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1 Introduction

This short course is devoted to a few statistical problems related to the observation of a
given process on a fixed time interval, when the observations occur at regularly spaced
discrete times. This kind of observations may occur in many different contexts, but they
are particularly relevant in finance: we do have now huge amounts of data on the prices
of various assets, exchange rates, and so on, typically ”tick data” which are recorded at
every transaction time. So we are mainly concerned with the problems which arise in this
context, and the concrete applications we will give are all pertaining to finance.

In some sense they are not ”standard” statistical problems, for which we want to
estimate some unknown parameter. We are rather concerned with the ”estimation” of
some random quantities. This means that we would like to have procedures that are as
model-free as possible, and also that they are in some sense more akin to nonparametric
statistics.

Let us describe the general setting in some more details. We have an underlying
process X = (Xt)t≥0, which may be multi-dimensional (its components are then denoted
by X1, X2, · · ·). This process is defined on some probability space (Ω,F ,P). We observe
this process at discrete times, equally spaced, over some fixed finite interval [0, T ], and we
are concerned with asymptotic properties as the time lag, denoted by ∆n, goes to 0. In
practice, this means that we are in the context of high frequency data.

The objects of interest are various quantities related to the particular outcome ω which
is (partially) observed. The main object is the volatility, but other quantities or features
are also of much interest for modeling purposes, for example whether the observed path
has jumps and, when this is the case, whether several components may jump at the same
times or not.

All these quantities are related in some way to the probabilistic model which is assumed
for X: we do indeed need some model assumption, otherwise nothing can be said. In
fact, any given set of observed values X0, X∆n , · · · , Xi∆n , · · ·, with ∆n fixed, is of course
compatible with many different models for the continuous time process X: for example
we can suppose that X is piecewise constant between the observation times, or that it
∗Institut de mathématiques de Jussieu, Université Pierre et Marie Curie (Paris-6) and CNRS, UMR

7586, 4 place Jussieu, 75252 Paris, France

1



is piecewise linear between these times. Of course neither one of these two models is in
general compatible with the observations if we modify the frequency of the observations.

So in the sequel we will always assume that X is an Itô semimartingale, that is a
semimartingale whose characteristics are absolutely continuous with respect to Lebesgue
measure. This is compatible with virtually all semimartingale models used for modeling
quantities like asset prices or log-prices, although it rules out some non-semimartingale
models sometimes used in this context, like the fractional Brownian motion.

Before stating more precisely the questions which we will consider, and in order to be
able to formulate them in precise terms, we recall the structure of Itô semimartingales.
We refer to [13], Chapter I, for more details.

Semimartingales: We start with a basic filtered probability space (Ω,F , (Ft)t≥0,P), the
family of sub-σ-fields (Ft) of F being increasing and right-continuous in t. A semimartin-
gale is simply the sum of a local martingale on this space, plus an adapted process of
finite variation (meaning, its paths are right-continuous, with finite variation on any finite
interval). In the multidimensional case it means that each component is a real-valued
semimartingale.

Any multidimensional semimartingale can be written as

Xt = X0 +Bt +Xc
t +

∫ t

0

∫

Rd
κ(x)(µ− ν)(ds, dx) +

∫ t

0

∫

Rd
κ′(x)µ(ds, dx). (1.1)

In this formula we use the following notation:

- µ is the “jump measure” of X: if we denote by ∆Xt = Xt − Xt− the size of the
jump of X at time t (recall that X is right-continuous with left limits), then the set
{t : ∆Xt(ω) 6= 0} is at most countable for each ω, and µ is the random measure on
(0,∞)× Rd defined by

µ(ω; dt, dx) =
∑

s>0: ∆Xs(ω) 6=0

ε(s,∆Xs(ω))(dt, dx), εa = the Dirac measure sitting at a.

- ν is the “compensator” (or, predictable compensator) of µ. This is the unique random
measure on (0,∞)× Rd such that, for any Borel subset A of Rd at a positive distance of
0, the process ν((0, t]×A) is predictable and the difference µ((0, t]×A)− ν((0, t]×A) is
a local martingale.

- κ is a “truncation function”, that is a function: Rd → Rd, bounded with compact
support, such that κ(x) = x for all x in a neighborhood of 0. This function is fixed
throughout, and we choose it to be continuous for convenience.

- κ′ is the function κ′(x) = x− κ(x).

- B is a predictable process of finite variation, with B0 = 0.

- Xc is a continuous local martingale with Xc
0 = 0, called the “continuous martingale

part” of X.

With this notation, the decomposition (1.1) is unique (up to null sets), but the process
B depends on the choice of the truncation function κ. The continuous martingale part
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does not depend on the choice of κ. Note that the first integral in (1.1) is a stochastic
integral (in general), whereas the second one is a pathwise integral (in fact for any t is is
simply the finite sum

∑
s≤t κ

′(∆Xs)). Of course (1.1) should be read “componentwise” in
the multidimensional setting.

In the sequel we use the shorthand notation ? to denote the (possibly stochastic)
integral w.r.t. a random measure, and also • for the (possibly stochastic) integral of a
process w.r.t. a semimartingale. For example, (1.1) may be written more shortly as

X = X0 +B +Xc + κ ? (µ− ν) + κ′ ? µ. (1.2)

The ”*” symbol will also be used, as a superscript, to denote the transpose of a vector or
matrix (no confusion may arise).

Another process is of great interest, namely the quadratic variation of the continuous
martingale part Xc, which is the following Rd ⊗ Rd-valued process:

C = 〈Xc, Xc?〉, that is, componentwise, Cij = 〈Xi,c, Xj,c〉. (1.3)

This is a continuous adapted process with C0 = 0, which further is increasing in the set
M+

d of symmetric nonnegative matrices, that is Ct − Cs belongs to M+
d for all t > s.

The triple (B,C, ν) is called the triple of characteristics of X, this name coming from
the fact that in “good cases” it completely determines the law of X.

The fundamental example of semimartingales is the case of Lévy processes. We say
that X is a Lévy process if it is adapted to the filtration, with right-continuous and left-
limited paths and X0 = 0, and such that Xt+s−Xt is independent of Ft and has the same
law as Xs for all s, t ≥ 0. Such a process is always a semimartingale, and its characteristics
(B,C, ν) are of the form

Bt(ω) = bt, Ct = ct, ν(ω; dt, dx) = dt⊗ F (dx). (1.4)

Here b ∈ Rd and c ∈M+
d and F is a measure on Rd which does not charge 0 and integrates

the function x 7→ ‖x‖2 ∧ 1. The triple (b, c, F ) is connected with the law of the variables
Xt by the formula (for all u ∈ Rd)

E(ei〈u,Xt〉) = exp t
(
i〈u, b〉 − 1

2
〈u, cu〉+

∫
F (dx)

(
ei〈u,x〉 − 1− i〈u, κ(x)〉

))
, (1.5)

called Lévy-Khintchine’s formula. So we sometimes call (b, c, F ) the characteristics of X
as well, and it is the Lévy-Khintchine characteristics of the law of X1 in the context of
infinitely divisible distributions. b is called the drift, c is the covariance matrix of the
Gaussian part, and F is called the Lévy measure.

As seen above, for a Lévy process the characteristics (B,C, ν) are deterministic, and
they do characterize the law of the process. Conversely, if the characteristics of a semi-
martingale X are deterministic one can show that X has independent increments, and if
they are of the form (1.4) then X is a Lévy process.

Itô semimartingales. By definition, an Itô semimartingale is a semimartingale whose
characteristics (B,C, ν) are absolutely continuous with respect to Lebesgue measure, in
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the following sense:

Bt(ω) =
∫ t

0
bs(ω)ds, Ct(ω) =

∫ t

0
cs(ω)ds, ν(ω; dt, dx) = dt Fω,t(dx). (1.6)

here we can always choose a version of the processes b or c which is optional, or even
predictable, and likewise choose F in such a way that Ft(A) is optional, or even predictable,
for all Borel subsets A of Rd.

It turns out that Itô semimartingales have a nice representation in terms of a Wiener
process and a Poisson random measure, and this representation will be very useful for us.
Namely, it can be written as follows (where for example κ′(δ) ∗ µ

t
denotes the value at

time t of the integral process κ′(δ) ∗ µ):

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs + κ(δ) ? (µ− ν)t + κ′(δ) ? µ

t
. (1.7)

In this formula W is a standard d′-dimensional Wiener process and µ is a Poisson random
measure on (0,∞)×E with intensity measure ν(dt, dx) = dt⊗λ(dx), where λ is a σ-finite
and infinite measure without atom on an auxiliary measurable set (E, E).

Of course the process bt is the same in (1.6) and in (1.7), and σ = (σij)1≤i≤d,1≤j≤d′ is
an Rd ⊗ Rd′-valued optional (or predictable, as one wishes to) process such that c = σσ?,
and δ = δ(ω, t, x) is a predictable function on Ω × [0,∞) × E (that is, measurable with
respect to P⊗E , where P is the predictable σ-field of Ω× [0,∞)). The connection between
δ above and F in (1.6) is that Ft,ω is the image of the measure λ by the map x 7→ δ(ω, t, x),
and restricted to Rd\{0}.

Remark 1.1 One should be a bit more precise in characterizing W and µ: W is an
(Ft)-Wiener process, meaning it is Ft adapted and Wt+s −Wt is independent of Ft (on
top of being Wiener, of course). Likewise, µ is an (Ft)-Poisson measure, meaning that
µ((0, t]×A) is Ft-measurable and µ((t, t+ s]×A) is independent of Ft, for all A ∈ E . 2

Remark 1.2 The original space (Ω,F ,P) on which X is defined may be too small to
accommodate a Wiener process and a Poisson measure, so we may have to enlarge the
space. Such an enlargement is always possible. 2

Remark 1.3 When the matrix ct(ω) is of full rank for all (ω, t) and d′ = d, then it
has a unique “square-root” σt(ω), which further is invertible. In this case we have W =
(σ)−1 •Xc. Otherwise, there are many ways of choosing σ such that σσ? = c, hence many
ways of choosing W and its dimension d′ (which can always be taken such that d′ ≤ d).

In a similar way, we have a lot of freedom for the choice of µ. In particular we can
choose at will the space (E, E) and the measure λ, subject to the above conditions, and
for example we can always take E = R with λ the Lebesgue measure, although in the
d-dimensional case it is somewhat more intuitive to take E = Rd. 2

Of course a Lévy process is an Itô semimartingale (compare (1.2) and (1.6)). In this
case the two representations (1.2) and (1.7) coincide if we take E = Rd and λ = F (the
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Lévy measure) and µ = µ (the jump measure of a Lévy process is a Poisson measure)
and δ(ω, t, x) = x, and also if we recall that in this case the continuous martingale (or
“Gaussian”) part of X is always of the form Xc = σW , with σσ? = c.

The setting of Itô semimartingales encompasses most processes used for modeling
purposes, at least in mathematical finance. For example, solutions of stochastic differential
equations driven by a Wiener process, or a by a Lévy process, or by a Wiener process plus a
Poisson random measure, are all Itô semimartingales. Such solutions are obtained directly
in the form (1.7), which of course implies that X is an Itô semimartingale.

The volatility. In a financial context, the process ct is called the volatility (sometimes
it is σt which is thus called). This is by far the most important quantity which needs
to be estimated, and there are many ways to do so. A very widely spread way of doing
so consists in using the so-called “implied volatility”, and it is performed by using the
observed current prices of options drawn on the stock under consideration, by somehow
inverting the Black-Scholes equation or extensions of it.

However, this way usually assumes a given type of models, for example that the stock
prices is a diffusion process of a certain type, with unknown coefficients. Among the
coefficients there is the volatility, which further may be “stochastic”, meaning that it
depends on some random inputs other than the Wiener process which drives the price
itself. But then it is of primary importance to have a sound model, and this can be
checked only by statistical means. That is, we have to make a statistical analysis, based
on series of (necessarily discrete) observations of the prices.

In other words, there is a large body of work, essentially in the econometrical literature,
about the (statistical) estimation of the volatility. This means finding good methods for
estimating the path t 7→ ct(ω) for t ∈ [0, T ], on the basis of the observation of Xi∆n(ω) for
all i = 0, 1, · · · , [T/∆n].

In a sense this is very similar to the non-parametric estimation of a function c(t), say
in the 1-dimensional case, when one observes the Gaussian process

Yt =
∫ t

0

√
c(s) dWs

(here W is a standard 1-dimensional Wiener process) at the time i∆n, and when ∆n is
“small” (that is, we consider the asymptotic ∆n → 0). As is well known, this is possible
only under some regularity assumptions on the function c(t), whereas the “integrated”
value

∫ t
0 c(s)ds can be estimated as in parametric statistics, since it is just a number. On

the other hand, if we know
∫ t

0 c(s)ds for all t, then we also know the function c(t), up
to a Lebesgue-null set, of course: it should be emphasized that if we modify c on such a
null set, we do not change the process Y itself; the same comment applies to the volatility
process ct in (1.6).

This is why we mainly consider, as in most of the literature, the problem of estimating
the integrated volatility, which with our notation is the process Ct. One has to be aware
of the fact that in the case of a general Itô semimartingale, this means “estimating” the
random number or matrix Ct(ω), for the observed ω, although of course ω is indeed not
“fully” observed.
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Let us consider for simplicity the 1-dimensional case, when further X is continuous,
that is

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs, (1.8)

and σt (equivalently, ct = σ2
t ) is random. It may be of the form σt(ω) = σ(Xt(ω)), it can

also be by itself the solution of another stochastic differential equation, driven by W and
perhaps another Wiener process W ′, and perhaps also some Poisson measures if it has
jumps (even though X itself does not jump).

By far, the simplest thing to do is to consider the “realized” integrated volatility, or
“approximate quadratic variation”, that is the process

B(2,∆n)t =
[t/∆n]∑

i=1

|∆n
i X|2, where ∆n

i X = Xi∆n −X(i−1)∆n
. (1.9)

Then if (1.8) holds, well known results on the quadratic variation (going back to Itô in
this case), we know that

B(2,∆n)t
P−→ Ct (1.10)

(convergence in probability), and this convergence is even uniform in t over finite intervals.
Further, as we will see later, we have a rate of convergence (namely 1/

√
∆n) under some

appropriate assumptions.

Now what happens when X is discontinuous ? We no longer have (1.10), but rather

B(2,∆n)t
P−→ Ct +

∑

s≤t
|∆Xs|2 (1.11)

(the right side above is always finite, and is the quadratic variation of the semimartingale
X, also denoted [X,X]t). Nevertheless we do want to estimate Ct: a good part of these
notes is devoted to this problem. For example, we will show that both quantities

B(1, 1,∆n)t =
[t/∆n]∑

i=1

|∆n
i X||∆n

i+1X|, B(2, $, α)t =
[t/∆n]∑

i=1

|∆n
i X|21{|∆n

i X|≤α∆$
n }

(1.12)
converge in probability to 2

π Ct and Ct respectively, and as soon as $ ∈ (0, 1/2) and α > 0
for the second one.

Inference for jumps. Now, when X is discontinuous, there is also a lot of interest about
jumps and, to begin with, are the observations compatible with a model without jumps,
or should we use a model with jumps ? More complex questions may be posed: for a
2-dimensional process, do the jumps occur at the same times for the two components or
not ? Is there infinitely many (small) jumps ? In this case, what is the “concentration”
of the jumps near 0 ?

Here again, the analysis is based on the asymptotic behavior of quantities involving
sums of functions of the increments ∆n

i X of the observed process. So, before going to the
main results in a general situation, we consider first two very simple cases: when X = σW
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for a constant σ > 0, and when X = σW +Y when Y is a compound Poisson process. It is
also of primary importance to determine which quantities can be “consistently estimated”
when ∆n → 0, and which ones cannot be. We begin with the latter question.

2 What can be estimated ?

Recall that our underlying process X is observed at discrete times 0,∆n, 2∆n, · · ·, up to
some fixed time T . Obviously, we cannot have consistent estimators, as ∆n → 0, for
quantities which cannot be retrieved when we observe the whole path t 7→ Xt(ω) for
t ∈ [0, T ], a situation referred to below as the “complete observation scheme”.

We begin with two simple observations:

1) The drift bt can never be identified in the complete observation scheme, except in
some very special cases, like when Xt = X0 +

∫ t
0 bsds.

2) The quadratic variation of the process is fully known in the complete observation
scheme, up to time T of course. This implies in particular that the integrated volatility
Ct is known for all t ≤ T , hence also the process ct (this is of course up to a P-null set for
Ct, and a P(dω)⊗ dt-null set for ct(ω)).

3) The jumps are fully known in the complete observation scheme, up to time T again.

Now, the jumps are not so interesting by themselves. More important is the “law” of
the jumps in some sense. For Lévy processes the law of jumps is in fact determined by the
Lévy measure. In a similar way, for a semimartingale the law of jumps can be considered
as known if we know the measures Ft,ω, since these measures specify the jump coefficient
δ in (1.7). (Warning: this specification is in a “weak” sense, exactly as c specifies σ; we
may have several square-root of c, as well as several δ such that Ft is the image of λ, but
all choices of σt and δ which are compatible with a given ct and Ft give rise to equations
that have exactly the same weak solutions).

Consider Lévy processes first. Basically, the restriction of F to the complement of
any neighborhood of 0, after normalization, is the law of the jumps of X lying outside
this neighborhood. Hence to consistently estimate F we need potentially infinitely many
jumps far from 0, and this possible only if T →∞. In our situation with T fixed there is
no way of consistently estimating F .

We can still say something in the Lévy case: for the complete observation scheme, if
there is a jump then F is not the zero measure; if we have infinitely many jumps in [0, T ]
then F is an infinite measure; in this case, we can also determine for which r > 0 the sum∑

s≤T |∆Xs|r is finite, and this is also the set of r’s such that
∫
{|x|<∞} |x|rF (dx) <∞.

The same statements also hold for more general semimartingales: we can decide for
which r’s the sum

∑
s≤T |∆Xs|r is finite, and also if we have zero, or finitely many, or

infinitely many jumps. Those are “characteristics” of the model which are of much interest
for modelling purposes.
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Hence we will be interested, when coming back to the actual discrete observation
scheme, in estimating Ct for t ≤ T , and whether there are zero or finitely many or
infinitely many jumps in [0, T ].

3 Some simple limit theorems for Wiener plus compound
Poisson processes

This section is about a very particular case: the underlying process is X = σX + Y for
some σ > 0, and Y a compound Poisson process independent of W . And in the first
subsection we even consider the most elementary case of X = σW . In these two cases we
state all limit theorems that are available about sums of a function of the increments. We
do not give the full proofs, but heuristic reasons for the results to be true. The reason for
devoting a special section to this simple case is to show the variety of results that can be
obtained, whereas the full proofs can be easily reconstructed without annoying technical
details.

Before getting started, we introduce some notation, to be used also for a general d-
dimensional semimartingale X later on. Recall the increments ∆n

i X in (1.9). First for
any p > 0 and j ≤ d we set

B(p, j,∆n)t =
[t/∆n]∑

i=1

|∆n
i X

j |p. (3.1)

In the 1-dimensional case this is written simply B(p,∆n)t. Next if f is a function on Rd,
the state space of X in general, we set

V (f,∆n)t =
∑[t/∆n]

i=1 f(∆n
i X),

V ′(f,∆n)t =
∑[t/∆n]

i=1 f(∆n
i X/
√

∆n).



 (3.2)

The reason for introducing the normalization 1/
√

∆n will be clear below. These functionals
are related one of the other by the trivial identity V ′(f,∆n) = V (fn,∆n) with fn(x) =
f(x/

√
∆n). Moreover, with the notation

y ∈ R 7→ hp(y) = |y|p, x = (xj) ∈ Rd 7→ hjp(x) = |xj |p, (3.3)

we also have B(p, j,∆n) = V (hjp,∆n) = ∆−p/2n V ′(hjp,∆n). Finally if we need to empha-
size the dependency on the process X, we write these functionals as B(X; p, j,∆n) or
V (X; f,∆n) or V ′(X; f,∆n).

3.1 The Wiener case.

Here we suppose that X = σW for some constant σ > 0, so d = 1. Among all the
previous functionals, the simplest ones to study are the functionals V ′(f,∆n) with f a
fixed function on R. We need f to be Borel, of course, and “not too big”, for example
with polynomial growth, or even with exponential growth. In this case, the results are
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straightforward consequences of the usual law of large numbers (LNN) and central limit
theorem (CLT).

Indeed, for any n the variables (∆n
i X/
√

∆n : i ≥ 1) are i.i.d. with law N (0, σ2). In the
formulas below we write ρσ for the law N (0, σ2) and also ρσ(g) the integral of a function g
with respect to it. Therefore, with f as above, the variables f(∆n

i X/
√

∆n) when i varies
are i.i.d. with moments of all orders, and their first and second moments equal ρσ(f) and
ρσ(f2) respectively. Then the classical LLN and CLT give us that

∆n V
′(f,∆n)t

P−→ tρσ(f)

1√
∆n

(
∆n V

′(f,∆n)t − tρσ(g)
) L−→ N

(
0, t(ρσ(f2)− ρσ(f)2)

)
.



 (3.4)

We clearly see here why we have put the normalizing factor 1/
√

∆n inside the function f .

The reader will observe that, contrary to the usual LNN, we get convergence in prob-
ability but not almost surely in the first part of (3.4). The reason is as follows: let ζi
be a sequence of i.i.d. variables with the same law than f(X1). The LLN implies that
Zn = t

[t/∆n]

∑[t/∆n]
i=1 ζi converges a.s. to tρσ(f). Since ∆nV

′(f,∆n)t has the same law as
Zn we deduce the convergence in probability in (3.4) because, for a deterministic limit,
convergence in probability and convergence in law are equivalent. However the variables
V ′(f,∆n)t are connected one with the others in a way we do not really control when n
varies, so we cannot conclude to ∆nV

′(f ; ∆n)t → tρσ(f) a.s.

(1.9) gives us the convergence for any time t, but we also have functional convergence:

1) First, recall that a sequence gn of nonnegative increasing functions on R+ converging
pointwise to a continuous function g also converges locally uniformly; then, from the first
part of (1.9) applied separately for the positive and negative parts f+ and f− of f and
using a “subsequence principle” for the convergence in probability, we obtain

∆n V
′(f,∆n)t

u.c.p.−→ tρσ(f) (3.5)

where Znt
u.c.p.−→ Zt means ”convergence in probability, locally uniformly in time”: that is,

sups≤t |Zns − Zs| P−→ 0 for all t finite.

2) Next, if instead of the 1-dimensional CLT we use the “functional CLT”, or Donsker’s
Theorem, we obtain

( 1√
∆n

(
∆nV

′(f,∆n)t − tρσ(f)
))

t≥0

L=⇒
√
ρσ(f2)− ρs(f)2 W ′ (3.6)

where W ′ is another standard Wiener process, and L=⇒ stands for the convergence in law
of processes (for the Skorokhod topology). Here we see a new Wiener process W ′ appear.
What is its connection with the basic underlying Wiener process W ? To study that, one
can try to prove the “joint convergence” of the processes on the left side of (3.6) together
with W (or equivalently X) itself.

This is an easy task: consider the 2-dimensional process Zn whose first component
is the left side of (3.6) and second component is X∆n[t/∆n] (the discretized version of

9



X, which converges pointwise to X). Then Zn takes the form Znt =
√

∆n
∑[t/∆n]

i=1 ζni ,
where the ζni are 2-dimensional i.i.d. variables as i varies, with the same distribution as
(g1(X1), g2(X1)), where g1(x) = f(x) − ρσ(f) and g2(x) = x. Then the 2-dimensional
version of Donsker’s Theorem gives us that

( 1√
∆n

(
∆nV

′(f ; ∆n)t − tρσ(f)
)
, Xt

)
t≥0

L=⇒
(
B,X

)
(3.7)

and the pair (B,X) is a 2-dimensional (correlated) Wiener process, characterized by its
variance-covariance at time 1, which is the following matrix:

(
ρσ(f2)− ρs(f)2 ρσ(fg2)

ρσ(fg2) σ2

)
(3.8)

(note that σ2 = ρσ(g2
2) and also ρσ(g2) = 0, so the above matrix is semi-definite positive).

Equivalently, we can write B as B =
√
ρσ(f2)− ρs(f)2 W ′ with W ′ a standard Brow-

nian motion (as in (3.7))) which is correlated with W , the correlation coefficient being
ρσ(fg2)/σ

√
ρσ(f2)− ρs(f)2.

Now we turn to the processes B(p,∆n). Since B(p,∆n) = ∆−p/2n V ′(hp,∆n) this is
just a particular case of (3.5) and (3.7), which we reformulate below (mp denotes the pth
absolute moment of the normal law N (0, 1)):

∆1−p/2
n B(p,∆n) u.c.p.−→ tσpmp, (3.9)

(
1√
∆n

(
∆1−p/2
n B(p,∆n)t − tσpmp

)
, Xt

)
t≥0

L=⇒
(
B,X

)
,

with B a Wiener process unit variance σ2p(m2p −m2
p), independent of X

}
(3.10)

(the independence comes from that fact that ρσ(g) = 0, where g(x) = x|x|p).
Finally for the functionals V (f,∆n), the important thing is the behavior of f near 0,

since the increments ∆n
i X are all going to 0 as ∆n → 0. In fact, supi≤[t/∆n] |∆n

i X| → 0
pointwise, so when the function f vanishes on a neighborhood of 0, for all n bigger than
some (random) finite number N depending also on t we have

V (f,∆n)s = 0 ∀s ≤ t. (3.11)

For a “general” function f we can combine (3.9) with (3.11): we easily obtain that (3.9)
holds with V (f,∆n) instead of B(p,∆n) as soon as f(x) ∼ |x|p as x → 0, and the same
holds for (3.10) if we further have f(x) = |x|p on a neighborhood of 0.

Of course these results do not exhaust all possibilities for the convergence of V (f ; ∆n).
For example on may prove the following:

f(x) = |x|p log |x| ⇒ ∆1−p/2
n

log(1/∆n)
V (f,∆n) u.c.p.−→ − 1

2
tσpmp, (3.12)

and a CLT is also available in this situation. Or, we could consider functions f which
behave like xp as x ↓↓ 0 and like (−x)p

′
as x ↑↑ 0, with p 6= p′. However, we essentially

restrict our attention to functions behaving like hp: for simplicity first, and since more
general functions do not really occur in the applications we have in mind, and also because
the extension to processes X more general than the Brownian motion is not easy for other
functions.
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3.2 The Wiener plus compound Poisson case.

Our second example is when the underlying process X has the form X = σW + Y , where
as before σ > 0 and W is a Brownian motion, and Y is a compound Poisson process
independent of W . We will write X ′ = σW . Recall that Y has the form

Yt =
∑

p≥1

Φp1{Tp≤t}, (3.13)

where the Tp’s are the successive arrival times of a Poisson process, say with parameter 1
(they are finite stopping times, positive, strictly increasing with p and going to ∞), and
the Φp’s are i.i.d. variables, independent of the Tp’s, and with some law G. Note that in
(3.13) the sum, for any given t, is actually a finite sum.

The processes V ′(f,∆n), which were particularly easy to study when X was a Wiener
process, are not so simple to analyze now. This is easy to understand: let us fix t; at stage
n, we have ∆n

i X = ∆n
i X
′ for all i ≤ [t/∆n], except for those finitely many i’s corresponding

to an interval ((i− 1)∆n, i∆n] containing at least one of the Tp’s. Furthermore, all those
exceptional intervals contain exactly one Tp, as soon as n is large enough (depending on
(ω, t)). Therefore for n large we have

V ′(f,∆n)t = V ′(X ′; f,∆n)t +Ant , where

A′nt =
∑[t/∆n]

i=1

∑
p≥1 1{(i−1)∆n<Tp≤i∆n}

(
f((Φp + ∆n

i X
′)
√

∆n)− f(∆n
i X
′/
√

∆n)
)
.





(3.14)
The double sum in A′nt is indeed a finite sum, with as many non-zero entries as the number
of Tp’s less than ∆n[t/∆n].

Therefore the behavior of V ′(f,∆n) depends in an essential way on the behavior of f
near infinity. There are essentially two possibilities:

1) The function f is bounded, or more generally satisfies |f(x)| ≤ K(1 + |x|p) for some
p < 2. Then |A′nt | above is ”essentially” smaller than K

∑
q:Tq≤t(1 + |Φp|r∆−p/2n ) for some

constant K, and thus ∆nA
′n
t → 0. So obviously the convergence (3.5) holds.

If further p < 1 we even have
√

∆n A
′n
t → 0. Therefore (3.7) holds. Observe that

in this situation, the presence of the jumps does not modify the results that held for the
Brownian case; this will be the rule for more general processes X as well.

2) The function f is equivalent to |x|p at infinity, for some p > 2. Then in (3.14)
the leading term becomes A′nt , which is approximately equal to ∆−p/2n

∑
s≤t |∆Xs|p. So

∆p/2
n V ′(f,∆n)t converges in probability to the variable

B(p)t =
∑

s≤t
|∆Xs|p (3.15)

(we have just ”proved” the convergence for any given t, but it is also a functional conver-
gence, for the Skorokhod topology, in probability).

Again, these cases do not exhaust the possible behaviors of f , and further we have
not given a CLT in the second situation above. But, when f is not bounded it looks a
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bit strange to impose a specific behavior at infinity, and without this there is simply no
convergence result for V ′(f,∆n)t, not to speak about CLTs.

Now we turn to the processes V (f,∆n). To begin with, we observe that, similar to
(3.14), we have

V (f,∆n)t = V (X ′, f,∆n)t +Ant , where

Ant =
∑[t/∆n]

i=1

∑
p≥1 1{(i−1)∆n<Tp≤i∆n}

(
f(Φp + ∆n

i X
′)− f(∆n

i X
′)
)
.



 (3.16)

The first - fundamental - difference with the continuous case is that (3.11) fails now
when f vanishes on a neighborhood of 0. In this case, though, for each given t and all n
bigger than some number depending on (ω, t), we have V (X ′; f,∆n)s = 0 for all s ≤ t by
(3.11), hence

V (f,∆n)s =
[s/∆n]∑

i=1

∑

p≥1

1{(i−1)∆n<Tp≤i∆n}f(Φp + ∆n
i X
′), ∀s ≤ t. (3.17)

Then, as soon as f is continuous and vanishes on a neighborhood of 0, we get

V (f,∆n)t
Sk−→ V (f)t :=

∑

s≤t
f(∆Xs). (3.18)

Here Sk−→ means ”convergence for the Skorokhod topology”, pointwise in ω (the reason for
which we have convergence in the Skorokhod sense will be explained later; what is clear
at this point is that we have the - pointwise in ω - convergence for all t such that X is
continuous at t; we also have for each t an almost sure convergence above).

Next, we consider the case where f is still continuous and, say, coincides with hp for
some p > 0 on a neighborhood of 0. For any given ε > 0 we can write f = fε + f̂ε with fε
and f̂ε continuous, and fε(x) = hp(x) if |x| ≤ ε/2 and fε(x) = 0 if |x| ≥ ε and |fε| ≤ hp
everywhere. Since f̂ε vanishes around 0, we have V (f̂ε,∆n)t → V (f̂ε)t by (3.18), and
V (f̂ε)t converges to V (f)t as ε→ 0. On the other hand the process An associated with fε
by (3.16) is the sum of summands smaller than 2εp, the number of them being bounded
for each (ω, t) by a number independent of ε: hence Ant is negligible and V (fε,∆n) and
V (X ′; fε,∆n) behave essentially in the same way. This means heuristically that, with the
symbol � meaning “approximately equal to”, we have

V (f̂ε,∆n)t � V (f)t, V (fε,∆n)t � ∆p/2−1
n t σpmp. (3.19)

Adding these two expressions, we get

V (f,∆n)t
P−Sk−→ V (f)t if p > 2

V (f,∆n)t
P−Sk−→ V (f)t + tσ2 if p = 2

∆1−r/2
n V (f,∆n)t

u.c.p.−→ tσp/2mp if p < 2.





(3.20)

This type of LLN, which shows a variety of behaviors according to how f behaves near 0,
will be found for much more general processes later, in (almost) exactly the same terms.
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Now we turn to the CLT. Here again we single out first the case where f vanishes in a
neighborhood of 0. We need to find out what happens to the difference V (f,∆n)− V (f).
It is easier to evaluate is the difference V (f,∆n)t − V (f)∆n[t/∆n], since by (3.17) we have

V (f,∆n)s−V (f)∆n[s/∆n] =
[s/∆n]∑

i=1

∑

p≥1

1{(i−1)∆n<Tp≤i∆n}
(
f(Φp+∆n

i X
′)−f(Φp)

)
(3.21)

for all s ≤ t, as soon as n is large enough. Provided f is C1, with derivative f ′, the pth sum-
mand above is approximately f ′(Φp)∆n

i X
′. Now the normalized increment ∆n

i X
′/
√

∆n,
for the value of i such that (i− 1)∆n < Tp ≤ i∆n, has the law N (0, σ2) (because X ′ and
Y are independent), and it is asymptotically independent of the process X (more details
are to be found later). Thus if (Up)p≥1 denotes a sequence of i.i.d. N (0, 1) variables,
independent of X, it is not difficult to see that

1√
∆n

(
V (f,∆n)t − V (f)∆n[t/∆n]

) L=⇒ B(f)t :=
∑

p:Tp≤t
f ′(Φp)σUp, (3.22)

and in fact, this convergence in law (for the Skorokhod topology) is even stable (denoted
L−s=⇒), a stronger property than the mere convergence in law, which will be defined later
only but nevertheless is used in the statements below.

When now f coincide with hp for some p > 0 on a neighborhood of 0 and is still C1

outside 0, exactly as for (3.19) we obtain heuristically that

V (f̂ε,∆n)t � V (f)∆n[t/∆n] +
√

∆n U
n
t , V (fε,∆n)t � ∆p/2−1

n tσpmp + ∆p/2−1/2
n U ′nt ,

where Un and U ′n converge stably in law to the right side of (3.22) and to the process B
of (3.10), respectively. We then have two conflicting rates, and we can indeed prove that,
with B(f) as in (3.22) and B as in (3.10) (thus depending on r):

1√
∆n

(
V (f,∆n)t − V (f)∆n[t/∆n]

) L−s=⇒ B(f)t if p > 3

1√
∆n

(
V (f,∆n)t − V (f)∆n[t/∆n]

) L−s=⇒ tσ3m3 +B(f)t if p = 3

1

∆
p/2−1
n

(
V (f,∆n)t − V (f)∆n[t/∆n]

)
u.c.p.−→ tσpmp if 2 < p < 3

1√
∆n

(
V (f,∆n)t − V (f)∆n[t/∆n] − tσ2

) L−s=⇒ Bt +B(f)t if p = 2

1

∆
1−p/2
n

(
∆1−p/2
n V (f ; ∆n)t − tσpmp

) P−Sk−→ V (f)t if 1 < p < 2

1√
∆n

(√
∆n V (f,∆n)t − tσm1

) L−s=⇒ V (f)t +Bt if p = 1

1√
∆n

(
∆1−p/2
n V (f,∆n)t − tσpmp

) L−s=⇒ Bt if p < 1.





(3.23)

Hence we obtain a genuine CLT, relative to the LLN (3.20), in the cases p > 3, p = 2 and
p < 1. When p = 3 and p = 1 we still have a CLT, with a bias. When 2 < p < 3 or
1 < p < 2 we have a “second order LNN”, and the associated genuine CLTs run as follows:

1√
∆n

(
V (f,∆n)t − V (f)∆n[t/∆n] −∆p/2−1

n tσpmp

) L−s=⇒ B(f)t if 2 < p < 3

1

∆
p/2−1/2
n

(
V (f,∆n)t − V (f)∆n[t/∆n] −∆p/2−1

n tσpmp

) L−s=⇒ Bt if 1 < p < 2



 (3.24)
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We see that these results exhibit again a large variety of behavior. This will be en-
countered also for more general underlying processes X, with of course more complicated
statements and proofs (in the present situation we have not really given the complete
proof, of course, but it is relatively easy along the lines outlined above). However, in the
general situation we will not give such a complete picture, which is useless for practical
applications. Only (3.20) and the cases r > 2 in (3.23) will be given.

4 Auxiliary limit theorems

The aims of this section are twofold: first we define the stable convergence in law, already
mentioned in the previous section. Second, we recall a number of limit theorems for partial
sums of triangular arrays of random variables.

1) Stable convergence in law. This notion has been introduced by Rényi in [22], for
the very same reasons as we need it here. We refer to [4] for a very simple exposition and
to [13] for more details.

It often happens that a sequence of statistics Zn converges in law to a limit Z which
has, say, a mixed centered normal distribution: that is, Z = ΣU where U is an N (0, 1)
variable and Σ is a positive variable independent of U . This poses no problem other than
computational when the law of Σ is known. However, in many instances the law of Σ is
unknown, but we can find a sequence of statistics Σn such that the pair (Zn,Σn) converges
in law to (Z,Σ); so although the law of the pair (Z,Σ) is unknown, the variable Zn/Σn

converges in law to N (0, 1) and we can base estimation or testing procedures on this new
statistics Zn/Σn. This is where the stable convergence in law comes into play.

The formal definition is a bit involved. It applies to a sequence of random variables
Zn, all defined on the same probability space (Ω,F ,P), and taking their values in the
same state space (E, E), assumed to be Polish (= metric complete and separable). We
say that Zn stably converges in law if there is a probability measure η on the product
(Ω× E,F ⊗ E), such that η(A× E) = P(A) for all A ∈ F and

E(Y f(Zn)) →
∫
Y (ω)f(x)η(dω, dx) (4.1)

for all bounded continuous functions f on E and bounded random variables Y on (Ω,F).

This is an “abstract” definition, similar to the definition of the convergence in law
which says that E(f(Zn)) → ∫

f(x)ρ(dx) for some probability measure ρ. Now for the

convergence in law we usually want a limit, that is we say Zn
L−→ Z, and the variable Z is

any variable with law ρ, of course. In a similar way it is convenient to “realize” the limit
Z for the stable convergence in law.

We can always realize Z in the following way: take Ω̃ = Ω × E and F̃ = F ⊗ E
and endow (Ω̃, F̃) with the probability η, and put Z(ω, x) = x. But, as for the simple
convergence in law, we can also consider other extensions of (Ω,F ,P): that is, we have
a probability space (Ω̃, F̃ , P̃), where Ω̃ = Ω × Ω̃′ and F̃ = F ⊗ F ′ for some auxiliary
measurable space (Ω′,F ′) and P̃ is a probability measure on (Ω̃, F̃) whose first marginal
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is P, and we also have a random variable Z on this extension. Then in this setting, (4.1)
is equivalent to saying (with Ẽ denoting the expectation w.r.t. P̃)

E(Y f(Zn)) → Ẽ(Y f(Z)) (4.2)

for all f and Y as above, as soon as P̃(A∩{Z ∈ B}) = η(A×B) for all A ∈ F and B ∈ E .
We then say that Zn converges stably to Z, and this convergence is denoted by L−s−→.

Clearly, when η is given, the property P̃(A ∩ {Z ∈ B}) = η(A × B) for all A ∈ F
and B ∈ E simply amounts to specifying the law of Z, conditionally on the σ-field F .
Therefore, saying Zn

L−s−→ Z amounts to saying that we have the stable convergence in law
towards a variable Z, defined on any extension (Ω̃, F̃ , P̃) of (Ω,F ,P), and with a specified
conditional law knowing F .

Obviously, the stable convergence in law implies the convergence in law. But it implies
much more, and in particular the following crucial result: if Zn

L−s−→ Z and if Yn and Y
are variables defined on (Ω,F ,P) and with values in the same Polish space F , then

Yn
P−→ Y ⇒ (Yn, Zn) L−s−→ (Y,Z). (4.3)

On the other hand, there are criteria for stable convergence in law of a given sequence
Zn. The σ-field generated by all Zn is necessarily separable, that is generated by a count-
able algebra, say G. Then if for any finite family (Ap : 1 ≤ p ≤ q) in G, the sequence
(Zn, (1Ap)1≤p≤q) of E × Rq-valued variables converges in law as n → ∞, then necessarily
Zn converges stably in law.

2) Convergence of triangular arrays. Our aim is to prove the convergence of func-
tionals like in (3.1) and (3.2), which appear in a natural way as partial sums of triangular
arrays. We really need the convergence for the terminal time T , but in most cases the
available convergence criteria also give the convergence as processes, for the Skorokhod
topology. So now we provide a set of conditions implying the convergence of partial sums
of triangular arrays, all results being in [13].

We are not looking for the most general situation here, and we restrict our attention to
the case where the filtered probability space (Ω,F , (Ft)t≥0,P) is fixed. For each n we have
a sequence of Rd-valued variables (ζni : i ≥ 1), the components being denoted by ζn,ji for
j = 1, · · · , d. The key assumption is that for all n, i the variable ζni is Fi∆n-measurable,
and this assumption is in force in the remainder of this section.

Conditional expectations w.r.t. F(i−1)∆n
will play a crucial role, and to simplify no-

tation we write it Eni−1 instead of E(. | F(i−1)∆n
), and likewise Pni−1 is the conditional

probability.

Lemma 4.1 If we have

[t/∆n]∑

i=1

Eni−1(‖ζni ‖) P−→ 0 ∀t > 0, (4.4)
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then
∑[t/∆n]

i=1 ζni
u.c.p.−→ 0. The same conclusion holds under the following two conditions:

[t/∆n]∑

i=1

Eni−1(ζni ) u.c.p.−→ 0, (4.5)

[t/∆n]∑

i=1

Eni−1(‖ζni ‖2) P−→ 0 ∀t > 0. (4.6)

In particular when ζni is a martingale difference, that is Eni−1(ζni ) = 0, then (4.6) is enough
to imply

∑[t/∆n]
i=1 ζni

u.c.p.−→ 0.

Lemma 4.2 If we have
[t/∆n]∑

i=1

Eni−1(ζni ) u.c.p.−→ At (4.7)

for some continuous adapted Rd-valued process of finite variation A, and if further (4.6)
holds, then we have

∑[t/∆n]
i=1 ζni

u.c.p.−→ At.

Lemma 4.3 If we have (4.7) for some (deterministic) continuous Rd-valued function of
finite variation A, and also the following two conditions:

[t/∆n]∑

i=1

(
Eni−1(ζn,ji ζn,ki )−Eni−1(ζn,ji )Eni−1(ζn,ki )

) P−→ C ′jkt ∀t > 0, j, k = 1, · · · , d, (4.8)

[t/∆n]∑

i=1

Eni−1(‖ζni ‖4) P−→ 0 ∀t > 0, (4.9)

where C ′ = (C ′jk) is a (deterministic) function, continuous and increasing in M+
d , then

the processes
∑[t/∆n]

i=1 ζni converge in law to A + B, where B is a continuous centered
Gaussian Rd-valued process with independent increments with E(Bj

tB
k
t ) = C ′jkt .

(4.9) is a conditional Lindeberg condition, whose aims is to ensure that the limiting
process is continuous; other, weaker, conditions of the same type are available, but not
needed here. The conditions given above completely characterize, of course, the law of
the process B. Equivalently we could say that B is a Gaussian martingale (relative to the
filtration it generates), starting from 0, and with quadratic variation process C ′.

3) Stable convergence of triangular arrays. The reader will have observed that the
conditions (4.7) and (4.8) in Lemma 4.3 are very restrictive, because the limits are non-
random. In the sequel, such a situation rarely occurs, and typically these conditions are
satisfied with A and C ′ random. But then we need an additional condition, under which
it turns out that the convergence holds not only in law, but even stably in law.

Note that the stable convergence in law has been defined for variables taking values
in a Polish space, so it also applies to right-continuous and left limited d-dimensional
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processes: such a process can be viewed as a variable taking its values in the Skorokhod
space D(Rd) of all functions from R+ into Rd which are right-continuous with left limits,
provided we endow this space with the Skorokhod topology which makes it a Polish space.
See [10] or Chapter VI of [13] for details on this topology. In fact, in Lemma 4.3 the
convergence in law is also relative to this Skorokhod topology. The stable convergence in
law for processes is denoted as L−s=⇒ below.

In the previous results the fact that all variables were defined on the same space
(Ω,F , (Ft)t≥0,P) and the ζni ’s were Fi∆n-measurable was essentially irrelevant. This is no
longer the case for the next result, for which this setting is fundamental.

Below we single out, among all martingales on (Ω,F , (Ft)t≥0,P), a possibly multidi-
mensional Wiener process W . The following lemma holds for any choice of W , and even
with no W at all (in which case a martingale “orthogonal to W” below means any mar-
tingale) but we will use it mainly with the process W showing in (1.7). The following is
a particular case of Theorem IX.7.28 of [13].

Lemma 4.4 Assume (4.7) for some continuous adapted Rd-valued process of finite vari-
ation A, and (4.8) with some continuous adapted process C ′ = (C ′jk) with values in M+

d

and increasing in this set, and also (4.9). Assume also

[t/∆n]∑

i=1

Eni−1(ζni ∆n
i N) P−→ 0 ∀t > 0 (4.10)

whenever N is one of the components of W or is a bounded martingale orthogonal to W .
Then the processes

∑[t/∆n]
i=1 ζni converge stably in law to A + B, where B is a continuous

process defined on an extension (Ω̃, F̃ , P̃) of the space (Ω,F ,P) and which, conditionally
on the σ-field F , is a centered Gaussian Rd-valued process with independent increments
satisfying Ẽ(Bj

tB
k
t | F) = C ′jkt .

The conditions stated above completely specify the conditional law of B, knowing F ,
so we are exactly in the setting explained in §1 above and the stable convergence in law is
well defined. However one can say even more: letting (F̃t) be the smallest filtration on Ω̃
which make B adapted and which contains (Ft) (that is, A× Ω′ ∈ F̃t whenever A ∈ Ft),
then B is a continuous local martingale on (Ω̃, F̃ , (F̃t)t≥0, P̃) which is orthogonal in the
martingale sense to any martingale on the space (Ω,F , (Ft)t≥0,P), and whose quadratic
variation process is C ′. Of course, on the extended space B is no longer Gaussian.

The condition (4.10) could be substituted with weaker ones. For example if it holds
when N is orthogonal to W , whereas

∑[t/∆n]
i=1 Eni−1(ζni ∆n

iW
j) converges in probability

to a continuous process for all indices j, we still have the stable convergence in law of∑[t/∆n]
i=1 ζni , but the limit has the form A + B + M , where the process M is a stochastic

integral with respect to W . Se [13] for more details.
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5 A first LNN (Law of Large Numbers)

At this stage we start giving the basic limit theorems which are used later for statistical
applications. Perhaps giving first all limit theorems in a purely probabilistic setting is not
the most pedagogical way of proceeding, but it is the most economical in terms of space...

We are in fact going to provide a version of the results of Section 3, and other con-
nected results, when the basic process X is an Itô semimartingale. There are two kinds
of results: first some LNNs similar to (3.5), (3.9), (3.18) or (3.20); second, some “central
limit theorems” (CLT) similar to (3.10) or (3.23). We will not give a complete picture,
and rather restrict ourselves to those results which are used in the statistical applications.

Warning: Below, and in all these notes, the proofs are often sketchy and sometimes
absent; for the full proofs, which are sometimes a bit complicated, we refer essentially
to [15] (which is restricted to the 1-dimensional case for X, but the multidimensional
extension is straightforward).

In this section, we provide some general results, valid for any d-dimensional semi-
martingale X = (Xj)1≤j≤d, not necessarily Itô. We also use the notation (3.1) and (3.2).
We start by recalling the fundamental result about quadratic variation, which says that
for any indices j, k, and as n→∞ (recall ∆n → 0):

[t/∆n]∑

i=1

∆n
i X

j∆n
i X

k P−Sk−→ [Xj , Xk]t = Cjkt +
∑

s≤t
∆Xj

s∆Xk
s . (5.1)

This is the convergence in probability, for the Skorokhod topology, and we even have
the joint convergence for the Skorokhod topology for the d2-dimensional processes, when
1 ≤ j, k ≤ d. When further X has no fixed times of discontinuity, for example when it is
an Itô semimartingale, we also have the convergence in probability for any fixed t.

Theorem 5.1 Let f be a continuous function from Rd into Rd′.
a) If f(x) = o(‖x‖2) as x→ 0, then

V (f,∆n)t
P−Sk−→ f ? µt =

∑

s≤t
f(∆Xs). (5.2)

b) If f coincide on a neighborhood of 0 with the function g(x) =
∑d

j,k=1 γjkxjxk (here
each γjk is a vector in Rd′), then

V (f,∆n)t
P−Sk−→

d∑

j,k=1

γjkC
jk
t + f ? µt. (5.3)

Moreover both convergences above also hold in probability for any fixed t such that P(∆Xt =
0) = 1 (hence for all t when X is an Itô semimartingale).

Proof. 1) Suppose first that f(x) = 0 when ‖x‖ ≤ ε, for some ε > 0. Denote by
S1, S2, · · · the successive jump times of X corresponding to jumps of norm bigger than
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ε/2, so Sp → ∞. Fix T > 0. For each ω ∈ Ω there are two integers Q = Q(T, ω) and
N = N(T, ω) such that SQ(ω) ≤ T < SQ+1(ω) and for all n ≥ N and for any interval
(i−1)∆n, i∆n] in [0, T ] then either there is no Sq in this interval and ‖∆n

i X‖ ≤ ε, or there
is exactly one Sq in it and then we set αnq = ∆n

i X −∆XSq . Since f(x) = 0 when ‖x‖ ≤ ε
we clearly have for all t ≤ T and n ≥ N :

∥∥∥V (f,∆n)t −
∑

q: Sq≤∆n[t/∆n]

f(∆XSq)
∥∥∥ ≤

Q∑

q=1

|f(∆XSq + αnq )− f(∆XSq)|.

Then the continuity of f yields (5.2), because αnq → 0 for all q.

2) We now turn to the general case in (a). For any η > 0 there is ε > 0 such that
we can write f = fε + f ′ε, where fε is continuous and vanishes for ‖x‖ ≤ ε, and where
‖f ′ε(x)‖ ≤ η‖x‖2. By virtue of (5.1) and the first part of the proof, we have




‖V (f ′ε,∆n)‖ ≤ η

∑[t/∆n]
i=1 ‖∆n

i X‖2 P−Sk−→ η
∑d

j=1[Xj , Xj ],

V (fε,∆n) P−Sk−→ fε ? µ

Moreover, fε ? µ
u.c.p.−→ f ? µ as ε → 0 follows easily from Lebesgue convergence theorem

and the property f(x) =o(‖x‖2) as x → 0, because ‖x‖2 ? µt < ∞ for all t. Since η > 0
and ε > 0 are arbitrarily small, we deduce (5.2) from V (f,∆n) = V (fε,∆n) + V (f ′ε,∆n).

3) Now we prove (b). Let f ′ = f − g, which vanishes on a neighborhood of 0. Then
if we combine (5.1) and (5.2), plus a classical property of the Skorokhod convergence, we
obtain that the pair (V (g,∆n), V (f ′,∆n)) converges (for the 2d′-dimensional Skorokhod
topology, in probability) to the pair

(∑d
j,k=1 γjkC

jk + g ? µ, f ′ ? µ
)

, and by adding the
two components we obtain (5.3).

Finally the last claim comes from a classical property of the Skorokhod convergence,
plus the fact that an Itô semimartingale has no fixed time of discontinuity. 2

In particular, in the 1-dimensional case we obtain (recall (3.1)):

p > 2 ⇒ B(pr,∆n) P−Sk−→ B(p)t :=
∑

s≤t
|∆Xs|p. (5.4)

This result is due to Lépingle [18], who even proved the almost sure convergence. It
completely fails when r ≤ 2 except under some special circumstances.

6 Some other LNNs

6.1 Hypotheses.

So far we have generalized (3.18) to any semimartingale, under appropriate conditions on
f . If we want to generalize (3.5) or (3.14) we need X to be an Itô semimartingale, plus
the fact that the processes (bt) and (σt) and the function δ in (1.7) are locally bounded
and (σt) is either right-continuous or left-continuous.
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When it comes to the CLTs we need even more. So for a clearer exposition we gather
all hypotheses needed in the sequel, either for LNNs or CLTs, in a single assumption.

Assumption (H): The process X has the form (1.7), and the volatility process σt is also
an Itô semimartingale of the form

σt = σ0 +
∫ t

0
b̃s ds+

∫ t

0
σ̃ dWs + κ̃(δ̃) ? (µ− ν)t + κ̃′(δ̃) ? µ

t
. (6.1)

In this formula, σt (a d × d′ matrix) is considered as an Rdd′-valued process; b̃t(ω) and
σ̃t(ω) are optional processes, respectively dd′ and dd′2-dimensional, and δ̃(ω, t, x) id a dd′-
dimensional predictable function on Ω×R+×E; finally κ̃ is a truncation function on Rdd′

and κ̃′(x) = x− κ̃(x).

Moreover, we have:

(a) The processes b̃t(ω) and supx∈E
‖δ(ω,t,x)‖
γ(x) and supx∈E

‖eδ(ω,t,x)‖eγ(x) are locally bounded,
where γ and γ̃ are (non-random) nonnegative functions satisfying

∫
E(γ(x)2∧1)λ(dx) <∞

and
∫
E(γ̃(x)2 ∧ 1)λ(dx) <∞.

(b) All paths t 7→ bt(ω), t 7→ σ̃t(ω), t 7→ δ(ω, t, x) and t 7→ δ̃(ω, t, x) are left-continuous
with right limits. 2

Recall that “ (̃bt) is locally bounded”, for example, means that there exists an increasing
sequence (Tn) of stopping times, with Tn → ∞, and such that each stopped process
b̃Tnt = b̃t∧Tn is bounded by a constant (depending on n, but not on (ω, t)).

Remark 6.1 For the LNNs, and also for the CLTs in which there is a discontinuous limit
below, we need a weaker form of this assumption, namely Assumption (H’): this is as (H),
except that we do not require σt to be an Itô semimartingale but only to be càdlàg (then
of course b̃, σ̃, δ̃ are not present), and bt is only locally bounded.

As a rule, we will state the results with the mention of this assumption (H’), when the
full force of (H) is not needed. However, all proofs will be made assuming (H), because it
simplifies the exposition, and because the most useful results need it anyway. 2

Apart from the regularity and growth conditions (a) and (b), this assumption amounts
to saying that both X and the process σ in (1.7) are Itô semimartingales: since the
dimension d′ is arbitrary large (and in particular may be bigger than d), this accommodates
the case where in (1.7) only the first d components of W occur (by taking σijt = 0 when
j > d), whereas in (6.1) other components of W come in, thus allowing σt to be driven
by the same Wiener process than X, plus an additional multidimensional process. In the
same way, it is no restriction to assume that both X and σ are driven by the same Poisson
measure µ.

So in fact this hypothesis accommodates virtually all models of stock prices or exchange
rates or interest rates, with stochastic volatility, including those with jumps, and allows
for correlation between the volatility and the asset price processes. For example if we
consider a q-dimensional equation

dYt = f(Yt−)dZt (6.2)
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where Z is a multi-dimensional Lévy process, and f is a C2 function with at most linear
growth, then if X consists in a subset of the components of Y , it satisfies Assumption
(H). The same holds for more general equations driven by a Wiener process and a Poisson
random measure.

6.2 The results.

Now we turn to the results. The first, and most essential, result is the following; recall that
we use the notation ρσ for the law N (0, σσ?), and ρ⊗kσ denotes the k-fold tensor product.
We also write ρ⊗kσ (f) =

∫
f(x)ρ⊗kσ (dx) if f is a (Borel) function on (Rd)k. With such a

function f we also associate the following processes

V ′(f, k,∆n)t =
[t/∆n]∑

i=1

f
(

∆n
i X/

√
∆n, · · · ,∆n

i+k−1X/
√

∆n

)
. (6.3)

Of course when f is a function on Rd, then V ′(f, 1,∆n) = V (f,∆n), as defined by (3.2).

Theorem 6.2 Assume (H) (or (H’) only, see Remark 6.1)), and let f be a continuous
function on (Rd)k for some k ≥ 1, which satisfies

|f(x1, · · · , xk))| ≤ K0

k∏

j=1

(1 + ‖xj‖p) (6.4)

for some p ≥ 0 and K0. If either X is continuous, or if p < 2, we have ∆nV
′n(f, k,∆n)t

u.c.p.−→ ∫ t
0 ρ
⊗k
σu (f)du.

In particular, if X is continuous and the function f on Rd satisfies f(λx) = λpf(x)
for all x ∈ Rd and λ ≥ 0, then

∆1−p/2
n V (f,∆n)t

u.c.p.−→
∫ t

0
ρσu(f)du. (6.5)

The last claim above may be viewed as an extension of Theorem 5.1 to the case when
the limit in (5.2) vanishes. The continuity of f can be somehow relaxed. The proof will
be given later, after we state some other LLNs, of two kinds, to be proved later also.

Recalling that one of our main objective is to estimate the integrated volatility Cjkt ,
we observe that Theorem 5.1 does not provide “consistent estimators” for Ct when X is
discontinuous. There are two ways to solve this problem, and the first one is as follows:
when X has jumps, (5.1) does not give information on Ct because of the jumps, essentially
the “big” ones. However a big jump gives rise to a big increment ∆n

i X. So an idea,
following Mancini [19], [20], consists in throwing away the big increments. The cutoff level
has to be chosen carefully, so as to eliminate the jumps but keeping the increments which
are “mainly” due to the continuous martingale part Xc, and those are of order

√
∆n. So

we choose two numbers $ ∈ (0, 1/2) and α > 0, and for all indices j, k ≤ d we set

V jk($,α,∆n)t =
[t/∆n]∑

i=1

(∆n
i X

j∆n
i X

k)1{‖∆n
i X‖≤α∆$

n }. (6.6)
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More generally one can consider the truncated analogue of V ′(f, k,∆n) of (6.3). With
$ and α as above, and if f is a function on (Rd)k, we set

V ′($,α; f, k,∆n)t =
[t/∆n]∑

i=1

f
(

∆n
i X/

√
∆n, · · · ,∆n

i+k−1X/
√

∆n

)
1∩j=1,···,k{‖∆n

i+j−1X‖≤α∆$
n }. (6.7)

Theorem 6.3 Assume (H) (or (H’) only), and let f be a continuous function on (Rd)k
for some k ≥ 1, which satisfies (6.4) for some p ≥ 0 and some K0 > 0. Let also $ ∈
(0, 1

2) and α > 0. If either X is continuous, or X is discontinuous and p ≤ 2 we have
∆nV

′n($,α; f, k,∆n)t
u.c.p.−→ ∫ t

0 ρ
⊗k
σu (f)du.

In particular, V jk($,α,∆n) u.c.p.−→ Cjkt .

This result has no real interest when X is continuous. When X jumps, and at the
expense of a more complicated proof, one could show that the result holds when p ≤ 4,
and also when p > 4 and $ ≥ p−4

2p−2r−4 when additionally we have
∫

(γ(x)r ∧ 1)λ(dz) <∞
for some r ∈ [0, 2) (where γ is the function occurring in (H)).

The (slight) improvement on the condition on p, upon the previous theorem, allows to
easily estimate not only Ct, but also the integral

∫ t
0 g(cs)ds for any polynomial g on the

set of d× d matrices. For example if we take

f(x1, · · · , xk) =
k∏

j=1

(xmjj x
nj
j ), (6.8)

for arbitrary indices mj and nj in {1, · · · , d}, then we get

∆nV
′n($,α; f, k,∆n)t

u.c.p.−→
∫ t

0

k∏

j=1

c
mjnj
s ds. (6.9)

The problem with this method is that we do not really know how to choose $ and α a
priori: empirical evidence from simulation studies leads to choose$ to be very close to 1/2,
like $ = 0.47 or 0.48, whereas α for estimating Cjjt , say, should be chosen between 2 and 5
times the “average

√
cjj ” (recall c = σσ?). So this requires a preliminary rough estimate

of the order of magnitude of cjj : of course for financial data this order of magnitude is
usually pretty much well known.

Another way, initiated by Barndorff-Nielsen and Shephard (see [6] and [7]) consists in
using the so-called bipower, or more generally multipower, variations. This is in fact a
particular case of the Theorem 6.2. Indeed, recalling that mr is the rth absolute moment
of N (0, 1), we set for any r1, · · · , rl ∈ (0, 2) with r1 + · · ·+ rl = 2 (hence l ≥ 2):

V jk(r1, · · · , rl,∆n)t =

1
4mr1 · · ·mrl

[t/∆n]∑

i=1

(
l∏

v=1

|∆n
i+v−1(Xj +Xk)|rv −

l∏

v=1

|∆n
i+v−1(Xj −Xk)|rv

)
(6.10)
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Then obviously this is equal to 1
∆n

V ′(f, l,∆n), where

f(x1, · · · , xl) =
1

4mr1 · · ·mrl

(
l∏

v=1

|xjv + xkv |rv −
l∏

v=1

|xjv − xkv |rv
)
,

and ρ⊗lσ (f) = (σσ?)jk by a simple calculation. Then we deduce from Theorem 6.2 the
following result:

Theorem 6.4 Assume (H) (or (H’) only)), and let r1, · · · , rl ∈ (0, 2) be such that r1 +
· · ·+ rl = 2. Then V jk(r1, · · · , rl,∆n) u.c.p.−→ Cjkt .

Now, the previous LNNs are not enough for the statistical applications we have in
mind. Indeed, we need consistent estimators for a few other processes than Ct, and in
particular for the following one which appears as a conditional variance in some of the
forthcoming CLTs:

Djk(f)t =
∑

s≤t
f(∆Xs)(c

jk
s− + cjks ) (6.11)

for indices j, k ≤ d and a function f on Rd with |f(x)| ≤ K‖x‖2 for ‖x‖ ≤ 1, so the
summands above are non-vanishing only when ∆Xs 6= 0 and the process Djk(f) is finite-
valued.

To do this we take any sequence kn of integers satisfying

kn →∞, kn∆n → 0, (6.12)

and we let In,t(i) = {j ∈ N : j 6= i : 1 ≤ j ≤ [t/∆n], |i− j| ≤ kn} define a local window
in time of length kn∆n around time i∆n. We also choose $ ∈ (0, 1/2) and α > 0 as in
(6.6). We will consider two distinct cases for f and associate with it the functions fn:

• f(x) = o(‖x‖2) as x→ 0, fn(x) = f(x)

• f(x) =
∑d

v,w=1 γvwxvxw on a neighborhood of 0, fn(x) = f(x)1{‖x‖>α∆$
n }.

}
(6.13)

Finally, we set

Djk(f,$, α,∆n)t =
1

kn∆n

[t/∆n]−kn∑

i=1+kn

fn(∆n
i X)

∑

l∈In,t(i)
(∆n

l X
j ∆n

l X
k)1{‖∆n

l X‖≤α∆$
n }.

(6.14)

Theorem 6.5 Assume (H) (or (H’) only), and let f be a continuous function on Rd
satisfying (6.13), and j, k ≤ d and $ ∈ (0, 1/2) and α > 0. Then

Djk(f,$, α,∆n) P−Sk−→ Djk(f). (6.15)

If further X is continuous and f(λx) = λpf(x) for all λ > 0 and x ∈ Rd, for some p > 2
(hence we are in the first case of (6.13)), then

∆1−p/2
n Djk(f,$, α,∆n) u.c.p.−→ 2

∫ t

0
ρσu(f)cjku ds. (6.16)

Before proceeding to the proof of all those results, we give some preliminaries.
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6.3 A localization procedure.

The localization is a simple but very important tool for proving limit theorems for dis-
cretized processes, over a finite time interval. We describe it in details in the setting of
the previous theorems, but it will also be used later for the CLTs.

The idea is that, for those theorems, we can replace the local boundedness assumptions
in (H-r) for example by boundedness (by a constant), which is a much stronger assumption.
More precisely, we set

Assumption (SH): We have (H) and also, for some constant Λ and all (ω, t, x):

‖bt(ω)‖ ≤ Λ, ‖σt(ω)‖ ≤ Λ, ‖Xt(ω)‖ ≤ Λ, ‖b̃t(ω)‖ ≤ Λ, ‖σ̃t(ω)‖ ≤ Λ

‖δ(ω, t, x)‖ ≤ Λ(γ(x) ∧ 1), ‖δ̃(ω, t, x)‖ ≤ Λ(γ̃(x) ∧ 1)

}
(6.17)

If these are satisfied, we can of course choose γ and γ̃ smaller than 1.

Lemma 6.6 If X satisfies (H) we can find a sequence of stopping times Rp increasing
to +∞ and a sequence of processes X(p) satisfying (SH) and with volatility process σ(p),
such that

t < Rp ⇒ X(p)t = Xt, σ(p)t = σt. (6.18)

Proof. Let X satisfy (H). The processes bt, b̃t, σ̃t, supx∈E
‖δ(t,x)‖
γ(x) and supx∈E

‖eδ(t,x)‖eγ(x) are
locally bounded, so we can assume the existence of a “localizing sequence” of stopping
times Tp (i.e. this sequence is increasing, with infinite limit) such that for p ≥ 1:

t ≤ Tp(ω) ⇒
{
‖bt(ω)‖ ≤ p, ‖b̃t(ω)‖ ≤ p, ‖σ̃t(ω)‖ ≤ p,
‖δ(ω, t, x)‖ ≤ pγ(x), ‖δ̃(ω, t, x)‖ ≤ pγ̃(x).

(6.19)

We also set Sp = inf(t : ‖Xt‖ ≥ p or ‖σt‖ ≥ p), so Rp = Tp ∧ Sp is again a localizing
sequence, and we have (6.19) for t ≤ Rp and also ‖Xt‖ ≤ p and ‖σt‖ ≤ p for t < Rp. Then
we set

b(p)t =

{
bt if t ≤ Rp
0 otherwise,

b̃(p)t =

{
b̃t if t ≤ Rp
0 otherwise,

σ̃(p)t =

{
σ̃t if t ≤ Rp
0 otherwise,

δ(p)(ω, t, x) =

{
δ(ω, t, x) if ‖δ(ω, t, x)‖ ≤ 2p and t ≤ Rp
0 otherwise,

δ̃(p)(ω, t, x) =

{
δ̃(ω, t, x) if ‖δ̃(ω, t, x)‖ ≤ 2p and t ≤ Rp
0 otherwise,

At this stage we define the process σ(p) by (6.1) with the starting point σ(p)0 = σ0 if
‖σ0‖ < p and σ(p)0 = 0 otherwise, and the coefficients b̃(p) and σ̃(p) and δ̃(p), and then
the process X(p) by (1.7) with the starting point X0 = X0 if ‖X0‖ < p and X(p)0 = 0
otherwise, and the coefficients b(p) and σ(p) (as defined just above) and δ(p).
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We can write µ as µ =
∑

t>0 1D(t) ε(t,βt) where D is the countable (random) support of
µ and βt is E-valued. Outside a P-null set N we have ∆Xt = 1D(t) δ(t, βt) and ∆X(p)t =
1D(t) δ(p)(t, βt), and since ‖∆Xt‖ ≤ 2p when t < Rp we deduce ∆Xt = ∆X(p)t if t < Rp,
which implies that κ′(δ) ∗ µ

t
= κ′(δ(p)) ∗ µ

t
for t < Rp. As for the two local martingales

κ(δ) ∗ (µ − ν) and κ(δ(p)) ∗ (µ − ν), they have (a.s.) the same jumps on the predictable
interval [0, Rp] as soon as κ(x) = 0 when ‖x‖ > 2p (this readily follows from the definition
of δ(p), so they coincide a.s. on [0, Rp].

The same argument shows that κ̃′(δ̃)∗µ
t

= κ̃′(δ̃(p))∗µ
t

for t < Rp, and κ̃(δ̃)∗(µ−ν)t =
κ̃(δ̃(p)) ∗ (µ − ν)t for t ≤ Rp. It first follows in an obvious way that σ(p)t = σt for all
t < Rp, and then X(p)t = Xt for all t < Rp, that is (6.18) holds.

Finally ny definition the coefficients b(p), b̃(p), σ̃(p), δ(p) and δ̃(p) satisfy (6.17) with
Λ = 2p. Moreover the processes σ̃(p) and X(p) are constant after time Rp, and they have
jumps bounded by 2P , so they satisfy (6.17) with Λ = 3p, and thus (SH) holds for X(p).2

Now, suppose that, for example, Theorem 6.2 has been proved when X satisfies (SH).
Let X satisfy (H) only, and (X(p), Rp) be as above. We then know that, for all p, T and
all appropriate functions f ,

sup
t≤T

∣∣∣∆nV
′n(X(p); f, k,∆n)t −

∫ t

0
ρ⊗kσ(p)u

(f)du
∣∣∣ P−→ 0. (6.20)

On the set {Rp > T +1}, and if k∆n ≤ 1, we have V ′n(X(p); f, k,∆n)t = V ′n(X; f, k,∆n)t
and σ(p)t = σt for all t ≤ T , by (6.18). Since P(Rp > T + 1} → 1 as p → ∞, it readily
follows that ∆nV

′n(X; f, k,∆n)t
u.c.p.−→ ∫ t

0 ρ
⊗k
σu (f)du. This proves Theorem 6.2 under (H).

This procedure works in exactly the same way for all the theorems below, LNNs or
CLTs, and we will call this the ”localization procedure” without further comment.

Remark 6.7 If we assume (SH), and if we choose the truncation functions κ and κ̃ in
such a way that they coincide with the identity on the balls centered at 0 and with radius
2Λ, in Rd and Rdd′ respectively, then clearly (1.7) and (6.1) can be rewritten as follows:

Xt = X0 +
∫ t

0 bs ds+
∫ t

0 σs dWs + δ ? (µ− ν)t,

σt = σ0 +
∫ t

0 b̃s ds+
∫ t

0 σ̃ dWs + δ̃ ? (µ− ν)t.

}
(6.21)

6.4 Some estimates.

Below, we assume (SH), and we use the form (6.21) for X and σ. We will give a number
of estimates, to be used for the LLNs and also for the CLTs, and we start with some
notation. We set

χ′ni,l = 1√
∆n

∫ (i+l)∆n

(i+l−1)∆n

(
bs ds+ (σs − σ(i−1)∆n

) dWs

)

βni,l = σ(i−1)∆n
∆n
i+lW/

√
∆n, χ′′ni,l = 1√

∆n
∆n
i+l(δ ? (µ− ν)),

χni,l = χ′ni,l + χ′′ni,l , βni = βni,0, χni = χni,0, χ′ni = χ′ni,0.





(6.22)
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In particular, ∆n
i+lX =

√
∆n (χni,l + βni,l). It is well known that the boundedness of the

coefficients in (SH) yields, through a repeated use of Doob and Davis-Burkholder-Gundy
inequalities, for all q > 0 (below, K denotes a constant which varies from line to line and
may depend on the constants occurring in (SH); we write it Kp if we want to emphasize
its dependency on another parameter p):

Eni−1(‖∆n
i X

c‖q) ≤ Kq∆
q/2
n , E(‖σt+s − σt‖q | Ft) ≤ Kqs

1∧(q/2),

Eni+l−1(‖βni,l‖q) ≤ Kq, Eni+l−1(‖χ′ni,l‖q) ≤ Kq,l∆
1∧(q/2)
n ,

Eni+l−1(‖χni,l‖q + ‖χ′′ni,l ‖q) ≤
{
Kq,l∆

−(1−q/2)−
n in general

Kq,l∆
1∧(q/2)
n if X is continuous





(6.23)

We also use the following notation, for η > 0:

ψη(x) = ψ(x/η), ψ a C∞ function on Rd with 1{‖x‖≤1} ≤ ψ(x) ≤ 1{‖x‖≤2}. (6.24)

Lemma 6.8 Assume (SH) and let r ∈ [0, 2] be such that
∫

(γ(x)r ∧ 1)λ(dx) <∞, and αn
a sequence of numbers with αn ≥ 1 and αn

√
∆n → 0. Then

lim
n→∞ sup

i≥1, ω∈Ω
∆r/2−1
n αr−2

n Eni+l−1(‖χ′′ni,l ‖2 ∧ α2
n) = 0, (6.25)

r ≤ 1 ⇒ lim
n→∞ sup

i≥1, ω∈Ω
∆r/2−1
n αr−1

n Eni+l−1

(∣∣∣ 1√
∆n

∆n
i+l(δ ? µ)

∣∣∣ ∧ αn
)

= 0, (6.26)

lim
η→0

lim sup
n→∞

sup
i≥1, ω∈Ω

1
∆n

Eni+l−1(‖
√

∆n χ
n
i,l‖2 ∧ η2) = 0. (6.27)

(When r ≤ 1 above, the two integral processes δ ? µ and δ ? ν are well defined, and of
finite variation).

Proof. It is enough to consider the 1-dimensional case. For any ε ∈ (0, 1] we have
δ ? (µ− ν) = N(ε) +M(ε) +B(ε), where (κ is the truncation function in (1.1)).

N(ε) = (δ1{|δ|>ε}) ? µ, M(ε) = (δ1{|δ|≤ε}) ? (µ− ν), B(ε) = −(δ1{|δ|>ε}) ? ν .

Then if γε =
∫
{γ(x)≤ε} γ(x)rλ(dx), we have by (SH):

Pni+l−1(∆n
i+lN(ε) 6= 0) ≤ Eni+l−1(∆n

i+l(1{γ>ε} ? µ)) = ∆nλ({γ > ε}) ≤ K∆nε
−r

Eni+l−1((∆n
i+lM(ε))2) ≤ ∆n

∫
{γ(x)≤ε} γ(x)2λ(dx) ≤ ∆nε

2−rγε,

|∆n
i+lB(ε)| ≤ K∆n

(
1 +

∫
{γ(x)>ε}(γ(x) ∧ 1)λ(dx)

)
≤ K∆nε

−(r−1)+
.





We also trivially have

|χni,l|2 ∧ αn ≤ α2
n1{∆n

i+lN(ε)6=0} + 3|χ′ni,l|2 + 3∆−1
n |∆n

i+lM(ε)|2 + 3∆−1
n |∆n

i+lB(ε)|2.
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Therefore, using (6.23), we get

Eni+l−1(‖χni,l‖2 ∧ α2
n) ≤ K

(α2
n∆n

εr
+ ∆n + ε2−rγε + ∆nε

−(r−1)+
)
.

Then since γε → 0 as ε→ 0, (6.25) follows by taking ε = εn = u2
n(u−1

n ∧ (γun)−1/4), where
un = α

1/2
n ∆1/4

n → 0 (note that εn ≤ un, hence γεn ≤ γun).

Next, suppose r ≤ 1. Then δ ? µ = N(ε) + A(ε), where A(ε) = (δ1{|δ|≤ε}) ? µ, and
obviously Eni+l−1(|∆n

i+lA(ε)| ≤ K∆nε
1−rγε. Moreover

∣∣∣ 1√
∆n

∆n
i+l(δ ? µ)

∣∣∣ ∧ αn ≤ αn1{∆n
i+lN(ε) 6=0} +

1√
∆n
|∆n

i+lA(ε)|.

Therefore

Eni+l−1

(∣∣∣ 1√
∆n

∆n
i+l(δ ? µ)

∣∣∣ ∧ 1
)
≤ K

(
αn∆n

εr
+
√

∆n ε
1−rγε

)
,

and the same choice as above for ε = εn gives (6.26).

Finally, we have for any η > 0:

|
√

∆n χ
n
i,l|2 ∧ η2 ≤ η21{∆n

i+lN(ε)6=0} + 3∆n|χ′ni,l|2 + 3|∆n
i+lM(ε)|2 + 3|∆n

i+lB(ε)|2,

hence if we take ε =
√
η above we get Eni+l−1

(
|√∆n χ

n
i,l|2 ∧ η2

)
≤ K∆ng

′
n(η), where

g′n(η) = η2−r/2 + ∆n + η1−r/2γ√η + ∆nη
−(r−1)+

.

Since g′n(η)→ g′(η) := η2−r/2 + η1−r/2γ√η and γε → 0 as ε→ 0, we readily get (6.27). 2

Lemma 6.9 Assume (SH). Let k ≥ 1 and l ≥ 0 be integers and let q > 0. Let f be a
continuous function on (Rd)k, satisfying (6.4) for some p ≥ 0 and K0 > 0.

a) If either X is continuous or if qp < 2, we have as n→∞:

sup
i≥l, ω∈Ω

Eni−l−1

(∣∣∣∣f
(

∆n
i X√
∆n

, · · · , ∆n
i+k−1X√

∆n

)
− f (βni−l,l, · · · , βni−l,l+k−1

)∣∣∣∣
q)
→ 0. (6.28)

b) If qp ≤ 2, and if αn is like in the previous lemma, we have as n→∞:

sup
i≥l, ω∈Ω

Eni−l−1

(∣∣∣∣f
(

∆n
i X√
∆n

, · · · , ∆n
i+k−1X√

∆n

)
1∩1≤j≤k{‖∆n

i+j−1X‖≤αn}

−f (βni−l,l, · · · , βni−l,l+k−1

) ∣∣∣
q)
→ 0. (6.29)

Proof. For any A > 0, the supremum GA(ε) of |f(x1 + y1, · · · , xk + yk) − f(x1, · · · , xk)|
over all ‖xj‖ ≤ A and ‖yj‖ ≤ ε goes to 0 as ε→ 0. We set g(x, y) = 1 + ‖x‖qp + ‖y‖qp. If
we want to prove (6.29) the sequence αn is of course as above, whereas if we want to prove
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(6.28) we put αn = ∞ for all n. Then for all A > 1 and s ≥ 0 and ε > 0 and α ∈ [1,∞]
we have, by a (tedious) calculation using (6.4), the constant K depending on K0, q, k:

|f(x1 + y1, · · · , xk + yk)1∩j=1,···,k{‖xj‖≤αn} − f(x1, · · · , xk)|q

≤ GA(ε)q +K
k∑

m=1


hε,s,A,n(xm, ym)

∏

j=1,···,k, j 6=m
g(xj , yj)


 , (6.30)

where

hε,s,A,n(x, y) =
‖x‖pq+1

A
+ ‖x‖pq(‖y‖ ∧ 1) +Apq

‖y‖2 ∧ 1
ε2

+
‖y‖pq+s ∧ αpq+sn

As
.

We apply these estimates with xj = βni−l,l+j−1 and yj = χni−l,l+j−1. In view of (6.23) we
have if X is continuous or if pq ≤ 2:

Eni+j−2(g(βni−l,l+j−1, χ
n
i−l,l+j−1)) ≤ K. (6.31)

Next consider ζni,j,ε,A = Eni+j−2(hε,s,A,n(βni−l,l+j−1, χ
n
i−l,l+j−1)) for an adequate choice of

s, to be done below. When X is continuous we take s = 1, and (6.23) and Cauchy-
Schwarz inequality yield ζni,j,ε,A ≤ K(1/A+

√
∆n + ∆nA

pq/ε2). In the discontinuous case
when pq < 2 and αn = ∞ we take s = 2 − pq > 0 and by (6.23) and Cauchy-Schwarz
again, plus (6.25) with r = 2, we get the existence on a sequence δn → 0 such that
ζni,j,ε,A ≤ K(1/A+ 1/As + Apqδn/ε

2). Finally in the discontinuous case when αn <∞ we
have pq ≤ 2 and we take s = 0 and we still obtain ζni,j,ε,A ≤ K(1/A + Apqδn/ε

2) by the
same argument. To summarize, in all cases we have for all ε > 0:

sup
ω,i,j

ζni,j,ε,A(ω) ≤ ψn(A, ε), where lim
A→∞

lim sup
n→∞

ψn(A, ε) = 0. (6.32)

At this stage, we make use of (6.30) and use the two estimates (6.31) and (6.32) and
take successive downward conditional expectations to get the left sides of (6.28) and (6.29)
are smaller than GA(ε)q +Kψn(A, ε). This hold for all A > 1 and ε > 0. Then by using
GA(ε)→ 0 as ε→ 0 and the last part of (6.32), we readily get the results. 2

Lemma 6.10 Under (SH), for any function (ω, x) 7→ g(ω, x) on Ω×Rd which is F(i−1)∆n
⊗

Rd-measurable, and even and with polynomial growth in x, we have

Eni−1 (∆n
i N g(., βni )) = 0 (6.33)

for N being any component of W , or being any bounded martingale orthogonal to W .

Proof. When N = W j we have ∆n
i Ng(βni )(ω) = h(σ(i−1)∆n

,∆n
iW )(ω) for a function

h(ω, x, y) which is odd and with polynomial growth in y, so obviously (6.33) holds.

Next assume that N is bounded and orthogonal to W . We consider the martingale
Mt = E(g(., βni )|Ft), for t ≥ (i − 1)∆n. Since W is an (Ft)-Brownian motion, and since
βni is a function of σ(i−1)∆n

and of ∆n
iW , we see that (Mt)t≥(i−1)∆n

is also, conditionally
on Fi−1)∆n

, a martingale w.r.t. the filtration which is generated by the process Wt −

28



W(i−1)∆n
. By the martingale representation theorem the process M is thus of the form

Mt = M(i−1)∆n
+
∫ t

(i−1)∆n
ηsdWs for an appropriate predictable process η. It follows that

M is orthogonal to the process N ′t = Nt −N(i−1)∆n
(for t ≥ (i− 1)∆n), or in other words

the product MN ′ is an (Ft)t≥(i−1)∆n
–martingale. Hence

Eni−1(∆n
i N g(.,

√
∆n σ(i−1)∆n

∆n
iW )) = Eni−1(∆n

i N
′Mi∆n) = Eni−1∆n

i N
′∆n

iM) = 0,

and thus we get (6.33). 2

6.5 Proof of Theorem 6.2.

When f(λx) = λpf(x) we have V (f,∆n) = ∆p/2
n V ′(f,∆n), hence (6.5) readily follows

from the first claim. For this first claim, and as seen above, it is enough to prove it under
the stronger assumption (SH).

If we set

V ′′(f, k,∆n)t =
[t/∆n]∑

i=1

f(βni,0, · · · , βni,k−1),

we have ∆n(V ′(f, k,∆n)− V ′′(f, k,∆n)) u.c.p.−→ 0 by Lemma 6.9-(a) applied with l = 0 and
q = 1. Therefore it is enough to prove that ∆nV

′′(f, k,∆n)t
u.c.p.−→ ∫ t

0 ρ
⊗k
σv (fv)dv. For this,

with I(n, t, l) denoting the set of all i ∈ {1, · · · , [t/∆n]} which are equal to l modulo k, it
is obviously enough to show that for l = 0, 1, · · · , k − 1:

∑

i∈I(n,t,l)
ηni

u.c.p.−→ 1
k

∫ t

0
ρ⊗kσv (fv)dv, where ηni = ∆nf(βni,0, · · · , βni,k−1). (6.34)

Observe that ηni is F(i+k−1)∆n
-measurable, and obviously

Eni−1(ηni ) = ∆nρ
⊗k
σ(i−1)∆n

(f), Eni−1(|ηni |2) ≤ K∆2
n.

By Riemann integration, we have
∑

i∈I(n,t,l) Eni−1(ηni ) u.c.p.−→ 1
k

∫ t
0 ρ
⊗k
σv (fv)dv, because t 7→

ρ⊗kσt (f) is right-continuous with left limits. Hence (6.34) follows from Lemma 4.1.

6.6 Proof of Theorem 6.3.

The proof is exactly the same as for Theorem 6.2, once noticed that in view of Lemma
6.9-(b) applied with αn = α∆$−1/2

n we have

∆n(V ′($,α; f, k,∆n)t − V ′′(f, k,∆n)t))
u.c.p.−→ 0.

6.7 Proof of Theorem 6.5.

Once more we may assume (SH). Below, j, k are fixed, as well as $ and α and the function
f , satisfying (6.13), and for simplicity we write D = Djk(f) and Dn = Djk(f,$, α,∆n).
Set also

D̂n
t = 1

kn

∑[t/∆n]−kn
i=1+kn

fn(∆n
i X)

∑
l∈In,t(i) β

n,j
l βn,kl ,

D̂′nt = 1
kn

∑[t/∆n]−kn
i=1+kn

f(
√

∆n β
n
i )
∑

l∈In,t(i) β
n,j
l βn,kl .



 (6.35)
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Lemma 6.11 We have D̂n P−Sk−→ D.

Proof. a) Let ψε be as in (6.24) and

Y (ε)nt =
1
kn

[t/∆n]−kn∑

i=1+kn

(fnψε)(∆n
i X)

∑

l∈In,t(i)
βn,jl βn,kl , Z(ε)nt = D̂n

t − Y (ε)nt .

It is obviously enough to show the following three properties, for some suitable processes
Z(ε):

lim
ε→0

lim sup
n

E(sup
s≤t
|Y (ε)ns |) = 0, (6.36)

ε ∈ (0, 1), n→∞ ⇒ Z(ε)n P−Sk−→ Z(ε), (6.37)

ε→ 0 ⇒ Z(ε) u.c.p.−→ D. (6.38)

b) Let us prove (6.36) in the first case of (6.13). We have |(fψε)(x)| ≤ φ(ε)‖x‖2 for
some function φ such that φ(ε)→ 0 as ε→ 0. Hence (6.23) yields Eni−1(|(fψε)(∆n

i X)|) ≤
Kφ(ε)∆n. Now, Y (ε)nt is the sum of less than 2kn[t/∆n] terms, all smaller in absolute
value than 1

kn
|(fψε)(∆n

i X)|‖βnj ‖2 for some i 6= j. By taking two successive conditional
expectations and by using again (6.23) the expectation of such a term is smaller than
Kφ(ε)∆n/kn, hence the expectation in (6.36) is smaller than Ktφ(ε) and we obtain (6.36).

Next, consider the second case of (6.13). Then (fnψε)(x) = g(x)1{α∆$
n <‖x‖≤ε}, where

g is an homogeneous polynomial of degree 2. Then if α∆$
n < ε < 1/2 we have

|(fnψε)(x+ y)| ≤ K
(
‖x‖4∆−2$

n + ‖y‖2 ∧ ε2
)
.

Using this with x =
√

∆n β
n
i and y = ∆n

i X
′, we deduce from (6.23) and (6.27) that

Eni−1(|(fnψε)(∆n
i X)|) ≤ K∆n

(
∆1−2$
n + α(n, ε)

)
,

where limε→0 lim supn→∞ α(n, ε) = 0. Then exactly as for the first case, we deduce that
the expectation in (6.36) is smaller than Kt(∆1−2$

n +α(n, ε)), and we obtain again (6.36).

c) Now we define Z(ε). Let us call Tq(ε) for q = 1, 2, · · · the successive jump times of
the Poisson process µ([0, t]× {x : γ(x) > ε/2}), and set

Z(ε)t =
∑

q:Tq(ε)≤t
(f(1− ψε))(∆XTq(ε)) (cjkTq(ε)− + cjkTq(ε)).

For all ω ∈ Ω, q ≥ 1, ε′ ∈ (0, ε) there is q′ such that Tq(ε)(ω) = Tq′(ε′)(ω), whereas 1−ψε
increases to the indicator of Rd\{0}. Thus we obviously have (6.38).

d) It remains to prove (6.37). Fix ε ∈ (0, 1) and write Tq = Tq(ε). Recall that for
u different from all Tq’s, we have ‖∆Xu‖ ≤ ε/2. Hence, for each ω and each t > 0, we
have the following properties for all n large enough: there is no Tq in (0, kn∆n], nor in
(t − (kn + 1)∆n, t]; there is at most one Tq in an interval ((i − 1)∆n, i∆n] with i∆n ≤ t,
and if this is not the case we have ψε(∆n

i X) = 1. Hence for n large enough we have

Z(ε)t =
∑

q: kn∆n<Tq≤t−(kn+1)∆n

ζnq ,

30



where
ζnq =

1
kn

(f(1− ψε))(∆n
i(n,q)X)

∑

l∈I′(n,q)
βn,jl βn,kl ,

and i(n, q) = inf(i : i∆n ≥ Tq) and I ′(n, q) = {l : l 6= i(n, q), |l − i(n, q)| ≤ kn}.
To get (6.37) it is enough that ζnq

P−→ (f(1−ψε))(∆XTq) (cjkTq−+ cjkTq) for any q. Since
(f(1− ψε))(∆n

i(n,q)X)→ (f(1− ψε))(∆XTq) pointwise, it remains to prove that

1
kn

∑

l∈I′−(n,q)

βn,jl βn,kl
P−→ cjkTq−,

1
kn

∑

l∈I′+(n,q)

βn,jl βn,kl
P−→ cjkTq . (6.39)

where I ′−(n, q) and I ′+(n, q) are the subsets of I ′(n, q) consisting in those l smaller, respec-
tively bigger, than i(n, q). Letting l(n, q) be the smallest l in I ′−(n, q), we see that the left
side of the first expression in (6.39) is Unq + U ′nq , where

Unq =
d′∑

r,s=1

σjrl(n,q)∆n
σksl(n,q)∆n

U
q
n(r, s), U

n
q (r, s) =

1
kn∆n

∑

l∈I′−(n,q)

∆n
l W

r∆n
l W

s,

U ′nq =
d′∑

r,s=1

1
kn∆n

∑

l∈I′−(n,q)

(σjr(l−1)∆n
− σjrl(n,q)∆n

)(σks(l−1)∆n
− σksl(n,q)∆n

)∆n
l W

r∆n
l W

s.

On the one hand, the variables ∆n
iW are i.i.d. N(0,∆nId′), so Unq (r, s) is distributed

as 1/kn times the sum of kn i.i.d. variables with the same law as W r
1W

s
1 , hence obviously

U
n
q (r, s) converges in probability to 1 if r = s and to 0 otherwise. Since σl(n,q)∆n

→ σTq−,

we deduce that Unq
P−→ cjkTq−.

On the other hand, due to (6.23) and by successive integrations we obtain

E(|U ′nq |) ≤
1
kn

∑

l∈I′−(n,q)

E(‖σ(l−1)∆n
− σl(n,q)∆n

‖2) ≤ Kkn∆n

which goes to 0 by virtue of (6.12). Therefore we have proved the first part of (6.39), and
the second part is proved in a similar way. 2

Lemma 6.12 If f is continuous and f(λx) = λpf(x) for all λ > 0, x ∈ Rd and some
p ≥ 2, we have ∆1−p/2

n D̂′nt
u.c.p.−→ 2

∫ t
0 ρσu(f)cjku du.

Proof. First we observe that by polarization, and exactly as in the proof of Theorem 6.3, it
is enough to show the result when j = k, and of course when f ≥ 0: then D̂′nt is increasing
in t, and

∫ t
0 ρσu(f)cjku du is also increasing and continuous. Then instead of proving the

local uniform convergence it is enough to prove the convergence (in probability) for any
given t.

With our assumptions on f , we have

∆1−p/2
n D̂′nt =

∆n

kn

[t/∆n]−kn∑

i=1+kn

∑

l∈In,t(i)
f(βni )βn,ji βn,ki .
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Moreover, ∆n
∑[t/∆n]−kn

i=1+kn
ρσ(i−1)∆n

(f)cjk(i−1−kn)∆n

P−→ ∫ t
0 ρσu(f)cjku du by Riemann integra-

tion. Therefore, it is enough to prove the following two properties:

[t/∆n]−kn∑

i=1+kn

∆n(f(βni )− ρσ(i−1)∆n
(f)) cjk(i−1−kn)∆n

P−→ 0, (6.40)

Y n
t :=

∆n

kn

[t/∆n]−kn∑

i=1+kn

∑

l∈In,t(i)
ζni,l

P−→ 0, where ζni,l = f(βni )(βn,jl βn,kl − cjk(i−1−kn)∆n
). (6.41)

Each summand, say ζni , in the left side of (6.40) is Fi∆n-measurable with Eni−1(ζni ) = 0
and Eni−1((ζni )2) ≤ K∆2

n (apply (6.23) and recall that |f(x)| ≤ K‖x‖r with our assump-
tions on f), so (6.40) follows from Lemma 4.1.

Proving (6.41) is a bit more involved. We set

ζ ′ni,l = f(σ(i−1−kn)∆n
∆n
iW/

√
∆n ) (βn,jl βn,kl − cjk(i−1−kn)∆n

), Y ′nt =
∆n

kn

[t/∆n]−kn∑

i=1+kn

∑

l∈In,t(i)
ζ ′ni,l

On the one hand, for any l ∈ In,t(i) (hence either l < i or l > i) and by successive
integration we have

|Eni−1−kn(ζ ′ni,l)| = |ρσ(i−1−kn)∆n
(f)Eni−1−kn(cjk(l−1)∆n

− cjk(i−1−kn)∆n
)| ≤ K

√
kn∆n

by (6.23), the boundedness of σ and |f(x)| ≤ K‖x‖r. Moreover Eni−1−kn((ζ ′ni,l)
2) ≤ K

is obvious. Therefore, since E((Y ′nt )2) is ∆2/k2
n times the sum of all E(ζ ′ni,l ζ

′n
i′,l′) for all

1 + kn ≤ i, i′ ≤ [t/∆n]− kn and l ∈ In,t(i) and l′ ∈ In,t(i′), by singling out the cases where
|i− i′| > 2kn and |i− i′| ≤ 2kn and in the first case by taking two successive conditional
expectations, and in the second case by using Cauchy-Schwarz inequality, we obtain that

E((Y ′nt )2) ≤ K
∆2
n

k2
n

(
4k2

n[t/∆n]2(kn∆n) + 4k2
n[t/∆n]

) ≤ K(t2kn∆n + t∆n) → 0.

In order to get (6.41) it remains to prove that Y n
t − Y ′nt P−→ 0. By Cauchy-Schwarz

inequality and (6.23), we have

E(|ζni,l − ζ ′ni,l |) ≤ K
(
E(|ρσ(i−1)∆n

(f)− ρσ(i−1−kn)∆n
(f)|2)

)1/2
.

Then another application of Cauchy-Schwarz yields E(|Y n
t − Y ′nt |) ≤ Kt

√
αn(t), where

αn(t) =
∆n

kn

[t/∆n]−kn∑

i=1+kn

∑

l∈In,t(i)
E(|ρσ(i−1)∆n

(f)− ρσ(i−1−kn)∆n
(f)|2)

= 2∆n

[t/∆n]−kn∑

i=1+kn

E(|ρσ(i−1)∆n
(f)− ρσ(i−1−kn)∆n

(f)|2) ≤ 2
∫ t

0
gn(s)ds,

32



with the notation gn(s) = E((ρσ∆n(kn+[s∆n])
(f) − ρσ∆n[s/∆n]

(f))2). Since ct is bounded
and f is with polynomial growth, we first have gn(s) ≤ K. Since further t 7→ σt has no
fixed time of discontinuity and f is continuous and ∆nkn → 0, we next have gn(s) → 0
pointwise: hence αn(t)→ 0 and we have the result. 2

Proof of (6.15). In view of Lemma 6.11 it is enough to prove that D̂n−Dn u.c.p.−→ 0, and
this will obviously follow if we prove that

sup
i6=l

1
∆2
n

E(|fn(∆n
i X)ζnl |) → 0 as n→∞, (6.42)

where ζni = ∆n
l X

j∆n
l X

k1{‖∆n
l X‖≤α∆$

n } −∆nβ
n,j
l βn,kl .

A simple computation shows that for x, y ∈ Rd and ε > 0, we have

|(xj + yj)(xk + yk)1{‖x+y‖≤ε} − xjxk| ≤ K
(1
ε
‖x‖3 + ‖x‖(‖y‖ ∧ ε) + ‖y‖2 ∧ ε2

)
.

We apply this to x =
√

∆n β
n
l and y =

√
∆n χ

n
l and ε = α∆$

n , and (6.23) and (6.27) with
η = ε and Cauchy-Schwarz inequality, to get

Enl−1(|ζnl |) ≤ K∆n(∆1/2−$
n + αn)

for some αn going to 0. On the other hand, (SH) implies that ∆n
i X is bounded by a con-

stant, hence (6.13) yields |fn(∆n
i X)| ≤ K‖∆n

i X‖2 and (6.23) again gives Eni−1(|fn(∆n
i X)|)

≤ K∆n. Then, by taking two successive conditional expectations, we get E(|fn(∆n
i X)ζnl |)

≤ K∆2
n(∆1/2−$

n + αn) as soon as l 6= i, and (6.42) follows. 2

Proof of (6.16). In view of Lemma 6.12 it is enough to prove that ∆1−r/2
n (D̂′n−Dn) u.c.p.−→

0, when X is continuous and f(λx) = λrf(x) for some r > 2. With the notation ζni of the
previous proof, this amounts to prove the following two properties:

sup
i6=l

1

∆1+r/2
n

E(|f(∆n
i X)ζnl |) → 0 as n→∞, (6.43)

sup
i 6=l

1

∆r/2
n

E
(
|f(∆n

i X)|1{‖∆n
i X‖>α∆$

n }‖βnl ‖) → 0 as n→∞. (6.44)

Since X is continuous and |f(x)| ≤ K‖x‖r, we have Eni−1(|fn(∆n
i X)|) ≤ K∆r/2

n , hence
the proof of (6.43) is like in the previous proof. By Bienaymé-Tchebycheff inequality and
(6.23) we also have Eni−1(|f(∆n

i X)|1{‖∆n
i X‖>α∆$

n }) ≤ Kq∆
q
n for any q > 0, hence (6.44)

follows. 2

7 A first CLT

As we have seen after (3.14), we have the CLT (3.7) when X is the sum of a Wiener
process and a compound Poisson process, as soon as the function f in V ′(f,∆n) satisfies
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f(x)/|x|p → 0 as |x| → ∞, for some p < 1. In this section we prove the same result, and
even a bit more (the stable convergence in law) when X satisfies (H).

In other words, we are concerned with the CLT associated with Theorem 6.2. For
statistical purposes we need a CLT when the function f = (f1, · · · , fq) is multidimensional:
in this case, V ′(f, k,∆n) is also multidimensional, with components V ′(fj , k,∆n). On the
other hand, we will strongly restrict the class of functions f for which we give a CLT:
although much more general situations are available, they also are much more complicated
and will not be used in the sequel. Let us however mention that the present setting does
not allow to consider the CLT for multipower variations in the interesting cases like in
(6.10): for this, we refer to [8] when X is continuous, and to [9] when X is a discontinuous
Lévy process. For discontinuous semimartingales which are not Lévy processes, essentially
nothing is known as far as CLTs are concerned, for processes like (6.10).

One of the difficulties of this question is to characterize the limit, and more specifically
the quadratic variation of the limiting process. To do this, we consider a sequence (Ui)i≥1

of independent N (0, Id) variables (they take values in Rd, and Id is the unit d×d matrix).
Recall that ρσ, defined before (6.3), is also the law of σU1, and so ρσ(g) = E(g(σU1)). In a
similar way, for any q-dimensional function f = (f1, · · · , fq) on (Rd)k, say with polynomial
growth, we set for i, j = 1, · · · , q:

Rijσ (f, k) =
k−1∑

l=−k+1

E
(
fi(σUk, · · · , σU2k−1)fj(σUl+k, · · · , σUl+2k−1)

)

−(2k − 1)E(fi(σU1, · · · , σUk))E(fj(σU1, · · · , σUk)). (7.1)

One can of course express this in terms of integrals of f with respect to the measures ρσ
and their tensor powers, but this is very complicated. Let us just mention the special case
where k = 1:

Rijσ (f, 1) = ρσ(fifj)− ρσ(fi)ρσ(fj). (7.2)

The main result goes as follows:

Theorem 7.1 Assume (H). Let f be a q-dimensional function on (Rd)k for some k ≥ 1,
which is even in each argument, that is

f(x1, · · · , xl−1,−xl, xl+1, · · · , xk) = f(x1, · · · , xl−1, xl, xl+1, · · · , xk)
identically for all l. In the following two cases:

a) X is continuous, and f is C1 with derivatives having polynomial growth,

b) f is C1
b (bounded with first derivatives bounded), and

∫
(γ(x)∧ 1)λ(dx) <∞ (hence

the jumps of X are summable over each finite interval),

the q-dimensional processes

1√
∆n

(
∆nV

′(f, k,∆n)t −
∫ t

0
ρ⊗kσu (f)du

)

converge stably in law to a continuous process V ′(f, k) defined defined on an extension
(Ω̃, F̃ , P̃) of the space (Ω,F ,P), which conditionally on the σ-field F is a centered Gaussian
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Rq-valued process with independent increments, satisfying

Ẽ(V ′(fi, k)tV ′(fj , k)t) =
∫ t

0
Rijσu(f, k)du. (7.3)

Another, equivalent, way to characterize the limiting process V ′(f, k) is as follows, see
[13]: for each σ, the matrix Rσ(f, k) is symmetric nonnegative, so we can find a square-
root Sσ(f, k), that is Sσ(f, k)Sσ(f, k)? = Rσ(f, k), which as a function of σ is measurable.
Then there exists a q-dimensional Brownian motion B = (Bi)i≤q on an extension of the
space (Ω,F ,P), independent of F , and V ′(f, k) is given componentwise by

V ′(fi, k)t =
q∑

j=1

∫ t

0
Sijσu(f, k)dBj

u. (7.4)

As a consequence we obtain a CLT for estimating Cjkt when X is continuous. It suffices
to apply the theorem with k = 1 and the d × d-dimensional function f with components
fjl(x) = xjxk. Upon a simple calculation using (7.2) in this case, we obtain:

Corollary 7.2 Assume (H) (or (H’) only,although it is not then a consequence of the
previous theorem) and that X is continuous. Then the d × d-dimensional process with
components

1√
∆n

( [t/∆n]∑

i=1

∆n
i X

j∆n
i X

k − Cjkt
)

converge stably in law to a continuous process (V jk)1≤j,k≤d defined defined on an extension
(Ω̃, F̃ , P̃) of the space (Ω,F ,P), which conditionally on the σ-field F is a centered Gaussian
Rq-valued process with independent increments, satisfying

Ẽ(V jk
t V j′k′

t ) =
∫ t

0
(cjk

′
u cj

′k
u + cjj

′
u ckk

′
u )du. (7.5)

It turns out that this result is very special: Assumption (H) is required for Theorem
7.1, essentially because one needs that ∆n

∑[t/∆n]
i=1 ρσ(i−1)∆n

(g) converges to
∫ t

0 ρσs(g)ds at a
rate faster than 1/

√
∆n, and this necessitates strong assumptions on σ (instead of assuming

that it is an Itô semimartingale, as in (H), one could require some Hölder continuity of its
paths, with index bigger than 1/2). However, for the corollary, and due to the quadratic
form of the test function, some cancelations occur which allow to obtain the result under
the weaker assumption (H’) only. Although this is a theoretically important point, it is
not proved here.

There is a variant of Theorem 7.1 which concerns the case where in (6.3) on take the
sum over the i’s that are multiple of k. More precisely we set

V ′′(f, k,∆n)t =
[t/k∆n]∑

i=1

f
(

∆n
(i−1)k+1X/

√
∆n, · · · ,∆n

ikX/
√

∆n

)
. (7.6)

The LLN is of course exactly the same as Theorem 6.2, except that the limit should be
divided by k in (6.5). As for the CLT, it runs as follows (and although similar to Theorem
7.1 i is not a direct consequence):
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Theorem 7.3 Under he same assumptions than in Theorem 7.1, the q-dimensional pro-
cesses

1√
∆n

(
∆nV

′′(f, k,∆n)t − 1
k

∫ t

0
ρ⊗kσu (f)du

)

converge stably in law to a continuous process V ′′(f, k) defined defined on an extension
(Ω̃, F̃ , P̃) of the space (Ω,F ,P), which conditionally on the σ-field F is a centered Gaussian
Rq-valued process with independent increments, satisfying

Ẽ(V ′′(fi, k)tV ′′(fj , k)t | F) =
1
k

∫ t

0

(
ρ⊗kσu (fifj)− ρ⊗kσu (fi)ρ⊗kσu (fj)

)
du. (7.7)

Theorem 7.1 does not allow to deduce a CLT associated with Theorem 6.4, since the
function f which is used in (6.10) cannot meet the assumptions above. Nevertheless such
a CLT is available when X is continuous: see [8], under the (weak) additional assumption
that σtσ?t is everywhere invertible. When X is discontinuous and with the additional
assumption that

∫
(γ(x) ∧ 1)λ(dx) < ∞, it is also available, see [9] for the case when in

addition X is a Lévy process.

We do however give the CLT associated with Theorem 6.3, although it is not a direct
consequence of the previous one.

Theorem 7.4 Assume (H), and also that X is continuous or that
∫

(γ(x)r∧1)λ(dx) <∞
for some r ∈ [0, 1). Then for all $ ∈ [ 1

2(2−r) ,
1
2) and α > 0 the d× d-dimensional process

with components
1√
∆n

(
V jk($,α,∆n)t − Cjkt

)

converge stably in law to the continuous process (V jk)1≤j,k≤d defined in Corollary 7.2.

In the discontinuous case, this is not fully satisfactory since we need the assumption
about r < 1, which we a priori do not know to hold, and further $ has to be bigger than

1
2(2−r) . In the continuous case for X the assumption is simply (H), but of course in this

case there is no reason to prefer the estimators V jk($,α,∆n)t to
∑[t/∆n]

i=1 ∆n
i X

j∆n
i X

k.

7.1 The scheme of the proof of Theorem 7.1.

This theorem is rather long to prove, and quite technical. We first describe here the main
steps. Note that the localization argument expounded earlier works here as well, so we can
and will assume (SH) instead of (H), without special mention. Also, the multidimensional
case for f reduces to the 1-dimensional one by polarization, as in the proof of Theorem
6.3, so below we suppose that f is 1-dimensional (that is, q = 1). These assumptions are
in force through the remainder of this section. We also denote byM′ the set of all d′× d′
matrices bounded by K where K is a bound for the process ‖σt‖.

We use the notation

ζni = f(∆n
i X/

√
∆n, · · · ,∆n

i−kX/
√

∆n), ζ ′ni = f(βni,0, β
n
i,1, · · · , βni,k−1), ζ ′′ni = ζni − ζ ′ni .

First, we replace each normalized increment ∆n
i+lX/

√
∆n in (6.3) by βni,l (notation (6.22)):

this is of course much simpler, and we have the following:
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Proposition 7.5 The processes

V
n
t =

√
∆n

[t/∆n]∑

i=1

(
ζ ′ni − ρ⊗kσ(i−1)∆n

(f)
)

(7.8)

converge stably in law to the process V ′(f, k), as defined in Theorem 7.1.

Next, we successively prove the following three properties:

√
∆n

[t/∆n]∑

i=1

Eni−1(ζ ′′ni ) u.c.p.−→ 0, (7.9)

√
∆n

[t/∆n]∑

i=1

(
ζ ′′ni − Eni−1(ζ ′′ni )

)
u.c.p.−→ 0, (7.10)

1√
∆n

(
∆n

[t/∆n]∑

i=1

ρ⊗kσ(i−1)∆n
(f)−

∫ t

0
ρ⊗kσu (f)du

)
u.c.p.−→ 0. (7.11)

Obviously our theorem is a consequence of these three properties and of Proposition 7.5.
Apart from (7.10), which is a simple consequence of Lemma 6.9, all these steps are non
trivial, and the most difficult is (7.9).

7.2 Proof of (7.10).

We use the notation I(n, t, l) of the proof of Theorem 6.2, and it is of course enough to
prove √

∆n

∑

i∈I(n,t,l)

(
ζ ′′ni − Eni−1(ζ ′′ni )

)
u.c.p.−→ 0

for each l = 0, · · · , k − 1. Since each ζ ′′ni is F(i+k−1)∆n
-measurable, by Lemma 4.1 it is

even enough to prove that

∆n

∑

i∈I(n,t,l)
Eni−1((ζ ′′ni )2) u.c.p.−→ 0.

But this is a trivial consequence of Lemma 6.9 applied with q = 2 and l = 0: in case (a)
the function f obviously satisfies (6.4) for some r ≥ 0 and X is continuous, whereas in
case (b) it satisfies (6.4) with r = 0.

7.3 Proof of (7.11).

Let us consider the function g(σ) = ρ⊗kσ (f), defined on the set M′. (7.11) amounts to

[t/∆n]∑

i=1

ηni
u.c.p.−→ 0, where ηni =

1√
∆n

∫ i∆n

(i−1)∆n

(g(σu)− g(σ(i−1)∆n
))du. (7.12)
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Since f is at least C1 with derivatives having polynomial growth, the function g is C1
b on

M. However, the problem here is that σ may have jumps, and even when it is continuous
its paths are typically Hölder with index α > 1/2, but nor α = 1/2: so (7.12) is not trivial.

With ∇g denoting the gradient of g (a d × d′-dimensional function), we may write
ηni = η′ni + η′′ni where (with matrix notation)

η′ni =
1√
∆n
∇g(σ(i−1)∆n

)
∫ i∆n

(i−1)∆n

(σu − σ(i−1)∆n
) du,

η′′ni =
1√
∆n

∫ i∆n

(i−1)∆n

(
g(σu)− g(σ(i−1)∆n

)−∇g(σ(i−1)∆n
)(σu − σ(i−1)∆n

)
)
du.

In view of (6.21) we can decompose further η′ni as η′ni = µni + µ′ni , where

µni =
1√
∆n
∇g(σ(i−1)∆n

)
∫ i∆n

(i−1)∆n

du

∫ u

(i−1)∆n

b̃sds,

µ′ni =
1√
∆n
∇g(σ(i−1)∆n

)
∫ i∆n

(i−1)∆n

du

(∫ u

(i−1)∆n

σ̃sdWs

+
∫ u

(i−1)∆n

∫
δ̃(s, x)(µ− ν)(ds, dx)

)
.

On the one hand, we have |µni | ≤ K∆3/2
n (recall that g is C1

b and b̃ is bounded), so∑[t/∆n]
i=1 µni

u.c.p.−→ 0. On the other hand, we have Eni−1(µ′ni ) = 0 and Eni−1((µ′ni )2) ≤ K∆2
n

by Doob and Cauchy–Schwarz inequalities, hence
∑[t/∆n]

i=1 µ′ni
u.c.p.−→ 0 by Lemma 4.1.

Finally since g is C1
b on the compact set M we have |g(σ′)− g(σ)−∇g(σ)(σ′ − σ)| ≤

K‖σ′ − σ‖h(‖σ′ − σ‖) for all σ, σ′ ∈M, where h(ε)→ 0 as ε→ 0. Therefore

|η′′ni | ≤
1√
∆n

∫ i∆n

(i−1)∆n

h(‖σu − σ(i−1)∆n
‖) ‖σu − σ(i−1)∆n

‖ du

≤ 1√
∆n

h(ε)
∫ i∆n

(i−1)∆n

‖σu − σ(i−1)∆n
‖ du+

K

ε
√

∆n

∫ i∆n

(i−1)∆n

‖σu − σ(i−1)∆n
‖2 du.

Since h(ε) is arbitrarily small we deduce from the above and from (6.23) that
∑[t/∆n]

i=1 E(|η′′ni |)→
0. This clearly finishes to prove (7.12).

7.4 Proof of Proposition 7.5.

We prove the result when k = 2 only. The case k ≥ 3 is more tedious but similar.

Letting gt(x) =
∫
ρσt(dy)f(x, y), we have V n(f)t =

∑[t/∆n]+1
i=2 ηni + γ′n1 − γ′n[t/∆n]+1,

where ηni = γni + γ′ni and

γni =
√

∆n

(
f(βni−1,0, β

n
i−1,1)−

∫
ρσ(i−2)∆n

(dx)f(βni−1,0, x)
)
,

γ′ni =
√

∆n

(∫
ρσ(i−1)∆n

(dx)f(βni,0, x)− ρ⊗2
σ(i−1)∆n

(f)
)
.
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Since obviously E(|γ′ni |) ≤ K
√

∆n, it is enough to prove that V ′n(f)t =
∑[t/∆n]+1

i=2 ηni
converges stably in law to the process V ′(f, 2).

Note that ηni is Fi∆n-measurable, and a (tedious) calculation yields

Eni−1(ηni ) = 0, Eni−1((ηni )2) = ∆nφ
n
i , Eni−1(|ηni |4) ≤ K∆2

n, (7.13)

where φni = g((i− 2)∆n, (i− 1)∆n, β
n
i−1) and

g(s, t, x) =
∫
ρσt(dy)

(
f(x, y)2 +

(∫
ρσt(dz)f(y, z)

)2)
−
(∫

ρσt(dy)f(x, y)
)2

−
(
ρ⊗2
σt (f)

)2
− 2ρ⊗2

σt (f)
∫
ρσs(dy)f(x, y) + 2

∫
ρ(dy)ρ(dz)f(x, σsy)f(σty, σtz)

(here, ρ is the law N (0, Id′)). Then if we can prove the following two properties:

[t/∆n]+1∑

i=2

Eni−1(∆n
i N ηni ) P−→ 0 (7.14)

for any N which is a component of W or is a bounded martingale orthogonal to W , and

∆n

[t/∆n]+1∑

i=2

φni
P−→

∫ t

0
Rσu(f, 2)du (7.15)

(with the notation (7.1); here f is 1-dimensional, so Rσ(f, 2) is also 1-dimensional), then
Lemma 4.4 will yield the stable convergence in law of V ′n to V ′(f, 2).

Let us prove first (7.14). Recall ηni = γni + γ′ni , and observe that

γni =
√

∆n h(σ(i−2)∆n
,∆n

i−1W/
√

∆n,∆n
iW/
√

∆n)

γ′ni =
√

∆n h
′(σ(i−1)∆n

,∆n
iW/
√

∆n),

where h(σ, x, y) and h′(σ, x) are continuous functions with polynomial growth in x an y,
uniform in σ ∈M′. Then (7.14) when N is a bounded martingale orthogonal to W readily
follows from Lemma 6.10.

Next, suppose that N is a component of W , say W 1. Since f is globally even and ρσs
is a measure symmetric about the origin, the function h′(σ, x) is even in x, so h′(σ, x)x1

is odd in x and obviously Eni−1(γ′ni ∆n
iW

1) = 0. So it remains to prove that

[t/∆n]+1∑

i=2

ζni
P−→ 0, where ζni = Eni−1(γni ∆n

iW
1). (7.16)

An argument similar to the previous one shows that h(σ, x, y) is globally even in (x, y),
so ζni has the form ∆n k(σ(i−2)∆n

,∆n
i−1W/

√
∆n) where k(σ, x) =

∫
ρσ(dy)h(σ, x, y)y1 is

odd in x, and also C1 in x with derivatives with polynomial growth, uniformly in σ ∈M′.
Then Eni−2(ζni ) = 0 and Eni−2(|ζni |2) ≤ K∆2

n. Since ζni is also F(i−1)∆n
-measurable, we

deduce (7.16) from Lemma 4.1, and we have finished the proof of (7.14).
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Now we prove (7.15). Observe that φni is F(i−1)∆n
-measurable and

Eni−2(φni ) = h((i− 2)∆n, (i− 1)∆n), Eni−2(|φni |2) ≤ K,

where h(s, t) =
∫
ρσs(dx)g(s, t, x). Then, by Lemma 4.1,the property (7.15) follows from

∆n

[t/∆n]∑

i=1

h((i− 1)∆n, i∆n) P−→
∫ t

0
Rσu(f, 2)du, (7.17)

so it remains to show (7.17). On the one hand we have |h(s, t)| ≤ K. On the other
hand, since f is continuous with polynomial growth and σt is bounded we clearly have
h(sn, tn) → h(t, t) for any sequences sn, tn → t which are such that σsn and σtn converge
to σt: since the later property holds, for P-almost all ω and Lebesgue-almost all t, for all
sequences sn, tn → t, we deduce that

∆n

[t/∆n]∑

i=1

h((i− 1)∆n, i∆n) P−→
∫ t

0
h(u, u)du.

Since

h(t, t) = ρ⊗2
σt (f2)− 3

(
ρ⊗2
σt (f)

)2
+ 2

∫
ρσt(dx)ρσt(dy)ρσt(dz)f(x, y)f(y, z),

is trivially equal to Rσt(f, 2), as given by (7.1). Hence we have (7.17).

7.5 Proof of (7.9).

As said before, this is the hard part, and it is divided into a number of steps.

Step 1. For l = 0, · · · , k − 1 we define the following (random) functions on Rd:

gni,l(x) =
∫
f
(∆n

i X√
∆n

, · · · , ∆n
i+l−1X√

∆n
, x, xl+1, · · · , xk−1

)
ρ⊗(k−l−1)
σ(i−1)∆n

(dxl+1, · · · , xk−1)

(for l = 0 we simply integrate f(x, xl+1, · · · , xk−1), whereas for l = k − 1 we have no
integration). As a function of ω this is F(i+l−1)∆n

-measurable. As a function of x it is C1,
and further it has the following properties, according to the case (a) or (b) of Theorem
7.1 (we heavily use the fact that σt is bounded, and also (6.23)):

|gni,l(x)|+ ‖∇gni,l(x)‖ ≤ KZni,l(1 + ‖x‖r) where

in case (a): r ≥ 0, Eni−1(|Zni,l|p) ≤ Kp ∀p > 0, Zni,l is F(i+l−2)∆n
-measurable

in case (b): r = 0, Zni,l = 1.





(7.18)

For all A ≥ 1 there is also a positive function GA(ε) tending to 0 as ε→ 0, such that with
Zni,l as above:

‖x‖ ≤ A, Zni,l ≤ A, ‖y‖ ≤ ε ⇒ ‖∇gni,l(x+ y)−∇gni,l(x)‖ ≤ GA(ε). (7.19)
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Observing that ζ ′′ni is the sum over l from 0 to k − 1 of

f
(∆n

i X√
∆n

, · · · , ∆n
i+lX√
∆n

, βni,l+1, · · · , βni,k−1

)
− f

(∆n
i X√
∆n

, · · · , ∆n
i+l−1X√

∆n
, βni,l, · · · , βni,k−1

)
,

we have

Eni−1(ζ ′′ni ) =
k−1∑

l=0

Eni−1

(
gni,l(∆

n
i+lX/

√
∆n)− gni,l(βni,l)

)
.

Therefore it is enough to prove that for any l ≥ 0 we have

√
∆n

[t/∆n]∑

i=1

Eni−1

(
gni,l(∆

n
i+lX/

√
∆n)− gni,l(βni,l)

)
u.c.p.−→ 0. (7.20)

Step 2. In case (b) the process X has jumps, but we assume that
∫

(γ(x)∧ 1)λ(dx) <∞,
hence the two processes δ ? µ and δ ? ν are well defined. Moreover (7.18) readily gives
|gni,l(x+ y)− gni,l(x)| ≤ K(‖y‖ ∧ 1). Hence it follows from (6.26) with αn = 1 that

√
∆n

[t/∆n]∑

i=1

Eni−1

(
gni,l(∆

n
i+lX/

√
∆n)− gni,l(∆n

i+lX/
√

∆n −∆n
i+l(δ ? µ)/

√
∆n)

)
u.c.p.−→ 0.

Therefore if we put

ξni,l =

{
∆n
i+lX/

√
∆n − βni,l in case (a)

∆n
i+lX/

√
∆n −∆n

i+l(δ ? µ)/
√

∆n − βni,l in case (b),
(7.21)

(7.20) amounts to

√
∆n

[t/∆n]∑

i=1

Eni−1

(
gni,l(β

n
i,l + ξni,l)− gni,l(βni,l)

)
u.c.p.−→ 0. (7.22)

Step 3. At this stage, we set (for simplicity, in the forthcoming formulas we write
S = S(i, l, n) = (i + l − 1)∆n and T = T (i, l, n) = (i + l)∆n; recall that x 7→ δ(s, x) is
λ-integrable (in case (a) because then δ ≡ 0, in case (b) because |δ(s, .)| ≤ K(γ ∧ 1)):

ξ̂ni,l =
∫ T

S

(
bs − bS +

∫

E
(δ(s, x)− δ(S, x))λ(dx)

)
ds

+
∫ T

S

(∫ s

S
(̃budu+ (σ̃u − σ̃S)dWu) +

∫ s

S

∫

E
(δ̃(u, x)− δ̃(S, x))(µ− ν)(du, dx)

)
dWs

ξ̃ni,l =
(
bS +

∫

E
δ(S, x)λ(dx)

)
∆n +

∫ T

S

(
σ̃S

∫ s

S
dWu +

∫ s

S

∫
δ̃(S, x)(µ− ν)(du, dx)

)
dWs

In view of (7.21), we obviously have ξni,l =
(
ξ̂ni,l + ξ̃ni,l

)
/
√

∆n.

Consider the process Y = (γ̃2 ∧ 1) ? µ. This is an increasing pure jump Lévy process,
whose Laplace transform is

u 7→ E(e−u(Ys+t−Ys)) = exp t

∫ (
e−u(eγ(x)2∧1 − 1

)
λ(dx).
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If q is a non zero integer, we compute the qth moment of Ys+t − Ys by differentiating q
times its Laplace transform at 0: this is the sum, over all choices p1, . . . , pk of positive
integers with

∑k
i=1 pi = q, of suitable constants times the product for all i = 1, . . . , k of

the terms t
∫

(γ̃(x)2pi ∧ 1)λ(dx), each one being smaller than Kt. Then we deduce that
E((Ys+t − Ys)q | Fs) ≤ Kqt, and by interpolation this also holds for any real q ≥ 1.

Then, coming back to the definition of ξ̂ni,l and ξ̃ni,l, and using the properties ‖δ(t, x)‖ ≤
K(γ(x)∧ 1) and ‖δ̃(t, x)‖ ≤ K(γ̃(x)∧ 1), plus the fact that

∫
(γ(x)∧ 1)λ(dx) <∞ when δ

is not identically 0, and the boundedness of b, b̃, σ, σ̃, we deduce from Burkholder-Davis-
Gundy and Hölder inequalities that

q ≥ 2 ⇒ Eni+l−1(|ξ̂ni,l|q) + Eni+l−1(|ξ̃ni,l|q) ≤ K∆1+q/2
n . (7.23)

The same arguments, plus Cauchy-Schwarz inequality, yield that with notation

αni,l = Eni+l−1

(∫ T

S

(
‖bs − bS‖2 + ‖σ̃s − σ̃S‖2 +

∫
‖δ̃(s, x)− δ̃(S, x)‖2λ(dx)

+
∫
‖δ(s, x)− δ(S, x)‖λ(dx)

)
ds
)
,

then
Eni+l−1(|ξ̂ni,l|2) ≤ K∆n

(
∆2
n + αni,l

)
. (7.24)

Next, since the restriction of µ to (S,∞) × E and the increments of W after time S
are independent, conditionally on F ′S = FS ∨ σ(Wt : t ≥ 0), we get

E(ξ̃ni,l | F ′S) =
(
bS +

∫

E
δ(S, x)λ(dx)

)
∆n + σ̃S

∫ T

S

(∫ s

S
dWu

)
dWs.

Hence the product of the right side above with h(βni,l), where h is an odd function on Rd

with polynomial growth, is a function of the form Y (ω, (WS+t−WS)t≥0) on Ω×C(R+,Rd
′
)

which is FS⊗C-measurable (C is the Borel σ-field on C(R+,Rd
′
)), and such that Y (ω,w) =

Y (ω,−w). Therefore we deduce

Eni+l−1(ξ̃ni,l h(βni,l)) = 0. (7.25)

Step 4. Here we prove the following auxiliary result:

√
∆n

[t/∆n]∑

i=1

√
E(αni,l) → 0. (7.26)

Indeed, by Cauchy-Schwarz inequality the square of the left side of (7.26) is smaller than

t

[t/∆n]∑

i=1

E(αni,l) = tE

(∫ ∆n(l+[t/∆n]

l∆n

(
‖bs − b∆n[s/∆n]‖2 + ‖σ̃s − σ̃∆n[s/∆n]‖2

+
∫
‖δ̃(s, x)− δ̃(∆n[s/∆n], x)‖2λ(dx) +

∫
‖δ(s, x)− δ(∆n[s/∆n], x)‖λ(dx)

)
ds

)
,
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which goes to 0 by the dominated convergence theorem and the bounds given in (SH) and∫
(γ(x) ∧ 1)λ(dx) <∞.

Step 5. By a Taylor expansion we can write

gni,l(β
n
i,l + ξni,l)− gni,l(βni,l) = ∇gni,l(βni,l)ξni,l + (∇gni,l(β′ni,l)−∇gni,l(βni,l))ξni,l,

where β′ni,l is some (random) vector lying on the segment between βni,l and βni,l+ξni,l. There-
fore we can write gni,l(β

n
i,l + ξni,l)− gni,l(βni,l) =

∑3
j=1 ζ

n
i,l(j), where

ζni,l(1) =
1√
∆n
∇gni,l(βni,l)ξ̃ni,l, ζni,l(2) =

1√
∆n
∇gni,l(βni,l)ξ̂ni,l,

ζni,l(3) = (∇gni,l(β′ni,l)−∇gni,l(βni,l))ξni,l.
Then at this point it remains to prove that we have, for j = 1, 2, 3:

√
∆n

[t/∆n]∑

i=1

Eni−1(ζni,l(j))
u.c.p.−→ 0. (7.27)

For j = 1 this is obvious: indeed f is even in each of its (d-dimensional) arguments, so
the functions gni,l are even as well, hence ∇gni,l is odd and by (7.25) the left side of (7.27)
is equal to 0.

Step 6) Now we prove (7.27) for j = 3. By (7.18) and (7.19) we have for all A ≥ 1 and
ε > 0:

|ζni,l(3)| ≤ GA(ε)‖ξni,l‖+KZni,l(1 + ‖βni,l‖r + ‖ξni,l‖r)‖ξni,l‖
(1{Zni,l>A} + 1{‖βni,l‖>A} + 1{‖ξni,l‖>ε})

≤ GA(ε)‖ξni,l‖+KZni,l(1 + Zni,l)
(1 + ‖βni,l‖)r+1

A
+

(1 + ‖βni,l‖)r‖ξni,l‖
ε

+
(1 + ‖βni,l‖)‖ξni,l‖r+1

A
+
‖ξni,l‖r+2

ε

)
.

By (7.23) we have Eni+l−1(‖ξni,l|q) ≤ Kq∆n if q ≥ 2. Then in view of (6.23) we get by
Hölder inequality:

Eni+l−1(|ζni,l(3)|) ≤ K
√

∆n

(
GA(ε) + Zni,l(1 + Zni,l)

( 1
A

+
∆1/6
n

ε

))
.

Then since E((Zni,l)
q) ≤ Kq for all q > 0 we have

E
(√

∆n

[t/∆n]∑

i=1

∣∣∣Eni+l−1(ζni,l(3))
∣∣∣
)
≤ Kt

(
GA(ε) +

1
A

+
∆1/6
n

ε

)
,

and (7.27) for j = 3 follows (choose A big and then ε small).

Step 7) It remains to prove (7.27) for j = 2. By (7.18) we have

|ζni,l(2)| ≤ K√
∆n

Zni,l(1 + ‖βni,l‖r)‖ξ̂ni,l‖.
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Hence by Cauchy-Schwarz inequality and (6.23),

E
(∣∣∣Eni+l−1(ζni,l(2))

∣∣∣
)
≤ KE

(
Zni,l(∆n +

√
αni,l)

)
≤ K

(
∆n +

√
E(αni,l)

)
.

Then, in view of (7.26), the result is obvious.

7.6 Proof of Theorem 7.3.

The proof is exactly the same as above, with the following changes:

1) In Proposition 7.5 we substitute V n and V ′(f, k) with

V
′′n
t =

√
∆n

[t/k∆n]∑

i=1

(
ζ ′n(i−1)k+1 − ρ⊗kσ(i−1)k∆n

(f)
)

and V ′′(f, k) respectively. The proof is then much shorter, because ηni =
√

∆n(ζ ′n(i−1)k+1−
ρ⊗kσ(i−1)k∆n

(f)) is Fik∆n-measurable. We have

En(i−1)k(η
n
i )) = 0, En(i−1)k((η

n
i )2) = ∆nφ

n
i , En(i−1)k((η

n
i )4) ≤ K∆2

n,

with φni = ρ⊗kσ(i−1)k∆n
(f2)−ρ⊗kσ(i−1)k∆n

(f)2, and (7.17) is replaced by the obvious convergence

of
∑[t/k∆n]

i=1 En(i−1)k((η
n
i )2) to the right side of (7.7) (recall that we assumed q = 1 here). We

also have En(i−1)k((Nik∆n−N(i−1)k∆n
)ζ ′ni ) = 0 when N is a bounded martingale orthogonal

to W by Lemma 6.10, and if N is one of the components of W because then this conditional
expectation is the integral of a globally odd function, with respect to a measure on (Rd′)k
which is symmetric about 0. So Lemma 4.4 readily applies directly, and the proposition
is proved.

2) Next, we have to prove the analogues of (7.9), (7.10) and (7.11), where we only take
the sum for those i of the form i = (j− 1)k+ 1, and where in (7.11) we divide the integral
by k. Proving the new version of (7.10) is of course simpler than the old one; the new
version of (7.11) is the old one for ∆n, whereas for (7.9) absolutely nothing is changed.
So we are done.

7.7 Proof of Theorem 7.4.

For this theorem again we can essentially reproduce the previous proof, with k = 1, and
with the function f with components fjm(x) = xjxm (here m replaces the index k in the
theorem). Again it suffices by polarization to prove the result for a single pair (j,m).

Below we set αn = α∆$−1/2
n , which goes to ∞. Introduce the function on Rd defined

by gn(x) = xjxmψαn(x) (recall (6.24)), and set

ηni =
∆n
i X

j∆n
i X

k

∆n
1{‖∆n

i X‖≤α∆$
n } − gn(∆n

i X/
√

∆n), η′ni = gn(∆n
i X/

√
∆n)− βn,mi βn,ki .
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Proposition 7.5 implies that the processes

√
∆n

[t/∆n]∑

i=1

(
βn,ji βn,mi − cjm(i−1)∆n

)

converges stably in law to V jm, and we also have (7.11), which here reads as

1√
∆n

(
∆n

[t/∆n]∑

i=1

cjj(i−1)∆n
−
∫ t

0
((cjmu )2 + cjju c

mm
u ) du

)
u.c.p.−→ 0.

Therefore it remains to prove the following three properties:

√
∆n

[t/∆n]∑

i=1

ηni
u.c.p.−→ 0, (7.28)

√
∆n

[t/∆n]∑

i=1

Eni−1(η′ni ) u.c.p.−→ 0, (7.29)

√
∆n

[t/∆n]∑

i=1

(
η′ni − Eni−1(η′ni )

)
u.c.p.−→ 0. (7.30)

Proof of (7.28). Observe that |ηni | ≤ (‖∆n
i X‖2/∆n)1{α∆$

n <‖∆n
i X‖≤2α∆$

n }, hence

|ηni | ≤ 2αn1{‖βni ‖>αn/2} + 4‖χni ‖21{αn/2<‖χni ‖≤3αn}
≤ 2α1−q

n ‖βni ‖q + +36(‖χni ‖2 ∧ α2
n)

for any q > 0 (recall that ∆n
i X/
√

∆n = βni +χni ). Then we take q such that (q− 1)(1/2−
$) > 2$ −$r, and we apply (6.23) and (6.25) with αn as above (so αn ≥ 1 for n large
enough, and αn

√
∆n → 0), to get E(|ηni |) ≤ K∆2$−$r

n un, where un → 0. Hence

√
∆n

[t/∆n]∑

i=1

E(|ηni |) ≤ Kt∆2$−$r−1/2
n un,

which goes to 0 if $ ≥ 1
2(2−r) . Hence we have (7.28).

Proof of (7.29). From the properties of ψ, the function ψαn is differentiable and
‖∇ψαn(x)‖ ≤ (K/αn)1{‖x‖≤2αn}. Hence we clearly have ‖∇gn(x)‖ ≤ K(‖x‖ ∧ αn), and
thus

|gn(x+ y)− gn(x))| ≤ Kαn(‖y‖ ∧ αn),

|gn(x+ y)− gn(x)−∇gn(x)y| ≤ K‖y‖2.

}
(7.31)

If we use the first estimate above and (6.26) we obtain, as in Step 2 of the previous
proof (we use again $ ≥ 1

2(2−r) here), that

√
∆n

[t/∆n]∑

i=1

Eni−1

(
gn(∆n

i+lX/
√

∆n)− gn(∆n
i+lX/

√
∆n −∆n

i+l(δ ? µ)/
√

∆n)
)

u.c.p.−→ 0.
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Then with the notation of (7.21), in order to prove (7.29) it is enough to prove (7.12)
with gn instead of gni,l, and l = 0. Then the second estimate in (7.31) allows to write
gn(βni,l + ξni,l)− gn(βni,l) =

∑3
j=1 ζ

n
i (j), where

ζni (1) =
1√
∆n
∇gn(βni )ξ̃ni,0, ζni (2) =

1√
∆n
∇gni,l(βni )ξ̂ni,0, |ζni (3)| ≤ K‖ξni,0‖2.

Then it remains to prove (7.27) for j = 1, 2, 3, with ζni (j) instead of ζni,l(j).

Since gn is even, this property for j = 1 follows from (7.25) exactly as in the previous
proof. The proof for j = 2 is the same as in Step 7 of the previous proof (here Znl,i = 1 and
r = 2). Finally by (7.23) we have E(‖ξni,0‖2) ≤ K∆n, so the result for j = 3 is immediate.

Proof of (7.30). Exactly as for (7.10) it is enough to prove that

∆n

[t/∆n]∑

i=1

Eni−1((η′ni )2) u.c.p.−→ 0. (7.32)

First, we have

[t/∆n]∑

i=1

Eni−1

((
βn,ji βn,mi − gn(βni )

)2
)
≤

[t/∆n]∑

i=1

Eni−1

(
‖βni ‖41{‖βni ‖>αn}

)

≤ K∆q((1/2−$)
n

[t/∆n]∑

i=1

Eni−1(‖βni ‖4+q) ≤ Kt∆n,

by choosing appropriately q for the last inequality.

Second, since ∆n
i X =

√
∆n (βni + ξni,0) + ∆n

i (δ ? µ), we deduce from (7.31) that

(
gn(∆n

i X/
√

∆n)− gn(βni )
)2
≤ Kα2

n‖ξ′ni,0‖2 +Kα3
n

(
(|∆n

i (δ ? µ)|/
√

∆n)
∧
αn

)
.

Then by (6.26) and (7.23) again, we get

E
((

gn(∆n
i X/

√
∆n)− gn(βni )

)2
)
≤ K(α2

n∆n + α4−r
n ∆1−r/2

n ) ≤ K∆$(4−r)−1
n .

If we put together these estimates, we find that

∆n

[t/∆n]∑

i=1

E((η′ni )2) ≤ Kt(∆n + ∆$(4−r)−1
n ),

which goes to 0 because $ ≥ 1
2(2−r) . Hence we have (7.32).
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8 CLT with discontinuous limits

So far we have been concerned with CLTs associated with Theorems 6.2, 6.3 and 6.4, in
which the limiting processes are always continuous. Now, as seen in the case r = 3 of
(3.23) there are cases where the limit is a sum of jumps, and we are looking at this kind
of question here. In case r = 2 of (3.23) we even have a “mixed” limit with a continuous
and a purely discontinuous parts: this has less statistical interest, and we will state the
result without proof.

Here, more than in the continuous case even, it is important and not completely trivial
to define the limiting processes. This is the aim of the first subsection below. Throughout,
we assume (H), and we also fix an integer k ≥ 2.

8.1 The limiting processes.

As for the case of continuous limits, we will have stable convergence in law, and the
limiting processes will be defined on an extension of the space (Ω,F ,P). To do this, it is
convenient to introduce another probability space (Ω′,F ′,P′). We assume that this space
supports the following variables:

• four sequences (Up), (U ′p), (Up), (U ′p) of d′-dimensional N(0, Id′) variables;

• a sequence (κp) of uniform variables on [0, 1];

• a sequence (Lp) of uniform variables on the finite set {0, 1, · · · , k − 1}, where k ≥ 2
is some fixed integer;

and all these variables are mutually independent. Then we put

Ω̃ = Ω× Ω′, F̃ = F ⊗ F ′, P̃ = P⊗ P′. (8.1)

We extend the variables Xt, bt, ... defined on Ω and Up, κp,... defined on Ω′ to the product
Ω̃ in the obvious way, without changing the notation. We write Ẽ for the expectation with
respect to P̃.

Next, we need a filtration (F̃t)t≥0 on our extension. To this effect, we first denote by
(Sp)p≥1 a sequence of stopping times which exhausts the “jumps” of the Poisson measure
µ: this means that for each ω we have Sp(ω) 6= Sq(ω) if p 6= q, and that µ(ω, {t}×E) = 1
if and only if t = Sp(ω) for some p. There are many ways of constructing those stopping
times, but it turns out that what follows does not depend on the specific description of
them.

With a given choice of the above stopping times Sp, we let (F̃t) be the smallest (right-
continuous) filtration of F̃ containing the filtration (Ft) and such that Up, U ′p, Up, U

′
p,

κp and Lp are F̃Sp-measurable for all p. Obviously, µ is still a Poisson measure with
compensator ν, and W and W ′ is still a Wiener process on (Ω̃, F̃ , (F̃t)t≥0, P̃). Finally we
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define the q-dimensional variables

Rp = √κp σSp−Up +
√

1− κp σSpUp
R′′p =

√
Lp σSp−U ′p +

√
k − 1− Lp σSpU ′p

R′p = Rp +R′′p.





(8.2)

If f is a Cq function on Rd we denote by ∇rf for r ≤ q the tensor of its rth derivatives,
and if we want to be more specific, we write ∂ri1,···,irf the rh partial derivative with respect
to the components xi1 , · · · , xjr , and simply ∇f and ∂if when r = 1. If f and g are two
C1 functions we set

C(f, g)t :=
∑

s≤t

d∑

i,j=1

(∂if∂jg)(∆Xs) (cijs− + cijs ). (8.3)

This makes sense (that is, the series above converges for all t) as soon as f(0) = 0,
because then ‖∇f(x)‖ ≤ K‖x‖ for ‖x‖ ≤ 1 and the process c is locally bounded and∑

s≤t ‖∆Xs‖2 < ∞; the process C(f, g) is then of finite variation, and even increasing
when g = f . In the same way, if f is C2 and ‖∇f(x)‖ ≤ K‖x‖2 when ‖x‖ ≤ 1, the
following defines a process of finite variation:

C(f)t :=
∑

s≤t

d∑

i,j=1

∂2
ijf(∆Xs) (cijs− + cijs ). (8.4)

In the following lemma we define and prove the existence of our limiting processes, at
the same time. We do it for a q-dimensional function f = (f1, · · · , fq), since it costs us
nothing.

Lemma 8.1 a) Let f be a q-dimensional C1 function on Rd, vanishing at 0. The formulas

Z(fl)t =
∑

p: Sp≤t

d∑

i=1

∂ifl(∆XSp)R
i
p, Z ′(fl)t =

∑

p: Sp≤t

d∑

i=1

∂ifl(∆XSp)R
′i
p (8.5)

define two q-dimensional processes Z(f) = (Z(fl))l≤q and Z ′(f) = (Z ′(fl))l≤q, and con-
ditionally on F the pair (Z(f), Z ′(f)) is a square-integrable martingale with independent
increments, zero mean and variance-covariance given by

Ẽ(Z(fl)tZ(fl′)t | F) = Ẽ(Z(fl)tZ ′(fl′)t | F) = 1
2 C(fl, fl′)t,

Ẽ(Z ′(fl)tZ ′(fl′)t | F) = k
2 C(fl, fl′)t.

}
(8.6)

Moreover, if X and c have no common jumps, conditionally on F the process (Z(f), Z ′(f))
is a Gaussian martingale.

b) Let f be a q-dimensional C2 function on Rd, with ‖∇2f(x)‖ ≤ ‖x|2 for ‖x‖ ≤ 1.
The formulas

Z(fl)t =
∑

p: Sp≤t
∑d

i,j=1 ∂2
ijfl(∆XSp)Rip, R

j
p

Z
′(fl)t =

∑
p: Sp≤t

∑d
i,j=1 ∂2

ijfl(∆XSp)R′ipR
′j
p

}
(8.7)
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define two q-dimensional processes Z(f) = (Z(fl))l≤q and Z
′(f) = (Z ′(fl))l≤q of finite

variation, and with F-conditional expectations given by

Ẽ(Z(fl)t | F) = 1
2 C(fl)t,

Ẽ(Z ′(fl)t | F) = k
2 C(fl)t.

}
(8.8)

c) The processes (Z(f), Z ′(f)) and (Z(f), Z ′(f)) above depend on the choice of he
sequence (Sp) of stopping times exhausting the jumps of µ, but their F-conditional laws
do not.

Proof. a) Among several natural proofs, here is an “elementary” one. We set αp(l, l′) =∑d
i,j=1 (∂ifl∂jfl′)(∆XSp)(c

ij
Sp−+cijSp), so C(fl, fl′)t =

∑
p: Sp≤t αp(l, l

′). We fix ω ∈ Ω, and
we consider the q-dimensional variables Φp(ω, .) and Φ′p(ω, .) on (Ω′,F ′) with components

Φl
p(ω, ω

′) =
d∑

i=1

∂ifl(∆XSp(ω))Rip(ω, ω
′), Φ′lp(ω, ω′) =

d∑

i=1

∂ifl(∆XSp(ω))R′ip (ω, ω′).

The variables (Φp(ω, .),Φ′p(ω, .)) on (Ω′,F ′,P′) are independent as p varies, and a simple
calculation shows that they have zero mean and variance-covariance given by

E′(Φl
p(ω, .)Φ

l′
p (ω, .)) = E′(Φl

p(ω, .)Φ
′l′
p (ω, .)) = 1

2 αp(l, l
′;ω)

E′(Φl
p(ω, .)Φ

′l′
p (ω, .)) = k

2 αp(l, l
′;ω)

}
(8.9)

Since
∑

p: Sp(ω)≤t αp(l, l
′;ω) < ∞, a standard criterion for convergence of series of inde-

pendent variables yields that the formulas

Z(fl)t(ω, .) =
∑

p: Sp(ω)≤t
Φl
p(ω, .), Z ′(fl)t(ω, .) =

∑

p: Sp(ω)≤t
Φ′lp(ω))R′p(ω, .)

define a 2q-dimensional process (ω′, t) 7→ (Z(f)(ω, ω′)t, Z ′(f)(ω, ω′)t), which obviously is
a martingale with independent increments, and with ((2q) × 2-dimensional) predictable
bracket being deterministic (that is, it does not depend on ω′) and equal at time t to
the sum over all p with Sp(ω) ≤ t of the right sides of (8.9). That is, we can consider
(Z(f), Z ′(f)) as a process on the extended space, and it satisfies (8.6). Since the law of a
centered martingale with independent increments depends only on its predictable bracket
we see that the law of (Z(f), Z ′(f)), conditional on F , only depends on the processes
C(fl, fl′) and thus does not depend on the particular choice of the sequence (Sp).

Moreover this martingale is purely discontinuous and jumps at times Sp(ω), and if X
and c have no common jumps, the jump of (Z(f)(ω, .), Z ′(f)(ω, .)) at Sp(ω) equals

(
∇f(∆XSp)σSp(ω)

(√
κp Up +

√
1− κp Up

)
,

∇f(∆XSp)σSp(ω)
(√

κp Up +
√

1− κp Up +
√
Lp U

′
p +

√
k − 1− Lp U ′p

))

(we use here product matrix notation); this 2-dimensional variable is F-conditionally
Gaussian and centered, so in this case the pair (Z(f), Z ′(f)) is F-conditionally a Gaussian
process.
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b) Since Ẽ(|RipRjp| | F) ≤ K(‖cSp−‖ + ‖cSp‖), and the same with R′p, it is obvious in
view of our assumption on f that the F-conditional expectation of the two variables

∑

p: Sp≤t

∣∣∣∣∣∣

d∑

i,j=1

∂2
ijfl(∆XSp)R

i
p, R

j
p

∣∣∣∣∣∣
,

∑

p: Sp≤t

∣∣∣∣∣∣

d∑

i,j=1

∂2
ijfl(∆XSp)R

′i
pR
′j
p

∣∣∣∣∣∣
is finite for all t. Then all claims are obvious.

It remains to prove (c) for the process (Z(f), Z ′(f)). For this, we observe that con-
ditionally on F this process is the sum of its jump and it has independent increments.
Moreover it jumps only when X jumps, and if T is a finite (Ft)-stopping time such that
∆XT 6= 0, then its jump at time T is

( d∑

i,j=1

∂2
ijf(∆XT )R̃ij ,

d∑

i,j=1

∂2
ijf(∆XT )R̃′ij

)
,

whereWRij =
∑

p≥1R
i
pR

j
p1{Sp=T} and a similar expression for R̃′ij . But the F-conditional

law of (R̃ij ,WR′ij) clearly depends only on σT− and σT , but not on the particular choice
of the sequence (Sp). This proves the result. 2

8.2 The results.

Now we proceed to giving a CLT associated with the convergence in (5.2), and as seen
already in (3.23) we need some smoothness for the test function f , and also that f(x)
goes to 0 faster than ‖x‖3 instead of ‖x‖2 as x→ 0. As in Theorem 7.1 we also consider
a q-dimensional function f = (f1, · · · , fq).

Theorem 8.2 Assume (H) (or (H’) only), and let f be a q-dimensional C2 function on
Rd satisfying f(0) = 0 and ∇f(0) = 0 and ∇2f(x) = o(‖x‖) as x → 0. The pair of
q-dimensional processes

( 1√
∆n

(V (f,∆n)t − f ? µ∆n[t/∆n]),
1√
∆n

(V (f, k∆n)t − f ? µk∆n[t/k∆n])
)

(8.10)

converges stably in law, on the product D(R+,Rq)×D(R+,Rq) of the Skorokhod spaces, to
the process (Z(f), Z ′(f)).

We have the (stable) convergence in law of the above processes, as elements of the
product functional space D(R+,Rq)2, but usually not as elements of the space D(R+,R2q)
with the (2q-dimensional) Skorokhod topology, because a jump of X at time S, say, entails
a jump for both components above at two times Sn and S′n which both converge to S but
are in general different (with a probability close to (k−1)/k, in fact): this prevents the 2q-
dimensional Skorokhod convergence. In the same way, although Sn → S, we have Sn 6= S
and V (f,∆n) jumps at Sn whereas f ? µ jumps at S: this is why, if we want Skorokhod
convergence, we have to center V (f,∆n) around the discretized version of f ? µ.

However, in most applications we are interested in the convergence at a given fixed time
t. Since P(∆Xt 6= 0) = 0 for all t, in view of the properties of the Skorokhod convergence
we immediately get the following corollary:
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Corollary 8.3 Under the assumptions of the previous theorem, for any fixed t > 0 the
2q-dimensional variables

( 1√
∆n

(V (f,∆n)t − f ? µt), 1√
∆n

(V (f, k∆n)t − f ? µt)
)

converges stably in law to the variable (Z(f)t, Z ′(f)t).

Now, it may happen that f is such that f ? µ = 0, and also (∇f) ? µ = 0: this is the
case when X is continuous, of course, but it may also happen when X is discontinuous,
as we will see in some statistical applications later. Then the above result degenerates,
and does not give much insight. So we need a further CLT, which goes as follows. There
is a general result in the same spirit as Theorem 8.2, but here we consider a very special
situation, which is enough for the applications we have in mind:

Theorem 8.4 Assume (H) (or (H’) only), and suppose that the two components X1 and
X2, say, never jump at the same times. Let f be the function f(x) = (x1x2)2. Then the
2-dimensional processes ( 1

∆n
V (f,∆n),

1
∆n

V (f, k∆n)
)

(8.11)

converge stably in law, on the product D(R+,R) × D(R+,R) of the Skorokhod spaces, to
the process

(
1
2
Z(f)t +

∫ t

0
(ciiuc

jj
u + 2(ciju )2)du,

1
2
Z
′(f)t + k

∫ t

0
(ciiuc

jj
u + 2(ciju )2)du

)
(8.12)

Of course the same result holds for any two other components. More generally a similar
result holds when f is an homogeneous polynomial of degree 4, which satisfies outside a
P-null set:

f ? µ = 0, (∇f) ? µ = 0 . (8.13)

Finally as said before, we also state, without proof, the result about the quadratic
variation itself. Although not so important for statistical applications, it is of great theo-
retical significance. Exactly as in Corollary 7.2, only the weak assumption (H’) is required
here (see [15] for a proof, and [14] for an early version stated somewhat differently).

Theorem 8.5 Assume (H’), Then the d× d-dimensional process with components

1√
∆n

( [t/∆n]∑

i=1

∆n
i X

j∆n
i X

k − [Xj , Xk][t/∆n]∆n]

)

converge stably in law to V + Z(f), where V is a s described in Corollary 7.2 and Z(f)
is as above with fjk(x) = xjxk, and conditionally on F the processes V and Z(f) are
independent.
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8.3 Some preliminary on stable convergence.

Once more, for the above results it is enough to prove them under (SH), which we assume
henceforth. The basis of the proof is a rather general result of stable convergence about
discontinuous processes, which cannot be found in a book form so far.

Although what follows does not depend on the choice of the sequence (Sp), for con-
venience we make a specific choice. For any m ≥ 1 we denote by (T (m, r) : r ≥ 1) the
successive jump times of the process Nm = 1{1/m<γ≤1/(m−1)} ? µ (note that Nm is an
homogeneous Poisson process with intensity λ({z : 1

m < γ(z) < 1
m−1})). Then (Sp) is a

reordering of the double sequence (T (m, r) : r,m ≥ 1) into a single sequence.

Next we introduce some notation. For any p ≥ 1 the time Sp is in one and only one
interval ((ik+j)∆n, (ik+j+1)∆n], for some i ≥ 0 and j = 0, · · · , k−1. So, we can define a
number of quantities by setting their values on each set {(ik+j)∆n < Sp ≤ (ik+j+1)∆n}:

L(n, p) = j, K(n, p) = Sp
∆n
− (ik + j)

α−(n, p) = 1√
∆n

(WSp −W(ik+j)∆n
), α+(n, p) = 1√

∆n
(W(ik+j+1)∆n

−WSp)

β−(n, p) = 1√
∆n

(W(ik+j)∆n
−Wik∆n)

β+(n, p) = 1√
∆n

(W(i+1)k∆n
−W(ik+j+1)∆n

)

A(n, p) = (α−(n, p), α+(n, p), β−(n, p), β+(n, p))

R̂np = σ(ik+j)∆n
α−(n, p) + σTpα+(n, p), R̂′′np = σik∆nβ−(n, p) + σTpβ+(n, p)

Rnp = 1√
∆n

(X(ik+j+1)∆n
−X(ik+j)∆n

−∆XSp)

R′′np = 1√
∆n

(X(i+1)k∆n
−X(ik+j+1)∆n

+X(ik+j)∆n
−Xik∆n).





(8.14)

In the next lemma, we consider the variables Θn = A(n, p)p≥1 taking values in the
Polish space F = (R4)N? , and also the variable Θ = (Ap)p≥1 taking values in F as well,
where Ap = (√κp Up,

√
1− κp Up,

√
Lp U

′
p,
√
k − 1− Lp U ′p) uses the variables introduced

at the beginning of this section.

Lemma 8.6 The sequence (Θn) of variables stably converges in law to Θ.

Proof. We need to prove that

E(Zh(Θn))→ Ẽ(Zh(Θ)) (8.15)

for any bounded F-measurable variable Z and any bounded continuous function h on F .

Let G be the σ-field of Ω generated by the process W and the random measure µ.
Each Θn is G-measurable and Θ is G ⊗ F ′-measurable, so E(Zh(Θn)) = E(Z ′h(Θn)) and
Ẽ(Zh(Θ)) = Ẽ(Z ′h(Θ)), where Z ′ = E(Z | G). Hence it suffices to prove (8.15) when Z is
G-measurable.

We can go further: recalling that µ has the form µ =
∑

p≥1 ε(Sp,Vp) for suitable E-
valued variables Vp (εa = Dirac mass at a), then G generated by W and the variables
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(Sp, Vp). Then by a density argument it is enough to prove (8.15) when

Z = f(W )
P∏

p=1

gp(Sp)g′p(Vp), h((zp)p≥1) =
P∏

p=1

hp(zp)

where f is continuous and bounded on the space of all continuous Rd′-valued functions,
and the gp’s are continuous and bounded on R+ and the g′p’s are continuous and bounded
on E, and the hp’s are continuous and bounded on R4, and P is an integer.

Let Wn
t = Wt −

∑P
p=1(WSp+2k∆n −W(Sp−2k∆n)+). Clearly Wn → W uniformly (for

each ω), hence f(Wn) → f(W ). If Ω(n, P ) = ∩p,p′∈{1,···,P}, p 6=p′{|Sp − Sp′ | > k∆n}, we
also have Ω(n, P )→ Ω as n→∞. Therefore by Lebesgue theorem,

E
(
f(W )

P∏

p=1

gp(Sq)g′p(Vp)hp(A(n, p)) 1Ω(n,P )

)
− E

(
f(Wn)

P∏

p=1

gp(Sp)g′p(Vp)hp(A(n, p))
)

goes to 0, and we are left to prove that

E
(
f(Wn)

P∏

p=1

gp(Sp)g′p(Vp)hp(A(n, p)) 1Ω(n,P )

)
→ Ẽ

(
f(W )

P∏

p=1

gp(Sp)g′q(Vp)hp(Ap)
)
.

Now, W and µ are independent, and with our choice of the sequence (Sp) the two sequences
(Sp) and (Vp) are also independent. This implies that Wn, the family (Vp) and the family
(A(n, p))p≤P are independent as well. Therefore the left side above equals the product

of E
(
f(Wn)

∏P
p=1 g

′
p(Vp)

)
with E

(∏P
p=1 gp(Tp)hp(A(n, p)) 1Ω(n,P )

)
, and likewise for the

right side. So finally it remains to prove that

E
( P∏

p=1

gp(Sp)hp(A(n, p)) 1Ω(n,P )

)
→ Ẽ

( P∏

p=1

gp(Sp)hp(Ap)
)
. (8.16)

At this stage, and by another application of the independence between W and µ, we
observe that in restriction on the set Ω(n, P ), the sequence (A(n, p) : p = 1, · · · , P ) has
the same law than the sequence (A′(n, p) : p = 1, · · · , P ), where

A′(n, p) = (
√
K(n, p) Up,

√
1−K(n, p) U q,

√
L(n, p) U ′p,

√
k − 1− L(n, p) U ′p).

Therefore (8.16) amounts to proving that the sequence ((Sp,K(n, p), L(n, p)) : p = 1 · · · , P )
converges in law to ((Sp, κp, Lp) : p = 1 · · · , P ).

To see this, on may introduce the fractional part G(n, p) of [Sp/k∆n], which equals
1

∆n
(Sp− ik∆n) on the set {ik∆n ≤ Sp < (i+1)k∆n}. Since the family (Sp : p = 1, · · · , P )

admits a smooth density on its support in RP+ (again because of our choice of (Sp)), an
old result of Tukey in [23] shows that the sequences ((Sp, G(n, p)) : p = 1, · · · , P ) converge
in law, as n → ∞, to ((Sp, Gp) : p = 1, · · · , P ) where the Gp’s are independent one from
the other and from the Sp’s and uniformly distributed on [0, 1] (Tukey’s result deals with
1-dimensional variables, but the multidimensional extension is straightforward). Since
K(n, p) and L(n, p) are respectively the fractional part and the integer part of G(n, p)/k,
and since the fractional part and the integer part of Gp/k are independent and respectively
uniform on [0, 1] and uniform on {0, · · · , k − 1}, the desired result is now obvious. 2
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Lemma 8.7 The sequence of (R2d)N?-valued variables ((Rnp , R
′′n
p ) : p ≥ 1) stably converges

in law to ((Rp, R′′p) : p ≥ 1) (see (8.2)).

Proof. This result is a consequence of one of the basic properties of the stable convergence
in law. Namely, if a sequence Yn of E-variables defined on the space (Ω,F ,P) stably
converges in law to Y (defined on an extension), and if a sequence Zn of F -variables
defined on (Ω,F ,P) again converges in probability to Z, then for any continuous function
f on E × F the variables f(Yn, Zn) stably converge in law to f(Y, Z).

A first application of this property allows to deduce from the previous lemma and
from the fact that σt is right continuous with left limits is that ((R̂np , R̂

′′n
p ) : p ≥ 1) stably

converges in law to ((Rp, R′′p) : p ≥ 1). A second application of the same shows that, in
order to get our result, it is enough to prove that for each p ≥ 1 we have

Rnp − R̂np P−→ 0, R′′np − R̂′′np P−→ 0. (8.17)

We will prove the first part of (8.17), the proof of the second part being similar. Recall
that Sp = T (m, r) for some r,m ≥ 1, and set X ′ = X −Xc − (δ1{γ>1/m}) ? µ and




ζni (t) = 1√
∆n

(∫ t
(i−1)∆n

(σu − σ(i−1)∆n
)dWu +

∫ i∆n

t (σu − σt)dWu

)
1((i−1)∆n,i∆n](t)

ζ ′ni = 1√
∆n

∆n
i X
′,

and observe that

Rnp − R̂np =
∑

i≥1

(
ζni (Sp) + ζ ′ni

)
1Dni , where Dn

i = {(i− 1)∆n < Sp ≤ i∆n}. (8.18)

There is a problem here: it is easy to evaluate the conditional expectations of |ζni (t)|
and |ζ ′ni | w.r.t. F(i−1)∆n

and to check that they go to 0, uniformly in i, but the set Dn
i

is not F(i−1)∆n
-measurable. To overcome this difficulty we denote by (Gt)t≥0 the smallest

filtration such that Gt contains Ft and σ(Sp). Then W and the restriction µ′ of µ to the set
R+ × {z : γ(z) ≤ 1/m} are still a Wiener process and a Poison random measure relative
to this bigger filtration (Gt), and X ′ is driven by µ′.

Therefore applying (6.25) with αn = 1 and r = 2 and to the process X ′ instead of X,
we get E(|∆n

i X
′| ∧ 1 | G′(i−1)∆n

) ≤ εn, where εn → 0. Since Dn
i ∈ G′(i−1)∆n

we then have

E
(∑

i≥1

(|ζ ′ni |∧1)1Dni
)

= E
(∑

i≥1

1Dni E(|ζ ′ni |∧1 | G′(i−1)∆n
)
)
≤ εnE

(∑

i≥1

1Dni
)

= εn. (8.19)

By Doob inequality and the fact that W is an (F ′t)-Wiener process, for any t ∈ ((i −
1)∆n, i∆n], the conditional expectation E(|ζ ′ni (t)|2 | G′(i−1)∆n

)) is smaller than

KE
(∫ t

(i−1)∆n

‖σu − σ(i−1)∆n
‖2du+

∫ i∆n

t
‖σu − σt‖2du | G′(i−1)∆n

)
.
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Then the same argument as above yields

E
(∑

i≥1

|ζni (Tp)|21Dni
)
≤

KE
(∫ Tp

∆n[Tp/∆n]−∆n

‖σu − σ(i−1)∆n
‖2du+

∫ ∆n[Tp/∆n]

Tp

‖σu − σt‖2du | F ′(i−1)∆n
)
)
.

This quantity goes to 0 by Lebesgue theorem, because σ is right continuous with left limit,
so this together with (8.18) and (8.19) gives us the first part of (8.17). 2

8.4 Proof of Theorem 8.2.

Step 1) We begin with some preliminaries, to be used also for the next theorem. We fix
m ≥ 1 and let Pm be the set of all p such that Sp = T (m′, r) for some r ≥ 1 and some
m′ ≤ m (see the previous subsection). We also set

X(m)t = Xt −
∑

p∈Pm: Tp≤t
∆XSp = Xt − (δ1{γ>1/m}) ? µt. (8.20)

Observe that, due to (6.21), and with the notation b(m)t = bt −
∫
{z:γ(z)>1/m} δ(t, z)λ(dz),

we have X(m) = X ′(m) +X ′′(m), where

X ′(m)t = X0 +
∫ t

0
b(m)sds+

∫ t

0
σsdWs, X ′′(m) = (δ1{γ≤1/m}) ? (µ− ν). (8.21)

Then we denote by Ωn(t,m) the set of all ω satisfying the following for all p ≥ 1:

p, p′ ∈ Pm, Sp(ω) ≤ t ⇒ |Sp(ω)− Sp′(ω)| > k∆n,

0 ≤ s ≤ t, 0 ≤ u ≤ k∆n ⇒ ‖X(m)s+u(ω)−X(m)s(ω)‖ ≤ 2/m.

}
(8.22)

Since ‖δ‖ ≤ γ, implying ‖∆X(m)s‖ ≤ 1/m, we deduce that for all t > 0 and m ≥ 1:

Ωn(t,m) → Ω a.s. as n→∞. (8.23)

If g is C2 with g(0) = 0 and ∇g(0) = 0, for any integer l ≥ 1 and any d-dimensional
semimartingale Z, we write Gn(Z, g, l)t = V (Z, g, l∆n)t−

∑
s≤l∆n[t/l∆n]

g(∆Zs). Observe
that on the set Ωn(t,m) we have for all s ≤ t and l = 1 or l = k:

Gn(X, g, l)t = Gn(X(m), g, l) + Y n(m, g, l), (8.24)

where

Y n(m, g, l)t =
∑

p∈Pm: Sp≤l∆n[t/l∆n] ζ(g, l)np ,

ζ(g, 1)np = g(∆XSp +
√

∆n R
n
p )− g(∆XSp)− g(

√
∆n R

n
p )

ζ(g, k)np = g(∆XSp +
√

∆n (Rnp +R′′np ))− g(∆XSp)− g(
√

∆n (Rnp +R′′np )).





(8.25)
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Step 2) Now we turn to the proof itself, with a function f satisfying the relevant as-
sumptions. Recall in particular that f(x)/‖x‖ → 0 as x → 0. A Taylor expansion in the
expressions giving ζ(m, f, l)nq and Lemma 8.7 readily gives

( 1√
∆n

ζ(f, 1)np ,
1√
∆n

ζ(f, k)np
)
p≥1

L−s−→
(
∇f(∆XSp)Rp,∇f(∆XSp)R

′
p

)
p≥1

(here, ∇f(∆XSp)Rp for example stands for the q-dimensional vector with components∑d
i=1 ∂ifl(∆XSp)Rip). Since the sum giving Y n(m, f, l)t has in fact finitely many entries,

we deduce from well known properties of the Skorokhod topology that, as n→∞:

the processes
(

1√
∆n

Y n(m, f, 1), 1√
∆n

Y n(m, f, k)
)

converges
stably in law, in D(R+,Rq)× D(R+,Rq), to the process (Zm(f), Z ′m(f))

}
(8.26)

where (Zm(f), Z ′m(f)) is defined componentwise by (8.5), except that the sum is taken
over all p ∈ Pm only.

If we consider, say, the first component, we have by (8.6) and Doob’s inequality:

Ẽ
(

sup
s≤t
|Zm(f1)s − Z(f1)s|2

)
= Ẽ

(
Ẽ
(

sup
s≤t
|Zm(f1)s − Z(f1)s|2 | F

))

≤ 4E
( ∑

p/∈Pm, Sp≤t

d∑

i,j=1

(∂if1∂jf1)(∆XSp)(c
ij
Sp− + cijSp)

)
.

The variable of which the expectation is taken in the right side above is smaller than
K
∑

s≤t ‖∆Xs‖21{‖∆Xs‖≤1/m} (because ct is bounded and if p /∈ Pm then ‖∆Xs‖ ≤ 1/m),
so by Lebesgue theorem this expectation goes to 0 as m→∞. The same argument works
for the other components, and thus we have proved that

(Zm(f), Z ′m(f)) u.c.p.−→ (Z(f), Z ′(f)). (8.27)

Hence, in view of (8.26) and (8.27), and also of (8.23) and (8.24), it remains to prove

lim
m→∞ lim sup

n→∞
P
(

Ωn(t,m) ∩
{

sup
s≤t

1√
∆n
|Gn(X(m), fr, l)s| > η

})
= 0. (8.28)

Step 3) Now we proceed to proving (8.28), and we drop the index r, pretending that f
is 1-dimensional. It is also enough to consider the case l = 1 (the case l = k is the same,
upon replacing everywhere ∆n by k∆n). We set

k(x, y) = f(x+ y)− f(x)− f(y), g(x, y) = k(x, y)−∇f(x)y. (8.29)

Recall that f is C2 and that (6.21) and (8.20) hold. Then we apply Itô’s formula to the
process X(m)s −X(m)i∆n and the function f , for t > i∆n to get

1√
∆n

(
Gn(X(m), f, 1)t −Gn(X(m), f, 1)i∆n

)
= A(n,m, i)t +M(n,m, i)t, (8.30)
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whereM(n,m, i) is a locally square-integrable martingale with predictable bracketA′(n,m, i),
and with

A(n,m, i)t =
∫ t

i∆n

a(n,m, i)u du, A′(n,m, i)t =
∫ t

i∆n

a′(n,m, i)u du, (8.31)

and 



a(n,m, i)t = 1√
∆n

(∑d
j=1 ∂jf(X(m)t −X(m)i∆n)b(m)jt

+1
2

∑d
j,l=1 ∂

2
jlf(X(m)t −X(m)i∆n)cjlt

+
∫
{z:γ(z)≤1/m} g(X(m)t −X(m)i∆n , δ(t, z)) λ(dz)

)

a′(n,m, i)t = 1
∆n

(∑d
j,l=1(∂jf ∂lf)(X(m)t −X(m)i∆n)cjlt

+
∫
{z:γ(z)≤1/m} k(X(m)t −X(m)i∆n , δ(t, z))2 λ(dz)

)
.

Now we set T (n,m, i) = inf(s > i∆n : ‖X(m)s − X(m)i∆n‖ > 2/m). On the set
Ωn(t,m) we have by construction T (n,m, i) > (i + 1)∆n for all i < [t/∆n]. Therefore in
view of (8.30) we have on this set:

1√
∆n

sup
s≤t
|Gn(X(m), f, 1)s| ≤

[t/∆n]∑

i=1

|A(n,m, i− 1)(i∆n)∧T (n,m,i−1)|

+

∣∣∣∣∣∣

[t/∆n]∑

i=1

M(n,m, i− 1)(i∆n)∧T (n,m,i−1)

∣∣∣∣∣∣
.

Henceforth in order to get (8.28), it is enough to prove the following:

limm→∞ lim supn E
(∑[t/∆n]

i=1 |A(n,m, i− 1)(i∆n)∧T (n,m,i−1)|
)

= 0,

limm→∞ lim supn E
(∑[t/∆n]

i=1 A′(n,m, i− 1)(i∆n)∧T (n,m,i−1)

)
= 0.



 (8.32)

Recall that f(0) = 0 and ∇f(0) = 0 and ‖∇2f(x)‖ = o(‖x‖) as x→ 0, so we have

j = 0, 1, 2, ‖x‖ ≤ 3
m

⇒ ‖∇jf(x)| ≤ αm ‖x‖3−j (8.33)

for some αm going to 0 as m→∞, which implies

‖x‖ ≤ 3
m
, ‖y‖ ≤ 1

m
⇒ |k(x, y)| ≤ Kαm‖x‖ ‖y‖, |g(x, y)| ≤ Kαm‖x‖ ‖y‖2. (8.34)

Observe that ‖X(m)s∧T (n,m,i) − X(m)i∆n‖ ≤ 3/m for s ≥ i∆n (because the jumps of
X(m) are smaller than 1/m). Then in view of (SH) and (8.34) and of the fact that
‖b(m)t‖ ≤ Km we obtain for i∆n ≤ t ≤ T (n,m, i):

{ |a(n,m, i)t| ≤ Kαm√
∆n

(‖X(m)t −X(m)i∆n‖+m‖X(m)t −X(m)i∆n‖2),

a′(n,m, i)t ≤ Kα2
m

∆n
‖X(m)t −X(m)i∆n‖2.

Now, exactly as for (6.23), one has E(‖X(m)t+s − X(m)t‖p) ≤ Kp(sp/2 + mpsp) for all
p ∈ (0, 2] and s, t ≥ 0, under (SH). Applying this with p = 1 and p = 2, respectively, gives
that the two ”lim sup” in (8.32) are smaller than Ktαm and Ktα2

m respectively. Then
(8.32) holds, and we are finished.
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8.5 Proof of Theorem 8.4.

We essentially reproduce the previous proof, with the same notation. Recall that f(x) =
(x1x2)2.

Step1) The assumption that X1 and X2 have no common jumps implies that f(∆XSp) =
0 and ∇f(∆XSp) = 0 for all p ≥ 1, whereas f(x)/‖x‖2 → 0 as x → 0. Then a second
order Taylor expansion in the expressions giving ζ(m, f, l)nq and Lemma 8.7 gives

( 1
∆n

ζ(f, 1)np ,
1

∆n
ζ(f, k)np

)
p≥1

L−s−→
(1

2

d∑

i,j=1

∂2f(∆XSp)R
i
pR

j
p,

1
2

d∑

i,j=1

∂2f(∆XSp)R
′i
pR
′j
p

)
p≥1

.

From this we deduce that, instead of (8.26), and as n→∞:

the processes
(

1
∆n

Y n(m, f, 1), 1
∆n

Y n(m, f, k)
)

converges

stably in law, in D(R+,R)× D(R+,R), to the process 1
2(Zm(f), Z ′m(f))

}

where (Zm(f), Z ′m(f)) is defined componentwise by (8.7), except that the sum is taken
over all p ∈ Pm only. By Lebesgue theorem, we readily obtain

(Zm(f), Z ′m(f)) u.c.p.−→ (Z(f), Z ′(f)).

Hence, in view of (8.23) and (8.24), and since here G(X(m), f, l) = V (X(m), f, l∆n), it
remains to prove that with the notation Ct =

∫ t
0 (ciiuc

j
u+2(ciju )2)du we have for all t, η > 0

and for l = 1 and l = k:

lim
m→∞ lim sup

n→∞
P
(

sup
s≤t

1
∆n
|V (X(m), f, l∆n)s − lC l∆n[s/l∆n]| > η

)
= 0. (8.35)

Step 2) Recall (8.21), and set g(x) = ‖x‖4. By Theorem 6.2 applied to the process X ′(m)
we have for each m ≥ 1:

1
l∆n

V (X ′(m), f, l∆n) u.c.p.−→ C,
1
l∆n

V (X ′(m), g, l∆n)t
u.c.p.−→

∫ t

0
ρσu(g)du. (8.36)

Therefore for getting (8.35) it is enough to prove that

lim
m→∞ lim sup

n→∞
P
(

sup
s≤t

1
∆n
|V (X(m), f, l∆n)s − V (X ′(m), f, l∆n)s| > η

)
= 0. (8.37)

Here again, it is obviously enough to prove the result for l = 1.

Now, the special form of f implies that for each ε > 0 there is a constant Kε with

|f(x+ y)− f(x)| ≤ ε‖x‖4 +Kε‖x‖2 ‖y‖2 +Kεf(y),

hence

|V (X(m), f,∆n)− V (X ′(m), f,∆n)| ≤ εV (X ′(m), g,∆n) +Kε(Un + U ′n),
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where

Unt =
[t/∆n]∑

i=1

(∆n
i X(m)1)2 (∆n

i X
′(m)2)2, U ′nt =

[t/∆n]∑

i=1

‖∆n
i X(m)‖2 ‖∆n

i X
′(m)‖2.

ε > 0 being arbitrarily small, by the second part of (8.36) it is then enough to prove

lim
m→∞ lim sup

n→∞
1

∆n
E(Unt ) = 0, lim

m→∞ lim sup
n→∞

1
∆n

E(U ′nt ) = 0. (8.38)

Step 3) Exactly as in the proof of Lemma 6.8, we have

E(‖X ′′(m)t+s −X ′′(m)t‖2) ≤ αm s, where αm =
∫

{z:γ(z)≤1/m}
γ(z)2λ(dz). (8.39)

Now, as for (8.30), we deduce from Itô’s formula that

(∆n
i X
′′1(m))2 (∆n

i X
′′2(m))2 = M(n,m, i)i∆n +

∫ i∆n

(i−1)∆n

a(n,m, i− 1)sds, (8.40)

where M(n,m, i) is a martingale and a(n,m, i)t = Hm(X ′′(m)t −X ′′(m)(i−1)∆n
) and

Hm(x) =
∫

{z:γ(z)≤1/m}

(
f(x+ δ(t, z))− f(x)−∇f(x)δ(t, z))

)
λ(dz).

Now, since X1 and X2 have no common jumps, we have δ(ω, t, z)1δ(ω, t, z)2 = 0 for
λ-almost all z. Therefore a simple calculation shows that

H(x) =
∫

{z:γ(z)≤1/m}

(
(x1)2(δ(t, z)2)2 + (x2)2(δ(t, z)1)2

)
λ(dz),

and thus
0 ≤ Hm(x) ≤ αm ‖x‖2.

Recall also that E(‖X ′′(m)t+s −X ′′(m)t‖2) ≤ Kt. Then taking the expectation in (8.40)
gives us, with

E((∆n
i X(m)1)2 (∆n

i X
′(m)2)2) = E

(∫ i∆n

(i−1)∆n

Hm(X ′′(m)s −X ′′(m)(i−1)∆n
) ds

)
≤ αm∆2

n.

Then, since αm → 0 as m→∞, we readily deduce the first part of (8.38).

It remains to prove the second part of (8.38). Itô’s formula again yields

‖∆n
i X
′′(m)‖2 ‖∆n

i X
′(m)‖2 = M ′(n,m, i)i∆n +

∫ i∆n

(i−1)∆n

a′(n,m, i− 1)sds, (8.41)

where M ′(n,m, i) is a martingale and a′(n,m, i)t = H ′m(X ′(m)t−X ′(m)(i−1)∆n
, X ′′(m)t−

X ′′(m)(i−1)∆n
) and

H ′m(x, y) = 2‖y‖2
d∑

i=1

b(m)it x
i + ‖y‖2

d∑

i=1

ciit + ‖x‖2
∫

{z:γ(z)≤1/m}
‖δ(t, z))‖2 λ(dz),
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and thus
|H ′m(x, y)| ≤ K

(
αm‖x‖2 + ‖y‖2(1 +m‖x‖

)

because ‖b(m)t‖ ≤ Km and ‖c‖ ≤ K. Then using (8.39) and E(‖X ′(m)t+s−X ′(m)t‖p) ≤
Kp(sp/2 +mpsp) for all p > 0, we deduce from Cauchy-Schwarz inequality, and by taking
the expectation in (8.41), that

E(‖∆n
i X
′′(m)‖2 ‖∆n

i X
′(m)‖2)

= E

(∫ i∆n

(i−1)∆n

H ′m(X ′(m)s −X ′(m)(i−1)∆n
, X ′′(m)s −X ′′(m)(i−1)∆n

) ds

)

≤ K∆2
n

(
αm(1 +m2∆n) +m

√
αm∆n (1 +m∆n)

)
.

Then again since αm → 0 as m→∞, we deduce the second part of (8.38), and the proof
is finished.

9 Estimation of the integrated volatility

At this point we have established the theoretical results which are needed for the statistical
problems we have in mind, and we can turn to these problems. We start by a warning,
which applies to all problems studied below:

The underlying process X is observed at times 0,∆n, 2∆n, · · · without measure-
ment errors.

This assumption is clearly not satisfied in general in the context of high-frequency data, at
least in finance where there is an important microstructure noise. However, dealing with
measurement errors involves a lot of complications which would go beyond the scope of
this course.

As said before the first and probably the most important question is the estimation of
the integrated volatility, at least when the underlying process is continuous. This is the
object of this section.

9.1 The continuous case.

Here we assume that the underlying process X is a continuous Itô semimartingale, i.e. is
of the form

Xt = X0 +
∫ t

0
bsds+

∫ t

0
σsdWs. (9.1)

Most of the literature is concerned with the 1-dimensional case, but mathematically speak-
ing there is no complication whatsoever in considering the d-dimensional case: so above
W is a d′-dimensional Wiener process, and bt and σt are d and d × d′-dimensional (so
implicitly in (9.1) the second integral is in fact a sum of stochastic integrals w.r.t. the
various components W j of W ).
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Our aim is to ”estimate” the integrated volatility, that is the quadratic variation-
covariation process of X:

Cjkt =
∫ t

0
cjks ds, where ct = σtσ

?
t . (9.2)

Recall that the process X is observed at the discrete times 0,∆n, 2∆n, · · · over a finite
interval [0, T ], and one wants to infer CT , or sometimes the increments Ct − Cs for some
pairs (s, t) with 0 ≤ s ≤ t ≤ T . Each of these increments is a random variable taking
values in the set of d× d symmetric nonnegative matrices.

One point should be mentioned right away, and is in force not only for the integrated
volatility but for all quantities estimated in this course: although we speak about estimat-
ing the matrix CT , it is not a statistical problem in the usual sense since the quantity to
estimate is a random variable; so the ”estimator”, say C̃nT (the ”n” is here to emphasize
that it is a function of the observation (Xi∆n : 0 ≤ i ≤ [T/∆n])) does not estimate a pa-
rameter, but a variable which depends on the outcome ω, and the quality of this estimator
is something which fundamentally depends on ω as well.

Nevertheless we are looking for estimators which behave as in the classical case, asymp-
totically as n → ∞ (that is, as ∆n → 0). We say that C̃nT is consistent if C̃nT converges
in probability to CT (one should say ”weakly” consistent; of course in the present setting,
even more than in classical statistics, on would like to have estimators which converge
for all ω, or at least almost surely, but this is in general impossible to achieve). Then
we also aim to a rate of convergence, and if possible to a limit theorem so as to allow
for quantitatively asserting the quality of the estimator and for constructing confidence
intervals, for example.

Two consistent estimators can be compared on the basis of their rates of convergence
and, if those are the same, on their asymptotic variances for example. However, unlike
in classical statistics, we do not have a theory for asymptotic optimality, like the LAN or
LAMN theory. The best one can do is to check whether our estimators are asymptotically
optimal (in the usual sense) when the problem reduces to a classical parametric problem,
that is when CT is deterministic (this happens when for example the volatility σt is not
random, like in the Black-Scholes model for the log-returns).

After these lengthy preliminaries we now introduce the estimator. Of course all au-
thors use the approximated quadratic variation given in (1.9), and often called ”realized
volatility”. Since we are in the d-dimensional case, we have a matrix B(2,∆n)t with
components

B(2,∆n)jkt =
[t/∆n]∑

i=1

∆n
i X

j∆n
i X

k. (9.3)

These estimators have the following properties:

Property 9.1 (Consistency) B(2,∆n)t
P−→ Ct.

Property 9.2 (Asymptotic normality-1) 1√
∆n

(
B(2,∆n)t − Ct

)
converges in law to

a d × d-dimensional variable which, conditionally on the path of X over [0, t], is cen-
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tered normal with variance-covariance (Γjklmt ) (the covariance of the (jk) and the (lm)
components) given by

Γjklmt =
∫ t

0
(cjls c

km
s + cjms ckls )ds. (9.4)

These are obvious consequences of Theorem 5.1-(b) and Corollary 7.2: for the consis-
tency there is no assumption other than (9.1); for the asymptotic normality we need (H)
in these notes, but in fact it is enough that

∫ t
0 ‖cs‖2ds <∞ a.s. (see [14]).

Property 9.2 gives a rate of convergence equal to 1/
√

∆n, but the name ”asymptotic
normality” is not really adequate since the limiting variable after centering and normaliza-
tion is not unconditionally normal, and indeed it has a law which is essentially unknown.
So it is useless in practice. But fortunately we not only have the convergence in law, but
also the stable convergence in law. That is, as soon as one can find a sequence Γnt of vari-
ables, depending on the observations at stage n only, and which converge in probability
to the variance given by (9.4), then by normalizing once more by the square-root of the
inverse of Γnt (supposed to be invertible), we get a limit which is standard normal.

The ”complete” result involving all components of Ct at once is a bit messy to state.
In practice one is interested in the estimation of a particular component Cjkt (often with
k = j even). So for simplicity we consider below the estimation of a given component
Cjkt . The asymptotic variance is Γjkjkt =

∫ t
0 (cjjs ckks + (cjks )2)ds and we need an estimator

for Γjkjkt , which is provided by Theorem 6.2. More specifically, this theorem implies that

Γ(∆n)jkjkt =
1

∆n

[t/∆n]∑

i=1

(
(∆n

i X
j)2(∆n

i+1X
k)2 + ∆n

i X
j∆n

i X
k∆n

i+1X
j∆n

i+1X
k
)

(9.5)

converges in probability to Γklklt . Therefore we have the following standardized CLT :

Theorem 9.3 (Asymptotic normality-2) Assume (H). With the previous notation,
and in restriction to the set {Γjkjkt > 0}, the variables

1√
∆n Γ(∆n)jkjkt

(
B(2,∆n)jkt − Cjkt

)
(9.6)

converge stably in law to an N (0, 1) random variable independent of F .

The reader will notice the proviso ”in restriction to the set A := {Γjkjkt > 0}”. This
set is in fact equal to the set where s 7→ cjjs and s 7→ ckks are not Lebesgue-almost surely
vanishing on [0, t], and also P-a.s. to the set where neither one of the two paths s 7→ Xj

s

and s 7→ Xk
s is of finite variation over [0, t]. So in practice A = Ω and the above is the

mere (stable) convergence in law.

WhenA 6= Ω, the stable convergence in law in restriction toAmeans that E(f(Tn)Y )→
E(Y )Ẽ(f(U)) for all bounded continuous functions f and all F-measurable bounded vari-
ables Y vanishing outside A, and where Tn is the statistics in (9.6) and U is N (0, 1).

This result is immediately applicable in practice, in contrast to Property 9.2: it may
be used to derive confidence intervals for example, in the customary way.
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Proof. As above, Tn is the variable (9.6), and we also set Sn = 1√
∆n

(
B(2,∆n)jkt −Cjkt

)
.

We know that Sn converges stably in law to a variable which can be expressed as the

product
√

Γjkjkt U , where U is N (0, 1) and independent of F . By the properties of the

stable convergence in law, and since Γ(∆n)jkjkt
P−→ Γjkjkt , we also have stable convergence

of the pair (Sn,Γ(∆n)jkjkt ) towards
(√

Γjkjkt U,Γ(∆n)jkjkt

)
, Obviously this also holds in

restriction to the set A described above. Since Tn = Sn/

√
Γ(∆n)jkjkt and Γ(∆n)jkjkt

P−→
Γjkjkt > 0 on A, the result follows from the continuous mapping theorem. 2

Remark 9.4 When σt(ω) = σ is a constant matrix, so up to the drift the process X is
a Wiener process, then we are in the classical setting of estimation of a matrix-valued
parameter c = σσ∗. In this case we have the LAN property, and it is well known that
the estimators B(2,∆n)t are asymptotically efficient for estimating c in this setting (and
when the drift vanishes, it is even the MLE). Note that c is identifiable, but usually not σ
itself since there might be many square-roots σ for the matrix c. 2

Remark 9.5 There are many ways, indeed, to find consistent estimators for Γjkjkt , and
(9.5) is just possibility. A full set of consistent estimators is provided by the formulas below,
where q is a non-zero integer (recall that mr is the rth absolute moment of N (0, 1)):

Γ(q,∆n)jkjkt =
1

8m2q
2/q∆n

[t/∆n]∑

i=1

gjkq (∆n
i X,∆

n
i+1X, · · · ,∆n

i+2q−1X), (9.7)

where

gjkq (x1, · · · , x2q) =
2q∏

i=1

|xji + xki |2/q +
2q∏

i=1

|xji − xki |2/q − 2
2q∏

i=1

|xji |2/q

−2
2q∏

i=1

|xki |2/q + 4
q∏

i=1

|xji |2/q
2q∏

i=q+1

|xki |2/q. (9.8)

Indeed a simple computation yields that ρt(g
jk
q ) = 8m2q

2/q

(
cjjt c

kk
t + (cjkt )2

)
, so the prop-

erty Γ(q,∆n)jkjkt
P−→ Γjkjkt again follows from Theorem 6.2. And of course one could

make variations on this formula, like taking various powers summing up to 4 instead of
the uniform power 2/q, or varying the order in which the components xji and xki are
taken in the last term of (9.8): for example one could take 2

∏q
i=1 |xji |2/q

∏2q
i=q+1 |xki |2/q +

2
∏q
i=1 |xki |2/q

∏2q
i=q+1 |xji |2/q instead of the last term in (9.8): then, with this substitution,

we have in fact Γ(q,∆n)jkjk = Γ(∆n)jkjk when q = 2.

The important fact is that Theorem 9.3 is unchanged, if Γ(∆n)jkjkt is substituted with
Γ(q,∆n)jkjkt . 2

9.2 The discontinuous case.

Now we come back to the general situation, where X is an Itô semimartingale satisfying
(H). In this situation the integrated volatility is probably of less importance than in the
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continuous case because it captures only a part of the behavior of X and says nothing
about jumps, but still many people wish to estimate it.

In this case things are more complicated. For example B(2,∆n)t is no longer a con-
sistent estimator for Ct, as seen in (5.3). However we have constructed in Section 6 some
consistent estimators:

Property 9.6 (Consistency) Assuming (H), the truncated variation V jk($,α,∆n)t of
(6.6), and the multipower variation V jk(r1, · · · , rl,∆n)t of (6.10) converge in probability
to Cjkt , for all α > 0 and $ ∈ (0, 1

2) for the first one, and for all integer l ≥ 2 and all
r1, · · · , rl > 0 with r1 + · · ·+ rl = 2 for the second one.

This is nice enough, but the associated CLTs need some more assumption, as seen in
Theorems 7.1 and 7.4. In Theorem 7.1 we need the test function f to be bounded when
X jumps, and this precludes the use of multipower variations; hence in these notes we
actually have a CLT for truncated powers only, as a consequence of Theorem 7.4 (we do
have a CLT for multipower variations as well, under the same assumption r < 1 as below,
but it is slightly too complicated to prove here; see however [9] for the Lévy case).

Property 9.7 (Asymptotic normality-1) Assume (H) and that
∫

(γ(z)r ∧ 1)λ(dz) <
∞ for some r ∈ [0, 1). If α > 0 and $ ∈ [ 1

2(2−r) ,
1
2) then the d × d-dimensional processes

with components 1√
∆n

(
V jk($,α,∆n)t − Cjkt

)
converge in law to a d × d-dimensional

variable which, conditionally on the path of X over [0, t], is centered normal with variance-
covariance (Γjkjkt ) given by (9.4).

The comments made after property 9.2, about the need for a standardized version of
the CLT, are in order here. We need a consistent estimator for Γjkjkt . Of course (9.5) does
not any longer provide us with such an estimate, but we can use the ”truncated” version

Γ′($,α; ∆n)jkjkt =
1

∆n

[t/∆n]∑

i=1

(
(∆n

i X
j)2(∆n

i+1X
k)2

+∆n
i X

j∆n
i X

k∆n
i+1X

j∆n
i+1X

k
)

1{‖∆n
i X‖≤α∆$

n ,‖∆n
i+1X‖≤α∆$

n }. (9.9)

By virtue of (6.9), we have Γ′($,α; ∆n)jkjkt
P−→ Γjkjkt . Then the same proof as for Theorem

9.3 gives:

Theorem 9.8 (Asymptotic normality-2) Assume (H) and that
∫

(γ(z)r ∧ 1)λ(dz) <
∞ for some r ∈ [0, 1). If α > 0 and $ ∈ [ 1

2(2−r) ,
1
2). Then and in restriction to the set

{Γjkjkt > 0}, the variables

1√
∆n Γ′($,α; ∆n)jkjkt

(
V jk($,α; ∆n)jkt − Cjkt

)
(9.10)

converge stably in law to an N (0, 1) random variable independent of F .
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One could also use multipower variations to estimate Γjkjkt .

Remark 9.9 The assumption
∫

(γ(z)r ∧ 1)λ(dz) <∞ for some r ∈ [0, 1) is quite restric-
tive, but so far there is no known estimator for Ct with a rate 1/

√
∆n, if this fails. However

we do have a (worse) rate in almost every situation. Namely, if
∫

(γ(z)r ∧1)λ(dz) <∞ for

some r ∈ [0, 2) then the sequence 1

∆
(2−r)$
n

(
V jk($,α,∆n)t−Cjkt

)
is tight (or, bounded in

probability), see [15]. This does not give a limit theorem, which we do not know to exist,
but it is a bound for the rate.

Note that the rate gets worse when r approaches 2, and does not exist when r = 2
(that is, with no special assumption on the jumps). This is because, when r → 2, the
discontinuous part κ(δ) ? (µ − ν) of the process X gets closer to a Brownian motion in
some sense. To take a more specific example, the symmetric stable processes of index
α ∈ (0, 2) (which satisfy the above assumption for r > α and not for r ≤ α) converge to
the Brownian motion as α → 0. The fact that the rate worsens when r increases is not
surprising: it is more and more difficult to distinguish between the continuous part Xc

and the discontinuous part when r approaches 2.

9.3 Estimation of the spot volatility.

If one is so much interested in the integrated volatility it is probably because one does
not really know how to estimate the volatility ct itself. In principle the knowledge of the
process Ct entails the knowledge of its derivative ct as well. But practically speaking, with
discrete observations, the estimation of ct is quite another matter, and we are not going
to give here a serious account on the subject, which still features many open problems.

Let us just say a few words. This is very much like a non-parametric problem for which
one wants to estimate an unknown function f , for example the density of a sequence of n
i.i.d. variables. In this case, and depending of course of the kind of criterion one chooses
(one can consider the estimation error pointwise, or in some Lp), the rate of convergence
of the best estimators strongly depends on the smoothness of the estimated function f ,
although this smoothness is usually not known beforehand. More precisely, if f is ”r-
Hölder” (that is, Hölder with index r when r ∈ (0, 1], and if r > 1 it means that f is
[r] times differentiable and its [r]th derivative is (r − [r])-Hölder), typically the rate of
convergence of the best non-parametric estimators is nr/(1+2r), always smaller than n1/2.

Here, the unknown function is t 7→ ct(ω), for a given ω. If it were not dependent of
ω and if X were simply (say, in the 1-dimensional case) Xt =

∫ t
0

√
cs dWs, the observed

increments ∆n
i X would be independent, centered, with variances

∫ i∆n

(i−1)∆n
csds. That is,

we would have a genuine non-parametric problem and the rate of convergence of ”good”
estimators would indeed be ∆−r/(1+2r)

n with r being the smoothness of the function ct in
the above sense. Now of course ct is random, and possibly discontinuous, and X has also
a drift and possibly jumps.

When σt is an Itô semimartingale (hypothesis (H)) and is further continuous, then the
path of t 7→ ct are a.s. Hölder with any index r < 1/2, and not Hölder with index 1/2.
And worse, σt can be discontinuous. Nevertheless, one expects estimators which converge
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at the rate ∆−1/4
n (the rate when r = 1/2). This is what happens for the most elementary

kernel estimators which are

Un,jkt =
1

kn∆n

∑

i∈In(t)

∆n
i X

j∆n
i X

k 1{‖∆n
i X‖≤α∆$

n }, (9.11)

where α and $ are as before, and the sequence kn of integers goes to ∞ with ∆nkn → 0
(as in (6.12)), and In(t) is a set of kn consecutive integers containing [t/∆n]. This formula
should of course be compared with (6.14). The ”optimal” choice, as far as rates are
concerned, consists in taking kn ∼ 1/

√
∆n, and it is even possible to prove that the

variables 1

∆
1/4
n

(
Un,jkt − cjkt

)
converge in law under appropriate conditions (this is not a

functional CLT, and the limit behaves, as t varies, as a white noise) .

10 Testing for jumps

This section is about testing for jumps. As before we observe the process X at discrete
times 0,∆n, · · · over a finite interval, and on the basis of these observations we want to
decide whether the process has jumps or not. This is a crucial point for modeling purposes,
and assuming that there are jumps brings out has important mathematical and financial
consequences (option pricing and hedging, portfolio optimization).

It would seem that a simple glance at the dataset should be sufficient to decide this
issue, and this is correct when a “big” jump occurs. Such big jumps usually do not belong
to the model itself, and either they are considered as breakdowns in the homogeneity of
the model, or they are dealt with using different methods like risk management. On the
other hand, a visual inspection of most time series in finance does not provide a clear
evidence for either the presence or the absence of small or medium sized jumps.

Determining whether a process has jumps has been considered by a number of authors.
Let us quote for example [1], [11], [7], [16], [12] and [17]. Here we closely follow the approach
initiated in [3].

10.1 Preliminary remarks.

The present problem is 1-dimensional: if X jumps then at least one of its components
jumps, so we can and will assume below that X is 1-dimensional (in the multidimensional
case one can apply the forthcoming procedure to each of the components successively).
We will also strengthen Hypothesis (H) in a rather innocuous way:

Assumption (K): We have (H); furthermore with the notation S = inf(t : ∆Xt 6= 0), we
have:

(a) Ct > 0 when t > 0,

(b) t 7→ ∫
κ(δ(ω, t, z))λ(dz) is left-continuous with right limits on the set (0, S(ω)]. 2

(a) above is a non-degeneracy condition for the continuous martingale part Xc. As for
(b), it may appear as a strong assumption because it supposes that z 7→ κ(δ(ω, t, z)) is λ-
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integrable if t < S(ω). However one may remark that is ”empty” on the set where S(ω) =
0, that is where X has infinitely many jumps near the origin. It is also automatically
implied by (H) when

∫
(γ(z) ∧ 1)λ(dz) < ∞. Moreover, if F = {(ω, t, z) : δ(ω, t, z) 6= 0},

the variable 1F ? µt is the number of jumps of X on the interval (0, t], so by the very
definition of S we have 1F ? µ

S
≤ 1. Since F is predictable and ν is the predictable

compensator of µ, we have

E
(∫ S

0
ds

∫
1F (s, z)λ(dz)

)
= E(1F ? νS) = E(1F ? µS) ≤ 1.

Therefore outside a P-null set we have
∫ S

0 ds
∫

1F (s, z)λ(dz) <∞ and thus, upon modifying
δ on a P-null set, z 7→ κ(δ(ω, t, z)) is λ-integrable if t < S(ω). So the condition (b) is
really a very mild additional smoothness assumption, of the same nature as (b) of (H).

Before getting started we begin with a very important remark: Suppose that we are
in the ideal situation where the path of t 7→ Xt(ω) is fully observed over the time interval
[0, T ]. Then we know whether the path jumps or not, but we know nothing about other
paths; so, exactly as for the integrated volatility in the previous section we can at the best
make an inference about the outcome ω which is (partially) observed. But here there is
even more: if we find that there are jumps we should conclude to a model with jumps, of
course. But if we find no jump it does not really mean that the model should not have
jumps, only that our particular observed path is continuous (and, if jumps occur like for
a compound Poisson process, for instance, although the model should include jumps we
always have a positive probability that a path does not jump over [0, T ]).

Therefore, the problem which we really try to solve here is to decide, on the basis of
the observations Xi∆n , in which of the following two complementary sets the path which
we have discretely observed falls:

Ωj
T = {ω : s 7→ Xs(ω) is discontinuous on [0, T ]}

Ωc
T = {ω : s 7→ Xs(ω) is continuous on [0, T ]}.

}
(10.1)

10.2 The level and the power function of a test.

In view of (10.1) we have two possibilities for the ”null hypothesis”, namely ”there are no
jumps” (that is, we are in Ωc

T ), and ”there are jumps” (that is, we are in Ωc
T ).

Consider for example the first case where the null hypothesis is ”no jump”. We are thus
going to construct a critical (rejection) region CcT,n at stage n, which should depend only
on the observations X0, X∆n , · · · , X∆n[t/∆n]. We are not here in a completely standard
situation: the problem is asymptotic, and the hypothesis involves the outcome ω.

In a classical asymptotic test problem, the unknown probability measure Pθ depends
on a parameter θ ∈ Θ (Θ can be a functional space), and the null hypothesis corresponds
to θ belonging to some subset Θ0 of Θ. At stage n one constructs a critical region Cn.
The asymptotic level is

α = sup
θ∈Θ0

lim sup
n

Pθ(Cn), (10.2)
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whereas the asymptotic power function is defined on Θ1 = Θ\Θ0 as

β(θ) = lim inf
n

Pθ(Cn).

Sometimes one exchanges the supremum and the lim sup in (10.2), which is probably more
sensible but in general impossible to achieve, in the sense that often supθ∈Θ0

Pθ(Cn) = 1.
Moreover, usually a prescribed level α0 is given, and the aim is to construct Cn so that
(10.2) holds with α ≤ α0 (and if possible even, α = α0, which generally increases the power
function). Finally a ”good” asymptotic critical region satisfies β(θ) = 1 for all θ ∈ Θ1 (we
cannot hope for Pθ(Cn) = 1 if θ ∈ Θ1 at any stage n).

In the present situation we have no genuine parameter (although the law of X itself
can in a sense be considered as a parameter, or perhaps its characteristics (B,C, ν) can).
Rather, the outcome ω, or at least the fact that it lies in Ωc

t or not, can be considered
as a kind of parameter. So, keeping the analogy with (10.2), we are led to consider the
following definition for the asymptotic level of our critical region Cct,n:

αct = sup
(

lim sup
n→∞

P(Cct,n | A) : A ∈ F , A ⊂ Ωc
t

)
. (10.3)

Here P(Cct,n | A) is the usual conditional probability with respect to the set A, with the
convention that it vanishes if P(A) = 0. If P(Ωc

t) = 0 then αct = 0, which is a rather
natural convention. It would seem better to define the level as the essential supremum α′ct
(in ω) over Ωc

t of lim supn P(Cct,n | F); the two notions are closely related and α′ct ≥ αct ,
but we cannot exclude a strict inequality here, whereas we have no way (so far) to handle
α′ct . Note that αct features some kind of ”uniformity” over all subsets A ⊂ Ωc

t , in the spirit
of the uniformity in θ ∈ Θ0 in (10.2).

As for the asymptotic power function, we define it as

βct = lim inf
n

P(Cct,n | F) (10.4)

and of course only the restriction of this ”power function” (a random variable, indeed) to
the alternative set Ωj

t imports.

When on the opposite we take ”there are jumps” as our null hypothesis, that is Ωj
t ,

in a similar way we associate to the critical region Cjt,n the asymptotic level αjt and the
power function βjt (simply exchange everywhere Ωc

t and Ωj
t ).

10.3 The test statistics.

First we recall the processes (3.1), except that here we do not specify the component since
X is 1-dimensional:

B(p,∆n)p =
[t/∆n]∑

i=1

|∆n
i X|p. (10.5)

The test statistics we will use to construct the critical regions, for both null hypotheses,
are the following ones:

Ŝ(p, k,∆n)t =
B(p, k∆n)t
B(p,∆n)t

, (10.6)
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where k ≥ 2 is an integer, and p > 3. Note that the numerator is obtained by considering
only the increments of X between successive intervals of length k∆n. Then we have (and
the assumption (K) is unnecessarily strong for this):

Theorem 10.1 Assume (K). For all t > 0 we have the following convergence:

Ŝ(p, k,∆n)t
P−→

{
1 on the set Ωj

t

kp/2−1 on the set Ωc
t .

(10.7)

Proof. By Theorem 5.1 the two variables B(p,∆n)t and B(p, k∆n)t both converge in
probability to

∑
s≤t |∆Xs|p (this is true as soon as p > 2, indeed), and the latter variable

is strictly positive on the set Ωj
t : hence the convergence on the set Ωj

t is obvious.

When X has no jump, we can apply (6.5) to obtain that ∆1−p/2
n B(p,∆n)t, and of

course (k∆n)1−p/2B(p, k∆n)t as well, converge to mp

∫ t
0 c

p/2
s ds, which by (H’)-(a) is not 0.

Then obviously we have the second limit in (10.7) when X is continuous.

This does not end the proof, however, except in the case Ωc
t = Ω. It may happen that

0 < P(Ωc
t) < 1, so X is not (a.s.) continuous even on [0, t], but some of its path are.

However, suppose that we have proved the following:

Xs = X ′s for all s ≤ t, on the set Ωc
t , where X ′ satisfies (K) and is continuous. (10.8)

Then obviously B(X, p,∆n)t = B(X ′, p,∆n)t and B(X, p, k∆n)t = B(X ′, p, k∆n)t on the
set Ωc

t , and we get the result by applying (6.5) to X ′ instead of X.

The construction of X ′ involves the assumption (K)-(b). In fact we set

X ′t = X0 +
∫ t

0
b′sds+

∫ t

0
σsdWs (10.9)

where b′t = bt − b′′t and b′′t =
( ∫

κ(δ(t, z))λ(dz)
)

1{t<S}. Then b′t is adapted, with left-
continuous and right limited paths, so X ′ satisfies (K), and it is continuous. Now suppose
that we are in Ωc

t . Then t < S, hence κ′(δ) ? µ
s

= 0 for all s ≤ t. As for the stochastic
integral κ(δ) ? (µ − ν)s for s ≤ t, we observe that in fact κ(δ) ? νs is well-defined as an
ordinary integral and equals

∫ s
0 b
′′
udu; hence κ(δ)?µ

s
is also an ordinary integral, and since

s < S it actually vanishes: therefore we deduce that Xs = X ′s if s ≤ t and we are done. 2

We now turn to the central limit theorem. We introduce two processes, with q > 0
and q ≥ 2 respectively:

A(q)t =
∫ t

0
cq/2u du, D(q)t =

∑

s≤t
|∆Xs|q(cs− + cs). (10.10)

Recalling that d = 1 here, these two processes are respectively the right side of (6.5) and
the process D11(f) of (6.11), when we take the function f(x) = |x|q. For this function we
also write |x|q ? µ instead of f ? µ. In addition to the absolute moments mp used before,
we also set

m2p(k) = E
(
|
√
k − 1U + V |p |V |p

)
, (10.11)
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where U and V are two independent N (0, 1) variables. Finally we set

M(p, k) =
1
m2
p

(
kp−2(1 + k)(m2p −m2

p)− 2kp/2−1(m2p(k)− kp/2m2
p)
)
. (10.12)

When p = 4 we get M(p, k) = 16k(2k2 − k − 1)/35, and in particular M(4, 2) = 32
7 .

Theorem 10.2 Assume (K), and let t > 0, p > 3 and k ≤ 2.

(a) In restriction to the set Ωj
t , the variables 1√

∆n
(Ŝ(p, k,∆n)t− 1) converge stably in

law to a variable S(p, k)jt which, conditionally on F , is centered with variance

Ẽ
(

(S(p, k)jt )
2 | F

)
=

(k − 1)p2

2
D(2p− 2)t
(|x|p ? µ)2

t

. (10.13)

Moreover if the processes σ and X have no common jumps, the variable S(p, k)jt is F-
conditionally Gaussian.

(b) In restriction to the set Ωc
t , the variables 1√

∆n
(Ŝ(p, k,∆n)t− 2) converge stably in

law to a variable S(p, k)ct which, conditionally on F , is centered Gaussian with variance

Ẽ
(

(S(p, k)ct)
2 | F

)
= M(p, k)

A(2p)t
(A(p)t)2

. (10.14)

We have already encountered in and explained after Theorem 9.3 the notion of stable
convergence in law in restriction to a subset of Ω. It is also worth noticing that the
conditional variances (10.13) and (10.15), although of course random, are more or less
behaving in time like 1/t.

Proof. a) Write Un = 1√
∆n

(B(p,∆n)t− |x|p ?µt) and Vn = 1√
∆n

(B(p, k∆n)t− |x|p ?µt).
Then

Ŝ(p, k,∆n)t − 1 =
B(p, k∆n)t
B(p,∆n)t

− 1 =
√

∆n
Vn − Un
B(p,∆n)t

.

Since p > 3, Corollary 8.3 yields that Vn − Un converges stably in law to Z ′(f)t − Z(f)t,
and the result readily follows from (8.6), from the fact that B(p,∆n)t

P−→ |x|p ? µt, and
from the last claim in Lemma 8.1.

b) Exactly as for Theorem 10.1 it is enough to prove the result for the process X ′ of
(10.9). This amounts to assume that the process X itself is continuous, so Ωc

t = Ω. Write
U ′n = 1√

∆n
(∆1−p/2

n B(p,∆n) − A(p)t) and V ′n = 1√
∆n

(∆1−p/2
n B(p, k∆n) − kp/2−1A(p)t).

Then

Ŝ(p, k,∆n)t − kp/2−1 =
B(p, k∆n)t
B(p,∆n)t

− kp/2−1 =
√

∆n
V ′n − kp/2−1U ′n

∆1−p/2
n B(p,∆n)t

.

Now we consider the 2-dimensional function f whose components are |x1|p+ · · ·+ |xk|p and
|x1 + · · ·+xk|p. Recalling (7.6), the two components of 1√

∆n

(
V ′′(f, k,∆n)t− 1

k

∫ t
0 ρ
⊗k
σu (f)

)

are respectively U ′n + U ′′n and V ′n, where

U ′′n =
√

∆n

∑

k[t/k∆n]<i≤[t/∆n]

|∆n
i X|p.
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Obviously U ′′n → 0, hence Theorem 7.3 implies that the pair (U ′n, V ′n) converges stably
in law to a vector which is F-conditionally centered Gaussian, with F-conditional co-
variance MA(2p)t, where the entries of M are M11 = 1 − m2

p/m2p and M12 = M21 =
(m2p(k) − m2

p)/m2p and M22 = kp−1(1 − m2
p/m2p). Therefore, using also the fact that

∆1−p/2
n B(p,∆n)t

P−→ A(p)t, we readily deduce the result. 2

Exactly as for estimating the volatility, see Theorem 9.3, this CLT is useless in practice
and one has to standardize the test statistics so as to obtain a usable result. As usual, the
standardization is done by dividing by the square-root of any consistent estimators for the
conditional variances in (10.13) and (10.14). For the first one we can use again the fact
that B(p,∆n)t

P−→ |x|p ? µt, plus the following version of (6.14), which by Theorem 6.5
converges to D(q)t if q > 2:

D(q,$, α,∆n)t =
1

kn∆n

[t/∆n]−kn∑

i=1+kn

|∆n
i X|q

∑

j: j 6=i,|j−i|≤kn
|∆n

jX|21{|∆n
jX|≤α∆$

n }. (10.15)

where α > 0 and $ ∈ (0, 1
2), and kn satisfies (6.12).

For the right side of (10.14) we can use estimators of A(p)t, as provided in Theorem
6.3; for example, with $ and α as above, we can take

A(p,$, α,∆n)t = ∆1−p/2
n

[t/∆n]∑

i=1

|∆n
i X|p1{|∆n

i X|≤α∆$
n }, (10.16)

which converges to A(p)t when X is continuous (and also when X has jumps, in restriction
to Ωc

t , as in the proof of Theorem 10.1). The variables ∆1−p/2
n B(p,∆n)t also converge to

A(p)t on Ωc
t . Hence the next result follows from Theorem 10.2, with exactly the same

proof than for Theorem 9.3:

Theorem 10.3 Assume (K) and let t > 0, p > 3 and k ≥ 2.

(a) In restriction to the set Ωj
t , the variables 1√

Γj(t,n)
(Ŝ(p, k,∆n)t − 1), where

Γj(t, n) =
∆n(k − 1)p2 D(2p− 2, $, α,∆n)t

(B(p,∆n)t)2
(10.17)

converge stably in law to a variable which, conditionally on F , is centered with variance
1, and which additionally is F-conditionally normal if the processes σ and X have no
common jumps.

(b) In restriction to the set Ωc
t , the variables 1√

Γc(t,n)
(Ŝ(p, k,∆n)t − kp/2−1), where

either
Γc(t, n) =

∆nM(p, k) A(2p,$, α,∆n)t
(A(p,$, α,∆n)t)2

, (10.18)

Γc(t, n) =
M(p, k) B(2p,∆n)t

(B(p,∆n)t)2
, (10.19)

converge stably in law to a variable which, conditionally on F , is N (0, 1).
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We will see later that, although both choice of Γc(t, n) are asymptotically equivalent
for determining the level of our tests, it is no longer the case for the power function: the
second choice (10.19) should never prevail.

10.4 Null hypothesis = no jump.

We now use the preceding results to construct actual tests, either for the null hypothesis
that there are no jumps, or for the null hypothesis that jumps are present. We start with
the first one here. The null hypothesis is then ” Ωc

t ”, and we are going to construct a
critical (rejection) region Cct,n for it. In view of Theorem 10.1 it is natural to take a region
of the form

Cct,n = {Ŝ(p, k,∆n)t < γct,n} (10.20)

for some sequence γct,n > 0, possibly even a random sequence. What we want, though, is
to achieve an asymptotic level α prescribed in advance. For this we need to introduce the
α-quantile of N(0, 1), that is P(U > zα) = α where U is N(0, 1).

Theorem 10.4 Assume (K), and let t > 0, p > 3 and k ≥ 2. For any prescribed level
α ∈ (0, 1) we define the critical region Cjt,n by (10.20), with

γct,n = kp/2−1 − zα
√

Γct,n, (10.21)

where Γc(t, n) is given either by (10.18) or by (10.19).

(a) The asymptotic level αct for testing the null hypothesis of ”no jump” is not bigger
than α and equal to α when P(Ωc

t) > 0; we even have P(Cct,n | A)→ α for all A ⊂ Ωc
t with

P(A) > 0.

(b) The asymptotic power function βct is a.s. equal to 1 on the complement Ωj
t if we

use (10.18) for Γc(t, n), with $ ∈ (1
2 − 1

p ,
1
2), but this fails in general if we use (10.19).

Proof. For (a) it is enough to prove that if A ∈ Ωc
t has P(A) > 0, then P(Cct,n | A)→ α.

Let Un = 1√
Γc(t,n)

(Ŝ(p, k,∆n)t − kp/2−1). We know that this variable converges stably

in law, as n → ∞, and in restriction to Ωc
t , to an N (0, 1) variable U independent of F .

Therefore for A as above we have

P(Cct,n ∩A) = P({Un ≤ −zα} ∩A) → P(A)P(U ≤ −zα) = αP(A),

and the result follows.

For (b) we can assume P(Ωj
t ) > 0, otherwise there is nothing to prove. Theorem 10.1

implies that Ŝ(p, k,∆n)t
P−→ 1 on Ωj

t . If we use the version (10.19) for Γc(t, n), then
Theorem 5.1 implies that Γc(t, n) converges in probability to a positive finite variable, on
Ωj
t again. Hence on this set the variable Un converges in probability to a limiting variable

U (equal in fact to (1− kp/2)|x|p ? µt/
√
M(p, k)|x|2p ? µt ). In general this variable is not

a.s. smaller than −zα on Ωj
t , and thus the power function is not equal to 1 on this set.
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On the opposite, suppose that we have chosen the version (10.18), with $ ∈ (1
2− 1

p ,
1
2).

Suppose also that
∆nA(2p,$, α,∆n)t
(A(p,$, α,∆n)t)2

P−→ 0. (10.22)

This means that Γc(t, n) P−→ 0. Since 1− kp/2−1 < 0 we deduce that Un
P−→ −∞ on the

set Ωk
t . Then

P(Cct,n ∩ Ωj
t ) = P({Un ≤ −zα} ∩ Ωj

t ) → P(Ωj
t ).

This trivially implies P(Cct,n | F) P−→ 1 on the set Ωj
t .

It remains to prove (10.22), and for this it is no restriction to assume (SH). The
reader will observe that when X is continuous this trivially follows from Theorem 6.3, but
unfortunately we need this property on Ωj

t . With the notation of (6.22), one easily check
that for all B > 0:

∣∣∣∣∣∣
∆1−p/2
n

[t/∆n]∑

i=1

|∆n
i X|p1{|∆n

i X|≤
√
B∆n} −∆n

[t/∆n]∑

i=1

|βni |p
∣∣∣∣∣∣
≤ KZn(B), (10.23)

where

Zn(B) = ∆n

[t/∆n]∑

i=1

(
|βni |p1{|βni |>

√
B/2}B

p/2−1(|χni |2 ∧B) + |βni |p−1(|χni | ∧
√
B)
)
.

(6.23) and Bienaymé-Tchebycheff, plus (6.25) and Cauchy-Schwarz give us

lim sup
n

E(Zn(B)) ≤ Kt

B
(10.24)

On the other hand we know that ∆1−p/2
n

∑[t/∆n]
i=1 |βni |p P−→ A(p)t. Combining this with

the above estimates and (10.23), we obtain for all η,B > 0:

P


∆1−p/2

n

[t/∆n]∑

i=1

|∆n
i X|p1{|∆n

i X|≤
√
B∆n} < A(p)t − Zn(B)− η


 → 0.

Now, for any B ≥ 1 we have α∆$
n >

√
B∆n for all n large enough because $ < 1/2.

Therefore we a fortiori have

P (A(p,$, α,∆n)t < A(p)t − Zn(B)− η) → 0.

Now (10.24) imply that limB→∞ lim supn P(Zn(B) > η) = 0, hence

P (A(p,$, α,∆n)t < A(p)t − 2η) → 0.

Since A(p)t > 0 a.s., we finally deduce

P
(
A(p,$, α,∆n)t <

A(p)t
2

)
→ 0. (10.25)
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At this stage, the proof of (10.22) is straightforward: since |∆n
i X|2p ≤ αp∆p$

n |∆n
i X|p

when |∆n
i X| ≤ α∆$

n , one deduces from (10.16) that

∆nA(2p,$, α,∆n)t
A(p,$, α,∆n)2

t

≤ K∆p$+1−p/2
n

A(p,$, α,∆n)t
.

Since p$ + 1− p/2 > 0, the result readily follows from (10.25). 2

10.5 Null hypothesis = there are jumps.

In a second case, we set the null hypothesis to be that there are jumps, that is ” Ωj
t ”.

Then we take a critical region of the form

Cjt,n = {Ŝ(p, k,∆n)t > γjt,n}. (10.26)

for some sequence γjt,n > 0. As in (10.3) and (10.4), the asymptotic level and power
functions are

αjt = sup
(

lim sup
n

P(Cjt,n | A) : A ∈ F , A ⊂ Ωj
t

)
, βdt = lim inf

n
P(Cjt,n | F).

Theorem 10.5 Assume (K), and let t > 0, p > 3 and k ≥ 2. Define Γj(t, n) by (10.17),
and let α ∈ (0, 1) be a prescribed level.

(i) With the critical region Cjt,n given by (10.26), with

γjt,n = 1 +
1√
α

√
Γj(t, n), (10.27)

the asymptotic level αjt for testing the null hypothesis of ”jumps” is not bigger than α.

(ii) With the critical region Cjt,n given by (10.26), with

γjt,n = 1 + zα

√
Γj(t, n), (10.28)

and if further the two processes X and σ do not jump at the same times, the asymptotic
level αjt for testing the null hypothesis of ”jumps” is not bigger than α, and equals to α
when P(Ωj

t ) > 0; we even have P(Cjt,n | A)→ α for all A ⊂ Ωj
t with P(A) > 0.

(iii) In both cases the asymptotic power function βjt is a.s. equal to 1 on the complement
Ωc
t of Ωj

t .

Since zα < 1/
√
α the critical region is larger with the version (10.28) than with the

version (10.27). Hence, even though asymptotically the two power functions are equal, at
any stage n the power is bigger with (10.28) than with (10.27), so one should use (10.28)
whenever possible (however, when there are jumps, it is usually the case that the volatility
jumps together with X).

Proof. We know that the variables Un = 1√
Γc(t,n)

(Ŝ(p, k,∆n)t − 1) converges stably in

law, as n→∞, and in restriction to Ωj
t , to a variable which conditionally on F is centered
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with variance 1, and is further N (0, 1) if X and σ do not jump at the same times. Then
P(U > 1/

√
α) ≤ α, and also P(U > zα) = α in the latter case, the two statements (i) and

(ii) follow exactly as in Theorem 10.4.

For (iii) we can assume P(Ωc
t) > 0, otherwise there is nothing to prove. Then in restric-

tion to Ωc
t the statistics Ŝ(p, k,∆n)t converge in probability to kp/2−1 > 1. Moreover, on

this set again, both D(2p− 2, $, α,∆n)t and B(p,∆n)t are the same as if they were com-
puted on the basis of the continuous process X ′ of (10.9). Therefore, by virtue of Theorems
6.2 and 6.5 we have that ∆1−p/2

n B(p,∆n)t
P−→ A(p)t and ∆2−p

n D(2p − 2, $, α,∆n)t
P−→

2m2p−2

m2p
A(2p)t on Ωc

t . Since by (H’) we have A(p)t > 0 it follows that Γj(t, n) P−→ 0 on

Ωj
t . Therefore we have Un

P−→ +∞ on Ωc
t , and as in Theorem 10.4 we conclude that

P(Cjn,t ∩ Ωc
t)→ P(Ωc

t), hence P(Cct,n | F) P−→ 1 on the set Ωc
t . 2

11 Testing for common jumps

This section is again about jumps. We suppose here that our underlying process is mul-
tidimensional, and that it has jumps, and we want to check whether any two components
have jumps occurring at the same time.

11.1 Preliminary remarks.

Clearly the problem at hand is 2-dimensional, since in the multidimensional situation
one can perform the tests below for any pair of components. So below we assume that
X = (X1, X2) is 2-dimensional. Exactly as in the previous section, we need a slightly
stronger assumption than (H):

Assumption (K’): We have (H); furthermore with the notation τ = inf(t : ∆X1
t ∆X2

t 6=
0) (the infimum of all common jump times) and Γ = {(ω, t, x) : δ1(ω, t, x)δ2(ω, t, x) 6= 0},
we have

(a) Ct 6= 0 when t > 0

(b) t 7→ ∫
κ(δ(ω, t, z))1Γ(ω, t, z)λ(dz) is left-continuous with right limits on the interval

(0, τ(ω)]. 2

(a) above is again a non-degeneracy assumption for Xc, similar in the 2-dimensional
case to (a) of (K). As for (b) here, we can state the same remarks as for (b) of (K): it
is ”empty” on the set {τ = 0}, that is where X1 and X2 have infinitely many common
jumps near the origin. It is implied by (H) when

∫
(γ(z) ∧ 1)λ(dz) < ∞. Moreover in all

generality, and outside a P-null set, z 7→ κ(δ(ω, t, z)) is λ-integrable if t < τ(ω). So again
(b) is a very mild additional smoothness assumption, of the same nature as (b) of (H).

Next, and again like in the previous section, what we can really test on the basis
of discrete observations of X over a finite time interval [0, T ] is whether the two paths
t 7→ X1

t (ω) and t 7→ X2
t (ω) have common jump times or not. That is, we can (hopefully)
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decide in which one of the following two disjoint subsets of Ω we are:

Ωcj
T = {ω : s 7→ X1

s (ω) and s 7→ X2
s (ω) have common jumps on [0, T ]}

Ωdj
T = {ω : both s 7→ X1

s (ω) and s 7→ X2
s (ω) have jumps, but they have

no common jump, on [0, T ]}.





(11.1)

The union of these two sets is not Ω, but their global complement is

Ωcc
T = {ω : both s 7→ X1

s (ω) and s 7→ X2
s (ω) are continuous on [0, T ]}. (11.2)

All three sets above may have a positive probability. However, we can first perform the
tests developed in the previous section, separately on both components, to decide whether
both of them jump. Then in this case only it makes sense to test for joint jumps. That
is, we suppose that this preliminary testing has been done and that we have decided that
we are not in Ωcc

T .

At this point we again have two possible null hypotheses, namely ”common jumps”
(we are in Ωcj

T ) and ”disjoint jumps” (we are in Ωdj
T ). Exactly as in the previous section

we construct at stage n a critical region CcjT,n for the null Ωcj
T , and a critical region CdjT,n

for the null Ωdj
T . In the first case the asymptotic level and power function are respectively

αcjT = sup
(

lim sup
n

P(CcjT,n | A) : A ∈ F , A ⊂ Ωcj
T

)
, βcjT = lim inf

n
P(CcjT,n | F). (11.3)

In the second case, they are

αdjT = sup
(

lim sup
n

P(CdjT,n | A) : A ∈ F , A ⊂ Ωdj
T

)
, βdjT = lim inf

n
P(CdjT,n | F). (11.4)

11.2 The test statistics.

Three functions will be used in the construction of our test statistics (here x = (x1, x2) ∈
R2):

f(x) = (x1x2)2, g1(x) = (x1)4, g2(x) = (x2)4. (11.5)

Then, with k ≥ 2 being an integer fixed throughout, we put

T̂ cj(k,∆n)t =
V (f, k∆n)t
V (f,∆n)t

, T̂ dj(∆n)t =
V (f,∆n)t√

V (g1,∆n)t V (g2,∆n)t
. (11.6)

These statistics will we used to construct respectively, the two critical regions Ccjt,n and
Cdjt,n. Unlike for simply testing jumps, we have to resort to two different statistics to deal
with our two cases.

We have now to determine the asymptotic behavior of these statistics, deriving an LLN
and a CLT for each one. To prepare for this we need to introduce a number of processes
to come in in the limiting variables. First we set

Ft =
∫ t

0
(c11
s c

22
s + 2(c12

s )2) ds. (11.7)
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Second, on the extended space described in Subsection 8.1 and with the notation Sp, Rp
and R′p of this subsection (recall (8.2), here Rp and R′p are 2-dimensional), we set

Dt =
∑

p:Sp≤t
(

(∆X1
Sp
R2
p))

2 + (∆X2
Sp
R1
p)

2
)

D′t =
∑

p:Sp≤t
(

(∆X1
Sp
R′2p ))2 + (∆X2

Sp
R′1p )2

)
.



 (11.8)

If we are on the set Ωdj
T it turns out (via an elementary calculation) that in fact Dt =

Z(f)t/2 and D′t = Z
′(f)t/2 for all t ≤ T .

Theorem 11.1 Assume (K’).

(a) We have
T̂ cj(k,∆n)t

P−→ 1 on the set Ωcj
t , (11.9)

and T̂ cj(k,∆n)t converges stably in law, in restriction to the set Ωdj
t , to

T cj(k) =
D′t + kFt
Dt + Ft

(11.10)

which is a.s. different from 1.

(b) We have

T̂ dj(∆n)t
P−→

{
f ? µt/

√
(g1 ? µt)(g2 ? µt) > 0 on the set Ωcj

t

0 on the set Ωdj
t .

(11.11)

The second part of (a) is a kind of LLN because it concerns the behavior of T̂ cj(k,∆n)t
without centering or normalization, but it is also a kind of CLT.

Proof. On both sets Ωcj
t and Ωdj

t both components of X jumps before t, so g1 ? µt > 0
and g2 ? µt > 0, and also f ? µt > 0 on Ωcj

t . Then all claims except the second one in (a)
are trivial consequences of Theorem 5.1.

Let us now turn to the behavior of T̂ cj(k,∆n)t on Ωdj
t . If we make the additional

assumption that X1 and X2 never jump at the same time, then the stable convergence in
law towards T cj(k), as defined by (11.10), is a trivial consequence of Theorem 8.4 and of
the remark which follows (11.8). Moreover, the F-conditional law of the pair of variable
(Dt, D

′
t), in restriction to Ωdj

t , clearly admits a density, hence P(Ωdj
t ∩ {T cj = 1}) = 0 and

we have the last claim of (a).

Now, exactly as in Theorem 10.1, this is not quite enough for proving our claim, since
it may happen that both Ωdj

t and Ωcj
t have positive probability. However, suppose that

Xs = X ′s for all s ≤ t, on the set Ωdj
t , where X ′ satisfies (K’),

and the two components X ′1 and X ′2 never jump at the same times.

}
(11.12)

Then the above argument applied for X ′ instead of X yields the result.

77



The construction of X ′ involves (K’)-(b). We set b′t = bt − b′′t , where the process
b′′t =

( ∫
κ(δ(t, z)) 1Γ(t, z)λ(dz)

)
1{t<τ} is well-defined and left-continuous with right limits

everywhere. Set also δ′ = δ1Γc . Then the process

X ′t = X0 +
∫ t

0
b′′sde+

∫ t

0
σsdWs + κ(δ′) ? (µ− ν)t − κ′(δ′) ? µt

satisfies all requirements in (11.12) (we should more careful here; it satisfies (H”), except
for one fact, namely we do not know whether t 7→ δ′(ω, t, z) is left-continuous with right
limits; however, this particular property plays no role in the proof of Theorem 8.4, so the
proof is nevertheless complete.) 2

Now we turn to the associated CLTs. Here again we need to complement the notation.
Set

Dt =
1
2

∑

s≤t

(
(∆X1

s )2(c22
s− + c22

s ) + (∆X2
s )2(c11

s− + c11
s )
)
, (11.13)

D
′
t = 2

∑

s≤t
(∆X1

s∆X2
s )2
(

(∆X2
s )2(c11

s−+ c11
s )+ (∆X1

s )2(c22
s−+ c22

s ) +2∆X1
s∆X2

s (c12
s−+ c12

s )
)
,

(11.14)
In other words, with the notation (8.3) and (8.4), we have Ds = 1

2 C(f)s for all s ≤ t on
the set Ωdj

t , and D
′ = 1

2 C(f, f) everywhere.

Theorem 11.2 Assume (K’).

(a) In restriction to the set Ωcj
T the sequence 1√

∆n
(T̂ cj(k,∆n)t − 1) converges stably in

law to a variable T ′cj(k) which, conditionally on F , is centered with variance

Ẽ
(

(T ′cj(k))2 | F
)

= (k − 1)
D
′
t

(f ? µt)2
, (11.15)

and is even Gaussian conditionally on F if the processes X and σ have no common jumps.

(b) In restriction to the set Ωdj
T the sequences 1

∆n
T̂ dj(Dn) converges stably in law to the

positive variable T dj = (Dt + Ft)/
√

(g1 ? µt)(g2 ? µt) which, conditionally on F , satisfies

Ẽ(T dj | F) =
Dt + Ft√

(g1 ? µt)(g2 ? µt)
. (11.16)

Proof. a) This is the very same proof as for (a) of Theorem 10.2: we write Un =
1√
∆n

(V (f,∆n)t − f ? µt) and Vn = 1√
∆n

(V (f, k∆n)t − f ? µt) and observe that

T̂ cj(k,∆n)t − 1 =
√

∆n
Vn − Un
V (f,∆n)t

.

Then we conclude using Corollary 8.3, plus (11.14) and the remark that follows, in exactly
the same way.
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b) Exactly as in the previous theorem, we can replace X by a process X ′ satisfying
(11.12), or equivalently we can assume that the two X1 and X2 never jump at the same
times. Then the result immediately derives from Theorem 8.4. 2

Finally we need to standardize our statistics, and thus to find consistent estimators
for the conditional variance in (11.15), and conditional first moment in (11.16). For the
variables f ? µt, g1 ? µt and G2 ? µt we can use V (f,∆n)t, V (g1,∆n)t and V (g2,∆n)t
respectively. For Ft we can use the truncated powers (see Theorem 6.3; we have to be
careful here, because X is discontinuous, whereas f is a polynomial of degree 4; so we
choose the version given by (6.8)-(6.9)): we choose $ ∈ (0, 1

2) and α > 0, and we set

A($,α,∆n)t =
1

∆n

[t/∆n]∑

i=1

(
|∆n

i X
1|2|∆n

i+1X
2|2

+2∆n
i X

1∆n
i X

2∆n
i+1X

1∆n
i+1X

2
)

1{‖∆n
i X‖≤α∆$

n }, ‖∆n
i+1X‖≤α∆$

n }. (11.17)

Finally, by virtue of Theorem 6.5, we can estimate Dt and D
′
t by the following variables,

where in addition to $ and α we have chosen a sequence kn of integers satisfying (6.12):

D($,α,∆n)t =
1

2kn∆n

[t/∆n]−kn∑

i=1+kn

1{‖∆n
i X‖>α∆$

n }

∑

j∈In(i)

(
(∆n

i X
1)2(∆n

jX
2)2 + (∆n

i X
2)2(∆n

jX
1)2
)

1{‖∆n
jX‖≤α∆$

n },(11.18)

D
′($,α,∆n)t =

2
kn∆n

[t/∆n]−kn∑

i=1+kn

∑

j∈In(i)

(∆n
i X

1)2(∆n
i X

2)2

(
∆n
i X

1∆n
jX

2 + ∆n
i X

2∆n
jX

1
)2

1{‖∆n
jX‖≤α∆$

n }. (11.19)

Then we have the following trivial consequence of Theorem 11.2:

Theorem 11.3 Assume (K’).

(a) In restriction to the set Ωcj
t , the variables 1√

Γcj(t,n)
(T̂ cj(k,∆n)t − 1) , where

Γcj(n, t) =
∆n(k − 1)D′($,α,∆n)t

(V (f,∆n)t)2
, (11.20)

converge stably in law to a variable which, conditionally on F , is centered with variance
1, and which additionally is F-conditionally Gaussian if the processes X and σ have no
common jumps.

(b) In restriction to the set Ωdj
t , the variables 1

Γdj(t,n)
T̂ dj(∆n)t , where

Γdj(t, n) =
∆n(D($,α,∆n)t +A($,α,∆n)t)√

V (g1,∆n)t V (g2,∆n)t
, (11.21)
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converge stably in law, in restriction to the set Ωdj
T , to a positive variable which, condi-

tionally on F , has expectation 1.

11.3 Null hypothesis = common jumps.

Now we are in a position to construct the critical regions we are looking for. We start
with the null hypothesis being ”there are common jumps”, that is we are in Ωcj

t . In view
of Theorem 11.1 it is natural to take a critical region of the form

Ccjt,n = {|T̂ cj(k,∆n)− 1| ≥ γcjt,n}. (11.22)

For α ∈ (0, 1) we denote by z′α the symmetric α-quantile of an N (0, 1) variable U , that is
P(|U | ≥ zα) = α.

Theorem 11.4 Assume (K’), and let t > 0 and k ≥ 2. Define Γcj(t, n) by (11.20), and
let α ∈ (0, 1) be a prescribed level.

(i) With the critical region Ccjt,n given by (11.22), with

γcjt,n = 1 +
1√
α

√
Γcj(t, n), (11.23)

the asymptotic level αcjt for testing the null hypothesis of ”common jumps” is not bigger
than α.

(ii) With the critical region Ccjt,n given by (11.22), with

γcjt,n = 1 + z′α
√

Γcj(t, n), (11.24)

and if further the two processes X and σ do not jump at the same times, the asymptotic
level αjt for testing the null hypothesis of ”common jumps” is not bigger than α, and equals
to α when P(Ωcj

t ) > 0; we even have P(Ccjt,n | A)→ α for all A ⊂ Ωcj
t with P(A) > 0.

(iii) In both cases the asymptotic power function βcjt is a.s. equal to 1 on the set Ωdj
t .

Again z′α < 1/
√
α, so whenever possible one should choose the critical region defined

by (11.24).

Proof. In view of the previous theorem, (i) and (ii) are proved exactly as in Theorem
10.5 for example. For (iii), we observe first that, in view of Theorem 11.1(-a), the variable
T̂ cj(k,∆n)t converges stably in law to T j(k)− 1, which a.s. noon vanishing. On the other
hand we have D′($,α,∆n)t

P−→ Dt everywhere and V (f,∆n)t
P−→ f ? µt > 0 on Ωdj

t ,

hence Γcj(t, n) P−→ 0 on Ωdj
t . That is, γdjt,n

P−→ 1 on this set, and this implies the result. 2

11.4 Null hypothesis = no common jumps.

In a second case, we set the null hypothesis to be that “no common jumps”, that is we
are in Ωdj

t . We take a critical region of the form

Cdjt,n = {T̂ dj(δn)t ≥ γdjt,n}. (11.25)
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Theorem 11.5 Assume (K’), and let t > 0. Define Γdj(t, n) by (11.21), and let α ∈ (0, 1)
be a prescribed level.

(a) With the critical region Cdjt,n given by (11.25), with

γdjt,n =
Γdj(t, n)

α
, (11.26)

the asymptotic level αdjt for testing the null hypothesis of ”common jumps” is not bigger
than α.

(b) The asymptotic power function βdjt is a.s. equal to 1 on the set Ωcj
t .

Proof. The variables Un = T̂ dj(∆n)t/Γdj(t, n) converge stably in law to a limit U > 0
having Ẽ(U | F) = 1, in restriction to Ωdj

t . Hence if A ∈ F is included into Ωdj
t we have

αP(A) ≥ P(A ∩ {U ≥ 1
α
}) ≤ lim sup

n
P(A ∩ {Un ≥ 1

α
}) = P(Cdjt,n ∩A).

and (a) readily follows.

For (b) one observes that Γdj(t, n) P−→ 0 o Ωcj
t , whereas on this set T̂ dj(∆n)t converge

to a positive variable by Theorem 11.1, hence Un
P−→ +∞ on Ωcj

t and the result becomes
obvious. 2

12 The Blumenthal-Getoor index

In the last section of these notes we wish to use the already made observation that if the
path s 7→ Xs(ω) is fully observed on [0, t], then one also know the processes

H(r)t =
∑

s≤T
‖∆Xs‖r (12.1)

for any r ≥ 0 (with the convention 00 = 0). This is not especially interesting, and it has
no predictive value about the laws of the jumps, but for one point: we know for which r’s
we have H(r)t < ∞. We will call Blumenthal-Getoor index up to time T the following
random number

RT = inf(r : H(r)T <∞). (12.2)

This is increasing with T , and 0 ≤ RT ≤ 2 always, and we have H(r)T =∞ for all r < RT ,
and H(r)T < ∞ for all r > RT , whereas H(RT )T may be finite or infinite (except that
H(2)T < ∞ always again). We will consider in this section the ”estimation” of RT (ω),
in the same sense as we estimated the integrated volatility above. Clearly, RT is the
maximum of the Blumenthal-Getoor indices Rit(ω) for all components Xi, so this problem
is essentially 1-dimensional, and in the sequel we assume X to be 1-dimensional.

To understand why this index is important let us consider the special situation where
X = X ′ + Y , where X ′ is a continuous Itô semimartingale and Y is a Lévy process.
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Of course H(r)t =
∑

s≤t |∆Ys|r, and the Lévy property yields the following equivalence,
which holds for all t > 0:

H(r)t <∞ a.s. ⇐⇒
∫

(|x|r ∧ 1)F (dx) <∞, (12.3)

where F is the Lévy measure of Y . It is also characterized in the following way: writing

x > 0 7→ F (x) = F ([−x, x]c), (12.4)

for its (symmetrical) tail function (more generally, H(x) = H([−x, x]c) for any measure
H on R), then the Blumenthal-Getoor index β is the unique number in [0, 2] such that for
all ε > 0 we have

lim
x→0

xβ+εF (x) = 0, lim sup
x→0

xβ−εF (x) = ∞. (12.5)

Unfortunately, the “limsup” above is usually not a limit.

If Y is a stable process, its Blumenthal-Getoor index is the stability index, which is
probably the most important parameter in the law of Y (the other three, a scaling constant
and a drift and a skewness parameter are also of course important but no as much; note
that here the scaling and skewness parameters can also be in principle estimated exactly,
but the drift cannot). More generally, for a Lévy process the observation over [0, t] does
not allow to infer the Lévy measure, but one can infer in principle the Blumenthal-Getoor
index, which indeed is about the only information which is known about F : this is an
essential characteristic of the process, for modeling purposes for example.

So we are going to estimate RT . Unfortunately, to do this we need some very restric-
tive assumptions. We start with the simple case when X is a symmetric stable process
plus possibly a Brownian motion, then we state the results when X is a ”general” Itô
semimartingale, and we come back to Lévy process with a slightly different problem. The
proofs are mainly given at the end.

To end these introductory remarks, let us introduce the processes which we will use
here. The Blumenthal-Getoor index is related with the behavior of ”small jumps”, which
correspond in our discrete observation scheme to the increments ∆n

i X that are ”small”;
however we also have the continuous part X ′, which plays a preponderant role in those
small increments. So we need to ”truncate” from below the increments to get rid of the
process X ′. This leads us to take, as in the previous sections, two numbers $ ∈ (0, 1

2) and
α > 0 and, this time, to consider increments bigger than α∆$

n only. We could a priori
take a ”general” test function, but it turns out that simply counting those not too small
increments is enough. Hence we set for u > 0

U(u,∆n)t =
[t/∆n]∑

i=1

1{|∆n
i X|>u}, (12.6)

and use in fact the processes U(α∆$
n ,∆n) or U(α∆$

n , 2∆n). On the basis of these we
introduce two different statistics, which will be in fact our estimators. Below, we choose
$ ∈ (0, 1

2) and two numbers α′ > α > 0, and we set

β̂n(t,$, α, α′) =
log(U(α∆$

n ,∆n)t/U(α′∆$
n ,∆n)t)

log(α′/α)
. (12.7)
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Other estimators of the same kind, but involving increments of sizes ∆n and k∆n and the
same cut-off level α∆$

n are possible, in the spirit of the previous two sections, but the
results are essentially the same, and in particular the rates.

12.1 The stable process case.

In this subsection Y denotes a symmetric stable process with index β ∈ (0, 2). This is a
Lévy process whose characteristic function is of the form E(eiuYt) = exp(−ct|u|β) for some
constant c, and the Lévy measure is of the form

F (dx) =
Aβ

2|x|1+β
dx, hence F (x) :=

A

xβ
for x > 0 (12.8)

for some scale parameter A > 0, related of course with the c above. The law of Y1 has
an even density g and a tail function G(x) = P(|Y1| > x) satisfying, as x → ∞ (see [26],
Theorems 2.4.2 and Corollary 2 of Theorem 2.5.1):

g(x) =
Aβ

2|x|1+β
+ O

(
1

x1+2β

)
, G(x) =

A

xβ
+ O

(
1
x2β

)
. (12.9)

Let us begin with the case X = Y . In this case, U(α∆$
n ,∆n)t is the sum of [t/∆n] i.i.d.

{0, 1}-valued variables which, by the scaling property of Y (namely, Yt has the same law as
t1/βY1) have the probability G(α∆$−1/β

n ) of taking the value 1. Then the following result
is completely elementary to prove (it will follows from the more general results proved
later):

Theorem 12.1 Assume that X = Y . Let 0 < α < α′ and $ > 0 and t > 0.

a) If $ < 1
β , the estimators β̂n(t,$, α, α′) converge in probability to β.

b) If $ < 2
3β , we have

1

∆$β/2
n

(β̂n(t,$, α, α′)− β) L−→ N
(

0,
α′β − αβ

At(log(α′/α))2

)
, (12.10)

The reader will observe that we do not necessarily assume $ < 1
2 , because there is no

Brownian part, and the restriction over $ will be explained later.

These estimators are not rate-efficient. To see that, one can recall from [2] that the
model in which one observes the values Xi∆n for i∆n ≤ t is regular, and its Fisher
information (for estimating β) is asymptotically of the form

In ∼ log(1/∆n)
∆n

Cβ t (12.11)

for some constant Cβ. So rate-efficient estimators would be such the rate of convergence
is ∆−1/2

n

√
log(1/∆n), instead of ∆−$β/2n found here. With the ”optimal” choice of $,

namely smaller than but as close as possible to 2/3β, we get a rate which is ”almost”
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∆−1/3
n only. In addition β is unknown, so a conservative choice of $ is $ = 1/3 and the

rate in (12.10) become ∆−β/6n , quite far from the optimal rate.

The reason for this (huge) lack of optimality is that our method results in discarding
a large part of the data. In the absence of a Brownian component this is of course
unnecessary, but as seen immediately below the situation is different is a Brownian motion
is present.

Now we turn to the situation where Xt = bt+ σWt + Yt, with Y as above.

Theorem 12.2 Assume that Xt = bt+ σWt + Yt. Let 0 < α < α′ and $ > 0 and t > 0.

a) If $ < 1
2 , the estimators β̂n(t,$, α, α′) converge in probability to β.

b) If $ < 1
2+β , we have (12.10).

These estimators are again not rate-efficient. In fact, one can extends [2] to obtain
that in the present situation the Fisher information for estimating β, at stage n, satisfies

In ∼ A (log(1/∆n))2−β/2

σβ ∆β/2
n

C ′β t (12.12)

for another constant C ′β. The discrepancy here comes from the fact that we have absolutely
not used the fact that we exactly know the law of X. If one consider the (partial) statistical
model where we observe only the increments bigger than α∆$

n , the Fisher information
becomes

In ∼ A(1−$)2 (log(1/∆))2

αβ ∆$β
n

C ′′′β t. (12.13)

This still gives a faster rate than in the theorem, but by a (negligible) factor of log(1/∆n).
There is however the restriction $ < 1

2+β , which does not appear in (12.13).

12.2 The general result.

The title of this subsection is rather misleading, since the solution of the problem requires
quite strong assumptions. Unfortunately, this seems consubstantial to this problem, as
one can see in the next subsection in a much simpler situation. We will assume that X
is an Itô semimartingale, with conditions on σt even weaker than in (H) or (H’), but the
assumptions on the Lévy measures Ft = Fω,t(dx) of (1.6) are rather strong:

Assumption (L) : The process X is a 1-dimensional Itô semimartingale, with bt and σt
locally bounded. There are three (non-random) numbers β ∈ (0, 2) and β′ ∈ [0, β/2) and
γ > 0, and a locally bounded process Lt ≥ 1, such that we have for all (ω, t):

Ft = F ′t + F ′′t , (12.14)

where

a) F ′t has the form

F ′t(dx) =
1 + |x|γf(t, x)
|x|1+β

(
a

(+)
t 1{0<x≤zt} + a

(−)
t 1{−zt≤x<0}

)
dx, (12.15)
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for some predictable non-negative processes a(+)
t , a

(−)
t , zt and some predictable function

f(ω, t, x), satisfying:

1
Lt
≤ zt ≤ 1, a

(+)
t + a

(−)
t ≤ Lt, 1 + |x|f(t, x) ≥ 0, |f(t, x)| ≤ Lt. (12.16)

b) F ′′t is a measure which is singular with respect to F ′t and satisfies
∫

R
(|x|β′ ∧ 1)F ′′t (dx) ≤ Lt. (12.17)

2

This assumption implies in particular that (|x|r ∧ 1) ∗ νT is finite for all r > β, and
infinite for all r < β on the set {AT > 0}, where we have put

At =
a

(+)
t + a

(−)
t

β
, At =

∫ t

0
Asds. (12.18)

Therefore the Blumenthal-Getoor index RT satisfies

RT ≤ β, AT > 0 ⇒ RT = β. (12.19)

A stable process with index β satisfies (L), and this assumption really means that the
small jumps of X behave like the small jumps of such a stable process, on the time set
{t : At > 0}, whereas on the complement of this set they are ”negligible” in comparison
with the small jumps of the stable process. The solution of an equation like (6.2) satisfies
(L) when Z is a stable process, and (much) more generally when Z is a Lévy process which
itself satisfies (L) (like for example the sum of two stable processes plus a Wiener process,
or of a stable process plus a compound Poisson process plus a Wiener process).

Theorem 12.3 Let 0 < α < α′ and 0 < $ < 1
2 and t > 0. Assume (L).

a) We have β̂′n(t,$, α,$′) P−→ β on the set {At > 0}.
b) If further β′ ∈ [0, β

2+β ) and γ > β/2, and if $ < 1
2+β

∧ 1
3β , in restriction to the set

{At > 0} we have
1

∆$β/2
n

(β̂n(t,$, α, α′)− β) L−s−→ U, (12.20)

where U is defined on an extension of the original space and is F-conditionally centered
Gaussian, with variance:

Ẽ(U2 | F) =
α′β − αβ

At(log(α′/α))2
. (12.21)

At this point, we can replace the variances in (12.21) by estimators for them, to get a
standardized CLT:

Theorem 12.4 Under (L) and the assumptions of (b) of the previous theorem, the vari-
ables

log(α′/α)√
1

U(α′∆$
n ,∆n)t

− 1
U(α∆$

n ,∆n)t

(
β̂n(t,$, α, α′)− β

)
(12.22)
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converge stably in law, in restriction to the set {At > 0}, to a standard normal variable
independent of F .

Despite the strong assumptions, these estimators are thus reasonably good for esti-
mating β on the (random) set {At > 0} on which the Blumenthal-Getoor index is actually
β; unfortunately we do not know how they behave on the complement of this set.

12.3 Coming back to Lévy processes.

Let us restrict the setting of the previous subsection by assuming that X is a Lévy process,
that is an Itô semimartingale with characteristics of the form (1.4). (L) may hold or not,
but when it does we have At = at for some constant a > 0, and so the two theorems 12.3
and 12.4 hold on the whole of Ω.

What is important here, though, is that those results probably fail, even in this simple
setting, when (L) fails. We cannot really show this in a serious mathematical way, but we
can see on a closely related and even simpler problem why strong assumptions are needed
on the Lévy measure. This is what we are going to explain now.

The model is as follows: instead of observing the increments of X, we observe all its
jumps (between 0 and t) whose sizes are bigger than α∆$

n . A priori, this should give us
more information on the Lévy measure than the original observation scheme.

In this setting the estimators (12.7) have no meaning, but may be replaced by

βn(t,$, α, α′) =
log(U(α∆$

n )t/U(α′∆$
n )t)

log(α′/α)
, where U(u)t =

∑

s≤t
1{|∆Xs|>u}. (12.23)

Lemma 12.5 Let γn(α) = F (α∆$
n ) and

Mn(α)t =
1√
γn(α)

(
U(α∆$

n )t − γn(α) t
)
. (12.24)

a) The processes Mn(α) converge stably in law to a standard Wiener process, indepen-
dent of F .

b) If α < α′ all limit points of the sequence γn(α′)
γn(α) are in [0, 1]. If further this sequence

converges to γ then the pairs (Mn(α),Mn(α′)) of processes converge stably in law to a
process (W,W

′), independent of X, where W and W
′ are correlated standard Wiener

processes with correlation
√
γ.

Proof. The processes Mn = Mn(α) and M ′n = Mn(α′) are Lévy processes and martin-
gales, with jumps going uniformly to 0, and with predictable brackets

〈Mn,Mn〉t = 〈M ′n,M ′n〉t = t, 〈Mn,M ′n〉t =

√
γn(α′)√
γn(α)

t.

Observe also that α′∆$
n ≥ α∆$

n , hence γn(α′) ≤ γn(α). All results are then obvious (see
[13], Chapter VII). 2
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Theorem 12.6 If α′ > α and if γn(α′)
γn(α) → γ ∈ [0, 1], then the sequence

√
γn(α′)

(
βn(t,$, α, α′)− log(γn(α)/γn(α′))

log(α′/α)

)
(12.25)

converges stably in law to a variable, independent of F and with the law N
(

0, 1−γ
t(log(α′/α))2

)
.

This result is a simple consequence of the previous lemma, and its proof is the same
as for Theorem 12.3 and is thus omitted.

This result shows that in general, that is without specific assumptions on F , the situa-
tion is hopeless. These estimators are not even consistent for estimating the Blumenthal-
Getoor index β of F , because of a bias, and to remove the bias we have to know the ratio
γn(α′)/γn(α) (or at least its asymptotic behavior in a precise way), and further there is
no CLT if this ratio does not converge (a fact which we a priori do not know, of course).

The major difficulty comes from the possible erratic behavior of F near 0. Indeed, we
have (12.5), but there are Lévy measures F satisfying this, and such that for any r ∈ (0, β)
we have xrnF (xn)→ 0 for a sequence xn → 0 (depending on r, of course). If F is such, the
sequence γn($,α′)/γn($,α) may have the whole of [0, 1] as limit points, depending on
the parameter values $,α, α′, and in a completely uncontrolled way for the statistician.

So we need some additional assumption on F . For the consistency a relatively weak
assumption is enough, for the asymptotic normality, we need in fact (L). Recall that under
(L) we have necessarily At = at for some a ≥ 0, in the Lévy case.

Theorem 12.7 a) If the tail function F is regularly varying at 0, with index β ∈ (0, 2)
we have βn(t,$, α, α′) P−→ β.

b) Under (L) with a >, the sequence 1

∆$β
n

(
βn(t,$, α, α′)− β

)
converges stably in law

to a variable, independent of F and with law N
(

0, α′β−αβ
t α′β (log(α′/α))2

)
.

Proof. The regular variation implies γn(α) → ∞ and γn(α′)/γn(α) → (α/α′)β, so the
previous theorem yields (a). (L) clearly implies

√
γn(α)

log(γn(α)/γn(α′))
log(α′/α)

→ β,

and also γn($,α) ∼ a/αβ∆$β
n , so (b) follows again from the previous theorem. 2

It may of course happen that the regular variation or (L) fail and nevertheless the
conclusions of the previous theorem hold for a particular choice of the parameters $,α, α′.
But in view of Theorem 12.6 and of the previous proof these assumptions are necessary if
we want those conclusions to hold for all choices of $,α, α′.

Now if we come back to the original problem, for which only increments of X are
observed. We have Theorem 12.3 whose part (b) looks like (b) above; however there are
restrictions on $, unlike in Theorem 12.7. This is because an increment ∆n

i X with size
bigger than α∆$

n is, with a high probability, almost equal to a “large” jump only when
the cutoff level is higher than a typical Brownian increments, implying at least $ < 1/2.
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12.4 Estimates.

As all the results in these notes, Theorem 12.3 is ”local” in time. So by our usual local-
ization procedure we may assume that (L) is replaced by the stronger assumption below:

Assumption (SL): We have (L), and the process Lt is in fact a constant L, and further
|bt| ≤ L and |σt| ≤ L and |Xt| ≤ L. 2

Before proceeding, we mention a number of elementary consequences of (SL), to be
used many times. First, Ft is supported by the interval [−2L, 2L]. This and (12.15) and
(12.17) imply that for all u, v, x, y > 0 we have

F
′′
t (x) ≤ K

xβ
′ ,

∣∣F t(x)− At
xβ

∣∣ ≤ K
x(β−γ)∨β′ , F t(x) ≤ K

xβ
,

∫
{|x|≤u} x

2Ft(dx) ≤ Ku2−β,
∫ |x|F ′′t (dx) ≤ K

∫
{|x|>u}(|x|v ∧ 1)Ft(dx) ≤





Kv if v > β
Kv log(1/u) if v = β
Kvu

v−β if v < β,

F t(x)− F t(x+ y) ≤ K
xβ

(
1 ∧ y

x + x(β−β′)∧γ).





(12.26)

In the next lemma, Y is a symmetric stable process with Lévy measure (12.8), and for
η ∈ (0, 1) we set

Y (η)t =
∑

s≤t
∆Ys1{|∆Ys|>η)}, Y ′(η) = Y − Y (η). (12.27)

Lemma 12.8 There is a constant K depending on (A, β), such that for all s, η ∈ (0, 1),

P(|Y ′(η)s| > η/2) ≤ K s4/3/η4β/3. (12.28)

Proof. We use the notation (12.8) and (12.9). Set η′ = η/2 and θ = sF (η′) = sA/η′β,
and consider the processes Y ′ = Y ′(η′) and Zt =

∑
r≤t 1{|∆Yr|>η′}. Introduce also the sets

D = {|Ys| > η′}, D′ = {|Y ′s | > η′}, B = {Zs = 1}, B′ = {Zs = 0}.
It is of course enough to prove the result for s/ηβ small, so below we assume θ ≤ 1/2.

By scaling, P(D) = G(η′s−1/β), so (12.9) yields

|P(D)− θ| ≤ Kθ2. (12.29)

On the other hand Zs is a Poisson variable with parameter θ ≤ 1/2, hence

|P(B)− θ| ≤ Kθ2. (12.30)

Since Y ′ is a purely discontinuous Lévy process without drift and whose Lévy measure is
the restriction of F to [−η′, η′], we deduce from (12.8) that

E((Y ′s )2) = s

∫

{|x|≤η′}
x2F (dx) ≤ Kθη2. (12.31)

88



The two processes Y ′ and Z are independent, and conditionally on B the law of the
variable Ys− Y ′s is the restriction of the measure s

θF to [−η′, η′]c, and P(B) = θe−θ. Thus

P(B ∩Dc) = e−θ s
∫

{|x|>η′}
F (dx) P(|Y ′s + x| ≤ η′)

≤ s
(
F ({η′ < |x| ≤ η′(1 + θ1/3)/2}) + F ({|x| > η′}) P(|Y ′s | > η′θ1/3)

)

≤ θ
(

1− (1 + θ1/3)−β +
4

η′2θ2/3
E((Y ′s )2)

)
≤ K θ4/3, (12.32)

where we have used (12.31) for the last inequality.

Now, we have
P(D ∩Bc) = P(D)− P(B) + P(B ∩Dc).

Observe also that D ∩B′ = D′ ∩B′, and D′ and B′ are independent, hence

P(D′) =
P(D′ ∩B′)
P(B′)

=
P(D ∩B′)
P(B′)

≤ P(D ∩Bc)
P(B′)

≤ KP(D ∩Bc)

because P(B′) = e−θ ≥ e−1/2. The last two displays, plus (12.29), (12.30) and (12.32) give
us P(D′) ≤ Kθ4/3, hence the result. 2

Now we turn to semimartingales. We have (12.14) and there exists a predictable subset
Φ of Ω× (0,∞)× R such that

F ′′t (ω, .) is supported by the set {x : (ω, t, x) ∈ Φ}
F ′t(ω, .) is supported by the set {x : (ω, t, x) /∈ Φ}. (12.33)

Next we will derive a decomposition of X a bit similar to (8.20), but here we have a control
on the Lévy measure of X itself, through (SL), so it is more convenient to truncate at
the value taken by ∆Xt rather than by the function γ. Recall that the jumps of X are
bounded, so we can write X in the form (6.21), with still bt bounded. For any η ∈ (0, 1]
we set

b(η)t = bt −
∫

{|x|>η}
F ′t(dx)x−

∫
F ′′t (dx)x

By (12.26) and (SL) the process b(η)t is well defined and satisfies |b(η)t| ≤ K/η. Then by
(6.21) we can write X = X(η) +X ′(η), where X ′(η) = X̂(η) + X̂ ′(η) + X̂ ′′(η) and

X(η) = (x1{|x|>η}) ? µ, X̂(η)t = X0 +
∫ t

0 b(η)sds+
∫ t

0 σsdWs

X̂ ′(η) = (x1{|x|≤η} 1Φc) ? (µ− ν), X̂ ′′(η) = (x1{|x|≤η} 1Φ) ? µ.

Lemma 12.9 Assume (SL). We have for all p ≥ 2:

Eni−1(|∆n
i X̂(η)|p) ≤ Kp (∆p/2

n + η−p∆p
n)

Eni−1(|∆n
i X̂
′(η)|2) ≤ K ∆n η

2−β

Eni−1(|∆n
i X̂
′′(η)|β′) ≤ K ∆n.





(12.34)
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Proof. The first estimate is obvious (see after (8.34)), whereas the second one is obtained
from the second line of (12.26). Since β′ < 1, we have |∑j xj |β

′ ≤ ∑
j |xj |β

′
for any

sequence (xj), hence

Eni−1(|∆n
i X̂
′′(η)|β′) ≤ Eni−1

(
∆n
i ((|x|β′1{|x|≤η}1Φ1(t,∞)) ? µ)

)

= Eni−1

(∫ i∆n

(i−1)∆n

dr

∫

{|x|≤η}
|x|β′F ′r(dx)

)
≤ K∆n. 2

Next, we give a general result on counting processes. Let N be a counting process (that
is, right continuous with N0 = 0, piecewise constant, with jumps equal to 1) adapted to
(Ft) and with predictable compensator of the form Gt =

∫ t
0 gsds.

Lemma 12.10 With N and G as above, and if further gt ≤ u for some constant u > 0,
we have

|Pni−1(∆n
i N = 1)− Eni−1(∆n

i G)|+ Pni−1(∆n
i N ≥ 2) ≤ (u∆n)2. (12.35)

Proof. Introduce the successive jump times T1, T2, · · · of N after time (i− 1)∆n, the sets
D = {∆n

i N = 1} and D′ = {∆n
i N ≥ 2} and the variable G′ni = Eni−1(∆n

i G). Then

Pni−1(D) = Eni−1(N(i∆n)∧T1
−N(i−1)∆n

) = Eni−1

(∫ (i∆n)∧T1

(i−1)∆n

grdr
)
≤ G′ni ≤ u∆n,

G′ni − Pni−1(D) = Eni−1

(∫ i∆n

(i∆n)∧T1

grdr
)
≤ u∆n Pni−1(D) ≤ (u∆n)2

This gives us the first estimate. Next,

Pni−1(D′) = Pni−1(T2 ≤ i∆n) = Eni−1

(
1{T1<i∆n} P

n
i−1(T2 ≤ i∆n | FT1)

)

= Eni−1

(
1{T1<i∆n} E

(∫ (i∆n)∧T2

T1

grdr | FT1

))
≤ u∆n Pni−1(D) ≤ (u∆n)2,

hence the second estimate. 2

Lemma 12.11 With the notation N(η)t =
∑

s≤t 1{|∆Xs|>η}, for all η ∈ (0, 1], ζ ∈ (0, 1
2)

and p ≥ 2 we have

Pni−1(∆n
i N(η) ≥ 1, |∆n

i X
′(η)| > ηζ) ≤ Kp

(∆p/2
n

ζp ηp
+

∆p
n

ζpη2p
+

∆2
n

ζ2 η2β
+

∆n

ηβ′ζβ′

)
. (12.36)

Proof. (12.34) and Bienaymé-Tchebycheff inequality yield

Pni−1

(
|∆n

i X̂(η)| > ηζ

4

)
≤ Kp

(∆p/2
n

ηpζp
+

∆p
n

η2pζp

)
, Pni−1

(
|∆n

i X̂
′′(η)| > ηζ

4

)
≤ K ∆n

ηβ′ζβ′
.
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Since X ′(η) = X̂(η) + X̂ ′(η) + X̂ ′(η) it remains to prove

Pni−1

(
∆n
i N(η) ≥ 1, |∆n

i X̂
′(η)| > ηζ

2

)
≤ K

∆2
n

ζ2 η2β
. (12.37)

For simplicity, write Ns = N(η)(i−1)∆n+s − N(η)(i−1)∆n
and Ys = X̂ ′(η)(i−1)∆n+s −

X̂ ′(η)(i−1)∆n
. By Bienaymé-Tchebycheff inequality again the left side of (12.37) is not

bigger than 4E(N∆nY
2

∆n
)/η2ζ2. Now, N is a counting process and Y is a purely discon-

tinuous square-integrable martingale, and they have no common jumps, so Itô’s formula
yields

NsY
2
s = 2

∫ s

0
Nr−Yr−dYr +

∫ s

0
Y 2
r−dNr +

∑

r≤s
Nr−(∆Yr)2.

Moreover, the compensator N is as in the previous lemma, with gs ≤ Kη−β, and the
predictable quadratic variation of Y is G′s =

∫ s
0 g
′
rdr with g′r ≤ Kη2−β (see Lemma 12.9).

Then taking expectations in the above display, and since the first term of the right side
above is a martingale, we get

Eni−1(N∆nY
2

∆n
) = Eni−1

(∫ ∆n

0
Y 2
r dGr+

∫ ∆n

0
NrdG

′
r

)
≤ Kη−β

∫ ∆n

0
Eni−1

(
Y 2
r + η2Nr

)
dr

= Kη−β
∫ ∆n

0
Eni−1

(
G′r + η2Gr

)
dr ≤ Kη2(1−β) ∆2

n.

(12.37) is then obvious. 2

The following lemma is key to the whole proof. We use the notation un = α∆$
n .

Lemma 12.12 Let α > 0, $ ∈ (0, 1
2)) and η ∈ (0, 1

2 −$), and set

ρ = η ∧ ($(β − β′)− β′η) ∧ ($γ) ∧ (1−$β − 2η) (12.38)

There is a constant K depending on (α,$, η), and also on the characteristics of X, such
that

∣∣∣Pni−1(|∆n
i X| > un)− Eni−1

(∫ i∆n

(i−1)∆n

F r(un)dr
)∣∣∣ ≤ K∆1−$β+ρ

n (12.39)

Pni−1(un < |∆n
i X| ≤ un(1 + ∆η

n)) ≤ K∆1−$β+ρ
n (12.40)

Pni−1(|∆n
i X| > un) ≤ K∆1−$β

n . (12.41)

Proof. 1) Observe that ρ > 0, and it is clearly enough to prove the results when ∆n is
smaller than some number ξ ∈ (0, 1) to be chosen later, and independent of i and n.

We can apply (12.34) and Bienaymé-Tchebycheff inequality to obtain

Pni−1(|∆n
i X̂(un)| > un∆η

n/2) ≤ Kp ∆p(1−2$−2η)/2
n

Pni−1(|∆n
i X̂
′′(un)| > un∆η

n/2) ≤ K ∆1−β′($+2η)
n .
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Then by choosing p large enough and by (12.38), we see that Y n = X̂(un) + X̂ ′′(un)
satisfies

Pni−1(|∆n
i Y

n| > un∆η
n) ≤ K ∆1−$β+ρ

n . (12.42)

2) By (SL) we have F ′r(dx) ≤ (L′/|x|1+β)dx in restriction to [−1, 1], for some constant
L′. We fix n. For each ω ∈ Ω we endow the canonical (Skorokhod) space (Ω′,F ′, (F ′t))
of all càdlàg functions on R+ starting from 0 with the (unique) probability measure Qω
under which the canonical process X ′ is a semimartingale with characteristics (0, 0, ν′ω),
where

ν ′ω(ω′, dr, dx) = dr 1{|x|≤un}
( L′

|x|1+β
dx− F ′r(ω, dx)

)
. (12.43)

This measure does not depend on ω′, hence under Qω the process X ′ has independent
increments; ν ′ω(ω′, dr, dx) depends measurably on ω, hence Qω(dω′) is a transition prob-
ability from (Ω,F) into (Ω′,F ′). Then we extend X, X ′ and other quantities defined on
Ω or Ω′ in the usual way (without changing the symbols) to the product Ω̃ = Ω× Ω′ en-
dowed with the product σ-field F̃ , the product filtration (F̃t), and the probability measure
P̃(dω, dω′) = P(dω) Qω(dω′).

Because of (12.26) and (12.43), and as in Lemma 12.9, EQω(|∆n
i X
′|2 | F̃(i−1)∆n

) ≤
K∆nu

2−β
n , so for some constant C depending on α and β but not on n and ω we have

Qω(|∆n
i X
′| > un∆η

n | F̃(i−1)∆n
) ≤ C∆1−$β−2η

n ≤ C∆ρ
n. (12.44)

3) By well known results on extensions of spaces (see e.g. [13], Section II.7; note that
the present extension of the original space is a ”very good extension”), X ′ is a semimartin-
gale on the extension with characteristics (0, 0, ν ′), where ν ′((ω, ω′), dr, dx) = ν ′ω(dr, dx),
and any semimartingale on the original space is a semimartingale on the extension, with
the same characteristics. Moreover X and X ′ have almost surely no common jump, so the
sum Y ′(un) = X̂ ′(un) +X ′ is a semimartingale with characteristics (0, 0, ν′), where

ν ′(dr, dx) = dr 1{|x|≤un} F
′
r(dx) + νω(dr, dx) = 1{|x|≤un}

L′

|x|1+β
dr dx,

where the last equality comes from (12.43). It follows that Y ′(un) is a Lévy process
with Lévy measure given above, or in other words it is a version of the process Y ′(un) of
(12.27) with A = 2L′/β. Hence, recalling (12.26), we deduce from (12.28) and from the
Lévy property of Y ′(un) that, as soon as ∆η

n ≤ 1/4, and if A ∈ F(i−1)∆n
:

P̃(A ∩ {|∆n
i Y
′(un)| > un(1− 2∆η

n)}) ≤ K∆4/3−4$β/3
n . (12.45)

Next, let ξ be such that Cξρ ≤ 1/2. With A as above, and if ∆n ≤ ξ, we can write

P̃(A ∩ {|∆n
i Y
′(un)| > un(1− 2∆η

n)})
≥ P̃

(
A ∩ {|∆n

i X̂
′(un)| > un(1−∆η

n)} ∩ {|∆n
i X
′| ≤ un∆η

n}
)

= Ẽ
(

1{A∩{|∆n
i
bX′(un)|>un(1−∆η

n)}} Q.
(
|X ′t+s −X ′t| ≤ un∆η

n

))

≥ 1
2
P
(
A ∩ {|∆n

i X̂
′(un)| > un(1−∆η

n)}
)
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where the last inequality comes from (12.44). Then by (12.45) and the facts that A is
arbitrary in F(i−1)∆n

and that ρ ≤ 1−$β
3 we deduce

Pni−1

(
|∆n

i X̂
′(un)| > un(1−∆η

n)
)
≤ K∆4/3−4$β/3

n ≤ K∆1−$β+ρ
n .

In turn, combining this with (12.42), we readily obtain

Pni−1

(
|∆n

i X
′(un)| > un

)
≤ K ∆1−$β−ρ

n . (12.46)

4) Now we write u′n = un(1 + ∆η
n) and also

θni = Eni−1

(∫ i∆n

(i−1)∆n

F r(un)dr
)
, θ′ni = E

(∫ i∆n

(i−1)∆n

F r(u′n)dr
)
,

and introduce the following two counting process

Nn
t =

∑

s≤t
1{|∆Xs|>un}, N ′nt =

∑

s≤t
1{|∆Xs|>u′n}.

Their predictable compensators are
∫ t

0 F r(un)dr and
∫ t

0 F r(u
′
n)dr, whereas both F r(un)

and F r(u′n) are smaller than K/∆$β
n . Hence (12.35) gives

|Pni−1(∆n
i N

n = 1)− θni |+ Pni−1(∆n
i N

n ≥ 2) ≤ K∆2(1−$β)
n ,

|Pni−1(∆n
i N
′n = 1)− θ′ni | ≤ K∆2(1−$β)

n .
(12.47)

Since Nn −N ′n is non-decreasing, we have

Pni−1(∆n
i N

n = 1, ∆n
i N
′n = 0) = Pni−1(∆n

i N
n = 1)

−Pni−1(∆n
i N
′n = 1) + Pni−1(∆n

i N
n ≥ 2, ∆n

i N
′n = 1).

Then (12.47) yields

|Pni−1(∆n
i N

n = 1, ∆n
i N
′n = 0)− (θni − θ′ni )| ≤ K∆2(1−$β)

n . (12.48)

Moreover (12.26) clearly implies θni −θ′ni ≤ K∆1−$β
n (∆η

n+∆$(γ∧(β−β′))
n ) ≤ K∆1−$β+ρ

n .
We then deduce from (12.48) that

Pni−1(∆n
i N

n = 1, ∆n
i N
′n = 0) ≤ K∆1−$β+ρ

n . (12.49)

5) If ∆n
i N

n = ∆n
i N
′n = 1 and |∆n

i X| ≤ un, then necessarily |∆n
i X(u′n)| > un∆η

n.
Hence

Pni−1(∆n
i N

n = 1, |∆n
i X| ≤ un) ≤ Pni−1(∆n

i N
n = 1, ∆n

i N
′n = 0)

+Pni−1(∆n
i N

n = 1, |∆n
i X
′(un)| > un∆η

n).

Then if we apply (12.36) with p large enough and η = un and ζ = ∆η
n, and (12.49), we

deduce
Pni−1(∆n

i N
n = 1, |∆n

i X| ≤ un) ≤ K∆1−$β+ρ
n . (12.50)
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Finally ∆n
i X = ∆n

i X
′(un) on the set {∆n

i N
n = 0}, so

Pni−1(|∆n
i X| > un) = Pni−1(∆n

i N
n = 1)− Pni−1(∆n

i N
n = 1, |∆n

i X| ≤ un))
+Pni−1(∆n

i N
n = 0, |∆n

i X
′(un)| > un)

+Pni−1(∆n
i N

n ≥ 2, |∆n
i X| > un).

Then if we combine (12.46), (12.47) and (12.50), if ∆n ≤ ξh we readily obtain (12.39).
We also trivially deduce (12.41) from (12.26) and (12.39),

6) Finally, a close look at the previous argument shows that (12.39) also holds with
α∆$

n (1 + ∆η
n) and θ′ni in place of α∆$

n and θni . Therefore (12.40) follows, upon using the
property θni − θ′ni ≤ K∆1−$β+ρ

n proved above. 2

Lemma 12.13 Under the assumption and with the notation of Lemma 12.12, and if M
is a bounded continuous martingale, we have (with K depending also on M):

∣∣∣Eni−1

(
∆n
iM 1{|∆n

i X|>un}
)∣∣∣ ≤ K∆1−$β+ρ

n +K∆1−($+η)β
n Eni−1(|∆n

iM |). (12.51)

Proof. 1) There exist C2 functions fn such that (with K independent of n):

1{|x|>un(1+2∆η
n/3)} ≤ fn(x) ≤ 1{|x|>un(1+∆η

n/3)}
|f ′n(x)| ≤ K

∆$+η
n

, |f ′′n(x)| ≤ K

∆
2($+η)
n

.
(12.52)

With X̂ ′ = X −B −Xc, and since M is bounded, we have
∣∣∣Eni−1(∆n

iM 1{|∆n
i X|>un})− E

n
i−1(∆n

iM fn(∆n
i X̂
′))
∣∣∣

≤ KPni−1(un < |∆n
i X| ≤ un(1 + ∆η

n)) +KEni−1(|fn(∆n
i X)− fn(∆n

i X̂
′)|). (12.53)

Now we have

|fn(x+ y)− fn(x)| ≤ 1{|y|>un∆η
n/3)} +

K

∆$+η
n

|y|1{un<|x+y|≤ un(1+∆η
n)}.

If we apply this with x = ∆n
i X̂
′ and y = ∆n

i (B+Xc), plus (12.34) for p large enough and
Bienaymé-Tchebycheff inequality and 1−2$−2η > 0, plus (12.40) and (12.34) again and
Hölder’s inequality, we obtain that the right side of (12.53) is smaller than K∆1−$β+ρ

n .
Therefore it remains to prove that

∣∣∣Eni−1(∆n
iM fn(∆n

i X̂
′))
∣∣∣ ≤ K∆1−$β+ρ)

n +K∆1−($+η)β
n Eni−1(|∆n

iM |). (12.54)

2) For simplicity we write Yt = X̂ ′(i−1)∆n+t−X̂ ′(i−1)∆n
and Zr = M(i−1)∆n+t−M(i−1)∆n

.
Since Z is a bounded continuous martingale and Y a semimartingale with vanishing con-
tinuous martingale part, and fn(Y ) is bounded, we deduce from Itô’s formula that the
product Ztfn(Yt) is the sum of a martingale plus the process

∫ t
0 Γnudu, where

Γnt = Zt

∫
F(i−1)∆n+t(dx) gn(Yt, x), gn(y, x) = fn(y + x)− fn(y)− f ′n(y)x1{|x|≤1}.
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An easy computation allows to deduce of (12.52) that

|gn(y, x)| ≤ 1{|x|>un∆η
n/3}+K1{un<|y|≤un(1+∆η

n)}
( x2

∆2$+2η
n

1{|x|≤un∆η
n}+
|x| ∧ 1
∆$+η
n

1{|x|>un∆η
n}
)
.

Now, we apply (12.26) to get for any ε > 0:

|Γnt | ≤ K |Zt|∆−($+η)β
n +Kε |Zt|∆−(β+ε)($+η)

n 1{un<|Yt|≤un(1+∆η
n)}.

Since η < 1/2 − $ we have β($ + η) < 1 and thus (β + ε)($ + η) = 1 for a suitable
ε > 0. Moreover E(|Zu|) ≤ E(|Zs|) if u ≤ s because Z is a martingale. Therefore, since Z
is bounded we obtain

∣∣∣Eni−1(∆n
iM fn(∆n

i X̂
′))
∣∣∣ =

∣∣∣Eni−1

(∫ ∆n

0
Γnt dt

)∣∣∣ ≤
∫ ∆n

0
E(|Γnt |) dt

≤ K∆1−($+η)β
n Eni−1(|∆n

iM |) +K∆−1
n

∫ ∆n

0
Pni−1(un < |Yt| ≤ un(1 + ∆η

n)) dt.

By (12.40) for the process X̂ ′ instead of X, we readily deduce (12.54). 2

12.5 Some auxiliary limit theorems.

Below, recall the process A of (12.18). We still assume (SL) and write un = α∆$
n .

Lemma 12.14 Let ρ′ < 1
2 ∧ ($γ) ∧ ($(β − β′)). Then for all t > 0 we have

∆−ρ
′

n

( [t/∆n]∑

i=1

∆$β
n Eni−1

(∫ i∆n

(i−1)∆n

F t(un)dt
)
− At
αβ

) P−→ 0. (12.55)

Proof. Let θni =
∫ i∆n

(i−1)∆n
F t(un)dt and ηni =

∫ i∆n

(i−1)∆n
Atdt. We deduce from (12.26) that

∣∣∣∆$β
n θni −

1
αβ

ηni

∣∣∣ ≤ K∆1+$(β−(β−γ)∨β′)
n ≤ K(∆1+$γ

n + ∆1+$(β−β′)
n ).

Then obviously

E
(

∆−ρ
′

n

[t/∆n]∑

i=1

Eni−1

(∣∣∣∆$β
n θni −

1
αβ

ηni

∣∣∣
))
→ 0,

and since At is bounded we have
∣∣∣At −

∑[t/∆n]
i=1 ηni

∣∣∣ ≤ Kt∆n, whereas ρ′ < 1. It thus
remains to prove that

∆−ρ
′

n

( [t/∆n]∑

i=1

(
ηni − Eni−1(ηni )

) ) P−→ 0. (12.56)

Since ζni = ∆−ρ
′

n

(
ηni − Eni−1(ηni )

)
is a martingale increment, for (12.56) it is enough to

check that an(t) = E
(∑[t/∆n]

i=1 (ζni )2
)

goes to 0. However, since At is bounded, we have

|ζni |2 ≤ K∆2−2ρ′
n , so an(t) ≤ Kt∆1−2ρ′

n → 0 because ρ′ < 1/2. 2
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Lemma 12.15 a) Let χ < ($γ) ∧ 1−$
3 ∧ $(β−β′)

1+β′ ∧ 1−2$
2 . Then for all t > 0 we have

∆−χn
(

∆$β
n

[t/∆n]∑

i=1

Pni−1(|∆n
i X| > un)− At

αβ

) P−→ 0, (12.57)

and in particular

∆$β
n

[t/∆n]∑

i=1

Pni−1(|∆n
i X| > un) P−→ At

αβ
(12.58)

b) If further β′ < β
2+β and γ > β

2 and $ < 1
2+β

∧ 1
3β , and if M is a bounded continuous

martingale, we also have

∆−$β/2n

(
∆$β
n

[t/∆n]∑

i=1

Pni−1(|∆n
i X| > un)− As

αβ

) P−→ 0. (12.59)

∆$β/2
n

[t/∆n]∑

i=1

∣∣∣Eni−1(∆n
iM1{|∆n

i X|>un})
∣∣∣ P−→ 0. (12.60)

Proof. a) In Lemma 12.12 we can take η = 1−$β
3 ∧ $(β−β′)

1+β′ ∧ 1−2$−ε
2 for some ε > 0, and

ρ is given by (12.38). Upon taking ε small enough, we then have χ < ρ, and also χ ≤ ρ′ for
a ρ′ satisfying the conditions of Lemma 12.14. Then (12.57) readily follows from (12.39)
and (12.55).

b) Our conditions on γ, β′ and $ imply (after some calculations) that one may take
χ = $β/2 satisfying the condition in (a), so (12.59) follows from (12.57).

It remains to prove (12.60). By (12.51), the left side of (12.60) is smaller than

K t∆ρ−$β/2
n +K∆1−ηβ−$β/2

n

[t/∆n]∑

i=1

Eni−1(|∆n
iM |).

By the Cauchy-Schwarz inequality this is smaller than

K(t+
√
t )
(

∆ρ−$β/2
n + ∆1/2−ηβ−$β/2

n

( [t/∆n]∑

i=1

Eni−1(|∆n
iM |2)

)1/2)
.

A well known property of martingales yields

E
( [t/∆n]∑

i=1

Eni−1(|∆n
iM |2)

)
= E

(
(M∆n[t/∆n] −M0)2

)
,

which is bounded (in n). Therefore we deduce (12.60), provided we have ρ > $β/2 and
also 1− 2ηβ > $β. The first condition has already been checked, but the second one may
fail with our previous choice of η. However since $ < 1/3β we have $β/2 < (1−$β)/2β,
and we can find η′ strictly between these two numbers. Then we replace ρ and η by
ρ = ρ ∧ η and η = η ∧ η′, which still satisfy (12.38), and now the required conditions are
fulfilled by ρ and η. This ends the proof. 2
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Proposition 12.16 Assume (SL). For each t > 0 we have

∆$β
n U(α∆$

n ,∆n)t
P−→ At

αβ
. (12.61)

Proof. Set
ζni = ∆$β/2

n

(
1{|∆n

i X|>α∆$
n } − Pni−1(|∆n

i X| > α∆$
n )
)
. (12.62)

By virtue of (12.58), it suffices to prove that the sequence
∑[t/∆n]

i=1 ζni is tight. Since the ζni ’s
are martingale increments, it is enough to show that the sequence an(t) =

∑[t/∆n]
i=1 E((ζni )2)

is bounded. But (12.41) yields E((ζni )2) ≤ K∆n, which in turn yields an(t) ≤ Kt. 2

Proposition 12.17 Assume (SL). Let α′ > α. If we have β′ < β
2+β and γ > β

2 and
$ < 1

2+β

∧ 1
3β , the pair of processes

∆−$β/2n

(
∆$β
n U(α∆$

n ,∆n)t − At
αβ
, ∆$β

n U(α′∆$
n ,∆n)t − At

α′β

)
(12.63)

converges stably in law to a process (W,W
′) defined on an extension of (Ω,F , (Ft)t≥0,P),

and with conditionally on F is a continuous Gaussian martingale with

Ẽ(W 2
t | F) =

At
αβ
, Ẽ(W ′2t | F) =

At
α′β

, Ẽ(W tW
′
t | F) =

At
α′β

. (12.64)

Proof. Define ζni by (12.62), and associate ζ ′ni with α′ in the same way. In view of
(12.59) the result amounts to proving the stable convergence in law of the pair of processes(∑[t/∆n]

i=1 ζni ,
∑[t/∆n]

i=1 ζ ′ni
)

to (W,W
′). The variables ζni and ζ ′ni are martingale increments

and are smaller than K∆$β/2
n , so in view of Lemma 4.4 it is enough to prove the following

[t/∆n]∑

i=1

Eni−1((ζni )2) P−→ At
αβ
,

[t/∆n]∑

i=1

Eni−1((ζ ′ni )2) P−→ At
α′β

,

[t/∆n]∑

i=1

Eni−1(ζni ζ
′n
1 ) P−→ At

α′β
.

(12.65)
[t/∆n]∑

i=1

Eni−1(ζni ∆n
iM) P−→ 0,

[t/∆n]∑

i=1

Eni−1(ζ ′ni ∆n
iM) P−→ 0, (12.66)

where M is any bounded martingale.

Since α < α′, we have

Eni−1(ζni ζ
′n
1 ) = ∆$β

n

(
Pni−1(|∆n

i X| > α′∆$
n )− Pni−1(|∆n

i X| > α∆$
n )Pni−1(|∆n

i X| > α′∆$
n )
)
,

whereas Pni−1(|∆n
i X| > α∆$

n ) ≤ K∆1−$β
n by (12.41). Therefore we deduce the last part

of (12.65) from (12.61), and the first two parts are proved in the same way.

Now we turn to (12.66). Since Eni−1(∆n
iM) = 0, this follows from (12.60), which has

been proved when M is continuous. Now, since any bounded martingale is the sum of a
continuous martingale and a purely discontinuous martingale with bounded jumps, and
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up to a localization, it remains to prove (12.66) when M is a bounded purely discontinuous
martingale.

In this case, we consider the discretized process Mn
t = M∆n[t/∆n], and we set Zn =∑[t/∆n]

i=1 ζni . We know by (12.65) that the sequence (of discrete-time martingales) Zn

is tight, whereas the convergence Mn → M (pathwise, in the Skorokhod sense) is a
known fact. Since further any limiting process of Zn is continuous, the pair (Zn,Mn)
is tight. From any subsequence of indices we pick a further subsequence, say (nk), such
that (Znk ,Mnk) is tight, with the limit (Z,M). Another well known fact is that the
quadratic covariation [Mnk , Znk ] converges to [M,Z], and since M is purely discontinuous
and Z is continuous it follows that [M,Z] = 0. Then by Lenglart inequality (since the
jumps of the discrete processes [Mn, Zn] are bounded by a constant), the predictable
compensators of [Mn, Zn] also go to 0 in probability. Now, those compensators are exactly∑[t/∆n]

i=1 Eni−1(ζni ∆n
iM), which thus goes to 0 in probability along the subsequence nk;

it readily follows that the first part of (12.66) holds, and the second part is similarly
analyzed. 2

12.6 Proof of Theorem 12.3.

At this point, the proof is nearly trivial. As said before, it is no restriction to assume
(SL). Then in view of Proposition 12.16 the consistency result (a) is obvious.

As for (b), we apply Proposition 12.17, to obtain that

U(α∆$
n ,∆n)t =

At

∆$β
n αβ

+ ∆$β/2
n Vn, U(α′∆$

n ,∆n)t =
At

∆$β
n α′β

+ ∆$β/2
n V ′n,

where the pair (Vn, V ′n) converge stably in law to a variable (V, V ′) which is F-conditionally

Gaussian centered with covariance matrix
(
At/α

β At/α
′β

At/α
′β At/α

′β

)
. Then a simple compu-

tation shows that the variable 1

∆
$β/2
n

(
β̂n(t,$, α, α′) − β

)
is equivalent (in probability)

to
αβVn − α′βV ′n
At log(α′/α)

,

on the set {At > 0}. The result readily follows . 2
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