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Chapter 1

Introduction

Foreword

These are lecture notes (in progress) for a course held at ETH Zurich in fall 2012. The target audience
are master students, advanced bachelor students, or doctoral students.

Prerequisites (... matter of discussion)

• category theory. groupoids. direct and inverse limit (co-limit and limit)

• topology / fundamental group

• groups, Hopf algebras

• commutative algebras, algebras and Lie algebras

1.1 Introduction

The Grothendieck-Teichmüller group is an important and somewhat mysterious object in algebra. It is
important because it acts on a wide variety of other objects in many different fields of mathematics. It is
mysterious because its structure and the relation to many of the objects it acts on is still unclear and a
matter of ongoing research. In fact, there exist three different versions of the Grothendieck-Teichmüller
group, a profinite version ĜT, a pro-l version GTl, and a pro-unipotent version GT. Roughly speaking,
the former two versions are important in Galois theory and in the algebro-geometric context, while the
latter version is “the correct” variant to be used in the homological algebra context. In this course we
will study almost exclusively the pro-unipotent version, which is also the simplest of the three.

Historically however, the pro-finite version was invented first (by A. Grothendieck) and hence we
start by giving a brief review.

1.1.1 Origins and the pro-finite version ĜT

Recollections from Galois theory

Let K be a perfect field (e. g. of characteristic zero or finite). Let K̄ be the algebraic closure of K. Then
one defines the absolute Galois group of K to be

Gal(K) := Gal(K̄/K) := Aut(K̄/K) := {φ | φ a field automorphisms of K̄, φ(x) = x∀x ∈ K}.

For example Gal(R) = Gal(C/R) = Z/2Z, the nontrivial element being complex conjugation. Of course,
Gal(C) = ∗ trivially. The Artin-Schreier Theorem asserts that ∗ and Z2 are the only finite examples of
absolute Galois groups.

Remark 1.1. Recall that a field extension L/K is called algebraic if any element of L is a root of a
polynomial with coefficients in K. For example, C/Q is not algebraic (because there exist transcendental
numbers) and Q̄ 6= C.

In general Gal(K) has the structure of a pro-finite group.

5



6 CHAPTER 1. INTRODUCTION

Definition 1.1. A topological group G is pro-finite if it is homeomorphic to an inverse limit of finite
groups G ∼= lim←Gi, where the finite groups Gi are endowed with the discrete topology.

Remark 1.2. Recall that elements of lim←Gi may be identified with collections of elements gi ∈ Gi,
such that for any arrow Gi → Gj in the inverse system gi 7→ gj . The group structure is the obvious one.
By definition there are maps πi : lim←Gi → Gi. The topology on lim←Gi is the coarsest topology such
that all πi are continuous, i. e., a basis for the topology s given by sets π−1(Ui) where Ui ⊂ Gi is an
arbitrary subset.

Example 1.1. Consider the inverse system

Z← Z/pZ← Z/p2Z← Z/p3Z← · · · .

Elements of Zp := lim← Z/piZ are called p-adic integers and may be identified with formal series of the
form

∞∑
j=0

cjp
j

where cj ∈ Z/pZ.

Example 1.2. Consider the inverse system formed by groups Z/nZ, n = 1, 2, 3, . . . with arrows Z/nZ→
Z/mZ whenever m | n. The inverse limit may be seen to be

Ẑ := lim
←

Z/nZ = {(an)n∈N | an ∈ Z/nZ;n | m⇒ an ≡ am mod n} =
∏

p prime

Zp. (1.1)

Example 1.3. Consider some (discrete) group G. Its pro-finite completion Ĝ is defined as

Ĝ = lim
←
G/G′

where the limit is over all normal subgroups G′ ⊂ G of finite index, i. e., such that G/G′ is finite.
Exercise: Show that the notation is consistent with the one of the previous example.

Recall that a field extension L/K of the perfect field K is a Galois extension if it is a smallest field
extension over which some family of polynomials polynomial in K[X] splits into linear factors.1 We will
consider sub-extensions K̄/L/K, with L/K finite Galois. In this case L is the smallest subfield of K̄ that
contains all roots (in K̄) of the given polynomial(s). Clearly any element of Gal(K) fixes L, but not
necessarily pointwise. Similarly, if we have sub-extensions K̄/L′/L/K then Gal(L′/K)(L) = L. We may
hence set up an inverse system with objects Gal(L/K), one for each sub-extensions K̄/L/K, with L/K
finite Galois, and arrows Gal(L′/K)→ Gal(L/K) for each chain of extensions K̄/L′/L/K.

Lemma 1.1. Gal(K) = lim←Gal(L/K) as sets. In fact, one may endow Gal(K) with the topology from
the right hand side. (This is then called Krull topology on Gal(K).)

Proof. By what is said above there is a map Gal(K) → Gal(L/K) for each L and these maps are
compatible with the arrows in the inverse system. Hence we have a map f : Gal(K)→ lim←Gal(L/K).
We claim that this map is bijective. First note that every x ∈ K̄ is an element of some subfield L such
that L/K is (finite) Galois. Injectivity: Suppose g ∈ Gal(K) fixes pointwise all L. Then it fixes all x ∈ K̄
and hence g = id . Surjectivity: Conversely, let y = (gL ∈ Gal(L/K))L be an element of the projective
limit. Then define an element g ∈ Gal(K) by setting g(x) := gL(x) where L is some sub-extension such
that x ∈ L. It is easy to see that g is well-defined, is an element of Gal(K), and a preimage of y.

Grothendieck’s plan

One (or the most) important and mysterious example of an absolute Galois group is Gal(Q) = Gal(Q̄/Q).
The structure of this group is largely unknown. In fact, the author is not aware of any explicitly defined
elements apart from complex conjugation and the identity. A. Grothendieck’s idea [?] was to study
Gal(Q̄/Q) through its actions on objects that are easier to handle. (So ideally, find some simpler object
O, with simpler to understand automorphism group Aut(O), and construct a map (ideally a bijective
one) Gal(Q̄/Q) → Aut(O).) Concretely, he proposed to study Gal(Q̄/Q) through its (outer) action on
algebraic fundamental groups of moduli spaces of curves.

1In general one requires the extension to be normal and separable. Here the extension is normal if L is the splitting
field of some family of polynomials and separable if every irreducible polynomial has only distinct roots. That K is perfect
means that every algebraic extension is separable.
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Digression: Action on algebraic fundamental groups

Grothendieck defined a version of the fundamental group for any scheme X, the étale fundamentale
group πét

1 (X).
The only properties we need are the following:

1. Let X be a scheme over Spec(K) for some perfect field K. Let XK̄ := X ×Spec(K) Spec(K̄). Then
there is an exact sequence

1→ πét
1 (XK̄)→ πét

1 (X)→ πét
1 (K) = Gal(K̄/K)→ 1.

2. For K = Q we have
πét

1 (XK̄) = πét
1 (X ×Spec(Q) Spec(C)) = π̂1(Xtop)

where π1(Xtop) is the usual (topological) fundamental group and the hat denotes the pro-finite
completion.

By the first property the adjoint action of πét
1 (X) on itself restricts to an action on πét

1 (XK̄),

πét
1 (X)→ Aut(πét

1 (XK̄)).

By definition πét
1 (XK̄) ⊂ πét

1 (X) acts by inner automorphisms and we may pass to the quotient to obtain

Gal(K)→ Out(πét
1 (X))

Grothendieck’s plan (continued)

In particular, consider the variety X = P1 \ {0, 1,∞}, which is defined over Q. Note that π1(Xtop) =
Free(x, y) is the free group generated by two elements x and y. Hence we obtain a morphism of groups

φ : Gal(Q̄/Q)→ Out(F̂ree(x, y)).

There is the following famous result.

Theorem 1.1 (Belyi). The map φ is injective.

Hence to study Gal(Q̄/Q) we may study its image in Out(F̂ree(x, y)). It was realized by A. Grothendieck
(but he did not write explicit formulas) that the image is contained in a subgroup characterised by some
simple equations. Explicit formulas were written down by V. Drinfeld [?].

The Grothendieck-Teichmüller group ĜT

Note first that for a ∈ Ẑ (say a = (an)n as in (1.1)) we may define elements xa ∈ F̂ree(x, y). To do this,
it is sufficient to define for each finite index normal subgroup G ⊂ Free(x, y) the element πG(xa) (in a
way compatible with subgroup inclusion) where

πG : F̂ree(x, y)→ Free(x, y)/G.

Let n be the order of the cyclic subgroup of the right hand side generated by πG(x). (I. e., πG(x)n = id .)
We define xa by requiring πG(xa) = πG(x)an . Let us check that this is well defined. Let H ⊂ G be a
subgroup and suppose that the order of πH(x) is m. (Necessarily n | m.) Let

πG,H : Free(x, y)/H → Free(x, y)/G.

Then
πG,H(πH(xa)) = πG,H(πH(x)an) = πG,H(πH(x))an = πG(x)an = πG(x)am = πG(xa).

Definition 1.2 (V. Drinfeld). The (pro-finite version of the) Grothendieck-Teichmüller group is the
subgroup ĜT ⊂ Aut(F̂ree(x, y)) consisting of automorphisms φ that have the form

φ(x) = xλ φ(y) = f−1yλf
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where λ ∈ 1 + 2Ẑ and f ∈ ˆFree(x, y)′ satisfies

f(y, x) = f(x, y)−1 (1.2)
f(z, x)zmf(y, z)ymf(x, y)xm = 1 (xyz = 1) (1.3)
f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23) (1.4)

where the last equation takes place in the pro-finite completion of the pure braid group P̂B4, whose
generators are xij, and where m = (1− λ)/2.

Remark 1.3. One obtains similarly the pro-l version GTl of the Grothendieck-Teichmüller group (for any
prime l) if one replaces all pro-finite completions by pro-l completions. It comes with a map ĜT→ GTl.

Remark 1.4. Note that elements of GT are pairs (λ, f) ∈ Ẑ× × F̂ree(x, y) and that the latter object is
also group. However, it is very important that the group structures are different.

Theorem 1.2. The outer action of the absolute Galois group Gal(Q̄/Q) factors uniquely through ĜT, i.
e., we have an injective map Gal(Q̄/Q)→ ĜT fitting into a commutative diagram

ĜT

Gal(Q) Out(F̂ree(x, y))

One of the major problems in the field is to settle the following:

Conjecture 1.1. The map Gal(Q̄/Q)→ ĜT is an isomorphism.

Several authors have added additional conditions to the above list, that are all satisfied by the image
of Gal(Q̄/Q) in ĜT. However, the conjecture is still open.

Remark 1.5. Note that the pro-finite completion F̂ree(x, y) is an unwieldy object. For example, any
finite group with two generators will appear in the inverse system defining F̂ree(x, y).

Remark 1.6. We simplified the discussion a little bit. Note that P1 \ {0, 1,∞} may be identified with
the moduli spaceM0,4 of curves of genus zero with four (distinguishable) marked points. The pro-finite
completions of the fundamental groups of the moduli spacesMg,n of arbitary genus g and with arbitrarily
many (n) marked points may be packaged into a “tower” of groups, the Teichmüller tower. The outer
action of Gal(Q) extends to the full tower. (This is the origin of the second half of the name of GT.)

1.1.2 Actions of ĜT

1.1.3 TODO
Concrete description for GTl?

Pure braid group?

1.2 The pro-unipotent version GT

One may define a pro-unipotent (to be defined later) analog of ĜT.

Definition 1.3. The (pro-unipotent version of the) Grothendieck-Teichmüller group GT(K) for K a field
of characteristic 0, is the set of pairs (λ, f) ∈ K× ×K〈x, y〉 such that

δf = f ⊗̂ f (1.5)

f(y, x) = f(x, y)−1 (1.6)
f(z, x)zmf(y, z)ymf(x, y)xm = 1 (1.7)
f(x12, x23x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x24x34)f(x12, x23). (1.8)
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Here the last equation takes place in the pro-unipotent completion of the pure braid group, xyz = 1 and
m = (λ− 1)/2.

The group structure on GT(K) is defined by considering the pairs (λ, f) as an automorphism of the
pro-unipotent completion of the free group in two generators x, y by setting

x 7→ xλ y 7→ f−1yλf.

Concretely, it is given by the equation

(λ, f) · (λ′, f ′) = (λλ′, fFf (f ′)).

Remark 1.7. In fact, there is a much simpler one-line definition of GT, but it requires knowledge of
some further algebraic structures, so it is postponed a bit.

Note that there is a group homomorphism

GT(K)→ K×

(λ, f)→ λ.

The kernel is denoted GT1 and is a pro-unipotent group.
Pro-unipotent groups are in general much easier to understand than pro-finite groups. In particular,

we will see below that GT is isomorphic to a simpler group GRT, the “graded version of the Grothendieck-
Teichmüller group”. However, it is hard to to construct such isomorphisms, since one needs a Drinfeld
associator for this task.

Definition 1.4. Consider group-like elements Φ ∈ K〈〈X,Y 〉〉. Consider the following set of equations,
depending on µ ∈ K,

Φ(X,Y ) = Φ(Y,X)−1 (1.9)

1 = e
µ
2ZΦ(X,Y )e

µ
2XΦ(Y,Z)e

µ
2 Y Φ(Z,X) (1.10)

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23). (1.11)

Here for the middle equation X + Y + Z = 0 and the last equation takes values in the Drinfeld-Kohno
Lie algebra t4 with standard generators tij. The set of Drinfeld associators DAss is defined to be the set
of pairs (µ,Φ) solving these equations, with µ 6= 0. The set of solutions Φ of these equations for µ = 0
is called the (graded version of the) Grothendieck-Teichmüller group GRT1. 2 We will set

GRT := K× n GRT1

where the multiplicative group K× act on elements Φ ∈ GRT1 by rescaling, i. e.,

(λ · Φ)(X,Y ) := Φ(λX, λY ).

Later we will see the following results:

• There exist Drinfeld associators.

• The set of Drinfeld associators is a GT−GRT-torsor.

• In particular, it follows that GT ∼= GRT.

• GRT1 and GT1 are pro-unipotent groups. We denote their Lie algebras by gt1 and grt1.

• grt1 is graded and there are non-trivial element σ3, σ5, σ7, · · · ∈ grt of degrees 3, 5, 7, . . . . In partic-
ular it follows that GRT1 and GT1 are infinite dimensional pro-affine varieties.

There is a famous conjecture about the structure of grt.

Conjecture 1.2 (Deligne-Drinfeld-Ihara Conjecture).

grt ∼= F̂Lie(σ3, σ5, · · · )

Unfortunately, we do not know how GRT/GT relate to their pro-finite cousin.

Open Problem 1.1. Describe the precise relation between ĜT and GT.

TODO: describe GTl → GT(Ql)???
2It carries a group structure that will be introduced later.
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1.3 The role of GT and GRT in mathematics

The pro-unipotent version GT is a very important group in its own right and appears in many problems
in a variety of fields in mathematics. Here we list a few:

1.3.1 Quantum groups

The original motivation of Drinfeld in defining the Grothendieck-Teichmüller group was to construct
quasi-Hopf algebras. We will not discuss this, but we might discuss a similar result:

An important problem in quantum groups is the quantization of Lie bialgebras, i. e., the passage
from a Lie bialgebra to a Hopf algebra, which is then considered to be the “quantum universal enveloping
algebra” of the bialgebra. This quantization problem has been solved by P. Etingof and D. Kazhdan,
and the essential ingredient of the solution is a Drinfeld associator.

1.3.2 Multiple zeta values

Zeta values are the numbers
ζ(n) =

∑
j≥1

1

jn
.

A result of Euler is that ζ(2n) = bnπ
2n for some bn ∈ Q. A conjecture (with no hope of settling it) is

that the numbers π, ζ(3), ζ(5), . . . are algebraically independent. If true, the algebra generated by the
zeta values is “uninteresting” algebraically. However, currently one only knows that π is transcendental
and that ζ(3) /∈ Q (Apéry).

Multiple zeta values (MZVs) are the numbers

ζ(n1, n2, . . . , nk) =
∑

j1>j2>···>j1≥1

1

jn1 j
n2
2 . . . jnkk

.

The multiple zeta values satisfy two families of combinatorial shuffle relation. These are referred to as
double shuffle, or as shuffle and stuffle relations. Let us only consider one example of the stuffle relations
here and leave the more detailed description and the shuffle relations for later.

Exercise 1.1.

ζ(2, 1)ζ(4) = ... = ζ(4, 2, 1) + ζ(6, 1) + ζ(2, 4, 1) + ζ(2, 5) + ζ(2, 1, 4)

It is conjectured that (regularized version of) these double shuffle relations generate all algebraic
relations among the numbers ζ(n1, n2, . . . , nk). This conjecture is equally hopeless as the previous. But
one may at least ask what the algebraic structure of the algebra of MZV’s is if the conjecture was true.

The relation to associators is as follows: For one particular associator (the Knizhnik-Zamolodchikov
associator) all multiple zeta values appear as coefficients, more precisely the coefficient of

Xn1Y Xn2Y · · ·XnkY

is ±ζ(n1 + 1, n2 + 1, . . . , nk + 1). Furthermore, it has been shown [?] that any associator gives a solution
of the double shuffle relations. Conjecturally, the associators parameterize all solutions of the double
shuffle relations. If this and the previous conjecture were true, then the algebra of (regularized) multiple
zeta values could be identified with the algebra of functions on the set of associators (over Q).

1.3.3 Lie theory: the KV problem

The Kashiwara-Vergne conjecture, proven by Alekseev and Meinrenken, is one of the few general Theo-
rems about Lie algebras valid for all Lie algebras. It states (essentially) that there exists an automorphism
φ of the free Lie algebra in two generators FLie(X,Y ) that trivializes the Baker-Campbell-Hausdorff for-
mula,

φ(BCH(X,Y )) = X + Y

and furthermore satisfies some suitable conditions. Any Drinfeld associator gives a solution of this KV
problem and it is conjectured that the solutions thus found exhaust the space of solutions.
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1.3.4 Knot invariants
A knot invariant is a function on the set of knots (i. e., on the space of embeddings S1 → R3) that is
invariant under changing the knot by isotopy. Any such knot invariant may be extended to an invariant
of singular knots, which are given by maps S1 → R3 with a finite number of self-crossings, by applying
Vassiliev’s “Skein relations”

.

A knot invariant is a Vassiliev invariant of type ≤ n if it vanishes on all singular knots with > n
self crossings. The Vassiliev invariants are at least as strong as the known knot polynomials (Jones,
Alexander, HOMFLY etc.). Furthermore, one has the following conjecture

Conjecture 1.3. Any two (non-isotopic) knots may be distinguished by a Vassiliev invariant.

Given a Drinfeld associator one may construct a universal Vasiliev invariant, i. e., an invariant which
is as strong as all Vassiliev invariants together. (This is the same as the one given by the Kontsevich
integral.) Concretely, one may build an isotopy invariant map from the set of of singular knots (say K)
to a certain algebra, the algebra of chord diagrams (say A)

K → A

given any Drinfeld associator.

1.3.5 Relation to CFT
One of the two known explicit constructions of Drinfeld associators has its origin in Conformal Field
Theory, and comes out of the Knizhnik-Zamolodchikov equations.

1.3.6 Deformation quantization and automorphisms of polyvector fields
In deformation quantization one studies the origins of quantum mechanics. Concretely, the basic question
is whether for any Poisson manifold M there is a non-commutative product ? on the space of functions
(“observables”) C∞(M)[[~]]. One can show that giving a universal solution of this problem (a universal
star product) is equivalent to providing a Drinfeld associator.

1.3.7 Graph cohomology
The graph complex is a combinatorial complex build using graphs, the differential being vertex split-
ting. Computing its cohomology is a purely combinatorial problem. (Though this is essentially the
stable Chevalley cohomology of the Lie algebras K[x1, . . . , xn, ξ1, . . . , ξn] with Lie bracket determined by
[ξi, xj ] = δij .) The zeroth cohomology of the graph complex may be shown to be isomorphic to grt.

1.3.8 Automorphisms of the E2 operad
One may show that the set of Drinfeld associators is (essentially) in 1-1 correspondence to the set of
formality morphisms of the (operad of chains of the) little disks operad, and object that is famous in
topology, and also appears in many algebraic problems.

Remark 1.8. In this course we focus on studying GRT.

1.4 Tentative structure of the course
The course will be roughly divided into three parts.

1. In the first part, we will recall some standard notions and results from algebra, including

• Associative and Lie algebras

• Topological vector spaces

• Categories and (co-)limit constructions

• Operads
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• (Pro-)unipotent groups and pro-unipotent completions

Experts may skip this part.

2. In the second part we will give a more compact definition of GT and GRT and show their basic prop-
erties stated above. In particular, we will discuss the construction of the Knizhnik-Zamolodchikov
associator, and that of the Alekseev-Torossian associator. If time permits, we will also discuss F.
Brown’s recent result on the structure of grt.

3. In the third part we will discuss the role of GRT, or its conjectural role in mathematics. The
lecturer’s wish is to cover all topics mentioned above, but realistically speaking certain choices
have to be made.

Other topics on the wish-list, a bit separate from the main storyline.

• Operads and homotopy algebras

• Rational Homotopy Theory

• Simplicial methods

• The free Lie algebra

• (maybe: Model categories, but this is not really important)

1.5 Literature
At the time of writing of these notes, there is unfortunately no complete and good textbook on the
subject available. (Which is the main reason for the lecturer to write these notes.) A very good reference
on the subject is Drinfeld’s seminal paper [?]. Other introductory papers can be found on the web,
though they mostly cover the pro-finite version ĜT.

A book draft by B. Fresse is available online. He also uses the operadic approach to the definition of
GT, and is hence quite close to this course.



Chapter 2

Prerequisites

2.1 Categories and limits
The standard reference here is [?].

Definition 2.1. A category C is the following data:

• A collection of objects ObC.

• A collection of morphisms (or arrows) Mor(C).

• Two maps dom, codom : Mor(C) → ObC. Notation: We will write f : A → B if dom(f) = A,
codom(f) = B, and HomC(A,B) for the collection of all such morphisms.

• For every three objects A,B,C, a map

◦ : Hom(B,C)×Hom(A,B)→ Hom(A,C)

(the composition map).

These data are required to satisfy

• Associativity. For all four objects A,B,C,D and morphisms f : A→ B, g : B → C, h : C → D

(h ◦ g) ◦ f = h ◦ (g ◦ f)

• For every A ∈ ObC, there is a distinguished morphism idA ∈ Hom(A,A) such that for all mor-
phisms f : A→ B,

f ◦ idA = idB ◦ f.

For C,D categories a functor F : C → D is (i) a map ObC → ObD and (ii) a map morC → morD
that is compatible with the above data (in the obvious sense).

Definition 2.2. A category C is called small if ObC is a set and locally small if for any pair of objects
A,B, HomC(A,B) is a set.

Definition 2.3. Let C,D be categories. For two functors F,G : C → D a natural transformation F ⇒ G
is a map alpha : ObC → morD (A 7→ αA) such that αA : F (A)→ G(A) for all A and for all morphisms
f : A→ B in C we have that

αB ◦ Ff = Gf ◦ αA.

Example 2.1. • The category Set of sets. Objects are the sets and morphisms are arbitrary maps
between sets.

• The category Vect of (K-)vector spaces.

• There is a functor F : Vect→ Set forgetting the vector space structure.

• There is a functor G : Set → Vect assigning to a set S the free vector space in that set. (It has a
basis {es}s∈S labelled by elements in the set.)

13
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• There is a natural transformation α : GF ⇒ Id such that αV : GF (V )→ V sends ev → v for each
v ∈ V .

• If C is a category then the opposite category Cop has the same objects and morphisms as C, but the
the domain (codomain) map of Cop is the codomain (domain) map of C, and one flips arguments
in the composition map.

Let us recall the notion of limits and colimits in a category.

Definition 2.4. Let J, C be categories. A diagram of type J in C is a functor F : J → C.
A cone for F is an object L of C together with maps πA : L→ F (A) for each object A in ObJ , such

that for every morphism f : A→ B in J
πB ◦ f = πA.

A (the) limit of F is a cone (L, π) such that for any other (L′, π′) there is a unique morphism
f : L′ → L such that for all A ∈ ObJ we have

π′A = πA ◦ f.

The colimit is the dual notion (reverse all arrows).

Example 2.2. 1. Let C be a (small) category with only the identity morphisms. A functor F : C → D
is given by picking a collection of objects in D. Then the limit of F is called the product of these
objects and the colimit is called coproduct. For example, in D = Set the product is the Cartesian
product and the coproduct is the union.

2. Let J = ∅. Then there is a unique functor J → C and a limit (colimit) is called terminal object
(initial object) of C.

3. If J has the form ·⇒ ·, then the limit is called equalizer (and the colimit coequalizer).

4. If J has the form · → · ← ·, then the limit is called pullback.

The limits we will need have a very special form.

Definition 2.5. A directed set is a set J together with a transitive and reflexive relation ≤ (i.e., A ≤ B
and B ≤ C implies A ≤ C and A ≤ A) such that for any two objects A,B ∈ J there is some object C
such that A ≤ C and B ≤ C.

We will understand J as a category, also denoted J , with objects J and morphisms

HomJ(A,B) =

{
{∗} if A ≤ B
∅ otherwise.

If C is a category, than a limit of a diagram of type Jop, F : Jop → C is inverse limit. Dually, the
colimit of a diagram of type J is called direct limit.

We will use the notation lim← for the inverse limit and lim→ for the direct limit.

Example 2.3. The canonical example is the following: Let J be the directed set N. Let C = Vect be
the category of vector spaces for concreteness. A functor F : Jop → C is a collection of vector spaces Vj ,
j = 1, 2, . . . together with some arrows fj : Vj → Vj−1. The inverse limit of that functor

lim
←
Vj

is the vector space V ⊂
∏
j Vj , formed by the elements (v1, v2, . . . ) ∈

∏
j Vj that satisfy fj(vj) = vj−1.

Example 2.4. If in the setting of the previous example the morphisms were going in the other direction,
i. e., fj : Vj → Vj+1, then may form the direct limit (i.e., the colimit) of F : C → Vect

lim
→
Vj = (

⊕
j

Vj)/ ∼

where the equivalence relation is obtained by declaring that for all j and for all v ∈ Vj

fj(v) ∼ v.

(In other words, one quotients by the sub-vector space spanned by fj(v)− v j = 1, 2, . . . , v ∈ Vj .)



2.2. TOPOLOGICAL VECTOR SPACES 15

Exercise 2.1. Verify that the universal property holds in all cases above.

Without proof we state:

Theorem 2.1. If C has equalizers and small products, then C has all small limits. (i.e., limits of
diagrams of type J , J small).

2.2 Topological vector spaces
Example 2.5. Let K[X] be the space of polynomials in one indeterminate (X). Let K[[X]] be the space
of power series in X. For example,

p = 1 +X + 2X2 + 3X3 + · · ·

is an element of K[[X]], but not of K[X]. However,

pn = 1 +X + 2X2 + 3X3 + · · ·+ nXn ∈ K[X] ⊂ K[[X]].

In this section we would like to introduce notation to make precise the following statements: (i) pn
converges to p as n→∞. (ii) K[[X]] is complete, and in fact the completion of K[X].

Definition 2.6. A topological space is a set X with subset T of the power set of X such that

• ∅, X ∈ T .

• For all T ′ ⊂ T , ∪U∈T ′U ∈ T .

• For all finite T ′ ⊂ T , ∩U∈T ′U ∈ T .

T is called topology, elements of T are called open sets, and complements of elements closed sets.
A continuous map between topological spaces (X,T ) and (Y,R) is a map f : X → Y such that

f−1U ∈ T for all U ∈ R. Such an f is called homeomorphism if it is bijective and the inverse is also
continuous.

Example 2.6. For any set X there are two “stupid” topologies, namely T = {∅, X}, and the discrete
topology T = 2X .

Definition 2.7. For K a topological field a topological K-vector space is a K-vector space endowed with
a topology such that the scalar multiplication and the addition are continuous.

In the “classical examples” K = R,C with the standard topology and the topology on the vector space
is given by a metric, e. g., from a norm or inner product. Our examples however will look a bit different.
For us, K is always endowed with the discrete topology. (For K = Q,R,C for example this means that
1
n does not converge to 0.)

A topology T on a set X is always determined by giving a basis B for the topology, i. e., a subset
B ⊂ T such that any open set U ∈ T may be written as a union of sets in B. The topological space X
is called second countable if its topology has a countable basis.

An open neighborhood of a point x ∈ X is an open set containing x. A neighborhood of a point
x ∈ X is a set containing an open neighborhood of x. A neighborhood basis at x is a subset B of the set
of neighborhoods such that for any neighborhood N of x there is some U ∈ B with U ⊂ N . X is called
first countable if every point has a countable neighborhood basis. Giving a neighborhood basis at every
point determines the topology uniquely. (Define U ⊂ X to be open iff for all x ∈ U there is an element
Ux of the neighborhood basis at x such that Ux ⊂ U .)

If T is a topological vector space, it even suffices to specify a neighbourhood basis B of 0 ∈ T . For
any other point x we then declare {U + x | U ∈ B} to be a neighborhood basis of x.

Example 2.7. For K[X] (K[[X]]) a topology is given by declaring the sets xNK[X] (xNK[[X]]) (N =
0, 1, 2, . . . ) to be a neighbourhood basis of 0.

Definition 2.8. A net in a topological space X is a directed set J together with a map J → X. The net
is called sequence if J = N. We denote the net by (xj)j∈J , understanding that j gets mapped to xj ∈ X.

The net (xj)j∈J converges to x ∈ X,if for any neighborhood U of x there is a j ∈ J such that xk ∈ U
for all k ∈ J such that j ≤ k. We also call x limit point of the net (xj)j∈J .
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Exercise 2.2. Check that for the topology of example 2.7 limn→∞ pn → p, where pn, p are as in example
2.5.

Remark 2.1. A subset X ′ ⊂ X of a topological space X is closed if for every net (xj)j∈J , with all
xj ∈ X ′, and any limit point x ∈ X, we have x ∈ X ′.

A map f : X → Y of topological spaces is continuous iff for any x ∈ X and any net (xj)j converging
to x, (f(xj))j converges to f(x).

For first countable spaces one may replace “net” by “sequence”.

Remark 2.2. In general, limits are not unique. However, if the topological space is Hausdorff, i.e., if
any two distinct points have disjoint neighborhoods, limits are unique, if they exist. The converse also
holds, since if any two neighborhoods U 3 x ∈ X and V 3 y ∈ X have non-empty intersection, then the
net (zU,V ) where for every such neighborhoods we pick some zU,V ∈ U ∩ V using the axiom of choice,
converges to both x and y.

We will write limj xj := x if x is the unique limit point of the net xj .

Definition 2.9. A Cauchy net in a topological vector space X is a net (xj ∈ X)j such that for all
neighbourhoods U of 0 there is an N ∈ J such that tn − tn′ ∈ U for all n, n′ ≥ N .

A (first countable) topological space X is called complete if every Cauchy net (sequence) in X has a
limit point.

All important spaces in this course will be first countable.

Exercise 2.3. Show that K[[X]] is complete and K[X] is not.

Exercise 2.4. Show that the image of a Cauchy net under a continuous map is again Cauchy.

The most important example for us is the following.

Example 2.8. Let V be a vector space that is an inverse limit of (ordinary) vector spaces,

V = lim
←
Vα.

Then we can endow V with the inverse limit topology, which is defined by declaring the sets π−1
α {0}

(where πα : V → Vα are the canonical projections) to be a neighbourhood basis for 0.

Exercise 2.5. Show that a topological vector space V as in the previous example (i.e., equipped with
the inverse limit topology) is complete.

Solution 2.1.

Exercise 2.6. Show that
K[[X]] ∼= lim

←
K[X]/xNK[X]

The closure Ū of some subset U of a topological space X is the intersection of all closed sets containing
U . U ⊂ X is called dense if Ū = X.

Definition 2.10. A complete Hausdorff topological vector space Y is called completion of another Haus-
dorff topological vector space X, if X is homeomorphic to a dense subspace of Y .

Remark 2.3. One may omit the Hausdorff-ness condition, but then the completion will be ill-behaved,
e. g., it will not be unique.

Example 2.9. K[[X]] is the completion of K[x].

Remark 2.4. For X Hausdorff, any completion of X as above is the universal complete Hausdorff
topological vector space Y with a continuous map X → Y , i. e., for any other Hausdorff complete
topological vector space Y ′ together with a continuous map f : X → Y ′, f uniquely extends to a
continuous map f̄ : Y → Y ′.

In particular, the completion is unique up to unique homeomorphism.
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Proof. For any y ∈ Y pick a net (xj)j∈J converging to y. It is Cauchy automatically. Hence f(xj) is a
Cauchy net in Y ′, and hence has a (unique by Hausdorff-ness) limit z. We will define f̄(y) = z.

f̄ is well defined: Let (x′k)k∈K be any other net converging to y. Then the net (x̃α)α∈K×J×{1,2} with
x̃j,k,1 = xj and x̃j,k,2 = x′k converges to y. Hence f(x̃α) converges. Hence any sub-nets converge to the
same limit point.

f̄ is continuous: The same proof shows that f̄ commutes with taking limits of convergent nets.

Another ingredient we will need is the topological (projective) tensor product.

Example 2.10. Note that K[x]⊗K[y] ∼= K[x, y]. However K[[x]]⊗K[[y]] 6= K[[x, y]]. We want to define
a variant of the tensor product such that K[[x]]⊗̂K[[y]] ∼= K[[x, y]].

Definition 2.11. Let V = lim← Vα and W = lim←Wβ be as in example 2.8 (here α ∈ A, β ∈ B). Then
we will set

V ⊗̂W = lim
←
Vα ⊗Wβ .

We will call V ⊗̂W the projectively completed tensor product of V and W .

Example 2.11. For V = W = K[[x]], we obtain

V ⊗W = lim
←
K[x]/xnK[x]⊗K[y]/ymK[y] = lim

←
K[x, y]/((xnK[x, y] + ymK[x, y]) ∼= K[[x, y]].

Remark 2.5. V ⊗̂W as in the definition above is the completion of V ⊗W , if we endow the latter space
with the finest topology that makes V ×W → V ⊗W continuous.

To see this, first note that V ⊗W ↪→ V ⊗̂W is a homeomorphism onto its image. Also it is clear that
V ⊗̂W is complete. We still need to show that V ⊗W is dense.

Reduction: It is sufficient to check that the image of V ⊗̂W in Vα ⊗Wβ agrees with the image of
V ⊗W , for all α, β. Indeed, if this is true then for each u ∈ V ⊗̂W the net (vα,β)α,β , where vα,β ∈ V ⊗W
is chosen such that πalpha,β(u− vα,β) = 0, converges to u.

Let u ∈ V ⊗̂W and set πalpha,β(u) =
∑
j vj ⊗wj . We may assume w.l.o.g. that the vj and the wj are

linearly independent. Pick dual vectors ṽj , w̃j . Define fj to be the composition

V ⊗̂W → Vα ⊗W
ṽj−→W

and similarly define gj : V ⊗̂W → V . Then we claim that πalpha,β(u − vα,β) = 0, where vα,β =∑
j gj(u)⊗ fj(u). Indeed,

πalpha,βvα,β =
∑
j

παgj(u)⊗ πβfj(u) =
∑
j

vj ⊗ wj = πalpha,β(u).

2.3 Associative algebras
Definition 2.12. A non-unital (associative) (K-)algebra is a K-vector space A together with a bilinear
operation

µ : A×A→ A

such that ∀x, y, z ∈ A
µ(x, µ(y, z)) = µ(µ(x, y), z) (associativity).

A (unital) associative algebra is a non-unital associative algebra A together with a distinguished element
1 ∈ A such that ∀x ∈ A

µ(1, x) = µ(x,1) = x.

We will write (as usual) xy = µ(x, y) in the future.

Definition 2.13. An ideal in the algebra A is a sub-vectorspace I ⊂ A closed under multiplication by
elements of A. In this case A/I is again an algebra.

Furthermore, powers of the ideal In are again ideals. One may put a topology on A by declaring that
In form a neighborhood basis of 0.

Definition 2.14. An augmentation is an algebra map A → K. The kernel is called the augmentation
ideal.

Example 2.12. K[x] is augmented, the augmentation being evaluation at x = 0. K[[x]] is the completion
of K[x] with respect to (the topology generated by) the augmentation ideal.
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2.4 Lie algebras
Definition 2.15. A Lie algebra is a vector space g together with a bilinear anti-symmetric operation
(the Lie bracket)

[·, ·] : g× g→ g

such that ∀x, y, z ∈ g

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0 (Jacobi identity).

A Lie algebra morphism between Lie algebras g and h is a map of vector spaces f : g → h that respects
the Lie bracket, i. e., f([x, y]) = [f(x), f(y)]∀x, y ∈ g.

Example 2.13. • Any vector space is a Lie algebra with the trivial (zero) bracket. It is then called
an Abelian Lie algebra.

• The Lie algebra su(2) ∼= so(3) ∼= R3 has bracket [x, y] = x× y where × is the cross product.

Exercise 2.7. Show that any associative algebra is a Lie algebra (with the commutator bracket). Show
that any non-associative algebra whose associator is symmetric in the last two entries is a Lie algebra
in the same way. Such an algebra is also called pre-Lie algebra. (Note: the associator is A(x, y, z) :=
(xy)z − x(yz).)

For us, a important examples will be given by the free Lie algebras.

Definition 2.16. Let S be a set. Then the free Lie algebra is the (unique up to unique isomorphism)
Lie algebra FLie(S), together with a map of sets S → FLie(S) such that for each Lie algebra g and map
(of sets) S → g there is a unique Lie algebra morphism FLie(S) → g such that the following diagram
commutes

S

FLie(S) g
∃!

A Lie word in some symbols X1, . . . Xn is a formal bracketing of these symbols, e. g.,

[X1, [X2, X1]].

The free Lie algebra FLie(S) is the vector space spanned by all Lie words in the symbol set S, modulo the
subspace obtained by applying the antisymmetry and Jacobi identity. Unless |S| ≤ 1 FLie(S) is infinite
dimensional.

Remark 2.6. FLie(S) has a natural grading by the length of Lie words (i. e., the number of brackets
used plus one),

FLie(S) =
⊕
n≥1

FLie(S)n

where FLie(S)n is spanned by Lie words with n− 1 brackets. Clearly

[FLie(S)n,FLie(S)m] ⊂ FLie(S)n+m.

Example 2.14. Consider FLie(X,Y ) := FLie({X,Y }). Bases for the first few graded subspaces are:

FLie(X,Y )1 = 〈X,Y 〉
FLie(X,Y )2 = 〈[X,Y ]〉
FLie(X,Y )3 = 〈[X, [X,Y ]], [Y, [Y,X]]〉

Exercise 2.8. What is dim(FLie(X,Y )4)?

Definition 2.17. The universal enveloping algebra U(g) is the (unique up to unique isomorphism)
algebra together with a map (of Lie algebras) g→ U(g) such that for any algebra A together with a map
g→ A there is a unique map of algebras U(g)→ A such that

g

U(g) A
∃!

commutes.
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Concretely, U(g) = Tg/I where Tg is the tensor algebra and I is the two-sided ideal generates by
the relations x⊗ y − y ⊗ x− [x, y].

Example 2.15. For g = FLie(S), U(g) = K〈S〉 is the free associative algebra in symbols S. A basis is
given by words in symbols S.

Theorem 2.2 (Poincaré-Birkhoff-Witt). The symmetrization map Sg → U(g) is an isomorphism of
vector spaces for any Lie algebra g.

Proof. Tg is graded (by the length of words) and hence U(g) = Tg/I inherits a filtraton. The associated
graded is Sg.

Corollary 2.1. The dimension of FLie(S)n where |S| = N is

dimFLie(S)n =
1

n

∑
d|n

µ(
n

d
)Nd

where

µ(k) =


1 k square free with an even number of prime factors
−1 k square free with an odd number of prime factors
0 otherwise

is the Möbius function

Proof. define the generating function F (t) =
∑
n t

n dimK〈S〉n = 1
1−Nt and abbreviate an = dimFLie(S)n.

By Poincaré-Birkhoff-Witt we have

1

1−Nt
= g(t) =

∏
n

1

(1− tn)an
.

Taking logarithms and expanding in powers of t we obtain

0 =
∑
n

tn

Nn −
∑
d|n

add

 .

Möbius inversion asserts that the solution of the equation

f(n) =
∑
d|n

g(d)

is
g(n) =

∑
d|n

µ(
n

d
)g(d).

Inserting we are done.

2.5 Hopf algebras

The universal enveloping algebra carries the structure of a Hopf algebra.

Definition 2.18. A bialgebra is a vector space A with an algebra and a coalgebra structure such that
the multiplication and unit map (the comultiplication and counit) are maps of coalgebras (of algebras).

Definition 2.19. A Hopf algebra is a bialgebra A with an additional operation S : A → A (called
antipode) such that ∀x ∈ A

S(x′)x′′ = x′S(x′′) = ε(x)1.

Here we use the sumless Sweedler notation ∆x = x′ ⊗ x′′.

Lemma 2.1. The antipode is an algebra anti-automorphism.
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Proof. Inserting x = 1 into the defining equation we see that S(1) = 1. Next, for x, y ∈ A given, let us
compute

S(y)(S(x) = ε(x′y′)S(y′′)S(x′′) = S(x′y′)x′′y′′S(y′′′)S(x′′′) = S(x′y′)x′′S(x′′′)ε(y′′) = S(x′y)x′′S(x′′′) = S(x′y)ε(x′′) = S(xy).

Example 2.16. U(g) is a Hopf algebra with the coproduct being given on generators by ∆x = x⊗1+1⊗x
for x ∈ g. The counit is defined such that ε(1) = 1 and ε(x) = 0 for x ∈ g. The antipode is S(x) = −x
for x ∈ g.

Definition 2.20. An element x ∈ H in a Hopf algebra H is called group-like if ∆x = x⊗x and is called
primitive if ∆x = x⊗ 1 + 1⊗ x.

Exercise 2.9. Show that the primitive elements in U(g) are exactly the elements of g ⊂ U(g) and that
there is only one group-like element (namely 1).

2.6 Baker-Campbell-Hausdorff (BCH) formula

We define the complete free Lie algebra F̂Lie(S) as

F̂Lie(S) =
∏
n

FLie(S)n.

We define the algebra of (non-commutative) power series in symbols S as k〈〈S〉〉. Clearly F̂Lie(S) ⊂
k〈〈S〉〉. The Baker-Campbell-Hausdorff element BCH ∈ F̂Lie(X,Y ) is defined by the formula

BCH(X,Y ) = log(eXeY ) = −
∑
n≥1

1

n

1−
∑
k,l≥0

XkY l

k!l!

n

= X + Y +
1

2
[X,Y ] + . . . .

Exercise 2.10. Show that this is well-defined, i.e., that indeed BCH(X,Y ) ∈ F̂Lie(X,Y ) ⊂ k〈〈X,Y 〉〉.

It is easy to see that

BCH(X, 0) = BCH(0, X) = X

BCH(X,−X) = 1

BCH(BCH(X,Y ), Z) = BCH(X,BCH(Y,Z)).

(use (eXeY )eZ = eX(eY eZ)).

2.7 (Pro-)nilpotent Lie algebras and (pro-)unipotent groups
Let g be a Lie algebra. We define its lower central series to be the series of subalgebras

g = C1 ⊃ C2 ⊃ C3 ⊃ · · ·

where recursively Cj+1 = [g, Cj ]. The Lie algebra g is called nilpotent if the series terminates, i. e., if
Cn+1 = 0 for some n. The smallest such n is called the nilpotence class of g.

Example 2.17. For g semi-simple g = C1 = C2 = C3 = · · · . (⇒ not nilpotent)
Let g be the Lie algebra of strictly upper triangular n× n matrices. Then Cn = 0. (⇒ nilpotent)

Exercise 2.11. The upper central series of g

0 = Z0 ⊂ Z1 = Z(g) ⊂ Z2 ⊂ · · ·

is defined recursively through Zi+1 = Z(g/Zi) where Z() denotes the center of a Lie algebra. Show that
for nilpotent g the length of the upper and lower central series agree.

Exercise 2.12. Verify that [Cm, Cn] ⊂ Cn+m.
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Proposition 2.1. Any finite dimensional nilpotent Lie algebra may be embedded into the Lie algebra of
strictly upper triangular n× n matrices for some n.

Proof. The descending filtration on g by the Cn induces a descending filtration on U(g). Concretely,
FpU(g) is spanned by products x1 . . . xr, with xj ∈ Cwj and

∑
j wj ≥ p. Define the left g module

M := U(g)/FN+1U(g) where N is the nilpotence class. Clearly dimM < ∞. Furthermore the action
on 1 ∈ M embeds g into M , hence the action is faithful, i. e., the map g → gl(M) is injective. Finally
M inherits the filtration F from U(g) and, by definition, g · FpM ⊂ Fp+1M . Hence, in a suitable basis,
the image of g in gl(M) takes values in stricly upper triangular matrices.

Definition 2.21. A topological Lie algebra g is pro-nilpotent if it is isomorphic to an inverse limit of
finite dimensional nilpotent Lie algebras, i. e.,

g = lim
←

gα

with each gα finite dimensional, nilpotent, and considered equipped with the discrete topology. Morphisms
of such Lie algebras are continuous morphisms of Lie algebras.

Remark 2.7. Concretely, a basis of the topology is given by the open sets π−1
α ({0}), where πα : g→ gα

is the projection.

Example 2.18. Any nilpotent Lie algebra is trivially a pro-nilpotent Lie algebra. The complete free
Lie algebra from the preceding section is pro-nilpotent, but not nilpotent.

Lemma 2.2. A nilpotent Lie algebra g is complete with respect to the topology given by the lower central
series, i. e., the canonical map

g→ lim
←

g/Cn

is an isomorphism of Lie algebras. (Not necessarily a homeomorphism, though.)

Proof. We assume g = lim← gα. An element of g is hence a compatible collection of elements xα ∈ gα.
An element of lim← g/Cn is a compatible collection of elements xn ∈ g/Cn. Concretely, each xn is itself
a compatible collection of elements xn,α ∈ gα/Cn,α, where Cn,α are the terms of the lower central series
for gα. The map in the Lemma sends x = (xα)α to the quotients (xα + Cn,α)α,n.

Injectivity: If x 7→ 0, i. e., xα ∈ Cn,α for all n and α, then by nilpotence of each gα we have xα = 0
for each α, hence x = 0.

Surjectivity: Given a compatible collection yα,n ∈ gα/Cn,α, our task is to construct some compatible
collection xα ∈ gα in the preimage. Let nα be the nilpotence class of gα. Then we set xα = yα,nα+1 ∈
gα.

Remark 2.8. The proof also shows that the lower-central-series induced topology is coarser than the
true topology on g.

Definition 2.22. For a nilpotent or pro-nilpotent Lie algebra g we define the exponential group Exp(g)
to be the group with elements g (as a set), with unit 0 ∈ g, with inverse x 7→ −x for x ∈ g and with
composition

x · y := BCH(x, y)

for x, y ∈ g.

Note that we are assuming, as always, that our ground field K has char(K) = 0. Otherwise BCH(x, y)
does not make sense.

Proof. We need to check that this is well defined, i.e., that the formal series BCH(x, y) converges. But
this follows from g = lim← g/Cn.

Exercise 2.13. Verify that Exp(g) is indeed a group.

Definition 2.23. For us, a unipotent group will be the exponential group of some finite dimensional
nilpotent Lie algebra. For us, a pro-unipotent group will be the exponential group of a nilpotent Lie
algebra. A morphism of such groups will be a morphism of the underlying (pro-)nilpotent Lie algebras.

Definition 2.24. Note that for g finite dimensional, the group multiplication is given by polynomial
formulas,
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Remark 2.9. Note that this is somewhat non-standard. For algebraic geometers a unipotent group is
an algebraic group, isomorphic to a closed subgroup of the group Un of upper triangular n× n matrices
with 1’s on the diagonal, for some n. We have seen above that a finite dimensional nilpotent Lie algebra
may be embedded into some un(= Lie(Un)). Hence exponentiation of matrices gives an isomorphism of
Exp(g) with some closed subgroup Un. However, we require char(K) = 0, otherwise exponentiation or
the BCH formula do not make sense.

The more standard notion of pro-unipotent group is that it is an inverse limit of unipotent groups.
These groups are naturally pro-affine groups, and in particular pro-affine varieties and morphisms have
to respect that structure. Concretely, in the standard approach one defines the allowed morphisms as
morphisms of the (suitable defined) Hopf algebras of functions on these groups.

The pro-unipotent groups according to our definition are exactly the inverse limits of unipotent
groups, however, we work only in characteristic zero.

2.7.1 Associated graded

For every Lie algebra the lower central series defines a filtration on the Lie algebra. (It is however not
very useful unless the Lie-algebra is nilpotent or pro-nilpotent.) We may take the associated graded of
this filtration, i. e., set

grng := Cn/Cn+1.

Since [Cm, Cn] ⊂ Cn+m there is a natural way to put a Lie bracket on grg = ⊕ngrng by declaring that
the following diagram commutes:

Cm × Cn Cm+n

grmg× grng grm+ng

[·, ·]

[·, ·]

We consider grg as a Lie algebra with this bracket. It is a graded Lie algebra (of course).

Example 2.19. (Trivial examples) If g is semi-simple, then grg = 0, so this construction is not so
interesting. If g = FLie(S), then grg = g. (Note that g was a graded from the start.) Similarly, for the
upper triangular matrices g, grg = g. In this case grng is spanned by matrices which are zero except on
the n-th band above the diagonal.

Example 2.20. (Non-trivial examples) We will see some below.

2.8 Pro-unipotent algebras

Definition 2.25. An augmented algebra is an algebra A together with a morphism of algebras ε : A→ K.

Example 2.21. K[X] is augmented, the augmentation being evaluation at X = 0.

For an augmented algebra A the kernel of the augmentation morphism I := ker ε is an ideal, the
augmentation ideal.

Definition 2.26. An augmented algebra A is unipotent if the some power of the augmentation ideal
vanishes, i. e., In+1 = 0 for some n. The smallest such n we call the unipotence class of A.

Example 2.22. ForK[X], the augmentation ideal isXK[X]. K[X] is not unipotent. HoweverK[X]/〈Xn+1〉
is unipotent, and of unipotence class n.

Definition 2.27. A topological augmented algebra A is called pro-unipotent is it is (homeomorphic to)
an inverse limit of finite dimensional unipotent algebras,

A = lim
←
Aα.

Here the right hand side is equipped with the inverse limit topology, after equipping each Aα with the
discrete topology.
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Any unipotent algebra is a nilpotent Lie algebra and any pro-unipotent algebra is a pro-nilpotent Lie
algebra.

Definition 2.28. Let L be a pro-nilpotent Lie algebra. The topological universal enveloping algebra Û(L)
of L is the universal pro-unipotent algebra A, together with a map of pro-nilpotent Lie algebras L→ A,
taking values in the augmentation ideal.

Let g be a finite dimensional nilpotent Lie algebra. Then one may set

Û(g) = lim
←
U(g)/In

i. e, take the completion of the algebraic Hopf algebra with respect to the augmentation ideal.

Exercise 2.14. Verify that Û(g) in this case is a pro-unipotent algebra, and that indeed the universal
property is satisfied.

Exercise 2.15. Verify that Û(g) is a topological Hopf algebra. Show that the Lie algebra of primitive
elements is exactly L, and that the group of group-like elements can be identified with Exp(g). (Hint:
The exponential and logarithm map exist and are inverse to each other.)

For a more general pro-nilpotent Lie algebra g = lim gα we may set

Û(g) := lim
←
U(gα)/Inα

where Iα is the augmentation ideal of U(gα).

Exercise 2.16. Redo the previous two exercises in this case. I. e., verify that Û(g) satisfies the universal
property, that it is a topological Hopf algebra, that the primitives are g and that the group like elements
are Exp(g).

Remark 2.10. Compare this to the “usual” situation where we may associate (i) to a Lie algebra a Hopf
algebra U(g), with no group-like elements and primitives g of (ii) to a group G a Hopf algebra K[G] with
no primitives, but group like elements G. In the nilpotent case Û(g) unites these two Hopf algebras and
may either be seen as a version of the universal enveloping algebra of g, or as a version of the group
algebra K[Exp(g)].

Exercise 2.17. We saw before that U(FLie(S)) ∼= K〈S〉. Verify that Û(F̂Lie(S)) ∼= K〈〈S〉〉, the topo-
logical Hopf algebra of formal power series in symbols from S.

2.9 Pro-unipotent (Malcev) completions of groups

Definition 2.29. Let G be a group. Then the pro-unipotent completion (or Malcev completion) of G, Ĝ
is the universal pro-unipotent group with a morphism of groups G→ Ĝ. The Lie algebra of G is defined
to be the pro-nilpotent Lie algebra underlying Ĝ.

Remark 2.11. More generally one may let G be an affine algebraic group, and require that G → Ĝ is
pro-affine. (For unipotent G then Ĝ = G trivially.) However, for us G is always a discrete group, or in
other words the underlying variety is a set of points.

Abstractly, one may construct G → Ĝ as the inverse limit over arrows G → U with Zariski dense
image and U unipotent.

In this course, we will however use a more explicit construction, and restrict to finitely presented G
for simplicitly. I. e., G is generated by some finite set S (say S = {X1, . . . , Xn}) and some finite set of
relations R. Concretely, the most general relation looks like this

Xα1
j1
· · ·Xαk

jk
= 1.

Consider the (pro-nilpotent) Lie algebra of primitive elements g0 = F̂Lie(x1, . . . , xn). We obtain
relations in (i. e., elements of) g0 by formally setting Xj = Exp(xj) in the relations R. I. e., the relation
above maps to the element

BCH(α1xj1 ,BCH(α2xj2 , . . . ,BCH(αkxjk) · · · ) ∈ g0.
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Let us denote the relations thus obtained by {r1, . . . rN}. Let I be the ideal generated by these relations.
Also remember that g0 = lim← g0/Cl where Cl are the terms of the lower central series. Then we set
g = lim← g0/(Cl + I). This is obviously a pro-nilpotent Lie algebra.

Furthermore, we claim there is a canonical map G → Exp(g), such that Xj 7→ exp(xj). Concretely,
since Exp(g) = lim← Exp(g0/(Cl + I)) this means that the assignments Xj 7→ exp(xj + Cl + I) define
(compatible) maps of groups G→ Exp(g0/(Cl + I)) for each l. For this one has to check that the images
of the relations R hold. But they are contained in exp(I) by construction so we are done.

Proposition 2.2. Exp(g) ∼= Ĝ, i. e., Exp(g) satisfies the universal property. (This also shows that the
definition of g is independent of the presentation of G chosen, modulo unique isomorphism.)

Proof. Suppose some other pro-unipotent group Exp(g̃) with a map from G is given, where

g̃ = lim
←

g̃α.

Then we need to show that there is a unique morphism g→ g̃ that makes the diagram

G

Exp(g) Exp(g̃)

commute. This is equivalent to providing a compatible system of maps g→ g̃α such that the diagrams

G

Exp(g) Exp(g̃α)

commute. Let x̃j ∈ g̃ be the unique elements such that Xj ∈ G is mapped to exp(x̃j). Clearly, our
map to be constructed must send xj 7→ x̃j . Since the Lie algebra generated by the xj is dense in g this
shows uniqueness. For existence, let nα be the nilpotence class of gα and define the map g→ g̃α as the
composition

g→ g0/(Cnα+1 + I)→ g̃α

where the right hand map is the unique one sending xj to x̃j . This map exists since (i) Cnα+1 is sent to
zero since the nilpotence class of g̃α is nα and (ii) I is sent to zero since the existence of the map G→ g̃α
implies that the images of the relations R must hold in gα.

Remark 2.12. I do not know whether in general, for a pro-nilpotent Lie algebra g, and a closed ideal
I, the map g/I → lim← (gα/I) is an isomorphism (though it is surjective).

Remark 2.13. The kernel of the morphism G → Ĝ is a normal subgroup which satisfies the following
properties:

• If xn is in the kernel (for n ≥ 1), so is x.

• The intersection of terms in the lower central series of G, ∩jCj is in the kernel.

One may generalize the explicit description of the (topological) universal enveloping algebra of the
free Lie algebra a bit, to also include the relations.

Exercise 2.18. Show that in the setting of this section

Û(g) ∼= lim
←

K〈〈x1, . . . , xn〉〉/(〈R1, . . . , RN 〉+ In)

where I is the augmentation ideal in U(g0) = K〈〈x1, . . . , xn〉〉 and R1, . . . , RN are the images of the
relations therein. (These images are defined by replacing Xj by exj in the relations.) This generalizes
Exercise 2.17.
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Exercise 2.19. Verify that Û(g) ∼= lim←K[G]/In where K[G] is the group algebra and I is the aug-
mentation ideal. Hence by Exercise ?? the group Ĝ may alternatively be described as the group-like
elements of the limit on right hand side. (This is due to Quillen.)

Example 2.23. Consider the group G = Z/2Z. The group has one generator X and one relation
X2 = 1. Setting X = exp(x) we obtain the relation 2x = 0 an the Lie algebra, hence the Lie algebra of
G and the completion Ĝ are trivial.

Example 2.24. Show that the same assertion also holds for the permutation group Sn by the same
reason (i. e., that torsion elements are mapped to 1 in Ĝ).

Remark 2.14. The braid group on n strands Bn is the group with generators σi. 1 ≤ i < n and
relations

σiσi+1σi = σi+1σiσi+1 for 1 ≤ i ≤ n− 2σiσj = σjσi for |i− j| ≥ 2.

Elements may be considered as braids, see Figure ??. There is a canonical map Bn → Sn. In fact, the
right hand side is obtained by additionally imposing the relations σ2

i = 1. The pure braid group PBn is
the kernel of Bn → Sn. PBn is presented as follows. The generators are

xij = σ−1
i σ−1

i+1 · · ·σ
−1
j−2σ

2
j−1σj−2 · · ·σi+1σi

for 1 ≤ i < j ≤ n, see Figure ??. The relations are

(xij , aijk) = (xik, aijk) = (xjk, aijk) = 1

(xij , xkl) = (xil, xjk) = 1

(xik, x
−1
ij xjlxij) = 1

where i < j < k < l, aijk := xijxikxjk and (α, β) = αβα−1β−1 denotes the commutator in the group.

Exercise 2.20. Verify that the map PB3 → FGrp(X,Y ) defined by

x12 7→ X x23 7→ Y x13 7→ X−1Y −1

is a group homomorphism. (I.e., check that the images of the pure braid group relations hold.)

Exercise 2.21. Show that PB3
∼= FGrp(X,Y ) × FGrp(C). Hint: Define X = x12, Y = x23, Z = x13

and let C = XZY = ZY X = Y XZ replace the generator Z and show that the relations become [C,X] =
[C, Y ] = 1.

Exercise 2.22. Verify that the map PB4 → FGrp(X,Y ) defined by

x12 7→ X x34 7→ X

x23 7→ Y x14 7→ Y

x13 7→ X−1Y −1 x34 7→ Y −1X−1

is a group homomorphism. This exercise will be very important for us later.

Example 2.25. We are interested in the Lie algebra pbn of PBn. It is generated by elements tij ,
1 ≤ i < j ≤ n. (We will also set tji = tij for convenience.) The relations are obtained from the relations
on PBn in the straightforward manner (set xij = exp(tij)) and are a bit unwieldy. (Exercise: Write them
down.)

However, we do want to write down the relations for the associated graded Lie algebras tn = grpbn.
They are (in this case) obtained by forgetting about all higher commutators in the relations of pbn and
read.

[tij , tkl] = 0 i, j, k, l pairwise distinct
[tij , tik + tkj ] = 0 i, j, k pairwise distinct

Exercise 2.23. Show that the Malcev Lie algebra of Pn is isomorphic to FLie(X) for all n.

Solution 2.2. Let tj be the generator of the Malcev Lie algebra corresponding to σj(∼= exp(tj)). Then
the relations read

ti − tj = (Lie words of length ≥ 2 in ti, tj).

Hence inserting the formula into its right hand side we see that ti − tj can be written as arbitrary high
order bracket expressions. Hence necessarily ti = tj in P̂n.
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2.10 Groupoids
We may define a group as a category with one object in which all morphisms are invertible.

Definition 2.30. A groupoid is a category in which all morphisms are invertible.

For us, all groupoids we consider will in fact have a finite set of objects, and all objects are isomorphic.
Concretely, there is hence the following structure: There is a set of objects. Hom(o, o) is a group for any
object o. Hom(o, o′) is a Hom(o′, o′)-Hom(o, o)-torsor.

Definition 2.31. Let G and H be groups. A G-H torsor T is a set together with a left free and transitive
action of G and a commuting right free and transitive action of H.

Exercise 2.24. Picking any element ∗ ∈ T uniquely defines a map φ : H → G such that ∗h = φ(h)∗.
Show that φ is an isomorphism of groups.

Exercise 2.25. Fix any isomorphism φ : H → G. Then G becomes a G-H torsor (say Gφ) by defining
the left and right actions as g ·X := gX, X · h := Xφ(h). Show that any G-H-torsor is isomorphic to a
torsor of this form. Show further that two torsors Gφ, Gφ′ are isomorphic iff φ′ ◦ φ−1 is inner, i. e., of
the form AdX : g 7→ XgX−1 for some X in G.

Example 2.26. Let V,W be vector spaces. Then End(V,W ) is a GL(W )-GL(V )-torsor.

Example 2.27. Any category can be made into a groupoid by dropping all non-invertible morphisms.

Example 2.28. Let S be any set. We may consider it as a groupoid with one object for each element
in S and exactly one morphism between any pair of objects.

Example 2.29. (Action groupoid) Let S be a set with an action of the group G. The action groupoid
is the groupoid with objects S and morphisms

Hom(s, s′) = {g ∈ G | g · s′ = s}.

The composition is the one from G.

Example 2.30. We define the groupoid of colored braids in n strands CoBn (notation stolen from B.
Fresse) as the pair groupoid associated to the action of Bn on Sn (the action is defined via the map
Bn → Sn). See Figure ??.

Let us examine closer the structure of a groupoid. Let G,H,K be groups, let GTH be a G-H-torsor
and let HTK be an H-K-torsor. We define GTH ×H HTK as GTH × HTK/ ∼, where the equivalence
relation identifies (a, h · b) ∼ (a · h, b) for all h ∈ H. One checks that GTH ×H HTK is a G-K torsor.

Exercise 2.26. Let o, o′, o′′ be three objects in a groupoid, let G = Hom(o, o), H = Hom(o′, o′),
K = Hom(o′′, o′′), and let GTH = Hom(o′, o)and HTK = Hom(o′′, o′). Check that the composition map
GTH ×H HTK → Hom(o′′′, o) factors through GTH ×H HTK . (Use the associativity axiom.)

Remark 2.15. Showing that a G-H torsor exists is sometimes a convenient way of showing that G and
H are isomorphic, without constructing an explicit isomorphism.

2.11 Pro-unipotent groupoids
One may generalize our previous constructions to the groupoid setting.

Definition 2.32. Let G, H be pro-unipotent groups. Then a pro-unipotent G-H torsor is a torsor of
the form Gφ (cf. Exercise 2.25) for φ : H → G an automorphism of pro-unipotent groups.

A morphism of pro-unipotent torsors is the same as a morphism of the underlying torsors. Concretely,
given morphisms of pro-unipotent groups α : G → G′ and β : H → H ′, then a morphism of torsors
Gφ → G′φ′ is the same as an element X ∈ G such that AdX ◦ φ′ ◦ β = α ◦ φ. (Such an element may not
exist, in which case there are no morphisms of the torsors.)

Given a G-H pro-unipotent torsor GTH = Gφ and an H-K pro-unipotent torsor HTK = Hφ′ we set

GTH ×H HTK = Gφ ×H Hφ′ := Gφ◦φ′ .

There is a canonical map

GTH × HTK → GTH ×H HTK

(g, h) 7→ gφ(h).
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Definition 2.33. A pro-unipotent groupoid is a groupoid such that

• All spaces Hom(o, o) are pro-unipotent groups.

• All spaces Hom(o, o′) are either empty or pro-unipotent Hom(o, o)-Hom(o, o) torsors.

• Suppose Hom(o, o′) and Hom(o′, o′′) are non-empty. Then the composition maps Hom(o, o′) ×
Hom(o′, o′′)→ Hom(o, o′′) factor as

Hom(o, o′)×Hom(o′, o′′)→ Hom(o, o′)×Hom(o′,o′) Hom(o′, o′′)→ Hom(o, o′′)

where the right hand arrow is a map of pro-unipotent torsors.

A morphism of pro-unipotent groupoids is defined in the obvious manner.

Definition 2.34. Let G be a groupoid. The pro-unipotent completion Ĝ of G is the universal pro-
unipotent groupoid with a map of groupoids G→ Ĝ.

Let us construct Ĝ. It has the same objects as G. HomĜ(o, o) is defined to be the pro-unipotent
completion of HomG(o, o) for each object o. In G, pick an element foo′ ∈ HomG(o′, o) for any isomorphic
pair of objects o 6= o′. This fixes an isomorphism φoo′HomG(o′, o′)HomG(o, o). We define HomĜ(o, o) :=
Hφoo′ where H = HomĜ(o, o). Some composition morphisms are defined by the action on the torsors.
The others define as follows:

HomĜ(o′, o)×HomĜ(o′′, o′) = Hφoo′ ×H
′
φo′o′′

→ Hφoo′ ×
′
H H ′φo′o′′ = Hφoo′◦φo′o′′

X→ Hφoo′′ .

Here H ′ = HomĜ(o′, o′) for brevity and X = f−1
oo′′ ◦ foo′ ◦ fo′o′′ ∈ H. The canonical map of groupoids

G → Ĝ is defined as follows. It is the identity on the objects. The map HomG(o, o) → HomĜ(o, o) is
the canonical map contained in the definition of pro-unipotent completion. The maps HomG(o′, o) →
HomĜ(o′, o) is the composition

HomG(o′, o)
◦f−1

oo′→ HomG(o, o)→ HomĜ(o, o) = H → Hφoo′ = HomĜ(o′, o).

Exercise 2.27. Verify the universal property for Ĝ.

Solution 2.3. Assume the pro-unipotent groupoid G′ is given, with a map G → G′. We have to show
that the map factors through G→ Ĝ. Let us construct Ĝ→ G′. Since G and Ĝ have the same objects
it is clear how to map objects, and the map is uniquely defined. On spaces H = HomĜ(o, o) the map
is defined and unique by the universal property for the ordinary pro-unipotent completion. On spaces
HomĜ(o′, o) = Hφoo′ we define the map uniquely by sending 1 ∈ H to the image of the chosen element
foo′ in G′. This is the unique choice that makes the diagram inthe universal property commute. Hence
uniqueness is shown. However, we still need to verify that the map thus defined is a functor, i. e., that
it commutes with composition of morphisms. But that may be verified on the elements 1 in the torsors
(the images of the foo′ in G), for all other elements it follows by equivariance. But on these elements it
follows from the fact that G→ G′ is a functor using equivariance again.

Example 2.31. The most interesting example for us the pro-unipotent completion ĈoBn of the groupoid
of colored braids. Note that this completion is not trivial, the isomorphism group of each object being
isomorphic to P̂Bn.

2.12 (Braided) Monoidal Categories
Let us recall the following standard definitions from category theory.

Definition 2.35. A monoidal category (C,⊗,1) is a category together with

1. A binary operation (a functor)
C × C → C.

2. An isomorphism of functors (i. e., an invertible natural transformation)

α : · ⊗ (· ⊗ ·)⇒ (· ⊗ ·)⊗ ·

It is called associator.
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3. A distinguished object 1 ∈ ObC.

4. Isomorphisms of functors

λ : 1⊗ · ⇒ id

ρ : · ⊗ 1⇒ id

called left and right unitor.

These data are required to satisfy the following relations.

((A⊗B)⊗ C)⊗D

(A⊗B)⊗ (C ⊗D)

A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D

A⊗ ((B ⊗ C)⊗D))

(A⊗ I)⊗B A⊗ (I ⊗B)

A⊗B

λ1 = ρ1 : 1⊗ 1→ 1.

A non-unital monoidal category is the subset of the above data not involving the unit.
Let C,D be monoidal categories (respectively non-unital monoidal categories). We say that a functor

F : C → D is strict monoidal if it preserves the above structures. Concretely, this means that F (·⊗C ·) =
F (·)⊗D F (·), F (1C) = 1D (in the unital case) and that F intertwines with the natural transformations
α and (in the unital case) ρ and lambda.

Example 2.32. The category of sets Set is monoidal, with product the Cartesian product.

Example 2.33. The category of vector spaces Vect is monoidal with the usual tensor product. For
given vector spaces U , V , W the associator αU,V,W : U ⊗ (V ⊗W ) → (U ⊗ V ) ⊗W is defined by the
obvious formula u⊗ (v ⊗ w) 7→ (u⊗ v)⊗ w. Alternatively, Vect can be made into a monoidal category
by declaring the monoidal product to be the direct sum.

Example 2.34. The category of algebras is monoidal, with the tensor product being the tensor product
of the underlying vector spaces. Note that the product on A⊗B for A, B algebras is defined such that
elements of A and B commute, and the unit is 1A ⊗ 1B .

Example 2.35. The category of Lie algebras is monoidal taking the direct sum of the underlying vector
spaces as product. (Note: In the Lie algebra g⊗ h, g commutes with h.)

It can be shown that the above axioms suffice to ensure that “any diagram built using only α, ρ and
λ and their inverses” commutes. However, like this the statement is strictly speaking not correct, since
in the monoidal category in question identities additional identities betwen some tensor products may
hold that make it possible to write down diagrams that do not commute. The way to state the Theorem
correctly is the following. Let M be the free magma generated by a single symbol X. Elements are just
parenthesations of copies of X, like

X(X(XX)). (Think: X ⊗ (X ⊗ (X ⊗X)).)

Another name for M is the set of planar binary trees. Let M1 be the free magma generated by symbols
X and 1, elements are just planar binary trees whose leafs are labeled by either X or 1. We consider
M and M1 as categories with exactly one morphism between any pair of objects with the same number
of X’s (and none between objects with different numbers of X’s). Clearly, M1 is monoidal (with the
obvious monoidal structure) and M is non-unital monoidal.
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Theorem 2.3 (MacLane Coherence Theorem). Let C be a monoidal category (a non-unital monoidal
category). For every o ∈ ObC there is a unique strict monoidal functor F : M1 → C (respectively
F : M → C) such that F (X) = o.

Remark 2.16. The non-trivial part here is not the (obvious) uniqueness, but the fact that the functor
exists. In particular, note that all diagrams in M1 trivially commute, and hence all images of these
diagrams have to commute as well.

Definition 2.36. A braided monoidal category is a monoidal category with an additional natural iso-
morphism

·⊗?⇒?⊗ ·

satisfying the following two conditions:

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C

(B ⊗A)⊗ CB ⊗ (A⊗ C)

B ⊗ (C ⊗A)

(A⊗B)⊗ CC ⊗ (A⊗B)

A⊗ (B ⊗ C)

A⊗ (C ⊗B) (A⊗ C)⊗B

(C ⊗A)⊗B)

A non-unital braided monoidal category is a non-unital monoidal category with the same additional
datum as above.

Definition 2.37. A symmetric monoidal category is a braided monoidal category in which the the com-
position

·⊗?⇒?⊗ · ⇒ ·⊗?

(i. e., the braiding applied twice) is the identity.

Example 2.36. All the examples above are actually symmetric monoidal categories. We will soon see
an example of a category that is monoidal but not symmetric.

Example 2.37. For the category of Z-graded vector spaces the braiding U ⊗ V → V ⊗ U is defined as

u⊗ v 7→ (−1)|u||v|v ⊗ u

for homogeneous elements u ∈ U , v ∈ V .

There is also a coherence theorem for braided monoidal categories. It says that the morphisms
between two (arbitrarily bracketed) tensor products that can be written down using only the braidings,
associators and unit are exactly given by the pure braid group, or the braid group if one assumes all
involved objects identical. More precisely, similarly to M above define a category M b with objects the
free magma in one symbol X, and with sets of morphisms between any two objects of equal numbers n
of X’s the braid group Bn in n strands. Define similarly M b

1 to be the category with objects the free
magma in symbols 1, X, and with sets of morphisms between any two objects of equal numbers n of X’s
the braid group Bn in n strands.

Theorem 2.4. Let C be a baided monoidal category (a non-unital braided monoidal category). For every
o ∈ ObC there is a unique strict braided monoidal functor F : M1 → C (respectively F : M → C) such
that F (X) = o.

2.12.1 Monoids

Fix a monoidal category C. A monoid in C is an object M ∈ ObC together with morphisms

1→M (unit)
M ⊗M →M (product)
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such that the following diagrams commute:

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M

M ⊗ 1 M ⊗M 1⊗M
M

Example 2.38. A monoid in Vect is an associative algebra.



Chapter 3

Operads

3.1 Motivation (what we want to achieve)

In algebra we deal with a variety of “algebraic structures” like associative algebras, commutative algebras,
Lie algebras or modules over these objects. For each such type of algebraic structure, much of the theory
is very similar. We would like to simplify the situation and move to a one step more abstract level. We
would like to make a theory of all algebraic structures at once. Of course, the first step we have to take
here is this:

Task: Give a precise definition of what is an “algebraic structure”.
Operad theory attempts to do just that. There will be one operad for each type of algebraic structure

(like the associative operad Ass, the Lie operad Lie etc.). An algebraic structure on some object will
then be a representation of an operad on that object. For example, a Lie algebra structure on some
vector space V is the same as a representation of the operad Lie on V .

Concretely, an operad encodes the space of possible operations that may be applied to elements of
some algebraic object. For example, if we are given n elements a1, . . . , an of an associative algebra, we
may multiply them in any one of n! possible orders. Furthermore, we may take any linear combination
of elements thus obtained. Hence the space of n-ary operations of the operad Ass is Ass(n) ∼= Kn!.

3.2 Definition

Definition 3.1. An S-module P in a category C is a collection of objects P(n) ∈ C together with right
Sn actions for n = 0, 1, 2, . . . . The category of S-modules in C is denoted by CS.

Definition 3.2. An operad P is the following data:

• An S module in Vect. (P(n) is called spaces of n-ary operations).

• A distinguished element 1 ∈ P(1) (the unit).

• A family of morphisms

µn,k1,...,kn : P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + k2 + · · ·+ kn)

(the operadic compositions).

These data are required to satisfy the following axioms:

1. (Equivariance) The compositions are equivariant with respect to the symmetric group actions.

2. (Unit axiom)

µ1,n(1, n) = x

µn,1,...,1(x,1, . . . ,1) = x

For each n and each x ∈ P(n).

31
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3. (Associativity)

µn,k1,...,kn(x, µn,l11,...,l1n(y1, z
1
1 , . . . , z

1
l ), . . . , µn,l11,...,l1n(y1, z

1
1 , . . . , z

1
l ))

= µn,k1,...,kn(µn,k1,...,kn(x, y1, . . . , yn), z1
1 , . . . , z

n
l )

In the obvious manner one defines morphisms of operads.

Example 3.1. The commutative operad Com1 is defined by Com1(n) = K for all n, with trivial Sn
action. Let us fix a basis of all Com1(n), say Com1(n) = K ·mn. The composition morphisms are defined
by the formula

µn,k1,...,kn(mn,mk1 , . . . ,mkn) = mk1+···+kn

The operadic unit is 1 = m1. There is also the sub-operad Com ⊂ Com1 with Com(0) = 0, Com(n) =
Com1(n) for n ≥ 1.

Example 3.2. The associative operad Ass1 is defined through Ass1(n) = K[Sn], where the right hand
side denotes the group ring of Sn and the right Sn-action is the canonical one. Let us fix as basis of these
vector spaces the canonical one given by elements of Sn. Then the compositions are defined such that

µn,k1,...,kn((12 · · ·n), (1 · · · k1), . . . , (1 · · · kn)) = (12 · · ·N)

where N = k1 + · · ·+ kn. All other cases are uniquely determined by the equivariance conditions. The
unit is 1 = (1). We define Ass ⊂ Ass1 by setting Ass(0) = 0, Ass(n) = Ass1(n), n > 0.

Example 3.3. Let V be any vector space. Than the endomorphism operad End(V ) is defined as follows.

End(V )(n) = Hom(V ⊗n, V )

equipped with the natural right Sn module structure by permuting arguments. The compositions are
the obvious ones

µn,k1,...,kn(f, g1, . . . , gn)(x1, . . . , xN ) = f(g1(x1, . . . , xk1), . . . , gn(xN−kn+1, . . . , xN )).

The unit is the identity map in End(V )(1).

Definition 3.3. Let P be an operad. A representation of P (or a P-algebra structure) on some vector
space V is an operad map P → End(V ).

Remark 3.1. The operadic compositions are completely determined by specifying the reduced operadic
compositions

◦j : P(n)⊗ P(m)→ P(n+m− 1)

a ◦j b = µn,1,...,1,m,1,...,1(1, . . . ,1, b,1, . . . ,1).

Exercise 3.1. Verify that a representation of P is a collection of maps

νn : P(n)⊗Sn V ⊗n → V

satisfying the following conditions:

• νn(1)⊗ x = x∀x ∈ V .

• νn(p, νk1(p1, x1, . . . ), . . . , νkn(pn, x..., . . . , xN )) = νn(µ(p, p1, . . . , pn), x1, . . . , xN ).

3.3 A slightly better description of operad
Elements of P(n) of an operad P may be thought of as operation with n inputs labelled by 1 to n. It
is often more convenient to use a slightly different (but equivalent) definition of operad, in which “the
inputs are labelled by” some arbitrary set S.

Let Setf be the category with objects the finite sets and morphisms the bijections.

Definition 3.4. An operad P is a functor Set→f Vect, together with
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• A distinguished object 1S ∈ P(S) for each one element set S.

• Composition morphisms: For all finite sets S, T and s in S a morphism

P(S)⊗s P(T )→ P((S \ {s} t T ).

These data have to satisfy the following conditions:

• Naturality: For every bijection f : S → S′ we have P(f)(1S′) = 1S.1 Similarly, for all bijections
f : S → S′, g : T → T ′

P(S′)⊗f(s) P(T ′) P((S \ {s} t T )

P(S)⊗s P(T ) P((S \ {s} t T )

commutes.

• Unit axiom: Operadic composition with the operadic units are the identity.

• Associativity: ...

We may equivalently define an S-module to be a functor Set→f Vect.

3.4 Operads in other categories

Looking at the definition of operad, we see that it may be copied word by word for any symmetric
monoidal category C having finite limits and colimits replacing Vect. We will call the objects thus
obtained operads in C.

We may also define the notion of representation of an operad in C by copying the definition of Exercise
3.1 above.

3.5 The free operad

There is an obvious forgetful functor
OpC → CS.

It has a left adjoint, the free operad functor, which assigns to every S-module A some operad FreeA.
The explicit construction for C = Vect is as follows:

1. Define the auxiliary space V (n) to be the space spanned by all formal functional expressions one may
write down using elements of A(k) (k = 0, 1, . . . ) and formal variables X1, . . . , Xn, where elements
of A(k) are considered as k-ary multilinear functions and each Xj occurs exactly once. Example:
f4(f3(X2, X5, X1), X4, X6, f0) is allowed where fj ∈ A(j). Furthermore f2(f0, 2f0) = 2f2(f0, f0)
etc.

2. We identify fn(A1, . . . , An) ∼ (fnσ)(Aσ(1), . . . , Aσ(n)) for all permutations σ ∈ Sn everywhere in
expressions.

3. The right Sn action on FreeA(n) is given by permuting indices of the Xj .

4. The operadic unit is given by the expression X1.

5. The operadic composition is defined in the obvious way.

For other categories C the construction is analogous.

1This may be rephrased as saying that 1 is a natural transformation from the operad ∗ with only the identity operation
to P.
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Example 3.4. Let C = Set and let the S-module A be defined by setting

A(n) =

{
S2 for n = 2

∅ otherwise

Let PaP = FreeA. Algebras over this operad are called magmas, and are just sets with a binary operation
not required to satisfy any axioms. Elements of PaP(n) have a very concrete description and may be
understood as parenthesized permutations (hence the notation). For example

PaP(2) = {(12), (21)}
PaP(3) = {((12)3), (1(23)), ((21)3), (2(13)), etc.}

Exercise 3.2. Show that |PaP(n)| = n!Cn where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.

Example 3.5. We may add take a quotient of PaP by the equivalence relation

µ ◦1 µ = µ ◦2 µ.

Algebras over the resulting operad AssSet are associative algebra objects in Set. Concretely

AssSet(n) = Sn.

Example 3.6. There is a functor Fin→ C into any monoidal category C sending a finite set S to
∐
s∈S 1.

Hence from an operad in Fin we may obtain an operad in C. For example, for AssSet the resulting operad
will govern algebra objects in C. (discuss unital/non-unital)

3.5.1 More free operads

Let us start by recalling several familiar definitions.

Example 3.7. Let S be a set. The free group FGrp(S) in S may be identified with the set of (possibly
empty) strings in letters S tS, where a symbol s from the second copy of S is written s−1 to distinguish
it from one in the first, modulo relations ss−1 = s−1s = 1. The product is juxtaposition, the inverse
is the obvious map. There is an (equally obvious) map of sets S → FGrp(S). It satisfies a universal
property: Let G be another group. Then any map of sets S → G factors uniquely as

S → FGrp(S)→ G

where the right hand arrow is a group homomorphism. Another way to say this is that the functor
FGrp(·) : Set→ Grp is left adjoint to the forgetful functor Grp→ Set.

Example 3.8. Let S be a set. The free algebra in S is the vector space spanned by (possibly empty)
strings with letters in S. Exercise: Write down the universal property.

Example 3.9. To generate a groupoid it is not enough to provide a generating (morphism) set. One
first has to provide a set of objects O, and then a set of morphisms M , together with two maps M ⇒ O
(the source and target maps). Then the free groupoid in M ⇒ O is a category such that Hom(o, o′) is
given by all admissible strings in letters M tM , with relations mm−1 = m−1m = 1. Here a string is
admissible if the source of any letter equals the target of the next, the first letter has target o′, and the
last letter has source o. The free groupoid functor is left adjoint to the forgetful functor

Groupoids→ (Set ⇒ Set).

Exercise: Write down the universal property explicitly.

Exercise 3.3. Recall from Example ?? that the braid group Bn was generated by the pair transpositions
bi under the relations (??), and that the colored braid groupoid CoBn is the action groupoid of the action
of Bn on Sn. Concretely, morphisms are pairs (b, σ), with b ∈ Bn and σ ∈ Sn. Show that the groupoid
CoBn is generated by morphisms (bi, σ) under relations (R, σ), where R stands for the relations (??).
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Let us move on to more elaborate examples, involving operads.

Example 3.10. Consider the forgetful functor

(Operads in algebras)→ SetS.

To describe its left adjoint, let us introduce the following notation. Let an S-module S in Set be given,
and let us define another (bigger) S-module S̃. S̃(N) has as elements (equivalence classes of) tuples

sI1,...,In := (s; I1, . . . , In)

where s ∈ S(n), for N ≥ n and any n disjoint subsets I1, . . . In ⊂ {1, . . . , N}. We consider two such
tuples identical if they can be mapped onto each other using the symmetric group action, i.e.,

(s · σ; I1, . . . , In) ≡ (s; Iσ(1), . . . , Iσ(n)).

for some σ ∈ Sn. TODO: inverse?
The action of the symmetric group SN on such tuples is defined in the obvious manner by changing

the elements of the sets I1, . . . , In.
Then the free operad in algebras generated by S, say P, is defined such that P(N) is the algebra

generated by S̃(N), modulo relations[
sI1,...,In , sJ1,...,Jk

]
= 0 if (I1 t · · · t In) ∩ (J1 t · · · t Jk) = ∅ or ∃i : J1 t · · · t Jk ⊂ Ii. (3.1)

Here the symbols sI1,...,In should be thought of as operadic compositions of (the image of) s with
units, e. g., for N = 8

s23,456,7 = µ(18, µ(s, 12, 13, 11), 11)

where µ is the operadic composition as in eqn. (??), and 1n ∈ P(n) is the unit. (Here we abbreviate
s23,456,7 = s{2,3},{4,5},{7}.)

To define the operad structure it suffices to specify the compositions

P(n)⊗ P(k1)⊗ · · · ⊗ P(kn)→ P(k1 + · · ·+ kn)

on generators, i. e., we may pick a unit in all but one factor in the tensor product. But given our
interpretation of the symbols s··· it is then clear how to define the composition. The commutativity
relations (3.1) are a translation of the condition that the factors in the tensor product above must
commute.

Universality of his construction follows since we have not used any relation except those coming from
the axioms of an operad in algebras.

Example 3.11. Similarly, the free operad in Lie algebras P generated by S ∈ SetS may be defined.
P(N) is the Lie algebra generated by S̃(N), with relations (3.1).

Example 3.12. Let S be the S-module in Set such that S(2) = {t} and S(n) = ∅ for n 6= 2. Then the
Drinfeld Kohno operad in Lie algebras t from Example ?? is the free operad in Lie algebras generated
by S modulo the single relation

t1,23 = t1,2 + t1,3.

(Here we abbreviate t1,23 := t{1},{2,3} etc.)

Example 3.13. Free operads in groupoids are a bit more tricky to define. Clearly there is a forgetful
functor

(Operads in groupoids)→ (SetS ⇒ SetS).

We want to construct its left adjoint. For concreteness, fix an element M ⇒ O on the right hand side,
and call our free operad in groupoids to be constructed P. We set ObP = FOp(O). Let us next construct
generating sets for morphisms. Analogously to Example 3.10 above, let us define an S-module M̃ in sets
as follows. Elements of M̃(N) are equivalence classes of tuples

(m,α0, α1, . . . , αn)

where m ∈ M(n), n < N , α0 ∈ FOp(O)({0} ∪ I0), αj ∈ FOp(O)(Ij) (j = 1, . . . , n), and where we fixed
an underlying partition [N ] = I0 t · · · t In. There is an equivalence relation as follows

(m · σ, α0, α1, . . . , αn) ≡ (m,α0, ασ(1), . . . , ασ(n))
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for σ ∈ Sn (TODO: inverse?). Again a tuple as above shall be understood as a suitable composition of
m (or rather the image of m in P) with identity morphisms. there are two maps

M̃ ⇒ FOp(O)

by mapping (m,α0, α1, . . . , αn) to the compositions

α0 ◦0 (s(m) ◦ (α1, . . . , αn)) ∈ FOp(O)(N)

α0 ◦0 (t(m) ◦ (α1, . . . , αn)) ∈ FOp(O)(N).

We define the P(N) to be the groupoid generated by M̃(N) ⇒ FOp(O)(N) = P (N), with certain
commutativity conditions resembling (3.1). They are a bit cumbersome to write down, and we have
encoded them in the pictures ??.

Example 3.14. Note that in the previous example the generating morphisms M came with two maps
to O. Later we will like to have the additional freedom to specify generating morphism between objects
in FOp(O), i. e., as initial data we are given the O ∈ SetS and M ∈ SetS with arrows M ⇒ FOp(O).
We may still talk about an operad in groupoids generated by these data, and the construction can be
extracted from that in the previous example as follows:

• For every element x ∈ FOp(O)(n) in the image of M(n) ⇒ FOp(O)(n) add an extra element ox to
the generating set of objects O(n). Call the resulting S-module O′.

• Form the free operad P in groupoids generated byM⇒ O′.

• Take its quotient modulo the relation x = ox in P(n). This quotient is be the operad we look for.

Exercise 3.4. Show that the operad in groupoids CoB of colored braids is generated (over the base
AssSet) by a single generator b1,2 : 12→ 21, and relations

b1,23 = b13b12

b12,3 = b13b23

TODO: check whether both are necessary.

3.6 Operads governing monoidal categories
The goal of this section is to define and examine the operads governing monoidal and braided monoidal
categories. In fact, we will restrict to the non-unital versions for simplicity.

Recall the operad (in Set) PaP from example ??. Clearly there is a map of operads PaP → AssSet.
We define the operad in groupoids Mon to be the fiber pair (operad in) groupoid(s) of PaP → AssSet.
So ObMon = PaP , and between two objects of Mon(n) there is exactly one morphism if they encode the
same permutation after forgetting the parenthesation, and no morphisms otherwise.

The justification of the name Mon comes from the following Lemma.

Lemma 3.1. Consider Mon as an operad in categories. Then Mon-algebras are the same as (small)
non-unital monoidal categories.

Proof. We have to show two things: every Mon-algebra is a non-unital monoidal category and every
such category is a Mon-algebra. Let us start with the latter statement, so assume a C is a non-unital
monoidal category. To construct the Mon-algebra structure we have to provide functors

ρn : Mon(n)× C × · · · × C → C (3.2)

in a way compatible with the composition in Mon. On objects, it suffices to define the functor on the
generator (12) of ObMon, and then

(12, A,B)→ A⊗B

for A,B ∈ C. For all other objects in ObMon the map is defined by the operadic compositions. For
example

((13)2, A,B,C)→ (A⊗ C)⊗B.
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More generally, denote the n− 1-fold tensor product functor bracketed according to o ∈ ObMon, by ⊗o.
Then (3.2) is defined on objects as

(o,A1, . . . , An) 7→ ⊗o(A1, . . . , An).

Next we need to define (3.2) on morphisms. Recall that there is one morphism between every pair of
objects in Mon that correspond to the same permutation. Fix two such objects o, o′ ∈ ObMon(n), and
let a : o′ → o be the unique morphism between them. We may use the associator α from C to build a
natural transformation αoo′ : ⊗o′ ⇒ ⊗o. We define (3.2) on morphisms as

(a, f1, . . . , fn) 7→ ⊗o(f1, . . . , fn) ◦ (αoo′)⊗o′ (A′1,...,A′n) = (αoo′)⊗o′ (A1,...,An) ◦ ⊗o′(f1, . . . , fn)

where fj ∈ HomC(A
′
j , Aj) for j = 1, . . . , n. We claim that these assignments are a functor, i.e., preserve

the identity morphisms and commute with compositions. The first fact is easy (since αoo = id), let
us only show the second. Because the α are natural transformations, this amounts to verifying that
αoo′◦αo′o′′ = αoo′′ . However, note that both sides are natural transformations ⊗o′′ → ⊗o build (formally)
using the associator α and hence MacLane’s coherence Theorem says that both are identical.

To see that these formulas define a Mon algebra structure, we have to verify that the two double
compositions

Mon(n)×Mon(k1
1, . . . , k

1
r1)× · · ·Mon(kn1 , . . . , k

n
rn)× C × · · · × C ⇒ C

agree. On objects, they agree by construction since ObMon = PaP is a free operad. On morphisms this
again reduces to checking that two natural transformations between iterated tensor product functors
that are build using α agree. But this again is guaranteed by the MacLane coherence Theorem.

Let us also show the other direction, namely that a Mon-algebra C is a monoidal category. To do
that, we have to define the tensor product and the associator α, and check that the pentagon equation
is satisfied. First, we define the bifunctor

· ⊗ · := ρ2((12), ·, ·)

where ρ2 is the Mon-algebra structure as in (3.2). Secondly, we define for A,B,C ∈ ObC

αA,B,C : (A⊗B)⊗ C → A⊗ (B ⊗ C)

αA,B,C = ρ3(f, idA, idB , idC)

where f is the unique morphism in HomMon(3)((12)3, 1(23)). Since ρ3 is a map of categories it follows
that α is natural. It remains to check commutativity of the pentagon diagram. However, the pentagon
diagram is the image of a diagram in Mon(4), which commutes since all diagrams in Mon(4) commute.
Hence the pentagon equation is satisfied.

Also, the MacLane coherence Theorem may be translated into operadic language.

Proposition 3.1 (Variant of MacLane’s coherence Theorem). The operad Mon is (isomorphic to) the
(reduced) operad in groupoids with objects PaP generated by (see Example ??) a single morphism

α1,2,3 : (12)3→ 1(23)

with relations the pentagon relation

α1,2,34 ◦ α12,3,4 = α2,3,4 ◦ α1,23,4 ◦ α1,2,3. (3.3)

The following prof is essentially a copy of MacLane’s proof of his coherence Theorem.

Proof. Temporarily call the operad in groupoids generated by the above relation P. Our goal is to show
Mon = P. Certainly this is true on objects by definition. Next we need to show that the spaces of
morphisms agree. Since α only maps between parenthesized permutations with the same underlying
permutation, HomP(o′, o) = ∅ if o and o′ have different underlying permutations. We have to show that
otherwise |HomP(o′, o)| = 1. By Sn equivariance we may in fact assume that the underlying permutation
is the trivial one and consider parenthesations of the trivial permutation henceforth.

We consider the sub-operad in categories P ′′ ⊂ P generated by the same generators and relations,
but only as an operad in categories, not as an operad in groupoids. In other words, in P ′′ the morphism
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α is not invertible, there is no α−1. In yet other words, one may only associate to the right, never to the
left. It is easy to see that in fact P ′′(n) is a poset, where o′ ≥ o iff there exists a morphism o′ → o. Let
P ′(n) be the full subcategory (and sub-poset) formed by parenthesized permutations whose underlying
permutation is the identity. It has a unique lowest element, namely on := 1(2(3(4(· · ·n) · · · ).

Reduction 1: To show the Proposition, it suffices to check that for each n and each o′ ∈ P ′(n) there
is a unique arrow o′ → on in P ′(n). (In category theorists’ slang: on is a final object.)

Proof of Reduction 1: Denote by fo : o → on the (unique by assumption) arrow in P ′(n). Let
f : o′ → o be some arrow in P(n) (where o, o′ ∈ ObP ′(n)). We claim (Claim 1) that fo′ = fo ◦ f . If we
can show the Claim 1 then Reduction 1 follows since then f = f−1

o ◦fo′ irrespective of the f chosen. Also,
Claim 1 is true by assumption as long as f is in P ′(n). But any morphism f : o′ → o is a composition
of morphisms in P ′(n) and their inverses, say

f = g1 ◦ g−1
2 ◦ g3 ◦ · · · ◦ gn

where each gj : o′j → oj is a morphism in P ′(n). (Here o1 = o, o′1 = o′2, etc.) But inserting gj = f−1
oj ◦fo′j

we obtain
f = f−1

o ◦ fo′1 ◦ f
−1
o′1
◦ fo2 ◦ f−1

o2 ◦ fo′3 ◦ · · · ◦ fo′ = f−1
o ◦ fo′ .

Hence Reduction 1 is shown, and we can focus on showing the assumption therein.
We do this by a two-fold induction: The outer induction is on n. We start it by noticing that for

n ≤ 2 there is nothing to be shown and that for n = 3 the statement is trivial. The inner induction is
done by the partial order on P ′(n). For the lowest object (i. e., for on) the statement is trivial. Suppose
that o ∈ ObP ′(n) is given and we want to show that there is a unique arrow o → on in P ′(n). By the
induction hypothesis we may assume this is true for all o′ < o. It is also clear that there is an arrow, we
only have to show uniqueness. So suppose there are two arrows that factor as

o

o′ o′′

on

where we can assume that o→ o′ and o→ o′′ are obtained by a single application of the associator α. By
the induction hypothesis we are done if we can show that the diagram may be completed to a diagram

o

o′ o′′

o′′′

on

in such a way that the upper diamond commutes. (Note that by the induction hypothesis all other
triangles commute.) Now suppose o = (a)(b). For each of the maps f : o → o′, g : o → o′′ there are 3
choices:

1. The associator acts within a.

2. The associator acts within b.

3. The associator acts on the top level, i.e., a = (a′)(a′′) and the associator acts as (a′a′′)b→ a′(a′′b).

So there are 32 = 9 cases to consider. If both f and g act on the top level, f = g and we are done. If
both f and g act on a we may set o′′′ = (on′)(b), where n′ is the arity of a. The diamond is then obtained
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from a diamond in lower n by the operad maps, and by the (outer) induction hypothesis it commutes.
The analogous argument holds when both f and g act on b. Next suppose one of f and g acts on a and
the other on b, say f : (a)(b)→ (a′)(b) and g : (a)(b)→ (a)(b′). Concretely, this means that f and g are
obtained from some f ′ : a→ a′ and g′ : b→ b′ through the operadic compositions as

f = µ((12), f ′, id) g = µ((12), id , g′).

In this case we may set o′′′ = (a′)(b′), and let the morphism o′ → o′′′ be µ((12), id , g′) and o′′ → o′′′

be µ((12), f ′, id). Then the diamond commutes by the operad axioms. (Concretely, both compositions
equal µ((12), f ′, g′).)

Next assume that one of f , g, say g, acts on b, and the other (f) acts on the top level. It means that
a = (a′)(a′′), f : (a′a′′)b → a′(a′′b) and g : b → b′. In this case we may set o′′′ = a′(a′′b′). A similar
argument as before constructs the arrows to o′′′ and shows that the diamond commutes.

Note that we have not used the pentagon axiom so far. It is needed for the final case, namely that f
acts on a and g acts on the top level, g : (a′a′′)b→ a′(a′′b). Here one has to distinguish 3 subcases:

1. f acts within a′.

2. f acts within a′′.

3. a′ = cc′ and f act as ((cc′)a′′)b→ (c(c′a′′))b.

The first two cases are handled as before. For the last case we use the pentagon identity to complete the
diamond, i. e., we set o′′′ = c(c′(a′′b)). The morphism o′′ → o′′′ is set to equal one edge of the pentagon,
and the morphism o′ → o′′′ is the composition of the remaining yet unused two. Commutativity of the
pentagon yields commutativity of the diamond and hence we are done.

Let us turn to (non-unital) braided monoidal categories. Recall that the colored braids CoB form
an operad in groupoids, with base AssSet. We build the operad PaB (“parenthesized braids”) as the
base change of CoB over PaP → AssSet, cf. Example ??. Concretely, objects in PaB(n) are elements of
PaP(n) (parenthesized permutations). Morphisms between two such objects are braids which take one
permutation into the other.

Lemma 3.2. Consider PaB as an operad in categories. Then PaB-algebras are exactly (small) non-
unital braided monoidal categories.

Proof. The proof is similar to the one above, using the braided version of the MacLane Coherence
Theorem.

Proposition 3.2. The operad in groupoids PaB is the operad in groupoids over the base PaP generated
by two morphisms

α1,2,3 : (12)3 7→ 1(23)

γ1,2 : 12 7→ 21

with relations the pentagon relation (??) and additionally the two hexagon relations

γ1,23 = (α2,3,1)−1γ1,3α2,1,3γ1,2(α1,2,3)−1

γ23,1 = α1,2,3γ2,1(α2,1,3)−1γ3,1α2,3,1

Proof. Temporarily denote by P the operad in groupoids generated by the above generators and relations.
There is clearly a map of operads in groupoids P → PaB and we want to show this is an isomorphism.
It actually suffices to show that HomP(n)(on, on) → HomPaB(n)(on, on) is an isomorphism for all n,
where on is as in the proof of Proposition ??. To see that it is a bijection, it suffices to check that
the full subgroupoid with objects those parenthesized permutations with parenthesation ·(·(·(· · · )))))
is isomorphic to CoB(n). Recall the description of CoB(n) by generators and relations from Exercise
??. We construct a map CoB(n)→ P(n) by sending each object (a permutation σ) to the parenthesized
permutation obtained by endowing σ with the aforementioned (rightmost) parenthesation. We define the
map on morphisms by sending the generator (bi, σ) to f ◦ γσ(i),σ(i+1) ◦ f ′, where f and f ′ are morphisms
in Mon(n) ⊂ P(n) restoring the parenthesation. (They are unique by Proposition ??.) To show that
this defines a map of groupoids CoB(n) → P(n) one has to verify the braid relations. This is done
as in Exercise ??, where on uses Proposition ?? to remove occurring associators, see Figure ?? for an
illustration. One easily checks that the composition CoB(n)→ P(n)→ PaB(n) is the usual full inclusion
of CoB(n) in PaB(n) and hence we are done.
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Example 3.15. The operad Lie of Lie algebras.

Exercise 3.5. Define the operad Grp whose algebras are groups. Show that

|Grp(n)| = 2nn!

3.7 Little n-cubes operads
Historically, the first studied examples of operads were in fact in the category T o√ of topological spaces.

Let
LDn(N) = {space of squarilinear embeddings (0, 1)n t · · · t (0, 1)n → (0, 1)n}.

Here “squarilinear” means that the map on each cube must have the form

(x1, . . . , xn) 7→ λ · ((x1 + a1, . . . , xn + an))

for some real numbers λ, a1, . . . , an. A point in LD1(3) and one in LD2(3) is depicted in Figure ??.
There are natural compositions of morphisms depicted in Figure ?? which make the collection of spaces
LDn(N) into an operad LDn.

These operads received a lot of interest from topologist because of a Theorem proved by May saying
roughly that “algebras over LDn are the same as n-fold loop spaces”. More concretely:

Theorem 3.1. TODO

3.7.1 A variant: operad of configuration spaces FMn

Often it is convenient to make the “big cube” in the little cubes operad of infinite size and the little
cubes of zero size. The resulting object would then be called the configuration space of points in Rn.
Unfortunately, as it stands these configuration spaces do not form an operad. Here is one way to repair
this defect.

3.7.2 Homotopy type of LDn

There are fibrations
Conf1(Rn \ {p2, . . . , pN})→ LDn(N)→ LDn(N − 1).

Here the right hand map forgets the position of the first point. The left hand side (i.e., the fiber) is the
configuration space of one point in the Rn with N − 1 punctures. The fiber may be contracted to an
N − 1 fold wedge product of n− 1-spheres. In principal, one may use the resulting long exact sequence
of homotopy groups to compute the homotopy groups of LDn(N) for all n and N . However, this involves
knowing the homotopy groups of spheres which are very difficult to compute in general.

For n = 2 the answer is simple. The i-th homotopy groups of the fiber (a wedge of circles) is trivial
for i ≥ 2. It then follows by induction from the long exact sequence

· · · → πi(S1 ∧ · · · ∧ S1)→ πi(LD2(N))→ πi(LD2(N − 1))→ πi−1(S1 ∧ · · · ∧ S1)→ · · ·

that the same holds for all LD2(N). Hence the LD2(N) are in fact K(π, 1) spaces. Here the fundamental
group π is the pure braid group PBN . From the exact sequence we can in fact read off an interesting
property of the pure braid groups. Since we know that π1(S1 ∧ · · · ∧ S1) is a free group in n generators,
we obtain the exact sequence

1→ FGrp(X2, . . . , XN )→ PBN → PBN−1 → 1.

In fact, this sequence is split; there is a natural map PBN−1 → PBN . Let us summarize these findings:

Proposition 3.3. LD2(N) (where N ≥ 1) are K(π, 1) spaces, i.e.,

πi(LD2(N)) =

{
PBN for i = 1

1 otherwise.

Furthermore the pure braid groups may be written recursively as semidirect products

PBN ∼= PBN−1 n FGrp(X2, . . . , XN )

where PBN−1 ⊂ PBN .
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The subgroup PBN−1 ⊂ PBN may be understood as the subgroup of braids “leaving the first strand
alone”, while Xj = x1j may be understood as the braid obtained by wrapping the first strand around
the j-th..

3.7.3 (Co-)Homology of LDn

Definition 3.5. Let Fin be the groupoid of finite sets with bijections as morphisms. An S-module in
some category C is a contravariant functor Fin→ C. We denote the category of S-modules in C by CS

Another name for S-modules is symmetric sequences. Of course, the S-module P is completely
determined by giving for each n = 0, 1, 2, . . . an object P(n) = P({1, 2, . . . , n}) of C together with a right
action of the symmetric group Sn.

Example 3.16. The S-module (in K-vector spaces) Com is defined by setting Com(n) = R for each
n = 1, 2, . . . .

Next suppose that the category C is in fact symmetric monoidal, for example C is the category of
K-vector spaces. We also assume quietly that C has all small limits and colimits. Then we may equip CS
with a monoidal product �.

Definition 3.6. Let P,Q ∈ CS. Then we define P �Q ∈ CS as follows. For an object (i. e., a finite set)
S ∈ Ob(C) we set

(P �Q)(S) =
∐

Remark 3.2. The product � is called plethysm. (...in rep. th.)

Definition 3.7. An operad P in some symmetric monoidal category C is monoid in (CS,�).
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Chapter 4

The Grothendieck-Teichmüller group

4.1 Another look at the definition of GT

Definition 4.1. The Grothendieck-Teichmüller group GT is the group of automorphisms of the operad
in pro-unipotent groupoids P̂aB which are the identity on objects,

GT := Aut(P̂aB).

Remark 4.1. We restrict to automorphism which are the identity on objects to adhere to custom
conventions. The full automorphism group is in our case Z2nAut(P̂aB), where the non-trivial morphism
in Z2 rotates a braid by 180 degrees. It corresponds to the fact that for a braided monoidal category the
opposite of the monoidal product is also a monoidal product.

Proposition 4.1. Elements of GT are in one-to one correspondence with pairs (λ, f) ∈ K××F̂Grp(X,Y ),
that satisfy the following equations

Proof. By the universal property of the pro-finite completion (Definition ??) we know that endomor-
phisms of P̂aB are in one-to-one correspondence with maps of operads in groupoids

φ : PaB → P̂aB .

By Proposition ?? we however know that any such morphism is uniquely determined by specifying the
images of the generators γ and α. Note that γ1,2 ∈ Hom

P̂aB(2)
(12, 21) ∼= P̂B2γ

1,2. Since P̂aB(2) is the
pro-unipotent completion of a free group in one generator, there must be λ ∈ K such that

φ(γ) = (s1,2)mγ1,2

where m = (λ− 1)/2.1 In order for φ to be invertible, we must necessarily have λ ∈ K×. Let us denote
φ(γ) =: f̃γ, where f̃ ∈ P̂B3. Recalling the structure of PB3 from Exercise 2.21, we must have

f̃ = f(x12, x23)Cµ

where C is the central element and µ ∈ K. In order for the data (λ, f̃) to generate a morphism PaB →
P̂aB it is necessary and sufficient that the images of the relations (see Proposition ??) hold in P̂aB , i.
e., that we have

γ1,23xm1,23 = (f̃2,3,1)−1γ1,3f̃2,1,3γ1,2(f̃1,2,3)−1 (4.1)

γ12,3xm12,3 = f̃3,1,2γ1,3(f1,3,2)−1γ2,3f1,2,3 (4.2)

f̃1,2,34f̃12,3,4 = f̃2,3,4f̃1,23,4f̃1,2,3. (4.3)

1The apparently strange an unnecessary change of variables from λ to m (or vice versa) is made such that if one
composes two such automorphisms (say with parameters λ, λ′) the parameters just multiply, i. e., the new parameter is
λ̃ = λλ′. Exercise: Verify this, using that s12 = γ2,1γ1,2.

43
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Let us rewrite the first two equations (TODO: INTRODUCE NOTATION).

σ2σ1(Cx−1
23 )m = f−1σ2x

m
23fσ1x

m
12f
−1C−µ

σ1σ2(Cx−1
12 )m = fσ1x

m
12f
−1σ2x

m
23fC

µ.

Here we used that x1,23 = Cx−1
23 and x12,3 = Cx−1

12 and abbreviated f = f(x12, x23). (Note also, that by
definition the central element C commutes with everything.) We multiply both sides of the first equation
by (σ2σ1)−1 from the left, and we multiply both sides of the second equation by σ−1

1 from the left and
by σ−1

2 from the right.

(Cx−1
23 )m = σ−1

1 σ−1
2 f−1σ2σ1(σ−1

1 x23σ1)m(σ−1
1 fσ1)xm12f

−1C−µ

(Cx−1
13 )m = (σ−1

1 fσ1)xm12f
−1xm23(σ2fσ

−1
2 )Cµ.

Now by Exercise 4.1 we have

σ−1
1 fσ1 = f(x12, x13) σ2fσ

−1
2 = f(x13, x23)

(σ2σ1)−1fσ2σ1 = f(x23, x13).

Inserting this into the previous equation and abbreviating X = x12, Y = x13, Z = x23 we obtain (after
moving all factors to the right hand sides)

1 = Zmf(Z, Y )−1Y mf(X,Y )Xmf(X,Z)−1C−µ−m = Y mf(X,Y )Xmf(X,Z)−1Zmf(Z, Y )−1C−µ−m

1 = Y mf(X,Y )Xmf(X,Z)−1Zmf(Y,Z)Cµ−m.

Note that this is an equation in P̂B3 and by Exercise 2.21 the X,Y, Z,C are free variables, except for
the single relation C = XY Z. Equating both 1’s one cancelling terms on the left we obtain

f(Z, Y )−1C−µ = f(Y,Z)Cµ.

It follows that µ = 0 and that f(Z, Y )−1 = f(Y,Z), i.e., the antisymmetry equation. Inserting this back
in we obtain the remaining equation

1 = Y mf(X,Y )Xmf(Z,X)Zmf(Y, Z)C−m = Y mf(X,Y )Xmf(CZ̃,X)Z̃mf(Y,CZ̃)

where we defined Z̃ = C−1Z. Note that there are always α, β ∈ K so that f(CX, Y ) = Cαf(X,Y ) and
f(X,CY ) = Cβf(X,Y ). Hence from the antisymmetry relation we see that α+β = 0 and the remaining
hexagon equation becomes equivalent to

1 = Y mf(X,Y )Xmf(Z̃,X)Z̃mf(Y, Z̃)

where XY Z̃ = 1.
Finally consider the pentagon equation. Using that

f1,2,3 = f(x12, x23) f2,3,4 = f(x23, x34)

f12,3,4 = f(x12,3, x34) = f(x13x23, x34) f1,2,34 = f(x12, x2,34) = f(x12, x34x24)

f1,23,4 = f(x1,23, x23,4) = f(x12x13, x23x34)

the equation becomes

f(x12, x34x24)f(x13x23, x34) = f(x23, x34)f(x12x13, x23x34)f(x12, x23).

Exercise 4.1. Let x12 = σ2
1 , x23 = σ2

2 and x13 = σ−1
1 σ2

2σ1. Verify that

σ−1
1 x23σ1 = x13 σ2x12σ

−1
2 = x13

(σ2σ1)−1x12σ2σ1 = x23 (σ2σ1)−1x23σ2σ1 = x13
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Remark 4.2. In fact, it was shown by H. Furusho that the antisymmetry equation follows from the
pentagon equation. To see that, apply the group morphism P̂B4 → F̂Grp(X,Y ) worked out in Exercise
2.22 to both sides of the pentagon equation. Note that under that map

f1,2,3 = f(S12, S23) 7→ f(X,Y ) f2,3,4 = f(S23, S34) 7→ f(Y,X)

f12,3,4 = f(S13S23, S34) 7→ f(X−1Y −1Y,X) = 1 f1,2,34 = f(S12, S23S24) 7→ f(X,Y Y −1X−1) = 1

f1,23,4 = f(S12S13, S24S34) 7→ f(XX−1Y −1, Y −1X−1X) = 1.

What remains from the pentagon equation is the statement

1 = f(Y,X)f(X,Y )

i. e., antisymmetry.

4.2 Drinfeld associators
Recall from section ?? that we have a functor gr that sends a pro-unipotent Lie algebra to its associated
graded under the lower-central series filtration. Recall that the associated graded of the pure braid Lie
algebra pbn is the Drinfeld-Kohno Lie algebra tn. The tn assemble to form an operad of Lie algebras
t. It follows that T := Exp(t) is an operad of pro-unipotent groups. We may consider it as an operad
of pro-unipotent groupoids with all groupoids having one object. Recall also that PaP was the operad
in sets governing monoids. Its pair groupoid is an operad in groupoids P̃aP . We define the operad in
pro-unipotent groupoids

ĜPaCD := T × P̃aP .

The group of endomorphisms of any object in ĜPaCD(n) is identified with

Exp(tn) = Gr(Û tn).

where tn is the Drinfeld-Kohno algebra. The topological Hopf algebra Û tn appears in knot theory
and is called the algebra of chord diagrams. Elements may be identified with (possibly infinite) linear
combinations of diagrams with n strands and some “chords” drawn in between, see Figure ??. The
generator tij corresponds to a chord between strand i and j. Consequently, the operad in topological
Hopf algebras Û tn × P̃aP is often denoted by P̂aCD (“parenthesized chord diagrams”).

The (graded version of the) Grothendieck-Teichmüller group GRT is the group of automorphism of
ĜPaCD which are the identity on objects, i. e.,

GRT := Aut(ĜPaCD)(∼= Aut(P̂aCD)).

The set Drinfeld associators DAss is the set of isomorphisms which are the identity on objects

P̂aB → ĜPaCD = GrP̂aCD .

We will denote the “associator” element in ĜPaCD(3) by A : (12)3 → 1(23) and the “braid” or
rather transposition element in ĜPaCD(2) by X : 12 → 21. It is important to note that in this case
X2,1X1,2 = id , while for the braiding γ we had before γ2,1γ1,2 6= id .

Proposition 4.2 (Symmetric Monoidal Coherence Theorem). The operad in groupoids P̃aP has the
following description in terms of generators and relations.

• On objects, it is generated by one operation 12 ∈ ObP̃aP(2) and no relations.

• On morphisms it is generated by one operation A : (12)3→ 1(23) and one operation X : 12→ 21.
The relations are the same relations as for PaB (two hexagon relations and the pentagon relation),
plus the additional relation that

X2,1 = (X1,2)−1

The proof is essentially identical to the one of Proposition ??, with the role of the braid group replaced
by the permutation group.
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Proposition 4.3. A Drinfeld associator is the same data as a pair (µ,Φ) ∈ K××K〈〈x, y〉〉 such that Φ
is group-like (i.e., ∆Φ = Φ⊗̂Φ) and furthermore

Φ(x, y) = Φ(x, y)−1 (4.4)

1 = e
µ
2 zΦ(x, y)e

µ
2 xΦ(y, z)e

µ
2 yΦ(z, x) (4.5)

Φ(t12, t23 + t24)Φ(t13 + t23, t34) = Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23). (4.6)

Here for the middle equation x+ y+ z = 0 and the last equation takes values in the universal enveloping
algebra of the Drinfeld-Kohno Lie algebra t4 with standard generators tij. The set of Drinfeld associators
DAss is defined to be the set of pairs (µ,Φ) solving these equations, with µ 6= 0.

We will denote be DAssµ the set of associators of the form (µ,Φ).

Proof. As in the proof of Proposition 4.1, the map is uniquely determined by the image of the two
generators. The generator γ must be mapped to

eµt12/2X

for some number µ ∈ K. For the map to be invertible, we must have µ 6= 0. The associator must be
mapped to

Φ(t12, t23)eλcA

for some group-like element Φ(x, y) ∈ K〈x, y〉 and some number λ, where c = t12 + t23 + t13 is the central
element. An almost identical derivation as that leading to Proposition 4.1 then shows that λ = 0 and
that relations (4.4)-(4.6) hold.

Conversely, suppose that the data (µ,Φ) are given and satisfy (4.4)-(4.6). We obtain a morphism
P̂aB → ĜPaCD . We have to show that it is bijective. It suffices to check that for each n and fixed
object in PaB(n), say o = 1(2(· · ·n))), the morphism restricts to an isomorphism of the endomorphism
groups of o. However, these groups are P̂Bn and Tn respectively. Equivalently, we have to check that
the underlying maps pbn → tn are isomorphisms. One checks that log xij 7→ µtij + (. . . ) where . . . are
higher order terms. Since µ 6= 0 this map is clearly surjective, since all generators are in the image. We
nee to verify injectivity. Call the kernel of the above map K. By completeness of pbn it suffices to check
that

K ⊂ Cj

for all j where Cj is the j-th term of the lower central series. Also recall that the relations on tn are
just the leading terms (with respect to the number of commutators) of the relations on pbn. So suppose
F ({xij}) ∈ K ∩ Cj for some Lie series F . Then F ({tij}) = 0. But since the relations on tn are just the
leading terms of the relations on pbn we have that in fact F ({xij}) ∈ Cj+1. This shows the claim and
hence bijectivity.

Remark 4.3. Note that a Drinfeld associator in particular determines isomorphisms pbn → tn.

Proposition 4.4. The Grothendieck-Teichmüller group GRT has the structure

GRT ∼= K× o GRT1

where GRT1 is a pro-unipotent group whose elements may be identified with solutions Φ of equations
(4.4)-(4.6) for µ = 0. K× acts on such solutions by rescaling, i. e.,

(λ · Φ)(x, y) := Φ(λx, λy).

Concretely, GRT1 = Exp(grt1) where the pro-nilpotent Lie algebra grt1 may be identified with series
ψ ∈ F̂Lie(x, y) that satisfy

ψ(x, y) = −ψ(y, x) (4.7)
ψ(x, y) + ψ(y, z) + ψ(z, x) = 0 (4.8)

ψ(t12, t23)− ψ(t12, t23 + t24) + ψ(t12 + t13, t24 + t34)− ψ(t13 + t23, t34) + ψ(t23, t34) = 0 (4.9)

where x+ y + z = 0 and the last equation takes place in t4. Note also that grt1 is graded.
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Proof. Any automorphism of ĜPaCD (which is the identity on objects) is determined by its action on
T and on P̃ aP . But since t is generated by one generator t12 and P̃ aP is generated by A and X, any
automorphism is determined by the images of these objects. Clearly t12 can only be sent to a non-zero
multiple λt12. The map sending an isomorphism to this λ is a character of GRT. Conversely, since t

is graded, rescaling t12 by λ 6= 0 yields an automorphism of t and hence of ĜPaCD (so in particular
K× ⊂ GRT). Hence GRT ∼= K× o GRT1 where GRT1 := ker(GRT→ K×).

An element of GRT1 is determined by its action on A and X. In general X may be sent to Xeµt12
for some µ ∈ K. But by the relation X2,1X1,2 = id we must have µ = 0. The associator may be sent to

AΦ(t12, t23)eµ
′c

as before. Also as before, it must satisfy the hexagon and pentagon relations (for µ = 0) and µ′ = 0.
Conversely, given a Φ that satisfies (4.4)-(4.6) we obtain an endomorphism of ĜPaCD . We still need
to show that this endomorphism is invertible. It suffices to check that the map on endomorphisms of
some (and hence any) object of ĜPaCD(n) is an isomorphism for each n. But these endomorphisms are
isomorphic to Tn = Exp(tn), and the morphism is easily checked to have the form

tij 7→ tij + (commutators)

which is invertible.
Exercise: Verify that GRT1 is a pro-unipotent group (e.g., check that the logarithm exists).

Remark 4.4. Note that the composition of two elements Φ(X,Y ), Φ′(X,Y ) is not the “naive” product,
but given by the formula

(Φ · Φ′)(X,Y ) = Φ(X,Y )Φ′(X,Φ−1Y Φ).

The action of GRT1 on associators is given by the same formula, just interpreting Φ′ as an associator.
Similarly, the bracket on grt1 is not just the ordinary bracket of Lie series, but the “Poisson bracket”

{ψ,ψ′}(x, y) = [ψ(x, y), ψ′(x, y)] +Dψψ
′(x, y)−Dψ′ψ(x, y)

where Dψ is the derivation of the free Lie algebra sending x to x and y to [y, ψ].
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Chapter 5

The Knizhnik-Zamolodchikov
associator

5.1 Introduction
The purpose of the present chapter is to prove the following Theorem.

Theorem 5.1. The set of Drinfeld associators is not empty.

In view of definition ?? we immediately obtain the following Corollary.

Corollary 5.1. The set of Drinfeld associators DAss is a GRT-GT torsor.

In other words, GRT and GT act freely transitively on DAss and the actions commute.
We will show Theorem 5.1 by a explicitly constructing one associator, the Knizhnik-Zamolodchikov

associator ΦKZ . Concretely, this associator will have the following important property.

Lemma 5.1. The coefficient of X2pY in the Knizhnik-Zamolodchikov associator ΦKZ(X,Y ) (to be
constructed below) is non-zero for p = 1, 2, 3, . . . .

Remark 5.1. Note that there is a special automorphism of PaB (i.e., an element φ ∈ GT) which sends
a braid to its mirror image “at the real axis”. (On the braid group it sends σi to σ−1

i .) Its action on
associators sends a µ-associator to a −µ-associator. Similarly, φ′ = −1 ∈ K× ⊂ GRT sends a −µ-
associator to a µ-associator, and hence the combined action of φ and φ′ is an automorphism (even an
involution) of the set of µ-associators DAssµ. Concretely, this action sends

Φ(X,Y ) 7→ Φ(−X,−Y ).

Hence we see that there exists a second associator

ΦKZ(X,Y ) := ΦKZ(−X,−Y ) 6= ΦKZ(X,Y ).

Now by the transitivity of the action of GRT1 on DAss1 there is a unique element g ∈ GRT1 such that

g · ΦKZ = ΦKZ.

Since GRT1 is pro-unipotent, there is a unique x ∈ grt1 such that g = exp(x). Since grt1 is graded, we
may write

x =

∞∑
j=1

σj

where σj is the degree j part. Unravelling the action of grt1 on DAss1, σj is in particular “responsible
for” changing the coefficient of xj−1y in the associator. Since for j ≥ 3 odd these coefficients are different
in ΦKZ and ΦKZ, we find that σj 6= 0 for j ≥ 3 odd. Summarizing, one obtains the following result.

Corollary 5.2. The Grothendieck-Teichml̈ler Lie algebra is inifnite dimensional and contains non-zero
elements σ3, σ5, σ7, . . . in degrees 3, 5, 7, . . . .

In fact, we will see below that all other σj are 0. The famous Deligne-Drinfeld-Ihara conjecture ??
states that grt1 is in fact equal to the (completed) free Lie algebra generated by σ2p+1, p = 1, 2, 3, . . . .
F. Brown has shown one half of this result, and we will present his proof in Chapter 7.
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5.2 The Knizhnik-Zamolodchikov equation

The Knizhnik-Zamolodchikov equations originally are a set of differential equation satisied by the corre-
lation functions of conformal field theory. In the simplest form, the Knizhnik-Zamolodchikov equation
is the differential equation

d

dz
u− 1

2πi

(
X

z
+

Y

1− z

)
u = 0. (5.1)

Here z varies over C\{0, 1} and the unknown function u takes values in K〈〈X,Y 〉〉. The equation asserts
flatness of u with respect to the holomorphic flat connection

d− 1

2πi

(
X

z
+

Y

1− z

)
dz

with values in F̂Lie(X,Y ).
There is also an extended form of this connection, also called the Knizhnik-Zamolodchikov connection.

Namely, define a connection ∇ with values in tn on the configuration space of n points in C

Confn(C) = {z1, . . . , zn ∈ C | zi 6= zj∀i 6= j}

by the formula

∇ = d− 1

2πi

∑
i<j

tijd(zi − zj)
zi − zj

. (5.2)

Proposition 5.1. ∇ is flat, i.e., ∇2 = 0. ∇ is translation invariant, i. e.,

[Lτ ,∇] = 0

where τ is the vector field generating translation and L denotes the Lie derivative. Furthermore ∇ is
also scale invariant

[Lσ,∇] = 0

where σ is the scaling vector field. However, while [ιτ ,∇]− Lτ = 0,

[ισ,∇]− Lσ = − 1

2πi
C

where C =
∑
i<j tij is the central element of tn. It follows that ∇ descend to the quotient of Confn(C)

under translations, but it does not descend (readily) to the quotient under scaling.

Proof. Compute:

−4π2∇2 =
∑
i<j
k<l

[tij , tkl]d(zi − zj)d(zk − zl)
(zi − zj)(zk − zl)

=
∑
i 6=j

dzidzj

 ∑
k 6=i,l 6=j

[tik, tjl]

(zi − zk)(zj − zl)


=
∑
i 6=j

dzidzj

∑
l 6=j

[tij , tjl]

(zi − zj)(zj − zl)
+
∑
k 6=i

[tik, tji]

(zi − zk)(zj − zi)


=
∑
i 6=j

dzidzj

∑
k 6=i,j

−[tik, tjk]

(zi − zj)(zj − zk)
+
∑
k 6=i,j

−[tik, tjk]

(zi − zk)(zj − zi)


= −

∑
i 6=j

dzidzj
∑
k 6=i,j

[tik, tjk]

(zi − zk)(zj − zk)
= 0.

The remainder of the assertions is trivial to verify.
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5.3 The Knizhnik-Zamolodchikov associator

Let Φε(x, y) be the parallel transport of the Knizhnik-Zamolodchikov connection betwen the points z = ε
and z = 1− ε in C \ {0, 1}. Concretely, it is given as a path ordered exponential

Φε(x, y) = Pexp

(
1

2πi

∫ 1−ε

ε

(
X

z
+

Y

z − 1

)
dz.

)
Even more concretely, let x0 = x, x1 = y, z0 = 0 and z1 = 1. Then the coefficient of some word

w = xj1 · · ·xjn ∈ K〈〈x0, x1〉〉,

in Φε(x0, x1) where j1, . . . , jn ∈ {0, 1} is

cw =
1

(2πi)n

∫ 1−ε

ε

dt1
t1 − zj1

∫ t1

ε

dt2
t2 − zj2

· · ·
∫ tn−1

ε

dtn
tn − zjn

.

These integrals may all be computed explicitly by the following recipe:

1. Expand each occurrence of 1
t−1 as a power series −

∑
j≥0 t

j .

2. Use the integral formulas∫
logn(t)dt

t
=

1

n+ 1
logn+1(t)∫

logn(t)tmdt =

n∑
j=0

(−1)j

(m+ 1)j
n!

(n− j)!
logn−j(t)tm+1.

Example 5.1. Let us consider w = 001. Let us also disregrad terms that tend to 0 when ε → 0 for
simplicity. Then the innermost of the three integrals in cw yields

−
∑
j≥0

tj+1
2

j + 1
.

The next integral yields

−
∑
j≥0

tj+1
1

(j + 1)2
.

The last integral transforms this to

− 1

(2πi)3

∑
j≥0

(1− ε)j+1

(j + 1)3
→ − 1

(2πi)3
ζ(3).

Example 5.2. To see what happens in a singular case, consider w = 010. The first integral produces

log t2 − log ε.

The next integral produces

∑
j

tj+1
1

j + 1
log(t1/ε)−

∑
j

tj+1
1

(j + 1)2
−
∑
j

εj+1

j + 1
log ε−

∑
j

εj+1

(j + 1)2
.

Omitting the terms that approach 0 as ε→ 0 we obtain

−
∑
j

(1− ε)j+1

(j + 1)3
−
∑
j

(1− ε)j+1

(j + 1)3
−
∑
j

(1− ε)j+1

(j + 1)2
log ε ∼ −2ζ(3)− ζ(2) log ε.

This expression diverges logarithmically with ε.
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Lemma 5.2. For each word w cw(ε) is a polynomial in polylogarithm functions Lin(ε) and log ε. More-
over, if w = xn1−1

0 x1x
n2−1
0 · · ·x1x

nk−1
0 x1 with n1 ≥ 2 then

lim
ε→0

cw(ε) =
(−1)k

(2πi)n
ζ(n1, . . . , nk).

Proof.

In particular, it follows that Φε has an asymptotic expansion which is degree-wise polynomial in log ε.
We denote this (degree-wise) polynomial by

Φ∼(log ε).

(Concretely, Φε − Φ∼(log ε)→ 0 as ε→ 0.)

Definition 5.1. The Knizhnik-Zamolodchikov associator is defined to be

ΦKZ := Φ∼(0).

In other words, we regularize Φε by formally set log ε = 0.

Remark 5.2. The Knizhnik-Zamolodchikov associator may equivalently be defined in the following
ways:

• As
ΦKZ(X,Y ) := lim

ε→0
εY Φε(X,Y )ε−X .

• Let u0(z), u1(z) be solutions of (5.1) such that u0(z) ∼ zX as z → 0 and u1(z) ∼ (1−z)Y as z → 1.
Then we set ΦKZ := u−1

1 u0 (which is independent of z).

Proof. Step 1: Show that such solution u0, u1 exists (insert the Ansatz u0 = ũzX into the KZ equation).
Step 2: Given u0 and u1 we may express

Φε = u1(1− ε)u−1
1 u0u0(ε)−1.

Hence the limit

lim
ε→0

εY Φε(X,Y )ε−X = lim
ε→0

(εY u1(1− ε))u−1
1 u0(u0(ε)−1ε−X) = u−1

1 u0

exists. Hence the asymptotic expansion of Φε is ε−Y u−1
1 u0ε

X an the result follows.

Theorem 5.2. ΦKZ is a Drinfeld associator, i. e., it satisfies (4.4)-(4.6) for µ = 1.

The antisymmetry equation (4.4) is easy to see. Since Φε(x, y) = Φε(y, x)−1 by reflection symmetry,
the same equation holds for the asymptotic expansion and for the regularization. For the hexagon
equation (4.5) consider the version of the Knizhnik-Zamolodchikov connection with values in t3 defined
in equation (5.2) (for n = 3). Consider the parallel transport around the closed loop shown in Figure
??. Since the loop is contractible the parallel transport is 1 by flatness of the connection. Since the path
is composed of 6 segments, we obtain an equation with 6 terms.

1 = U3,12Φ3,1,2
ε U13(Φ1,3,2

ε )−1U23Φ1,2,3
ε

where U23, U13, U3,12 denotes the parallel transport along the three semicircle path segments. It is not
hard to see that the limits of these transports as ε→ 0 exist are are

U23 → et23/2 U13 → et13/2 U3,12 → e−(t13+t23)/2.

Using the asymptotic expansions for Φε we see that the right hand side of the above equation has
an asymptotic expansion that is a polynomial in ε in each degree. In particular we hence learn that
the equation must hold on the constant term, i. e., when setting log ε = 0. Using furthermore that
t3 ∼= F̂Lie(t12, t23)⊕KC where C = t12 + t23 + t13 is the central element, we obtain the hexagon equation.

The pentagon equation is shown in a similar way, considering the parallel transport in Conf4(C) along
the path depicted in Figure ??.



Chapter 6

Associators and double shuffle relations

6.1 Multiple zeta values and double shuffle relations
Multiple zeta values are the numbers

ζ(n1, . . . , nk) :=
∑

j1>j2>···>jk≥1

1

jn1
1 jn2

2 · · · j
nk
k

defined as long as n1 ≥ 2. We introduce the following notation. Let w = n1 · · ·nk be a word with letters
from the alphabet N. We call it admissible if n1 ≥ 2 (or k = 0). Let Aadm be the vector space of formal
linear combinations of all admissible words. We define the map ζ : Aadm → R by setting

ζ(w) = ζ(n1, . . . , nk)

on words w and extending linearly. Furthermore ζ(∅) := 1 by convention. Define the associative com-
mutative stuffle product � on words as

nw� n′w′ = n(w� n′w′) + (n+ n′)(w� w′) + n′(nw� w′)

where n, n′ ∈ N are symbols (numbers) and w,w′ are words, the tails of the words nw, n′w′.

Example 6.1.
23� 5 = 523 + 73 + 243 + 28 + 235

Proposition 6.1. ζ is an algebra morphism (Aadm,�)→ R.

Proof. Straightforward.

This means that the multizeta values satisfy the stuffle relations,

ζ(w)ζ(w′) = ζ(w� w′).

The multizeta values satisfy another class of relations, the shuffle relations. Consider words w in
symbols {0, 1}. We call such a word admissible if it is empty or if it starts with 0 ends in 1. So each
(non-empty) admissible word has the form

w = 0n1−110n2−11 · 0nk−11

with n1 ≥ 2, n2, . . . nk ≥ 1. Let Badm be the vector space spanned by such admissible “binary” words.
We may define a linear function ζ : Badm → R be letting

ζ(w) = ζ(n1, . . . , nk)

and extending by linearity, where w is as above. Again we set ζ(∅) := 1. On B we may define an
associative and commutative product, the shuffle product ∗ recursively by

αw ∗ α′w′ := α(w ∗ α′w′) + α′(αw ∗ w′).

Proposition 6.2. ζ : (Badm, ∗)→ R is an algebra map.
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The proof is straightforward (and left to the reader) using Kontsevich’s integral representation of the
multizeta values

ζ(a1 · · · an) =

∫ 1

0

dt1
fa1(t)

∫ t1

0

dt2
fa2(t)

· · ·
∫ tn−1

0

dtn
fan(t)

.

where f0(t) = t and f1(t) = 1− t.
The shuffle and stuffle relations thus obtained on multi zeta values are together called the “double

shuffle relations”. Many algebraic relations between multizeta values may be derived using these double
shuffle relations. But not all, the simplest example being Euler’s famous identity

ζ(2, 1) = ζ(3).

In the nect section, we extend the double shuffle relations to “regularized” double shuffle relations. Euler’s
identity and conjecturally all algebraic identities between multi zeta values will follow from these extended
relations.

6.2 Regularized double shuffle relations
Let (A,�) ⊃ (Aadm,�) be the algebra spanned by all words in symbols N (not just the admissible ones).
Similarly let (B, ∗) ⊃ (Badm, ∗) the shuffle algebra of all words in letters {0, 1}.

Proposition 6.3. The map ζ : (Aadm,�) → R uniquely extends to a map of algebras ζ : (A,�) → R
such that ζ(1) = 0.

Similarly, the map ζ : (Badm, ∗)→ R uniquely extends to a map of algebras ζ : (B, ∗)→ R such that
ζ(1) = ζ(0) = 0.

In other words we regularize the “ill-defined” multiple zeta values in two different ways. In the first
case, one talks about stuffle regularized multiple zeta values, while in the second case one talks about
shuffle regularized multiple zeta values.



Chapter 7

F. Brown’s Theorem

7.1 (Pre-)dual of the universal enveloping algebra

Let g be a pro-nilpotent Lie algebra. Recall that Ûg is the completed universal enveloping algebra and
Exp(g) =: G is the exponential group, which may be identified with g as a set or with the group-like
elements of Ûg as a group.

Below we want to dualize the Hopf algebra Ûg. Define the Hopf algebra O(G) (think: functions on
G) as the Hopf algebra topologically dual to Ûg. Concretely, suppose g = lim← gα. Then we set

O(G) = lim
→
O(Exp(gα))

where O(Exp(gα)) is the universal enveloping coalgebra of the Lie coalgebra g∗α.

Example 7.1. Let g = F̂Lie(x, y) then Ûg = K〈〈x, y〉〉 while O(G) ∼= K〈a, b〉, where a, b are dual to
x, y. The product on O(G) is the shuffle product of words, and is commutative. The coproduct is the
deconcatenation, and is not co-commutative.

There is a natural pairing Ûg×O(G)→ K.

7.2 Preliminaries on actions and coactions

Lemma 7.1. Let G = Exp(g) be a pro-unipotent group acting on X as above. Then a function f ∈ O(X)
is G-invariant iff

0 = ∆f ∈ g∨ ⊗O(X).

Proof. “⇒”: G-invariance means that f ′(g)f ′′(x) = f(x) for all g ∈ G, x ∈ X. If we let g = exp(tΨ) for
Ψ ∈ g and take the t1-coefficient, the result follows.

“⇐”: Conversely, suppose the infinitesimal coaction vanishes. Let x ∈ X and Ψ ∈ g be arbitrary.
Consider the function p(t) := f(etΨx) − f(x). Clearly p(0) = 0, and p(t) is a polynomial in t. By the
assumption its derivative vanishes. Hence p(t) ≡ 0.

7.3 The Poisson bracket on the free Lie algebra

For f ∈ F̂Lie(x, y) define the derivation Df of F̂Lie(x, y) which on generators is given by

Dfx = x Dfy = [y, f ] .

Lemma 7.2. For all f, g ∈ F̂Lie(x, y):

[Df , Dg] = D[f,g] +DDfg −DDgf

Proof. Exercise.
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Corollary 7.1. The Poisson bracket

{, } : F̂Lie(x, y)× F̂Lie(x, y)→ F̂Lie(x, y)

{f, g} = [f, g] +Dfg −Dgf

defines a Lie algebra structure on F̂Lie(x, y).

Proof. Bilinearity and antisymmetry are clear. It suffices to check the Jacobi identity.

{f, {g, h}}+ (cyc) = [f, [g, h]] + [f,Dgh−Dhg] +Df ([g, h]) +Df (Dgh−Dhg)−D[g,h]f −DDgh−Dhgf + (cyc)

= 0 + [f,Dgh]− [h,Dgf ] +Dg([h, f ]) +DfDgh−DgDfh−D[f,g]h−DDfgh+DDgfh+ (cyc) = 0.

Here (cyc) stands for the other cyclic permutations of terms and for the last equality we used that D· is
a derivation and Lemma 7.2.

Remark 7.1. grt1 is a Lie subalgebra of (F̂Lie(x, y), {, }).

Remark 7.2. Note that the Poisson bracket is a bit peculiar. In particular {x, y} = [x, y] + [y, x] = 0,
and hence (F̂Lie(x, y), {, }) is not generated by x and y, and the map (F̂Lie(x, y), [, ])→ (F̂Lie(x, y), {, })
which exists by the universal property is quite trivial.

It is interesting to work out the universal enveloping algebra of grt1. We claim that this (topological)
Hopf algebra is K〈〈x, y〉〉 with the following (non-standard) Hopf algebra structure:

• The coproduct is the standard coproduct determined by the equations

∆x = x⊗ 1 + 1⊗ x ∆y = y ⊗ 1 + 1⊗ y.

• The unit and counit are the standard ones.

• The product is non-standard, and is given by the following formula.

F ·Xk0Y Xk1Y Xk2 · · ·Xkn−1Y Xkn = F (0)Xk0(SF (1))Y F (2)Xk1(SF (3))Y F (4)Xk2 · · ·Xkn−1

(SF (2n−1))Y F (2n)Xkn

where S is the standard antipode and

∆2nF =:
∑

F (0) ⊗ · · · ⊗ F (2n).

• The antipode S̃ is not the standard one, but instead determined recursively by the formulas

µ(1⊗ S̃)∆ = µ(1⊗ S̃)∆ = 1ε.

Remark 7.3. For a group-like element F and an arbitrary G the product formula becomes

F (X,Y ) ·G(X,Y ) = F (X,Y )G(X,F−1Y F )

where F−1 = SF is the inverse of F with respect to the usual product.

Proposition 7.1. The operations just described endow K〈〈x, y〉〉 with a Hopf algebra structure. It is the
universal enveloping algebra of (F̂Lie(x, y), {, }).

Proof. By construction of the antipode, we only have to verify that the operations define a bialgebra
structure. It is clear that the operations (∆, ε) describe a coalgebra structure. It is also clear that 1 is
indeed a left and right unit for the product. Next we have to show the associativity of the product (i.e.,
F · (G · H) = (F · G) · H). Since the linear combinations of group-like elements are dense in K〈〈x, y〉〉
and the product is continuous we may assume the F,G,H are group-like. Then by the formula from the
previous remark

F · (G ·H) = F (X,Y )G(X,F−1Y F )H(X,G−1
F F−1Y FGF )

(F ·G) ·H = F (X,Y )G(X,F−1Y F )H(X,G−1
F F−1Y FGF )
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where we used the notation GF = G(X,F−1Y F ). Hence associativity holds. Next we have to show the
compatibility of product and coproduct, i.e., that (∆G) · (∆H) = ∆(GH) and that ∆ and · preserve
unit and counit. The second statement is obvious. For the first statement we may again assume G,H
group-like. Compute

∆(GH) = ∆(F (X,Y )G(X,F−1Y F )) = (F (X,Y )G(X,F−1Y F ))⊗ (F (X,Y )G(X,F−1Y F ))

= (F ⊗ F ) · (G⊗G) = (∆G) · (∆H).

Finally let us check that A := K〈〈x, y〉〉 is indeed (isomorphic to) the universal enveloping algebra U g̃

of g̃ := (F̂Lie(x, y), {, }). We claim first that A is generated by g̃, i. e., by the primitive elements. Indeed,
the linear combinations of group-like elements are dense in A, any group-like element is the exponential
of its logarithm, and the logarithm is primitive, hence the primitive elements generate a dense subspace.

Next note that by the universal property there is a continuous map U g̃→ A. It preserves the grading.
Furthermore, in each degree both sides have the same (finite) dimension. Hence it suffices to show that
the map is surjective in each degree to conclude that is is bijective. However, by the construction the
generators g̃ of A are in the image, and hence surjectivity holds.

Note furthermore that the map U g̃ → A is also a morphism of bialgebras, and hence also of Hopf
algebras.

Remark 7.4. Note that the exponential and logarithm in A = K〈〈x, y〉〉 (with the “Poisson” product are
not the same as the exponential and logarithm in K〈〈x, y〉〉 with the ordinary (concatenation) product.

Remark 7.5. Note that both GRT1 and DAss are naturally subsets of G̃ := Exp(g̃), and the group
composition and the action are both the group composition in G̃.

Below a very important role will be played by the Hopf algebra of functions O(G̃) = K〈〈x, y〉〉∨ =
K〈a, b〉. The Hopf algebra structure is just the dual of the one on K〈〈x, y〉〉, but let us nevertheless write
it down explicitly. To do that, and to be more consistent with the literature, let us introduce the notation
I(a1, . . . , an) for elemenrts of K〈a, b〉. Here each aj ∈ {0, 1} and the element of K[a, b] is obtained by
replacing each occurrence of 0 by a and each occurrence of 1 by b, and form a word by concatenating
the symbols. So, for example

I(0, 0, 1) := aab ∈ K〈a, b〉.

Furthermore, to simplify the formula for the coproduct below, we will also introduce the notatiom

Ia0,an+1
(a1, . . . , an) :=


1 if n = 0 TODO: check if omissible
I(a1, . . . , an) if a0 = 0 and a1 = 1

(−1)nI(an, . . . , a1) if a0 = 1 and a1 = 0

0 if a0 = a1 and n ≥ 1.

(7.1)

Note that the formula for the third case is the (standard) antipode applied to the word I(a1, . . . , an).

• The product is the standard shuffle product. It is commutative.

• The unit and counit are the standard ones.

• The coproduct is non-standard, and is given by the following formula.

∆I(a1, . . . , an) =
∑
k

∑
0=i0<i1<···<ik+1=n+1

 k∏
j=0

Iaij ,aij+1
(aij+1, . . . , aij+1−1)

⊗ I(ai1 , . . . , aik)

Here we set a0 := 0 and arn+1 = 1 for notational simplicity.

• As above, the antipode S̃ is determined by the bialgebra structure.

We will denote the Hopf algebra K〈a, b〉 (with this non-standard Hopf algebra structure) by A0.

Example 7.2.

Remark 7.6. Note that in particular any Drinfeld associator and any GRT1 element give points in
Spec(A0), i. e., algebra maps A0 → K by evaluation.
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7.4 The orbit of ΦKZ

Let f1 = F̂Lie(σ3, σ5, . . . ), with σ3 in degree 3 etc., and let F1 = Exp(f) ∼= F̂Grp(Σ3,Σ5, . . . ). As we saw
in section ??, we have a map f1 → grt1 and hence a map F1 → GRT1. Remember that our goal here is to
show that this map is an injection. The algebra of functions on F1 is defined to be O(F1) = K〈s3, s5, . . . 〉
with the usual commutative Hopf algebra structure. Concretely, the product is the shuffle product and
the coproduct is deconcatenation.

Furthermore, define F = F1 o K×, where λK× acts by scaling σ2j+1 by λ2j+1, i.e., by the grading.
F is not pro-unipotent, because of the factor K×. We have a map F → GRT. Hence we have an action
of F on DAss.

We will from now on assume K = C. We will consider the orbit of the Knizhnik-Zamolodchikov
associator ΦKZ under the action of F .

Y := GRT · ΦKZ .

The space of functions on Y, O(Y) is defined to be

O(Y) = A0/J

where J := {f ∈ A0 | f(g · ΦKZ) = 0∀g ∈ GRT}. Note that J is a graded ideal (because the rescaling
operation is in GRT), so that O(Y) inherits the grading from A0. We call the piece of degree N O(Y)N .
Furthermore, since F1 acts on Y, we obtain a caction of O(F1) on O(Y). Concretely, the formula for
this coaction is obtained by computing the coproduct in A0 (by formula (??)) and then projecting the
first factor to O(F1).

Remark 7.7. We saw in section ?? that all Drinfeld associators satisfy the regularized double shuffle
relations. Hence these relations are contained in J .

Let F̃1 be the image of F1 in GRT1. It is a graded (hence closed), pro-unipotent subgroup of GRT1.
Our goal is to show that F̃1

∼= F1.

Lemma 7.3. There is an isomorphism of O(F̃1) comodules

O(Y) ∼= O(F̃1)×K[ζf (2)]

where ζf (2) here is considered as some symbol and K[ζf (2)] is considered as a trivial comodule. (I.e.,
∆ζf (2) = 1⊗ ζf (2).)

The morphism is, however, non-canonical and does not preserve the grading.

Proof. Act with GRT on an even associator...

Remark 7.8. We will use the notation ζf (n1, . . . , nk) ∈ O(Y) to denote the image of the element

I(10{n1−1}10{n1−1}1 . . . 10{nk−1}) ∈ A0

and more generally ζfm(n1, . . . , nk) ∈ O(Y) to denote the image of the element

I(0m10{n1−1}10{n1−1}1 . . . 10{nk−1}) ∈ A0

The result we want to show here is the following.

Theorem 7.1 (F. Brown). The elements ζf (r1, . . . , rn) ∈ O(Y), n = 0, 1, . . . and rj ∈ {2, 3} form a
vector space basis of O(Y).

The proof will occupy us for some while. However, for now note the following Corollary.

Corollary 7.2. The map F1 → GRT1 is injective.

Proof. We may equivalently show that O(GRT1)→ O(F1) is surjective. But the latter map factors as

O(GRT1)→ O(F̃1)→ O(F1)

by definition of F̃1, with the left hand map being a surjection and the right hand map being an injection.
However, from the Theorem and the Lemma it follows that O(F̃1) has in each degree the same dimension
as O(F1). Hence the right hand map must also be surjective, and we are done.
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For now, let us introduce some notation. Let the map D2r+1 be the composition

D2r+1 : O(Y)→ O(F̃1)⊗O(Y)→ O(F1)⊗O(Y)→ f∨1 ⊗O(Y)
evσ′

2r+1−→ O(Y).

The composition of the first three arrows is just the infinitesimal coaction of f∨1 . The last arrow is the
projection of the first factor to the cogenerator of degree 2r + 1, σ′2r+1 ∝ σ2r+1, normalized in such a
way that D2r+1ζ

f (2r + 1) = 1.

Lemma 7.4. Let x ∈ O(Y)N be of degree N . Suppose that D2r+1x = 0 for all 2r+ 1 < N . Then x is a
multiple of ζf (N).

Remark 7.9. Let g be a Lie algebra and Ug ⊃ g be the universal enveloping algebra. Then the
coproduct on x ∈ g is ∆x = 1⊗ x+ x⊗ 1, which is send to zero modulo the units. The dual statement
for Lie coalgebras C is that the projection UC → C annihilates products ab, which are non-trivial, i.e.,
ε(a) = ε(b) = 0. This has two nice consequences for us, regarding the computation of D2r+1:

• When computing D2r+1, we may omit the product terms from the formula for the coaction (??).

• A priori the projection f∨1 → K to the cogenerators is hard to compute, because we do not know
the explicit formula for σ2r+1. In practice, we will solve this by showing identities of multi-zeta
values of the form

ζf (XXX) = cζf (2r + 1) + products.

In this case the projection just picks out the constant c. In fact, we need two such identities, given
in the next section.

7.5 Some multizeta identities in O(Y)

Two identities about formal multi zeta values are needed. In the first Lemma, note that ζf (2k) ∝ ζf (2)k

by Exercise ??.

Lemma 7.5.

ζf1 (2{n}) = 2

n∑
i=1

(−1)iζf (2i+ 1)ζf (2n−i)

Proof. Apply the stuffle relations

ζf (2i+ 1)ζf (2k) =

k∑
j=0

ζf (2j(2i+ 1)2k−j) +

k−1∑
j=0

ζf (2j(2i+ 3)2k−j−1).

The terms on the right cancel telescopically and one is left with the equation

ζf1 (12{n}) = −2

n−1∑
j=0

ζf (2j32n−1−j)

which is a (regularized) shuffle product relation.

The second is the formal version of an identity of D. Zagier. (Zagier’s result may be recovered by
omitting all superscripts f , or equivalently by evaluating on the Knizhnik-Zamolodchikov associator.)

Theorem 7.2.

ζf (2a32b) = 2

a+b+1∑
r=1

(−1)r(Ara,b −Bra,b)ζf (2r + 1)ζf (2a+b+1−r)

where

Ara,b =

(
2r

2a+ 2

)
Bra,b = (1− 2−2r)

(
2r

2b+ 1

)
.

Idea of proof. By induction on a + b, using Lemma 7.4. Apply D2r+1 to the difference Θ of both
sides. D2r+1ζ

f (2a32b) may be computed, the result being expressed as projections of ζf (2α32β) for
α+β < a+ b to the cogenerators. These cases are handled by the induction hypothesis. Hence one finds
that Θ ∝ ζf (2a + 2b + 3) by Lemma 7.4. The missing constant is read off from D. Zagier’s non-formal
version of the Theorem.
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7.6 F. Brown’s proof of Theorem 7.1

Temporarily let VN be the free vector space spanned by words in symbols {2, 3} of weight (i. e., digit
sum) N .1 To show 7.1 it is sufficient to show that the obvious maps

VN → O(Y)N

are injective for all N . Then these maps are actually bijective since we know that dim(O(Y)N ) ≤
dim(VN ).

We will show this statement by induction. For N = 0, both spaces are 1 dimensional and the
statement is trivial. Assume that the statement has been shown up to N − 1, and our task is to show it
for N .

Put a grading (the level grading) on the vector spaces Vn by the number of 3’s in words. It induces
a filtration on the image WN of VN in O(Y)N . Concretely, FpWN is the vector space spanned by all
ζf (r1, . . . , rk) with rj ∈ {2, 3},

∑
j rj = N , and with at most p of the rj ’s being 3’s. To reach our goal

it clearly suffices to show that
grpVN → grpWN

is injective for all p.
There is one case we can settle right away, namely the case p = 0. If N is odd, then gr0VN = 0

and we are done. If N is even, then gr0VN is one dimensional, and it is easily checked that the image is
non-zero. (For example since the non-formal zeta value ζ(2, 2, . . . , 2) = πn

(2n+1)! 6= 0 where N = 2n.)

Exercise 7.1. Show that in fact ζf (2{n}) is a multiple of ζf (2)n by using Lemma 7.4.

Hence we are left with checking injectivity for p ≥ 1.

Lemma 7.6.
D2r+1FpWN ⊂ Fp−1WN−2r−1

Proof. We have to cut out a subsequence of length 2r+1 of a sequence of 01’s and 001’s. Furthermore, to
get a nonzero contribution, the symbols just to the right and left of the subsequence have to be unequal.
Schematically

· · · 0XXXXX1 · · ·

or
· · · 1XXXXX0 · · · .

(The beginning of the sequence counts as 0, the end as 1.) The possible neighbourhoods of the cut
region are: (1)00XXX(1), (1)0XXX(1), 1XXX01, 1XXX001. In all cases, after cutting there remains
a series of 2s and 3s, with at most the same number of 3s that were there before. Furthermore, since we
cut out an odd length piece, the number of 3s is in fact reduced by at least 1.

Hence let us consider the composition

∂N,p : grpVN → grpWN →
⊕

3≤2r+1≤N

grp−1WN−2r−1

where the the right hand aroow is the sum of maps induced by D2r+1. here we also used the previous
Lemma. Of course, it suffices to show that ∂N,p is injective. Also note that by the induction hypothesis,
we know a basis for the right hand side.

The very remarkable insight of F. Brown is now that the (square) matrix of ∂N,p with repect to the
bases given may be explicitly computed (using the formal version of Zagier’s Theorem ??), and that
invertibility of this matrix follows by considering arithmetic properties of its entries.

7.6.1 Formula for the matrix of ∂N,p
All entries of the matrix of ∂N,p will be rational. Modulo 2Z, F. Brown showed that the operators ∂N,p
acts just by deconcatenation.

1By definition, the empty word has digit sum 0.



7.6. F. BROWN’S PROOF OF THEOREM ?? 61

Theorem 7.3 (F. Brown). Let w be a word in symbols {2, 3} of weight N and level p. Then

∂N,pζ
f (w) =

∑
v:uv=w

deg3(v)=1

cvζ
f (u) (mod I) (7.2)

where deg3(v) = 1 shall mean that the word v contains only one 3, i. e. v = 2a32b for some numbers
a, b, and the set I is composed of even integer multiples of ζf (· · · ). (In other words, we are giving the
matrix elements of ∂N,p only modulo 2Z.)

Furthermore the constant

cv = 2(−1)a+b+1
(
Aa+b+1
a,b −Ba+b+1

a,b

)
= 2(−1)a+b+1

((
2a+ 2b+ 2

2a+ 2

)
− (1− 2−2a−2b−2)

(
2a+ 2b+ 2

2b+ 1

))
.

(7.3)
are the constants appearing in Theorem 7.2. The “(mod 2Z)” shall indicate that all numbers are given
only modulo addition of even integers, which are irrelevant for invertibility as we will see below.

Proof. One needs to consider 4 non-trivial cases, according to how the cut out subsequence sits inside
the sequence w, so that the symbols to the left and right of the subsequence are distinct. They the length
of the subsequence we cut out is 2r + 1.

1. The subsequence starts and ends in 0. In that case it has the form 0(10)r. But this contributes an
even integer to the matrix element by Lemma ??.

2. After cutting out the subsequence, the remaining sequence contains less than p− 1 3s. Then there
is no contribution by definition of ∂N,p.

3. We cut out the subsequence in the middle (not at the end) of w. Then there are always two ways
to cut:

0(101 · · · 1001 · · · 0)10

or
01(01 · · · 1001 · · · 01)0.

The first way contributes a coefficient c2a32b and the second one a coefficient (−1)2r+1c2b32a by
Theorem 7.2. Hence their sum is

c2a32b − c2b32a = 2(−1)a+b+1

((
2a+ 2b+ 2

2a+ 2

)
−
(

2a+ 2b+ 2
2b+ 2

))
∈ 2Z.

4. If the subsequence is a tail of w, the contribution is as stated in the Theorem, again by Theorem
7.2. (Note that in contrast to the previous case, there is now no "partner subsequence" that could
make the contribution even.)

7.6.2 End of the proof
To finish the proof it suffices to check that the determinant of (the matrix of) ∂N,p is non-zero. We write
det(∂N,p) abusively, assuming that the unimportant overall sign has been fixed, e. g. by putting some
order on the basis elements. Clearly det(∂N,p) ∈ Q ⊂ Q2, where Q2 are the 2-adic numbers. The 2-adic
expansion of det(∂N,p) will have the form ∑

j≥−q

cj2
j

where cj ∈ {0, 1}. For us it suffices to show that one cj 6=. We will try to take j smallest.
Let Mw,u be the entry of the matrix of det(∂N,p) between words w and v. According to Theorem 7.3

the only Mw,u of non-positive valuation are those for which there are a, b such that w = u2a32b, and in
this case Mw,u = c2a32b (sf. (7.2)). Hence in this case

val2(Mw,u) = val2(c2a32b) = val2

(
2−2a−2b−1

(
2a+ 2b+ 2

2b+ 1

))
= −2a− 2b− 1 + val2

(
2a+ 2b+ 2

2b+ 1

)
= −2a− 2b+ val2(a+ b+ 1) + val2

(
2a+ 2b+ 1

2b

)
.



62 CHAPTER 7. F. BROWN’S THEOREM

Considering the column M·,u for fixed u, only pairs a, b with a + b =: n fixed occur. Among these a, b,

the minimum of val2

(
2a+ 2b+ 1

2b

)
≥ 0 is obtained at a = 0, b = n, in which case the valuation becomes

0. This minimum is however also obtained at other values (e. g., b = 0).
Let us put the reverse (“middle-eastern”) lexicographic ordering on the the words w of weight N ≥ 1

and level p. For each w we assign one possible u as above, namely the unique u such that w = 32 · · · 2.
This puts an ordering on the u’s.

Proposition 7.2. Ordering the words w and u as said. Then the matrix Mw,u has the following form:

• All entries above the diagonal have positive valuation.

• The lowest valuation in each column is attained on the diagonal.

In particular the determinant is non-zero, i.e., ∂N,p is invertible.

Proof. To see the first statements, consider some fixed u. The highest w that would yield an Mw,u

of non-positive-valuation is w = u32 · · · 2, and we saw above that in this case the valuation becomes
minimal.

To see the final statement, note that the lowest coefficient in the 2-adic expansion is solely contributed
by the term in the expansion of the determinant coming from the product of the diagonal elements.

Since ∂N,p is invertible it follows that the maps grpVN → grpWN are injective, hence the maps
VN →WN are injective, and hence isomorphisms. Hence Theorem 7.1 follows.
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