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Introduction

Our intention in this thesis is to study some important problems related to the “toplogical
singular set” of the maps in a given function space. This object, which is to be defined
without ambiguity for some categories of these mappings, is the obstruction which char-
acterizes the non-approximability of a mapping in this space by the smooth mappings.
These topological singularities and their properties are the base of some interesting re-
sults on the weakly harmonic maps into the sphere or on the weak or strong density of
smooth maps in function spaces. They have become an independent subject of study with
important questions to solve, related to different domains such as Functional Analysis,
Geometric Measure Theory, Topology and Geometry.

Here we limit ourselves to the Sobolev spaces between manifolds. But remark that
the same problems are worthy to ask for any other function space. Consider two compact
riemannien manifolds M and N of respective dimensions n and k, such that N is closed
and isometrically embedded in some euclidien space RY. for p > 1, the Sobolev space
WLP(M, N) is defined by

WYP(M, N) := {u € W"*(M,R"™); u(x) € N p.p. dans M }.

This space is equipped with the induced weak and strong topologies of W1?(M, R") and
is closed under the convergence in these topologies. The p-energy functional is defined by
E,(u) == [,;|Vul? and is called the Dirichlet energy E(u) := [,,|Vul? for p = 2. Also,
for a map ¢ € C*°(0OM, N) we set

WP (M, N) = {u € W' (M, N); uloy = ¢}

For definitions concerning the Geometric Measure Theory the reader can refer to [16] or
[28]. Meanwhile, we will refer to integer multiplicity rectifiable currents (respectively real
multiplicity currents) with finite mass by the term i.m. rectifiable (respectively normal)
currents.

Harmonic mappings into the sphere

Let us begin with a variational problem which leads us, in a natural way, to problems
related to topological singularities.
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Consider the Sobolev space H'(2, S?) where Q C R™, n > 3, is a bounded open set
and S? is the 2-dimensional unit sphere in R3. We call v a weakly harmonic map if it is
a critical point for the functional F, i.e. if and only if we have

d t

gLt =0 forall ve CX(Q,RY.

dt luttol ) _,

In other words, u is weakly harmonic in the Sobolev space H'(, S?) if it satisfies the
following equation in the sense of distributions :

—Au=ulVu* in Q
u(r) € S* ae.

Let ¢ : 0Q — S? be a smooth map which has a regular extension into 2. The existence
of a weakly harmonic map equal to ¢ on the boundary can be easily proved by a straight-
forward minimizing argument. By the way, the uniqueness and regularity questions for
weakly harmonic maps in HJ (£, 5%) have not the same answers as in the classic cases,
i.e. when the target manifold is an euclidean space.

The smoothness of harmonic extensions into S?

One of the important problems which is still open is if smooth harmonic extensions of ¢
into ) exist. In the first step one may want to minimize the Dirichlet energy in H Si(Q, S?)
and prove the regularity of the solution. But in fact if we define

= inf Fu) < inf FEu)=:j,,
He HL(Q,57) ()_c;;o(ﬁ,SZ) (u) =i

the strict inequality

Ho < [y
happens sometimes (See [22]). Thus minimizers of E are not necessarily smooth and
we should find other harmonic maps which could be a suitable candidate for a smooth

solution. Meanwhile R.Schoen and K.Uhlenbeck ([35]) proved that these minimizers are
smooth in ) except on a finite set of points.

In trying to attack this problem, another functional on H é(Q, S?) has been studied
which is called the “relaxed energy”. In fact, the relaxed energy is the largest sequentially
lower semi-continuous functional on HJ (€2, S?) which is less than E on C2°(€2, 5%) :

Definition 1 The relazed energy F of E on HL(Q, S?) is defined to be

F(u) :=inf { liminf E(u,); u, € CF(Q,5%), up, — u} : (0.1)

n—oo



Since the smooth maps which take ¢ as their boundary value are weakly sequentially dense
in H(£2,S?) (See [2]), we observe that F is well defined. Moreover F is sequentially lower
semi-continuous with respect to the weak topology in H, é(Q, S?) and we have
inf F= inf FE. (0.2)
HZL(Q,5?) C(,5?)
This equation shows the importance of study of F. Since the infimum of F in H Si(Q, S?)

is achieved, the question which should be considered then is whether a minimizer of F is
weakly harmonic and to what extent it is regular.

In this line, F.Bethuel, H.Brezis, J.M. Coron and E.Lieb (See [5] and [10]) showed the
striking fact that, for n = 3, the relaxed energy achieves the following elegant algebric
formula :

F(u) = F(u) :== E(u) + 8nL(u) (0.3)
where
L(u) :== L sup {/ wrwy A dip — Y wy A ¢} (0.4)
Am P:Q—-R O o9
|dile < 1

where wy is the volume form on S? (or can be replaced by any 2-form w, |, 2w =4m). In
particular this yields that the critrical points of F are weakly harmonic. F.Bethuel and
H.Brezis showed also that the minimizers of F are smooth in 2 except on a finite set of
points (See[4]).

The intuitive approach for L(u) is that if u € H (€2, 5?) is smooth in € except on a set
of finite points {p1, ..., pm }, taking the degree d; on the point p;, then L(u) is the minimum
length of the segments connecting these singularities with respect to the multiplicities (See

[10]). In other words
L(u) = m; <Z d; [[pi]l, Q)

where m;(§2, S?), for the i.m. rectifiable 0-current S, is defined by
m;(S, Q) :=inf {M(T); T € Ri(R*), spt T C Q, 9T = S}.

In the first chapter, we study the same approach for n > 3 but this generalisation
meets obstacles. One may introduce for w, any 2-form on S? which satisfies |, gw=1:

L(u) := sup {/ wwAdy — [ grfwA w} (0.5)
b € Q30 Q o0
|diploo <1
as a generalization of L(u) in the 3-dimensional case. Observe that L is independant of
the choice of w and is continuous on HJ (€2, S%) for @ C R and the functional

F(u) := E(u) + 87 L(u) (0.6)
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would still be weakly lower semi-continuous. But we have this theorem :

Theorem 1 (I.1) For every Q C R* and every map ¢ € C®(08, 5%), smoothly extendable
onto (1, there exists u € Hé(Q, S?) such that

F(u) < F(u).

Moreover there exists a domain @ C R* and ¢ € C*(99Q,5?%), smoothly extendable onto
Q, for which this gap phenomenon exists :

inf EF< inf F< inf FE.
HL(2,52) HL(2,5?) C(9,52)

The difference with the case n = 3 lies in the value which L(u) represents. We shall
consider a map u € H;(Q,SQ), which is smooth except on a finite union of (n — 3)-
dimensional submanifolds of Q : {0y, ...0,,} (We say that u € R®(Q, S?)). The degree d;
of u on each o; is well defined and we set the topological singularity of u, S,, to be

m

S, =Y di[ai]]. (0.7)

i=1
Calculating L(u), we see that

— sup / $< sup /uw:mxsm (0.8)

|diploo <1 lldl[5 <1
where ||.||* is the co-mass norm on the space of forms and
my(Sy, Q) = inf {M(T); T € D,_»(R"),0T =S, spt T C O}

is the mass of the minimal normal (real) current in 2 with boundary S,.

Meanwhile, m;(S,, §2), the minimal mass of i.m. rectifiable currents in Q which are
bounded by S,, is still proportional to the energy needed for removing the singularities of
u and estimating it weaky by smooth maps (See the further proposition 1 ). Here arises
the main question which should be answered if we want to continue as above, that is if

m.(S, Q) =m;(S,Q) VS e R,_3(Q).

But contrary to the case n = 3, the answer is no for n > 3. Specially, for n = 4, there
exists a curve [[']] in R* for which

1

me([[T]) = 5ma(2[[T]]) < ma(([T]).

This gap phenomenon was firstly proved by L.C.Young in [42]. F.Morgan in [27] and
B.White in [37] have given other examples of such curves in R*. This is then the origin
of the facts proved in theorem 1.
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Remark 1 We have always the relation

sup /@D =m,(S, )
ldip|l5 <1 78
sptyp C Q

which is due to the fact that there exists always a calibration for minimizing normal
currents (See Chapter I for the references).

The topological singularities and the relaxed energy

The question which arises then is to find the equivalent formula for (0.3) for the relaxed
energy when n > 3. Regarding (0.8), we can consider L, for n = 3 as a continuous exten-
sion of m;(S., Q) (= m,.(S,,?)) into all H*(€, S?). Therefore, for generalizing the result
to higher dimensions, one should extend the definition of the topological singularities over
H'(Q,8?%) :

Definition 2 Let u € H)(Q,5%). We define the topological singularity of u to be the
current S, € D, _3(2) defined by

Su(a) := /Qu*w A do Va € D"3(Q).

Here D*(Q) is the set of smooth k-forms on Q with compact support (See[16], 2.2.3) and
w is some 2-form on S for which [y, w = 1.

Remark 2 F.Béthuel, J.M.Coron, F.Demengel et F.Hélein ([6]) proved that “S, = 07
is the necessary and sufficient condition for u € HY(Q, S?) to be approzimable by smooth
maps in the strong topology. This is the reason behind the choice of “topological singular-
ity” as the name for S,.

This definition coincides with the one given for R* maps in (0.7) (See [16], vol II
section 5.4.2. The reader can also find the detailed proof of this fact in Chapter II).
Observe that the expression m;(S,, ) has a meaning for any u € H(f, S?) only if S, is
a boundary for an i.m. rectifiable current. Although this necessary condition is satisfied
for n = 3, the proof for n > 3 is not the same and we are forced to use the methods
developed in [16] for the cartesian currents to prove it. The difficulty lies on the fact that
the question of the strong continuity of m; for n > 3, even over R*((Q, 5?), is still open.
This is also the obstacle to identify the functional

F(u) := E(u) 4+ 8m;(S,, Q)
with the relaxed energy.

Open Question 1 [s F = F?
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Precisely we have this proposition proved in Chapter II :

Proposition 1 (I1.3.1) Letu € Hé(Q, S?), then S, is the boundary of some i.m.rectifiable
current. Set B
F(u) := E(u) + 8mm;(S,, ).

F is lower semi-continuous with respect to the weak topology in Hé(Q, S?) and its critical
points are weakly harmonic. Moreover

F(u) < F(u), Yue HYQ,S?).

We will talk about the problem of topological singularities for maps into spheres in a
more general context.

The multiplicity of S?-valued harmonic extenstions

In the second chapter, we will answer to the question of multiplicity of harmonic extensions
into S? for a smooth mapping ¢ : Q — S%, n = dim) > 3. Here is the theorem we prove
in this chapter.

Theorem 2 (Theorem II.1) Let 2 be a regular bounded domain in R", n > 3, and ¢
a non-constant smooth map from O into S?. Then ¢ admits infinitely many weakly
harmonic extensions.

Remark 3 This result is independent of the choice of the metric on S? .

In [21], R. Hardt, D.Kinderlehrer and F.H.Lin had proved the existence of infinitely many
weakly harmonic extensions to an axially symmetric boundary condition in H'(B?, S?)
where B? is the unit ball in R3. The method consists in constructing a non-axially sym-
metric harmonic extension and then one obtains infinitely many different harmonic maps
with the same boundary data by rotating this extension around the symmetry axis.

Another method consists in finding new weakly harmonic maps minimizing the variants
of the relaxed energy already presented in this Introduction. This has been done by
F.Bethuel, H.Brezis and J.-M.Coron in [5] where they introduced such functionals which
they called “relaxed energies”. Using these functionals they proved for n = 3 that if ¢ is
not homotopic to a constant or if we have this gap condition

min  E(u) < inf FE(u)
HL(Q,52) Cx(2,52)
then ¢ admits infinitely many weakly harmonic extensions inside 2. Using the same gap
condition, T.Isobe proved the corresponding result for the case n > 4 in [26], still using
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the relaxed energies whose definition was extended to higher dimensions.

At last, using his strict dipole insertion lemma, (the 3-dimensional version of the
furthur lemma 1) proved in [32], T.Riviere showed that if €2 is a regular bounded domain
of R3, a non constant smooth boundary data ¢ : 9Q — S? admits always infinitely many
weakly harmonic extensions (Appeared in [33]).

Let us consider the same method for n > 4. Although the F-energy presented in
(0.6) is not the relaxed energy, its minimizers are still weakly harmonic. Proving this
fact in Chapter II, we will produce new weakly harmonic maps using this energy. But
the difficult step consists in finding some equivalent construction in any dimensions of
the insertion of 2 singular points with the strict inequality like in [32] for n = 3. In the
first sight it seems that we should insert this time a couple of singularities of dimesnion
n — 3 (e.g. two circle-singularities for when n = 4). But the dipole for n = 3 is nothing
else than the sphere S° = S™™3 in 3 dimensions. So it appears that ([32], lemma A.1)
can be generalized by inserting this time an (n — 3)-dimensional singular sphere. This
lemma, technically more involved than the 3 dimensional case, is the main step to prove
theorem 2.

Lemma 1 (I1.4.1) Let Q2 be a bounded reqular domain in R"™ and u a reqular non-constant
map from 0 to S?. Let xg be a point of 0 for which Vu(zy) # 0. Then for every p > 0
there exists a map v € H'(Q,5%) and 0 < 6 < p such that

(1) v=u on Q\B,(z)
(i) Sy = [[o]]
(111) E(v) < E(u) + 8Twy,_20"2% = E(u) + 87 L(v,u)

where o is an (n — 3)-dimensional sphere of center xy and radius § and wy, is the vol-
ume of the unit k-dimensional disk.

Topological singularities in W!?(M, S?)

Considering the characteristics of S, the topological singular set defined in the previous
section for any map u € H;(Q, S?), it is interesting and natural to consider the problem
of the topological singular set S, for the maps u € W1P(M, SP) when p is any integer and
M a compact manifold.
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Any map u € WIP(B™, S?), p < n, is the strong limit of smooth maps if and only if
d(u*wgr) = 0 in the sense of distributions (See [6]). By this, we can generalize definition 2
for this space. :

Definition 3 Let u € W'P(M, SP). We define the “local” topological singularity of u,
Sy € Dy—p_1(M), to be the current defined by

S.(a) == / ww A do Ya € D" P HM).
M
Here D*(M) is the set of smooth k-forms on M with compact support (See[16], 2.2.3) and

w is some p-form on SP for which [y, w = 1.

We recall that m;(S) (resp. m,(S)) is the minimal mass of i.m. rectifiable (resp. nor-
mal) currents supported in M and bounded by S. Two questions regarding the topological
singularities in W?(M, SP) are still open for almost all values for p :

Open Question 2 Is S, the boundary of some i.m. rectifiable current, when M is a
closed manifold?

Open Question 3 Assume that the answer to the previous question is positive. Then,
do m;(S.,,) tend to m;(S,) if Uy — u strongly in W12

Minimal normal and i.m. rectifiable currents

S, is effectively the boundary of some normal current in WhP(M, SP) and
m,(Sy,, — Su) — 0

for any convergent sequence in W1HP(M, SP). As a consequence, if for any i.m.rectifiable
current S of dimension n —p — 1, m;(S) < Cm,(S) for some constant C' > 0, the two
above questions will have positive answers. But, except for p =1 or p = n — 1, we do not
know if this constant exist.

Open Question 4 Assume that k # 0,n — 2. Is the quantity
mZ(S) — sup lmZ(S) ’
m(S)  1en mi(IS)

equi-bounded uniformly over all i.m. rectifiable k-currents supported in a compact subset
of R"?

Remark 4 As we already mentioned, m;(S) = m,.(S) is always true if k = 0,n — 2 (For
the references see the discussion about the calibrations in the first chapter).
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A geometric interpretation for S,

M.Giaquinta, G.Modica and J.Soucek gave another definition for S,, which is equivalent
to the ours (See [16], vol I1, section 5.4.2). S, is defined to be the horizontal part of G,
when G, is the rectifiable graph of u, considered as a cartesian current in M x SP (See
[16], vol I). Considering this fact and using the characteristics of the cartesian currents
and the polyconvex envelopes of the Dirichlet energy discussed in [16], we proved that the
Question 2 has a positive answer for p = 2 (See the above proposition 1).

And if S? is an H-space?

In Chapter III we answer to the two above questions regarding the topological singularities
of u € WhP(M, S*) for p = 3 and 7. The particularity of these two cases reside in the
fact that S® and S7 (alongside with S and S°) are the only spheres which are H-spaces,
i.e. there is a smooth multiplication

k:SP x SP— SP
such that the induced homotopic homeomorphism
et my(S7) @y (S7) = i (S7)

is the sum of elements in 7,(S?) ([8], section VI.15). As a result, the method we use does
not work for other values of p. Here is our main result

Theorem 3 (II1.1) Letp=3 or7,p <n=dim M andu € WYP(M, SP), OM = (). Then
S, is the boundary of an i.m. rectifiable current in M. Moreover, m;(S,, — S.) — 0 if
the u,, converge strongly to u in W1P(M, SP).

A new perspective for the topological singularities

In the last chapters of this thesis we will try to generalize the notion of the topological
singular set for certain categories of Sobolev spaces W1P(B™ N). We will explain how
these efforts let us to prove some theorems about the sequentially weak density of smooth
maps in these spaces. We will use locally lipschitz projections of N over its [p]-skeletons,
the results of F.J.Almgren, W.Browder and .Lieb about the inverse images for the Sobolev
maps into spheres ([1]) and the singularity removing propositions adapted to our situation.
We recall that the topological singularities should be defined to identify the obstruction to
the non-approximability of a Sobolev map between M and N by the smooth maps from M
into N. The singularities we consider detect the local obstructions of the approximability,
therefore we will emphasize in the Chapter IV on the case M = B", where B" is the
n-dimensional unit disk. F.Hang and F.H.Lin [20] have recently showed the possible
existence of “global” obstructions when the topology of the domain M is not trivial.
So one should be careful when considering the Sobolev spaces WP(M, N) for generic
compact smooth manifold M.
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Flat chains with coefficients in normed groups

In [7], F.Bethuel and X.Zheng proved that smooth maps are not dense in W1?(B", N), if
p < n and 7 (N) # 0. In this case, the best one can do is to approximate the maps in
Whe(B™, N) by maps which are smooth away from a finite union ¥ = Ji_, ¥; of smooth
(n — p — 1)-dimensional submanifolds of B™. This set of maps is called R>*?(B", N). A
map v € R*P(B", N) realizes elements o, of 7y, (N) on the [p]-spheres centered at any
point x € ¥(v) and contained in the normal [p]+ 1 plane to 7, X(v). If for some = € X(v),
0, is non trivial, then v can not be approximated by smooth maps in the strong topology

(See [2]).

As an example, the smooth maps are not dense in W' (B2 RP?) since m; (RP?) # 0.
Then, v € R*!(B?, RP?) is smooth except on a finite number of points in B%: {pi,...,p,}.
If v has the non-zero homotopy type of 7 (RP?) = Z, around one of these points, it can
not be approximated by the smooth maps in W1!(B? RP?) (We can construct such v).
The idea is then to identify and define properly the “topological singular set” of such v,
which allows us to extend the definition to any map u € WhH1(B? RP?).

The usual method, using the differential forms and proposed by F.Bethuel, J.M.Coron,
F.Demengel and F.Hélein in [6] is not helpful since 7 (RP?) is not torsion free and the
homotopy cycles in RP? are not detected by the 1-forms. For the same reasons, the ap-
proach of ([16], vol II, section 4.4.2) by M.Giaquinta, G.Modica and J.Soucek, using the
graph of Sobolev maps is not satisfactory.

The idea would be to use the flat chains with coefficients in a normed abelian group
G, which are the generalizations of normal (G = R) and rectifiable (G = 7Z) currents.
This theory was first introduced by H.Federer [13] and W.Fleming [15]. Recently there
have been remarkable advances by B.White ([38] and [39]). In fact, we can imagine the
topological singular set of v, S,, as a 0-chain with coefficients in Z, :

Sy = Z%J[Pi“ (0, = [0(0Bs(pi))|mi (wp2) € Zo).

The question would be to understand the behaviour of S, for a convergent sequence
U — u € WH(B2 RP?) and possibly to prove a convergence of the chains S, in the
flat norm to some Z,-chain we would call the topological singularity of w.

Naturally, regarding what we mentioned about the realizations of elements of 7, (/N)
by v € R>*P(B™ N) around its singularities, we can proceed in the same way for maps
in W'?(B", N), i.e. to define the topological singularities of v € R*?(B", N) as a
7 (V) -chain and to study the behaviour of these chains for the convergent sequences
vm — u € WH(B™, N). Nevertheless, this program is not suitable for all Sobolev spaces,
as shows the example W!3(B*, 5?) treated by R.Hardt et T.Riviere (See [24]).
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In Chapter IV, we will prove this theorem :

Theorem 4 (IV.1 and IV.1 bis) Assume that B" is the unit disk in R" and that N is a
compact riemannian manifold of dimension k > [p], ON = (). We assume also that either
[p] =1 and 7 (N) is abelian, or [p] =3,7,n—1 and N is ([p] — 1)-connected, i.e.

m(N) = =71 (N) = 0.

Then S,, the topological singularity of u € W'P(B™, N) is well defined as a flat m,(N)-
chain and the flat norm of S, —S. converge to zero if u, — u in WHP(B", N). Moreover,
w is the strong limit of maps in C°(B™, N) if and only if S, = 0. Also, if u|ggn = ¢ is
smooth and smoothly extendable over B", S, will be the boundary of some flat my (NV)-
chain of finite mass (and as a result of rectifiable support) and “S, = 0”7 would be the
necessary and sufficient condition for u to be the strong limit of maps in C’;"(B”, N).

Remark 5 Regarding W'(B? RP?), we have this remarkable fact that we can identify
S. for any map u in this space to a Zs-valued Borel measure of total finite variation. The
reader can refer to [38] where B.White give the conditions on G for which a finite mass
flat G-chain has a rectifiable support.

We should add some other remarks. First, the reason we can not state the same re-
sults for all values of [p] is what we explained in the previous section, i.e. [p] = 1,3,7
and n — 1 are the only values for which there is a proof for the integral flat convergence
of the topological singularities of a convergent sequence in WhHPI(B™, SP). Second, we
can extend these results for [p] = 3,7 and n — 1, even if m;(IN) # 0, under certain con-
ditions (See the proof of theorem 4 in Chapter IV). At last, we should recall that there
are examples of ([p] — 1)-connected manifolds whose [p]-th homotopy group is not torsion
free otherwise the cases we consider would reduce to those already studied in [6]. As an
exmaple, the Stiefel manifolds Vi (R"), when n — k is odd, are (n — k — 1)-connected and
Tn—k(Vi(R™)) = Zs is not torsion free (See [25])

F.Hang and F.H.Lin [20] have found examples where the absence of the local obstruc-
tions in not sufficient for that a map u € WH?(M, N) be strongly approximable by smooth
maps. Precisely, there is a map in H'(CP?, S?) for which d(u*w) = 0 but u is not in the
strong closure of smooth maps in this space. Also there are maps in W3(CP3, CP?) which
are not strongly approximable by smooth maps though 73(CP?) = 0. The necessary and
sufficient conditions for that a Sobolev map between two manifolds be approximable by
the smooth maps are still unknown for the general case.

Finally we ask this question for which we have no definite answer :

Open Question 5 How should one define the topological singular set of maps in WH(B™, N)
when m(N) is not abelian? The same question can also be asked about the functional

1
spaces Hz (M, N).
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In Chapter V, when we consider the problem of weak density of smooth maps in
Wh1(B", N) for non-abelain fundamental group, we will try to explain the obstacles
regarding this situation and to put the bases for a future response to this question.

Weak density of smooth maps and the connections

While the question of flat convergence for the singularity chains of a sequence of conver-
gent maps v, € R>?(B", N) remain to be answered (See theorem 4), one can ask also a
weaker question : Does the flat norm of S, remain bounded as v,, — u? This is another
problem we address in Chapter IV about the uniform boundedness of the mass M(T,,)
of a minimal connection T,, (0T, = S,,) as v, — u.

Related to this question is the problem of the weak density of smooth maps in
WLP(M, N). Although the density of smooth maps for the weak topology can be easily
handled from the one for the strong topology (See [2]), the question of the density of
smooth maps in WH(M, N) for the sequentially weak topology , where p € N, is more
involved : For p € N, m,(N) # 0, does there exist for any u € W'P(M, N) a sequence
Uy € C°(M, N) such that u,, — u in W'P? The case M = B3 N = S? p = 2 was
treated by F.Bethuel, H.Brezis, J.M.Coron and E.Lieb in [10], and [3]. F.Bethuel men-
tioned that the answer is yes for M = B™, N = SP, p > 2 in [2]. In [19], P.Hajlasz proved
that if N is (p — 1)-connected, any map in W1P(M, N) is the weak limit of a sequence of
smooth maps in this space. Observe that this result can be also deduced from the work
of F.Bethuel, J.-M.Coron, F.Demengel and F.Hélein in [6] for when M = B" and (V)
is torsionless.

As we will explain in Chapters IV and V, the control of the mass of the minimal chain
connecting S, for v, € R>P?(B", N) converging strongly to u permits to give a positive
answer to the sequentially weak density of smooth maps. This appraoch is different from
the one used by P.Hajlasz and can be used for proving his theorem and some other partial
results regarding the weak sequential denstiy of maps in W1?(B", N). Specially, Hajlasz’s
method is not adapted when we wish to approach u € Wévp(B", N) in the weak topology
by a sequence of maps in C2°(B", N) (He does not mention this question in [19]). The
case p = 1 is more involved when m;(/N) is non-abelian and we will discuss it in an in-
dependent chapter (Chapter V). The reason is that in this case we can not identify an
element of 71 (N) without fixing its base point, so defining the topological singularities as
the flat chains with coefficeints in 71 (/N) meets obstacles. There are some other technical
complications which we will mention in Chapter V.

In theorems 2 bis, 3 bis in Chapter IV and in the theorem 1 bis in Chapter V we will
prove :

Theorem 5 Assume that B™ is the unit disk in R"™ and that N is a compact riemannien
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manifold of dimension k > [p], ON = 0, and either [p| = 1 or N is ([p] — 1)-connected,
i.e.

7T1(N) - .= W[p}—l(N> =0.
Also assume that ¢ : OB™ — N admits a smooth extension over B". Then, for any map
u € Wé’p(B",N), there exists a sequence of smooth maps u, : B" — N, un|spn = ¢,
such that ||uy, — u||r — 0 and that ||wy,||wie is bounded by a constant.

Remark 6 Naturally if p > 2, we can always find a subsequence of such a sequence,
converging weakly to u. But the question of sequentially weak density of smooth maps in
WLYB™, N) is still open.

We can extend the results of theorem 5 for p > 2 when m(V) is finitely generated.
Specially for p = 2

Theorem 6 (IV.4 et IV.4 bis) If mo(N) is finitely generated, we have the sequentially
weak density of C*(B", N) (resp. C*(B",N)) in H'(B",N) (resp. H (B", N)).

The recent developments by F.Hang and F.H.Lin [20] have shown that one should
consider the global topology of M for extending these results to any smooth compact
manifold M as the domain using the same methods. We hope to expose in near future
how our proofs for the sequentially weak density of smooth maps in the Sobolev spaces
can be adapted to any domain.

Remark 7 We do not have always the equi-boundedness of the mass of minimal connec-
tions for S,,, when v, — u in WHP(B", N) : For instance, there exist v,, € R>>*(B*, 5?)
such that

inf {M(T,,); T,. is a Z — chain such that OT,, = S,, } — +00

as vy, — u in WH3(B4 S?) (See [24]). However it is not excluded that the smooth maps
be sequentially weakly dense in W'3(B*, 5?%).

Open Question 6 Are the smooth maps are sequentially weakly dense in W13(B?, S?)?
Also, regarding the results obout the sequentially weak density of smooth maps in Hz (S2, S*)
by T.Riviere ([34]), we ask the same questions about Hz(B", N).

Remark 8 Meanwhile, using a global obstruction, F.Hang and F.H.Lin proved that the
smooth maps are not sequentially dense in W13(CP?, S?) (See[20]) .

This question remains open too for some other cases which are not put forward in this
thesis.
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We consider various ways of relaxing the Dirichlet energy of maps into sphere.

1 Introduction
Let Q2 C R"™ be a bounded open set with regular boundary and let
HY(Q,8%) = {ue H'(Q,R?); u(r) € S* ae. onQ}
and

H;(Q, SH ={uec HY(Q,5*);u=¢ ondQ}

where ¢ is a given boundary data. For u € H(Q,S?) the Dirichlet energy is given by
E(u) = [, |Vul>. We assume that ¢ is in C*(99,S?) and can be extended into Q by a

smooth map.

21
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We call u to be a weakly harmonic map if it is a critical point for the functional F,
i.e. if and only if we have

d t

CE(EEY 0 forall ve CR(QRY).

dt \|u+tvl/,_,

In other words, u is weakly harmonic in the Sobolev space H'(,S?) if it satisfies the
following equation in the sense of distributions :

—Au=ulVu* in Q
(1.1)

u(z) € S? ae.

Assuming ¢ : 09 — S? is as above, one of the important problems which is still open
is if smooth harmonic extensions of ¢ into €2 exist. In the first step one may want to
minimize the Dirichlet energy in H ;<Q= S?) and prove the regularity of the solution. But
in fact if we define

= inf Fu) < inf FE(u)=:[,,
o= b ()_Cgo@,sz) (u) =: i,

the strict inequality

Mo < [
happens sometimes (See [22]). Thus minimizers of E are not necessarily smooth and
we should find other harmonic maps which could be a suitable candidate for a smooth

solution. Meanwhile R.Schoen and K.Uhlenbeck ([35]) proved that these minimizers are
smooth in ) except on a finite set of points.

In trying to attack this problem, another functional on H Si(Q, S?) has been studied
which is called the “relaxed energy”. In fact, the relaxed energy is the largest sequentially
lower semi-continuous functional on HJ (€2, S?) which is less than E on C2°(€2, 5%) :

Definition 1.1 The relaved energy F of E on HJ(Q,S?) is defined to be

F(u) ;= inf { liminf E(u,); u, € CF(Q,8%), u, = u} . (1.2)
Since the smooth maps which take ¢ as their boundary value are weakly sequentially dense
in H(£2,S?) (See [2]), we observe that F is well defined. Moreover F is sequentially lower
semi-continuous with respect to the weak topology in H, é(Q, S?) and we have

inf F= inf F. (1.3)
HL(Q,52) Cx(9,52)

This equation shows the importance of study of F. Since the infimum of F in H}(Q, 5?)
is achieved, the question which should be considered then is whether a minimizer of F is
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weakly harmonic and to what extent it is regular.

In this line, F.Bethuel, H.Brezis, J.M. Coron and E.Lieb (See [5] and [10]) showed the
striking fact that, for n = 3, the relaxed energy achieves the following elegant algebric
formula :

F(u) = F(u) :== E(u) + 87 L(u)

where ]
L(u) := — sup {/ wrwy Adyp — Yrwy A w} (1.4)
Am v:Q—R VO 0%
|d|oo < 1

where wy is the volume form on S (or can be replaced by any 2-form w, [i, w = 4m). In
particular this yields that the critrical points of F are weakly harmonic. F.Bethuel and
H.Brezis showed also that the minimizers of F are smooth in 2 except on a finite set of
points (See[4]).

The intuitive approach for L(u) is that if u € H}(€, 5?) is smooth in € except on a set
of finite points {p1, ..., P }, taking the degree d; on the point p;, then L(u) is the minimum
length of the segments connecting these singularities with respect to the multiplicities (See

[10]). In other words
LW%ﬂW(E}HMﬂQ>

where we define for the i.m. rectifiable O-current S, = Z d; [[pi]] :
i=1

m;(Sy, Q) :=inf {M(T); T € Ry(R*), spt T C Q, 0T =S, } .

Here we study the same approach for n > 3 but this generalisation meets obstacles.
One may introduce for w, any 2-form on S? which satisfies |, gpw=1:

L(u) := sup {/ uwwAdyp — W A @b} (1.5)
,¢ c Qn—B(Q) Q o0
[

as a generalization of L(u) in the 3-dimensional case. Observe that L is independant of
the choice of w and is continuous on H}(€, S%) for @ C R and the functional

F(u) := E(u) + 87 L(u) (1.6)
would still be weakly lower semi-continuous. But we have this theorem :

Theorem 1 For every 2 C R* and every map ¢ € C®(05,S5?), smoothly extendable
onto Q, there exists u € H(Q, S*) such that

F(u) < F(u). (1.7)
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Moreover there exists a domain 2 C R* and ¢ € C*(0Q,5?%), smoothly extendable onto
Q, for which this gap phenomenon exists :
inf F< inf F< inf FE. (1.8)
HL(2,52) HL(2,52) Cx(2,52)
u

The difference with the case n = 3 lies in the value which L(u) represents. We shall
consider a map u € H)(f2,S?), which is smooth except on a finite union of (n — 3)-
dimensional submanifolds of Q : {0y, ...0,,}. The degree d; of u on each o; is well defined
and we define S, := >""" d; [[0;]]. Calculating L(u), we see that

L(u) = sup /wg sup = m, (S, Q) (1.9)
ldiploo <1 J Sy, ][5 <1 /S,

where ||.||* is the co-mass norm on the space of forms and
my(Sy, Q) :=inf {M(T); T € D,_»(R"),0T =S, spt T C O}

is the mass of the minimal normal (real) current in Q with boundary S,. The last equation
in (1.9) is due to the fact that there exists always a calibration for minimizing normal
currents, which we shall discuss later in this paper (See proposition 2.3). Meanwhile,
m;(Sy, ), the minimal mass of i.m. rectifiable currents in { which are bounded by S,,
is still proportional to the energy needed for removing the singularities of u. Here arises
the main question which should be answered if we want to continue as above, that is if

m.(S,Q) =m;(S,Q) VS eR,_3(Q).

But contrary to the case n = 3, the answer is no for n > 3. Specially, for n = 4, there
exists a curve [[']] in R* for which

my([[T]]) < ma([[T])

This gap phenomenon was firstly proved by L.C.Young in [42]. F.Morgan in [27] and
B.White in [37] have given other examples of such curves in R*.

Remark 1.1 Meanwhile, in [29], we observed that the critical points of F' are still weakly
harmonic in H;(Q, S?) and we used this to prove the existence of infinitely many weakly
harmonic extensions of ¢ onto €2.

Finally we may search for the amount of energy needed to relax the Dirichlet energy.
In section 3 we prove that the topological singular set S, of any u € H;(Q, S?%) is the
boundary of some i.m. rectifiable current. Then the evidences we discuss in this paper
propose that F coincides with

F(u) := E(u) 4+ 87m;(Sy, Q).

We can only prove that F<F , the inequality in the other direction being still an open
problem (See proposition 3.1 and the remark following). Meanwhile, we can prove F' > F
when we consider the problem of relaxing the 3-energy of maps into S®. We will present
this example in a forthcoming paper.
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2 Preliminaries

2.1 The subspace RY((, 5%

Definition 2.1 We say that u € HL(,S) is in RY(Q,5%) if and only if u is smooth
except on B = |J;*, 0. U By , a compact subset of Q, where H"3(By) = 0 and the
oi, 1 = 1,---,m are disjoint smooth embeddings of the open (n — 3)-dimensional unit
disk. Moreover we assume that any two o; and o; can meet only on their boundaries.

Remark 2.1 According to (2], theorem 2 bis), RY (S, S?) is dense in H (€2, S?).

Definition 2.2 Letu € H;(Q, S?). We define the current S, € D,_3(Q) to be the current
defined by

Su(a) := /Qu*w A do Va € D"3(Q). (2.1)

Here DX(Q) is the set of smooth k-forms on Q with compact support (See[16], 2.2.3) and
w is some 2-form on S for which [4w = 1.

A simple observation shows that the definition of S, is independent of the choice of w due
to the fact that the difference of two closed forms on S? is exact. The existence of the
integral (2.1) is a direct consequence of the following inequality :

1
luw| < 8—7T|Vu|2 a.e. on ) (2.2)

where 47w = wy is the standard volume form of S2.

Definition 2.3 Let u € RY(Q,5%) and let B = Jo; U By be the singular set of u.
Suppose that each o; is oriented by a smooth (n — 3)-vectorfield &;. For a € o; and N, the
3-dimensional plane orthogonal to o; at a. Consider the 3-disk M, s = Bs(a)NN, oriented
by the 3-vector M, such that &i(a) A M, = (—1)"ER7L . Then the topological degree of u on
the 2 dimensional sphere ¥, 5 = OM, s is well defined and is independent of the choice of
a for & small enough. We should call this integer the degree of u on o; and denote it by

deg,.u .

We shall mention here some useful facts which we have already proved in [29]. Recall
that any k-dimensional rectifiable subset M of R™ considered with a multiplicity 6 and
oriented by a unit k-vector field £ defines a rectifiable current as follows

—

T(M,0,&)(a) = /M <&a>0dH Ya € DFR™).
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Lemma 2.1 Letw = -wy andu € RX (2, 5%). Then the (n—2)-vectorfield D(u) defined

on Q\B by the equation
< D(u)(z),¥ > wpn = w'w(z) AT VI € A" 2(R) (2.3)

is a simple (n — 2)-vectorfield tangent to the smooth manifold u=*(y) for all reqular value
y = u(z) € S%. Meanwhile

= 1
|D(u)| = E‘Jﬂ” a.e. on S (2.4)

An element of Ag(R™) is called simple if and only if it equals the exterior product of
k vectors of R™ ([13], 1.6.1).

In the view of lemma 2.1, for any y € S* a regular value of u € RY(, S%), the current

-1 5(“)
T, :=7(u 1, = 2.5
y < () |D(u)‘> (2.5)

is well defined. Moreover

Proposition 2.1 Consider u € RY(Q,5%) and T} as in (2.5), then for almost ally € S*
, T is a rectifiable current in R"™ with support in Q and

-1 5(80)
oTY =S, +71 1, — 2.6
v + <<P (v) 5 (s0)|) (2.6)

where the (n — 3)-vectorfield D(p) on 8 is defined by the equation
< D(p)(x), ¥ > wp, = p'w(@) AT YU € A, _4(E,)

where E, = T,(09) is the tangent space to O at x and wg, is its unit volume form.

Proposition 2.2 Let u € RY (2, S?) and B = J; 0, U B, its singular set. Then

S, = Z(degaiu)T(ai, 1,d;).

(2
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2.2 Calibrations and minimizing real currents

Let T be a normal current in D,,(R™) with support in a compact set : K.

Definition 2.4 The measurable form a in Q™(R™) is called to be a calibration for T in
K if

(1) « is ezact,
(id) [loyrellse < 1, (2.7)

(171) T(a) = M(T).
We say then that T s calibrated in K.

We have this interesting proposition which shows the importance of calibrations in the
study of minimal currents :

Proposition 2.3 The real current T is calibrated in K if and only if it has the minimal
mass among all the real currents supported in K and taking the same boundary. Specially
for any open bounded set 2 in R™ and any real flat chain S in 2 we have

m,(S,Q) = sup S(¢). (2.8)

llde]l 5 <1
|

We omit the proof since it is the same as the proof for ([18], proposition 4.35, p. 59).
The interesting fact is that, as a result, a minimal i.m. rectifiable current is calibrated if
and only if it is also a minimal real current for the same boundary. The only cases where
this always happens are when the minimal current is of dimension or codimension 1 in ).
In other words if dimS = 0 or n — 2, then

m (S, Q) = my(S, Q). (2.9)

For the proof and some counterexamples when the conditions are not satisfied see ([14],
section 5). The readers can refer to ([16], vol II, section 1.3.4) for more details. In [1],
the authors present an interesting proof of (2.9) for dim S = n — 2. Also different proofs
for the zero dimensional case can be found in [10] and [12]. For other counterexamples
see [27], [37] and [42].

2.3 The F-energies
For any 2-form w on S satisfying [y, = 1 and u € H}(Q, 5*) we define
L(u) := sup {/ wrw A dip — ©*'w A w} (2.10)
0 o9

g e AD)
[dolle < 1
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and

L*(u) :== sup {/ wwAdyp — ©w A ¢} (2.11)
e ATIQ) MO
ld 5, <1

where |.| and ||.||* are respectively the euclidean and the co-mass norms on the space of
forms. The definitions are independent of the choice of w (See [29]), so from now on we
put w = (1/4m)wy.

Remark 2.2 L and L* are both continuous with respect to the H' norm in HJ(S, S?).
The proof is the same as for the case n = 3 in [5].

We have
Lemma 2.2 For any u € H\(Q,5%), S, is a real flat chain. Moreover we have
L(u) < L*(u) = m,(S,, Q). (2.12)

Proof : Set
D,(a) := / uw A« Ya € D"2(Q).
Q

Since by (2.2) we have 87tM(D,) < E(u), D, is a normal current. Moreover, by definition,
S, = 0D, so S, is a real flat chain. We have, using (2.8),

mr(su - va Q) = sup (Su - Sv>(¢)
v e AMQ)
ldypl[5 <1

< O Vaullo[[Vol[2([Vu = Vo),

where the last inequality is obtained by the same method as in ([5], theorem 1). As a
result m,(S,, ) is continuous with respect to the strong topology in H(Q, 5?).

Meanwhile, if u € R (€, S?), using the co-area formula and proposition 2.1 succes-
sively we obtain

/Qu*w/\dlp— m(p*w/\w :/Qu*w/\dw—/ﬂdkw/\dw
— [ (Tstan) = T o
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This implies

L*(u) = sup {/ wrw A dip — ©*'w A w}
b e An3(Q) e o0
ldlls <1

= sup Su(¥) =m,(S,,Q).

llde[l 5 <1

Since L*(u) and m,(S,, ) are continuous in H'-norm and considering the fact that
R (9, S?) is dense in H(€, S?) for the strong topology, we deduce the equality in (2.12).
Moreover, L < L* as ||¢||%, < ||¥||« for all differential forms. u

Definition 2.5 We define the F'-energies to be
F(u) := E(u) + 87 L(u)
and

F*(u) == E(u) + 87L*(u).

2.4 Sequentially weak density of smooth maps in Hé(Q, S?)
Let us recall some facts about maps in R’(Q, 5%) :
Proposition 2.4 There exists C > 0 such that for all uw € RX(Q, %) we have

8mm;(S.) < E(u) + C. (2.13)

Moreover there exists a sequence u,, € R (S, S?) such that

(S.,, =0

Uy, = u on K,
w(K,,) — 0 asm — oo (2.14)

Buy) < B(u) + 87mi(S,) + %

gl
{ Uy —u in H
]

(2.13) is proved in [1]. In ([2], section VI), the author, suggesting (2.14) and consider-
ing (2.13), remarked that smooth maps are sequentially dense in H}(€, S?) for the weak
topology, as in the case n = 3 (See [3]). Recent developments by F.Hang and F.H.Lin
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showed that this argument should be modified for when the domain is not contractible.
They remarked that “S, = 0” is not always the sufficient condition for the strong approx-
imability of u € H'(M,S?) by smooth maps and we should consider global topological
obstructions too (See [20]). But the arguments used in [6] work locally and therefore if B”
is the n-dimensional unit disk in R", for any map u € H si(B", S?), there exists a sequence
of smooth maps u,, € C3°(B", 5?) such that

(1) Up, — u in H?
' (2.15)
(17) E(uy) <2E(u)+C + O(E)

We will present our method for proving (2.14) in a forthcoming paper where we will
treat the question of sequentially weak density of smooth maps in Sobolev spaces between
manifolds ([31]).

3 A lower bound for the relaxed energy

Proposition 3.1 Let u € H;(Q,SQ), then S, is the boundary of some i.m.rectifiable
current. Set

F(u) := E(u) 4 87m;(S., Q). (3.1)

F is lower semi-continuous with respect to the weak topology in H;(Q, S?) and
F(u) < F(u), Yue HLQ,S?). (3.2)
|

Remark 3.1 We do not prove that F s the relazed enerqy. A stronger result for the case
Q = B" would be to show that m;(S,, B") is continuous in H,(B",S?), which is still an
open problem (Compare with Remark 2.2 and lemma 2.2).

Proof : For the sake of simplicity we prove the proposition for 2 = B", the n-
dimensional unit disk. For the general case we can replace smooth maps by maps satis-
fying the condition S, = 0.

Let u € H;(Q, S?) and consider a sequence of smooth maps converging weakly to u
as in (2.15). Since u,, is smooth, 0G,,,, = 0, where G,,, is the graph of u,,. Also since
the Dirichlet energy is regular (See [16], vol 11, section 5.2.1), the G, are equi-bounded
in mass. By the Compactness theorem, there is an i.m. rectifiable n-current 7" supported
in Q x 5% such that G,,, — T up to some sub-sequence. By ([16], vol I, section 5.5.2,
proposition 3), G,,, € cart>'(Q x S?) for all m. So by the closure theorem ([16], vol I,
section 5.5.2, theorem 6) and the Structure theorem ([16], vol I, section 5.2.1) we have

T =Gy + Ly x [[S?]] € cart* (Q x S?)
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while Lz is an (n — 2)-dimensional i.m. rectifiable current in 2. From ([16], vol II, section
1.2.4, proposition 15) and (2.15) we deduce that

8tM(L7) < E(u) + C. (3.3)

Now let m and 7 be the respective projections of  x S? on Q and S2. Since 9T = 0, for
any 2-form w on S? and any compactly supported (n — 3)-form « in Q we have

/ wWw A da = Gyu(r"(da) AN T'w) = 0G, (T*a A T*w) = —0Lr(a).
Q

So S, = d(—Lr), which proves the first claim of the proposition. Moreover, as a conse-
quence, F' is well defined for the maps in H(€2, 5%).

Let wu,, be a sequence of maps in H Si(Q, S?) converging weakly to u. We will prove
that

F < liminf F(u,,). (3.4)

m—00

Put
3 := liminf F(u,,).

m—00

Passing to some subsequence of u,, if necessary, we have F (Up) — B < +o00. Let —L,, be
the mass minimizing i.m.rectifiable current taking S, as its boundary. The u,, are equi-
bounded in energy while the L,, are equi-bounded in mass. So, using the same argumets
as above, we see that the cartesian currents

T =Gy, + Ln X [[52“

converge to some current 7' := G, + L x [[S?]] in cart®>'(Q x S?), up to a subsequence.
By ([16], vol II, section 1.2.4, proposition 15) we get

F(u) = E(u)+ 8mm;(Sy) < E(u) + 87M(L)

< liminf(E(u,,) + 87M(L,,))

m—0o0

= lim inf (E(u,) + 8mm;i(Su,,))

m—00

This proves (3.4). Thus F is lower semi-continuous with respect to the weak topology.
(3.2) follows immediately as F' coinsides with £ on smooth maps. n
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4 Proof of theorem 1

4.1 Proof of (1.7)

We observe that regarding lemma 2.2 and proposition 3.1, it suffices to prove the
existence of a map u € Ry (2, S 2) which satisfies

My (Su, Q) < myi(Sy, Q). (4.1)

This happens for n = 4. Specially there is a curve I' in R* for which m,.([[T']]) < m;([[T]])
(See [42], [14] and [16], vol IT for more details). For any Q C R* and boundary data ¢, we
can construct a map u € R (€, S?) which is smooth except on such a curve, supported
in a small ball in €2. The method is almost the same as the one used by the authors in
[1] for constructing a map with prescribed singularities and constant boundary value, so
we will not expose the details in this paper. This map will satisfy (4.1).

4.2 Sketch of the proof for (1.8)

a) For 0 < §' < §, we construct a domain Q55 C R* and a map @55 € C*(9Q;s4, 5?)
which is extendable onto €255 . We put

Hjis:=H) (Qs5,5%)

Ps,5!

and
C(;%/ = H(%,(;’ N COO(Q&J/’ 52)
b) We prove that
inf F* — inf £ =0(5) —k

1
H&,E’ 5,6/

when k& > 0.

c¢) Regarding the fact that F' < F™* the theorem is proved by choosing § small enough.

4.3 Construction of (154
Let B be an integer multiplicity m-rectifiable current in R”, without boundary. Put

m;(B) := min {M(T); T = B, T € Rys1 (R")} (4.2)

where M(T) is the mass of T. By [42] there exists T', a closed curve on K C R*, a surface
homeomorph to the Klein bottle and A, integer multiplicity rectifiable surface in R* such

that :
(i) OA = 2([1]

(i) M(A) < 2m;({[T]) (4.3)

(1i1) sptA = K
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where
[[I] == 7(I', 1, 7)

is the integer multiplicity rectifiable current based on I' and oriented by the unit tangent
vectorfield ¢. By slight modifications of I' and K around their singular subsets, we may
consider them to be smooth. Let 7 be a smooth normal vectorfield on K C R*. We recall
that I' C K and we put :

Yso={r+ti(x); 0<t <,z el}

and

s :={x+on(z); z €'}
We observe that for 35 and I's suitably oriented and ¢ sufficiently small we have :
O[[%s]] = [[T's]] — [[T]]- (4.4)
Let Vs be the tubular neighborhood of I's :

Vs:={y e R*; d(y,T) <4}

For each y € T and 0 < §' < § let B(d,d’,y) be the 2-dimensional disk in R? centered at
y and with radius ¢’ which is orthogonal to 35 and observe that

B(5,6') = J B(6,8',y)

yel

is a 3-dimensional submanifold of R*. We shall construct Q55 such that B(0,0") C Qs

Let T be a smooth surface such that

(1) OT = [[T's]]
(i) T N B(6,6") = 0 (4.5)

(731) 7i(x) is the outward tangent to T" at x + d7i(x) € 0T, Vz € k.

Such T exists : As 7 (R*\V;) = 0, there exists some smooth Ty C R*\Vs such that
Iy = [[I]]. So it Th = X5 U Ty we get 017 = [[I's]]. T is obtained by smoothing 73 in a
neighborhood of I'. Let €31, €3 be 2 smooth orthonormal vectorfields on 7" such that for
each y € I's, é1(y) and é3(y) be tangent to B(0,d’,y). We put

Us = {z+héi(2) + hés(v); (8 +13)2 <o}
We choose § small enough and some ¢ < ¢ such that

B(6,8YNWg =10
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where Wy := {z € R*; d(z, K) < §'}. This is possible since I's has no intersection with K.

For every x € I', y = x + 07i(x), let C(4,0’,y) be the cone with the vertex « and the
base B(d,4’,y) and put
C(6,8) = | C(6,0.y
yels
We define the map 7 : C(0,d") — B(6,0") as follows : For every z € C(9,¢',y), m(z) is the
intersection of the line x — z and the disk B(d, ', y), where x is the vortex of the cone
C(9,9",y). Then we put
Q(sﬁl = 0(5, 5,) U U(;/ U Wg/. (46)

(255 is a domain in R* which contains a tubular neighborhood of K and a one of T while
05 5 contains the set B(d, ).

4.4 Construction of ¢;

Let B be the unit disk in R? and v : B — S? be the smooth covering map as defined
in [4], which satisfies these conditions :

( (i) v|op = const. =e € S*, v(0) = —e
! i) / Vol = dr (4.7)
B
| (éii) For z # e in S? #w (z) =1 and deg (v, B,0) = 1.

We define the map ¢s55 € C(Qs5,5?) as follows :

t t . L
y(<5—1,5—2)) if 2 =2+ 467 + 1263 € Uy

(& 1fZ¢U5/

G5 (2) ==

And we put
05,50 1= P65, |pe -

4.5 Estimation for inf £ on C(‘if;,

Let u € Cg%. By (2.2), (2.4) and the co-area formula we get :

/ |Vul? > 87?/ lu*w| = 2/ | Jou|
Q.50 Q Q.50

5,87

= / dw/ 1 =2 M(Tfu) dw.
52
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while considering the propositions 2.1 and 2.2 we have
OT;, = w54 (w)])- (4.9)
Meanwhile, for each w # e € S?, there exists some surface S, s C B(d, ') such that
O[Swal] = [[55 (W] = [[¥55 (=€)l = [lws5 (w)]] = [[Ts]].
for suitable orientations. Using this and regarding (4.4) we get

[ ([[01]) = mi ([[ese (WD | < T ([[T]] = [[05,5 (w)]]) |

< S5/ + |B6,9)] = 0(0).
This estimation, combined with (4.8) and (4.9) gives :

E(u) =2 /Sz m; ([[p5.5 (w)]]) dw = 8xm;([[T]]) + O(8) Yu € Cs
and as a result

é&f E > 8mm; ([[T]]) + O(6). (4.10)
4.6 Estimation for inf F'* on H(%’(;,
We put for z € Qs :

P58 (7‘(‘(2)) if z € 0(5, 5/)
Uss =

e if 2 ¢ C(9,9)
We have for K > 0 independent of § and ¢’ :

( |[Vuss| =0 on Qs5\C(9,0")
K
‘VU&&‘ < |Vg0575/\ |V7T| < 5 on 0(5, 5,) (4.11)
\ U6,6’|8QM, = Ps,8

Therefore
K? K? ,
C(5,6")
As a result usy € H}D& 5/<Q5»5”52)‘ We should estimate L*(uss) : Pay attention that
usy € RS (s, S?%) as it is smooth on Q55 \I'. Proposition 2.2 and a simple topological

observation show that if I' is suitably oriented we have

Su,, = [IL]-
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Recall that 0A = 2[[I']] and that sptA C Wy C Q55 (See (4.6)) . So referring to lemma
2.2 and using (4.12) we have :

F*(u(w/) = E(u(gv(;/) + 87Tmr(Su676,, 95,5/) < 47TM(A) + 0(5)
and as a result

inf F* < F*(usy) < 4rM(A) + O(6) . (4.13)

1
H6,6’

4.7 End of the proof
Combining (4.10) and (4.13) we get

inf F* — inf B = 0(9) — 4 (2m; ([I]]) ~ M(A))

But regarding (4.3) we know that

2m; ([[I']) — M(A) > 0.
Therefore by choosing ¢ small enough, for 2 = 255 and ¢ = @55 we get :
inf F*— inf FE<O.

HL(2,52) O (2,52)
This shows that
inf F< inf F (4.14)
HL(2,5?) C(9,52)

as F' < F*.

Now F'is coercive and weakly lower semi-continuous (As we mentionned in [29], the
proof is as in [5] for n = 3). So its minimum is achieved by some v € H}(Q,5%). We
claim that S, # 0. If not, B B

Fw)=F(v)> inf F,
HL(Q,52)
where F(u) = E(u) + 87m;(S,). Meanwhile using the same arguments as above we can
prove that

This leads to a contradiction, so S, can not be zero. As a result,

L(v) = sup / S, >0,
P e Q3(Q) U9
|diploe <1

which implies :

inf E<FE E L(v)=F(v)= inf F
il B < (v) < E(v) +87L(v) = F(v) e

This completes the proof of theorem 1. [ ]
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Chapter 11

Multiplicity of S%-valued harmonic
maps

Existence of infinitely many weakly harmonic maps from a
domain in R" into S? for non-constant boundary data
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Centre de Mathématiques et de Leurs Applications
CNRS, URA 1611
Ecole Normale Supérieure de Cachan
61 Avenue du Président Wilson
94235 Cachan Cedex, France
pakzad@cmla.ens-cachan.fr

We prove existence of infinitely many weakly harmonic maps from a domain of R”"
into S? for non-constant smooth boundary data.

1 Introduction

Consider the Sobolev space :
HY(Q,8%) = {ue H'(Q,R?); u(r) € S* ae. onQ}

where 2 C R” is a bounded open set and S? is the 2-dimensional unit sphere in R3. For
u e H'(Q,S?) the energy FE(u) = [, |Vul? is well defined. We call u a weakly harmonic
map if it is a critical point for the functional F, i.e. if and only if we have

iE u 4+ tv
lu + tv|

o ) =0 forall veCX(Q,RY).
[t=0

39



40 CHAPTER II. MULTIPLICITY OF S?*-VALUED HARMONIC MAPS

In other words, u is weakly harmonic in the Sobolev space H'(,S?) if it satisfies the
following equation in the sense of distributions :

—Au=ulVu* in Q
u(r) € S* ae.

Let ¢ : 0Q — S? be a smooth map which has a regular extension into 2. The existence
of a weakly harmonic map equal to ¢ on the boundary can be easily proved by a straight-
forward minimizing argument. By the way, the uniqueness and regularity questions for
weakly harmonic maps in HJ (£, 5%) have not the same answers as in the classic cases,
i.e. when the target manifold is an euclidean space.

In this paper we consider the question of uniqueness of such extensions. In [21], R.
Hardt, D.Kinderlehrer and F.H.Lin had proved the existence of infinitely many weakly
harmonic extensions to an axially symmetric boundary condition in H'(B3,5?%) where
B3 is the unit ball in R3. The method consists in constructing a non-axially symmetric
harmonic extension and then one obtains infinitely many different harmonic maps with
the same boundary data by rotating this extension around the symmetry axis.

Another method consists in finding new harmonic maps by defining new functionals
whose critical points are still weakly harmonic. This has been done by F.Bethuel, H.Brezis
and J.-M.Coron in [5] where they introduced such functionals which they called “relaxed
energies”. Using these functionals they proved for n = 3 that if ¢ is not homotopic to a
constant or if

min  E(u) < inf FE(u)
HL(Q,5?) C(,5?)
then ¢ admits infinitely many weakly harmonic extensions inside 2. Using the same gap
condition, T.Isobe proved the corresponding result for the case n > 4 in [26], still using
the relaxed energies whose definition was extended to higher dimensions.

At last, using his strict dipole insertion lemma, proved in [32], T.Riviere showed
that if Q is a regular bounded domain of R?, a non constant smooth boundary data
@ : 00 — S? admits always infinitely many weakly harmonic extensions (Appeared in
[33]). The method, first proposed by F.Bethuel, H.Brezis and J.-M.Coron, consists in
producing infinitely many distinct weakly harmonic maps in an inductive process by min-
imizing the relaxed energies.

The main difficulty in adapting the approach in [33] to higher dimensions is first
generalizing the concept of relaxed energies as appeared in [5] to what we will call the
F-energies in a suitable way and proving the desired properties for these new energies.
Another difficult step consists in finding some equivalent construction in any dimensions
of the insertion of 2 singular points with the strict inequality like in [32] for n = 3. It
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appears that ([32], lemma A.1) can be generalized (via some technical difficulties) by in-
serting this time (n — 3)-dimensional singular spheres. Our main result is the following

Theorem 1 Let Q2 be a reqular bounded domain in R™, n > 3 , and ¢ a non-constant
smooth map from O into S%. Then p admits infinitely many weakly harmonic extensions.m

Remark 1.1 This result is independent of the choice of the metric on S* . For the details
compare with [33].

Remark 1.2 [t seems that the main difficulty to overcome in order to extend the result
for p-harmonic maps into SP, using the same method, is to prove the lower semi-continuity
of the generalized relaxed energies which can be defined also in these cases in a natural
way.

The paper is organized as follows. In section 2 we recall some elementary facts needed
for our work using concepts of Geometric Measure Theory. In section 3 we introduce
the F-energies and discuss their characteristics. The readers can refer to [16] for more
elaborated discussion of these subjects. Then in section 4 we prove our main result using
the strict insertion lemma which we shall prove in the last part of the paper.

2 Preliminaries

Let Q C R", n > 3, be a bounded open set and let

HY(Q,8%) = {ue H'(Q,R?); u(r) € S* ae. onQ}

and

H;(Q, S?*) ={uec HY(Q,8%);u=¢ ondQ}

where ¢ is a given boundary data. For u € H}(Q,S5?) the Dirichlet energy is given by
E(u) = [, |Vul>. We assume that ¢ is in C*(99,S?) and can be extended into by a
smooth map.

2.1 The subspace R} (Q,5%)

Definition 2.1 We say that u € H}(Q,5%) is in RY(Q,S5%) if u is smooth except on
B =", 0:UBy , a compact subset of 0, where H"*(By) =0 and the o;,i=1,---,m
are smooth embeddings of the unit disk of dimension n —3. Moreover we assume that any
two different faces of B, o; and oj, may meet only on their boundaries.

Remark 2.1 In ([2], theorem 2bis), F. Bethuel has proved that RY(Q,S?) is dense in
H(Q,5%) for the strong topology.
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Definition 2.2 Letu € H;(Q, S?). We define the current S, € D,_3(Q) to be the current
defined by

S.u(a) := /Qu*w A do Ya € D3 (Q). (2.1)

Here D*(Q) is the set of smooth k-forms on Q with compact support (See[16], 2.2.3) and
w is some 2-form on S for which [4w = 1.

Let w; and wy be two such forms on S?. We have wy; —wy = d3 where 3 is some smooth 1-
form on S? extendable to R3. Let u € H;(Q, S?) and consider a sequence u,, € C*(£2,R3)
converging to u in H'. We have

w3, (dB) = d (u7,0)

and by passing to the limit, we observe that this holds true for u in the sense of distribu-
tions. This proves the independence of S, from the choice of w as we have :

d(u*wy) — d(u*wy) = du*(df) =0

in the sense of distributions. Now the existence of the integral (2.1) is a direct consequence
of the following inequality :

1
luw| < 8—7T|Vu\2 a.e. onf) (2.2)
where 47w = wy is the standard volume form of S2.

We shall give a description of S, for u € R(€,5%). Clearly if u is smooth a standard
operation on pull-back yields
d(u'w) = u*(dw) =0
and as a consequence we deduce for u € RY (€2, 5?) that
sptS, C B.

Definition 2.3 Let u € R;"(Q,S2) and let B = |Jo; U By be the singular set of w.
Suppose that each o; is oriented by a smooth (n — 3)-vectorfield 6;. For a € o; let N, be
the 3-dimensional plane orthogonal to o; at a. Consider the 3-disk M,s = Bs(a) N N,
oriented by the 3-vector M, such that gi(a) AM, = (—1)"&@ . Then the topological degree
of w on the 2 dimensional sphere ¥,5 = OM, s is well defined and is independent of the
choice of a for  small enough. We call this integer the degree of u on o; and denote it by

deg,,u .

Our first goal is to show that for u € R¥(Q,S%) , S, is the integer multiplicity rec-
tifiable current »_.",(deg,,u) 7(0y,1,5;). Recall that any k-dimensional rectifiable subset
M of R™ considered with a multiplicity # and oriented by a unit k-vector field £ defines
a rectifiable current as follows

T(M,0,&)(a) = /M <&a>0dH” Ya € DFR™).
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Lemma 2.1 Letw = -wy andu € RX (2, 5%). Then the (n—2)-vectorfield D(u) defined

on Q\B by the equation
< D(u)(z),¥ > wpn = w'w(z) AT YU € A" 2(R) (2.3)

is a simple (n — 2)-vectorfield tangent to the smooth manifold u=*(y) for all reqular value
y = u(z) € S?. Meanwhile

= 1
|D(u)| = E‘Jﬂd a.e. on S (2.4)

Remember that an element of Ax(R") is called simple if and only if it equals the ex-
terior product of k vectors of R™ ([13], 1.6.1).

Proof : Write ' .
ww = Z w; dx' Adx?  a.e. on
i<j
and u;; = 0 for ¢ > j. For almost all 2 € Q , u*w(z) is in A*(R™). Using (2.3) a short
calculation shows that

~ 1 0 0

D)) = D Gy = gjitete® o A A ot
oEDn
and we get . B
D(u)(z) N =< 1,u'w(x) > &rn Vi] € Ao(R"). (2.5)

So if y € 52 is a regular point for u we have D(u)(x) # 0 and if ¥ is any vector tangent
to u=t(y) at = by (2.5) we obtain

D(u)(z) AT AT =< TAW, u'w(x) > &an Vi € Ay (R)

and since Du(z) -7 =0

1
= < Du(z) - ¥ A Du(x) - W, w(y) >=0

Therefore D(u)(z) AT = 0 for any @ tangent to u~'(y) at = and as a result D(u)(x) is
a simple (n — 2)-vector associated to tangent space of u™'(y) at = (See [13], 1.6.1). Now
using (2.5) and by duality we get (2.4) as w = Lwy and so

B ()] = [uw(z)| = %|A2(Du)(x)| _ %|J2u(9§)| ae. on Q.
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For any y € S?, regular value of u € R (Q,5%), we define the current
v - D(u)
T, =7 <u Yy), 1, = ) . (2.6)
| D(u)]

Proposition 2.1 Consider u € RY(Q,5%) and T} as in (2.6), then for almost ally € S*
, T is a rectifiable current in R"™ with support in Q and

-1 _’( )
OT" =S, +7 | v (), 1, Dl 2.7
’ < W \D(@)I) (27)

where the (n — 3)-vectorfield D(¢) on 8 is defined by the equation
< D()(2), ¥ > wp, = w(@) ANV YU e A, 3(E,)
where E, = T,(02) is the tangent space to 0 at x and wg, is its unit volume form.

Proof : First observe that by Sard’s theorem, for almost all y € S?, u™!(y) is a
D(u)
| D(u)|

L

18

countable union of smooth submanifolds supported in Q. Moreover by lemma 1,

associated to the tangent space of u=!(y). So by co-area formula we have

1
[omrpdy= [ (<5 [ 9P
S2 Q 2 Q

and we deduce that M(T}) < +oo for almost all y, i.e. T} is rectifiable. The claim about
dT} is proved in 4 steps :

(i) We prove that dT} is a flat chain.

(ii) We give an expression for 9T} of the form

ZT; T<0i7 170—:2) +T (@_1(19)7 17 5(¢> )

i

using the constancy theorem.
(iii) We prove that r} = degy,u .
(iv) At last (2.7) would be proved using the definition of S, and the co-area formula.

Step (i) : Since u is smooth on 2\ B we observe that
spt(9T,) C QU B (2.8)
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if y is a regular value for u. We know that u is smooth near 9Q and we have u=!(y)N9Q =

0 Uy) , Ern = (=1)""1€g, Afi for all z € 0. Using (2.5) for D(u) and D(¢p) we get that
D(u) = (=1)""'D(¢) A fleye for regular points = € 99

when 7., is the outward unit tangent vector to u=!(y) at z. So considering the rules of
orientation of manifolds we get

—1 q(‘P)
OT* 00 =1 1, — 2.9
: (go W) ;(@)') 29)

which is a rectifiable current for the regular values of u and ¢.

For proving the claim we put S, = 9T} — 7 (w‘l(y), 1, ‘?)Ei;) and consider the set

B. ={z|d(z,B) < ¢}
the e-neighborhood of B in Q. By (2.8) and (2.9) we get
0(TZ|_B€) =T, 0B.+S, , sptS, CB. (2.10)

Since u is smooth on 9B, , TyL0B. is an (n — 3)-dimensional normal current. Now using
the co-area formula we get

1
M(T;LB;) dy :/ | Jou| < 5/ |Vul> -0 as ¢ — 0.
Be

£

52

So for almost all y € S* , M(TyLB.) — 0. By (2.10) we deduce that S, is a flat chain as
it is a flat-norm limit of normal currents TZI_aBa .

Step (ii) : S, is a flat chain in © without boundary. By the Constancy Theorem ([16],
5.3.1, theorem 3) applied successively to the o;, there exist real numbers r; such that

spt(S, — T;T(O’i, 1,6:) CANo; i=1,---,m

and as a result
m

spt(Sy — Zr;T(U,-, 1,0;)) C O\ Ua,- :

i=1 i=1
Meanwhile B = |J, 0; U By where H"?(By) = 0. So since the support of S, lies in B,
Sy — > it 7y7(0i,1,0;) is an (n — 3)-dimensional flat chain supported in By, therefore
Sy = Z T;T(Uiv 17 63@)
i=1
and so

j - -1 5(@
oT! = rim(o;,1,0;) + 7 1, —=—=]. 2.11
y Z yT( )+ (@ (v) ‘D(m) (2.11)

Step (iii) : We begin this part by proving the following lemma.
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Lemma 2.2 Let M be a 3-dimensi0nal_§m00th manifold supported in ) oriented by M a
smooth S-vectorfield. Let M = 7(M,1, M) and ¥ = OM. Then for almost all y € S?,

k(0T},, M) = (—1)"/ uw

where k(S,T) is the kronecker index of S and T as defined in ([16],v0l.1,5.3.4).

Proof : For almost all y € S? regular value for (uly) (2.11) is valid and X transversally
intersects u ' (y) at each point of their intersection. So we have :

/u*w - Y S, W gy (2.12)

P
ze€XNu~1(y) |u (U(ZL')|

Consider the translation 7* : R® — R", 7%(x) = x + a. Considering the definition of the
kronecker index and ([16], 5.3.4, theorem 2) we observe that there exists a small enough
such that

(i) spt 742 C Q\B , spt 74 M C ,

(ii) Ty N7y, Ty N7gM and 9T, N 74 M exist,

(iil) k(Ty, ) = k(Ty, 74%) , k(9T},, M) = k(9T},, 74 M) and

(iv) Ty N7gM) = 0Ty N7EM + (—1)" 3 Tu N 743,
Therefore by (2.12)

k(9T,, M) = k(9T,, 7yM) = (0T}, N 75,M)(1)

= (=D)™(Ty n73)(1) = (=1)"k(T,, 74%) = (=1)"k(Ty, %)

which proves the lemma. ]

Now take M, 5 = 7(M,, 1, Ma’g) as in the definition 3. Applying lemma 2 and (2.12)
to M, s we get :

degyu = w'w = (—1)"k(0Ty, M,s) =1} . (2.13)
20,,5
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Step (iv) : Let a € D"3(Q). By the co-area formula and (2.4) we get :

1 *w A d
/u*w/\da:— dy/ 7uw* “
Q A Jgo wl(y) |wwl

1 D
= —/ dy/ < ﬁ(u) cdo > dH" 2
T Js2 uiy)  |D(u)l

1 u _ 1 u
=1 [ Titdeydy = - | oTy(a)dy

and since oy, = 0 using (2.11) and (2.13) we obtain :

1
/u*w Ndoa = — dyz (degos,u)T (04, 1,0;) ()
Q .

(2.14)
= (degou) 7(0:,1,6:)(c)

=1

which completes the proof of proposition 1 regarding the definition of S,, and the formula
for 0T} in (2.11). u

Corollary 2.1 Let u € RY(Q,5%) and B = J;0; U B, its singular set. Then

S, =Y (dego,u)r(0;,1,5)).

Proof : Refer to the relation (2.14) in the proof of proposition 1. [

3 The F-energy on H}(Q,5%)

In this section we define for any v € H}(Q,S?) a functional F, on H}(Q,S?) which
has two interesting properties. First, it is lower semi-continuous and second, its critical
points are also the critical points of the energy F, i.e. the critical points of F', in particular
its minimizers, would be weakly harmonic maps. In fact this “F-energy” is a natural
generalization of the “relaxed energy” in dimension 3 introduced in [5], except that in
higher dimensions the functional F' may not be a relaxed energy for H. Si(Q, S?) : i.e. there
exist cases where

inf. F< min F,
HL(2,52) 0 (2,5?)

(See [30]).
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Definition 3.1 Let u,v be two maps in H;(Q, S?). We define the connection between u

and v to be
L(u,v) = sup {/ w'w A dyp — / viw A dw} (3.1)
e Q) M0 “
|di|e < 1

where w is any 2-form on S% with fsg w = 1. We will often take w = ﬁwv which is more
suitable for computations.

Remark 3.1 We recall that the mass of currents is in fact the dual of the comass norm
of differential forms (See[13], 4.1.7). So, from Geometric Measure Theory point of view,
it would be more natural to use the comass norm of diy instead of its euclidean norm in
the definition of L. Meanwhile the euclidean norm is preferred for the relative simplicity
of the proof of lower semi-continuity of F, .

Proposition 3.1 We have the following inequality :
L(u,v) < C||Vu — Vo|l2(||Vulls + [Vv|l2) Yu,v € H;(Q, S2). (3.2)

Proof : We write

= Z Vigigin dT® A dz™ A -+ A da'™

1<i3<i4 < <in<n

and we have

ST Wiisein? = ld? < 1.

13 <04 <-+<ip

Now by simple calculations we obtain :

- 1
< oUW A >= > W (Ui A Uyin) Yigigoiy
g <ty < -+ <1y

{il’...’in}:{l’...’n}

and the proposition is proved using the same method used in [5], Theorem 3. [ ]

Now let u € H (€, 5?%) and for ug € C°(€2, 5*) consider the variation u(t) = ﬁiizg'

As a consequence for t small enough u(t) € H ;(Q, S?) and we have :

Lemma 3.1 For all u,v € H,(Q,S%) and for t small enough L(u(t),v) = L(u,v).
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Proof : Pay attention that if v, — u in H! then for ¢ small enough we have u,(t) —
u(t) in H'. So in the view of the proposition 2 and by using the fact that RY(%,5?)
is dense in H}(Q,S?) (See Remark 3), it suffices for us to prove this lemma for u,v €
R (9, S?). For such u and v we get by the co-area formula and proposition 1 :

1

/Qu*w A dip — /Qv*w Adip = in /SQ(TZ = T})(dy) dy = (Su — Su)(¥). (3.3)

Meanwhile for v € R¥ (€, S?), using the corollary 1, we have S, = Sy as u and u(t)
have the same singular set and the same degrees on its components. By (3.3) we get :

L(u(t),v) = sup (Suu —S.) (®)= sup (S, —S,)(¥) = L(u,v)

|diploo <1 |diploo <1

and the lemma is proved. [ ]

Proposition 3.2 For fired v € H(S, S?) let
F,(u) :== E(u) + 87 L(u,v).

Then F, is a lower semi-continous functional on H;(Q, S?) and its critical points are
weakly harmonic maps.

Remark 3.2 T.Isobe has proved the lower semi-continuity of the functionals

Fy(u) :E(u)+87r)\{/ w'wAdyp — gp*w/\w}
Q

o0

for X < C(n), n >4 (See [26]). But what we need here is the same result for A =1 for
which we have to prefer another argument.

Proof : Again as in the proposition 2, the proof of lower semi-continuity of F;, is the
same as the proof of lower semi-continuity of the relaxed energy in [5]. Using lemma 3 we
obtain

CE(0)0 = (1)) + 875 D0(0), )0 = B (D)

so as a result the critical points of I, are those of E. [ ]

4 Proof of the main theorem

We shall state here the main result of the paper.

Theorem 1 Let Q) be a reqular bounded domain in R™, n > 3 , and ¢ a non-constant
smooth map from O to S?. Then o admits infinitely many weakly harmonic extensions.
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For proving this theorem we apply a method proposed by F. Bethuel, H. Brezis and J.-
M. Coron which uses the F-energy as an efficient tool for finding the new weakly harmonic
maps and a technical lemma which we shall prove in the following section.

Lemma 4.1 Let € be a bounded regular domain in R™ and u a reqular non-constant map

from Q to S%. Let zy be a point of Q for which Vu(xg) # 0. Then for every p > 0 there
exists a map v € H(Q,5%) and 0 < § < p such that

(1) v=u on Q\B,(x)
(i) S, = 7(0,1,0)
(iii) E(v) < E(u) 4 87w, 20" 2 = E(u) 4+ 87 L(v,u)
where o is an (n — 3)-dimensional sphere of center xy and radius § and wy, is the vol-

ume of the unit k-dimensional disk.

This lemma, called the strict insertion of singularities, was firstly proved for the case
n = 3 by T. Riviere in [32]. The computations used rely on the previous computations
for inserting coverings of S? in dimension 2 (See [9]). The axially symmetric version of it
was proved in [23].

Proof of theorem 1 : Two situations may take place :

(1) There are infinitely many distinct minimizers for E in H (€, 5*) and so the prob-
lem is solved.

(2) There are only a finite number of minimizers for £ on H}(Q, 5?).

In this case let wy, - - -, w,, be the minimizing maps. By the partial regularity theory
of [35] and considering the fact that ¢ is not constant we deduce the existence of €2, an
open subset of 2, on which w; is smooth and some zy € ; for which Vw;(z¢) # 0. For
some p > 0 which will be fixed later we apply the lemma 4 to w; on 2; and name the
transformed map v;. So we have

E(Ul) < E(wl) + 87TL(’U1,1U1). (41)

Now suppose that u; is a minimizing map for F,, on Hé(Q, S?). By proposition 4
such maps exist and are weakly harmonic. We shall prove that for p sufficiently small u,
is different from all the w;. We distinguish two cases :

(a) L(wg,wy) =0 : By (4.1) we obtain
Fv1 (ul) < Fv1 (Ul) = E(’Ul) < E(wl) + 87TL(U1,’LU1). (42)
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Moreover subadditionality of L gives
|L(vi,wy) — L(vy, wg)| < L{wg,wy) =0, (4.3)
so L(vy,w1) = L(vy,wy) and using the fact that F(w;) = E(wy) , (4.2) implies
Fy, (uy) < Fy, (wy).

This strict inequality proves naturally that u; # wy when L(wi,wy) = 0.

(b) L(wg,wy) >0 : We have
L(wg,v1) + L(vy,wy) > L(wg, wy), (4.4)
meanwhile by the lemma 4
L(v1,w1) = Wp_96""2 < wy_op" 2, (4.5)
thus

Fy (wy) = E(wg) + 87 L(wg, v1) o)
> E(wy) + 8 (L(wy, w1) — wp_op™ 2). '

Now it is sufficient to choose p > 0 such that for all wy verifying L(wg,w;) > 0 we
have the inequality
L(wg,w)
5
then by (4.5) we have L(wg,w;) — wp_2p" "2 > wp_9p™ 2 > L(vy,w;) and this, added to
(4.6) implies :

0 <wyop"2< (4.7)

Fv1(wk) > Fv1(w1) > Fv1(u1)>

which combined with part (a) proves that u; is different from all the wy, .

We construct by induction a sequence u; of distinct weakly harmonic maps in H, Si(Q, S?)
which are also different from the w;, using the same method. Choose p;; such that

L
0 < wnopfii < Min {w for k verifying L(wy,w;) > 0}
and (4.8)
0 <wn—2pj+:L2 < M’Ln{ 87T ’ 1 = 17"‘7]

Let u;,1 be a minimizer of F,,,, when v;; is the transformed map of w; on B, (7o) as
in lemma 4. Again the first inequality in (4.8) assures that w;i; is distinct from the w;.
For seeing that ;41 # w; for i < j , using the strict inequality of lemma 4 we observe
that

Fopi (i) < By (1) = B(vjn) < E(wn) + 81w, —2pf 17 (4.9)

J J
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Moreover from (4.8) we have
87rwn_2p§‘;12 < E(u;) — E(wy). (4.10)

Thus combining (4.9) and (4.10) imply that E(u;j1) < Fy,, (uj41) < E(u;). This yields
that u;; # u,; for ¢ < j and completes the proof of the theorem. [ ]

5 The strict insertion of a singular sphere

We would follow the method used by T. Riviere in [32] for the case n = 3.

5.1 Notations

We replace zy by 0 using a suitable translation in R". We choose also an orthonormal
basis (1, 7, k1, -+, kn—2) for R™ such that

uz(0) #0, uz(0) - u,(0) = 0. (5.1)

(See [9]). Let (z,y, 21, -+, 2,_2) be the coordinates in the new basis. We introduce also
the polar coordinates (r,0) , (R, 01, ,0,_4,p) as follows

(= rcosf

y =rsinf

z1 = Rcosb,

29 = R sin 01 cos 0

(5.2)
Zn_g = Rsinfy ---sinf,,_, cosy
| 2n—2 = Rsinf; ---sinf,_4sin
where 0 <0, <7 ,0< ¢ <2rand |z| = Rforz= (21, -, 2,-2).
Now for § sufficiently small and R € [0, + %] we define two unit vector fields
1z) = 005 )~ u(0,0,2) (5.3)
 |ug(0,0,2)| I '

Since u takes its values in S?, I and K are orthogonal. Let a = |u,(0)| and b = |u,(0)].
We define J(z) to be a smooth vectorfield such that (I, J, K) form an orthonormal basis.
We verify then

(0,0,2z) = (a+ O(R))I(z)
0

“z< ,0,2) = O(R)I(z) + (b + O(R))J(2). (5.4)
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5.2 Sketch of the proof

We shall transform v in the region

C°={(z,y,2) € Q| 0<R<3I+0% 0<r<20%.

For ¢ sufficiently small ;| the transformed map v would be singular exactly on the (n — 3)-
dimensional sphere o = {(0,0,2z); R = §} and will satisfy

deg,v =1, E(v) < E(u) + 8mwy_s6" 2. (5.5)

For this aim we define the map u’ as follows
(a) u = u® outside C°

(b) In the region

@ ={(z,y,2) |[R<d—6,0<r<25%

u® would be an interpolation between u ouside ¢® and a conformal map on each disk

centered at (0,0,z) and of radius 6% in the region
A ={(r,y,2)|R<5—-5,0<r <5}

exactly as it is described by T.Riviere in [32], following the method of H.Brezis and J.-M.
Coron in [9] .

(c) For the region & = C°\¢® | u’ will be the conjugation of the value of u® on 0&
with the projection IT : & — & which is defined as follows : For p € & , II(p) is the
intersection with 0¢° of the line orthogonal to ¢ which passes through p.

It will be showed that v = u® for § small enough is a desired map. In the last step we
will prove that L(u,v) = w,_20""2, the volume of the (n — 2)-disk of the boundary o.

5.3 The construction of 4’ in ¢

For (z,y,z) € ¢® we define

(i) If r < 62 :

= A2 2
where A = ¢6* and ¢ will be fixed later.

(x1(z) +yJ(z) — AK(z)) + K(z) (5.6)

(i) If 62 < r < 262 :
u® = (Ayr + B)I(z) + (Aor + By)J(z)

"—\/1 - (A17” + 31)2 - (AQT + 32)2 K(Z)
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where A; and B; depend only on z, 6, r as follows :
(26%A; + B; = u;(20% cos ,26%sin 0, z)

for i = 1,2 (u; is the i-th coordinate of v in (I(z), J(z), K(z))

2752 (5.8)
52141 + B1 = m cos 0
52A _ 2 g
L 2+ B2 = m S o.

The estimates for E(u’) in ¢} = °\c}

Following the same computations as in [9] or [32] we have the following estimates on ¢}

for fixed z :

)
/ Vo’ (2, y,2)* dody
(52§T’§252

= 4716 (a® + b* — 2¢* + (a® + b* + 8¢® — 4ac — 4bc) In 2) + O(5°).
(5.9)

+0(6%) fori=1,---,n—2.

4
o - |gr 0.0

azi (LU,y,Z) - azz

| |VW’| < C for C > 0 independent of 4.

Note that by V,,u we mean the matrix of first partial derivatives of v in x and in y. As

a result we have the following estimate for the energy on ¢} :

/ IV ?
4

= 471w, 90" (a® + b* — 2¢* + (a® + b® + 8¢% — 4ac — 4bc) In 2) (5.10)
Fr((26)2 — (63)) / 1V,(0,0, 2)[2 dz + O(5™+9).
0§R§5—52

The estimates for F(u°) in cf.

Firstly for a fixed z, u’ is a conformal diffeomorphism from the disk B2((0,0,z),§?)
into S? and we get :

/ Vo, (2, y, 2) | dady = 2 Area(u’(B*((0,0,7),5%), 7))
r<o? (5.11)

= 87 — 8wt + O(5°).
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and by integration on z we obtain :

/ |vxyu6(zv Y, Z)|2 dxdydzl e dzn—Z
e

Wp—2

562
= R”_3dR/ Vet (z,y,2)|? dad
| [ oy dady

= 87wn_o(6 — %)% — 87w, _oc*0" T2 + O(6").

Meanwhile we estimate the z-derivatives of u° in ¢g. Firstly we have

am(x 2) = 2) (ngr d_J_)\dK)+dK
P A A VI R A A

. 5 . .
We estimate 2 (z,y,z) in two regions :
7

(a) r < &3 : Using (5.13) we observe that for 0 < r < 6% :

dK
dZZ'

2\
(A2 4 72)2

< ' independent of §

Wwﬂ4

and as a result

| IVafdady = 06",
r<d3
which implies

/ [Vaul? = O(3").
G

2\ dI dJ

2\r A
A PR P <
A2 +r2(xdz,- +ydz,-)

Sy =00

So using (5.13)

ou® r2 — A%\ Ou 3 9
= —] — <r<
77, (x,y,2) (72 )\2) 7%, (0,0,z) + O(9) for & <r <6,

and we get

512 o rp2 A2\ 2 , i
/53%52 Vo dudy = 2”/53 (m) rdr | |V,u(0,0,z)|* + O(8°)

= 76*|V,u(0,0,2) > + O(5%).

fort =1,---,n—2.

25

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)
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This last estimate combined with (5.16) yields
/ IV, = 76 / V,0(0,0,2) 2 dz1 - - - dz s + O(6™) (5.18)
s 0<R<LS—62
At last combining (5.12) and (5.18) we obtain :

/ |Vul|? = 871w, _o(8 — 6%)" % — 8mw,_oc26™ T2
S
(5.19)
It / 1V,u(0,0,2)? dz + O(5"*) .
0<R<6—82

The evaluation of E(u’) on &

As briefly mentioned above in the the sketch of the proof, 9 in the region & is defined
as follows : We define the projection h : & — o by

(521 6Zn_2

E’”" 7 )

h(z,y, 21, 22, Zn—2) = (0,0, (5.20)

Then the projection II , defined on
@ ={(y,2)|f - <R<+8, 0<r<d}

sends each point p to the intersection between 0¢° and the line passing through p and
h(p). We take
u’ = (u®],) o IL.

Pay attention that the points p and II(p) lie in the 3-plane orthogonal to ¢ at h(p).

Using the co-area formula we have

62 n—3 ‘vu(sz 3
/\vu /H / R (5.21)

Moreover |.J,,_sh| = (%) and

h_l(w):{($>y>R791>"'a9n—4a<ﬁ) 666|6_52 §R§5+52,0§T§252,

0; = const. fori =1,---,n—4, and ¢ = const. }

is a cylinder of the height 262, of radius 262 and of center w € o. We now estimate the
value of fh,l(w) R"3|Vul |2 dx dy dR.

We write h™!(w) as the union of two separate regions G,, and H,,
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(1) G = 710 N h~Y(w)) is the little 3-cone of vertex w, lying in the plane orthog-
onal to o at w, whose end is the disk Ds= of center (0,0,5 — §%,6% -+, 0% , ©*) and of
radius §2. Pay attention that on this disk «° is the conformal map defined in (5.6).

(2) H, is the complementar of G,, in h™Y(w): i.e. H, = II743c°\dc N h~(w)).

See Fig.1 and Fig.2 to visualize these regions for n = 4. For estimating |Vu°| on G,
we proceed by changing the coordinates. Let R’ be the distance of the point p =
(x,y,21, +,2n_2) € G, from w, the vertex of the cone, and let 2’ and y’ be the two
first coordinates of II(p) in Ds2 (See Fig.2). We have

x/ = ZL'/R/
0—R = 7
A /54 + r!
5%y
/ ! I/
y = __YR
0— R and Yy W (522)
R/ - T2 + (5 - R)2 5 B 52R,
‘9@:9747@:@ \ V54+T/2
Now u’ is constant on the rays passing by w, so we get
ué(x/7y/7R/7917' ' ~,¢9n_4,<p) = u5<x/7y/7 o4 +T/27917' ' '7‘9n—4780) (523>
oud . . o :
Le. om = 0. Also by a simple calculation of the derivatives using (5.22) we have for the

point (z,y,2z) € Gy,

( oud \/54—1—77”2 ou?

o= ()
)

2y VO +1?)

ou’ \/54—1—77”2 8u6

oy’

T 54—1—7"’2)

(5.24)

ou’ 2V o, Y
ap ax/(xaya 0 +T)

OR 2R

52R/

/ 4 12 )
+ (y 5 +r ) gu/ (x’,y', /54+7,/2).
Y
\

and in the same line by calculating the Jacobian of the new coordinates we have :
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52R/2
drdydR = —"——— da'dy'dR’ (5.25)
(04 +r 2)

Using (5.2) and doing the same work, we get :

o> |ou|®  |oud]’
5|2 I 2.26
Vel =152 ay| Tlor| T (5.26)
where
e i ou’ | 1 ol |? 1 ol |?
- R2\ |06, sin? 6, | 96, sin? 6 sin? Oy - - - sin26,,_4 | Op '

Using (5.23) and applying (5.14) and (5.26) to the points of Ds2 we obtain

/ / o — 52 2 /
1w B) = Sy Vi)
(5.27)
5 —6%) 5 — 0%)?
_(7’Vu (o', 644—7”2)) <C%
Therefore by integrating directly over the cone G,, we deduce from (5.27) :
/ R"3IdxdydR = O(6"). (5.28)

w

Furthermore considering (5.22), (5.24), (??) and (5.26) we estimate the integral

J:/‘R“%WMP—D
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as follows

2

n oud
OR

oud
dy

2
) dxdydR

:/ dx/ dy// 54+T’2 R’n—3 52R/2 [64 +T/2
D

2
S(. 0 1 4 2
0 (54 —+ ’[“/2)% R/2 vﬂﬁ'y’u (LL’ Y, o+’ )

ot 4 r”? | ou? e\
/ d /
() (#[52] + o 3] [ o
52 o [0 Vo 4
= _ vx/ /U,5 / 7RTL—3 dR
/Déz Vot +r? ‘ Y ‘ 52 02
s SINZ 6 /5412
+ / da’ dyf —— (x il B ) / VORI s g,
Dy 52 V 54 + ’f’,z aZE ay §—52 )
(5.29)
Using the inequality
58
52
|nyu ‘ S Cm on D52 (530)
which is established in [9] we obtain
1 ) SN2 0 /54 2
/ de’ dy' : (95 a“, oy a“, ) / 57‘2”3"-3613
Djo Vot + 1! Ox dy 552 )
(5.31)
> T +3
< n e — n .
< C/o ) GEESE dr = O(6"In(1/9))
And combining (5.11), (5.26), (5.28), (5.29) and (5.31), finally we get :
/ Rn—B‘vu(S‘Z — 811-2(571—2 . (5 . 52)71—2)
’ (5.32)
8T o cnto n+3
L AMTE 406" In(1/9)).
n—

Now, using the estimates in (5.9) and the fact that u® = u on 9&°\dc® we observe that
|Vu!| is bounded on OH,, and therefore following the same method as the one used for
G, we get

/ RVl 2 = O(5™+), (5.33)

w
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which conjugated with (5.21) and (5.32) yields

/|vwﬁzsm%4®mﬂ—w—ﬁ%%%
o

(5.34)
—87wy 928" + 06" In(1/6)).
The estimate for the energy of v in C?
Similarly as in [32] we have the following estimate :
|Vul|? = 47w, 20" (a® + b%)
Cd
(5.35)
+M#/’ V,(0,0,2)Pdz + O(5™).
0<R<5—5?
5.4 The end of proof of lemma 4
Conjugating (5.10), (5.19) ,(5.34) and (5.35) we obtain :
/ IVl | = 8wy, _p0™ 2
)
(5.36)

—4Tw, 20" (4¢* — (a® + b* + 8¢* — dac — 4bc) In 2)

+0(6" " In(1/6))
and by choosing a suitable ¢ such that

4¢® — (a® + b* + 8¢* — 4ac — 4bc) In2 > 0
we can be sure that for § small enough v = u® would satisfy the strict inequality (5.5).
For example put ¢ = max{%, %} It is easy to verify that the degree of v on its only

singular set, i.e. ¢ = {(0,0,z) |R = 0} is one. By the way as in (?7) :

L(v,u) = sup {/ v'w A dp — / uw'w A d¢}
P € QO 5(Q) “ “

|dip|oo <1
(5.37)

= sup . Sv(w>
P € QX 5(Q)
|diploe <1

as S, = 0. Meanwhile using the corollary 1 :

So(¥)] = [7(0,1,0)(¥)] = [T(dy)| < M(T) (5.38)
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for every current T which takes o as its boundary, using the fact that |di|,, < 1. Putting
T = Ty = 7(Bs, 1, Bs) where By is the (n — 2)-ball of the center 0 and of radius ¢ , we
obtain combining (5.37) and (5.38) :

L(v,u) < wy_o0" 2. (5.39)

Now take ¥ = 29 Adza A -+ A dz,—5. A simple observation shows that Tq(diy) =
M(Ty) = w,_20""2, so again using (5.37) and (5.38) we obtain easily that

L(Uu u) Z wn—25n_2

which completes the proof regarding (5.39). n

The author is grateful to Tristan Riviere for having drawn his attention to this problem.
This research was carried out with support provided by the French government in the
framework of cooperation programs between Université de Versaille and 1.P.M., Institute
for studies in theoretical Physics and Mathematics, Iran.
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We prove that the topological singular set of a map in W13(M, S?) is the boundary
of an integer multiplicity rectifiable current in M, where M is a closed smooth manifold
of dimension greater than 3. Also we prove that the mass of the minimal i.m. rectifiable
current taking this set as the boundary is a strongly continuous functional on W13(M, S3).

1 Introduction

Let M be an oriented smooth closed riemannien manifold of dimension n, and N any
closed riemannien manifold isometrically embedded in RY. Let

WYP(M,N) = {uec W (M,RY); u(xr) € N ae. onM}.

For u € W'?(M, N) the p-energy is given by E(u) = [, |Vu[Pdvoly;.

63
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In [7], F.Bethuel and X.Zheng proved that smooth maps are not strongly dense in
WP(M,N) if p < n and 7, (N) # 0, [p] being the integer part of p. In this case, one
may want to characterize the maps in W4(M, N) which are approximable by smooth
maps and identify the obstruction for maps which are not. Precisely, we would like to
associate to any map u € WH?(M, N) a topological singualr set, S, which characterizes
the approximability of u by smooth maps, i.e. u would be the strong limit of smooth
maps if and only if S, = 0.

In this line, F.Bethuel proved in [3] that v € W12?(B", S?) is strongly approximable
by maps in C*°(B", S?), if and only if d(u*wg2) = 0 in the sense of distributions. Here
B" is the n-dimensional unit disk. The same result holds for the space W1?(B", SP)
for any other integer p (See [6]). Thus, the “local” topological obstruction for maps in
WP(M, S?)) can be defined as a current :

Definition Let p < n and u € W'P(M, SP)). The topological singular set of u, S, €
Dy_p)-1(M), is the current defined by

S.(a) == / uw A do Vo € DI,
M

Here D¥(M) is the set of smooth k-forms on M with compact support (See[16], 2.2.3) and
w is any [p]-form on SW for which [, w = 1.

Remark 1.1 Recent developments by F.Hang and F.H.Lin [20] showed that the condition
“S, = 07, though being necessary for the strong approzimability of a map u € WHP(M, SP)
by smooth maps in this space, is not always sufficient due to some obstructions lying
in the “global” topological structure of certain domains. Precisely, there is a map u €
HY'(CP?,5%) for which d(u*w) = 0 while u is not in the strong closure of smooth maps in
H'(CP? S?).

Two important problems about S,, u € W'P(M, SP), are still open for almost every
integer p. First, we do not know whether S, is always the boundary of an i.m. rectifiable
current, i.e. if it is an integral flat chain. This has been proved for p = 1 or n — 1 (See
[16], vol II, section 5.4.3) or p = 2 (See [30]). The second problem arises if the answer to
the first one is positive. Set for S, any integral flat chain in M of dimension k,

m;(S) :=inf {M(T); T € Rigs1(M), OT =S, },

the minimal mass of i.m. rectifiable currents taking S as the boundary. Then the ques-
tion would be to determine whether m;(S,, — S.) — 0 if u,, converges strongly to u in
WHP(M, SP). The answer is yes for p =1 or n — 1, (See [5] and [16], vol II, section 5.4.2),
while we do not know whether this is the case for the maps in H'(B*, 5?). We encounter
this case when considering the problem of relaxing the Dirichlet energy for maps into S2.
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As we saw in [30], generalizing to higher dimensions the algebraic formula given in [5] for
the relaxed Dirichlet energy from a 3 dimensional domain into S? is possible if we prove
that m;(S,) is strongly continuous on H*(B", 5?).

Another case where the second problem shows its importance is when we try to de-
fine a topological singular set for maps in W'?(B" N). In [6], F.Bethuel, J.M.Coron,
F.Demengel and F.Helein gave a discription of this set for when N is ([p] — 1)-connected
and 7, () is torsion free. Considering the problem for when 7, (/) has torsions, the
author and T.Riviere ramarked that we can define this set as a flat 7, (/V)-chain if these
two questions come to have a positive answer for [p]. As an example, the topological
singular set of any map in v € WH(B", RP?) is a flat Zy-chain, and is equal to zero if
and only if u is a strong limit of smooth maps in WHH(B", RP?) (See [31]).

In this paper we solve these problems for p = 3 and 7. The particularity of these two
cases reside in the fact that S® and S7 (alongside with S') are the only spheres which
have this property : There is a smooth multiplication

K SFx Sk — Sk
such that the induced homotopic homeomorphism
ky : Tp(SF) @ mp(S*) — mp(SF)

is the sum of elements in 7 (S*). As a result, the method we use does not work for other
values of p. Here is our main result

Theorem 1 Let p = 3 or 7, p < n = dimM and v € W"P(M,SP). Then S, is the
boundary of an i.m. rectifiable current in M. Moreover, m;(S.,,, —S.) — 0 if u,, converges
strongly to w in WP(M, SP).

If M is not closed we set
1, o 1, C
Wwp(M,N) ={ueW"P(M,N);u=¢ ondM}

where ¢ is a given boundary data. We assume that ¢ is in C*°(0M, N) and can be
extended into M by a smooth map. Then we have

Theorem 1 bis Let p =3 or 7, p < n =dimM and u € Wi’p(M, SP). Then S, is
the boundary of an i.m. rectifiable current in M. Moreover, m;(S,,, — Su) — 0 if up,
converges strongly to u in WP (M, SP).
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Considering the question of topological singular sets, using the methods of [31], we have
these corollaries. The readers may refer to [15], [38] and [31] respectively for definitions
and more details.

Corollary 1.1 Let B" be the n-dimensional unit disk, n > [p| = 3 or 7, and assume that
N is a closed ([p] — 1)-connected riemannien manifold of dimension equal or greater than
[p]. Then S,, the topological singular set of any uw € W'P(B"™, N), is well defined as a flat
T (N)-chain and the flat norm of S,,, — S, converges to 0 if u,, — u in WH*(B", N).
Moreover u is a strong limit of smooth maps in WHP(B™, N) if and only if S, = 0.

Remark 1.2 The cases where N is not ([p]—1)-connected are more involved. The readers
can refer to [24], where T. Riviére and R. Hardt have treated the relatively difficult case
of W3(B*1, 5?).

Corollary 1.1 bis Let B™ be the n-dimensional unit disk, n > [p] =3 or 7, and assume
that N is a closed ([p] — 1)-connected riemannien manifold of dimension equal or greater
than [p]. We assume also that ¢ € C*°(0B™, N) is smoothly extendable into B™. Then u
is a strong limit of smooth maps in Wé’p(B", N) if and only if S, = 0.

2 Some known facts

Definition 2.1 We say that u € W'P(M, SP) is in R®P(M, SP) if u is smooth except on
B =", 0:UBy , a compact subset of M, where H"?~'(By) = 0 and the oy, i =1,--+,m
are smooth embeddings of the unit disk of dimension n —p — 1. Moreover we assume that
any two different faces of B, o; and o, may meet only on their boundaries.

Theorem 2 (Bethuel,[2]) R*?(M, SP) is dense in WHP(M, SP) for the strong topology.

We recall the definition of S, the topological singular set of u :

Definition 2.2 Let u € W'P(M, SP). We define the current S, € D,_,_1(M) to be the
current defined by

Su(a) := /Mu*w A do Va € D" P H(M). (2.1)

Here D*(M) is the set of smooth k-forms on M with compact support (See[16], 2.2.3) and
w 1s some p-form on SP for which fsp w=1.
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Let w; and wy be two such forms on SP. We have w; — wy = df where [ is some
smooth 1-form on S? extendable to RPF!. Let u € W'P(M, SP) and consider a sequence
Uy, € C(M,RPT) converging to u in WP, We have

u;,(d8) = d (u;, )

and by passing to the limit, we observe that this holds true for u in the sense of distribu-
tions. This proves the independence of S, from the choice of w as we have :

d(u*wy) — d(u*wy) = du™(dB) =0

in the sense of distributions. Now the existence of the integral (2.1) is a direct consequence
of the following inequality :

1
lu*w| < pW|Vu|p a.e. on M (2.2)
p

where «, := |SP| and a,w = wy, is the standard volume form of SP.

We shall give a description of S, for u € R*P(M,S?). Clearly if u is smooth a
standard operation on pull-back yields

d(u'w) = u*(dw) =0
and as a consequence we deduce for u € R*P(M, SP) that
sptS, C B.

Definition 2.3 Let u € R®P(M,SP) and let B = |Jo; U By be the singular set of u.
Suppose that each o; is oriented by a smooth (n — p — 1)-vectorfield ¢;. For a € o; let
N, be any (p+ 1)-dimensional smooth submanifold of M, orthogonal to o; at a. Consider
the embedded (p + 1)-disk M, s = Bs(a) N N, oriented by the (p + 1)-vectorfield M, such
that (—1)""P&;(a) A M, is the fized orientation of M. Then the topological degree of u on
the p-dimensional topological sphere ¥,5 = OM, s is well defined and is independent of
the choice of a and N, for § small enough. We call this integer the degree of u on o; and
denote it by
deg,.u .

Remember that any k-dimensional rectifiable subset M of M considered with a mul-
tiplicity # and oriented by a unit k-vector field £ defines a rectifiable current as follows

(M, 0,8)(a) = /M <&a>0dHY Yo € DF(M).

We should recall some useful results.
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Lemma 2.1 If u,, is a sequence of maps in WYP(M, SP) converging to u, S, tends to
S, in the sense of currents. That is, for any «, smooth (n — p — 1)-form in M, we have

S, = lim S, ().

m—00

Equivalently
my(Su,, —Su) = 0 if Um —u in W'P(M,SP),

where m,.(S) is the minimal mass of normal currents taking S as their boundary.

Lemma 2.2 Let M be a compact riemannien manifold. Then for any u € R®P(M, S?),
S, is the integer multiplicity rectifiable current Y " (degyu) 7(0;,1,0;). Meanwhile, if
OM is empty, or if ulsns is homotopic to a constant, then S, is the boundary of some i.m.
rectiftable current of finite mass.

The reader can find the proofs of these statements for the case p = 2 in [29] and [30],
M being a domain in R™. The proofs are essentially the same for other values of p and
any smooth compact manifold.

Remark 2.1 By lamma 2.1, theorem 1 would come true for any p if Zfr((g)) < C, for
any integral flat (n —p — 1)-chain S in M. The existence of such a constant is an open
problem except for when dim S = 0,n — 2, where we have the equality m;(S) = m,(S)
for any integral flat chain. Refer to [1], [10], [12], [14] and [16], vol II, section 1.3.4 for

proofs and different aspects of the problem.

Theorem 3 (Almgren, Browder and Lieb, [1]) Let M be as above, u € R®F(M, S?),
such that either OM is empty or u|gp is constant, then

1
. - p
m;(S,) < /zap/M|Vu| dvolyy

3 Proof of theorem 1

We identify S? (respectively S7) with the unit spheres in quaternions (respectively Cayley
numbers) and observe that they inherit the product structure on these spaces. If we show
the quaternion product (respectively Cayley product) by k(z,y) := x ey, k will be a
smooth map from S* x S*¥ — S* k=3,7, and will satisfy this condition : The induced
homotopic homeomorphism

ky : Tp(S*) @ mp(S*) — mp(SF)
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is the sum of elements in 7,(S*). The spheres of dimensions 0,1,3 and 7 are the only
spheres for which such x exist (See [8], section VI.15, p. 412). By 27! € S* we mean the
right inverse of z € S*. Set for u,v € W?(M, SP) and x € M

uev !(z):=u(z)ev(z) "

Lemma 3.1 Let u,v € W'?(M,SP), p=3,7, then uev=' € W'P(M,SP). Moreover if
{un} is a strongly convergent sequence in WHP(M, SP), then E(uy, u; ') — 0 if m,k —
+00.

Proof : Straight computations show that
Viwev ™) =Vuev ! —ue(v'e(Vvev ™))
which yields
IV(uev™)| < |Vu| + |V

as |u| = |[v| = 1. Thus uev™! € WHP(M,SP). The smoothness of operations and the
Lebesgue dominant convergece yields the second part of lemma. [ ]

Lemma 3.2 If u,v € R®P?(M,SP), p=3,7, then uwe v~ € R®P(M, SP) and we have
Suov*1 = Su - Sv (31)

Proof : That uev™ € R®P(M,SP) is a direct result of smoothness of the product.
The relation (3.1) can be deduced from lemma 2.2 and the fact that for any (n —p — 1)-
dimensional face of B(u e v~!) we have :

deg,(uev™') = deg,u — degyv.

Now we present the proof of theorem 1. Let u € WP(M, SP), p=3,7. By theorem 2
there exists a sequence of maps u,, € R®P?(M, SP) such that u,, — u in W'P(M, SP). By
lemma 3.1, there exist a subsequence u,,, of u,, such that

/2
-1 PP ay
E(ty, ® umk+1) < PRI

Meanwhile, using theorem 3 and (3.1), we observe that there is an i.m. rectifiable current
L, such that

OL, =S =S

—1 —_
Umy, .u"”kJrl Umy, Ump 41

1
M(Ly) < o
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Choose a finite mass i.m. rectifiable current Ly such that 0Ly = S and put

+oo
L:=L,— ZLZ-.
=1

So M(L) < 400 and L is also an i.m. rectifiable current. Observe that if

k
Ii=TLo— ) L
=1

Umq

then
oI, = Sumk+1 .

Meanwhile M(I;, — L) — 0. This, using lemma 2.1, yields
JL =8S,.

(So far we have proved that S, is the boundary of some i.m. rectifiable current in M).
Moreover,

m;(S -S.,) <M, -L)—0 as k— +oc0o.

Ump g

Consequently, for any convergent sequence u,, € R°P(M, SP),
m;i(Su,, — Su) — 0 (3.2)

As a result, for any u € WHP(M, SP), m;(S,) < CE(u) for C > 0 independent of u.
Meanwhile, by the strong density of R°P(M, SP) in W1P(M, SP) and lemma 2.1, lemma
3.2 is true for maps in W'P(M, S?) too. Using the same method and the proved facts
about S,,, we can prove (3.2) for any convergent sequence u,, € WHP(M, SP), i.e.

mi(Sy, —Su) — 0 if wuy —u in WHP(M, SP).

Theorem 1 bis is proved following the same ideas.

The author is grateful to Tristan Riviere for having drawn his attention to this problem.
This research was carried out with support provided by the French government in the
framework of cooperation programs between Université de Versaille and 1.P.M., Institute
for studies in theoretical Physics and Mathematics, Iran.
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We consider the problem of topological singularities for Sobolev maps into closed
manifolds. Using this approach, we prove that smooth maps are weakly sequentially
dense in the Sobolev space W12(B", N) for any closed manifold N whose second homotopy
group is of finite type.

1 Introduction

1.1 Aspects of the problem

Questions regarding the density of smooth maps in a given function space between
manifolds arrised in calculus of variations. It is becoming a field on its own with widely
open problems.
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The most studied function spaces are the Sobolev spaces W1?(M, N) of maps from
a compact n-dimensional manifold M into a closed riemannien manifold isometrically
embedded in some RV :

W'Y (M,N) = {ueW"(M,R"); wu(z) € Nae z€M}.

In [36], [7], and [2], respectively R.Shoen, K.Uhlenbeck, X.Zheng and F.Bethuel shed
light on the approximability or non approximability by smooth maps of maps in W (B™, N),
where B” is the n-dimensional unit disk. They showed that the lack of approximability
is due to the existence of “topological singular set” for u which is characterized by local
realizations by u of non-zero elements of 7, (/N) around points in B", where [p] is the
integer part of p. (The notion of topological singular set is still vague and remains to
be precisely defined). In particular they proved that if 7, (/N) = 0 then any map in
W1P(B", N) can be approximated by smooth maps for the strong topology.

In the case 7 (N) # 0, the best one can do is to approximate the maps in W'?(B", N)
by maps which are smooth away from a finite union ¥ = (JI_, ¥; of smooth (n—p—1) di-
mensional submanifolds of B"”. This set of maps is called R>*?(B™, N). A map v €
R*P(B", N) realizes elements o, of 7,(IN) on the [p|-spheres centered at any point
x € ¥(v) and contained in the normal [p] + 1 plane to T, %(v). If for some = € ¥(v), o,
is non trivial, then v can not be approximated by smooth maps in the strong topology
(See [2]). Furthermore one can assign to v a 7, (/N)-chain which is carried by X(v) with
“multiplicity” o, at each point = of ¥(v). This 7, (/N)-chain can be called the topological
singular set S, of v in R>*?(B", N). One of the major questions would be to under-
stand the behavior of S, for a sequence of maps v,, € R*?(B", N) converging to any
u € WHP(B", N) and eventually to prove a “flat-norm” convergence of S,,, to a unique
flat 7y, (IV)-chain S,, we could call the topological singular set of u.

In this paper, we prove the convergence of the 7, (/NV)-chains S, for any convergent
sequence of maps in W'P(B", N) when [p] =n — 1 if N is ([p] — 1)-connected, i.e.
7T1(N) T— e e . — ﬂ-[p}—l(N) = 0

or when [p] = 1if m; () is abelian. The problem is still open for almost every other value
for [p]. In fact, if we set for S, any integral flat chain in B” of dimension £,

m;i(8S) := inf {M(T); T € Ry1(B"), T =S, },

the minimal mass of i.m. rectifiable currents taking S as the boundary, the question would
be to determine whether m;(S,,, —S,,) — 0 if u,, converges strongly to u in Wh?(B", S?).
The answer is yes for p = 1 or n — 1, (See [5] and [16], vol II, section 5.4.2), while we do
not know whether this is the case even for the maps in H'(B*, 5?).

Meanwhile, the above program should not work in the described picture for any p and
N (See [24]). But one can ask also a weaker question : Does the flat norm of S, remain
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bounded as v,, — u? This is another problem we address in this paper about the uniform
boundedness of the mass M(T,,) of a minimal connection T,, (0T,, = S,,) as v,, — u. In
this paper we will restrict to the cases where p € N, m,(N) # 0, m,(N) =0for 1 < g <p
and when p = 1 we assume that 7;(/N) is abelian.

Related to this question is the problem of the weak density of smooth maps in
WhP(B", N). Although the density of smooth maps for the weak topology can be eas-
ily handled from the one for the strong topology (See [2] : Smooth maps are dense for
the weak topology if and only if p € N), the question of the density of smooth maps in
W1P(B" N) for the sequentially weak topology , where p € N, is more involved : For
p €N, m,(N) # 0, does there exist for any u € WP(B™, N) a sequence u,, € C*°(B", N)
such that u,, — u in W1?? The case N = S?, p = 2 was treated by F.Bethuel, H.Brezis,
J.M.Coron and E.Lieb in [10], and [3]. F.Bethuel mentioned that the answer is yes for
N = 57 p > 2in [2]. In [19], P.Hajlasz has proved that the answer is yes when N is
(p — 1)-connected. No counter example to the above stated question is known.

As we will explain below the control of the mass of the minimal chain connecting
S.,, for v, € R*P(B™ N) converging strongly to u permits to give a positive answer to
the sequentially weak density of smooth maps. This appraoch is different from the one
used by P.Hajlasz and can be used for proving his theorem and some other partial results
regarding the weak sequential denstiy of maps in W1?(B", N).

Remark 1.1 We do not have always the equi-boundedness of the mass of minimal connec-
tions for S, when v, — u in WHP(B", N) : For instance, there exist v,, € R>*°(B*, 5?)
such that

Um

inf {M(T,,); T,, is a Z — chain such that T,, =S, } — 400

as vy, — u in WH3(B4 S?) (See [24]). However it is not excluded that the smooth maps
be sequentially weakly dense in W1'3(B*, 5?%).

Recent developments by F.Hang and F.H.Lin in [20] showed that one should be careful
while considering a generic smooth compact manifold M as the domain. Specially there
are cases when the condition “S, = 07 is not sufficient to guarantee the strong approxima-
bility of u by the smooth maps in W1P(M, N), even when N = SP. This happens because
the condition S, = 0 is a local one and can not “detect” probable “global” topological
obstructions in a topologically non-trivial domain.

1.2 Main results

Our first main result is the following :

Theorem 1 Let B" be the unit disk in R™. Assume that [p| = 1 and 7 (N) is abelian or
[p] =n—1 and N is a closed ([p] — 1)-connected riemannien manifold of dimension equal
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or greater than [p]. Then S,, the topological singular set of any uw € WHP(B™ N), is well
defined as a flat my (N)-chain and the flat norm of S,,, — S. converges to 0 if Uy, — u in
WtP(B", N). Moreover u is a strong limit of smooth maps in W1P(B"™, N) if and only if
S, =0.

Remark 1.2 The approach used in ([16], vol 11, section 5.4.2) for defining a topological
singualarity for Sobolev maps considers only the real homological singularities. This is

not adapted when the homotopy type singularities are not seen by the real homology, as in
the case WH1(B" RP?) discussed below.

Remark 1.3 We can extend these results to [p] = 3 or 7. This will be treated in a
forthcoming paper.

We may also ask the same questions about the spaces of maps with fixed boundary
value : For ¢ € C*°(0B", N), admitting a smooth extension ¢ : B" — N, we define

Cy(B",N):={ueC*B",N); u=¢ondB"}

and
W)P(B" N):={ueW"(B",N); u=¢pae ondB"}.

Theorem 1 bis Let B" be the unit disk in R". Assume that [p] = 1 and 7 (N) is abelian
or [p] =n—1 and N is a closed ([p] — 1)-connected riemannien manifold of dimension
equal or greater than [p]. We assume also that ¢ is smoothly extendable into B". Then
u € W)P(B", N) is a strong limit of smooth maps in C*(B", N) if and only if S, its
topological singular m (N )-chain, is zero.

In this paper, we give a new proof of this theorem :

Theorem 2 (Hajlasz, [19]) Let B™ be the unit disk in R". and N be any k-dimensional
closed manifold. Assume that for some integer 2 < p <k, N is (p — 1)-connected, i.e.

(N) =0 for q <p.

Then for every u € WIP(B"™ N) there is a sequence of maps u,, € C*°(B"™, N) such that
Uy, converge weakly to u in WHP(B™, N).
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Remark 1.4 The result can also be deduced from [6] when m,(N) is torsion free, which
is not always the case. As an example, the Stiefel manifolds Vi,(R™), when n — k is odd,
are (n — k — 1)-connected and m,_(Viy(R™)) = Zy is not torsion free (See [25]).

Meanwhile, our method has this privilege that it can be used also for the fixed bound-
ary case. This result is not mentionned by P.Hajlasz and can not be deduced directly
from his proof.

Theorem 2 bis Let N be a closed smooth manifold. Assume that for some integer 2 <
p < k, N is (p — 1)-connected. Also assume that ¢ : OB™ — N is a smooth map,
smoothly extendable to B"™. Then for every u € Wé’p(B", N) there is a sequence of maps
Uy, € CX(B", N) such that u,, converge weakly to u in WP(B",N).

We can extend the above results on the sequentially weak density of smooth maps
to the Sobolev spaces WH?(M, N) when M is a smooth compact manifold of dimension
greater than p and N satisfies the above conditions, using the same methods. But the
proofs should be modified to surmount the obstacles related to the “global” topological
structure of M.

If p = 1, we do not prove that smooth maps are sequentially dense in W11(B", N).
Meanwhile, assuming that m;(N) is abelian, by controling the mass of connections for a
convergent sequence in W11(B" N), a weaker result is obtained. The non-abelian case is
more involved and will be treated in a forthcoming paper.

Definition 1.1 Let Q be a domain in R™ and let u,, be a bounded sequence in L'(S2).
U, 15 said to converge in the biting sense to u € LY(Q) if for every e > 0 there exists a
measurable set E C Q such that u(E) < € and u,, — u weakly in L'(Q\E).

Theorem 3 Let B™ be the unit disk in R™ and N be any closed manifold. Assume
that w1 (N) is abelian. then for every w € WH'(B",N) there is a sequence of maps
Um € C®(B", N) such that Vu,, tend to Vu in the biting sense.

Theorem 3 bis Let B"™ be the unit disk in R™ and N be any k-dimensional closed man-
ifold. Assume that ¢ € C*(0B", N) is smoothly extendable to B™. If m(N) is abelian,
for every u € W;’l(B”, N) there is a sequence of maps u,, € C’g"(B", N) such that Vi,
tend to Vu in the biting sense.
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Further observations showed that we can solve the problem for any closed manifold N
when p = 2 if (V) is of finite type.

Theorem 4 Let B" be the unit disk in R™ and N be any closed manifold for which mwo(N)
is finitely generated. Then for every u € WH2(B™ N), there is a sequence of smooth maps
Uy : B® — N converging weakly to u in W12,

Theorem 4 bis Let N be a s above. Assume that ¢ € C*(0B™, N) is smoothly ex-
tendable to B™. Then for every u € W)*(B", N), there is a sequence of smooth maps
U, € CF(B", N) converging weakly to u in wht2,

For some technical reasons, we will prefer to replace in the proofs the domain B"™ by
the n-dimensional cube C". Naturally this does not affect the results as these two domains
are diffeomorph to each other.

2 Preliminaries

2.1 Flat chains over a coefficient group

Let G be an abelian group. |.| : G — R7 is called a norm on G if

())Vg e G, |—g|l=1lgl,
(ii)Vg,h € G, |g+h| < |g| + ||,

(7i1) |g| = 0 if and only if g = 0.

We assume that G is a complete metric space with respect to the metric d(g, h) := |g—h/|.

Let K be any compact convex subset of R". We introduce the spaces of polyhedral
k-chains, flat k-chains and finite mass flat k-chains in K, with coefficients in G. The
readers can refer to [15] and [37] for more details.

Definition 2.1 Py(K,G) is the space of all G-linear sums of oriented k-dimensional
polyhedras in K. For P =", gi[lo;]] € Pe(K,G), where g; € G and 0;, i = 1,...,m,
are non-overlapping k-dimensional polyhedras, we define the mass and the boundary of P
respectively to be :

M(P) := Z |gi| vol(a),

OP = i 9:0[[0:]] € Pe_r(K,G).

i=1
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Definition 2.2 Let P € Py be a polyhedral G-chain. The flat norm of P is :
F(P):=inf{M(P —0B)+M(B); B€ Prs1}.

Definition 2.3 The space of flat k-chains, Fr(K,G), is the F-completion of Pr(K,G).
For A € Fi(K,G), we define the mass of A to be :

M(A) := inf {liminfM(Pn) . P, T A, P, e Py(K.G) } .

n—oo

M (K, Q) is the set of flat k-chains in Fi,(K, G) with finite mass and is a complete metric
space with respect to the flat norm. Finally, for Q) being any open set in R™, we define
Fi(Q, G) to be the union of all the Fi,(K,G) among convex compact sets K C €.

We recall some usefull results :

Lemma 2.1 The boundary map 0 : Py — Pr_1 is continuous with respect to the F-norm
and so it can be extended to a unique F-continuous map O : Fp — Fr_1.

Lemma 2.2 Any homomorphism x : G — H between groups, which is continuous with
respect to their norms, induces a F-continuous group homomorphism

X« Fu(K,G) — Fp(K, H).
Moreover, x, commutes with 0, i.e. :
X«(0A) = 0x.(A), VA€ Fu(K,G) (2.1)

and

M(y.(A)) < CM(A), VAe My(K,G)
if [x(9)l < Clg| for all g € G.

2.2 The subspaces R*”(C", N) and R*?(C", N)

Definition 2.4 Let C" = [—1,1]" be the unit cube in R". w € W'Y(C" N) is in
R®P(C", N) if u is smooth except on X(u) = Y .| X;, where fori =1,...,r, ¥; is a
subset of a linear subspace of R™ of dimension n —p — 1 and 0%; is a subset of a inear

subspace of dimension n —p — 2.

Theorem (Bethuel, [2]) R>P(C", N) (respectively RP(C*,N)) is dense in W'P(C", N)
(respectively Wé’p(C", N)) for the strong topology. [ |
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Let u € R°?(C", N). There is some compact subset of C", B = |/, 0;, where the 0;,
i =1,...,p are non-overlapping (n — p — 1)-dimensional polyhedras, such that (u) C B
and that every n — p — 2 dimensional face of B belongs to at least two ¢;. Moreover we
can assume that any two different faces of B intersect only on their boundaries. Let

x| == Z,Brllauxn|x,~| fore = (xq,...,2,) € R"

and for 6 > 0 put
VOi={y el |y Bl <4}

where
|y — Bl| := inf{|ly — z[|; z € B}.

Also for § > 0 and some orthonormal base {ef, ..., e;, 11} orthogonal to o;, set

.....

p+l

5. i,

o] = :c—l—g tie;; v €0y, max [|t;] <6
— J=1,..,p+1
‘]:

and define m; : af — 0; to be the smooth projection

For &, small enough, we consider a lipschitz projection 7 : V% — B with the following
properties :

(i) VO = U, V?, where the V? := n=!(0;) N V° are non-overlapping n-polyhedras in
R™ which intersect only on lower dimensional faces.

(ii) There are lipschitz diffeomorphisms
fi Vo — o
such that
fi(V9)=a! Vo < by

7T|Vi5 = T7; © fl|V15

fillz, m(2)]) = [fi(2), 7(2)] Vo€V

where by [p, ¢] we mean the segment joining the two points in C™.
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Definition 2.5 Fory € V°\B, let hs(y) be the unique point on OV which is on the ray
from w(y) toy. Then naturally 7(hs(y)) = 7(y) and hs is locally lipschitz on V°\B. We

set
u(hs(y)) fyeV?

us(y) == (22)
u(y) otherwise

Definition 2.6 We set
R>P(C",N) :={us; u € R®P(C",N)}
and we say u is radial if u € R*P(C", N).

By computing the integral of us on V;° by the mean of f; as new coordinates we observe
that for ; > 0 sufficiently small, there is some constant K, depending only on B, for

which : K
/ Vap < & / Vul?
8\/5 (51 V61

/ |Vus|? §5K/ |Vul?
Ve avs

for ¢ € I, a positive measure subset of [0, d1].

Remark 2.1 As a result, R°P(C", N) is also dense in W'P(C", N) for the strong topol-
0gy.

(2.3)

We recall that there are canonical isomorphismps between m,(N, z) and m,(N,y) for
z,y € N if and only if 7 (N) is abelian for p = 1 and 7 (N) = 0 for p > 1. We assume
that these conditions are satisfied so that we can talk about the homotopy classes of maps
from S? into NV as elements of m,(IV).

Definition 2.7 Letu € R*P(C", N) and X(u) C B =\, 0 be its singular set. Assume
that each o; is oriented by a smooth (n — p — 1)-vectorfield &;. For a € o;, let N, be the
(p+1)-dimensional plane orthogonal to o at a. Consider the (p+1)-disk M, s = Bs(a)NN,
oriented by the (p + 1)-vector M, such that &(a) A M, = &gn. u is continuous on the
p-dimensional oriented sphere X, 5 = OM, 5. The homotopic singularity of u at o; is

[uv Ui] = [u‘za,(s]ﬂp(N) ’ (24)
i.e. the homotopy class of ulx, ; in m,(N), which is independent of the choices of a and 6.

Definition 2.8 We define the topological singularity of u € R>P?(C", N) to be the m,(N)-
polyhedral chain
w
Sy =Y [u,0][[0:] € Pupr(C", my(N)),
i=1
where Y(u) C B =/, 0; is its singular set.

Remark 2.2 u suffices to be continuous on C"\B for S, to be well defined.
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2.3 A useful lemma

Let B! be the unit disk in R!. We denote
U'={(z,y) eB'xB';z#y}

and
UL = {(:)s,y) cU'; y ¢ B(x,0) }

Definition 2.9 For (x,y) € U', we define p(x,y) to be the unique point on OB' which is

on the ray from x to y.

Clearly p is well-defined and smooth on U!. As U! is compact, we have for some

constant C'(1,0) > 0 :

sup |Vp(z,y)| < C(l,0) < +oo.
(w.)€U

We have

Lemma 2.3 Let 1 < p < be an integer. Then
[ eyl de < Cpo)
B(0,1-5)
when C(l, p,d) depends on [, p and § and not on y.
Proof : Let z € B(0,1 —¢). We distinguish two cases :

(i) y ¢ B(z,d). Then (z,y) € U} and we get

201, 6)
ly — x|

Vyp(z,y)| < C(1,0) <

(ii) Otherwise y € B(z,d) C B!. Then

p(w,y)=p<y_x5+x,fv)

ly — |

and so

s1C(1, )

—x ol

ly — x|
as

<y_$5+x,x> e UL
ly — x|

Using the inequalities (2.6) and (2.7), the lemma is proved.

ly — x|’

(2.5)

(2.6)
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3 An example : W) (C* RP?)

3.1 Notations
Let f:5% — RS be the map :

2 2 2
flz,y,2) = (£w2 : £@/2 : V2, L TY Y2, 2T). (3.1)
2 2 2
f induces an embedding of the 2-dimensional Real Projective Space, RP?, into RS. A
property of this embedding is that the minimum length of the cycle homotopic to the

non-zero element of 7 (RP?) ~ Z, is 7, independent of the choice of the base point. We
define a norm on the 2-group 7 (RP?) :

la] ;=1 if a#0, :=0 otherwise. (3.2)

Also we define the map g : B> — RP? as follows :

g(x1,29) = f (xl,mg, 91— (22 + x%)) . (3.3)

Now let wg = f(1,0,0) € RP? and put
g :f({(x,y,z) e S?: z:O}).

G is a length minimizing generator of 7 (RP?) passing through wy. For w € RP?\G we
define the projection

Pw : RPP\{w} — G
as follows :

pu(w') = g((p(g™ (w), 7' () Vu' € RP*\{w} (3.4)

where p is the map given in definition 2.9. Observe that p,, is well defined for w’ € G as
in this case we would have p,(w’) = w’ independent of the choice of g~!(w’). Let us fix
e > 0 such that

Vol(RP*\G.) > 2r,

where

G- :={y eRP*; d(y,G) < ¢}
is the e-neighbourhood of G in RIP2.

Lemma 3.1 Let G and p,, be as above. Then :
(1) pw : RP2\{w} — G is well defined and smooth.
(ii) For any cycle G’ C RP*\{w} we have :

1G] @2y = X([Pw(G)]mi(9)) (3.5)
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where x : m(G) =~ Z — m (RP?) ~ Zy is an onto homomorphism.

(iii) For any w' € RP? we have :
/ |V (w')| dw = Cy = Cy(e) < +o0. (3.6)
RP2\G,

Proof : We observe that g=! is well defined and smooth on RP?\G, while in a neigh-
bourhood of G, p,, is a projection along smooth curves orthogonal to G. This proves the
first part of the lemma. Now observe that the injection map i : G — RP? induces a
homomorphism

x : m(G) — 1 (RP?)

which is onto as [G] is the generator of 7, (RP?). So, since p,, is smooth on RP*\{w}, we
get

G m®p2) = [Pu(G)]m@p2) = X([Pw(G)]mi(6))
which proves (3.5).

Now let
N, = ]RIPQ\Q6

and observe that for g : B> — RP? as in (3.3) :
(i) Nej2 = g(B(0,1—=0)), for some 0 < 6 < 1,
(i) g|B(0,1-s) is an embedding.

We prove (3.6) : Let w € N. C N.jo. If w' ¢ G,/ then since g~! is smooth on N s,
using (2.5) and (3.4), we get for some Cy(d) >0 :

/ |Vpe (W] dw < / |V (w")] dw < Cy(9).
€ N5/2

If not, the map p : N, x 65/2 —G:
plw, w') = py(w)

is smooth on its compact domain because N, N G. J2 = (. So there exists K > 0, indepen-
dent of w, w’ for which
Vpw(w)| < K

if w" € G.2, w € N.. This completes the proof of (3.6). |
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3.2 Study of RX'(C* RP?)

Let u € RX(C* RP?). We observe that S, € Po(C? m (RP?)) is is in fact the
sum » & [u, p;] [[pi]] where {p1,...,p,} are the singularities of u and [u, p;] is the class of
uw(OB(p;,d)) in 7 (RP?) for ¢ small enough.

Definition 3.1 I € Fy(C% m (RP?)) is a connection for u if O = S,,.

Proposition 3.1 For u € RY"'(C*, RP?), there exists I € P1(2,m(RP?)) such that

ol =S,
(3.7)
M(I) < C’/|Vu| +C
for some constant C' > 0 depending only on .
|

Remark 3.1 Any I € Py(C? 71 (RP?)) is a set of non oriented segments while M(I) is
simply the total length of these segments.

Corollary 3.1 For any u € RX'(C* RP?), there exists a connection I, € Fi(2, m (RP?))
of minimal mass which satisfies

M(I,) < C’/|Vu|+C’.

(Use the compactness result of [13], section 4.2.26, p. 432.) u

Proof of proposition 3.1 : First we assume that ¢ = wq is constant. Let u be a
map in R (C* RP?) for which S, = Y-, [u, p;] [[pi]]. Let A be the set of regular values
of w in RP?. By Sard’s theorem, H?*(A) = vol(RP?) = 4. We estimate the integral

J ::/ |V (pw o u)(z)| dx dw. (3.8)
RP2\G. JC?

We have by (3.6) :

Jg// \pr(u(a:))|\Vu(x)\dwdeCO/ Vul.
c2 JRP2\G. c2

As a result, considering (3.8), there exists some positive measure set W C RP?\G. such
that :

/ |V(pwou)| < @/ |Vu| for all we W. (3.9)
c2 2w c2

Since u is radial, for some regular w € ANW, u=(w) is a finite subset of C2. We have :
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1.
°1
o 0 :
a
O
1
1
RP?
c?
-1,
-1
2 0 pou
. 3
O
1 ll
1
S
c?

Fig.1

Projection of v into S*

Lemma 3.2 There exists w € W such that the map
ﬂ::pwou:C2—>(]

s in R;ﬁ)’l(cz, G). Moreover if we consider the additive group Z with its usual norm, for
some I € P1(C?,7Z), for which OI = Sg, the following properties hold :

L(f):inf{L(f’); I'e F(C27Z), aj/:sﬂ}

o (3.10)
LD < | vl
where L(I) is the Z-mass of I.
]

Remark 3.2 Observe that m(G) ~ Z. Moreover L(I) is the length of minimal connec-
tions connecting the singularities of u, introduced in [10].
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C2

Fig.2

Connections for v and for p, ou

For a proof of this lemma, see [11], propositions 1 and 2. Observe that the best con-
stant in inequality (3.10) is achieved by the mean of co-area formula as in [1].

Using lemma 3.2, we finish the proof of the proposition : Consider the homomorphism
x in (3.5). By lemma 2.2, x induces a group homomorphism

Xx - Pk(CQ,Z) — Pk(c2,7T1(R]P2)).

We consider I as in lemma 3.2 and we set I := y,(I). We deduce that

O = x.(Sa). (3.11)

Meanwhile, by lemma 3.1, part (i), we observe that, for all points p € C?, there exists §
small enough for which :

and as a result :
Su = x«(Sa)- (3.12)

For visualizing this phenomenon see Fig.1 where we compare the singualrities of u and
Pw © u. Comparing this with (3.11) we obtain

oI =8,.

Observe that |x(z)| < |z| for all z € Z, thus we have by lemma 3.2 :

M(1) = M. () < L) < = [ [V(pwou).

™ Je2

So using the inequality (3.9), we get

M(]) < CO/ V.
CZ

= 272



86 CHAPTER 1IV. TOPOLOGICAL SINGULARITIES AND CONNECTIONS

This completes the proof for constant boundary datas. In Fig.2 we have illustrated two
connections for u and one for p,, ou. We show how the minimal polyhedral connection for
u (the thin dashed segments) comes to be lesser in mass from the image of any connection
of py 0w under x, (the thick curves).

Now consider the case of non-constant ¢. We extend u over the cube
~ 1
C? = {x € R?; ||£L'||§§+€}

for some € > 0 as follows :
1/2 — ~
u(z) = ¢ (w :17) Vr € C*\C?,

while ¢ is the smooth extention of ¢ onto C?. Now u is constant on the boundary of C2

and we have clearly
/ IVl < / IVl + Cy
2 c2

where C depends only on . Applying the proposition to u on C? as above, we obtain
some I’ € P1(C?,Zsy) for which I’ =S, and M(I') < CE(u) + C. Now since spt S, is a
compact set in C?, we observe that there is an open U C C? such that spt S, C U and oU
is a convex polygone. Let II denote the lipschitz map which leaves U fixed and radially
projects points outside U onto its boundary. This map induces a map
H# . Pk(gz, ZQ) — Pk(cz, Zg)
which commutes with the boundary map. Moreover
M(IIy(I")) < lipII M(!I").

So as spt S, C U, it is easy to see that I := I14(I’) satisfies the conditions of proposition
3.1. ]

Now we present another important result concerning the maps in R (C*, RIP?). The
same singularity removing proposition was proved in [3] for H'(B3, S?).
Proposition 3.2 Let I € Py(C*, m(RP?)) be a connection for u € RZ(C* RP?). Then
there are maps vy, € C°(C*, RP?) such that

( Uy = u on C\K,,

1
K| < (3.13)

1
/\vvm|g/ V| + OM(I) + -
\ c2 c2 m

for some constant C' > 0 independent of u.
|

This proposition is a special case of proposition 5.1 which is proved in the next section.
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3.3 Topological singularities for maps in W117$(C? RP?)

We give a proof for theorem 1 for M = C?, N = RP? and [p] = 1. Let u be a map
in WP(C? RP?) such that [p] = 1. We intend to define S,, the topological singular
chain of u as a flat Zs-chain. In fact we are to prove that for any sequence of maps
U, € RP(C?,RP?) C R™1(C? RP?), S,, is a convergent sequence in Fy(C?, Zy) and
that the limit is independent of the choice of the sequence ,,.

Let u,, be such a sequence. Set as in (3.8)
I = / |V (pw o u)(z) — V(pw © up) ()| do dw.
RP2\G. JC?

We are to prove that J,, — 0. First observe that for fixed z € C?
[V (pw o u)(x) = V(pu 0 un)(@)] < C(|Vpu(u())] + [V (un(2))]) € L'(RP*\G.)

(See 3.6). Now, since V(py, o u,,) converge for almost every w € RP?\G. to V(p, ou), by
Lebesgue dominant convergence we get

[ Vo)) - Voo )@ do -0
RP2\G.
for almost every x € C2. Also we have
/ [V (pw 0 w)(x) = V(pu © ) (2)] dw < Co(e)(| V()] + [Vun|) € LH(C?).
RP2\G,

Thus, again using the Lebesgue dominant convergence, we obtain that J,, tends to 0 for
m — +00. As a result, there exists w € RP?\G, such that

Puw O Uy — Dyou in WHHC? S
and that w is a regular value for all u,,, i.e.
Pw © Uy, € R™(C?,SY).

Meanwhile, any flat chain with multiplicity in Z is also a real current, defining a dual
functional on the space of compactly supported smooth differential forms. Now if we set
Sp.ou to be the real O-current (distribution) defined as follows :

1

T o

Spoul() : /02 (pw o w)*(df) Ada Vo € C°(C* R),

we get
mT(SPwoum - Spwou) - 0
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where by m,.(S) we mean the minimal mass of normal currents getting S as their boundary
(See [16], vol IT, section 5.4.2, theorem 2). Moreover, for a 0-dimensional integral flat chain
S in R” the minimal i.m. rectifiable current taking S as the boundary is also the minimal
real current, i.e. we have

my(S) = my(S) := inf{M(T); T € R,(R"), IT =S}

(See [14]). As a result, S, o, is the boundary of some i.m. rectifiable current (S, 0. €
Fo(C* 7)) and we get

f(spwoum - Spwou) S mi(spwoum - Spwou) — 0.
Using lemma 2.2 and (3.12) we obtain that the flat Zy-chain
Su = X«(Spuou) = lim X.(Sp,ou,) = lim S,

m—0o0

is independent of the choice of w and that F(S,,, —S,) — 0. Since any two sequences
converging to u can be restructured to a single converging sequence, S, is independent of
the converging sequence u,, too.

Now suppose that S, = 0. Consequently for any sequence of maps u,, converging to
u in WHP(C?, S1Y), there is polyhedral Z,-chains I,,, such that

M(I,,) — 0

and that spt (91, — S,,,) C 0C? (This is what we call a connection when we do not fix
a boundary data). Using the same method as for the singularity removing proposition
3.2, we prove the existence of a sequence of smooth maps v,, : C?> — RP? which converge
to w in W' (Here we use the fact that M(I,,) — 0). Consequently, u is homotopical
to constant on any generic 1-skeleton of C2. Using this and referring to [2], the proof
of theorem 1, we can approximate strongly u by smooth maps in W'?(C? RP?). This
completes the proof of theorem 1 for this special case. [ ]

3.4 Study of sequential weak density in W'(C* RP?)

We prove theorem 3 bis for n = 2 and N = RP* : For every u € W1'(C* RP?), there
are u,, € C°(C? RP?) such that u,, — u in L'(C?) and Vu,, converge in the biting sense
to Vu.

Proof : First we approximate u by a sequense uy € Rf;o’l(Cz, RP?) (See remark 2.1).
Passing to a subsequence if necessary, we can assume that energies of u; are bounded
by the same constant. So, by proposition 3.1, there are polyhedral connections I}, for wuy
such that their masses are equi-bounded. Using proposition 3.2, we construct maps wy ,,,
which converge almost everywhere to u;, and have equi-bounded energies too. As a result,
Up.m tend in L' to u and their gradients are equi-bounded in L' norm. By ([16], Vol I,
section 1.2.7), Vi, , converge in L' in the biting sense. Furthermore the limit can not
be other than Vu, since u,, ,, converge strongly to u in L. [ ]
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4 Controling the mass of connections

We assume that p > 1 and that N is a (p — 1)-connected smooth compact manifold of
dimension k > p, i.e.
mg(N) =0 for ¢ < p.
Using the fact that N is (p — 1)-connected, we generalize the result of proposition 3.1 to
maps in R (C™, N). This is what we prove in proposition 4.1. As before, the main idea
is to conjugate u with a projection of N on the generators of its p-homotpy group.

Consider some triangulation of N and for 1 <1 < k, let N be the [-skeleton of N. So
N = N*. Observe that by ([40], theorem (1.6), p. 215), N? is (p — 1)-connected and the
homomorphisms
XP s mp(NP) — iy (NY),
induced by the injection maps 4,; : NP — N', are onto. As a result, using ([17], Corollary
3.5, p. 38) , N? is of the homotopy type of a bouquet of p-spheres and we obtain that
m,(NP) is finitely generated. Let gy, ..., gs be its generators. As a result, m,(N') is finitely
generated too. We choose its generators among {x"!(g1),..., X" (gs)} and we define a
norm on m,(N'), p < 1 < k, as follows : For a € m,(N'), |a| is the smallest length of
a product of generators of m,(N') representing a. Observe that there is some constant
C > 0 such that
X" (9)l < Clgl, Vg € my(NP). (4.1)
Since m1 (V) = 0, Sy, € Ppp1(C", my(N)) is well defined for any u € RF?(C", N) (See
definition 2.8). We proceed as before by generalizing the concept of connections :

Definition 4.1 We say that T € F, ,(C", m,(N)) is a connection for u € RFP(C", N)
ifOT =S,

We write
S
N'=[]J¢&m,
=1
where
B - N =¢BY, i=1,...,5

are diffeomorphisms and each two N! are rather disjoint or intersecting on a lower dimen-
sional face in N'~1.

Now let w € N{ x --- x N., w = (wy, ...,wy,) be such that w; ¢ N'~'. Define
pho N\ {wy,. .., w,} — N1
as follows : z . . ‘
&P((&) " (wi), (&) (y))) if y € NAN'!

Pl(y) =
Y otherwise

where p is the projection defined in definition 2.9.
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Lemma 4.1 Letp+1 <1<k, then
(i) pl, is well defined and locally Liptchitz on N\{wy, ..., ws,}.

(ii) For any p-dimensional cycle G' C N\{wy,...,wy} we have :

(G mp 1y = X ([P ()] (-1 (4.2)

where
Xl : 7Tp(Nl_l) - 7Tp(Nl>

is the homomorphism induced by the injection map i; : N'™' — N
(iii) For any w' € N' :

/ Voo (w)[" dw < C(p,1,¢) < +o0, (4.3)
NI _xex

Nt

s1,€

where for 1 <1< s and0<e<1:
N{ =& (B'(0,1-¢)).
]

Remark 4.1 Since N is (p — 1)-connected, m,(N) = H,(N,Z) (Hurewicz theorem). So
the homotopy class of p-cycles in N is well defined.

Proof : Using (2.5), the lemma is proved as for lemma 3.1. ]

Now let us estimate the integral

J = / |V (py o u)(x)P dedw. (4.4)
Nj x--xNL _Jcn

for u € W1P(C", NY), for p < [. By (4.3) we have

J S// |Vpw(u(z))P|Vu(x)|P dwdx
n N{EX---XNgls

<C(ple) [ [Vul
C n

As a result, by considering (4.4), there is some positif measure set W C N! := N{,e X
.- x N _C R™ for which :

S1,€

C(p,l,¢e)
. |V(pw o U)|p S W o |VU|p Yw € W. (45)
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Lemma 4.2 Let | > p and u' € RE>°(C*, N') for some wy € N'=t. Then there is a map

wo

w1t C" — N1 and C > 0, independent of u', such that
(i) W' € REEP(Cn, NV,

(i) [ VTP <O |V,
cn cn
(i1) Sy = X' (Sp-1)
where X' : m,(N=1) — 7,(N') is the homomorphism induced by the injection map i, :
Nt — N

Proof : Let us fix 0 < & < 1 and consider the set W C N! as in (4.5). Also we fix 1,
g9, €3 >0 and 0 < § < §; such that

C(l,p,e) . z
77_”8[(]\@) <K2 /‘/61 IVU'|P +0Keg 461 | +e3 < . |Vu'|P (4.6)

where K, § and 0y satisfy (2.3). For almost all w = (wy,...,ws) € W, w;’s are regular
values for u! cmve and u|gys, which are smooth on their domains. Using (2.3) and by
the co-area formula we obtain that for almost all w € W, (u!)~!(w;) N (C*\V?) is a finite
mass smooth submanifold of C*\V?, of dimension n — [, while its boundary is also a finite
mass submanifold of 9V?, of dimension n — [ — 1. We fix such w and we observe that for
all & > 0, there is f.,, some lipschitz diffeomorphism of C", such that f., is the identity
map except on a small neighbourhood of (-, (u')~!(w;), and we have :

( fa’(vé) =V° >fa’(av(5) =0V’
(ul o fo) L (w;) N (C™\V?) is a polyhedral (n — I)-submanifold of C™\V?

(u' o fo)"Hw;) N (OV?) is a polyhedral (n — [ — 1)-submanifold of 9V°.
(4.7)

V(u'o for) — Vul)}p <
CTL

/ V(u'o for) — Vul‘p <
\ ove

Let ¢/ = min{e;, &2} and denote v' := (u' o f./)s. Using (2.3) and (4.7) we get :



92 CHAPTER 1IV. TOPOLOGICAL SINGULARITIES AND CONNECTIONS

Vol P :/ IV (u! of€/)5|p+/ IV (ulo f)|P
cn Ve C"\V5

<K \V(ul o fo)lP +/ |Vul|p + e
Ve cn\Ve
(4.8)

< 6Key+ 0K \vul\u/ VP + &1
ove AN

|Vul|p—|—(5K52+51—|—K2/ IVu'|P).
cn Vo1

We observe that v! is continuous on C"\ B and since f.. is a diffeomorphism, it has the
same homotopic singularity as u! on components of B. Now by (4.5) we have :

Cl,p.e
[ V0l < Hlsl o / vl (4.9)
So as a result o'~ == p, 00 € Wuljf(cn>Nl ). Observe that by construction v~! is

locally lipschitz away from

S1

£ = (' o f2) (w) U B.

i=1

Moreover by (4.7), (u! o f.)5'(w;) is a finite union of (n — I)-dimensional polyhedrals
supported in C". Thus, since n — [ < n — p — 1, we can find some v/~ € Rarp(C, N1
such that «/~! has the same topologic singularities as v'~!, and

VU™ — Vol P < 5.
cn

This fact, combined with (4.6), (4.8) and (4.9) yields :
- C(l,pe)
e < L 1 P
Cn\Vu F= (HZSI(NQ i ) cn\Vu\

We have proved so far parts (i) and (ii) of lemma 4.2. Part (iii) is a direct consequence

of (4.2) and the construction of u'~!, using the same argument as in proof of proposition
1 (See (3.12)). u

Lemma 4.3 Let N be a (p—1)-connected smooth compact manifold. Letu € RFP(C", N?)
such that ¢ is constant. Then there exists polyhedral chain T € P,_,(C", m,(NP)) such

that
ol =S,

(4.10)
M(T)<C | |Vul?
cn

for some constant C' > 0 independent of u.
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Proof: As we observed above, N? is (p— 1)-connected too and it is finitely generated.
Let g1, ..., gp be its generators. By ([17], Corollary 3.5, P.38), we observe that there are
smooth maps p; : NP — SP, i =1,..., 3, such that

[0i(G)]x,(s7) = ;([Glr,(wry) for any p —cycle G C NP, (4.11)

where, for every a € m,(NP),

B
a= Z a;i(a)g;
i=1

is its unique decomposition. Meanwhile, for every u € RZP(C", N¥), p;ou is in R P(C", SP).
Since ¢ is constant, by [1] and the approximation theorem (5.6) in [15], there is T; €
Pr—p(C™, Z) such that

aTz = Spiou
(4.12)
M(T;) < C; | [Vu(piou)|”
cn
where C; > 0 is independent of u. (See also [29] for detailed discussion for S?).
Now consider the injectif group homomorphism ' : Z — m,(N), i = 1,..., 3, defined

by k'(n) = ng; . Observe that we have

k' (ai(a)) = a Ya € m,(NP),

M-

=1

which combined with (4.11) gives :
’{i(spiou) =S..

Moreover, ki satisfies '
M(rL(T)) < CiM(T),

for some constant C] independent of 7. We set

8
T =) w(T)).
=1

So T is a polyhedral 7,(/N?)-chain, of dimension n — p and supported in C". Using lemma
2.2 and (4.12) we obtain

B
0T - Z Ki(spiou) = Su
i=1
and
Jé; B
M(T) <> CM(T;) <Y CiC; | [V(piou).
i=1 =1 cr

This completes the proof since the p; are smooth. [ ]
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Using the above stated lemmas, we prove the following important result :

Proposition 4.1 For any integerp, 2 < p < k, let N be a k-dimensional (p—1)-connected
compact smooth manifold. Let C™ be the unit cube in R™. Then foru € R;O’p(C”, N), there
is T € Pn_p(C", m,(N)) such that

JT =8,
(4.13)
M(T) < c/|wp+c
for some constant C' > 0 independent of u.
|

Corollary 4.1 For anyu € RXP(C", N), there is a minimal connection T, € F,—,(C", mp(N))
which satisfies

M(T,) < C’/|Vu|p+0.

(See corollary 3.1). n

Proof of proposition 4.1 : It is sufficient to prove the proposition for ¢ = wy € NP,
constant. Using the same method as in the proof of proposition 3.1, combined with the
approximation theorem (5.6) in [15], the proof is generalized for any smooth boundary
data.

Write N¥ = N and v* = u. Using lemma 4.2 successively we obtain a map u? €
RoP(C", NP), which satisfies
IVuPlP < Cy | |[Vul?
cn cn

5o (4.14)
Xx(Dur) = Oy

where y : m,(N?) — m,(N) is the natural homomorphism and C} is independent of u. We
apply lemma 5.1 to v? and get some T, € P,,_,(C", m,(IN?)) such that

M(Tp) S 02 \Vup\p
Cn

and
an = Sup.

Combining with (4.14) and applying lemma 2.2, using (4.1), we observe that T := x.(T,)
satifies (4.13). n
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5 Removing the singularities using finite energy

In the section, we prove that we can remove the singularities of a map u € R3>? (C",N)
by modifying it along one of its polyhedral connections and using an energy almost pro-
portional to the mass of the connection. The idea first appeared in [3] for H*(B3, S?).
Our proof uses a different approach since the situation is technically more involved. Note
that we use the same norm defined for m,(/N) as in section 4 and the method may not work
for non-equivalent norms. This is the exact statement of what we prove in this section :

Proposition 5.1 Let p > 1 be an integer and let N be a k-dimensional simply connected
closed manifold. Assume that m,(N) is finitely generated. If T € P,_,(C",mp(N)) is a
connection for u € RYP(C", N), there are maps u,, € C(C", N) such that

U 5w as m— 00
(5.1)
1
|V, [P < |Vul? + CM(T) + O(—)
cn cn m
for C' > 0 independent of w. The same result holds when p =1 if m1(N) is abelian.
|

First we prove two lemmas necessary for the proof of this proposition.

Lemma 5.1 For every g € m,(N), there exists an open covering of N, {U7,. U
and smooth maps
wgj :BP x U =N, j=1,...,1

such that )
W j(-loBr,y) =y Vy e N
[wg,i (s W)mpvy = 9 Vy e N
(5.2)
| Vet < Clg| Wy e N
BP
L [Vwg,jloe < Cy
where C' > 0 s independent of g and j.
[ |
Proof : Let hy,...,h, be the generators of 7,(N). Since N is compact we can find a

finite open covering of N, {Uj,...,U,}, and smooth maps

wm-:BpxUj—>N
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such that for all 7,7 and all y € N we have

wij(-loBr,y) =y
(5.3)
[wii (5 9) )y = hi
Now we write g € m,(/N) in its minimal length decomposition
g:h’il_'_”'_'_hisu

where s = |g|. Fory € Nyx € BPand p=1,...,s, we set

IN

x . op—1 p
cos) =i, (50— (o= it AT <ol <,

where y, :=y € U;, and for p=1,...,5 -1,

Yp = wip+l:jp+l(07yp+1) S Ujp‘

Observe that by slightly modifying w,, : B? — N, we can assume that it is smooth on
its domain. Moreover it will satisfy

( Wyylomr =Y

Wy ylmpv) =g

/ Y, |? < Cs = Clg]
\ Br

for C' > 0 independent of g and y. Another observation shows that w,, depends smoothly
on y in small neighbourhoods. Since N is compact, we can find a finite open covering for
it, {U{,...,Ug }, such that for j = 1,...,v,

Wy (T, y) =wyy(x), if ye Ujg
satisfy (5.2). n

Lemma 5.2 Let u € RYP(C",N) and ¥ C C" be an oriented polyhedral of dimension
n — p such that u is continuous on X except probably on its boundary. Then for every
g € m,(N), there is a sequence u,, € Wé’p(C", N) and C > 0 independent of g and u such
that

(W, =u on C"\K,

|Kp| =0 as m — o0 (5.4)

1
V] < / Vul? + Clgl|S] + —
\ Cn Cn m

and
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Proof : We identify R™ with R"™? x R? with variables X € R*"? Y € RP. Without
loss of generality we can assume that 3 lies in the plane R P x {0}. We divide ¥ in

polyhedrals of equal dimension
vg 1

== UUZ,

j=1i=1
such that u(E;) C U} for all i, j. We choose B as in section 2.2 such that

Vg 1

UU@ZE-CB

j=1i=1

and we replace u by wug, for ¢; small enough (See definition 2.5). This doesn’t change
much the energy of u and S,, =S, so it is sufficient to prove the lemma for u = us,.
Since u is radial, we have for some constant C; > 0

C
Vu(z)| < Oy if 2 € C"\V;,, |Vu(z)| < M if 2 € Vj,. (5.5)

We set for n << 6 < d; and (X,Y) € C"\Vj

[ u(X,Y) if (X,0)¢ S orif [Y|>n
X2V —n— ) i (X.0)eSand 2 <|V|<
(X, y) = § O Ty ) B0 eXand 3 < V< (56)
2 o
Wy.j (EY’ u(X, 0)) if (X,0) € UL, 2% and |Y] < 2
We set

XT=A{(XY); (X,0) € &, [Y| < n}.
and we observe that vol(9V° N'¥") = O(nP). Using (2.2), (2.3) and (5.5) we get
CyCh
n
for C', > 0 independent of 6. Moreover for fixed 6 we have

P
/ VU -l < Clgl|z] + / (Cg@ i ol)
C"\V5 »n 6

< Clg||=] + O(n).

As a result, by choosing successively suitable § and 71, u,, = (v")s will satisfy (5.4).
Moreover we have

p
V(6" 0 hy) — VulP < 6K ( + Cl) < 05)
oVsNxn

Vs

S.,, = S. £ g[[0%]].
If necessary, we get the good sign by replacing g by —g above. [ ]
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Proof of proposition 5.1 : We write

Put v?, :=w and fori =1,...,0, let u!  be the m-th element of the sequence obtained by
applying lemma 5.2 to u’-1 for X', g;. We get

Suﬁl =S, — Zgz[[azlﬂ

=S, —0T =0.

and we observe that u! satisfy (5.1). Pay attention that S.o = 0 means that u? | restricted
to almost every small enough p-cycle in C", is homotopic to constant in N. Using this
and referring to [2], the proof of theorem 1, we can approximate strongly u’, by smooth
maps in C3°(C", N). This completes the proof. ]

6 Proof of theorems 1,2 and 3

Theorems 1 and 1 bis are proved using the same arguments as for W1h1T(C? RP?),
regarding the fact that we have developped the necessary tools above. Observe that the
equality

m;i(Su) = m(Sy)

holds true for any integral flat chain S in R" if and only if S is of dimension 0 or codi-
mension 2 in R™ (See [14]). Thus our method can not be used for [p] taking a value other
than 1 or n — 1.

Considering propositions 4.1 and 5.1, theorem 2 bis is proved the same as in section
3.4. The only difference is that since p > 1, a bounded sequence in W;’p (C",N) has a
weakly convergent subsequence. Theorem 2 is proved following the same ideas. The only
important difference is that a chain T is said to be a connection for u € R>*?(C", N) if
spt (0T — S,) C dC™ (Compare with definition 4.1).

Propositions 4.1 and 5.1 hold for p = 1, abelian 71 (/N), thus theorems 3 and 3 bis are
proved with the same method.

7 Proof of theorem 4

Let N be any closed manifold. We prove that the smooth maps are sequentially weakly
dense dense in W12(C", N). Regarding what we proved above, we should prove the the-
orem for 71 (N) # 0. Trying to adapt the method used for proving theorem 2 , the first
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problem we confront is that in this case there are not canonical isomorphisms between
the homotopy groups m,(V,z) with different base points. Thus, we can not talk about
[u, 0;] as in definition 2.7 without fixing a base point in N. Another difficulty is that N2
may not be of the same homotopy type as a bouquet of spheres.

For surmounting these problems we consider the smooth riemannien manifold N , the
universal covering of N, and the corresponding fibration ' : N — N. We assume that
N is embedded isometrically in some RY" and that F is a local isometry. We consider
N? as defined in section 4 and again using ([40], theorem (1.6), p. 215) we observe that
7 (N) = m(N?) and for 2 <[ < k, the homomorphisms

P 7T2<N2) — 7T2<Nl),

induced by the injection maps is; : N> — N, are onto. Meanwhile, since N is compact,
mo(N) and mo(N?) are finitely generated. Set

N? .= F~'(N?).

Since 7 (N?) = m;(N) and using the homotopy theory, we deduce that N? is the universal
covering of N? as a CW-complex and that F| 2 1s the corresponding fibration. Observe
that this diagram is commutative :

=2,k

(N2 X5 (N
L(Flg)s LA (7.1)

X2k
m(N?)  “— m(N)
where Y2 : N2 — N is induced by the injection map %2714 : N2 — N and is onto. Also
F.:m(N) = m(N) and  (F|g). : m2(N?) — m(N?)

are isomorphisms. Thus, since Wl(]f\ﬁ) — 1 (N) = 0, using ([17], Corollary 3.5, P. 38) and

the fact that my(NN?) is finitely generated, we obtain that N2 is of the homotopy type of
a finite bouquet of spheres.

Any u € R*®(C",N) can be lifted to a map @ : C" — N as m(C"\Z(u)) = 0.
(Remember that m;(C") = 0 and that ¥(u) is of codimension 3 in C"). Since F' is a local
isometry, we get that @ € R**(C", N) and that

; \Vi|? = ; |Vul?. (7.2)

Since m(N) = 0, Sz is well defined as in definition 2.8.
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Let u € WH(C", N) and u,, € R*>*(C", N) a sequence converging strongly to w.
Using the same method as in proposition 4.1 we can prove the existence of some constant
C > 0 independent of wu,,, and maps u2, € R>*°(C", N?) such that

VU > < C | |Vunl® (7.3)
Cn Cn

Meanwhile, if we consider the liftings @2, € R*»*°(C", ]/\ﬁ), we get

This is a result of the commutativity of diagram (7.1) and the construction of u?,, using
the same method as in lemma 4.2. Since N2 is of homotopy type of a bouquet of spheres,
using the arguments of lemma 5.1, we observe that for any map 02 € R*>(C", ]/\72) we
can find Ty, a wz(]f\ﬁ)-chain, supported in a finite union of smooth submanifolds of M of
dimension n — 2 and connecting Sz, such that

spt(0Ty — Si2) C OC™ and M(Ty) < C | |VH??, (7.5)
cn
where C' is independent of v Regarding (7.2), (7.3), (7.4) and (7.5), we prove the same
result for any map u € R2>°°(C™, N) which is a lifting of a map u € R**(C", N), this
time using mo (N )-chains.

Also, the equivalent statement of proposition 5.1 is prqyed for maps from C" into
N though N may not be compact. This is p0881ble as m(N) is still finitely generated.
(Here we use countable proper open covers of N in place of finite covers and remove
the singularities by modifying the maps in neighbourhoods of smooth (n — 2)-dimesnional
polyhedrals in C". Applying the singularity removing proposition to ,, and its connection,

we deduce the existence of some maps 9% € R*>(C?, N) such that Sae =0, % — i, in
L?-norm and

1
Lvitk<c [ 1va.k o) (7.6)

are equi-bounded. Set

vf = Fodh € R®>®(C", N).
Since Sgx = 0, the v* do not realize any non trivial homotopy class of my(N) around
their singularities. So we can apprximate them strongly by maps u* € C*(C", N). By
(7.6), the u* are equi-bounded in Dirichlet energy and for a suitable subsequence ufrfm),

they converge strongly to u in L?. So there is a subsequence of ubtm e C*>(C™, N) which
converges weakly to v in W12, n

Theorem 4 bis is proved using the same method. Also, using the same arguments we
can prove that smooth maps are sequentially dense in W'?(B", N), if m,(N), being the

first non-trivial homotopy group of N, is of finite type.
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We prove that smooth maps are dense in the sense of biting convergence in W1(B", N)
when N is a closed riemannien manifold.

1 Introduction

Let B™ be the unit disk in R™ and N a closed riemannien manifold isometrically em-
bedded in RY. Set

WEYB", N) := {u € WHY(B" RY);u(z) € N for a.e.x € B"}

This space inherits the strong and the weak topology of W1(B" RY) and is closed under
the weak convergence of maps in Wh!. The energy of a map u € WH(B", N) is defined
to be [5,. [Vul.

Based on the work of R.Shoen, K.Uhlenbeck, X.Zheng and F.Bethuel in [36], [7],
and [2], we know that smooth maps from B" into N are not dense in W!(B" N) if

101
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m1(N) # 0. In fact, they showed that the lack of approximability is due to local re-
alizations by u € W(B™, N) of non-zero elements of 7 (N) around points in B”. In
particular they proved that if m;(N) = 0 then any map in W!(B", N) can be approxi-
mated by smooth maps for the strong topology. A major question would be to determine
a criteria for a map to be approximable by smooth maps in W1(B" N), i.e. we try to
define S, “the topological singular set ” of u, which would be equal to zero if and only if
u is a strong limit of smooth maps in W!(B™, N).

In the case 7 (N) # 0, one can approximate the maps in WH1(B™, N) by maps which
are smooth away from a finite union ¥ = (Ji_, ¥; of smooth (n — 2)-dimensional sub-
manifolds of B"”. This set of maps is called R*(B™, N). A map v € R>*(B", N) realizes
elements o, of m(N,y) on the circles centered at any point z € ¥(v) and contained in
the normal bidimensional plane to T, %(v). If for some z € ¥(v), 0, is non trivial, then v
can not be approximated by smooth maps in the strong topology (See [2]). In [31], the
author and T.Riviere observed that if 7 (V) is abelian, one can assign to v a m;(/N)-chain
which is carried by ¥(v) with “multiplicity” o, at each point x of ¥(v). This m; (/V)-chain
is called the topological singular set S, of v in R>*(B™ N). Moreover, for a sequence
of maps v,, € R*(B", N) converging strongly to any v € W11(B", N), S, converges
in the flat norm to a unique flat 7 (/N)-chain S, we called the topological singular set of .

bab'a!

Fig.1
An (aba='b~1)-type singularity dipole

This approach confronts important obstacles when 71 (V) is not abelian. The major
problem is the following : If 71 (V) is abelian, its elements are well defined independent
of the choice of the base point in N, i.e. we can define isomorphisms v, between 7 (N, y)
and 71 (N, y’) with the aide of smooth curves 7 joining y and 3’ in N. These isomorphisms
do not depend of the choice of v and so we can identify 71 (N, y) and 71 (N, ') in a natural
manner. In this way, e.g. we can compare the topologic singularity of u € R*(B? RP?)
around different points in the square B? without ambiguity, though the values of u in
RP? near these points might differ. But, if 7;(/N) is not abelian, there is no canonical
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isomorphism between (N, y) and 71 (N, y’) for two different points y,3" € N. The iso-
morphisms yx would depend on the homotopy class of v and even a closed curve v joining
y to itself may produce a non-trivial isomorphism of w1 (N, y) onto itself. So, talking about
the topologic type of a singularity without fixing the base points in B” and in NV is impos-
sible and we can neither compare the topological type of different singularities nor talk
about connecting them by chains with coefficients in 71 (N) as before.

Another problem we encounter in the study of this case is that v € R*°(B", N) may
have singularities of the type aba='b~! which are not removable by strong convergence of
smooth maps. Meanwhile, following the method used in [31], the conjugation of u with
p? (or p®), the projections of N on the generating cycles of a (or b), will not “see” these
singularities in the first instance, since p® o u (or p® o u) would realise the cycles aa™! (or
bb~1) in their respectable circle-type targets.

Fig.2
A bad connecting set for the dipole
(Not suitable for removing the singularities)

In this way, the question of defining a topological singular set for maps in W1 (B", N)
is still open for non-abelian 71 (N). In this paper, we try to pave the way for understand-
ing the situation by answering another related question. If 71 (V) is abelain, we can prove
that for any map u € W1(B", N), there is a sequence of smooth maps, v,, € C>°(B", N),
such that u is the Wl l-weak limit of v,, outside arbitrary small positive measure subsets
of B" (See definition 1.1 below). The method consists in controling the mass of chains
which connect the singular chain of a map u € R*(B", N) to the boundary of B™ and
then removing the singularities, spending en energy proportional to the mass of these
connections (See [31]). The question is then whether this method can be modified to
prove the same result for the non-abelian m;(/N) case.

For surmounting the above described problems for non-abelian 71 (/N), we should in-
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troduce new elements into the proof. In fact, we search a kind of connecting set A, C B"
of dimension n — 1 for the singularities of a map u € R*°(B", N) so that for any point
r € A, we can identify a(x) : the elements of 7y (N, u(x)) which should be introduced
into u (transversally to A, at x) such that the singularities of u are removed. These
connecting sets should also take into account the problems provoked by aba='b~!-type
singularities described above. And, last but not least, the one-energy of inserted curves
producing a(x) at « € A, should be controled uniformly (independent of the choice of
x and u) so that the total energy of the modification be uniformly proportional to the
volume of A,, which in its turn is controled by the energy of u. All this is possible for a
converging sequence u,, — u € WH1(B", N). So here is the main results of this paper :

Definition 1.1 Let Q be a domain in R™ and let u,, be a bounded sequence in E*(Q).
U 18 said to converge in the biting sense to u € LY(Q) if for every e > 0 there exists a
measurable set E C Q2 such that p(E) < € and u,, — u weakly in L' (Q\E).

Theorem 1 Let B™ be the unit disk in R™ and N be any k-dimensional closed manifold.
Then for every u € WH1(B™ N) there is a sequence of maps u,, € C*°(B"™, N) such that
Vu,, tend to Vu in the biting sense.

Assume that B is not empty. We may also ask the same questions about the spaces
of maps with fixed boundary value : For p € C*(9B", N), admitting a smooth extension
¢ :B" — N, we define

Cr(B",N):={ueC*B",N); u=¢ondB"}
and
W2 B" N) = {ue W' (B",N); u=¢ae ondB"}.

Theorem 1 bis Let B" be the n-dimensional unit disk and N be any k-dimensional
closed manifold. Assume that ¢ € C*°(0B", N) is smoothly extendable into B"™. Then for
every u € W)(B", N) there is a sequence of maps u,, € C3*(B", N) such that Vuy, tend
to Vu in the biting sense.

As a simplified example, consider the space W!(B™ S,), where Sy := S! Vv S} is the
bouquet of two circles based on the point w € R?. m;(S,, w) is the free (thus non-abelian)
group generated by two generators a and b. Let p® and p® be the projection of Sy onto S}
and S}. The idea is to associate to any sequence u,, € R*(B",S,), converging strongly
to u € WHH(B"™, Sy), two points y, € S! and y, € S} such that

Ay, = AZW U Azm = (pa © um)_l(ya) U (pb © um)_l(yb)
is a finite union of smooth submanifolds of B™ and that for a uniform constant C > 0

vol(A,,,) <C [ |Vu|+C.

BTL
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CZ

Fig.3

Inverse Images are good connecting sets for the dipole

Then the topological considerations detailed in the paper show that A, satisfy the above
necessary conditions for suitable connecting sets. Observe that as the image of these “con-
nections” are constant in Sz, the homotopy groups 7 (S, 4, (x)) for z € A, would have
a fixed base point. For a visulaisation of this problem compare Figures 1,2 and 3.

For generalizing these results to any smooth compact manifold M as the domain one
should be careful as there may be some global topological obstructions we did not con-
sider in this paper. Refer to the recent work of F.Hang and F.H.Lin [20] where they show
that the absence of “local” topological obstructions does not mean the approximability
by smooth maps in the strong topology. We hope to extend these results to any domain
by adapting our proofs to the new cases.

Finally we mention that the same questions about the density of smooth maps and
1
the topological singularities can be asked about the functional spaces H2(B™, N), which
is also an interesting case.

2 Preliminaries

2.1 The non-abelian fundamental group
Let N be a closed smooth manifold and y, 1y’ € N two base points. Any curve
v:[0,1] - N
for which «(0) =y and (1) = ¢/, induces a natural isomorphism
1% (N, Y) = m(N,y)

which depends only on the homotopy class of v. If 7 (IV, y) is abelian, these isomorphisms
are canonic, that is they do not depend on the choice of the curve . In this case we can
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talk about (V) without ambiguity. Otherwise, for referring to a specific element of
m(N), we are obliged to fix a base point for 7 (V). Now let us assume that y = ¢’ and
consider a curve vy as above. We have

ya(a) = [laly] ™, Va € m(N,y) (2.1)

where [7] is the homotopy class of v in 71 (N, y). Naturally if 71 (V, y) is not abelian, these
isomorphisms may not be trivial for [y] # 0. See ([8], section VIL.7) for more details.

2.2 The subspace R*(B", N)

Definition 2.1 We say that u € WH1(B", N) is in R™®(B", N) if u is smooth except on
B =", 0:UBy , a compact subset of B", where H"*(By) =0 and the o;, i =1,--+,m
are smooth embeddings of the unit disk of dimension n—2. Moreover we assume that any
two different faces of B, o; and oj, may meet only on their boundaries.

Theorem 2 (Bethuel,[2]) R>*(B", N) is dense in WH1(B™, N) for the strong topology.

Definition 2.2 Let u € R*(B",S') and let B = |Jo; U By be the singular set of u.
Suppose that each o; is oriented by a smooth (n—2)-vectorfield &;. Fora € o; let N, be any
2-dimensional smooth submanifold of B", orthogonal to o; at a. Consider the embedded
disk M, s = Bs(a) N, oriented by the 2-vectorfield M, such that (—=1)""15;(a) A M, is the
fized orientation of B". Then the topological degree of w on the closed curve X, 5 = OM, s
1s well defined and is independent of the choice of a and N, for & small enough. We call
this integer the degree of u on o; and denote it by

deg,.u .

Theorem 3 (Almgren, Browder and Lieb, [1]) Let u € R*(B", S1), then for any
reqular value y € S*,

m

Al (W] — [[u™" W)OB" = Y _(dego,u) [[oi]]

=1

and

H*  (u (y)) dy §/ |Vl .

n

Sl
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3 Proof of theorem 1

As in the case where 7 (V) is abelian, we should prove the existence of sets with bounded
volume, connecting the singularities of a map in R*°(B", N), along which we can mod-
ify the map for removing its singularities. Meanwhile, for some technical reasons, we

should use the same process for the elements of any strongly convergent sequence u,, €
R>*(B", N) when defining these sets.

Let us consider any map ue WH(B" N) and a sequence of maps u,, € R*(B", N)
converging strongly to u. As we mentionned above, such a sequence always exist. We
should show the existence of smooth maps v,, : B® — N, such that Vuv,, tend in the
biting sense to Vu.

Step 1 : Projection of maps into some one skeleton of N

Consider some triangulation of N and for 1 <[ < k, let N! be the [-skeleton of N. So
N = N*. Observe that by ([40], theorem (1.6), p. 215), the homomorphism

X :m(N'y) — m(N,y), (3.1)

induced by the injection map i : N' — N, is onto. Also using ([17], Corollary 3.5, p. 38),
N1 is of the homotopy type of a bouquet of circles and we obtain that 7 (N!) is finitely
generated. Let f : N' — S5 := \/f:1 S} be a homotopy equivalence between N' and
the bouquet of 3 circles, S}, ..., S}, embedded in some euclidean space and based on the
fixed point w.

Definition 3.1 We set
U ={(z,y) eB'xB';z#y}.

For (z,y) € U, we define p(x,y) to be the unique point on OB which is on the ray from
T toy.

Let us write
S
N' =[Jé€®Y,
i=1

where

B - N =&BY, i=1,...,5

are diffeomorphisms and each two N! are rather disjoint or intersecting on a lower dimen-
sional face in N'='. Let w € N{ x --- x N!, w = (w1, ...,w,,) be such that w; ¢ N'~1.
Define

Pl N\{wy, ..., ws} — N7
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as follows :
Ep((E)H(wi), (€)' (y)) ify e NAN'!
P (y) =
Yy otherwise

where p is the projection defined in definition 3.1. Set for 1 <7< s, and 0 <e < 1
Nzl,a = gzl (Bl(ov 11— 5))
and

NL:=N{_x- xN]

S1,€ °

We proved in [31] that

/N/ (2)]dz dw < C(L, 5)/n|vu‘7

where C(l, ¢) is independent of w. Moreover, for any sequence of maps u,, € R*(B", N)
converging to u we have

Im Z// IV (P, 0 um)(z) — V(pl, ou)(z)|dedw — 0 as m — +oo.
N! n

The proof is the same as the one given for W1(B? RP?) in [31]. Meanwhile, observe that
for fixed w € N', the isomorphisms

ky =g (N, Py (1) = m (N, y), (3.2)

where v : [0,1] — N, v(0) =y, v(1) = pl,(y) is any smooth curve, are independent of the
choice of v if its trajectory lies entirely in (pl,)~'(pl,(y)). This is because any connected
component of (p!)71(pl (y)) is simply-connected. Moreover, for any curve a : [0,1] — N,
a(0) = a(l) =y, we have

o x ([P © a]) = [a], (3.3)
where x is as in (3.1).
Proposition 3.1 Let u and u,, € R*(B", N) be as above. Then, there are w; € N,
1 <l <k, such that for all m

(i) u=':=pl, ou' € WH(B",N') and ul,! := pl, oul, € R*(B", N
(ii) ul-t — ol i W
(iii) (Vub| < K(l,a)/ Vu| + K

Bn n

(iv) We have
K'um(x) X ([u © Of]) = [um © Of],

where o : [0,1] — B", a(0) = a(1), is any smooth curve avoiding the singularities of u} .
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Regarding the above statements, the proof of this proposition is straightforward.
Step 2 : Defining the inverse images which connect the singularities of u,,

Fix suitable € > 0 and consider the sequence u! according to proposition 3.1. Observe
that u’, = P o u,, where
P::p?uzo...opﬁk.

Set
T = fou), :B" — S5.

f can be assumed to be smooth, so @, € R*(B",Ss). Also, again by propositon 3.1, for
some constant C' > 0 independent of m

/ Vi <O [ |Vul+C (3.4)
B» B»

We have then

Proposition 3.2 Fori = 1,...,0, there is y; € S}, y; # w, a reqular value of f o P,
such that y; is a reqular value for any u,, and that for a subsequence of u,, we have

mg

H (s () < C / V| + ',

n

for C" > 0 independent of m.

Proof : Observe that we can project smoothly Sz on each of the circles Sj, ..., Sé.
Composing 4, with these projections we obtain maps u,,; : B® — S} of energies lesser
than that of @,,. Also for y € S}, different from w, @,'(y) = u;};(y). So by theorem 3
and (3.4) we obtain

H N a, (y)) dy < O |Vu|+ C.
Bn

S

Thus, by Fatou’s lemma

/ liminf H" (4,  (y)) dy < C |Vu| + C.
S

m—-+00

As a result, the subset

1
{ve st w) < e [ [wa+o))

is of positive measure in S}. This, combined with Sard’s theorem, completes the proof.m



110 CHAPTER V. STUDY OF W'(BY, N) FOR NON-ABELIAN (N

Now observe that we can write
Hi o
i () = (J 4 < B
j=1

and

(foP)'w) =B N
k=1
where A% and B%* respectively the connected components of @ 1(y;) and (P o f)~(y:),
are smooth submanifold of B™ and N. Moreover, it is obvious that w,,(A%) C B“* for
some 1 < k <.

Using the isomorphisms &, defined above, we want to associate a unique, well defined
element of (N, y), al*, to any y € B"*. Since f is a homotopy equivalence, the f~'(y;)
are simply-connected. As a result, since P(B**) C f~!(y;), the B%* are simply-connected
too (See (3.3)). Let a’ € m1(Ss,y;) be the homotopy class representing the curves which
make only one turn over S} in one fixed direction. Let y' € f~!(y;). Since f is a homotopy
equivalence,

= () (0) € MmN )
is well defined. We set for y € B%¥

agijk =kyo X(a%(y)) € m(N,y)

which is well defined by (3.2). Observe that by ([8], section VII, theorem 7.2), for any
v :[0,1] — B we have

1(ai) = @) - (3.5)

Step 3 : Modifying a map along the connecting sets

Here is the main result of this step :

Proposition 3.3 Let u,, and A% as above. Then there are maps vy, € C=(B", N)
such that

Lt ,
Umym/ — Upy, QS T —> OO

B i

. 1
LVl < [Vl + O Y H (A + O

i=1 j=1

for C' > 0 independent of u.
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This singularity removing proposition is proved using the same methods as in ([31],
proposition 2.4) with slight modifications. The only major difference is that we need a
new version of ([31], lemma 2.9) :

Lemma 3.1 For every 1 <1 < B, and avery 1 < k < v;, there exists an open covering
of B, {UMF, .., UEk Y, and smooth maps

W [0,1] x UMY — B r =1, ri

such that , , .
(W (0,y) =wiF(l,y) =y Vye B

[Wf«’k(-vyﬂﬂp(My) = @Z’k Vy € B**

1
/ \Vmwi’k(.,y)\dx <C Vye Bb
0

\ V¥l < C

where C' > 0 is independent of © and k.

Using the compatibility condition (3.5) the proof of this lemma is straightforward.
Step 4 : End of proof for theorem 1

Remember that ' (y;) is the distinct union of the A%/. So, by propositions 3.2 and
3.3, Upm.m tend in L' to u and their gradients are equi-bounded in L' norm. By ([16], Vol
I, section 1.2.7), Vo, ,, converge in L' in the biting sense. Furthermore the limit can not
be other than Vu, since vy, ,, converge strongly to u in L'. [ ]

Theorem 1 bis is proved following the same method.

The author is grateful to Tristan Riviere for having drawn his attention to this problem
and for the fruitful discussions we had about it. This research was carried out with
support provided by the French government in the framework of cooperation programs
between Université de Versaille and 1.P.M., Institute for studies in theoretical Physics and
Mathematics, Iran.
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