN because it concerns the behavior of Tei (k, Ap):
without centering or normalization, but it is also a kind of CLT.

Proof. On both sets ij and ij both components of X jumps before ¢, so g1 * yz > 0
and go % 1y > 0, and also f* pz > 0 on Q7. Then all claims except the second one in (a)
are trivial consequences of Theorem 5.1.

Let us now turn to the behavior of 7% (k, A,); on ij. If we make the additional
assumption that X! and X? never jump at the same time, then the stable convergence in
law towards T (k), as defined by (11.10), is a trivial consequence of Theorem 8.4 and of
the remark which follows (11.8). Moreover, the F-conditional law of the pair of variable
(D¢, Dy), in restriction to ij , clearly admits a density, hence P(ij N{T% =1}) =0 and
we have the last claim of (a).

Now, exactly as in Theorem 10.1, this is not quite enough for proving our claim, since
it may happen that both ij and ij have positive probability. However, suppose that

X, = X! for all s <t, on the set Q¥ where X’ satisfies (K’),
and the two components X! and X’? never jump at the same times.

} (11.12)

Then the above argument applied for X’ instead of X yields the result.
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The construction of X’ involves (K’)-(b). We set b, = b, — b/, where the process
b = (f k(d(t, 2)) 1p(t, z)/\(dz)) L{t<ry is well-defined and left-continuous with right limits

everywhere. Set also 8’ = d1pc. Then the process
t t
X, = X, —I—/ blde —I—/ osdWs + #(8') % (= v)i — '(8") % p1,
0 0 - -

satisfies all requirements in (11.12) (we should more careful here; it satisfies (H”), except
for one fact, namely we do not know whether t — §'(w,t, z) is left-continuous with right
limits; however, this particular property plays no role in the proof of Theorem 8.4, so the
proof is nevertheless complete.) O

Now we turn to the associated CLTs. Here again we need to complement the notation.
Set
— 1
Di = 52 ((AXHHE +¢2) + (AXH el +clh)), (11.13)
s<t
D; =23 (AXIAXD?((AX22 (el 4+ el + (AXDA(2 + ) + 20X AXE(cf2 + 1)),
s<t
(11.14)
In other words, with the notation (8.3) and (8.4), we have Dy = 3 C(f); for all s < ¢ on

the set ij , and D = % C(f, f) everywhere.

Theorem 11.2 Assume (K’).
(a) In restriction to the set ng the sequence \/%n(fcj(k:, Ay — 1) converges stably in
law to a variable T'“) (k) which, conditionally on F, is centered with variance
E/
IE( T3 (k)2 }') — (h—1)——t 11.15
(T (k)" | ( )(f*ut)g (11.15)

and is even Gaussian conditionally on F if the processes X and o have no common jumps.

(b) In restriction to the set Q%j the sequences A%Lfdj(Dn) converges stably in law to the
positive variable TY = (Dy + Fy)/+/(g1 * j1¢)(g2 * j1¢) which, conditionally on F, satisfies

D+ F,

N B |
ETE1A) V(g1 % 1) (g2 * 11¢)

(11.16)

Proof. a) This is the very same proof as for (a) of Theorem 10.2: we write U, =
ﬁ (V(f, A — f* ) and V,, = ﬁ (V(f,kAp): — f * 1) and observe that

n

el / Vo —Un
T](k,An)t—l — A’Vl m

Then we conclude using Corollary 8.3, plus (11.14) and the remark that follows, in exactly
the same way.
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b) Exactly as in the previous theorem, we can replace X by a process X' satisfying
(11.12), or equivalently we can assume that the two X! and X? never jump at the same
times. Then the result immediately derives from Theorem 8.4. O

Finally we need to standardize our statistics, and thus to find consistent estimators
for the conditional variance in (11.15), and conditional first moment in (11.16). For the
variables f * py, g1 * g and Gy x py we can use V(f, Ap)y, V(g1,An)e and V (g2, Ap)t
respectively. For F; we can use the truncated powers (see Theorem 6.3; we have to be
careful here, because X is discontinuous, whereas f is a polynomial of degree 4; so we
choose the version given by (6.8)-(6.9)): we choose @ € (0,1) and a > 0, and we set

» 2
[t/ An]
A A _ L AnX12An X22
(w0, Ap)y = A Z |AG " A X7
"oi=1

F2ATX ATXAAL G X AL X2 ) Lar xj<aag), (a7, Xeas) (1117)

i+1

Finally, by virtue of Theorem 6.5, we can estimate D; and EQ by the following variables,
where in addition to w and « we have chosen a sequence k,, of integers satisfying (6.12):

| Ak
D(w,a,Ay); = WA Z 1{||A?X||>aAﬁ}
P =14k,
> ((APX)(AFX?)? + (AFXA(ATXY)?) Lgap v carkhl-18)
JE€In(3)
9 [t/An]—kn
Y n n
D (w0 An)r = DD (ArX)(Arx?)?

i=14kn jEIL(3)

2
(Arx'A7X? + APX2ATX') T(arx<ang).  (1119)
Then we have the following trivial consequence of Theorem 11.2:

Theorem 11.3 Assume (K’).
(a) In restriction to the set QO the variables ———— (fcj(k:, Ap)e — 1), where

Tei(t,n)

An(k—1)D (w, o, Ap)y
(V(f, An)i)? ’

converge stably in law to a variable which, conditionally on F, is centered with variance
1, and which additionally is F-conditionally Gaussian if the processes X and o have no
common jumps.

(b) In restriction to the set Q?j, the variables m TH(A); , where

I (n,t) = (11.20)

Ap(D(w, o, Ay + Ao, a, Ap)e)
\/V(gh An)t V(QQ, An)t

% (t,n) = , (11.21)
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converge stably in law, in restriction to the set Q%j, to a positive variable which, condi-
tionally on F, has expectation 1.

11.3 Null hypothesis = common jumps.

Now we are in a position to construct the critical regions we are looking for. We start
with the null hypothesis being ”there are common jumps”, that is we are in Q;’. In view
of Theorem 11.1 it is natural to take a critical region of the form

C = {T9(k,Ay) — 1] > 47 ). (11.22)
For o € (0,1) we denote by 2., the symmetric a-quantile of an N'(0,1) variable U, that is
P(U| > zq) = o
Theorem 11.4 Assume (K’), and let t > 0 and k > 2. Define T (t,n) by (11.20), and
let a € (0,1) be a prescribed level.
(i) With the critical region thgn given by (11.22), with

vl = 1+ —= JT€(t,n), (11.23)

the asymptotic level ozfj for testing the null hypothesis of ”common jumps” is not bigger
than .

1 ith the critical region A given by 22), wit
With th l thjn by (11.22 h

vl = 1+ 2, \/Te(t,n), (11.24)

and if further the two processes X and o do not jump at the same times, the asymptotic
level o] for testing the null hypothesis of ”common jumps” is not bigger than o, and equals
to o when P(%7) > 0; we even have P(Cy), | A) — a for all A C QF with P(A) > 0.

11) In both cases the asymptotic power function ﬂcj is a.s. equal to 1 on the set %,
t t

Again 2/, < 1/4/a, so whenever possible one should choose the critical region defined
by (11.24).

Proof. In view of the previous theorem, (i) and (ii) are proved exactly as in Theorem
10.5 for example. For (iii), we observe first that, in view of Theorem 11.1(-a), the variable
T (k, Ay)¢ converges stably in law to 77 (k) — 1, which a.s. noon vanishing. On the other

hand we have D (@, a, A ); . D, everywhere and V(f, Ap); N fxpe >0 on ij,

hence I' (¢, n) L. 0on ij . That is, fyzjﬁ . 1 on this set, and this implies the result. O

11.4 Null hypothesis = no common jumps.

In a second case, we set the null hypothesis to be that “no common jumps”, that is we
are in ij . We take a critical region of the form

Co = {TY(5,) > 7} (11.25)
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Theorem 11.5 Assume (K’), and lett > 0. Define T%(t,n) by (11.21), and let o € (0,1)
be a prescribed level.

(a) With the critical region ngﬁ given by (11.25), with

dj Fd] (tv n)

N = (11.26)

the asymptotic level afj for testing the null hypothesis of “common jumps” is not bigger
than a.

(b) The asymptotic power function ij s a.s. equal to 1 on the set ij.

Proof. The variables U, = T%(A,);/T%(t,n) converge stably in law to a limit U > 0
having E(U | F) = 1, in restriction to Q¥. Hence if A € F is included into Q¥ we have

aP(A) > P(AN{U > é}) < limsup P(AN{U, > %}) — P(CH, N A).

and (a) readily follows.

For (b) one observes that T'% (¢, n) 200 ij , whereas on this set 7% (Ap): converge

to a positive variable by Theorem 11.1, hence U, N 400 on ij and the result becomes
obvious. O

12 The Blumenthal-Getoor index

In the last section of these notes we wish to use the already made observation that if the
path s — X;(w) is fully observed on [0, ], then one also know the processes

H(r)y = Y [AX]" (12.1)

s<T

for any r > 0 (with the convention 0° = 0). This is not especially interesting, and it has
no predictive value about the laws of the jumps, but for one point: we know for which r’s
we have H(r); < oo. We will call Blumenthal-Getoor index up to time T' the following
random number

Ry = inf(r: H(r)pr < o0). (12.2)

This is increasing with 7', and 0 < Ry < 2 always, and we have H(r)p = oo for all r < Ry,
and H(r)r < oo for all » > Ry, whereas H(Rr)r may be finite or infinite (except that
H(2)r < oo always again). We will consider in this section the ”estimation” of Rr(w),
in the same sense as we estimated the integrated volatility above. Clearly, Rr is the
maximum of the Blumenthal-Getoor indices R%(w) for all components X?, so this problem
is essentially 1-dimensional, and in the sequel we assume X to be 1-dimensional.

To understand why this index is important let us consider the special situation where
X = X' +Y, where X' is a continuous It6 semimartingale and Y is a Lévy process.
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Of course H(r); = > ., |AY,|", and the Lévy property yields the following equivalence,
which holds for all ¢ > 0:

H(r) < 00 as. < /(\xr A1) F(dz) < oo, (12.3)

where F' is the Lévy measure of Y. It is also characterized in the following way: writing
r>0 — F(z) = F([-z,2]°, (12.4)

for its (symmetrical) tail function (more generally, H(z) = H([—z,x]°) for any measure
H on R), then the Blumenthal-Getoor index [ is the unique number in [0, 2] such that for
all € > 0 we have

lim 2#T¥F(z) = 0, limsup z°°F(z) = oo. (12.5)

z—0 z—0
Unfortunately, the “limsup” above is usually not a limit.

If Y is a stable process, its Blumenthal-Getoor index is the stability index, which is
probably the most important parameter in the law of Y (the other three, a scaling constant
and a drift and a skewness parameter are also of course important but no as much; note
that here the scaling and skewness parameters can also be in principle estimated exactly,
but the drift cannot). More generally, for a Lévy process the observation over [0,¢] does
not allow to infer the Lévy measure, but one can infer in principle the Blumenthal-Getoor
index, which indeed is about the only information which is known about F': this is an
essential characteristic of the process, for modeling purposes for example.

So we are going to estimate Rp. Unfortunately, to do this we need some very restric-
tive assumptions. We start with the simple case when X is a symmetric stable process
plus possibly a Brownian motion, then we state the results when X is a ”general” It6
semimartingale, and we come back to Lévy process with a slightly different problem. The
proofs are mainly given at the end.

To end these introductory remarks, let us introduce the processes which we will use
here. The Blumenthal-Getoor index is related with the behavior of ”small jumps”, which
correspond in our discrete observation scheme to the increments A X that are "small”;
however we also have the continuous part X’, which plays a preponderant role in those
small increments. So we need to "truncate” from below the increments to get rid of the
process X'. This leads us to take, as in the previous sections, two numbers @ € (0, %) and
a > 0 and, this time, to consider increments bigger than aA% only. We could a priori
take a ”general” test function, but it turns out that simply counting those not too small
increments is enough. Hence we set for u > 0

[t/An]
Uu, An)e = Y 1arx|su}s (12.6)
i=1
and use in fact the processes U(aAY,A,) or U(aAY,2A,). On the basis of these we

introduce two different statistics, which will be in fact our estimators. Below, we choose
w € (0, 3) and two numbers o/ > o > 0, and we set

)2
~ log(U(aAZ, Ay /U (/AT Ay))
n t’ ) b ! - " L *
nlty . ) log(a'/a)

(12.7)
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Other estimators of the same kind, but involving increments of sizes A,, and kA, and the
same cut-off level a A7 are possible, in the spirit of the previous two sections, but the
results are essentially the same, and in particular the rates.

12.1 The stable process case.

In this subsection Y denotes a symmetric stable process with index 5 € (0,2). This is a
Lévy process whose characteristic function is of the form E(e™*) = exp(—ct|u|?) for some
constant ¢, and the Lévy measure is of the form

_AB

= A
2|z|1+A dz, hence F(x) := — forz >0 (12.8)
T

F(dz) = e

for some scale parameter A > 0, related of course with the ¢ above. The law of Y7 has
an even density g and a tail function G(x) = P(|Y1| > x) satisfying, as © — oo (see [26],
Theorems 2.4.2 and Corollary 2 of Theorem 2.5.1):

A 1 _ A 1
g(z) = 2|m|1ﬁ+5 +0 (mHQﬁ) . Gl@) = 5+0 (W) : (12.9)

Let us begin with the case X =Y. In this case, U(aAF, A,); is the sum of [t/A,] i.i.d.
{0, 1}-valued variables which, by the scaling property of Y (namely, Y; has the same law as

t'/9Y1) have the probability G(QAS_U A ) of taking the value 1. Then the following result
is completely elementary to prove (it will follows from the more general results proved
later):

Theorem 12.1 Assume that X =Y. Let 0 < a < o and @ >0 and t > 0.
a) If w < %, the estimators Bn(t,w, a, ') converge in probability to [3.

b) If w < %, we have

1 7 / L o —aPf
W (ﬂn(t,w,aﬂl ) _5) — N(07 W), (12.10)

The reader will observe that we do not necessarily assume w < %, because there is no
Brownian part, and the restriction over w will be explained later.

These estimators are not rate-efficient. To see that, one can recall from [2] that the
model in which one observes the values X;a, for iA, < t is regular, and its Fisher
information (for estimating [3) is asymptotically of the form

log(1/An)

I ~
n An

Cyt (12.11)
for some constant C. So rate-efficient estimators would be such the rate of convergence

is A;l/Qw/log(l/An), instead of A;wﬁﬂ found here. With the ”optimal” choice of w,
namely smaller than but as close as possible to 2/33, we get a rate which is ”almost”
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Ay, 1/3 only. In addition [ is unknown, so a conservative choice of w is w = 1/3 and the
rate in (12.10) become A;B/ﬁ, quite far from the optimal rate.

The reason for this (huge) lack of optimality is that our method results in discarding
a large part of the data. In the absence of a Brownian component this is of course
unnecessary, but as seen immediately below the situation is different is a Brownian motion
is present.

Now we turn to the situation where X; = bt + cW; + Y;, with Y as above.

Theorem 12.2 Assume that X; =bt +cW; +Y;. Let 0 < a < o' and ww > 0 and t > 0.
a) If w < %, the estimators En(t,w, a, ') converge in probability to [3.
b) If w < ﬁ, we have (12.10).
These estimators are again not rate-efficient. In fact, one can extends [2] to obtain
that in the present situation the Fisher information for estimating (3, at stage n, satisfies

A (log(1/A,,))*P/2
ob Aﬁ/z

I, ~ C/g t (12.12)
for another constant C”B. The discrepancy here comes from the fact that we have absolutely
not used the fact that we exactly know the law of X. If one consider the (partial) statistical
model where we observe only the increments bigger than aAY, the Fisher information
becomes

A(l - w)? (log(1/A))?

B Afﬁ

This still gives a faster rate than in the theorem, but by a (negligible) factor of log(1/A,,).
There is however the restriction w < ﬁ, which does not appear in (12.13).

I, ~ i t. (12.13)

12.2 The general result.

The title of this subsection is rather misleading, since the solution of the problem requires
quite strong assumptions. Unfortunately, this seems consubstantial to this problem, as
one can see in the next subsection in a much simpler situation. We will assume that X
is an It6 semimartingale, with conditions on o; even weaker than in (H) or (H’), but the
assumptions on the Lévy measures F; = F,, ;(dz) of (1.6) are rather strong:

Assumption (L) : The process X is a 1-dimensional It6 semimartingale, with b; and oy
locally bounded. There are three (non-random) numbers 3 € (0,2) and 3’ € [0,3/2) and
v > 0, and a locally bounded process L; > 1, such that we have for all (w,t):

F,=F +F/, (12.14)
where
a) F/ has the form
1+ ’.’L"’Yf(t, I’) + -
Fi(dz) = NI (ag )1{0<x§zt} +af )1{—zt§w<0}) dz, (12.15)
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for some predictable non-negative processes a£+),a§_), z+ and some predictable function

fw,t, z), satisfying:

1 _
T <a<l oV 407 <Ly, 14zlft,z) >0, |f(t )| < Ly (12.16)
t

b) F/' is a measure which is singular with respect to F} and satisfies

/(|1:]5'/\1)Ft”(dx) < Ly (12.17)
K O

This assumption implies in particular that (|z|” A 1) % vy is finite for all » > (3, and
infinite for all » < 3 on the set {Ar > 0}, where we have put

+) ., (5 :
Ay = at;a A, :/ Aqds. (12.18)
0

Therefore the Blumenthal-Getoor index Ry satisfies
Ry <3, Ar >0 = Rr=p. (12.19)

A stable process with index [ satisfies (L), and this assumption really means that the
small jumps of X behave like the small jumps of such a stable process, on the time set
{t : Ay > 0}, whereas on the complement of this set they are "negligible” in comparison
with the small jumps of the stable process. The solution of an equation like (6.2) satisfies
(L) when Z is a stable process, and (much) more generally when Z is a Lévy process which
itself satisfies (L) (like for example the sum of two stable processes plus a Wiener process,
or of a stable process plus a compound Poisson process plus a Wiener process).

Theorem 12.3 Let 0 < a < o and 0 < w < % and t > 0. Assume (L).

a) We have B, (t, @, a, @) ., B on the set {A; > 0}.
b) If further B’ € |0, %) and v > /2, and if w < ﬁ A %, in restriction to the set
{A; > 0} we have
1 L—s

AT (Bult @, a,0') = B) =5 U, (12.20)

where U is defined on an extension of the original space and is F-conditionally centered
Gaussian, with variance:

- 1B _ o
EU2|F) = —— ¢

Ay(log(a/ /)2 22l

At this point, we can replace the variances in (12.21) by estimators for them, to get a
standardized CLT:

Theorem 12.4 Under (L) and the assumptions of (b) of the previous theorem, the vari-
ables
log(o'/a)

1 1
\/U(a'Ag,An)t ~ UAF, AL

(Bn(t,w, a,a!) — 5) (12.22)
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converge stably in law, in restriction to the set {A; > 0}, to a standard normal variable
independent of F.

Despite the strong assumptions, these estimators are thus reasonably good for esti-
mating 3 on the (random) set {A; > 0} on which the Blumenthal-Getoor index is actually
B; unfortunately we do not know how they behave on the complement of this set.

12.3 Coming back to Lévy processes.

Let us restrict the setting of the previous subsection by assuming that X is a Lévy process,
that is an Itd6 semimartingale with characteristics of the form (1.4). (L) may hold or not,
but when it does we have A; = at for some constant a > 0, and so the two theorems 12.3
and 12.4 hold on the whole of €.

What is important here, though, is that those results probably fail, even in this simple
setting, when (L) fails. We cannot really show this in a serious mathematical way, but we
can see on a closely related and even simpler problem why strong assumptions are needed
on the Lévy measure. This is what we are going to explain now.

The model is as follows: instead of observing the increments of X, we observe all its
jumps (between 0 and t) whose sizes are bigger than aA%. A priori, this should give us
more information on the Lévy measure than the original observation scheme.

In this setting the estimators (12.7) have no meaning, but may be replaced by

_ log(U(aAZ); /U (a/ AT),)

t ) = here U = 1 . (12.2
Bu(t, @, a,a’) log(a /o) , where U(u); SZ; (AaX,|>uy- (12.23)
Lemma 12.5 Let y,(a) = F(aA%) and

n 1 T7 w
M™a), = 7<U(0An ) — Ym(a) t). (12.24)

Yn (@)

a) The processes M™(«) converge stably in law to a standard Wiener process, indepen-
dent of F.

b) If a < & all limit points of the sequence Tn(o)

Fn ()
converges to y then the pairs (M"™(a), M™(c')) of processes converge stably in law to a

Process (W,W/), independent of X, where W and W' are correlated standard Wiener
processes with correlation /7.

are in [0,1]. If further this sequence

Proof. The processes M"™ = M"(«) and M'™ = M" (') are Lévy processes and martin-
gales, with jumps going uniformly to 0, and with predictable brackets
/
(MM, = My, =y, = Y
Yn(cv)

Observe also that o/ AT > aAZ, hence v,(’) < y,(a). All results are then obvious (see
[13], Chapter VII). O
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Theorem 12.6 If o/ > « and if Zy”n(i&l)) — v € [0,1], then the sequence

Yn () (Bn(t, w, o, ) — log(Ygg(?iffg)(a,))) (12.25)

converges stably in law to a variable, independent of F and with the law/\/(O, W)

This result is a simple consequence of the previous lemma, and its proof is the same
as for Theorem 12.3 and is thus omitted.

This result shows that in general, that is without specific assumptions on F', the situa-
tion is hopeless. These estimators are not even consistent for estimating the Blumenthal-
Getoor index ( of I, because of a bias, and to remove the bias we have to know the ratio
(&) /¥ (a) (or at least its asymptotic behavior in a precise way), and further there is
no CLT if this ratio does not converge (a fact which we a priori do not know, of course).

The major difficulty comes from the possible erratic behavior of F near 0. Indeed, we
have (12.5), but there are Lévy measures F' satisfying this, and such that for any r € (0, 3)
we have 2! F(x,) — 0 for a sequence z,, — 0 (depending on 7, of course). If F is such, the
sequence Y, (w, ) /v, (w, @) may have the whole of [0,1] as limit points, depending on
the parameter values @, a, @', and in a completely uncontrolled way for the statistician.

So we need some additional assumption on F. For the consistency a relatively weak

assumption is enough, for the asymptotic normality, we need in fact (L). Recall that under
(L) we have necessarily A; = at for some a > 0, in the Lévy case.

Theorem 12.7 a) If the tail function F is regularly varying at 0, with index 3 € (0,2)
we have (3, (t,w, a, ') — .
b) Under (L) with a >, the sequence ﬁ(ﬁn(t,w, a,a) — ﬁ) converges stably in law
: ‘ . 18_ 0P
to a variable, independent of F and with law ./\/(O, m).
Proof. The regular variation implies v,(a) — oo and v, (a’)/vn(a) — (a/a’)?, so the
previous theorem yields (a). (L) clearly implies

o st/
! log(a’/a) 7
and also (@, @) ~ a/aPAZP so (b) follows again from the previous theorem. O

It may of course happen that the regular variation or (L) fail and nevertheless the
conclusions of the previous theorem hold for a particular choice of the parameters w, a, o'.
But in view of Theorem 12.6 and of the previous proof these assumptions are necessary if
we want those conclusions to hold for all choices of @, a, /.

Now if we come back to the original problem, for which only increments of X are
observed. We have Theorem 12.3 whose part (b) looks like (b) above; however there are
restrictions on w, unlike in Theorem 12.7. This is because an increment A}’ X with size
bigger than oA} is, with a high probability, almost equal to a “large” jump only when
the cutoff level is higher than a typical Brownian increments, implying at least @ < 1/2.
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12.4 Estimates.

As all the results in these notes, Theorem 12.3 is ”local” in time. So by our usual local-
ization procedure we may assume that (L) is replaced by the stronger assumption below:

Assumption (SL): We have (L), and the process L; is in fact a constant L, and further
|bs] < L and |oy| < L and | Xy| < L. O

Before proceeding, we mention a number of elementary consequences of (SL), to be
used many times. First, F} is supported by the interval [-2L,2L]. This and (12.15) and
(12.17) imply that for all u,v,z,y > 0 we have

= K = A K = K
Fi(e) < o, [Fu@) =55 < s File) < 5
f{\x|§u} 2?Fy(dz) < Ku?>™b, [|z|F{'(dz) < K

K, if v>p

f{‘x|>u}(]az\” AN1)Fy(dx) < Kylog(1/u) if v=p
Kou'—? if v<p,

(12.26)

Fi() = Fila+y) < & (1A 2+,

In the next lemma, Y is a symmetric stable process with Lévy measure (12.8), and for
n € (0,1) we set

Y(n) = ZAY;l{\AYSpn)}, Y'(n) = Y =Y(n). (12.27)
s<t

Lemma 12.8 There is a constant K depending on (A, 3), such that for all s,n € (0, 1),

P(Y'(n)s| > n/2) < K "% /n*%, (12.28)

Proof. We use the notation (12.8) and (12.9). Set n/ = 1/2 and 6 = sF(n/) = sA/n/®,
and consider the processes Y’ = Y'(n') and Z; = >, _; 1{|ay,|>y}- Introduce also the sets

D={|Ys|>n"}, D'={Y{|>n"}, B={Z =1}, B'={Z,=0}.

It is of course enough to prove the result for s/n” small, so below we assume 6 < 1/2.
By scaling, P(D) = G(1/s~ /%), so (12.9) yields

IP(D) - 0] < K6% (12.29)
On the other hand Z; is a Poisson variable with parameter § < 1/2, hence
IP(B) — 6] < K6 (12.30)

Since Y’ is a purely discontinuous Lévy process without drift and whose Lévy measure is
the restriction of F to [—n/,n'], we deduce from (12.8) that

E(Y))) = s /{ L ) < Ko (12.31)
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The two processes Y/ and Z are independent, and conditionally on B the law of the
variable Y; — Y/ is the restriction of the measure $F to [—n/,7/]°, and P(B) = fe~’. Thus

P(BND¢) = e7? s/ F(dz) P(JY. + x| <1n)
{l=[>n'}

IN

s(F(0' < Jal <n'(1+0")/2}) + F({|al > n'}) P(YI] > 0'0"%))

i Y’)2)) < K03, (12.32)

1/3\—
< o(1-@+0) Pt g B

where we have used (12.31) for the last inequality.
Now, we have
P(DNB°) = P(D)—P(B) +P(Bn D).
Observe also that DN B’ = D' N B’, and D’ and B’ are independent, hence

P(D') = P(f;;g,f J_ P(ﬁgf,) < P(f;(;,?c) < KP(DnN B°)

because P(B’) = e=? > e~1/2. The last two displays, plus (12.29), (12.30) and (12.32) give
us P(D') < K6*3, hence the result. O

Now we turn to semimartingales. We have (12.14) and there exists a predictable subset
P of Q2 x (0,00) x R such that

F/(w,.) is supported by the set {z: (w,t,x) € D}

F/(w,.) is supported by the set {z: (w,t,z) ¢ ®}. (12:33)

Next we will derive a decomposition of X a bit similar to (8.20), but here we have a control
on the Lévy measure of X itself, through (SL), so it is more convenient to truncate at
the value taken by AX; rather than by the function . Recall that the jumps of X are
bounded, so we can write X in the form (6.21), with still b bounded. For any n € (0, 1]
we set

b = by — /{ CETS / F/(da)z

By (12.26) and (SL) the process b(n); is well defined and satisfies [b(n):| < K/n. Then by
(6.21) we can write X = X (n) + X'(n), where X'(n) = X(n) + X'(n) + X" (n) and

X(n) = (@lgg/sn)) * 1y X(n)e = Xo+ [ b(n)sds + [ osdW,
)?/(77) - ($1{|$|S77} Lpe) * (b —v), )?”(77) = ($1{\fﬂ|§77} lgp) * p.
Lemma 12.9 Assume (SL). We have for all p > 2:
EP L (JA7PX ()P) < K, (AY? +97PAD)

EP (JATX' ()]?) < KAun*~° (12.34)

Er L (JAPX"())7) < K A,
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Proof. The first estimate is obvious (see after (8.34)), whereas the second one is obtained
from the second line of (12.26). Since §" < 1, we have |}, x| < > |z;]%" for any
sequence (z;), hence

P (ATX" ()]

IN

) (A?(("r‘ﬁl1{\x|§77}1<1>1(t,oo)) *M))

iAp ,
_ ;.L_l(/ dr/ 2 Fi(dn) < KA, O
-Dan Jgal<n

(3

Next, we give a general result on counting processes. Let N be a counting process (that
is, right continuous with Ny = 0, piecewise constant, with jumps equal to 1) adapted to
(F:) and with predictable compensator of the form G; = fg gsds.

Lemma 12.10 With N and G as above, and if further g < u for some constant u > 0,
we have

B (APN = 1) —E} (ATG)| + B} (APN > 2) < (u,)> (12.35)

Proof. Introduce the successive jump times 77,75, - - - of N after time (i — 1)A,,, the sets
D = {A’N =1} and D' = {A’N > 2} and the variable G;* = EI' |, (A"G). Then

(iAn)ATY

1(D) = B (Niaoarn — Ni-va,) = ?—1(/( Qrdr) < G < uly,

i—1)A,

1An

Gr—ia(D) = B ([ ) < whiB D) < )

iAn)/\Tl
This gives us the first estimate. Next,
D) = (T <iA) = B (Lnaa, Pa(Te < i0 | Fry))

(iAR)AT:
= B (Lricinn E( Cgdr | Fr)) < wALPY (D) < (uA,)?
% 1<iAn} T 9r T > ni;—1 > n)
1

hence the second estimate. O

Lemma 12.11 With the notation N(n): = 3., 1{jax,|>n}, for all n € (0,1], ¢ € (0, 1)

and p > 2 we have

APZAR A2 A
+ 555 T 5

e ¢Pp? - (P PP

AN @) 2 1, AT ()] > 00) < K ). (1230

Proof. (12.34) and Bienaymé-Tchebycheff inequality yield

(18X > ) < K, (jf nAC) P (AT > ) < K
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Since X'(n) = X(n) + X'(n) + X'(n) it remains to prove

n n ny n¢ A’?L
L (ARG 2 1, TR )| > ) < K

(12.37)

~

For simplicity, write Ny = N(0)i—1)a,+s — N(M)-1)a, and Ys = X' (M) -na,+s —
X (M)(i-1)A,- By Bienaymé-Tchebycheff inequality again the left side of (12.37) is not
bigger than 4E(N, AnYAzn) /n*¢%. Now, N is a counting process and Y is a purely discon-
tinuous square-integrable martingale, and they have no common jumps, so It6’s formula
yields

S S
NY2 = 2/ NTY,,dYML/ Y2 dN, + Y N, (AY,)%.
0 0

r<s

Moreover, the compensator N is as in the previous lemma, with g, < Kn~?, and the
predictable quadratic variation of Y is G, = [; g.dr with g/ < Kn*7? (see Lemma 12.9).
Then taking expectations in the above display, and since the first term of the right side
above is a martingale, we get

An

Ap An
(Vs YR,) = B ( /0 VPG | N,dG,) < K /0 (V24PN dr

An
— Ky P / E?_1<G; + 772G,,> dr < Kn?1=8) A2,
0
(12.37) is then obvious. O

The following lemma is key to the whole proof. We use the notation u, = aA7.

Lemma 12.12 Let a >0, @ € (0,1)) and n € (0, 3 — @), and set

p=nN(@(B—06)~Bn) A (@)A1 -wmB-2n) (12.38)

There is a constant K depending on (o, w,n), and also on the characteristics of X, such
that

iAp
n L ATX| > un) — ;11( / Fr(un)dr)‘ < KAL-#=8+r  (12.39)
(i—1)A,
P < JATX| < up(L+A))) < KA=P (12.40)
PL(AFX| > u,) < KAL®P, (12.41)

Proof. 1) Observe that p > 0, and it is clearly enough to prove the results when A, is
smaller than some number £ € (0,1) to be chosen later, and independent of ¢ and n.

We can apply (12.34) and Bienaymé-Tchebycheff inequality to obtain

P?—l(’A?)?(Un)’ > u, A /2) < K, Ag(l—2w—2n)/2
P (AP ()] > un AR /2) < K Ay 74,
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Then by choosing p large enough and by (12.38), we see that Y™ = X (up) + X" (un)
satisfies
Pa(AFY? > u,Al) < K ALTEP (12.42)

2) By (SL) we have F'(dz) < (L'/|z|'*#)dz in restriction to [—1, 1], for some constant
L’. We fix n. For each w €  we endow the canonical (Skorokhod) space (€, F', (F}))
of all cadlag functions on R4 starting from 0 with the (unique) probability measure Q,,
under which the canonical process X' is a semimartingale with characteristics (0,0,v/,),

where ,

I/L(w/7d7“, d:E) = dr 1{|m|§un} (’x‘l-i-ﬂ

dr — F(w, dZL‘)) (12.43)
This measure does not depend on w’, hence under @, the process X’ has independent
increments; v/, (', dr, dz) depends measurably on w, hence @, (dw’) is a transition prob-
ability from (Q, F) into (€', F’). Then we extend X, X’ and other quantities defined on
Q or € in the usual way (without changing the symbols) to the product Q=QxQ en
dowed with the product o-field F, the product filtration (.7?15), and the probability measure
P(dw, dw') = P(dw) Qu(dw').

Because of (12.26) and (12.43), and as in Lemma 12.9, Eq_ (JA?X'|? | f(i,l)An) <

K Anui_ﬁ , so for some constant C' depending on « and § but not on n and w we have

Qu(|ATX| > up A | Fiina,) < CAL=F72 < CAL. (12.44)

3) By well known results on extensions of spaces (see e.g. [13], Section II.7; note that
the present extension of the original space is a "very good extension”), X' is a semimartin-
gale on the extension with characteristics (0,0,7), where v/((w,w’), dr,dz) = v/ (dr,dx),
and any semimartingale on the original space is a semimartingale on the extension, with
the same characteristics. Moreover X and X’ have almost surely no common jump, so the
sum Y’ (un) = X'(up) + X' is a semimartingale with characteristics (0,0,/), where

/

V(dr,dx) = dr 1<y, Fr(dz) + v, (dr, dz) dr dz,

= Nial<un) 78

where the last equality comes from (12.43). It follows that Y'(u,) is a Lévy process
with Lévy measure given above, or in other words it is a version of the process Y'(u,) of
(12.27) with A = 2L'/f. Hence, recalling (12.26), we deduce from (12.28) and from the
Lévy property of Y’(u,,) that, as soon as A;} < 1/4, and if A € Fli-1)An:

P(AN{|APY (un)| > un(1 — 2AM)}) < KAY34=6/3, (12.45)
Next, let € be such that C¢P < 1/2. With A as above, and if A, < &, we can write
P(AN{JATY (un)| > un(1 = 2A7)})
> B(AN{AIX ()] > un(1 = A} N {ATX'] < wn AL}
(Ypantar 2 tuisuna-anyy @ (1 Xis = Xl < unl))
1

5 B(AN{AIR ()| > (1~ AD)})

&N

v

92



where the last inequality comes from (12.44). Then by (12.45) and the facts that A is

arbitrary in F(;_1)a, and that p < lfg_“' B we deduce

P? (\A;v?'(un)y > (1 — Az)) < KAM3w8/3 < prpal-wBtp
In turn, combining this with (12.42), we readily obtain

(AT X ()| > ) < K AL (12.46)

4) Now we write u/, = u, (1 + A7) and also

or = E ( /(:A;AnFr(un)dr>, o = E( /( %A;An Fy(up)dr),

)

and introduce the following two counting process

N = Zl{\AXsbun}’ N o= Zl{|AX5|>%}.

s<t s<t

Their predictable compensators are fg’ F.(uy)dr and fg F,.(ul)dr, whereas both F,(uy,)
and F,(u) are smaller than K/Afﬁ. Hence (12.35) gives

PP (APN™ = 1) — 07| + PP, (APN™ > 2) < KA21-%9)
1—1 7 ) i—1 7

P2, (APN = 1) — 0] < KAZT=), 1247
Since N™ — N'™ is non-decreasing, we have
P(AINT =1, APNT = 0) = Pl (APN" = 1)
—P! ((APN™ =1) + P! (AN > 2, AN =1).
Then (12.47) yields
PP (APN" =1, APN™ =0) — (67 — 6)| < KA?(1==P), (12.48)

Moreover (12.26) clearly implies 0 — /" < KA}[WB(AZ—FA?W\W_M)) < KAL#Ptr,
We then deduce from (12.48) that

P? (APN" =1, AIN™ =0) < KAL==F+r, (12.49)
5) If APN™ = APN™ =1 and |A'X| < u,, then necessarily |[A?X (ul)| > up,Afl.
Hence
P (AN = 1, |ATX| < up) < Py (APN" = 1, AZN" = 0)
+PP (APN™ =1, |[A?X (up)| > u, Al

Then if we apply (12.36) with p large enough and 7 = u, and ¢ = A}, and (12.49), we
deduce
" AINT =1, JATX| <wy,) < KALTEPP (12.50)
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Finally A?X = A?X'(u,,) on the set {A’N™ = 0}, so

i ([AFX ] > up) = P (APN" = 1) =P (AFN™ = 1, |AfX] < up))
AP (APNT =0, [AFX (un)| > un)
PP (APN™ > 2, |[ATX| > uy).
Then if we combine (12.46), (12.47) and (12.50), if A,, < h we readily obtain (12.39).
We also trivially deduce (12.41) from (12.26) and (12.39),

6) Finally, a close look at the previous argument shows that (12.39) also holds with
aA% (14 AJl) and 0" in place of «AZ and 6. Therefore (12.40) follows, upon using the
property 01" — 6" < K AL=FP+P hroved above. O

Lemma 12.13 Under the assumption and with the notation of Lemma 12.12, and if M
is a bounded continuous martingale, we have (with K depending also on M ):

By (APM Lgapxn,y )| € KAL=H2 4 KAIZEIEL, (JATM).  (1251)

Proof. 1) There exist C? functions f,, such that (with K independent of n):

Ljosun(1+2a7/3)r < fo(®) < 1jpsu,14+a7/3))

(12.52)
R < 5K @] < o

With X' = X — B — X¢, and since M is bounded, we have
(AT M 1ganx su,y) — B (AT M fr (A7 X))
< KPPy (up < |AFX] < up (14 A7) + KEL (| fa(AFX) = fo(A7X")]). (12.53)

Now we have
K
[fn(z +9) = (@)l < Lyisunansan + zm W <ot wnaramy-
n

If we apply this with x = A?)?’ and y = A'(B+ X°¢), plus (12.34) for p large enough and
Bienaymé-Tchebycheff inequality and 1 — 2w —2n > 0, plus (12.40) and (12.34) again and
Holder’s inequality, we obtain that the right side of (12.53) is smaller than KA, =P,
Therefore it remains to prove that

n(APM fo(APX))| < KAL=00) 4 KAI-(@H08 R (|APM)). (12.54)

2) For simplicity we write Y; = Xvéifl)Anth_)?Eifl)An and Z, = M;_1)a,++—Mi—a,,-
Since Z is a bounded continuous martingale and Y a semimartingale with vanishing con-
tinuous martingale part, and f,(Y") is bounded, we deduce from It6’s formula that the

product Z; f,(Y;) is the sum of a martingale plus the process fg Idu, where
Iy = Zt/F(il)Anth(dﬂ?) 9n(Ye, ), gn(y, ) = fuly + ) — fuly) — [zl {jz)<1}-
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An easy computation allows to deduce of (12.52) that

x? lz| A1 )

lgn(y, z)| < 1{|az\>unAZ/3}+K1{un<|y|§un(1+A2)}<W 1{\x|gunAz}+W Lje|>unaly )-
n n

Now, we apply (12.26) to get for any € > 0:
IT7| < K| Zy) A8 4 K | Zy| A PO 10 e an)y-

Since n < 1/2 — w we have f(w +n) < 1 and thus (6 + ¢)(w +n) = 1 for a suitable
e > 0. Moreover E(|Z,|) < E(|Zs|) if u < s because Z is a martingale. Therefore, since Z

is bounded we obtain
An An
([ a)| < [T (e a
0 0

< KA-E08En (ATM]) + KA / m(un < [Yi] < un(1+ A7) dt.

n(APM fo(APX) ) -

By (12.40) for the process X' instead of X, we readily deduce (12.54). O

12.5 Some auxiliary limit theorems.

Below, recall the process A of (12.18). We still assume (SL) and write u,, = aAZ.

Lemma 12.14 Let p/ < 3 A (@) A (@ (B — B')). Then for allt > 0 we have

[t/An] iAn

s (X arEn(

(un)dt> At) 0. (12.55)
i—1 (i—1)A

o

Proof. Let 67" = f(ZlA’i)A t(up)dt and nf* = f(iﬁq)An Aydt. We deduce from (12.26) that

‘ASBH? _ % | < KA}L'FW(B—(/B—’Y)VB,) < K(AM=Y 4 A}L-Hﬂ(ﬁ—ﬁ’)).

Then obviously
t/An] 1
E(A57 > B (|ag70r — =

and since A; is bounded we have ‘A Z[t/ Anl ne

remains to prove that

) o

< KtA,, whereas p/ < 1. It thus

[t/An)]
A ( S (B () ))) . 0. (12.56)

i=1
Since (" = AP (n?
check that ay(t) = (Z[t/ A"]( ) ) goes to 0. However, since A; is bounded, we have
I¢r)? < KAZ? s an(t) < KtAL~ 2/ _, 0 because p<1/2. O

—E" 1(n")) is a martingale increment, for (12.56) it is enough to
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Lemma 12.15 a) Let x < (@) A 52 A =(B=5) A 129 Then for all t > 0 we have

1+5’
[t/ An] -
A
x [ A®B n _ P
A- (A Z PP (JATX| > up) aﬁ) T, (12.57)
and in particular
[t/An] » A
ATB Z PP (JAPX] > u,) — 73 (12.58)
Q

b) If further 3’ < 2+5 andy > 5 B and w < 2+5 A = 35 and if M is a bounded continuous
martingale, we also have

[t/4] —
w w, n As P
A WQ(A PR (N X]>un)—$> T (12.59)
=1
[t/2n]
LA M arx(5,y)| = 0. (12.60)

Proof. a) In Lemma 12.12 we can take n = lffﬂ A wﬁ_ﬁél) A 1_22w_5 for some ¢ > 0, and
p is given by (12.38). Upon taking ¢ small enough, we then have x < p, and also y < p’ for
a p' satisfying the conditions of Lemma 12.14. Then (12.57) readily follows from (12.39)

and (12.55).

b) Our conditions on ~, " and w imply (after some calculations) that one may take
X = wf3/2 satisfying the condition in (a), so (12.59) follows from (12.57).

It remains to prove (12.60). By (12.51), the left side of (12.60) is smaller than
[t/An]
Kt AL7=02 4 KALP-=B2 N R (JATM)).
1=1

By the Cauchy-Schwarz inequality this is smaller than

[t/ An]

K(t+\/¥)< AP~—@B/2 A1/2 nB— w,@/2< Z B, (JATM]| )) /2)

A well known property of martingales yields

[t/An]
E(ZE (1A7MP2)) = E ((Ma,/a, — Mo)?) .

which is bounded (in n). Therefore we deduce (12.60), provided we have p > w/(3/2 and
also 1 —2n03 > wf. The first condition has already been checked, but the second one may
fail with our previous choice of 7. However since w < 1/3 we have w(3/2 < (1—w(3)/20,
and we can find 7 strictly between these two numbers. Then we replace p and 7 by
p=pAnand 7 =nAn, which still satisfy (12.38), and now the required conditions are
fulfilled by p and 7. This ends the proof. a
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Proposition 12.16 Assume (SL). For each t > 0 we have

A
AP U (AT, Ay)y —— 075 (12.61)

Proof. Set
G = AT (1yarxsang) — P (1A7X] > 0AT)). (12.62)

By virtue of (12.58), it suffices to prove that the sequence EEZ?"} ¢ is tight. Since the (*’s

are martingale increments, it is enough to show that the sequence a,,(t) = Z[t/ Anl E((¢™)?)

is bounded. But (12.41) yields E((¢?)?) < KA, which in turn yields a,(t) < Kt. 0
Proposition 12.17 Assume (SL). Let o/ > «. If we have ' < % and v > g and
w < ﬁ A %, the pair of processes
~w8/2 ([ ATH w At @B [7(n) AT Ay
JANS ATP U(aAT, An)e — —, ATP U(d AT, An)e — —5 (12.63)
«

converges stably in law to a process (W, W’) defined on an extension of (0, F, (Fi)e>0,P),
and with conditionally on F is a continuous Gaussian martingale with

_ y A y ¥l
B2 | F) = = B@W2|F) = 2, EW,W.|F) = 2L (12.64)

aB’ ao'B’ o'B

Proof. Define (I by (12.62), and associate (/" with o’ in the same way. In view of

(12.59) the result amounts to proving the stable convergence in law of the pair of processes
(ZE%A n] ; ,Z[t/A C’”) to (W, w ). The variables ("¢ and ¢/ are martingale increments

wf/2

and are smaller than KA "/“, so in view of Lemma 4.4 it is enough to prove the following

[t/An] 5 /Al q, A A

n n P t n P t IP’ t
Z; EP 1 ((¢)7) — PR Z EP 1 ((¢M)?) PR Z Ei 1 (¢ L
1=

(12.65)
[t/An] [t/An]

Z E" (C* ATM) -5 0, Z EP ,(¢" APM) 5 0, (12.66)

where M is any bounded martingale.

Since a < o, we have
PG G = AP (P (ATX] > o/AT) — P (AIX] > aAZ) B (ALX] > /A7),

whereas P? | (JA?X| > aAT) < KA by (12.41). Therefore we deduce the last part
of (12.65) from (12.61), and the first two parts are proved in the same way.

Now we turn to (12.66). Since E ,(ATM) = 0, this follows from (12.60), which has
been proved when M is continuous. Now, since any bounded martingale is the sum of a
continuous martingale and a purely discontinuous martingale with bounded jumps, and
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up to a localization, it remains to prove (12.66) when M is a bounded purely discontinuous
martingale.

In this case, we consider the discretized process M;" = M (1/a,], and we set Z" =

ZEZ?”] ¢'. We know by (12.65) that the sequence (of discrete-time martingales) Z"
is tight, whereas the convergence M"™ — M (pathwise, in the Skorokhod sense) is a
known fact. Since further any limiting process of Z" is continuous, the pair (Z", M™)
is tight. From any subsequence of indices we pick a further subsequence, say (ny), such
that (2™, M"™) is tight, with the limit (Z, M). Another well known fact is that the
quadratic covariation [M™ Z"*] converges to [M, Z], and since M is purely discontinuous
and Z is continuous it follows that [M,Z] = 0. Then by Lenglart inequality (since the
jumps of the discrete processes [M"™, Z"] are bounded by a constant), the predictable
compensators of [M", Z™] also go to 0 in probability. Now, those compensators are exactly
ZEZ?”] E? (¢PATM), which thus goes to 0 in probability along the subsequence ny;
it readily follows that the first part of (12.66) holds, and the second part is similarly
analyzed. O

12.6 Proof of Theorem 12.3.

At this point, the proof is nearly trivial. As said before, it is no restriction to assume
(SL). Then in view of Proposition 12.16 the consistency result (a) is obvious.

As for (b), we apply Proposition 12.17, to obtain that

Ay

Afﬁ B

U(aAy, An) = + A2y UQAT A, = A AZB/2Y!
AZP 1B

where the pair (V;,, V;;) converge stably in law to a variable (V, V') which is F-conditionally
At/aﬂ At/O/ﬂ
Zt/a’ﬁ Zt/()/ﬁ

tation shows that the variable W (Bn(t, w,a, ) — ﬁ) is equivalent (in probability)

Gaussian centered with covariance matrix < ) Then a simple compu-

to

PV, — aPV!

Ailog(e/ o)’
on the set {A4; > 0}. The result readily follows . O
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