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Abstract

We study the minimization problem for the Yang-Mills energy under fixed boundary connection

in supercritical dimension n ≥ 5 . We define the natural function space AG in which to formulate

this problem in analogy to the space of integral currents used for the classical Plateau problem. The

space AG can be also interpreted as a space of weak connections on a ”real measure theoretic version”

of reflexive sheaves from complex geometry.

We prove the weak closure result which ensures the existence of energy-minimizing weak connections

in AG .

We then prove that any weak connection from AG can be obtained as a L
2 -limit of classical connec-

tions over bundles with defects. This approximation result is then extended to a Morrey analogue.

We prove the optimal regularity result for Yang-Mills local minimizers. On the way to prove this

result we establish a Coulomb gauge extraction theorem for weak curvatures with small Yang-Mills

density. This generalizes to the general framework of weak L
2 curvatures previous works of Meyer-

Rivière and Tao-Tian in which respectively a strong approximability property and an admissibility

property were assumed in addition.

MSC classes: 58E15, 49Q20, 57R57, 53C07, 81T13, 53C65, 49Q15.

1 Introduction

1.1 A nonintegrable Plateau problem

1.1.1 The classical Plateau problem

Consider a smooth simple closed curve γ in R3 . The classical Plateau problem can be formulated as
follows:

“Find a surface Σ ⊂ R3 with boundary γ of smallest area”. (1.1)

Part of the problem is giving a suitable meaning to the terms “surface”, “boundary” and “area”, in such a
way as to extend the classical notions from a smooth setting to one where a minimizer is assured to exist.
The parametric approach to problem (1.1) consists in considering immersed images of the unit disk:

Let u : D2 → R3 be a smooth immersion

such that u|∂D2 is a parameterization of γ .
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One then looks for minimizers of the following area functional, defined in terms of coordinates x, y on
D2 :

A(u) :=

ˆ

D2

|∂xu× ∂yu|dxdy .

An immediate difficulty which arises is the fact that the functional A(u) has a large symmetry group: for
all φ belonging to the group of orientation-preserving diffeomorphisms of D2 , i.e. for any immersion u
as above there holds

A(u) = A(u ◦ φ) for all φ ∈ Gplat = Diff+(D2) . (1.2)

This infinite-dimensional symmetry group Gplat is responsible for possible loss of compactness of area-
minimizing sequences of maps. It is then required to break this infinite dimensional symmetry in order
to hope for minimizing sequences to have some compactness. A now classical strategy introduced by
J. Douglas and T. Radò consists in minimizing a more coercive functional, the Dirichlet energy E , for
which

A(u) ≤ E(u) :=
1

2

ˆ

D2

|Du|2

instead of the area A with equality if and only if the parametrization of the immersed disc u is confor-
mal. Such change has the effect of providing “good” minimizing sequences for A(u) (so-called Coulomb
immersions).

1.1.2 A nonintegrable analogue of the Plateau problem

Consider a smooth compact Riemannian n-manifold M with boundary and let G be a compact con-
nected simply connected nonabelian Lie group with Lie algebra g . We assume that a principal G-bundle
P → ∂M is fixed over the boundary of M . On P we consider a G-invariant connection ω , which
corresponds to an equivariant horizontal n-plane distribution Q (see [29] for notations and definitions).

Analogously to the Plateau problem, we may then ask which is the “most integrable” extension of
P,Q to a horizontal distribution on a principal G-bundle over M . By Frobenius’ theorem, the condition
for integrability in this case is that for any two horizontal G-invariant vector fields X,Y , their lie bracket
[X,Y ] be again horizontal. The L2 -error to integrability of an extension of Q over M can be measured
by taking vertical projections V of [Xi, Xj] for Xi, Xj varying in an orthonormal basis of Q :

ˆ

M

∑

i,j

|V([Xi, Xj])|2 . (1.3)

Note that F (X,Y ) = V([X,Y ]) is known to be a tensor, and F is nothing but the curvature of the
connection.

From now on we will work on the associated vector bundle E → M corresponding to the adjoint
representation of G and we identify the connection form with a covariant derivative ∇ on E . In a
trivialization we have the local expression

∇ loc
= d+A ,

where A is a g-valued 1 -form on a given chart of M . The structure equation relating curvature to
connection takes the form

F
loc
= dA+A ∧ A (1.4)

in a trivialization. Here ∧ represents a tensorization of the usual exterior product of forms with the Lie
bracket on g . In this setting the L2 -error in integrability (1.3) is identified with the Yang-Mills energy,
which we consider as being a functional of the connection ∇ :

YM(∇) :=

ˆ

M

|F∇|2 . (1.5)
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We observe that, similarly to the area functional in the Plateau problem, YM has again a large invariance
group given by changing coordinates in the fibers via G . The corresponding group

G := {g :M → G} (1.6)

acts on the curvature form F =
∑

Fijdxi ∧ dxj via

Fij 7→ g−1Fijg, |F | 7→ |g−1Fg| = |F | ,

where we used the fact that the canonical norm on the Lie algebra g is given by the Killing form (see
again [29]).

1.2 Natural spaces of connections and the critical dimension n = 4

The natural function spaces in which to consider the minimization of YM are identified by consider-
ing the local form of the structure equation (1.4). The curvature form F is naturally required to be
L2 in order for the energy to be finite. In the abelian situation G = U(1) there holds A ∧ A = 0 and
´

|F∇|2 =
´

|dA|2 hence W 1,2 is a natural space to consider for the connection forms A . In a non-abelian
framework the situation is more delicate due to the nonlinearity A ∧ A . Assuming A ∈ W 1,2 the linear
term dA of (1.4) belongs to L2 , but the L2 control of the quadratic nonlinearity A∧A requires a priori
A ∈ L4 .

In dimensions n ≤ 4 the norm inequality underlying the Sobolev embedding W 1,2 → L4 implies that
we have both dA and A ∧ A in L2 . This embedding is not valid anymore in dimensions n ≥ 5 , which
are called supercritical dimensions.

Going back to the critical dimension n = 4 or to subcritical dimensions, K. K. Uhlenbeck [48] has
proved the local existence of good gauges, similar to conformal parametrizations in the classical plateau
problem, in which the L2 -norm of F controls the W 1,2 norm of A by optimizing the more coercive
functional

ˆ

(

|F∇|2 + |d∗A|2
)

≥
ˆ

|F∇|2 .

The class in which to formulate this Yang-Mills minimization problem is in this case the space of connec-
tions over classical bundles E →M which in each chart for some trivialization have connection forms A
belonging to W 1,2

loc :

A1,2(E) := {∇ connection on E →M s.t. in some W 2,2-gauge A ∈ W 1,2
loc } . (1.7)

The following result permits to solve the Yang-Mills-Plateau problem in this case:

Theorem 1.1 ([48],[42],[40],[34]). Let M be a compact Riemannian 4-manifold and E →M a classical
vector G-bundle. Consider a sequence of connections ∇k ∈ A1,2(E) such that their curvature forms Fk
are equibounded in L2 and such that we have the weak convergence

Fk ⇀ F in L2 .

Then F is the curvature form of a connection ∇ ∈ A1,2(Ẽ) where Ẽ →M is a classical vector G-bundle
(possibly different than E ).

The proof of theorem 1.1 combines the local extraction of Coulomb gauges satisfying

d∗A = 0
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together with a covering argument and a point removability result. We introduce the following space,
where M4 is a compact riemannian manifold, A is a g-valued 1 -form and F is a g-valued 2 -form:

AG(M
4) :=







A ∈ L2, FA
D′

= dA+A ∧A ∈ L2 ∈ L2 ,

and loc. ∃ g ∈W 1,2(M4, G) s.t. Ag ∈ W 1,2
loc







,

where Ag := g−1dg + g−1Ag is the expression of A after the gauge change g . Note that

⋃

E→M4

A1,2(E) = AG(M
4) ,

where the union is over all smooth G-bundles E →M4 .

One obtains as a direct consequence of Theorem 1.1 the following result:

Theorem 1.2. Let M be a compact Riemannian 4-manifold with boundary and let φ be the connection
form of a smooth connection on a classical G-bundle E∂ → ∂M . Consider the space AG,φ(M) consisting
of all connections ∇ ∈ AG(M) for bundles E whose restrictions over ∂M are equal to E∂ and such that
the restriction of ∇ to E∂ is locally gauge-equivalent to d+ φ. Then the following holds:

inf

{
ˆ

M

|F |2 : F
D′

= dA+A ∧ A, A ∈ AG,φ(M)

}

(1.8)

is achieved and the minimizer is the connection form corresponding to a smooth connection over a classical
G-bundle Ẽ →M .

1.3 Supercritical dimension n = 5

As noted above, dimensions n ≥ 5 are more challenging because the nonlinearity of the structure equation
(1.4) is not controlled by the linear part anymore in the “natural” Sobolev scpace W 1,2 . The following
question was at the origin of the present work:

Question 1. Which is the correct replacement for the spaces A1,2(E) in dimension n ≥ 5?

For the clarity of the presentation we restrict in this work to the case of dimension 5 and to an
euclidean setting. The extension of all our results to higher dimensions n > 5 as well as to general
Riemannian manifolds will be done in a forthcoming work [37]. One of the main achievements of the
present work is to provide the following ad hoc replacement of A1,2 in supercritical dimension:

Definition 1.3 (Weak connections in dimension 5). For two L2 connection forms A,A′ over B5 we
write A ∼ A′ if there exists a gauge change g ∈ W 1,2(B5, G) such that A′ = g−1dg + g−1Ag . The class
of all such L2 connection forms A′ is denoted [A] . We denote the class of L2 weak connections on
singular bundles over M as follows:

AG(B
5) :=



















[A] : A ∈ L2, FA
D′

= dA+A ∧ A ∈ L2

∀p ∈M a.e. r > 0, ∃A(r) ∈ AG(∂Br(p))

i∗∂Br(p)
A ∼ A(r)



















.

The fact that AG is the correct function space for the variational study of YM in 5 -dimensions is a
consequence of the following result:
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Theorem 1.4 (sequential weak closure of AG ). Let [Ak] ∈ AG(B
5) be a sequence of connections

such that the corresponding curvature forms Fk are equibounded in L2(B5) and converge weakly to a
2-form F . Then F corresponds to [A] ∈ AG(B

5) .

Definition 1.3 and Theorem 1.4 are inspired by the slicing approach to the closure theorem for recti-
fiable currents, initially introduced by B. White [50], R. L. Jerrard [26] and used by L. Ambrosio and B.
Kirchheim [2] for their striking proof of the closure theorem for rectifiable currents in metric spaces. The
idea behind this approach is that a current is rectifiable when its slices via level sets of Lipschitz functions
give a metric bounded variation (MBV , for short) function with respect to the flat metric between the
sliced currents.
The closure theorem for rectifiable currents corresponds then to a compactness result for MBV functions,
valid when the oscillations of slices are controlled via the overlying total mass functional for sequences of
weakly convergent currents. This mass-finiteness condition was weakened by R. M. Hardt and T. Rivière
[20], who introduced the notion of rectifiable scans.

In [35] the authors used the ideas coming from the theory of scans for defining the class of weak Lp

curvatures over U(1)-bundles and proving the weak closure theorem relevant for minimizing the p-Yang-
Mills energy

´

M
|F |p in supercritical dimension 3 for 1 < p < 3/2 (see also [28]). This class of weak

curvatures is identified via Poincaré duality with the class of Lp vector fields on 3 -dimensional manifolds
having integer fluxes through “almost all spheres”.

1.4 The Yang-Mills-Plateau problem in dimension n = 5: a definition of weak

traces

Since an element [A] ∈ AG(B
5) is only assumed to be in L2 it seems a priori problematic to define its

trace on ∂B5 in order to pose the Yang-Mills Plateau problem in AG(B
5) and take advantage of the

Sequential Weak Closure Theorem 1.4. To obtain a suitable notion of trace, the following idea introduced
in [32] is used. Consider the slice equivalence class distance

dist([A], [A′]) := min{‖A− g−1dg − g−1A′g‖L2(S4) : g ∈ W 1,2(S4, G)} .

Consider the boundary connection φ as a special slice and impose an oscillation bound for nearby slices.
More precisely, we have the following definition:

Definition 1.5 (boundary trace for B5 ). For a given connection form φ ∈ A1,2(S4) we define the space
of weak connection classes [A] over B5 having trace in the class [φ] as follows:

Aφ
G(B

5) := AG(B
5) ∩

{

[A] s.t. for r ↑ 1, r /∈ N

there holds dist([A(r, 0)], [φ]) → 0 .

}

, (1.9)

where N is a Lebesgue-null set and A(r, 0) is the a.e.-defined L2 form τ∗rA on S4 obtained by pulling
back A via the homothety τr : S

4 → ∂Br(0) .

The following result whose proof is similar to the one for the abelian case [32] guarantees that Aφ
G(B

5)
is the right space on which to define the analogue of (1.8):

Theorem 1.6 (properties of the trace). The classes Aφ
G(B

5) satisfy the following properties:

1. (closure) for any 1-form φ ∈ AG(S
4) , the class AG,ϕ(B

5) is closed under sequential weak L2 -
convergence of the corresponding curvature forms F .

2. (nontriviality) if φ, ψ are 1-forms in AG(S
4) such that [φ] 6= [ψ] as gauge-equivalence classes,

then Aφ
G,(B

5) ∩ Aψ
G(B

5) = ∅ .
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3. (compatibility) for any smooth connection 1-form φ, ∇ is a connection of a classical bundle
over the finitely punctured ball E → B5 \ {p1, . . . , pk} satisfying i∗

S4
A ∈ [φ] if and only if the

corresponding connection form A belongs to Aφ
G(B

5) .

Combining now Theorem 1.4 and Theorem 1.6 we obtain the following, which is one of the main
results of the present work:

Theorem 1.7 (Yang-Mills-Plateau solution in dimension 5). For all φ ∈ AG(S
4) there exists a

minimizer [A] ∈ Aφ
G(B

5) to the following Yang-Mills Plateau problem:

inf

{
ˆ

B5

|F |2 : F
D′

= dA+A ∧ A, [A] ∈ Aφ
G(B

5)

}

. (1.10)

The analogous result for the case of G = U(1) was proved in [32] using the result [35].

1.5 Naturality of the space Aφ
G

Our aim now is to establish a regularity result for solutions to the Yang-Mills Plateau problem as given
by Theorem 1.7, corresponding to the regularity result of Theorem 1.2 in dimension n = 4 .

The proof of the partial regularity of solutions to (1.10) goes through a more torough description of
our space AG(B

5) as being the L2 -closure of the space of connections which are smooth away from a set
of isolated points. More precisely, we introduce the class

R∞,φ(B5) :=



















F corresponding to some [A] ∈ Aφ
G(B

5) s.t.

∃k, ∃a1, . . . , ak ∈ B5, F = F∇ for a smooth connection∇

on some smooth G-bundle E → B5 \ {a1, . . . , ak}



















. (1.11)

The strong approximation will occur with respect to the following geometric distance:

distF (F, F
′) := min{‖F − g−1Fg‖L2(B5) : g : B

5 → G measurable} . (1.12)

We then have the following:

Theorem 1.8 (Naturality of Aφ
G ). Let [A] ∈ Aφ

G(B
5) and let F ∈ L2 be the connection form of an

L2 representative A of [A] . Then there exist curvature forms Fk corresponding to connection forms Ak ,
[Ak] ∈ R∞,φ(B5) such that

Ak → A in L2, Fk → F in L2 .

In particular there holds
distF (Fk, F ) → 0, as k → ∞ .

The strategy of proof of Theorem 1.8 is based on the strong approximation procedure that F. Bethuel
introduced for his approximation results [6] for Sobolev maps into manifolds. However recall the fact
that as discussed above, unlike the case of Sobolev maps (where ‖du‖Lp controls ‖u‖Lp∗ ), here ‖F‖L2

does not control the connection form. Hence the strategy for filling the “good cubes” differs completely
from the one available in the case of Sobolev maps and requires a completely new argument.
Pushing the comparison with the case of Sobolev maps into manifolds further, the corresponding weak clo-
sure result for Sobolev maps in W 1,p(Bm, Nn) for instance is a direct consequence of Rellich-Kondrachov’s
theorem, whereas in our case the analogous result, Theorem 1.4 for weak connections, required a sub-
stantial amount of work.
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1.6 Coulomb gauge extraction result for weak curvatures with small densities

We first improve the result of Theorem 1.8 to an approximation result for Morrey curvatures, reading as
follows:

Theorem 1.9 (Morrey counterpart of Theorem 4.10). There exist constants C, ǫ1 with the following
properties. Let F be the curvature form corresponding to an L2 connection form A with [A] ∈ FZ(B

5) .
Assume that

sup
x,r

1

r

ˆ

Br(x)

|F |2 < ǫ1 . (1.13)

Then we can find curvature forms F̂k corresponding to smooth connection forms Âk such that

‖F̂k − F‖L2(B5) → 0 , (1.14)

‖Âk −A‖L2(B5) → 0 , (1.15)

and

sup
x,r

1

r

ˆ

Br(x)

|F̂k|2 < Cǫ1 . (1.16)

We recall that the Morrey norms of a function f are defined as follows:

‖f‖Mk,p
α (Bn) :=

(

sup
x∈Bn,r>0

1

rn−αp

ˆ

Br(x)

|f |p
)

1
p

.

Thus the above theorem asserts that for curvature forms which are M0,2
2 -small on B5 , Theorem 1.8 can

be refined to ensure uniform M0,2
2 bounds for the curvatures of the approximating smooth connections,

as well as the strong L2 -convergence of the connection forms.
Continuing the previous approximation result with the Coulomb gauge extraction method of [31] for
admissible connections or the one of [44] for smooth connections in Morrey spaces, we have the following
generalization of these results to our space AG which is clearly much larger than the space of admissible
connections:

Theorem 1.10 (Coulomb gauge extraction in Morrey norm). There exist constants ǫ, C depending only
on the dimension such that the following holds. Let F be a weak curvature corresponding to an L2

connection form A with [A] ∈ AG(B
5) and assume that

sup
x,r

1

r

ˆ

Br(x)

|F |2 := ‖F‖2
M0,2

2 (B5)
≤ ǫ .

Then there exists a gauge change g ∈ W 1,2(B5, G) such that the transformed connection form Ag =
g−1dg + g−1Ag satisfies

d∗Ag = 0 in B5 , (1.17)
〈

A,
∂

∂r

〉

= 0 on ∂B5 , (1.18)

(

sup
x,r

1

r

ˆ

Br(x)

|A|4
)

1
4

+

(

sup
x,r

1

r

ˆ

Br(x)

|∇A|2
)

1
2

≤ C‖F‖M0,2
2 (B5) . (1.19)
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1.7 ǫ-regularity result for stationary weak curvatures in AG(B
5)

The main result of [31] together with Theorem 1.10 gives the ǫ -regularity:

Theorem 1.11 (ǫ -regularity). There exists a constant ǫ > 0 such that the following holds. Let F be a
weak curvature corresponding to an L2 connection form A with [A] ∈ AG(B

5) , such that for all smooth
perturbations η ∈ C∞

0 (B5,∧1B5 ⊗ g) there holds

d

dt

ˆ

B5

|FA+tη|2
∣

∣

∣

∣

t=0

= 0 (1.20)

and such that for all vector fields X ∈ C∞
0 (B5,R5) the function φt := id+ tX satisfies

d

dt

ˆ

B5

|φ∗tFA|2
∣

∣

∣

∣

t=0

= 0 . (1.21)

Assume that
1

r

ˆ

Br(x0)

|F |2 ≤ ǫ .

Then F is the curvature form of a smooth connection over Br/2(x0) .

Because of the above theorem we can also extend the regularity result of [31]:

Corollary 1.12 (partial regularity for stationary weak curvatures). Let F be a weak curvature corre-
sponding to an L2 connection form A with [A] ∈ AG(B

5) , satisfying (1.20) and (1.21).
Then there exists a closed set K ⊂ B5 such that H1(K) = 0 and locally around every point in B5 \K
there exist a gauge change such that Ag is a smooth form.

1.8 Optimal regularity result for Yang-Mills Plateau minimizers

Since we work in the natural class Aφ
G(B

5) in which a Yang-Mills minimizer exists according to Theorem
1.7, we may then apply Federer dimension reduction techniques and obtain:

Theorem 1.13 (optimal partial regularity for Yang-Mills-Plateau minimizers). Let φ be a smooth g-
valued connection 1-form over ∂B5 . Then the minimizer of

inf
{

‖FA‖L2(B5) : [A] ∈ AG,φ(B
5)
}

belongs to R∞
φ (B5) , i.e. the corresponding class [A] ∈ AG,φ(B

5) has a representative which is locally
smooth outside a finite set.

An analogue of this result was proven by a completely different, combinatorial technique in [33] for
the case of U(1)-curvatures.

The result of Theorem 1.13 is optimal in the following sense. Recall that in [19] it was proven that
there exist smooth boundary data for harmonic maps u : B3 → S4 such that the energy-minimizing
harmonic map would need to have a bounded from below number of singularities. By a similar procedure
it is possible to find smooth connection forms φ on bundles over ∂B5 for which the minimizers of (1.10)
are forced to have singularities. Therefore in general (even in the case when the connection corresponding
to φ does not have nontrivial topology) we cannot expect the minimizers of (1.10) to be smooth, and
the optimal regularity space for them is thus R∞

φ (B5) .
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1.9 Further remarks and conjectures

Note that the requirement (1.20) for all η ∈ C∞
0 (B5,∧1B5⊗ g) is equivalent to the fact that the equation

d(∗F ) + [∗F,A] = 0 (1.22)

holds in the sense of distributions. We say that [A] ∈ AG(B
5) is a weak Yang-Mills connection if (1.22)

holds in the sense of distributions.

The related works [31], [46], [44] proved regularity results analogous to our Corollary 1.12 under
stronger assumptions, e.g. requiring the limit connection to be approximable in some sense. Our main
contribution in this direction is indeed the approximability Theorem 1.9, which allows to extend such
results to the space of weak connections on singular bundles AG(B

5) .

As a consequence of our strong convergence result as in Theorem 1.9 we obtain the following

Proposition 1.14 (Bianchi identity for weak curvatures). Assume that A,F are the L2 curvature and
connection forms corresponding to a weak connection class [A] ∈ AG(R

5) . Then the equation

dAF := dF + [F,A] = 0 (1.23)

holds in the sense of distributions.

Take now G = U(n) . Observe that in this case we have1

d (tr(F )) = 0 in D′(B5) ,

but if [A] ∈ R∞(B5) then it is not true anymore, as in the smooth case, that the form d (tr(F ∧ F ))
representing the second Chern classis equal to zero. We have indeed

d (tr(F ∧ F )) = 8π2
k
∑

i=1

diδai in D′(B5) ,

where

di =

ˆ

∂Br(ai)

tr(F ∧ F ) ∈ Z

represent the degrees of topological singularities situated at the points a1 . . . , ak . For a general element
[A] ∈ AG(B

5) one can then ask “how many” such topological singularities exist.
Following the procedure of [28], [27] (in which our approximation theorem is stated as a conjecture) one
obtains using the new result of Theorem 1.8 the following:

Theorem 1.15 (see [27],[28]). If F is a curvature form of a connection A with [A] ∈ AG(B
5) then there

exists a rectifiable integral 1-current I such that

∂I =
1

8π2
d(tr(F ∧ F )), M(I) ≤ C‖F‖L2(B5).

where C is a universal constant.

Following the seminal works of Brezis, Coron and Lieb [9] and of Giaquinta, Modica and Souček [16],
we can define the relaxed energy for connection classes [A] ∈ AG(B

5) in terms of their curvature form F
as a supremum is taken over 1 -Lipschitz functions ξ over B5 :

YMrel(F ) :=

ˆ

B5

|F |2 + sup
|dξ|∞≤1

[
ˆ

B5

dξ ∧ tr(F ∧ F )−
ˆ

S4

ξ tr(F ∧ F )
]

. (1.24)

1 This was not the case for the space of weak U(1) -curvatures FZ(B
3) introduced in [35].
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In [23] it was proven that the minimization of YMrel over R∞,φ(B5) presents a gap phenomenon
analogous to the celebrated one in the theory of harmonic maps [8], [7]. We expect the relaxed energy to
be lower-semicontinuous in AG(B

5) , in particular it is natural to ask :

∀φ ∈ AG(S
4) is inf

Aφ
G(B5)

YMrel(FA) achieved ? .

Using the relaxed energy

YMrel(F,G) =

ˆ

B5

|F |2 + sup
|dξ|∞≤1

ˆ

B5

dξ ∧ [tr(F ∧ F )− tr(G ∧G)] ,

and following the main lines of [39] one should be able to construct weak Yang-Mills curvatures F
corresponding to [A] ∈ AG(B

5) of arbitrarily small Yang-Mills energy and such that the topological
singular set is dense:

spt (d (tr(F ∧ F ))) = B5 .

In other words, one should be able to construct everywhere discontinuous Yang-Mills connections.

We may define AG(B
n) in a stratifying way : by requiring that A ∈ L2 , F ∈ L2 and for all centers

x and almost all radii r > 0 the restriction i∗∂Br(x)
A belongs, up to measurable gauge and rescaling, to

AG(S
n−1) . This definition extends to compact Riemannian n-manifolds by requiring A to be locally

equivalent to a form in AG(B
n) .

We prove in a future work [37] that the techniques and proofs of our main results in the present paper
extend to general compact riemannian manifolds and to higher dimension. It is then natural to adress
the regularity conjecture made by Tian [46] for Ω-self dual curvatures to our AG -type spaces:

Conjecture 1 (Tian’s regularity conjecture). Assume Ω is a closed differential (n − 4)-form on
a compact n-dimensional Riemannian manifold M . Curvature forms corresponding to classes [A] ∈
AG(M) satisfying Ω ∧ F = ∗F have a singular set of Hausdorff dimension ≤ n− 6 .

Since Ω-instantons belonging to AG are stationary, up to now we can only prove using Corollary 1.12
that Hn−4(sing(F )) = 0 . The resolution of this conjecture would be of particular geometric interest on
Calabi Yau 4-folds where Ω is a parallel form invariant by the special holonomy (see [13] and [46]).

1.10 Plan of the paper

The paper is organized as follows. In Section 2 we prove the Weak Closure Theorem 1.4.
In Section 3 we prove an extension of the point removability result in dimension 4 which is analogous
to the result of [48] but relaxes the hypotheses that the connections are Yang-Mills, utilizing instead the
theory from [40] based on lorentz space techniques and on the Coulomb gauge equation. This allows to
obtain compactness result for general sequences of connections, which was not present in the literature
before, and is needed in the proof of weak closure of section 2.
In Section 4 we prove the approximation results of Theorem 1.8 and of Theorem 1.9.
In Section 5 we prove the regularity results of Theorem 1.11, Corollary 1.12 and Theorem 1.13. At the
beginning of the section we include a short proof of Proposition 1.14.
In Section 6 we prove the properties of the trace stated in Theorem 1.6.
The Appendix A is dedicated to a modification of the Coulomb gauge extraction of K. Uhlenbeck [48]
which is needed in Section 4 for the proof of the approximation under Morrey norm smallness of Theorem
1.9.

10



2 Weak closure for non-abelian curvatures in 5 dimensions

2.1 Ingredients for the proof of Theorem 1.4

We describe here what enters the proof of Theorem 1.4, while making a parallel to the works [2] and [20] on
metric currents and scans, which present analogous definitions of weak objects as sets of slices “connected”
via a compatibility condition based on an overlying integrable quantity (in our case this control comes
from the curvature 2 -form F ). Our closure result comes from the interplay of three ingredients:

• A geometric distance on sliced 1 -forms: for A,A′ which are L2 connection forms over S4 we use
the gauge-orbit distance

dist([A], [A′]) := min{‖A− g−1dg − g−1A′g‖L2(S4) : g ∈ W 1,2(S4, G)} .

This corresponds to the use of the flat distance for the closure theorem of integral currents by
Ambrosio-Kirchheim [2].

• The fact that the above distance interacts well with our energy at the level of slices, which follows
from Theorem 1.1. More precisely we have that sublevels of A 7→ ‖FA‖L2(S4) are dist-compact.
In [20] a similar interaction occurs between the flat distance and the fractional mass of rectifiable
currents.

• The oscillation control on slices of a fixed weak curvature, obtained via the overlying 2 -form F .
More precisely, if we identify S4 by homothety with each one of the spheres S := ∂Bt(x), S

′ :=
∂Bt′(x

′) then the pullbacks A(t, x), A(t′, x′) of i∗SA, i
∗
S′A satisfy

dist([A(t, x)], [A(t′, x′)]) ≤ C‖F‖L2(B5)(|x− x′|+ |t− t′|)1/2 .

In [2] the corresponding fact is the interpretation of rectifiability as a bound of the metric variation
of the slices.

We can find L2 -controlled connection forms An corresponding to Fn and obtain a weak limit A
which will be an L2 connection form corresponding to F . The main difficulty is to find gauges g in
which the slices i∗∂Br(x)

A become W 1,2
loc .

The above overall strategy is the one which worked in the abelian case G = U(1) as well and was
employed in [35].

We start by identifying the traces on lower dimensional sets ∂Bρ(x0) with elements of a metric space
(Y, dist) where Y = AG(S

4)/ ∼ and ∼ is the guage-equivalence relation, such that we have a local control
of the Hölder norm of the slice functions in terms of the L2 -norms of the Fn . We will use Proposition
2.1 for this.

Mixing a compactness result for slice functions with respect to the distance on Y with the weak
convergence of the An we will manage to obtain the convergence of a.e. slice to an element which is
gauge-equivalent to an element in Ag(S

4) as desired.

2.2 The metric space Y
To prove the weak closure result for AG we use a slicing technique. In the definition of AG we required
that any weak connection have a gauge on each slice in which it is represented by a W 1,2 form. Therefore
we consider the following space of possible slice classes:

Y := AG(S
4)/ ∼, (2.1)

11



where the equivalence relation ∼ on global L2 connections is

A ∼ B if ∃g ∈W 1,2(S4, G) s.t. g−1dg + g−1Ag = B .

We define the following gauge-invariant function:

“dist”(A,A′) :=

(

inf

{
ˆ

S4

|A− g−1dg − g−1A′g|2 : g ∈W 1,2(S4, G)

})
1
2

.

For two connection forms A,A′ if gA, gA′ are W 1,2 gauges such that

B = g−1
A dgA + g−1

A AgA, B′ = B = g−1
A′ dgA′ + g−1

A′ A
′gA′

then, since A 7→ g−1dg + g−1Ag is a continuous group action of G ∩W 1,2 on AG(S
4) , we have

“dist”(A,A′) = “dist”(B,B′) .

“dist” then descends to a well-defined distance dist([A], [A′]) on equivalence classes of connection forms.
Let

[A] = image of A under the projection AG(S
4) → AG(S

4)/ ∼ .

The natural metric to impose on Y is the L2 -distance between (global) gauge orbits (cfr [12]):

dist([A], [B]) = inf
{

‖A′ −B′‖L2(S4) : A
′ ∈ [A], B′ ∈ [B]

}

. (2.2)

On the metric space (Y, dist) we will study the functional

N : Y → R+, N ([A]) =

ˆ

S4

|FA|2 . (2.3)

Note that because the curvature satisfies Fg−1dg+g−1Ag = g−1FAg and since the norm on 2 -forms is
G-invariant, we have that N ([A]) does not depend on the representative A employed to compute FA .

2.3 The slice a.e. convergence

We employ the following abstract theorem. See [20] Thm. 9.1 for the original inspiration. We use
the notation overlapping with the previous section. The goal will be to justify this overlap in notation
subsequently, by proving that the spaces and functions of Section 2.2 satisfy the hypotheses of the theorem.

Proposition 2.1. Consider a metric space (Y, dist) on which a function N : Y → R+ is defined.
Suppose that the following hypothesis is met:

∀C > 0 the sublevels {N ≤ C} are seq. compact in Y . (H)

Suppose fn : [0, 1] → Y are measurable maps such that

dist(fn(t), fn(t
′)) ≤ C|t− t′|1/2 (2.4)

and that

sup
n

ˆ 1

0

N (fn(t))dt < C .

Then fn have a subsequence which converges pointwise almost everywhere. The limiting function f also
satisfies

dist(f(t), f(t′)) ≤ C|t− t′|1/2,
ˆ 1

0

N (f(t))dt < C .

12



Proof. We divide the interval [0, 1] in q2 subintervals Iqi of equal length q−2 . For each n, i , by Chebychev
inequality we obtain

∣

∣

∣

∣

{

t ∈ Iqi : N (fn(t)) <
C

q2

}∣

∣

∣

∣

> 0 ,

therefore up to extracting a subsequence, by pigeonhole principle we may assume
∣

∣

∣

∣

{

t ∈ Iqi : ∀nN (fn(t)) <
C

q2

}∣

∣

∣

∣

> 0 .

Consider then
tqi ∈

⋂

n∈N

{N ◦ fn > C/q2} ∩ Iqi .

Since sublevels of N are compact, up to extracting a subsequence we obtain

∀i, n, dist(fn(t
q
i ), fn+1(t

q
i )) ≤ 2−n .

Up to extracting a diagonal subsequence

∀i, n, q, dist(fn(t
q
i ), fn+1(t

q
i )) ≤ 2−n .

In particular, using the uniform hölderianity of fn and the triangle inequality, we have that for all i and
for t ∈ Iqi there holds

dist(fn(t), fn+k(t)) ≤ 21−n + q−1 .

Since {tqi }i,q form a dense subset of [0, 1] we deduce that for all t ∈ [0, 1] the sequence {fn(t)}n is
Cauchy thus it has a limit in the completion of Y . By Fatou theorem we obtain

ˆ 1

0

lim inf
n

N (fn(t))dt ≤ C ,

therefore for a.e. t ∈ [0, 1] the sequence N (fn(t)) in bounded. Since the sublevels of N are compact
in Y , for such t the limit of {fn(t)}n belongs to Y . We define thus f(t) := limn fn(t) and the desired
properties follow by Fatou’s lemma and by the pointwise dist-convergence.

2.4 Verifying the hypothesis of Proposition 2.1

We verify that we can apply Proposition 2.1 to our situation, where the goal is to prove weak closure for
the class AG .

2.4.1 The compactness result (H)

We start by verifying the first statement of the hypothesis (H) for Y,N as in Section 2.2:

Proposition 2.2. Let Y be the space of slices as in (2.1) and N : Y → R+ be the norm of the curvature
as in (2.3). Then N has sublevels which are compact with respect to the distance dist defined in (2.2).

Proof. We assume that we are given a sequence of curvatures Fn corresponding to connection form classes
[An] , such that

‖Fn‖L2(S4) ≤ C .

The claim of the proposition is that the [An] have a convergent subsequence with respect to the distance
dist .
Up to a global gauge change we may assume that the An are controlled globally in L2 (see Lemma 2.3):

‖An‖L2(S4) . ‖Fn‖L2(S4) .

13



Up to extracting a subsequence we have that

An ⇀ A∞ , Fn ⇀ F∞ in L2(S4) .

Step 1. Concentration points of the curvature energy and a good atlas. By usual covering arguments
we have that up to extracting a subsequence there exist a finite number of concentration points of the
curvature’s L2 -energy a1, . . . , aN in S4 . In other words there holds

∀ǫ > 0, ρǫ := lim inf
n→∞

inf

{

ρ > 0, x0 ∈ S4 \ ∪Bǫ(ai)
ˆ

BS4
ρ (x0)

|Fn|2 ≥ δ

}

> 0 .

The number N of such points is N ≤ C/δ where C is the above L2 -bound on the curvatures.

Up to diminishing ǫ and ρ := ρǫ we may suppose ǫ+ ρǫ < ρinj(S
4) and that the balls Bǫ(ai) are dis-

joint. We can find a cover by the balls Bǫ(ai) and by finitely many balls Bρ(xi) such that the maximum
number of overlaps of those balls is a universal constant. The Bρ(xi) ’s will be called good balls and they
will be simply denoted Bi below.

Step 2. Uhlenbeck Coulomb gauges converge weakly on the good balls. Using Uhlenbeck’s gauge
extraction of Theorem 3.4 on each Bi one finds a gauge gin such that Ain := (gin)

−1dgin + (gin)
−1Ang

i
n ∈

W 1,2 and such that
d∗Ain = 0, ‖Ain‖W 1,2 . ‖Fn‖L2 on Bi .

Therefore up to a diagonal subsequence we also may assume that

Ain → Ai weakly in W 1,2 and strongly in L2 . (2.5)

By interpolation since the gin are bounded in L∞ we see that

gin → gi weakly in W 1,2 and strongly in Lq, ∀q <∞ .

This strong convergence in Lq together with the weak convergence of An and of the dgin in L2 implies
that

An = gind(g
i
n)

−1 + ginA
i
n(g

i
n)

−1 ⇀ gid(gi)−1 + giAi(gi)−1 = A in D′

and by uniqueness of weak limits the Ai obtained above are the local expressions of the limit A in the
limit gauges gi .

Step 3. Point removability and strong global gauge convergence on good part. By Proposition 3.5 the
gauge changes gijn := gjn(g

i
n)

−1 needed to pass from Ain to Ajn are controlled in W 2,2 ∩ C0 . Therefore
up to taking a diagonal subsequence we have for all i, j

gijn → gij weakly in W 2,2, strongly in W 1,2 and locally uniformly in C0 .

In particular we can apply the gauge extension procedure of the proof of Theorem 3.2 both to gijn
and to gij on balls covering any open contractible subset Ugood in the complement of the bad balls
Bǫ(a1), . . . , Bǫ(aN ) , obtaining gauge transformations ggoodn , ggood . We recall that in this process we

multiply gauges by the constants gijn then truncate the error terms (gijn )−1gijn away from Bi ∩ Bj . We
note that up to extracting subsequences we may assume (by compactness of G and finiteness of the balls
intersecting Ugood ) that the constants involved also converge:

gijn → gij .
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This implies together with (2.5) that on Ugood

ggoodn (An) → ggood(A) in L2(Ugood) .

Step 4. The bad part’s contribution. The last part of the proof consists of noticing that by diminishing
ǫ and by letting Ugood increase to a set of full measure, we may find gauges gkn = (ggood)−1ggoodn such
that

gkn)
−1dgkn + (gkn)

−1Ang
k
n → A in L2 outside a set of measure

1

k
.

By extracting a diagonal subsequence we obtain gn such that

g−1
n dgn + g−1

n Angn → A in L2(S4) .

Therefore
dist([An], [A]) → 0 ,

as desired.

2.4.2 The second hypothesis of Proposition 2.1

We now assume given a sequence of weak curvatures Fn corresponding to [An] ∈ AG on B5 which are
bounded in L2 and converge weakly in L2 to a 2 -form F . For a fixed center x0 ∈ B5 and for a radii
t ∈ [r, 2r] with r > 0 , the slices of the connections An via spheres ∂Bt(x0) are defined and taking values
in Y for a.e. t by the assumption that [An] ∈ AG . We then define (classes of) functions

fn : [r, 2r] → Y, fn(t) :=
[

i∗∂Bt(x0)
An

]

.

Notation: We denote A(s) the slice along ∂Bs(x0) i.e. the pullback of i∗∂Bs(x0)
A to S4 via the homo-

thety S4 → ∂Bs(x0) when it exists.

We verify that the fn satisfy the hypothesis (2.4):

Lemma 2.3. Assume that F is the curvature form corresponding to [A] ∈ AG and choose a representative
A which is L2 on B2r(x0) \Br(x0) . Then there exists a gauge change g such that A′ := g−1dg+ g−1Ag
has no radial component and such that for a.e. t > t′ ∈ [r, 2r]

ˆ

S4

|A′(t)−A′(t′)|2 .
1

r2
|t− t′|

ˆ

Bt(x0)\Bt′ (x0)

|F |2 , (2.6)

for a universal implicit constant.

Proof. We will assume x0 = 0 for simplicity. Note that

ˆ t

t′
‖A(t)‖2L2(S4)dt =

ˆ

S4

ˆ t

t′
|ρ i∗∂Bρ

A|2ρ4dρdω .

Solve the following ODE in polar coordinates:

{

∂ρg(ω, ρ) = −Aρ(ω, ρ)g(ω, ρ), for ρ ∈ [t′, t] ,

g(ω, t′) = id, for all ω ∈ S4 .
(2.7)

It then follows that for A′ = g−1dg + g−1Ag there holds

∑

k

xk
ρ
A′
k := A′

ρ = 0 ,
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therefore at (ω, ρ) we write

∑

k

xkg
−1Fkig =

∑

k

xk∂kA
′
i −
∑

k

xk∂iA
′
k +

∑

k

xk[A
′
k, A

′
i] = ∂ρ(ρA

′
i) .

In other words
ρ∂ρ (g−1Fg)|∂Bs(x0) = ∂ρ(ρ i

∗
∂Bρ

A′) .

Integrating in s we have for a.e. t > t′ and then in ω we obtain

ˆ

S4

|t i∗∂Bt
A′ − t′ i∗∂Bt′

A′|2 =

ˆ

S4

∣

∣

∣

∣

ˆ t

t′
ρ∂ρ (g−1Fg) dρ

∣

∣

∣

∣

2

. |t− t′|
ˆ

S4×[t′,t]

ρ2|∂ρ F |2 .

We used Jensen’s inequality and the fact that the norm is G-invariant. Note that for ω ∈ S4 there holds

A′(s)(ω) = s i∗∂Bs
A′(sω) ,

therefore from above it follows
ˆ

S4

|A′(t)−A′(t′)|2 .
|t− t′|
(t′)2

ˆ

Bt\Bt′

|F |2 .

Since t′ > r the thesis follows.

In the end the functions fn(t) which will satisfy (2.4) in our situation will be the slice functions of the
connection forms An(t) in the gauges given by Lemma 2.3. Note that as a direct consequence of Lemma
2.3 we have also

dist([An(t)], [An(t
′)]) .

‖Fn‖L2(B2r\Br)

r
|t− t′|1/2 ≤ ‖Fn‖L2

r
|t− t′|1/2 . (2.8)

2.5 Proof of the Closure Theorem 1.4

We consider a sequence Fn corresponding to [An] ∈ AG(B
5) as in Theorem 1.4 and we construct

representatives An such that
ˆ

B5

|An|2 ≤ C

ˆ

B5

|Fn|2 ,

like in Lemma 2.3. We thus have that up to extracting a subsequence there holds

An ⇀ A in L2(B5) . (2.9)

As noted above it suffices that for all centers x0 and a.e. radius t > 0 the homothety pullback to S4 of
the slice i∗∂Bt

A of the limit connection form A is in AG(S
4) or equivalently corresponds to a class in Y .

Fix x0 ∈ B5 and a range of radii [r, 2r] . It is sufficient to prove that

a.e. s ∈ [r, 2r], A(s) ∈ AG(S
4) . (2.10)

We will assume for simplicity that x0 = 0 and we apply Lemma 2.3 obtaining new gauges for the An in
which (2.8) is valid. From now on we are going to work in these gauges only. For simplicity of notation
we still denote the expressions of the An in these gauges by An . Note that we still obtain the control

‖An‖L2(B2r\Br) . ‖Fn‖L2
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if in the proof of Lemma 2.3 for A = An we replace the ODE (2.7) by

{

∂ρg(ω, ρ) = −(An)ρ(ω, ρ)g(ω, ρ), for ρ ∈ [s, t] ,

g(ω, s) = id, for all ω ∈ S4 .

for s such that An(s) satisfies

‖An(s)‖L2 .
1

r
‖Fn‖L2 .

Thus we may still suppose that (2.9) holds on B2r \ Br . We next prove that in this case we have a
stronger convergence:

Lemma 2.4. Assume that for a sequence of connection forms An ∈ L2(B2r \Br,∧1R5 ⊗ g) there holds

‖An(t)−An(t
′)‖L2(S4) ≤ C|t− t′|1/2

and that
An ⇀ A weakly in L2 on B2r \Br .

Then there exists a subsequence n′ such that

for a.e. s ∈ [r, 2r] there holds An′(s)⇀ A(s) weakly in L2(S4) . (2.11)

Proof. The weak convergence hypothesis means that
ˆ

An ∧ β →
ˆ

A ∧ β for all β ∈ L2(B2r \Br,∧3R5 ⊗ g) .

Consider an arbitrary 3 -form ω which is L2 on S4 and a test 1 -form ϕ(t) on [r, 2r] . By taking

β := h∗tω ∧ ϕ(t) where ht : S
4 → ∂Bt is a homothety

we obtain
ˆ 2r

r

ˆ

S4

An(t) ∧ ω ∧ ϕ(t) →
ˆ 2r

r

ˆ

S4

A(t) ∧ ω(x) ∧ ϕ(t) .

If we use the notation

fωn (t) =

ˆ

S4

An(t) ∧ ω ,

then from the first hypothesis it follows that

|fωn (t)− fωn (t
′)| ≤ ‖An(t)−An(t

′)‖L2‖ω‖L2

≤ C|t− t′|1/2‖ω‖L2 .

By Arzelà-Ascoli theorem the fωn have a subsequence which converges uniformly to a 1/2 -Hölder function
with the same Hölder constant:

sup
t∈[r,2r]

|fωn (t)− fω(t)| → 0 .

By applying this reasoning to a countable L2 -dense subset D of ω ’s in L2(S4,∧3TS4 ⊗ g) and by a
diagonal procedure we obtain that

∀ω ∈ D, sup
t∈[r,2r]

|fωn (t)− fω(t)| → 0 .

Since the functionals ω 7→
´

An(t) ∧ ω are strongly continuous on L2 forms for a.e. t , we obtain that
the above convergence holds on all ω ∈ L2 , completing the proof.
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We are now ready to conclude the proof of the weak closure result.

End of proof of Theorem 1.4: Consider the global weak limit connection form A ∈ L2(B5) . As said above
we prove that a.e. slice of it is in AG(S

4) by considering separately the groups of slices with center x0
and radii in [r, 2r] . We assumed x0 = 0 for simplicity and we obtained that the An have a weakly
convergent subsequence on B2r \Br , therefore we may apply Lemma 2.4. We obtain up to extracting a
subsequence the slicewise a.e. weak convergence (2.11):

for a.e. s ∈ [r, 2r] there holds An(s)⇀ A(s) weakly in L2(S4) .

Note that in this case the slicewise weak limit A(s) is indeed the slice of the limit connection.

On the other hand we saw in Section 2.4 that the hypotheses of Proposition 2.1 are verified for our
An therefore we also have up to another subsequence extraction

for a.e. s ∈ [r, 2r] there holds [An(s)] → [Ad(s)] in (Y, dist) .

We have now to compare the slice A(s) of the weak limit with the dist-limit of slices Ad(s) . Since

dist([An(s)], [A
d(s)]) = inf

g∈W 1,2(S4,G)
‖g−1dg + g−1An(s)g −Ad(s)‖L2 ,

we obtain a sequence gn(s) ∈W 1,2(S4, G) such that

gn(s)
−1dgn(s) + gn(s)

−1An(s)gn(s)−Ad(s) → 0 strongly in L2 . (2.12)

It follows that
‖dgn(s)‖L2 . ‖Ad(s)‖L2 + ‖An(s)‖L2 .

From
‖An(t)−An(t

′)‖L2 ≤ C|t− t′|1/2

and from the fact that for all n there exists s ∈ [r, 2r] such that

‖An(s)‖L2 . ‖Fn‖L2 ≤ C

it follows that An(s) is bounded in L2 . Thus dgn(s) is also bounded in L2 . Thus up to extracting a
subsequence (dependent on t)

dgn(t)⇀ dg∞(t) weakly in L2 .

Since gn(s) is also bounded in L∞ we obtain by Rellich’s theorem and by interpolation that up to
extracting a subsequence n(t)

gn(t) → g∞(t) in Lq ∀q <∞ .

The last two facts together with the convergence An(t)
L2

⇀ A(t) suffice to prove that

gn(t)
−1An(t)gn(t) → g∞(t)−1A(t)g∞(t) in D′(S4) ,

gn(t)
−1dgn(t) → g∞(t)−1dg∞(t) in D′(S4) .

This is valid for a.e. t ∈ [r, 2r] . Therefore

Ad(t) = g∞(t)−1dg∞(t) + g∞(t)−1A(t)g∞(t), for a.e. t ∈ [r, 2r] .

Since Ad(t) ∈ AG(S
4) , this shows that for a.e. t the slice A(t) of the limit connection form A belongs

to AG(S
4) , as desired.
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3 Coulomb gauges and point removability in 4 dimensions

In this section we prove an improved point removability result based on [40].

3.1 Uhlenbeck Coulomb gauge

In [47] Uhlenbeck proved the following point removability result:

Theorem 3.1 ([47], Thm. 4.6). Let ∇ be a Yang-Mills connection in a bundle P over B4 \ {0} . If the
L2 norm of the curvature F of ∇ is finite, then there exists a gauge in which the bundle P extends to a
smooth bundle P̃ over B4 and the connection ∇ extends to a smooth Yang Mills connection ∇̃ in B4 .

We recall that for a connection which in local coordinates is written ∇ = d + A , being Yang-Mills
means that the curvature F = FA satisfies in the weak sense

d∗AFA = 0 . (3.1)

The regularity theory of Uhlenbeck allows to prove that W 1,2 Yang-Mills connections d+A on trivial
bundles are smooth up to a gauge change in the balls Bρ(x) such that

´

Bρ(x)
|F |2 < ǫ0 for a constant

ǫ0 independent of A,F . This uses the regularity theory for the nonlinear (in A) equation (3.1), which
when F does not have much energy and A is in Coulomb gauge can be seen as an elliptic system.

Therefore the main step in the proof of Theorem 3.1 is the proof that we can find a global gauge ex-
tending over a neighborhood of the origin, in which the connection is W 1,2 so that the elliptic regularity
can be applied. In Uhlenbeck [47] the elliptic regularity of equation (3.1) is used on B \ {0} in order to
provide the needed estimates on concentric annuli. We will describe here how to proceed without this
regularity.

Using a result from [40] we obtain that the analogue of Theorem 3.1 holds without the assumption
that (3.1) holds. It appears that this result is not present in the literature, although it is hinted at in [4].
We will prove the following

Theorem 3.2 (Point removability [47] with no Yang-Mills assumption). Let ∇ be a W 1,2 connection in
a bundle P over B4 \ {0} . If the L2 norm of the curvature F of ∇ is finite, then there exists a gauge
in which the bundle P extends to a smooth bundle P̃ over B4 and the connection ∇ extends to a W 1,2

connection ∇̃ in B4 .

Theorem 3.2 allows to prove weak compactness for sequences of W 1,2 connections with curvatures
bounded in L2 , again removing the assumption that the limit is Yang-Mills present in [42], [12]. The
strategy in the paper [42] was to consider minimizing sequences An ∈ A1,2(E) for the Yang-Mills func-
tional and prove that their connections converge locally weakly in W 1,2 while the curvatures converge
locally weakly in L2 , outside a finite set of “bad points” where the curvature energy density concentrates.
This allowed to obtain that the limit (which corresponds to a Yang-Mills minimizer) is Yang-Mills outside
those points. The point removability theorem 3.1 which worked under the Yang-Mills assumptions then
provided a way for extending the limit bundle and connection over each bad point. Note that here is the
only instance where the assumption of having an energy minimizing sequence was used in [42]. We can
thus use our improved Theorem 3.2 to immediately obtain:

Theorem 3.3 (Bubbling [42] for general sequences). Assume that An ∈ A1,2(E) on a smooth bundle
E over a smooth compact Riemannian 4-manifold M . If ‖FAn‖L2 ≤ C for all n then up to extracting
a subsequence we have that An converge locally weakly in W 1,2 to a connection A∞ ∈ A1,2(Ẽ) over a
possibly different bundle.
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3.2 Coulomb gauges and Lorentz-improved regularity

We recall that the connection form A and the curvature form F are related in local coordinates by the
distributional equation F = dA+ A ∧ A . Recall that by Hodge theory the differential DA is controlled
via dA and d∗A . It is then heuristically clear that if we desire a control on DA via the curvature we
must therefore have some restrictions on d∗A . The estimates coming from the nonlinear elliptic system
corresponding to d, d∗ replaces the control via equation (3.1) as used in [48]. We recall the celebrated
result of K. K. Uhlenbeck which is our starting point.

Theorem 3.4 ([48], Thm. 1.3). There exists a constant ǫ0 as follows. Assume that d + A is the local
expression of a connection of a trivial bundle E → Ω over a compact Riemannian 4-manifold Ω such
that A ∈W 1,2

loc and the curvature F := FA satisfies

ˆ

Ω

|F |2 ≤ ǫ0 . (3.2)

Then there exists a gauge g ∈ W 2,2
loc (Ω) such that the transformed connection form

Ag = g−1dg + g−1Ag

satisfies
d∗Ag = 0 on Ω

and is controlled by the curvature:

ˆ

Ω

|DAg|2 +
(
ˆ

Ω

|Ag|4
)

≤ C

ˆ

Ω

|F |2 . (3.3)

This result allows us to find controlled gauges in concentric dyadic annuli around the origin. To patch
together the gauges of two overlapping annuli we use the following result, for which we use the techniques
of [40] Thm. IV.1.

Proposition 3.5. , Suppose that A and B = g−1dg+ g−1Ag are connection forms corresponding to two
gauge-related connections belonging to A1,2(E) where E → Ω is a trivial bundle over a domain Ω ⊂ R4

such that
d∗A = d∗B = 0 .

If A,B ∈ W 1,2 then the gauge change g is W 2,2 ∩ C0 . Moreover for some ḡ ∈ G we have the bound

‖g − ḡ‖L∞∩W 2,2 . ‖A‖2W 1,2 + ‖B‖2W 1,2 . (3.4)

Proof. From
dg = gB −Ag ,

since multiplication is continuous from W 1,2 × (W 1,2 ∩ L∞) to W 1,2 →֒ L(4,2) it follows that dg ∈
W 1,2 →֒ L(4,2) and

‖dg‖L(4,2) . ‖A‖W 1,2 + ‖B‖W 1,2 .

From the above equation and using d∗A = d∗B = 0 and identifying 1 -forms with vector fields we obtain

∆g = d∗dg = dg · A−B · dg ,

where both terms are products of elements of L(4,2) therefore belong to L(2,1) . We have

‖∆g‖L(2,1) . ‖dg‖L(4,2)(‖A‖L(4,2) + ‖B‖L(4,2)) . ‖A‖2L(4,2) + ‖B‖2L(4,2) .
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By the continuous embeddings W 2,(2,1) →֒W 1,(4,1) →֒ L∞ valid in 4 dimensions, we obtain

‖g − g̃‖L∞∩W 2,2 . ‖A‖2L(4,2) + ‖B‖2L(4,2) := (∗) ,

where g̃ is the average of g done in the space RN , N = k × k in which the manifold G is embedded as
group of matrices. Since g ∈ G a.e., we also have

distRN (g̃, G) . (∗) ,

therefore there exists ḡ ∈ G such that

‖g − ḡ‖L∞ . (∗) . ‖A‖2W 1,2 + ‖B‖2W 1,2 ,

as desired. Note that W 1,2 connections in 4 -dimensions can be approximated by smooth connections in
W 1,2 -norm (see Lemma 4.4 ). By applying the above result on balls Bρ(x) with ρ → 0 for a.e. x , we
obtain that g ∈ C0 too.

Notation: from now on we denote by Sk the spherical shell B2−2k \B2−2k−3 .

Lemma 3.6. There exists a constant δ > 0 such that if
´

Sk
|F |2 ≤ δ then the bundle E is trivial over

Sk and there exists a gauge g over Sk in which the connection corresponding to F is represented by a
W 1,2 form Ak which satisfies

d∗Ak = 0, ‖DAk‖L2(Sk) + ‖Ak‖L4(Sk) ≤ ‖F‖L2(Sk) . (3.5)

Proof. Without loss of generality let k = 0 , because the norms of F , A and DA appearing in (3.5)
have the same scaling. We cover S0 by two charts U+, U− which are tubular neighborhoods of opposite
half-shells. In U± the connection has the local expression A± . Since the bundle is trivial over U± we
can apply Theorem 3.4 and up to a change of gauge A± satisfies (3.5).

On U+ ∩ U− there exists g such that A+ = g−1dg + g−1A−g . By Proposition 3.5 we have that
g ∈ C0 and for some ḡ ∈ G there holds

‖g − ḡ‖L∞ . δ2 . (3.6)

in particular it is not possible for g to realize a nontrivial homotopy class [U+∩U−, G] , provided δ2 ≤ CG
for some CG depending on the topology of G . Therefore it is possible to extend g in a Lipschitz way
over U− and we find a global trivialization over the whole of S0 . Applying Theorem 3.4 again we find
A0 as in (3.5).

3.3 Proof of Theorem 3.2

Proof. The bundle is non-smooth just at the origin, therefore we may work replacing B1(0) by a ball
Bρ(0) with ρ > 0 on which

´

Bρ
|F |2 < δ . In other words we don’t loose any generality if we assume

´

B1(0)
|F |2 < δ . We fix δ later, but it will be smaller than the constant δ of Lemma 3.6 and than the

constant ǫ0 of theorem 3.4.

We apply Lemma 3.6 and we start with the connections Ak defined on Sk and satisfying (3.5). On
each Sk+1 ∩ Sk there is a gauge change gk such that

Ak+1 = g−1
k dgk + g−1

k Akgk . (3.7)
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By Proposition 3.5 there exist ḡk ∈ G such that

‖gk − ḡk‖L∞∩W 2,2 . ‖Ak‖2W 1,2 + ‖Ak+1‖2W 1,2 . (3.8)

Now we propagate the gauge along the increasing Sk ’s. In order to cancel the contributions of the
approximating constant gauges ḡk , we define for example Ā1 = ḡ0A1ḡ

−1
0 = ḡ−1

0 (A1) = ḡ−1
0 ◦ g0(A0) .

This means that Ā1 differs from A0 on S1 ∩ S0 just by a small gauge. Similarly define

Āk := h̄k(Ak), h̄k :=

k−1
∏

i=0

ḡ−1
i .

We use the Āk ’s as a reference to define a global gauge. Define g̃k on Sk+1 ∩ Sk to be such that
Āk+1 = g̃k(Āk) , i.e.

g̃k := h̄−1
k ḡ−1

k gkh̄k . (3.9)

The g̃k ’s are better than the gk ’s because they don’t contain the gauge jumps ḡk . From (3.8) and (3.5),
by multiplying by constants, i.e. by isometries of G , we have

‖g̃k − id‖L∞∩W 2,2(Sk∩Sk+1) = ‖gk − ḡk‖L∞∩W 2,2(Sk∩Sk+1) (3.10)

.

ˆ

Sk

|F |2 +
ˆ

Sk+1

|F |2 .

Next extend g̃k radially on S−
k := B2−2k−3 \B2−2k−4 and on S+

k := B2−2k+1 \B2−2k . Call this extension
˜̃gk . Note that

∑

k≥1

ˆ

Sk

|F |2 ≤ δ . (3.11)

Because of (3.11), (3.11) and because the radial extension is tame enough there holds:

‖̃̃gk − id‖L∞∩W 2,2(S−

k ∪S+
k ) ≤ δ .

Let δ be small enough so that ˜̃gk = expid(ϕk), ‖ϕk‖L∞∩W 2,2(S−

k ∪S+
k ∪Sk)

∼ ‖̃̃gk − id‖L∞∩W 2,2(S−

k ∪S+
k ∪Sk)

.

This is possible because exp−1
id is well-behaved near the identity.

We create a family of cutoff functions similar to the one used in Littlewood-Paley decompositions. Con-
sider a function η(r) which is smooth, decreasing, equal to 0 for r > 2 and to 1 for r < 1 . We can
assume |η′| ≤ 2 . Then define ψk(x) := η(22k|x|)− η(22k+4|x|) and consider ϕ̃k := ψkϕk . We have

‖ϕ̃k‖L∞ ≤ ‖ϕk‖L∞(Sk) ,

‖D2ϕ̃k‖L2 . ‖D2ϕk‖L2(Sk) + ‖dψk‖L4‖dϕk‖L4(Sk) + ‖D2ψk‖L2‖ϕk‖L∞(Sk)

. ‖ϕk‖L∞∩W 2,2(Sk) .

By extending g̃k via exp(ϕ̃k) we obtain a continuous extension of g̃k on Sk∪S−
k ∪S+

k which still satisfies

the same estimates as ˜̃gk . Use the notation ĝk . We then define on B4 \ {0}

λ :=

∞
∏

i=0

ĝk .
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Since ĝk is nonidentity on at most 5 dyadic rings, this product has locally finitely many factors different
than the identity therefore it is well-defined. We also have that since W 2,2 ∩ L∞ is an algebra

‖λ− id‖L∞∩W 2,2(B
2−2k̄\{0})

.
∑

k≥k̄

‖ĝk − id‖L∞∩W 2,2(B4\{0})

.
∑

k≥k̄

‖g̃k − id‖L∞∩W 2,2(Sk∪S
−

k
∪S+

k
)

.
∑

k≥k̄

‖g̃k − id‖L∞∩W 2,2(Sk)

.
∑

k≥k̄

ˆ

Sk

|F |2 .

In particular we see that λ → id at zero, therefore the bundle extends, as desired. We must now prove
that in this gauge the connection form Ã is W 1,2 . Recall that if the gauges would be chosen all equal to
g̃k then the connection would become Āk on Sk , and this is just a constant conjugation of the original
Ak as in (3.5). Since the cutoff parts ĝk on S−

k ∪S+
k are controlled in W 2,2 ∩L∞ still by the right hand

side of (3.9) we obtain using (3.11) and the fact that the ĝk have similar estimates as the g̃k that

‖Ã‖2W 1,2 .
∑

k≥0

(

‖Ak‖2W 1,2(Sk)
+ ‖ĝk(Ak−1)‖2W 1,2(S−

k )
+ ‖ĝk(Ak+1)‖2W 1,2(S+

k )

)

.
∑

k≥0

(

‖Ak‖2W 1,2(Sk)
+ ‖ĝk‖2W 2,2(S−

k )
+ ‖ĝk‖2W 2,2(S+

k )

)

.
∑

k≥0

‖Ak‖2W 1,2(Sk)
+
∑

k≥0

‖Ak‖4W 1,2(Sk)

. δ + δ2 .

In the last passage we used (3.11) and the inequality between ℓ2 and ℓ4 . This concludes the proof of
Theorem 3.2.

4 Approximation of nonabelian curvatures in 5 dimensions

In this section we prove the fact that weak curvatures F corresponding to classes [A] ∈ AG(B
5) can

be strongly approximated up to gauge by smooth curvatures on bundles with finitely many defects. We
consider the class

R∞(B5) :=



















F curvature form s.t. ∃k, ∃a1, . . . , ak ∈ B5,

F = F∇ for a smooth connection∇

on some smooth G-bundle E → B5 \ {a1, . . . , ak}



















. (4.1)

4.1 Approximation on balls with small boundary energy

In this section we prove the extension result which will help to define our approximating connections.
We consider the scale r = 1 .

Proposition 4.1. Let F ∈ L2(B5
2,∧2R5 ⊗ g) and A ∈ L2(B5

2,∧1R5 ⊗ g) be such that in the sense of
distributions

F = dA+A ∧A on B5
2 .
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Fix also a constant F̄ ∈ ∧2R5 ⊗ g and a constant Ā ∈ ∧1R5 ⊗ g . There exists a constant ǫ0 > 0
independent of the other choices such that if

ˆ

S4

|F |2 < ǫ0,

ˆ

S4

|A|2 < ǫ0, |Ā|2 < ǫ0

then there exists Â ∈ L2(B5
2,∧1R5 ⊗ g) and ĝ : B5 → G such that:

• i∗
S4
Â = i∗

S4
A and Â = A outside B5 ,

• ĝ(Â) is smooth in the interior of B5 ,

• there holds

‖dÂ+ Â ∧ Â− F̄‖2L2(B5) . ǫ0(‖F̄‖2L2(B5) + ‖F‖2L2(S4)) + ‖F − F̄‖2L2(S4) . (4.2)

and
‖Â− Ā‖L2(B5) ≤ C‖A− Ā‖L2(S4) . (4.3)

Moreover we have that

• If F ∈ AG then FÂ ∈ AG ,

• If Ui ⊂ B5
2 is open and i∗

S4
A is continuous on Ui ∩ S4 then Â, ĝ are continuous on Ui ∩ B5 .

Proof. Step 1. Coulomb gauge on the boundary. Let g be the change of gauge g given by Theorem A.1
such that

{

d∗
S4
π(Ag) = d∗

S4
(g−1dg + π(g−1Ag)) = 0 ,

‖Ag‖W 1,2(S4) ≤ C(‖F‖L2(S4) + ‖A‖L2(S4)) .
(4.4)

From the equation defining Ag , namely

Ag = g−1dg + g−1Ag ,

we obtain (in our notation we identify 1 -forms and vector fields using the metric)

∆S4g = d∗
S4
(g Ag −Ag)

= dg · Ag + (g − id) d∗
S4
Ag + d∗

S4
Ag

−d∗
S4
[(A− Ā) g]− d∗

S4
[Ā (g − id)]− d∗

S4
Ā

= dg · Ag + (g − id) d∗
S4
Ag − d∗

S4
[(A− Ā) g]− d∗

S4
[Ā (g − id)] +

+d∗
S4

(

5
∑

k=1

i∗
S4
dxk

 

S4

〈i∗
S4
(Ā−Ag), i

∗
S4
dxk〉

)

= dg · Ag + (g − id) d∗
S4
Ag − d∗

S4
[(A− Ā) g]− d∗

S4
[Ā (g − id)] +

+5

5
∑

k=1

xk

 

S4

〈i∗
S4
(Ā− g−1Ag), i∗

S4
dxk〉 ,

where in the last row we used the fact that
´

S4
〈i∗

S4
(g−1dg), i∗

S4
dxk〉 = 0 . Note that if ḡ is the average of g

on S4 taken in R5 , then using the mean value formula there exists x ∈ S4 such that |g(x)−ḡ| ≤ C‖g−ḡ‖L2
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and up to changing g to gg0 where g0 is a constant rotation, we may also assume g(x) = id . Now
by elliptic estimates and using the embedding W−1,2 → L4/3 and the Hölder estimate ‖ab‖L4/3 ≤
‖a‖L2‖b‖L4 we deduce:

‖dg‖2L2(S4) . ‖dg‖2L2‖Ag‖2L4 + ‖g − id‖2L4‖Ag‖2L4

+ ‖A− Ā‖2L2 + ‖g − id‖2L4‖Ā‖2L2 + ‖Ā−A‖2L2‖g − id‖2L2 .

Utilizing the Sobolev inequality ‖g − id‖L4 . ‖dg‖L2 and the facts that

‖Ag‖2L4 . ‖F‖2L2 + ‖A‖2L2 . ǫ0 ,

‖Ā‖2Lp . ǫ0 ,

we absorb the terms not containing A − Ā from the right hand side to the left hand side. For ǫ0 > 0
small enough we thus obtain

‖dg‖L2(S4) ≤ C‖A− Ā‖L2 . (4.5)

We have using (4.5) and the fact that F is constant

ˆ

S4

|g−1i∗
S4
Fg − i∗

S4
F |2 ≤ 4 |F |2

ˆ

S4

|g − id|2 . ǫ0 ‖F‖2L2(B5
2)
.

Since FAg = g−1 F g , using the previous identity we obtain

ˆ

S4

|FAg − i∗
S4
F |2 . ǫ0 ‖F‖2L2(B5) +

ˆ

S4

|F − i∗
S4
F |2 . (4.6)

Using now the last line of (4.4) we obtain

ˆ

S4

|FAg − dAg|2 ≤
ˆ

S4

|Ag|4 . ‖F‖4L2(S4) + ‖A‖4L2(S4) .

Combining this with (4.6) we obtain

´

S4
|dAg − i∗

S4
F |2 . ǫ0 ‖F‖2L2(B5) +

´

S4
|F − i∗

S4
F |2+

+‖F‖4L2(S4) + ‖A‖4L2(S4) .
(4.7)

Step 2. Extension to the interior. For any 1-form η in W 1,2(S4) we denote by η̃ the unique solution
of the following minimization problem

inf

{
ˆ

B5

|dC|2 + |d∗R5C|2 dx5 C ∈W 1,2(∧1B5) i∗
S4
C = η

}

. (4.8)

A classical argument shows that it is uniquely given by


















d∗R5 η̃ = 0 in B5 ,

d∗R5 (dη̃) = 0 in B5 ,

i∗
S4
η̃ = η on ∂B5 ,

(4.9)

and one has
‖η̃‖L5(B5) ≤ C ‖∇η̃‖W 3/2,2(B5) ≤ C ‖η‖W 1,2(S4) . (4.10)
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Let

B :=
∑

i<j

Fij
xi dxj − xj dxi

2
. (4.11)

Observe that
{

d∗R5B = 0 in B5 ,

d∗R5 (dB) = 0 in B5 .

Thus B is the solution to (4.8) for its restriction to the boundary : i∗
S4
B

˜i∗
S4
B = B .

Observe that < B, dr >≡ 0 and d∗R5B = 0 therefore

d∗S4 (i∗
S4
B) ≡ 0 on S4 . (4.12)

We apply the same extension technique η 7→ η̃ to η = π(Ag) obtaining a 1 -form π̃(Ag) satisfying the
analogues of (4.9). We also define the constant 1 -form

Ag :=
5
∑

k=1

dxk

 

S4

〈Ag , i∗S4dxk〉

and we note
Ãg = π̃(Ag) + Ag .

Step 3. Estimates on the extended curvatures. Note that dπ(Ag) = dAg since Ag is constant. Using
(4.5), (4.12) and (4.7) we have that by Hodge inequality

‖π(Ag)− i∗
S4
B‖2W 1,2(S4) ≤ C

´

S4
|d(π(Ag)− i∗

S4
B)|2

=
´

S4
|dAg − i∗

S4
F |2 ≤ C ǫ0 ‖F‖2L2(B5)+

+C
´

S4
|F − i∗

S4
F |2 + C ‖F‖4L2(S4) + C ‖A‖4L2(S4) .

(4.13)

Combining now (4.10) and (4.13) we obtain

‖dÃg − F‖2L2(B5) = ‖dπ̃(Ag)− F‖2L2(B5)

≤ C
´

S4
|d(Ag − i∗

S4
B)|2 ≤ C ǫ0 ‖F‖2L2(B5)+

+C
´

S4
|F − i∗

S4
F |2 + C ‖F‖4L2(S4) + C ‖A‖4L2(S4) .

(4.14)

Using (4.10) again, we obtain

‖Ãg ∧ Ãg‖2L2(B5) . ‖Ãg‖4L4(B5) ≤ ‖Ag‖4W 1,2(S4) ≤ C ‖F‖4L2(S4) + C ‖A‖4L2(S4) . (4.15)

Combining (4.14) and (4.15) we obtain

‖dÃg + Ãg ∧ Ãg − F‖2L2(B5) ≤ C ǫ0 ‖F‖2L2(B5)+

+C
´

S4
|F − i∗

S4
F |2 + C ‖F‖4L2(S4) + C ‖A‖4L2(S4) .

(4.16)
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Step 4. Correcting the restriction on the boundary. Extend now g radially in B5 and denote by ĝ this
extension. We have using (4.5)

´

B5 |ĝ−1F ĝ − F |2 ≤ 4 |F |2
´

B5 |ĝ − id|2 dx5

≤ C ‖F‖2L2(B5)

´

S4
|g − id|2 ≤ C ǫ0 ‖F‖2L2(B5) .

(4.17)

Combining (4.16) and (4.17) gives

‖dÃg + Ãg ∧ Ãg − ĝ−1F ĝ‖2L2(B5) ≤ C ǫ0 ‖F‖2L2(B5)+

+C
´

S4
|F − i∗

S4
F |2 + C ‖F‖4L2(S4) + C ‖A‖4L2(S4) .

Denote Â := (Ãg)ĝ−1 := ĝÃg ĝ
−1 + ĝd ĝ−1 . Observe that with this notation one has

FÂ = ĝ FAg ĝ
−1 .

This one form Â extends A in B5 , there is a gauge in which it is smooth and we have the desired estimate
(4.2). Note also that i∗

S4
[Â = i∗

S4
(Ãg)ĝ−1 ] = (i∗

S4
Ãg)ĝ−1 = i∗

S4
A . Then define Â = A, ĝ = g outside B5 .

Since i∗
S4
(Â−A) = 0 we obtain via integration by parts that the distributional expression of FÂ is L2 .

Step 5. Verifying the compatibility conditions. We notice that if i∗
S4
A is C0 on Ui ∩ S4 then so is any

of its Coulomb gauges g by Proposition 4.2 below and thus the radial and harmonic extensions Â, ĝ are
continuous up to the boundary, verifying our second compatibility statement.
For the first statement, suppose given S = ∂B(x, ρ) such that i∗SA ∈ AG(S) , i∗SF ∈ L2 . Define

S+ := S ∩ B5 . Consider a local W 1,2 gauge gi on a chart Ui of S intersecting ∂S+ such that g+(i
∗
S+Â)

is W 1,2 on Ui . Then giĝ
−1(Ãg) is W 1,2 on Ui ∩ S+ and has the same trace as gi(A) on ∂S+ . Thus

gi(Â) is also W 1,2 on the whole of Ui as desired.
Step 6. Verification of (4.3). We now use the formula for Â from the previous step, as well as the
estimates (4.15) and (4.5) to prove the following sequence of estimates:

‖Â− Ā‖2L2(B5) .

ˆ

B5

|dĝ|2 + ‖ĝ − id‖2L4(L4)‖Ā− Ãg‖2L4(B5)

. (1 + ǫ0)
(

‖dg‖2L2(S4) + ‖g − id‖2L4(S4)

)

. ‖A− Ā‖L2(S4) .

This concludes the proof.

The following result was used in Step 5 above:

Proposition 4.2 ([27] Prop. 3.4). , Suppose that B is a smooth connection on a 4-dimensional manifold
M and that AC = g−1dg + g−1Bg is a W 1,2 Coulomb gauge then also g (and thus BC ) is smooth.

The proof of the above proposition goes as follows: by Lorentz space theory (see [40]) we obtain
that if AC , B ∈ W 1,2, d∗AC = 0 then g ∈ W 2,2 ∩ C0 (this is analogue to the 2 -dimensional Wente
lemma). This regularity for g allows to apply classical elliptic theory to the elliptic system issued from
d∗(g−1dg) = d∗(g−1ACg) and to conclude by bootstrap.

4.1.1 Approximation under a smallness condition on F only

In this section we state a modification of Proposition 4.1 which can be applied when only a bound on F
and not one on A is available. This modification will prove useful for Theorem 1.9.
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Proposition 4.3 (modified version of Prop. 4.1). Let F ∈ L2(B5
2,∧2R5 ⊗ g) and A ∈ L2(B5

2,∧1R5 ⊗ g)
be such that in the sense of distributions

F = dA+A ∧A on B5
2 .

Fix also a constant F̄ ∈ ∧2R5 ⊗ g . There exists a constant ǫ0 > 0 independent of the other choices such
that if

ˆ

S4

|F |2 < ǫ0

then there exists Â ∈ L2(B5
2,∧1R5 ⊗ g) and ĝ : B5 → G such that:

• i∗
S4
Â = i∗

S4
A and Â = A outside B5 ,

• ĝ(Â) is smooth in the interior of B5 ,

• there holds
‖dÂ+ Â ∧ Â‖2L2(B5) . ‖F‖2L2(S4) (4.18)

and
‖Â‖L2(B5) ≤ ‖F‖2L2(S4) + ‖A‖2L2(S4) . (4.19)

Proof. We follow the proof of Proposition 4.1, with slightly less refined estimates.
Step 1. Classical Coulomb gauge on the boundary. Let g be the Coulomb gauge as constructed by
Uhlenbeck [48], i.e. such that

{

d∗
S4
Ag = d∗

S4
(g−1dg + g−1Ag) = 0 ,

‖Ag‖W 1,2(S4) ≤ C‖F‖L2(S4) .

We deduce using the definition of Ag that

‖dg‖2L2(S4) ≤ C
(

‖Ag‖2L2(S4) + ‖A‖2L2(S4)

)

. ‖F‖2L2(S4) + ‖A‖2L2(S4) .

Steps 2-3. Estimates for the extensions. We define B as in Proposition 4.1 and Ãg will be the similar

extension of Ag . By elliptic and Hodge estimates using the fact that d∗
S4
Ãg = 0 we obtain

‖dÃg‖L2(B5) . ‖F‖2L2(S4)

and
‖Ãg ∧ Ãg‖L2(B5) ≤ ‖Ãg‖4L4(B5) . ‖Ag‖4L4(S4) . ǫ0‖F‖2L2(S4) .

These estimate give
‖FÃg

‖2L2(B5) . ‖F‖2L2(S4) .

Step 4. Correcting the extension on the boundary. We consider the harmonic extension g̃ to g . Note
that W 1,2(B5, G) is the strong W 1,2 -closure of C∞(B5, G) since π2(G) = 0 , therefore the extension
exists and is smooth. We also have the estimates

‖g̃ − id‖2L2(B5) . ‖dg̃‖2L2(S4) . ‖dg‖2L2(S4) . ‖F‖2L2(S4) + ‖A‖2L2(S4) ,

thus if we define Â = g̃Ãg g̃
−1 + g̃dg̃−1 it follows that

‖Â‖2L2(B5) . ‖Ãg‖2L2(B5) + ‖dĝ‖2L2(B5

. ‖F‖2L2(S4) + ‖A‖2L2(S4) .
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4.2 Smoothing in 4-dimensions

Before applying the above extension result we will always use the following classical result for p = 2, n =
4, X = S4 :

Lemma 4.4. Let p ≥ n/2 and let A be a W 1,p connection over an n-dimensional manifold X . Let K
be a (possibly empty) compact set on which A is C0 . Then there exists a sequence Aη of C0 connections
over X such that Aη|K = A|K and

lim
η→0

‖Aη −A‖W 1,p(X) = 0 and lim
η→0

‖FAη − FA‖W 1,p(X) = 0 .

Proof. If we had just functions f, fη : X → ∧1Rn⊗g in our statement, then the result would be classical
(even without the restriction on p) and it would suffice to mollify f in order to obtain approximants
fη = f ∗ ρη where ρη is a scale-η smooth mollifier.
The problem which we face is just the fact that A is not globally defined: we have instead local expressions
Ai in the chart Ui , and we must mollify Ai to Ai,η for which Ai,η = g−1

ij dgij + g−1
ij Aj,ηgij := gij(Aj,η)

are still true. We use a partition of unity (θi)i adapted to the charts Ui and define ρη(x) = η−nx ρ(x/ηx) ,
where ηx := min{η, dist(x,K)/2} . Then we define

(Aη)i = θiAi ∗ ρη +
∑

i′ 6=i

θi′gii′(Ai′ ∗ ρη) .

By the cocycle condition gii′gi′j = gij we obtain the desired (Aη)i = gij((Aη)j) . The derivatives of θi
enter the estimate of ‖Aη − A‖W 1,p(X) introducing a possibly huge L∞ factor, however this factor is
independent on η . We therefore have limη→0 ‖Ai,η −Ai‖W 1,p = 0 .
The restriction on the exponent p is needed in to prove the convergence of curvatures. This is based on
the following inequality:

‖FA − FB‖Lp . ‖dA− dB‖Lp + ‖(A−B) ∧ A‖Lp + ‖(A−B) ∧B‖Lp

. ‖DA−DB‖Lp + ‖A−B‖L2p(‖A‖L2p + ‖B‖L2p) .

We are able to conclude using the W 1,p -convergence of the Aη because we have the Sobolev embedding
W 1,p →֒ L2p valid precisely when p ≥ n/2 . We leave the details of the proof to the reader.

4.3 Good grids and good balls

In order to detect the regions where to apply the approximation step of the previous section we con-
struct controlled families of balls which depend on F and on its L2 connection A and are used for the
approximation.

4.3.1 Good grids

We thus define our basic object:

Definition 4.5. Assume that Λ ⊂ R5 is a discrete set and 1 < α < 2 is a constant such that the balls
B1(p), p ∈ Λ cover R5 and for each p ∈ Λ the only ball of the form Bα(q), q ∈ Λ covering p is the one
with q = p . Fix a scale r > 0 . A collection of balls Bi = Bri(xi) with ri ∈ [r, αr] and {xi} = rΛ ∩ B5

will be called a grid of balls of scale r .

Λ, α ∈]1, 2[ as above can be found, e.g. we may take Λ to be a body-centered cubic lattice:

Λ = β−1
[

2Z5 ∪ ((1, . . . , 1) + 2Z5)
]

, α ∈]1, 2/β[, β ∈]
√
5/2, 2[ .
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α,Λ will be fixed from now on; their only role is to ensure that for any choice of ri in the allowed the
balls of the grid cover B5 . We can choose the ri above such that a good control on the boundary of our
grids is available:

Proposition 4.6. Let F ∈ L2(B5,∧2R5 ⊗ g) and A ∈ L2(B5,∧1R5⊗ g) . For each fixed scale r > 0 pick
the finitely many radii ri ∈ [r, αr] uniformly and independently at random.

There exist a constant C depending only on the dimension and a modulus of continuity o(r) depending
only on F such that at fixed r the following hold with positive probability:

r
∑

i

ˆ

∂Bi

|F |2 ≤ C

ˆ

B5

|F |2 , (4.20)

r
∑

i

ˆ

∂Bi

|A|2 ≤ C

ˆ

B5

|A|2 (4.21)

and, with the notation F i :=
ffl

Bαr(xi)
F ,

r
∑

i

ˆ

∂Bi

|F − F i|2 ≤ o(r) , (4.22)

r
∑

i

ˆ

∂Bi

|A−Ai|2 ≤ o(r) . (4.23)

Proof. Since the annuli Bαr(xi) \Br(xi) can be divided into N families having no overlaps we obtain

ˆ αr

r

(

∑

i

ˆ

∂Bρ(xi)

|F |2
)

dρ . ‖F‖2L2(B5) ,

therefore for randomly picked ri ∈ [r, αr]

r
∑

i

ˆ

∂Bri
(xi)

|F |2 . ‖F‖2L2(B5)

with probability ≥ 1−X , where C depends on X , which in turn will be fixed later. This will give (4.22),
(4.23). The same reasoning can be applied also to A and we obtain that uniformly chosen ρ ∈ [r, 2r]
satisfies a (4.21) with probability ≥ 1−X .

Fix now smooth approximants Gk to F as a function in L2(B5,Λ2R2 ⊗ g) : assume that

ˆ

B5

|Gk − F |2 ≤ 1

k
.

Take o∞(r) = mink ok(r) for ok(r) :=
1
k + r

2‖Gk‖C1 . For r such that o∞(r) = ok(r) we apply the above
argument to Gk − F and obtain

r
∑

i

ˆ

∂Bri
(xi)

|Gk − F |2 .

ˆ

B5

|Gk − F |2
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with probability ≥ 1 − X . Let Ḡki :=
ffl

Bαr(xi)
Gk . By a straightforward computation and by Jensen’s

inequality we have, independently of r ,

r
∑

i

ˆ

∂Bri
(xi)

|Ḡki − F̄ |2 .
∑

i

ˆ

Bαr(xi)

|Ḡki − F̄i|2

.
∑

i

ˆ

Bαr(xi)

|Gk − F |2

.
1

k
.

We then estimate by triangle inequality between F, F̄ , Ḡk, Gk

r
∑

i

ˆ

∂Bri
(xi)

|F − F̄i|2 .
1

k
+ r

∑

i

ˆ

∂Bri
(xi)

|Gk − Ḡki |2 . o∞(r) .

This shows (4.22) once we take o(r) = C o∞(r) . We proceed similarly to obtain also (4.23) with
probability higher than X . For each r each one of the events (4.20), (4.21), (4.22), (4.23) fails with
probability ≤ X thus their intersection fails with probability ≤ 4X . We thus choose X > 1/4 and
conclude the proof.

The conditions obtained via Proposition 4.6 are contemporarily valid for a positive probability on
uniformly chosen radii, thus the new condition of having a W 1,2 representative of the connection class
on each ∂Bρ(xi) keeps them valid too.

4.3.2 Good grids for Morrey curvatures

We denote ‖ · ‖M the following Morrey norm:

‖f‖2M := sup
x,r

1

r

ˆ

Br(x)

|f(y)|2dy .

We next extend the statement of Proposition 4.6 to a situation where we have a Morrey control on F :

Proposition 4.7 (extension of Prop. 4.6). Consider a grid as in Definition 4.5. Let F ∈ L2(B5,∧2R5⊗g)
and A ∈ L2(B5,∧1R5 ⊗ g) . For each fixed scale r > 0 pick the finitely many radii ri ∈ [r, αr] uniformly
and independently at random.

There exist a constant C depending only on the dimension and a modulus of continuity o(r) depending
only on F such that at fixed r we have (4.22), (4.23) and the following, with positive probability:

ˆ

∂Bi

|F |2 ≤ C
1

ri

ˆ

Bi

|F |2 for all i (4.24)

and
ˆ

∂Bi

|A|2 ≤ C
1

ri

ˆ

Bi

|A|2 for all i . (4.25)

Remark 4.8. In particular if ‖F‖2M <∞ then we directly obtain from (4.24) that ‖F‖2L2(∂Bi)
≤ C‖F‖2M .

31



Proof. We note that in the end of the proof of Proposition 4.6 we had obtained that the estimates (4.22)
and (4.23) hold contemporarily with probability at least 1− 2X . In other words the estimates hold once
we choose rk/r ∈ Ik ⊂ [1, α] and

∏

k |Ik| > 1− 2X . In particular all of the Ik satisfy

1 ≥ |Ik| ≥ 1− 2X . (4.26)

We then obtain by Chebychev’s inequality that

|YC,k| :=
∣

∣

∣

∣

∣

{

ρ :

ˆ

∂Bρ(xk)

|F |2 > C

αr

ˆ

Bαr(xk)

|F |2
}∣

∣

∣

∣

∣

≤ αr

C
(4.27)

by recalling that α is bounded from above depending only on the dimension and using (4.26) we see that
there exists a choice

C ∼ 1

1− 2X

which will ensure that for each k there holds |YC,k| ≤ |Ik|r/2 . Since the number of balls is finite, with
positive probability for each k we have (4.22), (4.23) and

ˆ

∂Bρ(xk)

|F |2 ≤ C

αr

ˆ

Bαr(xk)

|F |2 ,

which implies (4.24). We may similarly ensure (4.25) as well, up to increasing C by a controlled factor.

4.3.3 Good and bad balls

We intend to apply Proposition 4.1 to Bi belonging to grids as in Proposition 4.6, for F,A as in the
definition of AG(B

5) and for F̄ = F̄i on Bi with the notations of Proposition 4.6. In this situation
(rescaled versions of) the estimates of Proposition 4.1 are valid for all but few “good” balls. We start by
fixing the definition of “good” and “bad”:

Lemma-Definition 4.9. Fix a constant δ > 0 and a scale r > 0 . Let A,F,Bi, o(r) be as in Proposition
4.6. We say that Bi is a δ -good ball with respect to A,F, o(r) if the following bounds hold:

ˆ

∂Bi

|F |2 ≤ δ , (4.28)

1

r2

ˆ

∂Bi

|A|2 ≤ δ , (4.29)

1

r2

ˆ

∂Bi

|F − F i|2 ≤ o(r) , (4.30)

1

r2

ˆ

∂Bi

|A−Ai|2 ≤ o(r) . (4.31)

In this case we will denote Gr the set of good balls and Br the set of the remaining (so-called “bad”) balls
of scale r .

The cardinality of Br can then be estimated as follows:

#Br .
‖F‖L2(B5)

δr
+

‖A‖L2(B5)

δr3
+

1

r
.

In particular the total volume of the bad balls vanishes as r → 0 .
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Proof. The second statement follows from the first because the volume of each bad ball is ∼ r5 . To prove
the estimate on #Br we separately estimate the sets Bi of cubes for which (gi) fails.
Using Proposition 4.6 we then obtain

δ#B1 .
∑

Bi∈B1

ˆ

∂Bi

|F |2 .
1

r

ˆ

B5

|F |2 ,

δr2#B2 .
∑

Bi∈B2

ˆ

∂Bi

|A|2 ≤ 1

r

ˆ

B5

|A|2 ,

o(r)#B3 .
∑

Bi∈B3

ˆ

∂Bi

|F − F i|2 ≤ o(r)

r
,

o(r)#B4 .
∑

Bi∈B4

ˆ

∂Bi

|A−Ai|2 ≤ o(r)

r
.

Since B = ∪4
i=1Bi we obtain the desired result.

Going back to the r scale by pull backing all forms to the good ball Cir using the dilation map

x→ r−1x , denoting Âr = r−1
∑5

j=1 Âj(r
−1x) dxj ,

´

Ci
r
|dÂr + Âr ∧ Âr − F |2 dx5 ≤ C δ

´

Ci
r
|F |2 dx5+

+C r
´

∂Ci
r
|F − i∗∂Ci

r
F |2 dvol∂Ci

r
+ C r δ

´

∂Ci
r
|F |2 dvol∂Ci

r
.

Summing up over the good balls - index i - using (4.20) and (4.22) we finally obtain the desired estimate

∑

i∈G

ˆ

Ci
r

|dÂr + Âr ∧ Âr − F |2 dx5 ≤ C δ + or(1) .

4.3.4 Good balls in the Morrey case

We now provide a version of the previous results useful for the approximation with bounds on Morrey
norms. The relevant new feature is that there exists a constant ǫ1 depending only on the underlying
manifold (in our case B5 ) such that when the Morrey norm of F satisfies

‖F‖2M(B5) ≤ ǫ1 , (4.32)

from Remark 4.8 we automatically have the condition

ˆ

S4

|F |2 < ǫ0 .

In this case we will nevertheless fix δ > 0 much smaller than ǫ0 , depending on r . The gain of the
Morrey bound will be that under condition (4.32) are able to apply Proposition 4.3 in order to perform
a controlled smooth extension on δ -bad balls.

4.4 Proof of Theorem 1.8

We are going to prove the following result:
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Theorem 4.10. Let F be the distributional curvature corresponding to an L2 connection form A with
[A] ∈ Aφ

G(B
5) . Then there exist Fn ∈ R∞,φ(B5) such that

‖F − Fn‖L2(B5) → 0, as n→ 0 .

Moreover we can also insure at the same time

‖A−An‖L2(B5) → 0, as n→ 0 .

Proof. The proof consists in giving an “approximation algorithm” for F , which is divided into several
steps. After each step the approximant connection obtained at that point will be denoted by Â , therefore
this notation represents different connection forms at different steps of the approximation.

Step 1

Start with F,A as in the definition of AG(B
5) and fix r > 0 . Apply Proposition 4.6 and choose well

behaved radii ri such that (4.20), (4.21) and (4.22) hold. We may also assume that i∗∂Bi
A ∈ AG(∂Bi)

for each i , as remarked immediately after Proposition 4.6.

Step 2

Apply Definition-Lemma 4.9 and define the families Gr,Br with respect to the data from Step 1 and for
a small constant δ > 0 to be fixed later.
The family Gr can be partitioned into subfamilies of disjoint balls G1, . . . ,GN , where N depends only
on the discrete set Λ and on the constant α fixed in Definition 4.5.

Step 3

Fix Bi = B(xi, ri) ∈ G1 . Let (i∗∂Bi
A)gBi

∈ AG(∂Bi) , as in the definition of AG(∂Bi) . Define then

ABi := τ∗Bi
A,FBi := τ∗Bi

F , where τ : B5 → Bi is the homothety τ(x) = xi + rix . From the estimates
(4.28), (4.29) we obtain

ˆ

S4

|FBi |2 < δ,

ˆ

S4

|ABi |2 < δ .

We require δ to be smaller than the constant ǫ0 of Proposition 4.1. Combining with (4.31) and requiring
r to be sufficiently small, we also obtain

|Āi|2 < ǫ0 .

We may thus apply Proposition 4.1 to A = ABi , F = FBi , F̄ = F̄i, Ā = Āi . We then pull back the
approximants to Bi via τ−1

Bi
and we denote the resulting approximant connection by Â . The error

estimate (4.2) of Proposition 4.1 becomes:

‖dÂ+ Â ∧ Â− F̄i‖2L2(Bi)
. δ‖F̄i‖2L2(Bi)

+ δr‖F‖2L2(∂Bi)
+ r‖F − i∗∂Bi

F̄i‖2L2(∂Bi)
.
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Step 4: iteration

Iterate Step 3 for all Bi ∈ G1 . Since such balls are disjoint, the local replacements of A,F by Â, FÂ are
done independently. The total error that we obtain at the end is, using the estimates of Proposition 4.6,

‖FÂ − F‖2L2(B5) .
∑

Bi∈G1

‖F − F̄i‖2L2(Bi)
+ δ

∑

Bi∈G1

‖F̄i‖2L2(Bi)
+

+ δr
∑

Bi∈G1

‖F‖2L2(∂Bi)
+ r

∑

Bi∈G1

‖F − i∗∂Bi
F̄i‖2L2(∂Bi)

. δ‖F‖L2(B5) + o(r) +
∑

Bi∈G1

‖F − F̄i‖2L2(Bi)
.

Note that in particular the total L2 -error of averages satisfies

e1 :=
∑

i

|Bi|
∣

∣

∣

∣

∣

 

B(xi,2r)

FÂ −
 

B(xi,2r)

F

∣

∣

∣

∣

∣

2

≤ N‖FÂ − F‖2L2(B5) .

Step 5: iteration

We iterate Step 4. More precisely, we start with Â0 = A and at step k ≥ 1 we use the balls from family
Gk to approximate the curvature FÂk−1 obtained from step k − 1 . At step k we use the constants

F̄ ki :=

 

B(xi,2r)

FÂk−1 .

Denote the new error introduced on the averages by ek , analogously as e1 above. Note that each Bi
intersects a finite number of other balls (this number depends only on Λ, α from Definition 4.5). Therefore
the total error after the final step k = N is

‖FÂN − F‖2L2(B5) .

N
∑

k=1

‖FÂk − FÂk−1‖2L2(B5)

. Nδ‖F‖L2(B5) +No(r) +
N
∑

k=1

ek

. C(N)

(

δ‖F‖L2(B5) + o(r) +
∑

i

‖F − F̄i‖2L2(Bi)

)

,

where the last sum is taken over all the balls Bi of our grid and C(N) depends just on Λ, α from
Definition 4.5. Since for any L2 function f there holds

lim
|h|→0

ˆ

|f(x+ h)− f(x)|2dx = 0

we deduce that
∑

i

‖F − F̄i‖2L2(Bi)
= o′(r) → 0 as r → 0
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as well. Thus we have the following final estimate on our approximation:

‖FÂN − F‖2L2(B5) . δ‖F‖L2(B5) + o(r) + o′(r) .

Note that as a result of Proposition 4.1 we also have that ÂN is continuous on the interior of ∪{Bi :
Bi ∈ Gr} .

Step 6

We extend Â on a bad ball Bj ∈ Br as follows. First apply Lemma 4.4 to Â and to the compact
K := ∂Bj ∩ ∪Gr to obtain Aη on ∂Bj such that Aη = A on K and Aη is C0 . Then we utilize the

radial projection πj : Bj \ {xj} → ∂Bj and define Âj := π∗
jAη . We have the following estimate, using

Step 5:

‖FÂj
‖2L2(Bj)

. r
(

‖FÂj
− FÂ‖2L2(∂Bj)

+ ‖FÂ‖2L2(∂Bj)

)

. r(oη + ‖FÂ − F̄j‖2L2(∂Bj)
) + ‖F‖2L2(Bj)

.

Step 7: iteration

We iterate Step 6 for all bad balls. Since we modify at most N times the connection on each ball, the
final bound for the connection Â obtained after this process is still

∑

Bj∈Br

‖FÂ‖2L2(Bj)
. roη + o(r) + ‖F̄‖2L2(∪Br)

.

The total error which we obtain is as follows:

‖FÂ − F‖2L2(B5) .
∑

Bi∈Gr

‖FÂ − F‖2L2(Bi)
+
∑

Bj∈Br

‖FÂ − F‖2L2(Bj)

. δ‖F‖L2(B5) + o(r) + o′(r) + roη + o(r) + ‖F‖2L2(∪Br)
.

For r, δ, η small enough the first terms become as small as desired. The last term converges to zero
by dominated convergence: indeed | ∪ Br| → 0 as r → 0 by Lemma 4.9 and the function χ∪BrF is
dominated by F ∈ L2 .

Step 8

From the previous step we have Â such that ‖FÂ − F‖L2(B5) ≤ 1
2k and Â is C0 outside the centers of

bad balls by construction (see Step 3 and Step 6, and recall that by Definition 4.5 the ball Bj ⊂ Bαr(xj)

does not cover xi for j 6= i). We now mollify Â outside this finite set of centers, and we obtain the
wanted curvature FAk

∈ R∞ .

By a similar reasoning we also insure ‖An −A‖L2(B5) → 0 utilizing (4.3) instead of (4.2) as above.

Utilizing the fact that the construction of Proposition 4.1 and the radial extension on the bad balls do
not affect the boundary condition on our balls we obtain the approximation also in R∞,φ(B5) for weak

connections in Aφ
G(B

5) .

4.5 Proof of Morrey approximation Theorem 1.9

We now provide the modifications needed to prove the Theorem 1.9 along the same steps as Theorem
4.10.
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4.5.1 Strategy of L2 approximation

It is enough to prove that for each fixed ǫ > 0 we may find a smooth approximating curvature F̂ which
is closer than ǫ to F in L2 -norm and satisfies (1.16). To do this, we utilize the division into good and
bad cubes like in the previous section and the construction for F̂ proceeds as in the proof of Theorem
4.10 with the following modifications:

• In Step 1 we utilize Proposition 4.7 instead of Proposition 4.6.

• In Step 2 we further partition also the family of δ -bad balls Br into disjointed subfamilies B1, . . . ,BN .

• In Step 3 we keep also track of the error estimate (4.3) of Proposition 4.1, which reads:

‖Â− Āi‖L2(Bi) ≤ Cr‖A− Āi‖L2(∂Bi) .

• The above estimate propagates through Step 4 where we obtain

‖Â−A‖2L2(B5) .
∑

Bi∈G1

‖A− Āi‖2L2(∂Bi)
.

• In Step 5 this and (4.23) gives

‖ÂN −A‖2L2(B5) .
∑

i

‖A− Āi‖2L2(B5) = o′(r) .

• In Step 6 we still apply Lemma 4.4 but we replace the radial extension by the application of
Proposition 4.3 to the groups of bad balls Bk constructed in Step 2. This is allowed by the
hypothesis ‖F‖2M < ǫ0 and by the discussion of Section 4.3.4. After this procedure on each bad
ball Bj we obtain the estimate

‖FÂ‖2L2(Bj)
. r(oη + ‖F‖2L2(∂Bj)

) .

We similarly have the estimate for Â :

‖Â‖2L2(Bj)
. r(oη + ‖A‖2L2(∂Bj)

) .

• In Step 7 we then collect the contributions from all bad balls like in Steps 4-5. We use the properties
stated in Proposition 4.7 to obtain

∑

Bj∈Br

‖FÂ‖2L2(Bj)
. roη + o(r) + ‖F‖L2(∪Br) + ‖A‖L2(∪Br) ,

∑

Bj∈Br

‖Â‖2L2(Bj)
. roη + o(r) + ‖F‖L2(∪Br) + ‖A‖L2(∪Br) ,

and by the same dominated convergence reasoning as in Step 7 of Theorem 4 we obtain (1.14) and
(1.15).

• Step 8 proceeds exactly as in Theorem 4.

We now prove the bounds (1.16) for F̂ constructed as above. We need to estimate

1

ρ

ˆ

Bρ(x)

|F̂ |2

uniformly in ρ, x . We consider separately the cases ρ & r and ρ≪ r .
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4.5.2 The case ρ & r

In this situation we simply estimate
ˆ

Bρ(x)

|F̂ |2 ≤
∑

i

ˆ

Bρ(x)∩Bi

|F̂ |2 ≤
∑

i:Bαr(xi)∩Bρ(x) 6=∅

ˆ

Bi

|F̂ |2

In this case we utilize the fact that the cover {Bi} had the bounded intersection property, the fact that
α is bounded and the fact that as a consequence of Prop. 4.1 or Prop. 4.3 (depending on the balls
involved), ‖F̂‖L2(Bi) . ‖F‖L2(Bi) thus

ˆ

Bρ(x)

|F̂ |2 .

ˆ

Bcρ(x)

|F̂ |2 .

ˆ

Bcρ(x)

|F |2 .

By definition of Morrey norm, we continue with

1

ρ

ˆ

Bρ(x)

|F̂ |2 .
1

ρ

ˆ

Bcρ(x)

|F |2 . c‖F‖2M ,

which finishes the proof.

4.5.3 The case ρ≪ r

In this case we will use elliptic regularity for the proof. We note the following scale-invariant inequalities
valid for the harmonic extensions:

‖dÃg‖2L5/2(Bri
) ≤ C

ˆ

∂Bri

|dAg|2 , ‖Ãg‖4L5(Bri
) ≤ C

ˆ

∂Bri

|Ag|4 .

If Bρ(x) ⊂ Bi then for an application of Step 3 or 6 on Bi we can thus write:

‖F̂‖2L2(Bρ(x)
=

ˆ

Bρ(x)

|dÃg + Ãg ∧ Ãg|2

.

ˆ

Bρ(x)

|dÃg|2 +
ˆ

Bρ(x)

|Ãg|4

. |Bρ|
1
5

(

ˆ

Bρ(x)

|dÃg |5/2
)

4
5

+ |Bρ|
1
5

(

ˆ

Bρ(x)

|Ãg|5
)

4
5

. ρ

[

(
ˆ

Bi

|dÃg|5/2
)

4
5

+

(
ˆ

Bi

|Ãg|5
)

4
5

]

. ρ

(

ˆ

∂Bri

|dAg|2 +
ˆ

∂Bri

|Ag|4
)

. ρ(1 + ǫ0)‖F‖2L2(∂Bi)
,

where in the first equality we used the gauge-invariance of F̂ , making the gauge change ĝ irrelevant, and
in the last estimate we use the results of Propositions 4.1, (4.3).

The desired estimate then follows similarly to the case ρ & r . In the general case Bρ(x) ∩ Bi 6= ∅
we have to just replace Bρ(x) by Bρ(x) ∩ Bi and the same estimates work. We note that the number

of steps of type 3 or 6 in which we modify F̂ over Bρ(x) is bounded above by a constant C(N) which
ultimately depends only on the dimension. �
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5 Regularity results

This section is devoted to the proofs of Theorem 1.11 and its important Corollary 1.12 and the regu-
larity of minimizers, Theorem 1.13. The structure of the proofs is analogous to the celebrated theory
of harmonic maps, cfr. [43] and the references therein. We apply our new approximation and extended
regularity results in order to complete all the steps for curvatures in AG(B

5) . The analogous results hold
on general Riemannian compact 5 -manifolds and the proofs can be extended by working in charts and
including error terms corresponding to the fact that the metric is not euclidean.

We start by proving Proposition 1.14, accoding to which the Bianchi identity dAF = 0 is verified by
curvature forms F and connection forms A corresponding to [A] ∈ AG(B

5) .

Proof of Proposition 1.14: We utilize the result of Theorem 1.8, namely the existence of a sequence of
connection forms Ak which are L2 and have curvatures Fk also in L2 , such that [Ak] ∈ R∞(B5) and

Ak → A in L2, Fk → F in L2 .

In particular we have dFk
W−1,2

⇀ dF and
´

B5 ϕ ∧ [Fk, Ak] →
´

B5 ϕ ∧ [F,A] for all C∞
c (B5) test 1 -forms

φ . This implies in particular that

dAk
Fk ⇀ dAF in the sense of distributions ,

thus we reduce to prove (1.23) for [A] ∈ R∞(B5) . In this case we see directly from the classical results that
dAF ≡ 0 locally outside the defects a1, . . . , ak of the classical bundle from the definition of R∞ . Since

we have that dAF is a tempered distribution, it must then be locally near ai of the form
∑l

α=0 cαδ
(α)
ai ,

where δ
(α)
x is the α -th distributional derivative of the Dirac mass at x . On the other hand, since F ∈ L2

and [A,F ] ∈ L1 we obtain that dAF ∈ W−1,2
loc near ai . Since we can construct forms φn which are

bounded in W 1,2 but have values of the first l derivatives in ai , larger than n we see that if cα 6= 0 for
some α then

C ≥ 〈dAF, φn〉 =
n
∑

α=1

cαφ
(α)
n → ∞ ,

which is a contradiction. Thus dAF = 0 and this concludes the proof.

5.1 Partial regularity for stationary connections in AG

In this section we show how to bootstrap the results of [31] to the space AG(B
5) , in order to prove the

partial regularity result of Corollary 1.12.

The main step is to improve on the result of [31] by removing the smooth approximability require-
ment (cfr. Theorem I.3 of [31]). Once this proof is done, the strategy of [31] can proceed to the proof of
Theorem 1.11 and to the regularity result of Corollary 1.12 with no changes.

Proof of Theorem 1.10: In [31] the existence of ǫ, C for which a gauge g in which (1.17), (1.18) and (1.19)
hold was proved under the assumption that A be strongly approximable in W 1,2 ∩ L4 by connection
forms of smooth connections. In particular we may apply the result of [31] to the connection forms Âk
furnished by Theorem 1.9. We obtain gauge changes gk such that

Ak :=
(

Âk

)

gk
satisfies (1.17),(1.18), (1.19)
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with F replaced by Fk . Since Âk
L2

→ A, ‖Ak‖L2 . ‖Fk‖L2 . ‖F‖L2 we obtain

‖dgk‖L2 ≤ C(‖Âk‖L2 + ‖Ak‖L2) ≤ C

therefore up to subsequence we can assume that gk converge pointwise a.e., weakly in W 1,2 and (by
interpolation with L∞ ) in Lp for all p < ∞ . Similarly we may assume that Ak → A∞ in Lq for all
q < 2∗ . It follows from the defining equation g−1

k dgk + g−1
k Âkgk = Ak that

g−1
k dgk → g−1

∞ dg∞ strongly in L2 ,

thus we have that
Ag∞ = A∞ ,

in particular g∞ is such that conditions (1.17), (1.18) and (1.19) hold, since they are stable under strong
L2 limits.

5.2 The regularity of local minimizers of the Yang-Mills energy in dimension

5

In this section we prove Theorem 1.13, which is a new result since the existence of minimizers and thus
the availability of energy comparison techniques was not available before the introduction of the class
AG .

5.2.1 Luckhaus type lemma for weak curvatures

Our aim in this section is to prove the following proposition, using a Luckhaus-type lemma for interpo-
lating weak connections with L2 -small curvatures while paying a small curvature cost.

Proposition 5.1. Assume that Fk are curvature forms corresponding to local minimizers [Ak] ∈ AG(B
5)

and that Fk ⇀ F weakly in L2 and supk ‖Fk‖L2(B5) ≤ C . Then Fk → F strongly sin L2 on a smaller
ball B5

1
2

, and F is a local minimizer as well.

The main tool for the proof above is the following lemma:

Lemma 5.2 (Luckhaus-type lemma in AG ). Assume that F0, F1 are curvature forms on S4 correspond-
ing to connection forms A0, A1 ∈ AG(S

4) . Consider the inclusions it : S4 → S4 × {t}, t = 0, 1 and
assume

‖Ft‖L2(S4) < ǫ0, ‖At‖L2(S4) < ǫ0 for t = 0, 1 . (5.1)

Then there exists a connection form Â corresponding to [Â] ∈ AG(S
4 × [0, 1]) such that

i∗
S4×{t}Â = i∗tAt, t = 0, 1 (5.2)

and
‖FÂ‖L2(S4×[0,1]) ≤ C‖F0‖L2 + ‖F1‖L2 . (5.3)

Proof. By Uhlenbeck’s result [48] we may find gauge changes gi, i = 0, 1 such that if Ãi = g−1
i dgi +

g−1
i Aigi then we have ‖Ãi‖W 1,2 ≤ C‖Fi‖L2 . On S4× [0, 1] we use the convex combination of connections

Ã(ω, t) := tÃ1(ω) + (1− t)Ã0(ω) ,
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for which the formal curvature form F̃ (t, ·) := dÃ+ Ã ∧ Ã satisfies

‖F̃‖L2(S4×[0,1]) ≤ ‖dÃ‖L2(S4×[0,1]) + ‖Ã‖2L4(S4×[0,1])

≤ ‖dÃ0‖L2(S4) + ‖dÃ1‖L2(S4) + ‖Ã0‖L2(S4) + ‖Ã1‖L2(S4)

+‖Ã0‖L4(S4) + ‖Ã1‖L4(S4)

. ‖F0‖L2(S4) + ‖F1‖L2(S4) ,

where in the last step the implicit constant also depends on ǫ0 .

We next extend the trivializations g0 ◦ i0, g1 ◦ i1 to a global trivialization g over S4 × [0, 1] in order
to have a well-defined connection form Â := (Ã)g−1 satisfying (5.2). To do this we note that since the

curvature form F̃ will change into FÂ = gF̃g−1 we need only to control the extension g in L2 norm.
Note the bounds

‖dgi‖L2(S4) ≤ ‖Ãi‖L2(S4) + ‖Ai‖L2(S4) . ‖Fi‖L2(S4) + ‖Ai‖L2(S4), i = 0, 1 ,

following from the definition of the Ãi . By the classical Luckhaus lemma [30] we then achieve a W 1,2 -
controlled extension g : S4 × [0, 1] → G such that

‖g‖W 1,2(S4×[0,1]) .
∑

i=0,1

(‖Fi‖L2(S4) + ‖Ai‖L2(S4)) ,

which allows to complete the proof.

Proof of Proposition 5.1: Step 1. We divide the interval [1/2, 1] in N > [1/Cǫ] equal subintervals, for
ǫ ≤ ǫ0 . By pigeonhole principle there exists one of such intervals I = [a, b] ⊂ [1/2, 1] such that up to
subsequence we may assume

‖Fk‖L2({x:|x|∈I}) < ǫ, ‖F‖L2({x:|x|∈I}) < ǫ .

Step 2. Up to pulling back via a reparameterization fa,b : B5
b \ B5

a → ∼4 × [0, 1] we may reduce to

the setting of Lemma 5.2 with F0 = i∗
∂B5

b
Fk, F1 = i∗∂B5

a
F . Let F̂k be f∗

a,bF̂ where F̂ is the interpolant

produced in the Lemma 5.2. The function fa,b produces the following rescaled estimate:

‖F̂k‖L2(B5
a\B

5
b)

. N−1(‖Fk‖L2(B5
a\B

5
b)
+ ‖F‖L2(B5

a\B
5
b)
) .

It is easy to check that the curvature defined as follows is still in FZ(B
5) :

F̃k :=



















F on B5
a

F̂k, on B5
b \ B5

a ,

Fk on B5 \ B5
b .

Step 3. We utilize the fact that Fk is locally minimizing to write the following inequalities:

‖Fk‖2L2(B5
a)

≤ ‖Fk‖2L2(B5
b
)

≤ ‖F̃k‖2L2(B5
b)

= ‖F‖2L2(B5
a)

+ ‖F̂k‖2L2(B5
b\B

5
a)

= ‖F‖2L2(B5
a)

+ oǫ(1) .

In particular we see that no energy is lost in the limit on B5
a :

‖Fk‖L2(Ba) → ‖F‖L2(Ba) ,

which proves the result.
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5.2.2 Dimension reduction for the singular set

This section is devoted to the proof of Theorem 1.13. We utilize the following definition:

Definition 5.3. We denote by reg(F ) the set of points x such that over some neighborhood U ∋ x there
exists a smooth classical G-bundle P → U such that F is the curvature form of a smooth connection
over P . The complement of regF is denoted sing(F ) .

Proof of Theorem 1.13: It can be proved (see [46] or [31]) from the monotonicity formula (see [38]) that
for minimizing curvatures F , H1(sing(F )) = 0 . If S := singF and F is a minimizing curvature we
consider now s ≥ 0 for which Hs(S ∩ Ω′) > 0 . Then Hs -a.e. x0 there holds

lim inf
λ↓0

λ−sHs(S ∩Bλ/2(x0)) > 0 . (5.4)

From the monotonicity formula we have (see [46]) that for any subsequence λi → 0 such that the blown-
up curvature forms Fλi := τ∗λi,x0

F , the weak limit curvature form F0 is radially homogeneous. Here τλ,x
is the homothety of factor λ and center x . By Proposition 5.1 the convergence is also strong and F0 is
a minimizer.

Si := singFλi which are the blow-ups of S , satisfy Hs(Si ∩ B1/2) = λ−si Hs(S ∩ Bλi/2) thus from
(5.4) we obtain

Hs(S0 ∩B1/2) > 0 . (5.5)

As in [46] from the stationarity we deduce that F0 is radial and radially homogeneous. In particular S0

is also radially invariant, i.e. λS0 ⊂ S0 for λ > 0 . Assume S0 6= {0} . In particular S0 must then contain
a line and in this case H1(S0) > 0 . However since F0 is still a minimizer this contradicts Corollary 1.12.

The fact that S0 = {0} for blown-up curvatures implies also that for a minimizer F the singular points
do not accumulate. Indeed if xi → x0 were accumulating singular points, then by carefully choosing the
blowup sequence we would be able to obtain F0 such that S0 ⊃ {0, u/4} where u is a unit vector.

6 Consequences of closure and approximability

We will prove here Theorem 1.6 which completes the proof of Theorem 1.7. The proofs are along the
lines of the reasoning [32] done in the case of abelian curvatures.

The distance dist on gauge-equivalence classes of connections is used to compare the boundary datum
with the slices of forms F ∈ AG . We abuse notation and denote by f(x + ρ) the form (with variable
x ∈ S4 ) corresponding to the restriction to ∂B1−ρ of the form F . This notation is inspired by the
analogy to slicing via parallel hyperplanes, instead of spheres. We then define the class AG,ϕ(B

5) via the
continuity requirement

dist(f(x+ ρ′), ϕ(x)) → 0, as ρ′ → 0+ . (6.1)

It is clear that the definition (6.1) satisfies the nontriviality and compatibility conditions, since dist(·, ·)
is a distance and since for R∞ having smooth boundary datum implies that in a neighborhood of ∂B5

the slices are smooth up to gauge and converge in the smooth topology to ϕ . The validity of the
well-posedness is a bit less trivial, therefore we prove it separately.

Theorem 6.1. If Fn ∈ AG,ϕ(B
5) are converging weakly in L2 to a form F ∈ AG(B

5) then also F
belongs to AG,ϕ(B

5) .
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Proof. By weak semicontinuity of the L2 norm we have that Fn are bounded in this norm, ||Fn||L2(B1\B1−h) ≤
C .

Therefore by Lemma 2.3 the fn are dist-equi-Hölder, so a subsequence (which we do not relabel) of
the fn converges to a slice function f∞ with values in Y a.e.. For all ρ′ ∈ [0, ρ] the forms fn(·+ ρ′) are
a Cauchy sequence in n , for the distance dist. This is enough to imply that f∞ is equal to the slice of
F . Even if F is just defined up to zero measure sets, it still has a dist-continuous representative. By
uniform convergence it is clear that f still satisfies (6.1).

The same proof also gives an apparently stronger result:

Theorem 6.2. If Fn ∈ AG,ϕn(B
5) are converging weakly in L2 to a form F ∈ AG(B

5) then the forms
ϕn converge with respect to the distance dist to a form ϕ and also F belongs to AG,ϕ(B

5) .

Remark 6.3. The definition of the distance can be extended as in [32] and allows to extend the definition
of the boundary value to arbitrary domains.

A Controlled gauges on the 4-sphere

Recall that π : L2(S4, g) →
(

Span
{

i∗
S4
dxk, k = 1, . . . , 5

})⊥
denotes the L2 projection operator.

In this section we follow the overall structure of the argument from [48] to prove the following result:

Theorem A.1. There exist constants ǫ0, C with the following properties. If A ∈W 1,2(S4, g) is a (global)
connection form over S4 such that the corresponding curvature form F satisfies

‖F‖L2(S4) + ‖A‖L2(S4) ≤ ǫ0

then there exists a gauge transformation g ∈W 2,2(S4, G) such that

d∗
S4
(g−1dg) = d∗

S4
(π(g−1dg))

and denoting Ag = g−1dg + g−1Ag the new expression of the connection form after the gauge transfor-
mation g there holds

d∗
S4
(π (Ag)) = 0 and ‖Ag‖W 1,2(S4) ≤ C(‖F‖L2(S4) + ‖A‖L2(S4)) .

The proof consists in studying the case where the integrability exponent 2 is replaced by p > 2 first,
and then obtaining the p = 2 cases as a limit. Note that for p > 2 the space W 2,p(S4, G) embeds
continuously in C0(S4, G) , thus gauges g of small W 2,p -norm will be expressible as g = exp(v) for some
v ∈W 2,p(S4, g) , due to the local invertibility of the exponential map exp : G→ g .

We then consider the space

Ep :=

{

v ∈ W 2,p(S4, g) :

ˆ

S4

vxk = 0, k = 1, . . . , 5

}

where xk are the ambient coordinate functions relative to the canonical immersion S4 → R5 . In case
p > 2 the Banach space Ep is, by the above considerations, the local model of the Banach manifold

Mp :=

{

g ∈ W 2,p(S4, G) :

ˆ

〈g−1dg, i∗
S4
dxk〉 = 0, k = 1, . . . , 5

}

.
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We then consider the sets

Uǫp :=
{

A ∈W 1,p(S4,∧1TS4 ⊗ g) : ‖FA‖L2(S4) + ‖A‖L2(S4) ≤ ǫ0
}

and their subsets

Vǫ,Cp
p :=



















A ∈ Uǫp : ∃g ∈M2 s.t. d∗
S4
(π(Ag)) = 0,

‖π(Ag)‖W 1,q ≤ Cq(‖F‖Lq + ‖A‖Lq) for q = 2, p

and ‖F‖L2 + ‖A‖L2 < ǫ



















.

A.1 Proof of Theorem A.1

Like in [48] we prove theorem A.1 by showing that if ǫ0 > 0 is small enough then for p ≥ 2 we may find
Cp such that

Vǫ0,Cp
p = Uǫ0p . (A.1)

We are interested in (A.1) just for p = 2 but we use the cases p > 2 in the proof: we successively prove
the following statements.

1. Uǫp is path-connected.

2. For p ≥ 2 the set Vǫ,Cp
p is closed in W 1,p(S4,∧1TS4 ⊗ g) .

3. For p > 2 there exists Cp, ǫ0 such that the set Vǫ0,Cp
p is open relative to Uǫ0p . In particular (A.1)

is true for p > 2 .

4. There exists K such that if g ∈Mp, ‖Ag‖L4 ≤ K and

d∗
S4
(π(Ag)) = 0, ‖F‖L2 + ‖A‖L2 < ǫ0

then
‖Ag‖W 1,2 ≤ C2(‖F‖L2 + ‖A‖L2) .

5. The case p = 2 of (A.1) follows from the case p > 2 .

Proof of step 1

Fix p ≥ 2, ǫ, A ∈ Uǫp . We observe that 0 ∈ Uǫp . Moreover the connection forms At(x) := tA(tx) for
t ∈ [0, 1] all belong to Uǫp as well, like in [48].

Proof of step 2

Let Ak ∈ Vǫ,Cp
p be a sequence of connection forms converging in W 1,p to A . Consider the gauges gk as

in the definition of Vǫ,Cp
p . We may assume that the Agkk have a weak W 1,p -limit Ã . The bounds and

equation in the definition of Vǫ,Cp
p are preserved under weak limit thus we finish if we prove that Ã is

gauge-equivalent to A via a gauge g ∈ Mp . We note that from dgk = gkA
gk
k − Akgk and the fact that

G ⊂ RN is bounded it follows that ‖dgk‖Lp∗ . ‖Agkk ‖W 1,p + ‖Ak‖W 1,p , thus it has a weakly convergent

subsequence, gk
W 1,p∗

⇀ g . Thus we may pass to the limit the gauge change equation and obtain indeed
Ã = Ag and also g ∈Mp .
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Proof of step 3

Fix p > 2 and let A ∈ Vǫ,Cp
p . Consider the following data:

g ∈ Mp ,

η ∈ W 1,p(S4,∧1TS4 ⊗ g) .

Consider the following function of such g, η , with values in Lp ∩ {xk, k = 1, . . . , 5}⊥L2 :

NA(g, η) := d∗
S4

(

π
(

g−1dg + g−1(A+ η)g
))

= d∗
S4

(

g−1dg + π
(

g−1(A+ η)g
))

.

Note that NA(id, 0) = 0 and NA is C1 . We want to apply the implicit function theorem in order to
solve in g the equation NA(g, η) = 0 for η in a W 1,p -neighborhood of id ∈ Mp . The implicit function
theorem will imply also that the dependence of g on η will be continuous. Note that up to order 1 in t
there holds exp(tv)±1 ∼ 1 ± tv . Using this and the fact that Ep is the tangent space to Mp at id we
find the linearization of NA at (id, 0) in the first variable:

HA(v) := ∂gNA(id, 0)[v]

=
∂

∂t

∣

∣

∣

∣

t=0

[

d∗
S4

(

π
(

(exp(tv))−1dexp(tv) + exp(tv)−1(A+ η)exp(tv)
))]

= d∗
S4
(dv + π([A, v]))

= d∗
S4
dv + [π(A), dv] .

In the last passage we utilized the fact that π acts only on the coefficients of A and thus π[A, v] = [πA, v]
and the fact that d∗

S4
[π(A), v] = [d∗

S4
(π(A)), v] + [π(A), dv] where the first term vanishes by hypothesis.

We see that HA : Ep → Lp ∩ {xk, k = 1, . . . , 5}⊥L2 is thus given by

HA(v) = ∆S4v + [π(A), dv] .

By elliptic theory and Sobolev and Hölder inequalities in dimension 4 we have

‖HA(v)‖Lp ≥ ‖∆S4v‖Lp − ‖[π(A), dv]‖Lp

≥ cp‖v‖W 2,p − c′p‖π(A)‖L4‖v‖W 2,p .

For c′p/cp‖π(A)‖L4 < 1
2 we find that HA is invertible and the thesis follows.

Proof of step 4

We start by observing that since d∗
S4
(π(Ag)) = 0, 〈g−1dg, i∗

S4
dxk〉L2 = 0 there holds

d∗
S4
Ag =

5
∑

k=1

5xk

 

S4

〈Ag, i∗
S4
dxk〉

=

5
∑

k=1

5xk

 

S4

〈g−1Ag, i∗
S4
dxk〉 ,

thus by invariance of the norm and Jensen’s inequality

‖d∗
S4
Ag‖L2 =





ˆ

S4

∣

∣

∣

∣

∣

5
∑

k=1

5xk

 

S4

〈g−1Ag, i∗
S4
dxk〉

∣

∣

∣

∣

∣

2




1
2

≤ C

(
ˆ

S4

|A|2
)

1
2

= C‖A‖L2 .
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By Hodge inequality

‖∇Ag‖L2 . ‖dAg‖L2 + ‖d∗
S4
Ag‖L2

. ‖F‖L2 + ‖Ag‖2L4 + ‖A‖L2 .

If ‖Ag‖L4 ≤ K small enough then the second term above is estimated by K‖∇Ag‖L2 which can then be
absorbed to the left side of the inequality, giving the desired estimate.

Proof of step 5

We approximate A ∈ Uǫ02 by smooth Ak in W 1,2 norm. In particular there holds Ak ∈ W 1,p for all

p > 2 . We may obtain that Ak ∈ Uǫ0p = Vǫ0,Cp
p , p > 2 and in particular we find gk ∈Mp such that

‖Agkk ‖L4 . ‖Ak‖W 1,2 . ‖Fk‖L2 + ‖Ak‖L2 . ǫ0 ,

where the constants depend only on the exponents p and 2 . By possibly diminishing ǫ0 we thus achieve
‖Agkk ‖L4 ≤ K for all k . By the closure result of Step 2 for p = 2 we thus obtain that the same estimate
holds for A and for some gauge g ∈M2 and by Step 4 we conclude that A ∈ Vǫ0,Kp , as desired. �
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