Parallelization of Low-Communication
Processes

Jorg Waldvogel and Peter Leikauf
Seminar for Applied Mathematics SAM
Swiss Federal Institute of Technology ETH, CH-8092 Ziirich

November 2001

1 Project Description

Tapping the large amounts of idle time of numerous workstations and paral-
lelizing large, but simply structured computational efforts is a cheap method
of advancing to the limits of computationally feasible tasks. Known systems
like PVM are able to function under quite general conditions, however, they
achieve considerable complexity. The goal of this project at the Seminar for
Applied Mathematics (SAM) of ETH is to parallelize an arbitrary number
of workstations for distributed computations with low communication. In
particular, we want to exploit the simple situation of a large computational
effort that naturally splits into highly independent subtasks producing low
data traffic. It was possible to come up with a small but robust system
taking advantage of this simple, yet important situation. A typical class of
problems of this type are exhaustive-search problems.

1.1 Robustness

The following flexible and fail-safe concept has been implemented on a net-
work of Unix-based workstations, including clusters of workstations like the
Beowulf cluster of ETH. There is a varying set of independent processes run-
ning on (not necessarily) different machines: One master process and several
client processes. The master assigns tasks to any connecting client, keeps

track of the assigned tasks and processes the reported results. Each client
tries to connect to the master, receives a task, disconnects and begins its
computation. After completion of a task the result is reported back to the
master, and a new task is immediately assigned to the client.

The only fixed parameter of this system is the master’s internet address;
the number of client processes and machines taking part can increase or
decrease at any time without the need of notifying a central instance. The
system can survive almost any failure it may encounter: breakdown of a client
process (or machine), breakdown of the entire network, even the breakdown
of the master process itself. If a critical breakdown (e.g. the master’s ma-
chine) lasts less than, say, 2 hours the system will recover without human
interaction. In any case, the central mechanism for managing the results is
immune against all typical hardware or software breakdown situations and
would even survive a (local) media failure on the master’s file system.

In addition, much care has been taken of using as little resources as pos-
sible. The clients are designed to use no file system at all, so even if a client
fails or if its machine is shut down, there will be no trace left. The paralleliza-
tion software exclusively uses the standard C++ libraries contained in every
Unix installation. Network load is kept small since there is no permanent
connection between the processes; documentation see [10], pmp.pdf.

1.2 Current Application: Clusters of Primes

Currently, we are applying our parallelization concept to an algorithm involv-
ing sieving techniques for locating and counting clusters of prime numbers.
Whereas the distribution of primes seems to be fairly regular (if the Rie-
mann hypothesis is true), the distribution of twin primes and longer clusters
is largely unknown and is characterized by large-scale anomalies. Collecting
experimental data on these anomalies is one of the reasons for the interest
in clusters of primes.

Another challenge of finding clusters of prime numbers is the unproven
prime k-tuple hypothesis, which is concerned with patterns of natural num-
bers that occur repeatedly with all elements being prime. The hypothesis
states that any pattern that is not forbidden by simple divisibility consid-
erations occurs infinitely often in the sequence of primes. An example of a
pattern that certainly cannot occur infinitely often in the sequence of primes
is the pattern ¢ = [z, 2 + 2, x + 4]: at least one of its elements is divisible by
3. The only prime instance of ¢ occurs with x = 3, when one of its elements

is the prime number 3 itself. A proof of the prime k-tuple hypothesis is cur-
rently out of reach; not even for the simplest case, the twin prime hypothesis,
a proof is in sight, [7]. In contrast, the observed average densities of prime
k-tuples in the accessible range are in perfect agreement with the densities
pe(x) conjectured by Hardy and Littlewood [5] in 1922:

hc
(1) pe(r) = Wa

where h, is the Hardy-Littlewood constant associated with the pattern ¢, and
|c| is the number of elements in the pattern c.

The basic ingredients in our search algorithm are the Chinese remainder
theorem to exclude divisibility by small primes (e.g. p < 53), sieving tech-
niques to exclude divisibility by intermediate primes (53 < p < 641), and
a probabilistic primality test (Miller-Rabin) for the remaining large primes
p > 641. Finally, candidates for new clusters of large primes are ”hardened “
by rigorous primality proofs. An account of a similar algorithm was given by
Tony Forbes in [3].

1.3 Software

The current implementation takes advantage of the mathematical software
package PARI, written in C++ by the Bordeaux group C. Batut, K. Belabas,
D. Bernardi, H. Cohen and M. Olivier, e-mail pari@math.u-bordeaux.fr. Fea-
tures of the package are arbitrary-precision arithmetics with integer, real and
complex numbers, many special functions, general symbolic computations,
computational number theory and computational algebra; it may well be
useful for other projects and for teaching. It is available as freeware from
[1]. Due to the advanced features of PARI the entire algorithm (without
the parallelization) can be formulated with less than 30 lines of code ([10],
paricode.gp). Near-optimum speed is achieved by implementing the inner-
most loop (the sieve involving only single-precision integers) in C++.

As a prerequisite for our implementation, PARI must be installed on
each client machine or cluster (requiring disk space of some 10 MBytes).
The processes running on the clients use little memory (< 1 MByte) and
are given the lowest possible priority. Tests on 20 workstations of SAM have
confirmed that the project will not noticeably disturb other users.

1.4 Implementation

Software development and preliminary experiments were done with the idle
time of 20 workstations of the Seminar for Applied Mathematics SAM. On
Asgard the project was given the idle time of 432 processors, i.e. the idle
time of 90% of Asgard’s processors. The authors express their gratitude to
the steering committee and to the Asgard operator team for this generous al-
lotment and for the continuous support. Since our project uses little memory
and is always running on lowest priority (nice +19), it does not noticeably
channel off resources from other users: from a busy processor our project is
getting at most 6% CPU time.

During the year 2002 the project was using an estimated portion of 6%
to 30% of Asgard’s capacity. The highest turn-out was mainly achieved
shortly before shut-downs of Asgard, when most users had withdrawn their
processes. Due to the robustness of our algorithms we were able to have our
processes stopped by the operator — without any loss of data. The restart
after the recovery of the system is a matter of a few minutes.

During the upgrading (including renaming of the nodes) of September
2000 and during several periods of hardware problems in 2001 (February,
May/June) the robustness was also essential: there were no losses except for
the time lost when the machine was down.

2 Results

2.1 Finding an 18-Tuplet of Maximum Density

Our first major goal was to find an 18-tuplet of maximum density in the
range of 10?*. Consider the pattern

(2) ¢=113,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79, 83|

consisting of the 18 consecutive primes beginning at 13 and ending at 83.
For patterns that can be represented by sequences of small primes we will
use the shorthand notation involving the initial and final primes, separated
by two periods. Accordingly, ¢ = [13..83]; ¢’ = [—83.. — 13] represents the
mirror image of ¢, thus introducing the obvious concept of negative primes.

The Hardy-Littlewood constant of the pattern ¢ or ¢’ is found to be h,. =
6723654.312 (see [8] for the definition and computation of h.). Equ. (1)

implies that the expected number of occurrences of the pattern ¢ (as well
as of its mirror image) in a large interval of length A near a much larger
x is given by h.A (logx)~!8. Integration of this average density yields the
following expected frequencies HL(x) (referred to as the Hardy-Littlewood
count [5], HL count for short):

x 11024 21024 31024 41024 51024 11025 11026
HL(z) 0.438 0.695 0.912 1.107 1.286 2.056 9.962

Therefore, we could "hope“ that the above prime pattern ¢ would repeat
for some x in the range of 3 - 10?*, and also that its mirror image occurs
in the same range. One could even be lucky to have occurrences for smaller
values of x, but also, with bad luck, the search might have to be pushed much
higher. Estimates based on the idle time of 20 workstations of SAM (80 %
idle time) were in the range of 2 to 5 years. Including 6 % idle time of Asgard
may result in a speedup of a factor 4. If the search is successful within a
reasonable timespan, we could claim a world record that wouldn’t be easy
to break. Dense clusters of 19 primes in the patterns of [13..89], [37..113] or
their mirror images are expected to repeat/occur only in the range of 10%°.

Searching the natural numbers up to 3 - 10%* for clusters of 18 primes
among 71 consecutive integers turned out to be at the upper end of currently
feasible computations. Locating the two expected occurrences truly amounts
to finding the proverbial needle in the haystack. To get an idea of the sheer
size of the number 3-10%*: It is in the order of magnitude of the total number
of cells in all living humans on Earth. Immagine to look for a particular
subset of 100 cells within this set!

We began the search for the 18-tuplet ¢’ in August 2000 by searching
blocks of size 10?4, 432 processors of the Beowulf Cluster and 20 workstations
of SAM were involved. We were lucky: the first hit happened in November
2000, the second one (pattern c) at the end of January 2001. The search is
now complete up to 2.9999949836 - 10%*. Some details are given in the table
below; for more details see [10], c118.pdf as well as [2], [4], [6].

Pattern Block Begin/end of search Date Initial element HLcount
[-83..-13] 1 8/03 - 9/19/00 0.438
[-83..-13] 2 9/19 -10/26/00 0.695
[-83..-13] 3 10/29 -11/20/00 11/13/00 2845372542509911868266807 0.880
[13..83] 1 12/19 - 1/23/01 0.438
[13.. 83] 2 1/23 - 2/27/01 1/31/01 1906230835046648293290043 0.673
[13.. 83] 3 2/27 - 3/26/01 0.912

2.2 Four Kinds of Dense Patterns of Seventeen Primes

Minimal clusters of 17 primes among 67 consecutive integers can exist in
the patterns [13..79], [17..83] or in the mirror images of these patterns. We
searched the range up to 3.333545 - 10% for all four patterns. As the table
below shows, the distribution is very uneven, e.g., the pattern [17..83] has 8
instances, whereas [-83..-17] does not occur at all in this interval. For this
pattern the search was extended to 10%*, and a pair of rather close instances,
near 7.3 - 10?3 and near 7.5-10%, turned up; the Hardy-Littlewood count for
this interval is 11.2. In contrast to this discrepancy, the total number, 18,
of tuplets present up to % - 10% agrees very well with the expected number
(Hardy-Littlewood) of 19.256. Among these clusters (listed below by their
initial elements), 14 are new, 4 have been discovered earlier (see the comments
in the table), and 2 are in the range of small primes.

Pattern [13.. 79], 3/26/01 - 4/30/01, 6 tuplets, HLcount = 4.316
13
47624415490498763963983
78314167738064529047713
83405687980406998933663
110885131130067570042703
163027495131423420474913

Pattern [-79..-13], 5/02/01 - 6/29/01, 4 tuplets, HLcount = 4.316
1620784518619319025971 J. Waldvogel 1997, Tony Forbes 1998
2639154464612254121531 Tony Forbes 1998, J. Waldvogel 1998
3259125690557440336631 Tony Forbes 1998, J. Waldvogel 1998

124211857692162527019731

Pattern [17.. 83], 8/17/01 -10/25/01, 8 tuplets, HLcount = 5.312
17
37630850994954402655487

53947453971035573715707 Tony Forbes 1998
174856263959258260646207
176964638100452596444067
207068890313310815346497
247620555224812786876877
322237784423505559739147

Pattern [-83..-17], 7/02/01 - 8/17/01, O tuplets, HLcount = 5.312

Pattern [-83..-17], Interval (0,1e24), 2 tuplets, HLcount = 11.2
734975534793324512717947
753314125249587933791677

2.3 The Largest Known 15-Tuplet

In order to demonstrate the capability of our algorithm to handle even larger
numbers, we screened the interval

[10% — 10, 10 + 99 - 10%]

for 14-tuplets in the pattern of ¢ = [11..61]. With the corresponding HL
constant h. = 50975.35252 we expect about

50975 - 10* - log(10%°)~* = 9.05

such 14-tuplets in the above interval; actually 12 are present, where the first
one happens to be the largest known 15-tuplet of Pattern [11..67] (no larger
one was found up to 2006). In the table below we also indicate the sequences
of differences of consecutive primes.

999999999900000000000000000000 = 1e30 - 1e20, lower search limi

1 999999999962618227626700812281 114 2 4 246 26 4 246 6 2
2 1000000001044178961179268851051 2224246264246¢6 2
3 1000000001544051614464292419601 162 24 2 4 6 26 4 2 4 6 6 2
4 1000000001553601074663653211311 5224 246264246¢6 2
5 1000000001772437688818681781011 48 242462642466 2
6 1000000003068759599025980926181 54 24246264246¢6 2
7 1000000004930964950164522054901 112 24 2 46 26 42466 2
8 1000000005644941246959007679801 2224246264246¢6 2
9 1000000005832631360266813468481 5224 246264246©6 2
10 1000000006672161724368529625351 8224246264246¢6 2
11 1000000007541367760266886291861 16560 2 4 2 46 26 4 2 4 6 6 2
12 1000000008282508019026959814211 240 2 4 246 26 4246 6 2

t

6 30
18
126
18
82
112
60
106
78
112
286
148

1000000009900000000000000000000 = 1e30 + 99e20, upper search limit

2.4 Comments

Prime numbers have been one of the favorite objects of research of classical
mathematics, and various computations involving primes have been done

already by Euclid. With the advent of modern computing machines the
size of the accessible numbers has dramatically increased, and ever more
impressive — though mostly futile — results have been obtained. Only with
the rise of modern cryptography [9] primes had grown up from objects mainly
existing in the brains of mathematicians to real-world objects with eminently
important applications.

This is only a partial explanation for the ongoing quest for all kinds of
prime number records. The New Book of Prime Number Records by Paulo
Ribenboim [7] has 541 (the 100th prime!) pages and is in its third edition.
Among hundreds of records there are the largest known prime, the largest
known value of 7(x), the largest known maximal gap, etc., and last not least,
the longest known dense cluster of large primes.

The discovery of a dense cluster of 18 primes in the range of 3 - 10*
on November 13, 2000 received immediate coverage in the web journal of
ETH (ETH Life, December 6, 2000, [2]). The news about this computation,
being about 50 times harder than previous computations in the same field
3], [10], were also announced in the number theory press, e.g. [6]. Dense
clusters of primes receive particular attention on the website [4], continuously
actualized by Tony Forbes. The successes of our implementation bear the
danger of monopolizing this site and taking away all the fun!

3 Future Projects

A typical property of computations involving prime numbers is that they can
go on forever. This is not our goal, however. It was mentioned that finding
a large cluster of 19 primes (among 77 consecutive integers) is by far harder
than the 18er, perhaps 50 times the effort. Therefore, this is out of reach for
the current implementation.

If the idle time of Asgard is still available to our project in the current
rate, we plan to further exploit the excellent performance of our system in the
directions mentioned below. The computation time for each item is expected
to be in the order of months.

1. Generate a fair number (30...100) of densest 16ers, Patterns [13..73]
and [-73..-13], in order to investigate the regularity /irregularities of the
distribution of this instance of a long dense cluster.

2. Search for exotic long patterns, such as 9 twin primes within 105 con-
secutive integers, in order to support the prime k-tuple hypothesis [5].

3. Search for exotic shorter patterns, e.g. 10 consecutive primes with
mutual difference 210 to support the hypothesis that in some range of
the natural numbers 210 is the most abundant difference of consecutive
primes.

References

[1] C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier: The software
package PARI (freeware). http://pari.math.u-bordeaux.fr/

[2] ETH Life, Die tégliche Webzeitung der ETH, 6. Dezember 2000,
Archiv. Prozessoren malochten 100 Tage.
http://www.ethlife.ethz.ch/articles/tages/ Waldvogel.html

[3] Tony Forbes: Prime clusters and Cunningham chains. Math. of Comp.
68 (1999) 1739-1747.

[4] Tony Forbes: Prime k-tuplets. http://www.ltkz.demon.co.uk/ktuplets.htm

[5] G.H. Hardy and J.E. Littlewood: Some problems of Partitio Numero-
rum III. Acta Math. 44, 1922, 1-70.

[6] Number theory news. http://www.utm.edu/research/primes/

[7] Paulo Ribenboim: The New Book of Prime Number Records, 3rd ed.
Springer 1996, 541 pp.

[8] Hans Riesel: Prime Numbers and Computer Methods for Factorization,
2nd ed. Birkh&auser 1994, 464 pp.

9] R.L. Rivest, A. Shamir, L. Adleman: A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM
21 (1978) 121-126.

[10] Jorg Waldvogel: Homepage. http://www.math.ethz.ch/ waldvoge/Projects/

