
PMP: Poor Man’s Parallelizer. User Guide

Peter Leikauf, Seminar for Applied Mathematics,

Swiss Federal Institute of Technology ETH, CH-8092 Zürich

January 8, 2001

1 Table of Contents

2 Purpose
3 How it works
4 Setting up a run
5 Monitoring progress
6 Interrupting and stopping
7 PMP on a supercomputer
8 Technical information
9 Suggested improvements

2 Purpose

The PMP System (Poor Man’s Parallelizer) provides an easy, robust, platform-
independent mechanism for parallelizing big tasks consuming very large
amounts of CPU time (like a few weeks) in a heterogeneous environment,
provided these tasks can be subdivided into independent sub-tasks. Exhaus-
tive searching is an example for such a task. Utmost care has been taken to
make sure the software only needs very basic libraries found on nearly any
operating system: a standard ANSI-C library and internet sockets. Only the
node acting as server will make use of a file system. Furthermore, a running
system will survive (within reasonable limits) all the typical incidents that
may occur from time to time, such as failure of one or several clients, failure
of the server itself or even failure of the whole network. Besides, a run can
be interrupted and restarted at any time.

1



3 How it Works

To make use of PMP, it is first necessary to create a set of N subtasks,
numbered from 0 to N-1. One specific node of a network acts as the server
whose address must not change during the run. The server software does
not act by itself but assignes to each connecting client a task (identified by
its number), which is then supposed to be handled by that client. If a client
reports some task as completed (see below how this works), the server marks
this task accordingly and assigns a new task to the reporting client - until
all tasks are completed. The number of clients taking part can increase and
decrease all the time. It is important to understand that the server does
NOT monitor the activities of the clients - only when a client reports some
task as done, then this task is taken off the todo-list. This leads to a certain
overhead near the end of a run (there are always multiple runs for the last
few tasks), but makes the whole system extremely simple and robust.

To survive hardware or network incidents, a client, after having done its
work, repeatedly tries to connect to the server for a certain time (currently
once per minute for 100 times) before giving up. This allows for many kinds
of interruptions, including shutting down the server node for some time due
to hardware or network maintenance.

4 Setting up a Run

Using PMP only makes sense if the CPU time for completing one subtask
is reasonably large. As a rule of thumb, one hour to one day is a good
choice. Shorter times could cause unwanted network overhead, longer times
might lead to regrettable loss in case of client failure. So the first step is
to figure out a good number of subtasks to be completed. Before starting
the server process (program BTServer), we have to create a new status file
(called BTServer.DAT). This file must contain exactly two lines initially: the
number of tasks in the first line and a zero followed by the same number in
the second line. So, for setting up a run for 120 000 tasks, we would have to
create a file BTServer.DAT looking like this:

120000

0 120000



After that, the server process can be invoked, normally as a background job,
by the command ./BTServer &.

From now on, a client can be started anywhere, provided it is able to
handle a subtask and to connect to the server process. This could be on
the same machine as the server (which may only make sense with multi-
processor hardware), on a local network or anywhere the internet can be
accessed. Invoking a client process is done as follows on a Unix system:

./BTClient <n> <serveraddr> <cmd> [arg1][arg2]...[argN]

where <n> is a client identifier, usually 1. Its only purpose is to uniquely
identify a client process in case more than one of them should be running
on the same node (again, this is usually only done on a multi-processor
machine). <serveraddr> is the internet address of the server node, such
as "xy.anywhere.net" or "212.23.56.193" or even "localhost". <cmd>

is the command to be invoked by the client (as a subprocess) to solve an
assigned subtask (optionally followed by arg1..argN), which will then be
followed by the subtask number itself. As an example, suppose each client
has a perl script called solver.pl which is able to solve a subtask, given
as the only command line parameter. Thus, ./solver.pl 5 would solve
subtask 5. To invoke a client process now, we would typically type:

./BTClient 1 xy.anywhere.net ./solver.pl &

The standard output of the subprocess invoked by the client is then re-
ported to the server who puts it into the server log file. Its structure are
completely up to the user, e.g., for an exhaustive search task it could be
empty if nothing was found or some number otherwise. Once such a client
is started, it usually quickly gets its first subtask from the server and starts
running the appropriate command as a separate subprocess, currently with
minimum priority (nice +20). The client will only terminate after it was
told by the server that all tasks have been completed. However, it is possible
at any time to kill a client and restart a new one.

5 Monitoring Progress

The server process collects all assigned tasks and the reported results of every
client run in a log file called BTServer.log. Each line of it contains the



exact time, the connecting node including its client identifier, the number of
seconds it took to complete its run and the result (= output of the command
invoked by the client). This logfile is being flushed on every contact and can
be observed, e.g. with tail BTServer.log. Depending on the structure of
a subtask solver’s output, it may be scanned for results more or less easily
with tools such as grep. As an example of a non-trivial logfile analyzer,
the tool BTCheck.pl, a small perl program, can be taken as a template. It
nicely handles the case when the output of a client run is 0 when nothing
was found, or a list of numbers otherwise.

Besides the log file, the already mentioned status file BTServer.DAT is
redundantly maintained on every contact and lists the completed tasks in
human-readable, but compressed format. Should one of these files be de-
stroyed by an unusual accident such as media failure, the run could at least
be set up again (although this would require looking into the server pro-
gram BTServer.c). This may be important if a run takes several months to
terminate.

6 Interrupting and Stopping

Shutting down the server process BTServer doesn’t do any harm to a run,
provided it is restarted within the period in which the clients try to con-
nect to the server. Thus, a run can even survive a hardware or network
reconfiguration and - most importantly - a reboot of the server node.

After a run has completed, the active client processes will be notified on
their next contact and will then immediately stop. This is the normal way
a run ends itself - only the server has to be shut down manually some time
afterwards.

To end a run before completion, it thus suffices in principle to shut down
the server and wait long enough for the last client to stop. However, to
do a clean shutdown it is better to kill the client processes first to avoid
unnecessary network traffic.

7 PMP on a Supercomputer

If some or all of the client nodes are part of a supercomputer with independent
nodes (such as a Beowulf cluster), it is convenient to maintain a list of the
active client nodes and a small script for stopping/starting all of them at



once using tools like rsh on Unix systems. Furthermore, since the log- and
status-files are flushed upon every contact with a client, it may be a good
idea to put them onto a local file system and not onto an NFS in order to
reduce hidden network traffic.

8 Technical Information

The PMP system consists of these files:

BTServer.c server program

BTClient.c client program

SIS.h, SIS.c small library used by both server and client

BTCheck.pl sample Perl script for analyzing the server log file

The C programs will compile on Linux and SunOS systems and can easyly
be adapted to work also on Windows/Mac or other Unix variants.

BTServer acts as a mere dispatcher and takes modest CPU time even
when running for months, provided the average elapsed time of a client pro-
cess is within reasonable limits (see above).

BTClient creates a new subprocess for every subtask (currently with low-
est priority). There are three reasons to do it this way:

1. software independency (BTClient has no direct link to whatever it
takes to solve a subtask),

2. simplicity and robustness (BTClient might run for months and must
not be affected by problems of the subtask-solving software such as
memory leaks),

3. different process priorities (although it can be meaningful to assign low
priority to subtask-solvers, BTClient itself needs normal priority to be
able to contact the server within the timing constraints).

9 Suggested Improvements

• Put server constants (like retry interval) into a config file

• Create a simple logfile analyzer reporting completed tasks

• Use perl/python instead of C, since those are ubiquitous today


