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Abstract

This dissertation deals with local regularity issues for rectifiable and non-
rectifiable cycles of dimension 2.

In chapters 2 and 3 we prove optimal regularity results for Special Legen-
drian integral cycles in 5-dimensional contact manifolds.

The most well-known example, treated in chapter 2, is that of Special
Legendrian integral cycles in S5, which are the links of Special Lagrangian
cones in R6.

The more general case, described in chapter 3, happens in an arbitrary
5-dimensional contact manifold, where we consider cycles whose approximate
tangents are invariant for the action of an almost complex structure J that
satisfies, for any vector v in the horizontal distribution, dα(v, Jv) = 0.

We prove that these integral cycles are in fact smooth Legendrian curves
except possibly at isolated points and we investigate how the mentioned
structures J are related to semi-calibrations.

In chapter 4 we turn our attention to normal currents of dimension 2,
positive (or semi-calibrated) with respect to a two-form. More precisely we
are concerned with pseudo-holomorphic 2-currents having finite mass and
zero boundary: they are called positive (1, 1) normal cycles. We prove a
uniqueness result for tangent cones at non-isolated points of positive density
(absolute uniqueness is already known to fail). This result also applies to
Special Legendrian cycles, but is shown in much wider generality.
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Riassunto

Questa tesi di dottorato verte su questioni di regolarità locale per correnti
di dimensione 2, sia rettificabili che non rettificabili.

Nei capitoli 2 and 3 si dimostrano risultati ottimali di regolarità per Legen-
driane Speciali intere e senza bordo in una varietà di contatto di dimensione
5. L’esempio più noto è quello delle Legendriane Speciali in S5, trattate nel
capitolo 2: esse si ottengono intersecando un cono Lagrangiano Speciale in
R6 con l’ipersfera.

Il caso più generale, descritto nel capitolo 3, si osserva in una varietà
di contatto arbitraria, di dimensione 5. Qui consideriamo correnti intere
senza bordo i cui tangenti approssimati sono invarianti per l’azione di J ,
essendo quest’ultima una struttura quasi complessa che soddisfa la condizione
dα(v, Jv) = 0 per tutti i vettori v nella distribuzione orizzontale.

Si dimostra qui che tali correnti sono, al più fuori da un insieme di punti
isolati, curve legendriane lisce. Si discute inoltre come le strutture J descritte
siano legate alle semi-calibrazioni.

Nel capitolo 4 l’attenzione si sposta su correnti bidimensionali non neces-
sariamente rettificabili. Ci occupiamo di correnti positive (o semi-calibrate)
rispetto a una forma di grado due; più precisamente, studiamo correnti senza
bordo e con massa finita di tipo pseudo-olomorfo, anche dette normali po-
sitive di tipo (1, 1). Dimostriamo un risultato di unicità per i coni tangenti
nei punti a densità positiva non isolati (è noto che non c’è unicità assoluta).
Il risultato si applica in modo immediato anche alle Legendriane Speciali di
cui si è parlato sopra, è tuttavia mostrato in un contesto molto più generale.
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Chapter 1

Introduction

1.1 Calibrations and Geometric Measure Theory

Calibrations have appeared in analysis and geometry more and more in
the last 50 years. The word “calibration” was used for the first time in 1982
by Harvey and Lawson ([30]): let us start with an example, already analysed
earlier, where the key features of calibrated geometries had already been
observed.

1.1.1 Historical example

Endow R4 with the standard flat metric and coordinates (x1, y1, x2, y2).
The two-form

ω = dx1 ∧ dy1 + dx2 ∧ dy2

acts by definition on 2-vectors: for example, ω
(

∂
∂x1 ∧ ∂

∂y1

)
= 1 and

ω
(

∂
∂x1 ∧ ∂

∂x2 +
∂

∂y1 ∧
∂

∂y2

)
= 0.

As elements of the exterior algebra, 2-vectors are just algebraic objects:
if however we just look at unit, simple 2-vectors, there is a natural geometric
meaning to assign, namely we have a bijective correspondence

{
Oriented 2-D planes in R4

Oriented Span of (v1, v2)

}
1−1←→

{
unit simple 2-vectors

v1 ∧ v2

}
.

We can therefore speak of the action of ω on oriented 2-dimensional
planes. Recall that the norm of a simple 2-vector v1 ∧ v2 is just the area
of the parallelotope spanned by v1 and v2.

13
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The following observations were made at different stages and in different
contexts, more or less explicitly, by Wirtinger [63] in 1936, De Rham [19] in
1957 and Federer [26] in 1965.

• ω is a two-form, therefore we can compare it, on any 2-D oriented plane
with the 2-D area form. It turns out that ω is always less or equal than
the area form:

|v1 ∧ v2| = 1 ⇒ ω(v1 ∧ v2) ≤ 1.

• When is equality reached in the previous statement? It is a fairly
elementary computation to check that for unit simple 2-vectors v1 ∧ v2
we have

ω(v1 ∧ v2) = 1⇔ v1 ∧ v2 is a complex line of C2 ∼= R4.

Here we are identifying R4 and C2 in the standard way, so that z1 =
x1 + iy1 and z2 = x2 + iy2 are the usual complex coordinates. A
complex line is then a plane of (real) dimension 2, that is invariant
under multiplication by i.

• Denote by G(ω) the set of complex lines in C2 ∼= R4,that are identified
(as just seen) with unit simple 2-vectors on which ω gives the value 1.

Let S ⊂ R4 be a 2-dimensional oriented submanifold with boundary
whose tangent planes TxS, at all points x ∈ S, enjoy the following
property (such S is also called a complex subvariety):

∀x TxS ∈ G(ω).

Then S is mass minimizing for its boundary.

The proof of the last statement is rather straightforward: denote by dA
the Area-form and let T be a comparison surface, i.e. ∂T = ∂S. This means
that there exists a 3-dimensional submanifold whose boundary is T − S and
we can write

Area(S) =

∫

S

dA =

∫

S

ω =

ω closed
Stokes thm.

⇒ =

∫

T

ω ≤
∫

T

dA = Area(T ). (1.1)
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Therefore S minimizes the area among surfaces with its same boundary.
This is the classical Plateau problem of finding (and studying) the surface
of minimal area spanning a given boundary: the original works of Plateau
([46]) with soap films aimed to study 2-dimensional surfaces in R3, the prob-
lem has then been addressed and studied for general m-dimensional surfaces
in RN , with m < N .

We have just seen that complex subvarieties in R4 are minimizers for
their boundaries. Federer was the first one to observe that the following
surfaces in the unit ball B4

1(0) of R4 ∼= C2 are then also minimizers of the
area functional:

{z1 = 0} ∪ {x2 = 0} ∩B4
1(0) and {z21 = z32} ∩ B4

1(0).

The boundaries are respectively a disjoint union of two unit circles and a
connected curve.

What is new about these surfaces? Both of them are singular at the
origin, in the sense that in any small ball centered at the origin each sur-
face does not look like a classical submanifold: in the first case there is an
intersection of two disks, in the second we have a so-called branch point.

The proof given in (1.1) works however just the same: Stokes theorem
can be used by cutting out a small ball around the origin, keeping track of
the boundary that is thus created. Shrinking the little ball to a point shows
that the contribution of the additional boundary goes to 0 in the limit, so
the argument shows again that we are dealing with area-minimizers.

Federer was thus able to show that area-minimizers can indeed have sin-
gular points, answering a question still open back then. Federer was actually
working with the so-called integral currents, the “generalized submanifolds”
of Geometric Measure Theory, introduced some years before by himself and
Fleming ([27]). What makes integral currents suitable for Plateau’s problem
is that they enjoy enough compactness to yield the existence of a minimizer
for a given boundary, by using the direct method of calculus of variations.

Let us recall the main notions, referring to [25], [28] or [43] for a more
complete exposition. The next subsection is just a brief reminder.

1.1.2 Notions from Geometric Measure Theory

Currents were first introduced by De Rham as the dual space of smooth
and compactly supported differential forms (see [19]). For 0-forms, i.e. fun
-ctions, they are just Schwartz distributions.
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Some distinguished classes of currents have, since the sixties, played a
key role in Geometric Measure Theory (see [27], [25] and [28]). One of them,
of major interest in chapters 2 and 3, is the class of integral currents.

An integral m-cycle C in M is an integer multiplicity rectifiable current
of dimension m without boundary. The definitions are as follows:

(i) Rectifiability : there is a countable family of oriented C1 submanifolds
Ni (i = 1, 2, 3...) of dimension m in M ; in each of them we take a
Hm-measurable subset Ni, so that the Ni’s are disjoint; let moreover
N0 be a Hm-null set. The union C = ∪iNi ∪N0 is a so-called oriented
rectifiable set.

C possesses an oriented approximate tangent plane Hm-a.e. (see [25] or
[28]).

(ii) Integer multiplicity : on C an integer valued and locally summable mul-
tiplicity function θ is given, θ ∈ L1

loc
(C;Z); the action of the current C

on any m-form ψ, that is smooth and compactly supported in M , is
given by

C(ψ) =

∫

C
θ(x)〈ψx, ξx〉dHm(x),

where ξx is the oriented tangent at x represented as a unit simple vector.

(iii) Boundary : the boundary ∂C of a current C of dimension m is defined
to be the (m − 1)-dimensional current whose action on any smooth
(m− 1)-form α, that is compactly supported in M , is given as

(∂C)(α) := C(dα).

The term cycle refers to the fact that the boundary is 0.

The class of integer-multiplicity, rectifiable currents of dimension m in M
is denoted by Rm(M). The support spt(C) of the current is defined as the
complement of the open set

∪{A : A is open and C(ψ) = 0 for all m-forms ψ compactly supported in A}.

Integral currents are denoted by Im(M) and are defined as the currents
in Rm(M) whose boundary is a current in Rm−1(M). A family of currents in
Im(M) with equibounded masses1 and boundary masses enjoys compactness:
this important theorem makes them very suitable for minimization problems.

1The notion of mass for an arbitrary current is recalled in the next subsection. For the
moment it suffices to say that, for a rectifiable current, the mass is just the integral of |θ|
with respect to the measure Hm C.



1.1. CALIBRATIONS AND GEOMETRIC MEASURE THEORY 17

Without loss of generality one can assume the multiplicity θ to be strictly
positive: for that purpose it is enough to choose the appropriate orientation
for the oriented rectifiable set and neglect the part where θ = 0. With this in
mind, one can always express the action of a rectifiable current C by means
of a rectifiable set C on which a multiplicity function θ ∈ L1

loc(C;N \ {0})
is given: this underlying rectifiable set C is referred to as the carrier of the
current C.

We recall the notions of Smooth Points and Singular Points. A point
x ∈ C is said to be a smooth point if there is a ball Br(x) in which the
current acts as a smooth m-submanifold V, i.e. if there is some constant
N ∈ N such that for any smooth m-form ψ compactly supported in Br(x)

C(ψ) = N

∫

V
ψ.

The set of smooth points is open in C by definition; its complement in C
is called the singular set of C, denoted by Sing C.

Unless the singular set is “very small”, an integral current can be a really
irregular and wild object.

While integral currents are the “submanifolds” of Geometric Measure The-
ory, the wider class of normal currents, i.e. currents with finite mass and
finite mass of the boundary, can be useful as a non-smooth model of other
classical objects; we will come back to normal currents later.

We can now go back to calibrations.

1.1.3 Calibrated currents

What played a role in (1.1)? The comparison of the form with the Rie-
mannian volume element and the closedness of the form. Remark further
that it is enough to have things defined just almost everywhere for the quanti-
ties to make sense and that Stokes theorem is just the definition of boundary
for currents. So we can do things in much wider generality.

After Wirtinger, DeRham and Federer who observed complex behaviours,
the key features of calibrations were used in in [7] and [14] for quaternionic
ones. The general notion of calibration then appeared in [30].

Given a m-form φ on a Riemannian manifold (M, g), the comass of φ is
defined to be

||φ||∗ := sup{〈φx, ξx〉 : x ∈M, ξx is a unit simple m-vector at x}.
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A form φ of comass one is called a calibration if it is closed (dφ = 0).
We will be dealing also with non-closed forms of unit comass, which will be
referred to as semi-calibrations.

Let φ be a calibration or a semi-calibration; among the oriented m-
dimensional planes that constitute the Grassmannians G(m, TxM), we pick
those that (represented as unit simple m-vectors) realize 〈φx, ξx〉 = 1 and
define the set G(φ) of m-planes calibrated by φ:

G(φ) := ∪x∈M{ξx ∈ G(m, TxM) : 〈φx, ξx〉 = 1}.

In other words, these are exactly the m-planes on which φ agrees with the
m-volume form.

For a current in Rm(M), at Hm-almost every point x ∈ C denote by TxC
the m-dimensional oriented approximate tangent plane to the underlying
rectifiable set C; given a (semi)-calibration φ, C is said to be calibrated by φ
(or φ-positive) if

for Hm-almost every x, sign(θ)TxC ∈ G(φ).

For currents the mass is defined by M(C) := sup{C(β) : ||β||∗ ≤ 1} and
in general this sup need not be achieved. Remark that the mass coincides
with the standard m-dimensional volume if we are dealing with the current
of integration on a m-dimensional submanifold. In the case of φ-(semi)-
calibrated currents, however, it is indeed true that the sup in the definition
of mass is achieved: namely when we test on φ itself. This yields the following
very important facts.

When φ is a closed form, then a current calibrated by φ is locally homo-
logically volume-minimizing as the following computation shows. Let T be
calibrated by φ and let S be in the same homology class, i.e. T − S = ∂C
for a (m+ 1)-dimensional current. Then

M(T ) = T (φ) = C(dφ) + S(φ) = S(φ) ≤ M(S) (1.2)

since φ has unit comass.
Semi-calibrated integral currents, on the other hand, are not generally

minimizers: they are however almost-minimizers, or λ-minimizers (in the
sense of [22]), since in the case dφ 0= 0, (1.2) shows that (recall T + ∂C = S)

M(T ) = T (φ) = C(dφ) + S(φ) ≤M(S) + λM(C) (1.3)

with a constant λ = ‖dφ‖∗. So λ-minimizers allow an error term in the
inequality (1.2).
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1.1.4 Some interesting calibrations

Let us start with some “interesting” calibrations in Rn. What makes a
calibration interesting? Usually we would like the calibrating form to have
plenty of calibrated submanifolds, or integral currents (see [30] or [34]). The
following calibrations do so and were studied in [30].

• Complex calibrations. In R2n, with coordinates (x1, y1, ..., xn, yn), take
the form

ω =
n∑

j=1

dxj ∧ dyj.

This is the generalization of the example that we have seen in subsection
1.1.1. Calibrated currents are 2-dimensional and have the property that
their tangents are complex lines, after identifying R2n ∼= Cn.

We can more generally take the 2m-form

1

m!
(ω)m;

this is also a calibration (Wirtinger’s inequality) and calibrated integral
currents have real dimension 2m and the property of having tangents
that are complex subspaces.

• Special Lagrangian calibration In Cn ∼= R2n with coordinates zj = xj +
iyj, j = 1, ...n the n-form

Re(dz1 ∧ dz2... ∧ dzn)

is closed and has unit comass (see [30]).

As an example, in R6 ∼= C3 the form reads

dx1 ∧ dx2 ∧ dx3 − dx1 ∧ dy2 ∧ dy3 − dy1 ∧ dx2 ∧ dy3 − dy1 ∧ dy2 ∧ dx3.

• Other very interesting calibrations presented in [30] are the so-called
Associative calibration and Cayley calibration.

• We mention the Nance calibration, used in a striking and elegant way
in [45] to prove one direction of the famous angle conjecture, on the
condition that makes a pair of m-disks in RN area-minimizing.
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It is also remarkable that the other half of the conjecture, proved by
Lawlor [38], also made use of a calibration, namely the Special La-
grangian one.

So far we have described calibrations in Rn. Let us now move on to
manifolds and observe some analogues of the previous examples.

Almost-complex geometry. We are on a symplectic manifold K2n

of (real) dimension 2n with a symplectic form ω and an almost complex
structure J .

Recall that the defining conditions for ω to be symplectic are the closed-
ness, dω = 0, and the non-degeneracy, ωn 0= 0. An almost complex structure
J is an endomorphism of the tangent bundle with the property that on any
tangent space J2 = −Id.

The compatibility condition required on the symplectic form ω and on the
almost complex structure J relies in the fact that we can define a Riemannian
metric g by setting g(·, ·) := ω(·, J ·). We will then endow (K2n,ω, J) with
the metric g.

The form ω is then a calibration and currents calibrated by ω are 2-
dimensional and are called pseudo-holomorphic. Their property is that their
approximate tangent spaces are J-invariant.

It is of course possible to take normalized powers of the symplectic form as
in the flat case of Rn to get even-dimensional forms that are still calibrations:
the comass notion is indeed pointwise and closedness of the powers is trivial.

We remark that it is not generally possible (even locally) to find complex
coordinates such that J is induced by these coordinates. When that is the
case, the almost-complex structure is called integrable and the manifold is
called Kähler. But generally almost complex structures are non-integrable.

Special Lagrangian geometry. We are in a so-called Calabi-Yau n-fold
(the real dimension is 2n). These are Kähler manifolds with the following
defining property: there exists a n-form Θ that is parallel and such that
Θ ∧ Θ = cndvol2n, for some dimensional constant cn. The form Θ is said to
be of type (n, 0).

The form Re(Θ) is a calibration and the n-dimensional calibrated currents
are called Special Lagrangians.

1.2 Regularity questions

The symbolic cornerstone for Geometric Measure Theory is usually set at
1960 with the foundational paper [27] by Federer and Fleming; key features
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of rectifiable currents had appeared shortly before in De Giorgi’s works [17]
and [18] on sets of finite perimeter.

As already mentioned, integral currents turned out to be, thanks to nice
compactness properties, suitable for the study of Plateau’s problem of finding
a surface of minimal area spanning a given boundary.

Once existence of a minimizer is established, however, one is left with the
(hard) question: how smooth is the minimizer?

The issue of regularity of the so called minimizing currents in codimension
one, that is (n−1)-currents that solve Plateau’s problem in Rn, was brought
to a conclusion in the late Sixties thanks to the contributions of Almgren
[2], Simons [55], Bombieri, De Giorgi and Giusti [11]: the smoothness up to
dimension 7 was proved, while in R8 the example of a minimizing cone with
a point-singularity was provided.

The higher codimension case for the minimizing problem is much harder:
the case of holomorphic currents was solved in the works of King [35] and
Harvey-Schiffman [32] (later a different proof was given by Alexander, [1]),
but for general minimizing currents for long time it was only known that
the set of regular points had to be dense (see [25]); there was a sudden
breakthrough with Almgren’s Big Regularity Paper [2], where it was proved
that the singular set has codimension at most two in the current. This
proof is however long and hard (1000 pages), so that the topic is still of
interest. Almgren’s student Chang then improved the regularity result in
the case of 2-dimensional minimizers ([12]), showing that the singular set in
that case is made of isolated points; the proof relies however on [2].

Understanding the proof by Almgren introducing simplifications and new
ideas was the goal of [15] and [16] and work there is still in progress.

On the other hand, it is helpful to have simpler proofs, independent of
Almgren’s monument, for some particular cases of minimizing currents in
higher codimension, for example calibrated ones, both in Rn or in a Rie-
mannian manifold. Having such examples helps the understanding of the
possible singular behaviour of such minimizers. The regularity of calibrated
and semi-calibrated integral currents, however, also has deep impact on sev-
eral geometric problems, some of which are overviewed in the next section.

The proofs in [35], [32] and [1] do not extend to the case of non-integrable
almost complex structures. The regularity for pseudo holomorphic cycles of
dimension 2 was proved in [58], [50], [51]: they can only have isolated point-
singularities.

If we increase the dimension of the current, we find, among others, a very
large class of calibrated currents, the so-called Special Lagrangians, described
in the previous subsection. Since 2-dimensional Special Lagrangians turn out



22 CHAPTER 1. INTRODUCTION

to be, up to a change of variable, just pseudo-holomorphic (see [34]), the first
difficult dimension to look at is that of 3-dimensional Special Lagrangians in
a Calabi-Yau 3-fold.

1.3 Calibrations: beyond Plateau’s problem

Some years ago, in a survey paper [21], S.K. Donaldson and R.P. Thomas
gave a fresh boost to the analysis of non-linear gauge theories in geometry
by exhibiting heuristically links between some invariants in complex ge-
ometry and spaces of solutions to Yang-Mills equations in dimensions
higher than 4 (which is the usual conformal dimension for these equations).

Remark that doing theory of invariants typically requires perturbations
to ensure transversality of spaces involved; this explains one of the needs to
be able to handle non-flat structures: for example almost-complex manifolds,
which are more flexible, rather than just complex ones.

It then became important to understand limiting behaviours of solutions
to Yang-Mills. In [59] G. Tian described the loss of compactness of sequences
of some Yang-Mills Fields in dimension larger than 4. This loss of compact-
ness arises along (n− 4)-rectifiable objects, called the blow-up sets.

Can one expect the blow-up set to be more than just rectifiable? What
is its exact nature?

At such a level of generality this question is wide open and difficult. The
situation is better understood for some sub-classes of solutions, namely Ω-
anti-self-dual instantons, where blow-up sets naturally come endowed with
the property of being calibrated. One example is given by the so-called
SU(4)-Instantons in a Calabi-Yau 4-fold: among blow-up sets, in this case,
we find Special Lagrangian Integral Currents.

In [59] we also find examples and conjectures regarding very general links
between invariants theory and spaces of solutions to equations: in these
examples a key role is played by a differential form of comass one. The
conjectures extend even when dealing with non-closed forms (see final section
of [59]). The topic is still very open and provides a lot of inspiration for the
study of calibrated or semi-calibrated integral currents.

In 2000 Taubes [58] proved an impressive result, showing that the so-called
Seiberg-Witten invariants in a 4-dimensional almost-complex manifold
agree with certain Gromov invariants.

Seiberg-Witten invariants are defined by a suitable counting of solutions
to a certain elliptic system. Gromov invariants, on the other hand, are de-
fined by a suitable counting of (classical) pseudo-holomorphic curves in the
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manifold.
The two notions, seemingly unrelated, yield the same invariants and the

proof by Taubes, in the direction going from Seiberg-Witten to Gromov,
makes a key use of the regularity result for pseudo-holomorphic cycles in
dimension 4 ([58], [50]). Roughly speaking, starting from a sequence of solu-
tions to Seiberg-Witten equations, Taubes observed the limiting behaviour
of some level sets. These objects fulfil the compactness conditions for inte-
gral currents and therefore yield an integral cycle as limit. Hard estimates
show that the limit must be calibrated by the symplectic form. Regularity
of pseudo-holomorphic cycles then allows to view this cycle as a classical
pseudo-holomorphic curve, thus getting a connection with Gromov invari-
ants.

Further reasons for studying Special Lagrangians come from String The-
ory, more precisely from Mirror Symmetry. According to this model, our
universe is a product of the standard Minkowsky space R4 with a Calabi-Yau
3-fold Y . Based on physical grounds, the so called SYZ-conjecture (named af-
ter Strominger, Yau and Zaslov) expects, roughly speaking, that this Calabi-
Yau 3-fold can be fibrated by (possibly singular) Special Lagrangians, whence
the interest in understanding the singularities of a Special Lagrangian current.
The compactification of the dual fibration should lead to the mirror partner
of Y . See the survey paper by Joyce [34] for a more thorough explanation.

1.4 Non-rectifiable currents

So far we have concentrated on integer multiplicity rectifiable currents.
The notion of being calibrated extends however to non-rectifiable currents of
finite mass, as we are about to explain. When the current is not rectifiable,
we will refer to it as positive rather than calibrated (following [30]).

A m-current C in a manifold M such that M(C) and M(∂C) are finite
is called a normal current. Any current C of finite mass is representable by
integration (see [28] pages 125-126), i.e. there exist

(i) a Radon measure ‖C‖,
(ii) a generalized tangent space *Cx ∈ Λm (Tx M), that is defined for

‖C‖-a.a. points x, is ‖C‖-measurable and has2 mass-norm 1,
such that the action of C on any m-form β with compact support is

expressed as follows

2Recall that the mass-norm for m-vectors is defined in duality with the comass on two-
forms. The unit ball for the mass-norm is the convex envelope of unit simple m-vectors.
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C(β) =

∫

M
〈β, *C〉d‖C‖.

As usual, a current with zero boundary is shortly called a cycle. Given a
(semi)calibration φ, we consider a φ-positive normal m-cycle T . Equivalent
notions of φ-positiveness (see [30] or [31]) are

• *T ∈ convex hull ofG(φ) ‖T‖-a.e.

• 〈φ, *T 〉 = 1 ‖T‖-a.e.

The last condition is clearly equivalent to the important equality

T (φ) =

∫

M
〈φ, *T 〉d‖T‖ = M(T ). (1.4)

Remark that for arbitrary currents M(C) := sup{C(β) : ||β||∗ ≤ 1} and
in general this sup need not be achieved. Also remark that for currents of
finite mass the action can be extended to smooth forms with non-compact
support (actually to forms with merely bounded Borel coefficients, see [28]
page 127). So T (φ) in (1.4) makes sense.

In the case when φ is closed, from (1.4), with the same argument as in (1.2)
one gets again that a φ-positive T is (locally) homologically mass-minimizing,
while for a non-closed φ the current T is locally an almost-minimizer of the
mass.

A certain class of positive currents has been studied quite extensively,
namely when the calibration is a Kähler form. These positive currents in Cn

are strongly related to pluri-subharmonic functions (see [39]) and most of the
regularity results known for these currents rely on this connection.

On the other hand, if we turn our attention to almost complex manifold,
there is no avaliability of pluri-subharmonic potentials and indeed a regularity
theory for positive currents in an almost complex setting has not been yet
developed. We will come back to these issues in section 1.5.3, where we also
sketch some applications.

1.5 Results of this thesis

As remarked before, the first interesting dimension for Special Lagrangians,
when thinking of regularity issues, is 3. Independently of Almgren, not much
can be said for the moment about the smoothness of 3-dimensional Special
Lagrangians.
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It is a standard result that calibrated integral cycles possess tangent cones
at all points (although they are known to be unique only if the current is
of dimension 2, see [62], [47]). These tangent cones, that live in the tangent
space of the manifold at the point under observation, are also calibrated,
namely by the differential form at the point under observation.

In particular, tangent cones to 3-D Special Lagrangians are nothing else
but cones in R6 ∼= C3 calibrated by

Re(dz1 ∧ dz2 ∧ dz3)

(up to a suitable change of coordinates). These cones are the object
of chapter 2, where we prove that they are smooth except possibly at
a finite number of lines through the vertex. The result is optimal and
improves the one yielded by Almgren’s Big Regularity Paper. The contents
of chapter 2 are the result of a joint work with Tristan Rivière ([4]).

The slice of such a cone with the sphere S5 turns out to be an integral
cycle of dimension 2 that is semi-calibrated by the two-form

Re(
3∑

i=1

zi dz
i+1 ∧ dzi+2),

with the indexes understood mod 3. This two-form is called Special Leg-
endrian semi-calibration and a semi-calibrated cycle is thus called Special
Legendrian. The regularity of Special Lagrangian cones is then deduced
from the main result of that chapter, saying that a Special Legendrian cycle
can only have isolated point singularities. The word legendrian refers to
the fact that such cycles are tangent to the standard contact distribution of
S5 (tangency is understood here almost everywhere on the cycle, so where
the approximate tangent exists).

In subsection 1.5.1 an overview of the proof and a discussion of the diffi-
culties are presented.

Chapter 3 is then devoted to the study of semi-calibrated 2-dimensional
integral legendrian cycles in a contact manifold of dimension 5, thus gener-
alizing the case of Special Legendrians in S5, where the geometric structures
are extremely simmetric. The word legendrian again refers to the fact that
for such cycles the approximate tangents lie in the horizontal (contact) dis-
tribution. Under quite generic assumptions we get again that such cycles
can only have isolated point singularities. In subsection 1.5.2 we take a
closer look at the setting.

In chapter 4 we turn our attention to non-rectifiable currents, as described
in section 1.4. More precisely we will be dealing with regularity properties
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at the infinitesimal level, namely with the uniqueness of tangent cones, for
pseudo holomorphic normal cycles: so we exit the world of rectifiable cur-
rents, moving to more general objects. We postpone a more precise descrip-
tion of the problem and of the objects involved to section 1.5.3, where we
also discuss possible applications.

1.5.1 Special Legendrian cycles in S5: overview

In C3 with the standard coordinates z = (z1, z2, z3), zi = xi+ iyi, consider
the Special Lagrangian calibration

Ω = Re(dz1 ∧ dz2 ∧ dz3).

We will be interested in Ω-calibrated integral cones with vertex at the
origin, i.e. integral currents calibrated by Ω and invariant under the push-
forward via homotheties: more precisely, a homothety about the origin is
x → λx for a positive λ, so the current C is a cone if (λx)∗C = C for any
λ > 0.

Let N denote the radial vector field N := r ∂
∂r in C3 and define the normal

part of Ω by
ΩN := ιNΩ,

where ι denotes the interior product. We will work in the sphere S5 ⊂ C3,
with the induced metric. Consider the pull-back of ΩN on the sphere via the
canonical inclusion map E : S5 ↪→ C3:

ω := E∗ΩN .

An easy computation shows that

ω = Re(z1dz
2 ∧ dz3 + z2dz

3 ∧ dz1 + z3dz
1 ∧ dz2).

ω is a 2-form on S5 of comass one. Indeed, |N | = 1 on S5 and for any simple
2-vector ξ in TS5

|ω(ξ)| = |Ω(N ∧ ξ)| ≤ ‖N ∧ ξ‖ = ‖ξ‖.

Equality is surely reached when N ∧ ξ is a Special Lagrangian 3-plane, com-
pare Proposition 1. We remark that both Ω and ω are SU(3)-invariant. As
explained in [30] (Section II.5) or [33] (Section 2.2), ω is non-closed. It can
be checked that dω = 3 E∗Ω.

ω is referred to as the Special Legendrian semi-calibration. Rectifiable
currents in S5 calibrated by ω are called Special Legendrians.

Our main result (joint work with Tristan Rivière, [4]) is the following:
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Theorem 1.5.1. An integer multiplicity rectifiable current C without bound-
ary calibrated by ω (this is called a Special Legendrian integral cycle) in S5

can only have isolated singularities, therefore finitely many.
In other words: C is, out of isolated points, the current of integration

along a smooth Special Legendrian submanifold with smooth integer multi-
plicity.

Remark 1.5.1. This result is optimal. We will provide an example later, see
remark 2.1.2.

Still from [30] (Section II.5) or [33] (Section 2.2), the 2-currents of S5 on
which ω restricts to the area form are exactly those such that the cone built
on them is calibrated by Ω:

Proposition 1. ([30] or [33]) A rectifiable current T in S5 is a Special
Legendrian if and only if the cone on T

C(T ) = {tx ∈ R6 : x ∈ T, t > 0}

is Special Lagrangian.

We know that Special Lagrangian currents (as a particular case of cur-
rents calibrated by a closed form) are (locally) homologically area-minimizing
in C3; from [2] we know that volume-minimizing 3-cycles are smooth outside
a set of Hausdorff dimension 1. In the case of a cone, this roughly trans-
lates into having radial lines of singularities, possibly accumulating onto each
other. We establish here that there can only by a finite number of such lines.

Special Lagrangians in general Calabi-Yau n-folds are known to possess
tangent cones at all points (see [30] sect. II.5), and such cones are Special
Lagrangian cones in Cn. Thanks to Proposition 1, our result can be restated
as follows:

Corollary 1.5.1. Tangent cones to a Special Lagrangian in a Calabi-Yau 3-
fold have a singular set made of at most finitely many lines passing through
the vertex.

From [55] (Prop. 6.1.1), T in S5 is minimal, in the sense of vanishing
mean curvature, if and only if C(T ) ⊂ C3 is minimal. Therefore, Special
Legendrians are minimal in S5 (although not necessarily area-minimizing).

Relying on [2], Chang proved in [12] the corresponding regularity result
for area-minimizing 2-dimensional currents.

One advantage coming from the existence of the calibration, as will be
seen, is the fact that the current can locally be described as integration along
a multi-valued graph satisfying a first order elliptic PDE; the general problem
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of volume-minimizing currents, instead, requires an elliptic problem of order
two, see [2] or [12].

The proof. We will now give a sketch of our proof. The underlying
structure is basically the same as in [58] and [50], where the regularity of J-
holomorphic cycles in a 4-dimensional ambient manifold was shown. In our
case we have a fifth coordinate to deal with, which introduces new challenging
difficulties, as will be seen.

A standard blow-up analysis tells us that at any point x of S5 the multi-

plicity function θ(x) = lim
r→0

M(C Br(x))

πr2
is3 an integer Q. The monotonicity

formula (see [47] or [53]) tells us that, at any x0,
M(C Br(x0))

r2
is monoton-

ically non-increasing as r ↓ 0, whence we get that θ is upper semi-continuous.
Therefore the set

C≤Q := {x ∈ S5 : θ(x) ≤ Q}

is open in S5. This allows a proof by induction of our result: indeed, the
statement of Theorem 3.0.2 is local, so we can restrict the current to C≤Q

and consider increasing integers Q (see the beginning of section 2.4).

One key ingredient is the construction of families of 3-dimensional surfaces
Σ which locally foliate S5 and that have the property of intersecting positively
the Special Legendrian ones. As in [50], this algebraic property can be ex-
ploited to provide a self-contained proof of the uniqueness of tangent cones
for our current. This result was proved for general semi-calibrated cycles in
[47] and for general area-minimizing ones in [62] using a completely different
approach4.

3Precisely, for any point x0, denoting by Br the geodesic ball of radius r, we have that
M(C Br(x0))

r2
= R(r) +O(r) for a function R which is monotonically non-increasing as

r ↓ 0 and tends to the multiplicity at x0 as r ↓ 0, and a function O(r) which is infinitesimal.
The term O(r) however does not affect the arguments and everything works as in the case
of a purely monotone function. We will therefore speak of monotonicity formula, although
the precise term would be almost-monotonicity. This result is proved in [47] and recalled
in the appendix.

For general integral cycles, the limit limr→0
M(C Br(x))

πr2
exists a.e. and coincides with

the absolute value |θ| of the multiplicity assigned in the definition of integer cycle. In

our case limr→0
M(C Br(x))

πr2
is well-defined everywhere, therefore we can choose (every-

where) this natural representative for θ, after having chosen the correct orientation for the
approximate tangent plane.

4The proof in [62] relies however on the area-minimality property which is not generally
true for Special Legendrians.
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Further, the positiveness of intersection allows us to describe our current,
locally around a point x0 of multiplicity Q, as a Q-valued graph from a disk
D2 ⊂ C into R3 ∼= C × R. This means that we associate to each z ∈ D2 a
Q-tuple of points in C × R. The Q-tuple is to be understood as unordered,
i.e. as an element of the Q-th symmetric product of C×R. It is not possible
to find, globally on D2, a coherent labeling of the multi-valued graph as a
superposition of Q functions.

The transition current→ multi-valued graph is done by slicing the current
with a “parallel family” of 3-surfaces Σ of the type mentioned above: one must
choose a good “direction” for the slicing, namely take a Σ that is transverse
to the tangent cone at x0. This ensures, locally around x0, the constancy of
the intersection index when we move Σ “parallel to itself”. The intersection
index, which counts intersections with signs, turns out to be constantly Q.
But the sign of intersection is always positive, due to the property of the
Σ’s. This yields that the number of points at which the 3-surfaces cross the
current is exactly Q, taking multiplicities into account.

Currents of integration along multivalued graphs constitute one of the im-
portant objects of interest in Geometric Measure Theory. Multivalued graphs
were introduced by Almgren in [2] for the study of Dirichlet-minimizing and
volume-minimizing currents and were lately revisited in a new flavour in [15].

As we said above, the proof of theorem 3.0.2 is done by induction on the
multiplicity Q. Recall that by upper semi-continuity of the multiplicity, we
already know that all points in a neighbourhood of a point of multiplicity Q
have multiplicity no higher than Q. Therefore, the inductive step is divided
into two parts: in the first one we show that there is no possibility for an
accumulation of singularities of multiplicity Q to a singularity of the same
multiplicity; in the second part we exclude accumulation of lower order sin-
gularities to a singularity of order Q.

First part of the inductive step. There is a situation in which, just by
slicing techniques, it is possible to exclude the possibility that singular points
of multiplicity Q accumulate onto a point x0 of the same multiplicity. This
case occurs when the tangent cone at x0 is not made of Q times the same
disk and will be referred to as easy case of non accumulation (see theorem
2.3.2).

The case of a point with a tangent made of the same disk counted Q times
is considerably harder and leads to theorem 2.4.1. Let us therefore focus on
this case and see an overview of the several steps.

We introduce the first order PDEs (for the Q-valued graph) that describe
the calibrating condition. These equations turn out to be, in appropriate
coordinates, perturbations of the classical Cauchy-Riemann equations, but
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with three real functions and two real variables.
More precisely, we denote the Q-valued graph describing the current in a

neighbourhood of a point of multiplicity Q by

{(ϕj(z),αj(z))}j=1···Q ,

where z = x+ iy is the coordinate in the Disk D2 ⊂ C, ϕi ∈ C and αi ∈ R.
Without loss of generality we can assume (ϕj(0),αj(0)) = (0, 0) for all j =
1, · · · , Q, so that we are centered at the origin of D2 × C× R.

The equations solved by the branches of {(ϕj(z),αj(z))} are as follows:





∂zϕj = ν((ϕj ,αj), z) ∂zϕj + µ((ϕj,αj), z)

∇αj = h((ϕj,αj), z),
(1.5)

where ν and µ are smooth complex valued functions on R5 such that ν(0) =
µ(0) = 0 and h is a smooth R2−valued map on R5.

It is remarkable that if we were dealing with a single (Sobolev) solution
ϕ : D2 ⊂ C→ C×R of the system above, then the regularity question would
be easily answered by elliptic theory, yielding that ϕ is C∞.

As soon as we have a multi-valued graph, even just 2-valued, singularities
are actually allowed! Then we can restate theorem 3.0.2 by saying that
a singular behaviour for a multi-valued graph solving the system above is
possible at most at isolated points.

We stress here that in order to get a Q-valued graph solving the system
above we need to perform a careful choice of coordinates. Since this choice
will require a lot of work, we digress shortly on its importance.

With general coordinates, induced by a slicing with arbitrary 3-dimensional
surfaces, we would, in a first instance, lose the property of positive intersec-
tion and not any longer get a Q-valued graph. We could only associate to each
z ∈ D2 a set of points {A1(z), ..., AP (z), B1(z), ..., BN (z)} with P,N ∈ N
changing with z. The only thing that would be independent of z would be the
difference P −N = Q. The points Ai would be those where there is a positive
intersection with the slicing surfaces, the Bi-s those where this intersection
is negative.

In addition to this, a further difficulty would arise. Writing equations
for this “algebraic” Q-valued graph, we would find a supercritical equation,
as explained in [51]. In comparison with the system (1.5), we would have a
dependence on ∇ϕj inside µ and ν. With such an equation, even for a single-
valued graph, we could not perform bootstrapping in order to get regularity,
and in our case of multiple values, the unique continuation argument (see
below) would fail.
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Let us go back to the proof. Using the PDEs (1.5) we prove aW 1,2 estimate
for the average (ϕ̃, α̃) of the branches of our multivalued graph. We remark
here that we give a proof of the W 1,2-estimate different than the one in [50],
where the authors had the further hypothesis that Sing C was H2-negligible
(see theorem 2.4.2).

We make a key use of the so-called relative Lipschitz estimate (theorem
2.3.3 and corollary 2.4.1). This estimate tells us the following: taken a point
x0 of multiplicity Q whose tangent cone is made of Q times the same disk D0,
if there is a sequence of points {yn} of multiplicity Q accumulating onto x0

then the tangent cones at the points yn must flatten towards D0 as n→ ∞
(see figure 2.6).

The W 1,2-regularity of the average allows us to translate the issue of
accumulation of singularities of multiplicity Q into a problem of accumulation
of zeros for a new Q-valued graph solving a PDEs system - equations (2.41)
and (2.42), that is again a perturbation of the classical Cauchy-Riemann. The
new multi-valued graph, described by (2.40), is obtained from the original one
by subtracting the average, as illustrated in figure 2.7. The W 1,2-regularity of
the average is the minimum regularity required in order to get that the new
Q-valued graph (2.40) still represents a boundaryless current in D2×C×R:
this fact is crucial later for the essential integration by parts formulae (see
lemma 2.4.5).

Then by a suitable adaptation of the unique continuation argument used
in [58], we prove that the multi-valued graph (2.40) obtained by subtracting
the average from each branch cannot have accumulating zeros, thereby con-
cluding the first part of the inductive step. The proof is by contradiction.
The argument requires a further modification of the multi-valued graph (see
(2.43) and (2.45)): this trick allows to “focus attention” on an accumulating
sequence of zeros. In order to get a L∞-bound for this multi-valued graph
(2.45) we need the Lipschitz-type estimate of corollary 2.4.1. Then we can
use the partial integration allowed by lemma 2.4.5 and get a contradiction
thanks to the elliptic nature of the equations (2.46) and (2.47) satisfied by
the multi-valued graph.

The techniques we employ to show the partial integration formulae for
multi-valued graphs are more typical of geometric measure theory; we also
provide in lemma 2.4.5 a step that was incomplete in [58].

Second part of the inductive step. Let x0 be a point of multiplicity
Q such that, in a neighbourhood Br(x0), the current C is smooth except
at points of multiplicity ≤ Q − 1 that are isolated in Br(x0) \ {x0} (this
is what we have from the inductive assumption and from the first part of
the inductive step). Then we aim to prove that it is not possible to have a
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sequence of such isolated singularities of multiplicity ≤ Q− 1 accumulating
onto x0 (this is the content of theorem 2.5.1).

We use an homological argument inspired by the one used in [58], where
the same statement was proved in the case of J-holomorphic cycles in a 4-
manifold, although in our case the existence of the fifth coordinate induces
new difficulties and a more involved argument.

For the moment we just sketch the underlying idea, warning the reader
that in section 2.5 the formal proof will require new spaces and functions,
different from those sketched here, and some delicate estimates.

As above, we denote the Q-valued graph describing the current in a neigh-
bourhood of a singular point x0 of multiplicity Q by

{(ϕj(z),αj(z))}j=1···Q ,

and denote π : D2 × C × R → D2 the projection map. There is no loss of
generality in taking x0 = 0, the origin of D2×C×R. We assume (inductive
assumption + first part of the inductive step) that the multi-valued graph
is smooth except at 0 and at a sequence of points (different from 0) having
multiplicity ≤ Q− 1, isolated in D2 ×C×R and accumulating to x0 (so we
are arguing by contradiction to prove theorem 2.5.1). Denote the projection
onto D2 of this sequence by {zj}.

Roughly speaking, we would like to exhibit a continuous function u :
D2 → C, vanishing exactly on the set π(Sing C) = {0, z1, ...zj , ...}, such
that when we observe u

|u| on positively oriented loops in D2 \ π(Sing C) the
following hold:

(i) if the loop γ encloses a point zj then the topological degree of u
|u| : γ → S1

on that loop is strictly positive;

(ii) for any loop γr = ∂Br(0) around the origin, the degree of u
|u| : γr → S1

is bounded from below by a constant k ∈ Z independent of r.

From these properties we could conclude theorem 2.5.1 by the following
homotopy argument.

Take any loop γr1 = ∂Br1(0) lying in D2 \ π(Sing C) and look at the

integer deg
(

u
|u| , γr1

)
, the degree of u

|u| : γr1 → S1. Say it is 1000.

Inside Br1(0) we can choose γr2 = ∂Br2(0) lying in D2 \ π(Sing C) so
that in the annulus Br1(0) \Br2(0) there are 1001 + k of the points zj . This
is possible by the contradiction assumption of actually having a sequence
converging to 0. Around each such zl take an oriented loop γl which encloses
exactly one of them. We can of course ensure that each γl lies in the annulus
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and does not meet π(Sing C). We know from (i) that deg
(

u
|u| , γl

)
≥ 1 for

all l.
By homotopy, since u

|u| is continuous on D2 \ π(Sing C) = {u 0= 0}, we
have

deg

(
u

|u| , γr1
)

= deg

(
u

|u| , γr2
)
+ Σldeg

(
u

|u| , γl
)
,

where the summation is taken over the 1001 + k loops γl in the annulus.

Each term in this summation is ≥ 1. From this we get deg
(

u
|u| , γr2

)
≤ k−1,

contradicting (ii).

This is also the idea in [58]. In that work, the function u is defined by
observing the relative difference of points having the same projection on D2:
this is naturally an element of C in that case.

But for our Special Legendrian, the relative difference naturally lives in
C× R (see figure 2.8), and there is no notion of degree for a function u : D2 →
C×R, therefore we need to change the setting. We will introduce a new space,
modelled on the product of the 2-dimensional current with R and define a
function u from this product into C × R; this function mimics the relative
difference and that allows a homological argument.

Close enough to each isolated singularity, the C-component of the rela-
tive difference encloses all the topological information and we can neglect
the R-component (see lemmas 2.5.2 and 2.5.3). Unfortunately this is only
possible very close to each isolated singularity, and we need to take care also
of the R-component when we seek a global estimate from below (obtained
in lemma 2.5.5) analogous to the one in (ii), whence the somewhat curious
choice of u and of its domain.

1.5.2 Semi-calibrated legendrians in a contact 5-manifold

Are there more general structures hidden behind the particular case of
Special Legendrians in S5? The situation there is extemely symmetric and
indeed we can answer this question positively by showing a very natural
framework, in which a similar regularity analysis can be performed.

Let M = M5 be a five-dimensional manifold endowed with a contact
structure5 defined by a one-form α that satisfies everywhere

α ∧ (dα)2 0= 0. (1.6)

Remark that the existence of a contact structure implies the orientability
of M. We will assume M oriented by the top-dimensional form α ∧ (dα)2.

5For a broader exposition on contact geometry, the reader may consult [8] or [41].
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Condition (1.6) means that the horizontal distribution H of 4-dimensional
hyperplanes {Hp}p∈M defined by

Hp := Ker αp (1.7)

is “as far as possible” from being integrable. The integral submanifolds of
maximal dimension for the contact structure are of dimension two and are
called Legendrians.

Given a contact structure, there is a unique vector field, called the Reeb
vector field Rα (or vertical vector field), that satisfies α(Rα) = 1 and ιRαdα =
0.

An almost-complex structure on the horizontal distribution is and endo-
morphism J of the horizontal sub-bundle which satisfies J2 = −Id. Given a
horizontal, non-degenerate two-form β, i.e. a two-form such that ιRαβ = 0
and β∧β 0= 0, we say that an almost-complex structure J is compatible with
β if the following conditions are satisfied:

β(v, w) = β(Jv, Jw), β(v, Jv) > 0 for any v, w ∈ H. (1.8)

In this situation, we can define an associated Riemannian metric gJ,β on the
horizontal sub-bundle by setting

gJ,β(v, w) := β(v, Jw).

We can extend an almost-complex structure J defined on the horizontal
distribution, to an endomorphism of the tangent bundle TM by setting

J(Rα) = 0. (1.9)

Then it holds J2 = −Id+Rα ⊗ α.
With this in mind, extend the metric to a Riemannian metric on the

tangent bundle by

g := gJ,β + α⊗ α. (1.10)

This extensions will often be implicitly assumed. Remark that Rα is
orthogonal to the hyperplanes H for the metric g:

g(Rα, X) = β(Rα, JX) + α(Rα)α(X) = 0 for X ∈ H = Ker α. (1.11)

Example: We describe the standard contact structure on R5. Using coor-
dinates (x1, y1, x2, y2, t) the standard contact form is ζ = dt−(y1dx1+y2dx2).
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The expression for dζ is dx1dy1 + dx2dy2 and the horizontal distribution is
given by

Ker ζ = Span{∂x1 + y1∂t, ∂x2 + y2∂t, ∂y1 , ∂y2}. (1.12)

The standard almost complex structure I compatible with dζ is the en-
domorphism {

I(∂xi + yi∂t) = ∂yi
I(∂yi) = −(∂xi + yi∂t)

i ∈ {1, 2}. (1.13)

I and dζ induce, as described above, the metric gζ := dζ(·, I·) + α(·)α(·)
for which the hyperplanes Ker ζ are orthogonal to the t-coordinate lines,
which are the integral curves of the Reeb vector field.

We will be interested in two-dimensional Legendrians that are invariant
for suitable almost complex structures defined on the horizontal distribution.
What we require for an almost-complex structure J on the horizontal sub-
bundle is the following Lagrangian condition

dα(Jv, v) = 0 for any v ∈ H. (1.14)

This requirement amounts to asking that any J-invariant 2-plane must be
Lagrangian for the symplectic form dα, i.e. that dα vanishes on it identi-
cally. It also turns out to be equivalent to the following anti-compatibility
condition (see chapter 3)

dα(v, w) = −dα(Jv, Jw) for any v, w ∈ H. (1.15)

The main result we present (also see [5]) is the following

Theorem 1.5.2. Let M be a five-dimensional manifold endowed with a con-
tact form α and let J be an almost-complex structure defined on the horizontal
distribution H = Ker α, such that dα(Jv, v) = 0 for any v ∈ H.

Let C be an integer multiplicity rectifiable cycle of dimension 2 in M such
that H2-a.e. the approximate tangent plane TxC is J-invariant6.

Then C is, except possibly at isolated points, the current of integration
along a smooth two-dimensional Legendrian curve.

6Representing a 2-plane as a simple 2-vector v∧w, the condition of J-invariance means
v ∧ w = Jv ∧ Jw. With (3.3) in mind, we see that a J-invariant 2-plane must be tangent
to the horizontal distribution.
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In proposition 4 of chapter 3 we describe a direct application of this the-
orem to semi-calibrations. The cycles of proposition 4 are generally almost-
minimizers (also called λ-minimizers) of the area functional: in section 3.3
we will see some cases when they are also minimal, in the sense of vanishing
mean curvature.

The key ingredient that we need for the proof of theorem 3.0.2 is the
construction of families of 3-dimensional surfaces7 which locally foliate the
5-dimensional ambient manifold and that have the property of intersecting
positively the Legendrian, J-invariant cycles. In chapter 2, due to the fact
that we are dealing with an explicit semi-calibration in a very symmetric
situation, the 3-dimensional surfaces can be explicitly exhibited (see section
2.1). Here we will achieve this by solving, via fixed point theorem, a per-
turbation of Laplace’s equation. After having done this, the proof can be
completed by following that in chapter 2 verbatim.

The same idea was present in [50], where, in an almost complex 4-
manifold, the authors produced J-holomorphic foliations by solving a per-
turbed Cauchy-Riemann equation. In our case the equation turns out to
be of second order and, in order to prove the existence of a solution, we
need to work in adapted coordinates (see proposition 5 in chapter 3 and the
discussion that precedes it).

As already discussed in subsection 1.5.1, the existence of foliations that
intersect positively a calibrated cycle fails in general and the lack of such
foliations can make the regularity issue considerably harder: in particular
the description of the current as a multiple valued graph fails and the PDE
describing the current can become supercritical (see [51] for details).

Positive foliations are typical of “pseudo-holomorphic behaviours” in low
dimensions; they exist in dimension 4 (see [58] and [50]) and in chapter 3
we show that this is the case also in dimension 5 under the mildest possible
assumptions.

1.5.3 Positive (1, 1)-normal cycles: tangent cones.

We turn now to non-rectifiable currents, with an overview of the results
presented in chapter 4.

Normal currents in complex manifolds, positive with respect to the nor-
malized powers of the Kähler form, have been studied quite extensively, since
the work of Lelong [39]: they appeared at first in relation with the study of

7This existence result is where (3.8) and (3.9) play a determinant role.
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plurisubharmonic functions and with integration on analytic varieties. Strik-
ing results, some of which we will now recall, have been obtained since then.
For a reason that we will explain, 2-currents that are positive with respect
to the Kähler form are also called positive (1, 1)-currents.

For any positive (1, 1)-current of finite mass and without boundary (a
common term for that is positive (1, 1)-normal cycle) in a complex manifold,
the set of points with stricly positive Lelong number has a very regular struc-
ture: this set is a union of algebraic varieties, as shown by Y.-T. Siu in [56]:
these varieties are holomorphic outside of possible singular points.

Such a “structure theorem” only holds, however, for the set of points
with stricly positive Lelong number: there is no analogous representation for
the global current. Indeed, two different positive (1, 1)-cycles of finite mass
can coincide on an open set but not globally, as shown in example 1.5.1.
This lack uf unique continuation allowed C. O. Kiselman in [36] to produce
couterexamples to the uniqueness of tangent cones at an arbitrary point of
a positive (1, 1)-normal cycle.

Siu’s result implies that this failure can only happen at a point x0 where
there exists δ > 0 so that the Lelong number ν fulfils ν(x0) ≥ ν(x) + δ for
all points x in a neghbourhood of x0.

If we turn to an almost complex manifold and consider positive (1, 1)-
currents with respect to a possibly non-integrable almost complex structure
J , the structure of the set of points with positive Lelong number has not
been investigated much. The approach in the case of complex manifolds
relies a lot on a connection with plurisubharmonic functions, not avaliable in
an almost complex manifold; due to the loss of such a tool, the strategy for a
“structure theorem” (analogous to [56]) in the almost complex setting would
require the use of totally different approaches and techniques. The need for
such a result comes from several possible applications in geometry, namely
problems where the structure must be perturbated from a complex to almost
complex one, in order to ensure some transversality conditions (in the spirit
of what was said in section 1.3). Related discussions can be found in [21],
[50], [58], [59], [60]. An inspiring example is the one given in the last section
of [59]. Later in this section we will sketch some explicit applications of such
a “structure theorem”.

With this aim in mind we will prove a uniqueness theorem for tangent
cones to (1, 1)-normal cycles in an arbitrary almost complex manifold at non-
isolated points of positive density. Before stating the result, we describe in
a more detailed way the setting and recall the basic notions.

Let (M, J) be a smooth almost complex manifold of dimension 2n + 2
(with n ∈ N∗), endowed with a non-degenerate 2-form ω compatible with J .
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If dω = 0 then we have a symplectic form, but we will not need to assume
closedness. Let g be the associated Riemannian metric, g(·, ·) := ω(·, J ·).

The form ω is a semi-calibration on M for the metric g; let G(ω) be the
set of 2-planes calibrated by ω.

The condition of being calibrated has an useful equivalent formulation: a
2-plane is in Gx if an only if it is Jx-invariant or, in other words, if an only if
it is Jx-holomorphic.

So an equivalent way to express ω-positiveness (defined in section 1.4)
is that ‖T‖-a.e. *T belongs to the convex hull of J-holomorphic simple unit
2-vectors, in particular *T itself is J-invariant. For this reason ω-positive
normal cycles are also called positive (1, 1)-normal cycles8. Remarkably the
(1, 1)-condition only depends on J , so a positive (1, 1)-cycle is ω-positive for
any J-compatible couple (ω, g).

Positive cycles (see [30] and [47]) satisfy an important almost mono-

tonicity property : at any point x0 the mass ratio M(T Br(x0))
πr2 is an almost-

increasing function of r, i.e. it can be expressed as a weakly increasing
function of r plus an infinitesimal of r. The precise statement can be found
in section 4.1.

Monotonicity yields a well-defined limit

ν(x0) := lim
r→0

M(T Br(x0))

πr2
.

This is called the (two-dimensional) density of the current T at the point x0

(Lelong number in the classical literature, see [39]). The almost monotonicity
property also yields that the density is an upper semi-continuous function.

Consider a dilation of T around x0 of factor r which, in normal coordinates
around x0, is expressed by the push-forward of T under the action of the map
x− x0

r
:

(Tx0,r B1)(ψ) :=

[(
x− x0

r

)

∗
T

]
(χB1ψ) = T

(
χBr(x0)

(
x− x0

r

)∗

ψ

)
.

(1.16)

8We are using the term dimension for a current as it is customary in Geometric Measure
Theory, i.e. the dimension of a current is the degree of the forms it acts on. Remark that
in the classical works on positive currents and plurisubharmonic functions, e.g. [39] or [56],
our 2-cycle in Cn+1 would mostly be called a current of bidimension (1, 1) and bidegree
(n, n).
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The fact that
M(T Br(x0))

r2
is monotonically almost-decreasing as r ↓ 0

gives that, for r ≤ r0 (for a small enough r0), we are dealing with a family
of currents {Tx0,r B1} that satisfy the hypothesis of Federer-Fleming’s com-
pactness theorem (see [28] page 141). Thus there exist a sequence rn → 0
and a rectifiable boundaryless current T∞ such that

Tx0,rn B1 → T∞.

This procedure is called the blow up limit and the idea goes back to De Giorgi
[17]. Any such limit T∞ turns out to be a cone (a so called tangent cone
to T at x0) with density at the origin the same as the density of T at x0.
Moreover T∞ is ωx0-positive (see [30]).

The main issue regarding tangent cones is whether the limit T∞ depends
or not on the sequence rn ↓ 0 yielded by the compactness theorem, i.e.
whether T∞ is unique or not. It is not hard to check that any two sequences
rn → 0 and ρn → 0 fulfilling a ≤ rn

ρn
≤ b for a, b > 0 must yield the

same tangent cone, so non-uniqueness can arise for sequences with different
asymptotic behaviours.

The fact that a current possesses a unique tangent cone is a symptom of
regularity, roughly speaking of regularity at infinitesimal level. It is generally
expected that currents minimizing (or almost-minimizing) functionals such
as the mass should have fairly good regularity properties. This issues are
however hard in general.

The uniqueness of tangent cones is known for some particular classes of
integral currents, namely for mass-minimizing integral cycles of dimension 2
([62]) and for general semi-calibrated integral 2-cycles ([47]). In some other
cases, which also follow from either of the forementioned [62] or [47], the
proof has been achieved using techniques of positive intersection, namely
for integral pseudo-holomorphic cycles in dimension 4 ([58], [50]) and for
integral Special Legendrian cycles in dimension 5 (this thesis, chapters 2 and
3, i.e. [4], [8]). In [51] the uniqueness for pseudo holomorphic integral 2-
dimensional cycles is achieved in arbitrary codimension. In [54] it is proved
that if a tangent cone to a minimal integral current has multiplicity one and
has an isolated singularity, then it is unique.

Passing normal currents, things get harder. Many examples of ω-positive
normal 2-cycles can be given by taking a family of pseudoholomorphic curves
and assigning a positive Radon measure on it (this can be made rigorous).
However ω-positive normal 2-cycles need not be necessarily of this form, as
the following example shows.
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Example 1.5.1. In R4 ∼= C2, with the standard complex structure, consider
the unit sphere S3 and the standard contact form γ on it.

The 2-dimensional current C1 supported in S3 and dual to γ, i.e. defined
by C1(β) :=

∫
S3 γ ∧ β dH3, is positive-(1, 1) and its boundary is given by

∂C1(α) :=
∫
S3 dγ ∧ α dH3, i.e. the boundary is the 1-current given by the

uniform Hausdorff measure on S3 and the Reeb vector field.
Now consider the positive (1, 1)-cone C with vertex at the origin, obtained

by assigning the uniform measure 1
4πH

2 on CP1, i.e. C is obtained by taking
the family of holomorphic disks through the origin and endowing it with a
unifom measure of total mass 1. The current C2 := C (R4 \ B4

1(0)) has
boundary ∂C2 = −∂C1, therefore C1 + C2 is a positive (1, 1) cycle.

This construction shows that a ω-positive normal 2-cycle T is not very
rigid and it is not true that, restricting for example to a ball B, the current
T B is the unique minimizer for its boundary (which is instead true for
integral cycles). This can be interpreted as a lack of unique continuation for
these currents.

This issue reflects into the fact that the uniqueness of tangent cones to ω-
positive normal 2-cycles fails in general, already in the case of the complex
manifold (Cn, J0), where J0 is the standard complex structure: this was
proven by Kiselman [36]. Further works extended the result to arbitrary
dimension and codimension (see [9] and [10], where conditions on the rate of
convergence of the mass ratio are given, under which uniqueness holds).

While in the integrable case (Cn, J0) positive cycles have been studied
quite extensively, there are no results avaliable for (1, 1) cycles when the
structure J is almost complex.

In chapter 4 (see also [6]) we prove the following result:

Theorem 1.5.3. Given an almost complex (2n + 2)-dimensional manifold
(M, J,ω, g) as above, let T be a positive (1, 1)-normal cycle, i.e. a ω-positive
normal 2-cycle.

Let x0 be a point of positive density ν(x0) > 0 and assume that there is a
sequence xm → x0 of points xm 0= x0 all having positive densities ν(xm) and
such that ν(xm)→ ν(x0).

Then the tangent cone at x0 is unique and is given by ν(x0)!D" for a
certain Jx0-invariant disk D.

The notation !D" stands for the current of integration on D. Our proof
actually yields the stronger result stated in theorem 4.1.1.

In the integrable case Siu’s work [56] gives us a strong and beautiful
“structure” theorem, which in our situation states the following: given c > 0,
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the set of points of a (1, 1)-positive cycle of density ≥ c is made of analytic
varieties each carrying a positive, real, constant multiplicity. Therefore, in
the integrable case, theorem 1.5.3 follows from Siu’s result.

In the non-integrable case, on the other hand, there are no regularity
results avaliable at the moment. The proofs of Siu’s theorem given in the
integrable case, see [56], [37], [40], [20], strongly rely on a connection with
a plurisubharmonic potential for the current, which is not avaliable in the
almost complex setting.

In addition to the interest for tangent cones themselves, theorem 1.5.3
(and its extension 4.1.1) might serve as a first step towards a regularity
result analogous to the one in [56], this time in the non-integrable setting.

Such a regularity result could be used for example in the study of pseudo-
holomorphic maps into algebraic varieties, as those analyzed in [50]. Indeed,
if u : M4 → CP1 is pseudoholomorphic and weakly approximable as in [50],
with M4 a compact closed 4-dimensional almost-complex manifold, denoting
by 5 the symplectic form on CP1, then the 2-current U defined by U(β) :=∫
M4 u∗5∧β is a positive normal (1, 1)-cycle in M4. As explained in [50], the

singular set of u is of zero H2-measure and is located where the density of U
is ≥ ε, for a positive ε depending on M4 (this is a so-called ε-regularity result,
see [52]). Then we would be reduced, in order to understand singularities of
u, to the study of points of density ≥ ε of U . Knowing that such a set is
made of pseudoholomorphic varieties, together with the fact that it is H2-
null, would imply that the singular set is made of isolated points, the same
result achieved in [50] with different techniques.

The strategy might then be applied to other dimensions. Normal (1, 1)-
cycles might also serve as a model case for other kind of problems, in which
ε-regularity results play a role, for example Yang-Mills fields (see [59] and
[60]).

We have been speaking of positive (1, 1)-normal cycles in an almost com-
plex manifold. As as side remark, observe that Special Legendrian currents
in a 5-dimensional manifold M5 (rectifiable or not), actually fit in the con-
text of this chapter. Indeed, we can take the product M5 × R and easily
extend the almost complex structure J , for which Special Legendrians are
pseudo-holomorphic, to an almost complex structure J in M5 ×R. Now we
are in the hypothesis of chapter 4. In general the almost complex manifold
M5 × R will not admit a closed symplectic form that tames J , but just a
non-closed one.

Sketch of the proof. The key idea for the proof of our result is to
realize for our current a sort of “algebraic blow up”.
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This is a well-known construction in Algebraic and Symplectic Geometry,
with the name “blow up”. Since we have already introduced the notion of blow
up as limit of dilations, as customary in Geometric Measure Theory, to avoid
confusion we will call it algebraic blow up. We briefly recall how it goes in
the complex setting (see figure 4.2).

Algebraic blow up (or proper transform), (see [41]). Define C̃n+1 to be
the submanifold of CPn × Cn+1 made of the pairs (8, (z0, ...zn)) such that
(z0, ...zn) ∈ 8.

C̃n+1 is a complex submanifold and inherits from CPn×Cn+1 the standard
complex structure, which we denote I0. The metric g0 on C̃n+1 is inherited
from the ambient CPn × Cn+1, that is endowed with the product of the
Fubini-Study metric on CPn and of the flat metric on Cn+1. Let Φ : C̃n+1 →
Cn+1 be the projection map (8, (z0, ...zn)) → (z0, ...zn). Φ is holomorphic
for the standard complex structures J0 on Cn+1 and I0 on C̃n+1 and is a
diffeomorphism between C̃n+1 \ (CPn × {0}) and Cn+1 \ {0}. Moreover the
inverse image of {0} is CPn × {0}.

C̃n+1 is a complex line bundle on CPn but we will later view it as an
orientable manifold of (real) dimension 2n + 2. The transformation Φ−1

(called proper transform) sends the point 0 0= (z0, ...zn) ∈ Cn+1 to the point
([z0, ...zn], (z0, ...zn)) ∈ C̃n+1 ⊂ CPn×Cn+1. With the almost complex struc-
tures J0 and I0, the J0-holomorphic planes through the origin are sent to the
fibers of the line bundle, which are I0-holomorphic planes.

Outline of the argument. We have a positive (1, 1)-normal cycle T in Cn+1,
at the moment with reference to the standard complex structure J0, and we
want to to understand the tangent cones at the origin, that we assume to be
a point of density 1. By assumption we have a sequence of points xm → 0
with densities converging to 1. Take a subsequence xmk

such that
xmk
|xmk |

→ y

for a point y ∈ ∂B1.
We can make sense (section 4.3) of the proper transform (Φ−1)∗T , al-

though the map Φ−1 degenerates at the origin, and prove that (Φ−1)∗T is a

positive (1, 1)-normal cycle in (C̃n+1, I0, g0).
The densities of points different than the origin are preserved under the

proper transform (see the appendix), therefore the current (Φ−1)∗T has a

sequence of points converging to a certain y0 (that lives in CPn×{0} ⊂ C̃n+1)
and the densities of these points converge to 1. More precisely y0 = H(y),
where H : S2n+1 → CPn is the Hopf projection.

(Φ−1)∗T is a positive (1, 1)-cycle in (C̃n+1, I0, g0), so by upper semi-
continuity of the density y0 is also a point of density ≥ 1.

Turning now to a sequence T0,rn of dilated currents, with a limiting cone
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T∞, we can take the proper transforms (Φ−1)∗T0,rn and find that all of them
share the features just described, with the same y0. But going to the limit we
realize that (Φ−1)∗T0,rn weakly converge to the proper transform (Φ−1)∗T∞,
which is also (1, 1) and positive.

The mass is continuous under weak convergence of positive (or calibrated)
currents, therefore y0 is a point of density ≥ 1 for (Φ−1)∗T∞. This limit,
however, is of a very peculiar form, being the transform of a cone. Recall that
the fibers of C̃n+1 are holomorphic planes coming from holomorphic planes
through the origin of Cn+1. Since T∞ is a positive (1, 1)-cone, it is made of
a weighted family of holomorphic disks through the origin, as described in
(4.3), and the weight is a positive measure. Then (Φ−1)∗T∞ is made of a

family of fibers of the line bundle C̃n+1 with a positive weight. Then the fact
that y0 has density ≥ 1 implies that the whole fiber Ly0 at y0 is counted with
a weight ≥ 1. Transforming back, T∞ must contain the plane Φ(Ly0) with a
weight ≥ 1.

But the density of T at the origin is 1, so there is no space for anything
else and T∞ must be the disk Φ(Ly0) with multiplicity 1. Since we started
from an arbitrary sequence rn, the proof is complete, and it is also clear that
xm
|xm| cannot have accumulation points other than y.

In the almost complex setting we need to adapt the algebraic blow up,
respecting the almost complex structure. Up to passing to a chart we as-
sume to be in the unit ball B2n+2

1 ⊂ Cn+1 endowed with an almost complex
structure J . In order to adapt the algebraic blow up with respect to J , we
employ a a pseudo holomorphic polar foliation: we have a family of pseudo
holomorphic embedded disks through the origin: these disks foliate a sector
S of the form {(z0, ..., zn) ∈ B2n+2

1 ⊂ Cn+1 :
∑n

j=1 |zj|2 < |z0|2}.
Such a foliation was used in dimension 4 in [50] and [58] for slicing

techniques employed for regularity results on pseudo holomorphic integral
2-cycles. In this work the foliation allows the construction of coordinates
that respect the almost complex structure J and substitute the normal co-
ordinates used in the blow up procedure explained in (4.2). The blow up is
then performed with respect to these new coordinates and yields the same
tangent cones in the limit.

Due to the non-integrability of J , the polar foliation does not cover the
whole unit ball but only a sector S. This is however enough to adapt the
algebraic blow up, although only restricting to this sector. In chapter 4
we will mimic, with the due changes and some careful estimates, the proof
sketched just above.
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Chapter 2

Special Legendrian cycles in S5

Let C be a Special Legendrian integral cycle in S5 ⊂ C3, i.e. a 2-
dimensional integral current without boundary that is semi-calibrated by
the two-form ω = Re(z1dz2 ∧ dz3 + z2dz3 ∧ dz1 + z3dz1 ∧ dz2). In this chap-
ter we prove the following result (joint work with Tristan Rivière, [4]), an
overview of which was presented in section 1.5.1.

Theorem 2.0.4. C is, out of isolated points, the current of integration along
a smooth Special Legendrian submanifold with a smooth integer multiplicity.

2.1 Preliminaries: the construction of positively

intersecting foliations

In this section we are going to construct in a generic way a smooth 3-
surface Σ in S5 with the property that, anytime Σ intersects a Special Leg-
endrian L transversally, this intersection is positive, i.e., the orientation of
TpL ∧ TpΣ agrees with that of TpS5 (S5 being oriented according to the
outward normal). Then we will construct foliations made with families of
3-surfaces of this kind.

Contact structure. Now we recall some basic facts on the geometry of
the contact structure associated to the Special Legendrian calibration in S5,
see [33] for more details.

S5 inherits from the symplectic manifold (C3,
3∑

i=1

dzi ∧ dzi) the contact

structure given by the form

γ := E∗ιN (
3∑

i=1

dzi ∧ dzi).

45
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This is a 1-form with the contact property saying that γ ∧ (dγ)2 0= 0 every-
where; the associated distribution of hyperplanes is ker(γ(p)) ⊂ TpS5. In
the sequel the hyperplane of the distribution at p will be denoted by H4

p ,
where H stands for horizontal 1. The condition on γ is equivalent to the
non-integrability of this distribution, i.e. it is impossible (even locally) to
find a 4-surface in S5 which is everywhere tangent to the H4. The vectors
v orthogonal to H4 are called vertical; they are everywhere tangent to the
Hopf fibers eiθ(z1, z2, z3) ⊂ S5.

Special Legendrians are tangent to the horizontal distribution.
The Special Legendrian calibration ω has the property that any calibrated
2-plane in TS5 must be contained in H4. Therefore, Special Legendrian sub-
manifolds are everywhere tangent to the horizontal distribution and they are
a particular case of the so called Legendrian curves, which are the maximal
dimensional integral submanifolds of the contact distribution. We can shortly
justify this as follows: recall that ω and the horizontal distribution are invari-
ant under the action of SU(3). At the point (1, 0, 0) ∈ S5 the Special Legen-
drian semi-calibration is easily2 computed: ω(1,0,0) = dx2 ∧ dx3 − dy2 ∧ dy3.
Then if a unit simple 2-vector in T(1,0,0)S5 is calibrated, it must lie in the 4-
plane spanned by the coordinates x2, y2, x3, y3, which is the horizontal hyper-
plane H4

(1,0,0) orthogonal to the Hopf fiber eiθ(1, 0, 0). The SU(3)-invariance

of ω and of {H4} implies that, at all points on the sphere, Special Legendrians
are tangent to the horizontal distribution.

J-structure and J-invariance. We introduce now a further structure:
on each hyperplane H4

p , ω restricts to a non-degenerate 2-form, so we get a
symplectic structure and we can define the (unique) linear map

Jp : H
4
p → H4

p

characterized by the properties that J2
p = −Id and, for v, w ∈ H4

p ,

ω(p)(v, w) = ω(p)(Jpv, Jpw), 〈v, w〉TpS5 = ω(p)(v, Jpw). (2.1)

This is a standard construction from symplectic geometry and the uniqueness
of the Jp at each point implies that we get a smooth endomorphism of the
horizontal bundle; in our case the setting is simple enough to allow an explicit
expression of Jp in coordinates, as follows.

1This is nothing else but the universal horizontal connection associated to the Hopf
projection S5 → CP2 sending (z1, z2, z3) → [z1, z2, z3]. The fibers eiθp, θ ∈ [0, 2π] and
p ∈ S5, are great circles in S5 and the hyperplanes H4

p of the horizontal distribution are
everywhere orthogonal to the fibers. This structure is SU(3)-invariant.

2Recall that we are using standard coordinates zj = xj + iyj, j = 1, 2, 3 on C3.
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ω(1,0,0) = dx2 ∧ dx3 − dy2 ∧ dy3 and recall that H4
(1,0,0) is spanned by the

coordinates x2, y2, x3, y3. Then choose

J(1,0,0) :=

{ ∂
∂x2

→ ∂
∂x3

∂
∂y2

→ − ∂
∂y3

.

The conditions in (2.1) hold true at this point.
For any p ∈ S5, take g ∈ SU(3)/SU(2) sending p to (1, 0, 0). The SU(2)

in the quotient is the stabilizer of H4
(1,0,0). This stabilizer leaves J(1,0,0) in-

variant (any element of SU(2) commutes with J(1,0,0)) and we can define, for
v ∈ H4

p ,
Jp(v) := dg−1(J(1,0,0)(dg(v))).

Thus we get a smooth J-structure on the horizontal bundle.
From the properties in (2.1), if a simple unit 2-vector v ∧ w in H4

p is
calibrated by ω, then

1 = ωp(v, w) = ωp(Jpv, Jpw) = 〈Jpv, w〉TpS5

so

v ∧ w is a Special Legendrian plane ⇔ Jp(v ∧ w) := Jpv ∧ Jpw = v ∧ w,

i.e.

Proposition 2. A 2-plane in TpS5 is Special Legendrian if and only if it
lies in H4

p (horizontal for the Hopf connection) and it is Jp-invariant for the
J-structure above.

Since all the above introduced objects are invariant under the action of
SU(3), we can afford to work at a given point of S5; from now on we will
focus on a neighbourhood of the point (1, 0, 0) ∈ S5, where we are using the
complex coordinates (z1, z2, z3) = (x1, y1, x2, y2, x3, y3) of C3.

Positive 3-surface. We are now ready for the construction of a 3-surface
with the property of positive intersection.

Oriented m-planes in C3 will be identified with unit simple m-vectors in
C3. In particular, TS5 is oriented so that TS5 ∧ ∂

∂r = C3.
Writing down the Special Lagrangian calibration explicitly

Ω = dx1 ∧ dx2 ∧ dx3 − dx1 ∧ dy2 ∧ dy3 − dy1 ∧ dx2 ∧ dy3 − dy1 ∧ dy2 ∧ dx3,

it is straightforward to see that

L0 =
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3
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is a Special Lagrangian 3-plane passing through the origin of C3 and through
the point (1, 0, 0). We now consider, for a small positive ε, the following
family {Lθ}θ∈(− ε,ε) of Special Lagrangian planes, where {(eiθ, 0, 0)}θ∈(− ε,ε) is
the fiber containing (1, 0, 0) and Lθ goes through the point (eiθ, 0, 0):

Lθ =




eiθ 0 0
0 e−iθ 0
0 0 1





∗

L0 =

= (cos θ
∂

∂x1
+ sin θ

∂

∂y1
) ∧ (cos θ

∂

∂x2
− sin θ

∂

∂y2
) ∧ ∂

∂x3
,

which is Special Lagrangian since it has been obtained by pushing forward
L0 by an element in SU(3).

We introduce the 4-surface Σ4 in C3 obtained by attaching the Lθ-planes
along the fiber {(eiθ, 0, 0)}θ∈(− ε,ε): this 4-surface can be expressed as

Σ4 = (aeiθ, be−iθ, c),

parametrized with (a, b, c) ∈ R3 \ {0}, θ ∈ (− ε, ε). Then define

Σ = Σ4 ∩ S5.

As stated in the coming lemma 2.1.1, this 3-surface has the desired property
of intersecting Special Legendrians positively.

We can make the equivalent construction starting from the form ω re-
stricted to the fiber {(eiθ, 0, 0)}θ∈(− ε,ε), namely

ω = cos θ(dx2 ∧ dx3 − dy2 ∧ dy3) + sin θ(−dx2 ∧ dy3 − dy2 ∧ dx3),

and explicitly writing down the J-structure on H4
(eiθ ,0,0) introduced above. On

H4
(eiθ,0,0) we can use coordinates (x2, y2, x3, y3) since H4∧v = TS5, TS5∧ ∂

∂r =

C3 and v = i ∂
∂r , so H4 = ∂

∂x2
∧ ∂

∂y2
∧ ∂

∂x3
∧ ∂

∂y3
.

Jθ = J(eiθ,0,0) :=






∂
∂x2

→ cos θ ∂
∂x3
− sin θ ∂

∂y3
∂

∂y2
→ − cos θ ∂

∂y3
− sin θ ∂

∂x3
∂

∂x3
→ − cos θ ∂

∂x2
+ sin θ ∂

∂y2
∂

∂y3
→ cos θ ∂

∂y3
+ sin θ ∂

∂x2
.

So Jθ is represented by the matrix J0Aθ, where 3

3In complex notation, looking at H4
(eiθ,0,0) as C2

z2,z3
, we can write

Aθ =

(
eiθ 0
0 e−iθ

)
.
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J0 =






0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0




 , Aθ =






cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ




 .

If v ∧ w is a J-invariant 2-plane in H4
0 , with w = J0v, then A−1

θ v ∧ w is
Jθ invariant, in fact Jθ(A

−1
θ v) = J0AθA

−1
θ v = J0v = w. Take the geodesic

2-sphere L0 tangent to the J0-holomorphic plane

∂

∂x2
∧ ∂

∂x3
.

This Special Legendrian 2-sphere L0 coincides with L0∩S5 introduced above.
The 2-plane

A−1
θ

∂

∂x2
∧ ∂

∂x3
= (cos θ

∂

∂x2
− sin θ

∂

∂y2
) ∧ ∂

∂x3

is therefore Jθ holomorphic and the geodesic 2-sphere tangent to it is Lθ∩S5.
Σ is the 3-surface obtained from the union of those Special Legendrian spheres
as θ ∈ (− ε, ε).

Lemma 2.1.1. There is an ε0 > 0 small enough such that for any ε < ε0
the following holds:

let S be any Special Legendrian current in Bε(1, 0, 0) ⊂ S5; then, at any
point p where TpS is defined and transversal to TpΣ, S and Σ intersect each
other in a positive way, i.e.

TpS ∧ TpΣ = TpS
5.

proof of lemma 2.1.1.

T(eiθ ,0,0)Σ = A−1
θ

∂

∂x2
∧ ∂

∂x3
∧ vθ,

so, along the fiber, the tangent space to Σ is spanned by two vectors l1, l2

such that l1 ∧ l2 is Special Legendrian and by the vertical vector vθ. At any
other point p of Σ, the tangent space always contains two directions l1p, l

2
p

such that l1p ∧ l2p is Special Legendrian (from the construction of Σ). The
third vector w, orthogonal to these two and such that l1p∧ l2p∧w = TΣ, drifts
from the vertical direction as the point moves away from the fiber, but by
continuity, for a small neighbourhood Bε(1, 0, 0), we still have that

H4
p ∧ wp = TpS

5.
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On the other hand, it is a general fact that, given a 4-plane with a J-structure,
two transversal J-invariant planes always intersect positively. Therefore

TpS ∧ l1p ∧ l2p = H4
p

at any point p, so

TpS ∧ TpΣ = TpS ∧ (l1p ∧ l2p ∧ wp) = (TpS ∧ l1p ∧ l2p) ∧ wp = TpS
5.

First parallel foliation. Now we are going to exhibit a 2-parameter
family of 3-surfaces that foliate Bε(1, 0, 0) and have the property of positive
intersection. Consider the Special Legendrian 2-sphere

L = (− ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
) ∩ S5.

This is going to be the space of parameters. Consider SO(3) and let it act
on the 3-space − ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
. We are only interested in the subgroup of

rotations having axis in the plane ∂
∂y2
∧ ∂

∂y3
. This subgroup is isomorphic to

SO(3)/S, where S is the stabilizer of a point, in our case the point (1, 0, 0) ∈
− ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
. Thus the rotations in this subgroup can be parametrized

over the points of L =
(
− ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3

)
∩ S5 and we will write Aq for the

rotation sending (1, 0, 0) to q ∈ L. We extend Aq to a rotation of the whole
S5 by letting it act diagonally on R3 ⊕ R3 = C3. Then define

Σq = Aq(Σ),

for q ∈ L. Since Aq ∈ SU(3), Special Legendrian spheres are invariant and
Aq(eiθ(1, 0, 0)) = eiθAq((1, 0, 0)) = eiθq, so the fiber through (1, 0, 0) is sent
into the fiber through q. Therefore, for a fixed q, Σq is a 3-surface of the
same type as Σ, that is, it contains the fiber through q and is made of the
union of Special Legendrian spheres smoothly attached along the fiber. By
the SU(3)-invariance of ω, from lemma 2.1.1 we get that Σq has the property
of intersecting positively any transversal Special Legendrian S.

For the sequel define Lε = L ∩Bε(1, 0, 0).

Lemma 2.1.2. The 3-surfaces Σq, as q ∈ Lε, foliate a neighbourhood of
(1, 0, 0) in S5.
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proof of lemma 2.1.2. Parametrize Lε with normal coordinates (s, t), with
∂
∂s =

∂
∂y2

, ∂
∂t = −

∂
∂y3

and Σ = Σ0 with (a, b, c, θ) ∈ (S2∩Bε(1, 0, 0))× (− ε, ε),

with (a, b, c) ∈ S2 ⊂ R3 = ∂
∂x1
∧ ∂

∂x2
∧ ∂

∂x3
and θ ∈ (− ε, ε) as done during the

construction (we set a = (1−b2−c2)1/2). Consider the function ψ : Σ×Lε →
S5 defined as

ψ(p, q) = Aq(p)

for p = (b, c, θ) ∈ Σ, q = (s, t) ∈ Lε. Analysing the action of the differential
dψ on the basis vectors at (0, 0) ∈ Σ× Lε we get:

∂ψ

∂b
=

∂

∂x2
,
∂ψ

∂c
=

∂

∂x3
,
∂ψ

∂θ
=

∂

∂y1
,
∂ψ

∂s
=

∂

∂y2
,
∂ψ

∂t
= − ∂

∂y3
.

So the Jacobian determinant at 0 is 1 and ψ is a diffeomorphism in some
neighbourhood of (1, 0, 0) where we can introduce the new set of coordinates
(b, c, θ, s, t). Therefore, the family {Σs,t}(s,t)∈L foliates an open set that we
can assume to be ψ(Σ× Lε) if both Σ and Lε were taken small enough.

Coordinates induced by the first parallel foliation. Recall that, in
each H4

p we are interested in the possible calibrated 2-planes, which, as shown
above, must be Jp-invariant. The set of these 2-planes is parametrized by the
complex lines in C2 and is therefore diffeomorphic to CP1. We are often going
to identify H4 with C2 (respectively CP1, if we are interested in the complex
lines) with the following coordinates: on H4

(1,0,0) we set H4
(1,0,0) = TL ⊕

T (L0) = Cs+it ⊕ Cb+ic, where L, L0 are the Special Legendrians introduced
above; TL, TL0 are C-orthogonal complex lines in H4

(1,0,0), TL = ∂
∂s ∧

∂
∂t and

TL0 =
∂
∂b ∧

∂
∂c . Then the complex line L will be represented by [1, 0] in CP1

and L0 by [0, 1]. Extend these coordinates to the other hyperplanes H4 as
follows: at any H4

p we have that, for the unique Σ containing p:

TpL = [1, 0], TpΣ ∩H4
p = [0, 1]. (2.2)

Families of parallel foliations. We will often need to use not only
the foliation constructed, but a family of foliations. Keeping as base coor-
dinates the coordinates that we just introduced, we can perform a similar
construction. The foliation we constructed is parametrized by q ∈ L with
the property that TqΣq ∩ H4

q = [0, 1] ∈ CP1. For X in a neighbourhood
of [0, 1] ∈ CP1, e.g. {X = [Z,W ] ∈ CP1, : |Z| ≤ |W |}, we start from the
3-surface ΣX

0 built as follows: the Special Legendrian spheres that we attach
to the fiber should have tangent planes in the direction X ∈ CP1. Then,
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for any such fixed X, we still have a foliation of a neighbourhood of (1, 0, 0),
parametrized on L and made of the 3-surfaces

ΣX
q := Aq(Σ

X
0 ), q ∈ L. (2.3)

We will refer to ΣX
q as to the 3-surface born at q in the direction X. The

original surfaces we built will be denoted Σ[0,1]. By the SU(3)-invariance of
ω, from lemma 2.1.1 we get the positiveness property for ΣX

q :

Corollary 2.1.1. For any q, ΣX
q has the property of intersecting positively

any transversal Special Legendrian S, i.e. at any point p where TpS is defined
and transversal to TpΣX

q ,

TpS ∧ TpΣ
X
q = TpS

5.

For a fixed X, a parallel foliation {ΣX
p } (as p ranges over Lε) gives rise

in a neighbourhood of (1, 0, 0) to a system of five real coordinates. The
adjective parallel is reminiscent of this resemblance to a cartesian system of
coordinates in the chosen neighbourhood. There are several reasons why we
produced parallel foliations keeping freedom on the "direction" X; they will
be clear later on.

Families of polar foliations. So far we have been dealing with "paral-
lel" foliations. We turn now to "polar" foliations4.

Notice that, a point in L being fixed, say 0, we have that, as X runs over
a neighbourhood of [0, 1] ∈ CP1, the family {ΣX

0 } foliates a conic neighbour-

hood of Σ[0,1]
0 . Observe that the rotations in SO(3) ⊂ SU(3) fixing the fiber

through q ∈ S5 have for differentials exactly the rotations in SU(2) on H4
q .

Denoting RX,Y the rotation whose differential sends X to Y ∈ H4
q , we have

RX,Y (ΣX
q ) = ΣY

q .

Lemma 2.1.3. With the above notations, let U be a small enough neigh-
bourhood of Y ∈ CP1 and consider ΣY

q for some point q. Let LY ⊂ ΣY
q be the

Special Legendrian 2-sphere tangent to Y at q. Then

(∪X∈UΣX
q )− {eiθq}

is a neighbourhood of LY − {q}.

proof of lemma 2.1.3. Introduce the function ψ : Σ × U → S5 sending
(p,X), p ∈ Σ = ΣY

q , X ∈ U , to the point RY,X(p) ∈ ΣX
q . Observe that, in a

neighbourhood of (1, 0, 0), the differential of ψ is different from zero except

4The term polar is used as reminiscent of the standard polar coordinates in the plane.
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at the points of the Hopf fiber through (1, 0, 0). Indeed, on this fiber, dψ
restricted to the 3-space TΣ has rank 3 and TΣ ∼= Y1 ∧ Y2 ∧ v, with Y1 ∧ Y2

the 2-plane in C2 represented by Y . At any point F among these, dψ is zero
on the tangent space to U at Y , since the image ψ(F,X) is constantly equal
to F for any X. For any fixed point p not on the fiber and for X on a curve
in U through Y , ψ(p,X) is a curve transversal to ΣY

p , since we are moving
p by the rotation RY,X . Therefore the differential dψ(p, Y ) has rank 2 when
restricted to the tangent to U at Y , while on the complementary 3-space dψ
still has rank 3 by smoothness. Therefore we get the desired result.

Remark 2.1.1. We remark here that a 3-surface Σ of the type just exhibited
above, is foliated by Special Legendrian spheres, so the Special Legendrian
structure restricted to Σ is integrable; a Special Legendrian integral cycle
contained in such a Σ must locally be one of these spheres.

Remark 2.1.2. With the above notations, L0+L is a Special Legendrian cycle
with isolated singularities at the points (1, 0, 0) and (−1, 0, 0). This example
shows that our regularity result is optimal. The reader may consult [33] for
further explicit examples of Special Legendrian surfaces.

2.2 Tools from intersection theory

In this section we recall some basic facts about the blowing-up of the
current at a point and about the Kronecker intersection index (for the related
issues in geometric measure theory we refer to [28]); then we show that this
index is preserved when we send a blown-up sequence to the limit.

Let C be the Special Legendrian cycle that we are studying. The blow-up
analysis of the current C around a point x0 is performed as follows: consider
a dilation of C around x0 of factor r which, in normal coordinates around x0,

is expressed by the push-forward of C under the action of the map
x− x0

r
:

Cx0,r(ψ) =

[(
x− x0

r

)

∗
C

]
(ψ) = C

((
x− x0

r

)∗

ψ

)
.

From [47] or [53] we have the monotonicity formula5 which states that, for
any x0, the function mass ratio, i.e.

M(C Br(x0))

r2
,

5This formula is proved in [47] for semi-calibrated currents and in [53] for currents of
vanishing mean curvature; both cases apply here. The result from [47] is recalled in the
appendix.
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is monotonically non-increasing as r ↓ 0, therefore6 the limit

θ(x) := lim
r→0

M(C Br(x))

πr2

exists for any point x ∈ S5. This limit coincides (a.e.) with the multiplicity θ
assigned in the definition7 of integer cycle, whence the use of the same nota-
tion. We can therefore speak of the multiplicity function θ as a (everywhere)
well-defined function on C.

We recall the definitions of weak-convergence and flat-convergence for a
sequence Tn of currents in Rm to T ∈ Rm. We remark, however, that the
notions of weak-convergence and flat-convergence turn out to be equivalent
for integral currents of equibounded mass and boundary mass (as it is in our
case), see 31.2 of [53] or [28], page 516.

We say that Tn ⇀ T weakly when we look at the dual pairing with m-
forms, i.e. if Tn(ψ)→ T (ψ) for any smooth and compactly supported m-form
ψ.

Tn → T in the Flat-norm if the quantity F(T−Tn) := inf{M(A)+M(B) :
T − Tn = A+ ∂B,A ∈ Rm, B ∈ Rm+1} goes to 0 as n→∞.

The fact that
M(C Br(x0))

r2
is monotonically non-increasing as r ↓ 0

gives that, for r ≤ r0 (for a small enough r0), we are dealing with a family
of currents {Cx0,r} which are boundaryless and locally equibounded in mass;
by Federer-Fleming’s compactness theorem8, there exist a sequence rn → 0
and a rectifiable boundaryless current C∞ such that

Cx0,rn → C∞ in Flat-norm.

C∞ turns out to be a cone (a so called tangent cone to C at x0) with den-
sity at the origin the same as the density of C at x0 and calibrated by ωx0

(see [30] section II.5); being Jx0-holomorphic, this cone must be a sum of
Jx0-holomorphic planes, so C∞ = ⊕Q

i=1Di, where the Di’s are (possibly coin-
ciding) Special Legendrian disks. In particular, the multiplicity (the limit of
the mass ratio) θ is everywhere N-valued in our case.

6To be precise, due to the fact that the metric is not flat, the mass ratio is almost

monotone, i.e.
M(C Br(x0))

r2
= R(r) + O(r) for a function R which is monotonically

non-increasing as r ↓ 0 and tends to the multiplicity at x0 as r ↓ 0, and a function O(r)
which is infinitesimal. The additional infinitesimal term O(r) does not affect the analysis
we need to perform.

7The multiplicity θ can be assumed to be positive by choosing the right orientation for
the approximate tangent planes to the current.

8See [28] page 141.
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An important question for regularity issues is to know whether this tan-
gent cone is unique or not, or, in other words, if C∞ is independent of the
chosen {rn}: the answer happens to be positive in our situation. We are
going to give a self-contained proof of it in the next section (theorem 2.3.1)
based on the tools from this section.

What kind of geometric information can we draw from the existence of
a tangent cone? The following lemma shows that, considering a blown-up
sequence Cx0,rn tending to one possible tangent cone C∞, we can fix a conic
neighbourhood of C∞, as narrow as we want, and if we neglect a ball around
zero of any radius R < 1 the restrictions of Cx0,rn to the annulus B1 \BR are
supported in the chosen conic neighbourhood for n large enough9.

Remark 2.2.1. It is a standard fact that two distinct sequences Cx0,rn and
Cx0,ρn must tend to the same tangent cone if a ≤ rn

ρn
≤ b for some positive

numbers a and b. See [43].

Lemma 2.2.1. Let C be a Special Legendrian cycle with x0 ∈ C and let
0 < R < 1. With the above notations, let ρn → 0 be such that Cx0,ρn ⇀
C∞ = ⊕Q

i=1Di. Denote by AR the annulus {x ∈ B1(0), |x| ≥ R} and by Eε

the set {x ∈ B1(0), dist(x, C∞) < ε |x|}. Then, for any ε > 0, there is n0 ∈ N
large enough such that

sptCx0,ρn ∩AR ⊂ Eε

for n ≥ n0.

proof of lemma 2.2.1. Arguing by contradiction, we assume the existence
of ε0 > 0 such that

∀n ∃xn ∈ sptCx0,ρn ∩ Ec
ε0 ∩ AR.

Recall that the sequence Cx0,ρn|xn| also converges weakly to the same tangent

cone C∞ since R ≤ ρn|xn|
ρn

≤ 1 (previous remark). From the monotonicity

formula we have

M

(
Cx0,ρn|xn| B ε0

2

(
xn

|xn|

))
≥ πε20

4
.

By compactness, modulo extraction of a subsequence, we can assume that
xn

|xn|
→ x∞ ∈ ∂B1 ∩ Ec

ε0 . Then, since for n large enough B 3ε0
4
(x∞) ⊃

B ε0
2

(
xn
|xn|

)
, we get

M
(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)
≥ πε20

4
.

9Recall that Cx0,r lives in a normal chart centered at 0.
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Recall that, from the semi-calibration property, we have

M
(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)
=

(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)(
id

ρn|xn|

∗
ω

)
;

moreover
id

ρn|xn|

∗
ω

C∞(B1)−→ ω0

as n → ∞, where ω0 is the constant 2-form ω(0). Putting all together, we
can write (the first equality expresses the fact that ω0 is a calibration for
C∞)

M
(
C∞ B 3ε0

4
(x∞)

)
=

(
C∞ B 3ε0

4
(x∞)

)
(ω0) =

= lim
n

(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)
(ω0) = lim

n

(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)(
id

ρn|xn|

∗
ω

)
=

= lim
n

M
(
Cx0,ρn|xn| B 3ε0

4
(x∞)

)
≥ πε20

4
, (2.4)

which contradicts the fact that sptC∞ ∩ B 3ε0
4
(x∞) = ∅.

We need some more tools from intersection theory. For the theory of
intersection and of the Kronecker index we refer to [28], chap.5, sect. 3.4.
We recall the definition of the index relevant to our case.

Let f : R5 × R5 → R5 be the function f(x, y) = x − y. The Kronecker
intersection index k(S, T ) for two currents of complementary dimensions S ∈
Rk(R5), T ∈ R5−k(R5) is defined under the following conditions:

sptS ∩ spt(∂T ) = ∅ and sptT ∩ spt(∂S) = ∅, (2.5)

which imply
0 /∈ f(spt(∂(S × T ))).

Then there is an ε > 0 such that Bε(0) ∩ f(spt(∂(S × T ))) = ∅. By the
constancy theorem ([28] page 130) we can define the index k(S, T ) as the
only number such that10

f∗(S × T ) Bε(0) = k(S, T )!Bε(0)".

k(S, T ) turns out to be an integer.
For S, T as above, whenever the intersection S ∩ T exists (in that case,

S∩T is a sum of Dirac deltas with integer weights), then k(S, T ) = (S∩T )(1).
10We are using f∗ to denote the push-forward under f ; in [28] the notation is f#.
The brackets !Bε(0)" denote the current of integration on Bε(0).
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In particular, when S and T are standard submanifolds k(S, T ) just counts
intersections with signs as in the classical intersection theory.

In the following lemma we focus on a chosen sequence Cx0,ρn converging
to a possible cone C∞ = ⊕Q

i=1Di. For notational convenience we set Cn :=
Cx0,ρn B1(0) and C := C∞ B1(0), always assuming to be in a normal chart
with x0 at the origin.

Lemma 2.2.2. Let Cn ⇀ C in B1. Take Σ to be any 3-surface such that
Σ∩C ∩ ∂B1 = ∅. Then, for all n large enough, k(Cn,Σ) = k(C,Σ), where k
is the Kronecker index just defined.

proof of lemma 2.2.2. Define Tn := C − Cn. Tn → 0 in the Flat-norm
of B1, so we can write Tn = Sn + ∂Rn, with M(Tn) + M(Sn) → 0, where
Sn ∈ R2 and Rn ∈ R3. From the hypothesis on Σ we can choose ε > 0 small
enough to ensure that Σ ∩ Eε ∩ AR = ∅, where Eε ∩ AR = {x ∈ B1, |x| ≥
R, dist(x, C) < ε |x|}, for some suitable 0 < R < 1. For all n big enough,
from lemma 2.2.1 , we get that spt Tn∩AR ⊂ Eε; in particular, the condition
(2.5) on the boundaries of Σ and C is fulfilled and the intersection index
k(Tn,Σ) is well-defined.

Denote by τaΣ, as in [28], the push-forward (τa)∗[Σ] of Σ by the translation
map τa, where a is a vector. The Kronecker index is invariant by homotopies
keeping the boundaries condition, so we can assume that all the intersections
we will deal with are well defined as integer 0-dim rectifiable currents: in
fact, for a fixed n, the intersection Tn ∩ τaΣ exists for a.e. a, and n runs over
a countable set. Obviously

k(Cn − C,Σ) = k(Sn,Σ) + k(∂Rn,Σ);

we are going to show that both terms on the r.h.s. are zero for n large
enough.

From [28] we have that (the index k counts the points of intersection with
signs)

k(∂Rn,Σ) = (∂Rn ∩ Σ)(1).

On the other hand,

∂Rn ∩ Σ = Rn ∩ ∂Σ − ∂(Rn ∩ Σ) = −∂(Rn ∩ Σ)

since ∂Σ = 0 in B1. So

∂(Rn ∩ Σ)(1) = (Rn ∩ Σ)(d1) = 0,

which implies k(∂Rn,Σ) = 0.
Consider now k(Sn,Σ) and recall that ∂Sn = ∂Tn. We have that spt∂Sn∩Σ =
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∅ and sptSn∩∂Σ = ∅, so 0 /∈ f(spt(∂(Sn×Σ))) and this index is well-defined
and given by

f∗(Sn × Σ) = k(Sn,Σ)!Bε(0)",

where f : R5×R5 → R5 is f(x, y) = x−y and ε is such that Bε∩f(spt(∂(Sn×
Σ))) = ∅; thanks to lemma 2.2.1, ε can be chosen independently of n. So,
for a fixed ε, we have that

f∗(Sn × Σ) = k(Sn,Σ)!Bε(0)" (2.6)

holds for all n large enough. By assumption we know that M(Sn) → 0,
therefore M(Sn × Σ) → 0 and M(f∗(Sn × Σ)) → 0 since f is Lipschitz; but
then, for ε fixed and k ∈ N, the only possibility for the r.h.s. of (2.6) to go
to zero in mass-norm is that eventually k(Sn,Σ) = 0 . So we can conclude
that k(Tn,Σ) = 0 for all large enough n.

Remark 2.2.2. If Q is the multiplicity at 0 and Σ = Σ0 such that Σ0 is
transversal to all Di that constitute the tangent cone C, then k(Ci,Σ0) = Q
for i greater than some i0. Once we have this, k(Ci,Σ) = Q also holds for
any 3-surface Σ that can be joined to Σ0 via a homotopy during which we
do not cross ∂Ci, in particular for small translations τaΣ0.

2.3 Before the induction: uniqueness of the tan-

gent cone - easy case of non-accumulation

- Lipschitz estimate

The uniqueness of the tangent cone at an arbitrary point of the Special
Legendrian follows from the more general result proved in [47] for general
semi-calibrated integral 2-cycles. In this section, using the tools developed
in the previous sections, we will give a self-contained proof of this uniqueness
in our situation. The section then continues with proofs in the same flavour
of the two other results quoted in the title of the section.

2.3.1 Uniqueness of the tangent cone

The following lemma (see left picture in figure 2.1) is stated separately
since it will be repeatedly recalled in the several proofs of this section. C is
our Special Legendrian current.

Lemma 2.3.1. Let p ∈ S5 and consider a polar foliation born at p, i.e. a
family (ΣX

p ) of 3-surfaces, for X varying in an open ball U of CP1 ∼= PH4
p .

For 0 < r < R , consider the open set
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W = (∪X∈UΣX
p ) ∩ (BR(p)− Br(p)).

Assume that C W 0= 0 and that spt (∂(C W )) ⊂ ∪X∈∂UΣX
p . Then

k(C W,ΣX
p ) ≥ 1 for any X ∈ U .

Proof of lemma 2.3.1. The carrier of C W is just C ∩W , where C is the
carrier of the Special Legendrian current.

Define s : W → U to be the smooth function taking the value Y ∈ U at
points of ΣY

p ∩W . From slicing and intersection theory we have the following
facts.

• from [28], page 156, we know that the slice 〈C W, s = Y 〉 is well-
defined for H2 almost all Y ∈ U as a sum of Dirac deltas with integer
weights, supported on the finite set of points C ∩W ∩ s−1{Y } = C ∩
W ∩ ΣY

p . The weight of each Dirac delta is just the multipliciticy of
the Special Legendrian at that point, with a sign induced by the sign
of the intersection of the oriented tangent to C and the tangent to ΣY

p .
The sign is always positive in our case, due to the positive intersection
property of the foliation.

• recalling that 〈C W, s = Y 〉 = (C W ) ∩ ΣY
p , we have that, when

the slice 〈C W, s = Y 〉 exists, the Kronecker index k(C W,ΣY
p ) is

just 〈C W, s = Y 〉(1), the sum of the weights of the Dirac deltas that
appear in the slice. By the positiveness of intersections we then see
that, as long as (C W ) ∩ ΣY

p exists and C ∩W ∩ ΣY
p 0= ∅, the index

k(C W,ΣY
p ) is strictly positive.

Observe further that, as soon as we have a particular Y ∈ U for which
k(C W,ΣY

p ) ≥ 1, we can say the same for any other X ∈ U , thanks to
the hypotesis on the boundary of C: indeed the 3-surfaces ΣY

p ∩ W and
ΣX

p ∩W , for any X, Y ∈ U , can be connected by homotopy without crossing
spt(∂(C W )), therefore the intersection index stays constant.

In view of the observations made, it is enough to have the strict positive-
ness of k(C W,ΣY

p ) for just a single Y ∈ U in order to conclude the proof
of the lemma. Therefore we ask: is it possible that, for almost all X ∈ U
the intersection C ∩W ∩ ΣX

p is empty? Let us analyse what should happen
in this case.

If for H2-almost all X ∈ U the forementioned interection is empty, we
would find by the coarea formula (see [28], Theorem 3, pages 102-103) that

∫

C∩W
JC
s dH2 =

∫

U

{∫

s−1{X}
dH0

}
dH2(X) = 0,
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p

W

∂(C W ) lives here

ΣA
p

Br(p)

BR(p)

W

ΣX
pU

a
C

parallel foliation
with direction Z at a
does not cross ∂(C W )

Figure 2.1: On the left: schematical view of the statement. C is dashed.
Due to the condition on the boundary of C W , for any ΣX

p with X ∈ U we
must find a strictly positive intersection index. On the right: the choice of
the parallel foliation near a.

where JC
s is the Jacobian of s relative to the approximate tangent of C.

The formula would imply that H2 almost everywhere on C ∩W it must hold
JC
s = 0, so that each approximate tangent to C must have at least a direction

in common with the tangent to ΣX
p : but thanks to the pseudo-holomorphic

behaviour from proposition 2 and the way the 3-surfaces are constructed,
this would then force, at almost all points of C ∩W , C to be tangent to the
3-surfaces ΣX

p .

It could be proved directly that this is impossible, since it would force C
to be made of a sum of Special Legendrian spheres (some of those building
up the 3-surfaces ΣX), and C would therefore have boundary on ∂Br and
∂BR, contradiction.

We prefer however to avoid the technicalities of that proof, and show just
the content of the lemma: this can be achieved as follows.

We have seen that, if for H2-almost all X ∈ U it is true that C∩W ∩ΣX
p =

∅, then for H2 a.e. q ∈ C ∩W we must have TqC ⊂ TqΣX
p , for the unique X

such that q ∈ ΣX
p .

Take a point a ∈ C ∩W having density 1 with respect to H2. It exists
since C ∩ W is non-empty. Denote by ΣA

p the 3-surface born at p passing
through a.

Now take a 3-surface ΣZ
a born at a, where Z is a direction in CP1 ∼=
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PH4
a taken such that ΣZ

a is transversal to ΣA
p and ΣZ

a ∩ ∂W is disjoint from
∪X∈∂UΣX

p , in particular disjoint from spt(∂(C W )). To ensure that, it is
enough to take ΣZ

a close enough to ΣA
p .

Take a parallel foliation of 3-surfaces ΣZ
w parallel to ΣZ

a . Choose this
parallel foliation such that all the ΣZ

w do not intersect spt(∂(C W )) (figure
2.1, picture on the right), which is ensured if these parallel 3-surfaces stay
close enough to ΣZ

a . Any small enough neighbourhood Va of a is foliated by
these parallel 3-surfaces ΣZ

w.

Claim: it is not possible that for H2-almost every 3-surface of the parallel
foliation it happens C ∩ Va ∩ ΣZ

w = ∅.
Indeed, if this were the case, we would find, by means of the coarea

formula as above, that H2-almost all of C∩Va is tangent to the 3-surfaces ΣZ
w

(remark that, no matter how small Va is, H2(C ∩ Va) > 0 since a has density
1).

But C ∩ Va cannot simultaneusly be tangent to the ΣZ
w’s and to the ΣX

p ’s.
Indeed, ΣZ

a was chosen transversal to ΣA
p , so if Va is small enough, inside Va

we have that, by stability of the transversality, all the ΣX
p are transversal to

all the ΣZ
w. This proves the claim.

So we can find a H2-positive set of ΣZ
w such that C ∩ Va ∩ ΣZ

w 0= ∅. Now,
looking at the situation in the whole of W , for H2-almost all the ΣZ

w’s, the
intersection C ∩ ΣZ

w is well-defined and the Kronecker index k(C W,ΣZ
w) =

((C W ) ∩ ΣZ
w)(1) must be ≥ 1 due to the strictly positive contribution in

Va.
But ΣZ

w and ΣA
p can be joined by homotopy without crossing the bound-

ary of C W , therefore the index stays constant during the homotopy and
k(C W,ΣA

p ) ≥ 1. Again by homotopy, we find that for any Z ∈ U the index
k(C W,ΣX

p ) is a striclty positive integer, concluding the proof.

Uniqueness of the tangent cone. We start with the following:

Lemma 2.3.2. Take any point x0 of a Special Legendrian cycle C and be
Q its multiplicity. Then there exists a unique choice of n distinct Special
Legendrian disks D1, ...Dn going through x0 such that any tangent cone at x0

must be of the form Tx0C = ⊕n
k=1NkDk, for some Nk ∈ N \ {0} satisfying∑n

k=1Nk = Q.

Remark 2.3.1. This result "almost" gives the uniqueness of the tangent cone.
What still is missing, is the fact that the multiplicities Nk are also uniquely
determined. This will be achieved in theorem 2.3.1.
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proof of lemma 2.3.2. We work in a normal chart centered at the origin,
so that 0 has multiplicity Q. With a little abuse of notation, we will write
C Br(0) (for small enough r) meaning the current, restricted to the geodesic
ball of radius r, seen in the chart.

Argue by contradiction: take two tangent cones C(1)
∞ = ⊕n1

k=1N
(1)
k D(1)

k and

C(2)
∞ = ⊕n2

k=1N
(2)
k D(2)

k having distinct supports, and two blown-up sequences
{Cx0,ri} and {Cx0,ρi} converging to each of them. In this proof we denote
Cx0,r B1(0) simply by Cr, so

Cri ⇀ C(1)
∞ , Cρi ⇀ C(2)

∞ .

As the proof goes on, the reader might refer to figure 2.2 for a schematic
visualization of the objects involved.

Take a positive δ much smaller than the angular distance

̂
C(1)

∞ , C(2)
∞ := min

Di (=Dj

̂
D(1)

i , D(2)
j >> δ > 0

(the distance is given by the Fubini-Study metric inCP1 ∼= PH4
0 and is strictly

positive by the contradiction assumption). Moreover assume, without loss of

generality, that the disk of C(1)
∞ on which the minimum is achieved is D0, the

disk represented by [1, 0] ∈ CP1. In particular we are also assuming that D0

is not in the support of C(2)
∞ . By abuse of notation we will write D0 ∈ C(1)

∞
to express the fact that D0 is one of the disks that build up the cone C(1)

∞ .
Analogously we have D0 /∈ C(2)

∞ . Choose ρi0 such that

(i) for j ≥ i0, ∂(C Bρj ) is contained in Eδ
2 , the δ-conic-neighbourhood of

C(2)
∞ (possible by lemma 2.2.1);

(ii) k(Cρj ,Σ
[1,0]
0 ) = Q for any j ≥ i0. Remark that Σ[1,0]

0 is transversal to

C(2)
∞ . By homotopy, it also holds that k(Cρj ,Σ

X
0 ) = Q for any j ≥ i0

and any ΣX
0 with X ∈ CP1 in a δ-neighbourhood of [1, 0]. Indeed, the

homotopy keeps the condition of non-crossing boundaries expressed in
(2.5).

Choose now ri1 < ρi0 such that

(iii) denoting by Eδ
0 the δ-conic-neighbourhood of D0 and setting

W1 = (Bri1
\B ri1

2
) ∩ Eδ

0 ,

we have
C W1 0= 0;

this is true for i large enough since Cri ⇀ C(1)
∞ < D0.
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0

W1
W2

δ

δ

∂(C (Bρi0
\Bρi1

)) is forced to live

ρi0

ρi1

ri1

C(1)
∞

C(2)
∞

ri1
2

here by point (i)

Figure 2.2: In the picture we have taken C(1)
∞ to be Q times D0. C(2)

∞ is a
different disk counted Q times. The horizontal and vertical directions should
be respectively thought of as [1, 0] and [0, 1]. The fifth direction should be
imagined as entering the picture. The dotted region corresponds to W2; its
subset W1 is shaded.

Take now ρi1 <<
ri1
2 . Define

W2 := (Bρi0
\Bρi1

) ∩ Eδ
0 ⊃ W1.

W2 is foliated by ΣX
0 as X varies in a δ-neighbourhood of [1, 0].

From (i), ∂(C (Bρi0
\Bρi1

)) is zero on W2 ∩ ∂BR and on W2 ∩ ∂Br.
From (iii) we know that C W2 0= 0.

So we can use lemma 2.3.1 in the open set W2. Then, for almost all X in
the δ-neighbourhood of [0, 1], we have

k(C Bρi0
,ΣX

0 ) = k(C Bρi1
,ΣX

0 ) + k(C (Bρi0
\Bρi1

),ΣX
0 ) =

= k(Cρi1
,ΣX

0 ) + k(C W2,Σ
X
0 ) + k(C ((Bρi0

\Bρi1
) \W2),Σ

X
0 ) =

= Q+ k(C W2,Σ
X
0 ) + k(C ((Bρi0

\Bρi1
) \W2),Σ

X
0 ) ≥ Q + 1;

the last inequality follows from the positivity (≥ 0) of intersection in (Bρi0
\

Bρi1
) \W2 and the strict positiveness (≥ 1) guaranteed in W2. This contra-

dicts (ii).
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Now that this "almost uniqueness" of the tangent cone is established, we
can improve lemma 2.2.1 as follows:

Lemma 2.3.3. Let {Dk}nk=1 be the uniquely determined disks on which any
tangent cone to C at x0 must be supported. Let us therefore write T = ∪kDk

for this well-determined support. Denote by Eε the cone {x ∈ B1, dist(x, T ) <
ε |x|}. Then for any ε > 0 there is ρε small enough such that for any ρ ≤ ρε

spt (Cx0,ρ B1(0)) \ {0} ⊂ Eε.

proof of lemma 2.3.3. The proof is similar to the one of lemma 2.2.1. As-
sume the existence of ε0 > 0 and ρn → 0 contradicting the claim and ar-
gue as in the proof of lemma 2.2.1. The only modification in the proof
consists in using the "almost uniqueness" of the tangent cone at 0 (lemma

2.3.2) instead of the condition R ≤ ρn|xn|
ρn

≤ 1. If Cx0,ρn converges to

the cone C∞ = ⊕n
k=1NkDk, then Cx0,ρn|xn| must tend to a limiting cone

C̃∞ = ⊕n
k=1ÑkDk. So the computation in (2.4) can be performed with C̃∞

instead of C∞, still leading to a contradiction since the supports of C̃∞ and
C∞ are the same.

Now we can complete the proof of the uniqueness of the tangent cone:

Theorem 2.3.1. The tangent cone at any point x0 of a Special Legendrian
cycle C is unique.

proof of theorem 2.3.1. With the result and the notations of lemma 2.3.2
in mind, we only have to exclude that the multiplicities Nk may depend on
the chosen sequence that we blow-up.

Choose ε small enough to ensure that different ε-neighbourhoods

Ei
ε = {x ∈ B1, dist(x,Di) < ε |x|}, Ej

ε = {x ∈ B1, dist(x,Dj) < ε |x|}

of different disks Di and Dj do not overlap, i.e. Ei
ε ∩ Ej

ε = ∅.
Rotate B1 in order to have that the family Σp := Σ[0,1]

p is transversal to
all the disks Dk. Then, for p in a neighbourhood Bδ of 0 and for all small
enough r, the index k(Cr,Σp) is well-defined since lemma 2.3.3 ensures the
condition (2.5) of non-crossing-boundaries.

The key observation is that the rescaled Cr form a continuous (with re-
spect to r) family of currents (with respect to the flat-topology) and they
are always constrained in the Eε-neighbourhood given by lemma 2.3.3. Fix
i: the fact that the Ek

ε are well separated implies that, for any p ∈ Bδ,

∂(Cr Ei
ε) ∩ Σp = ∅, (Cr Ei

ε) ∩ ∂Σp = ∅.
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Moreover, due to the mentioned continuity, as r → 0 the currents Cr Ei
ε are

all homotopic to each other, and these homotopies keep the condition (2.5)
between Cr Ei

ε and Σp Ei
ε.

Therefore k(Cr Ei
ε,Σp) must stay constant as r → 0, so there is a well-

determined Ni ∈ N such that k(Cr Ei
ε,Σp) = Ni. Then any limiting cone

C∞ must satisfy k(C∞ Ei
ε,Σp) = Ni, with the same proof as in lemma 2.2.2.

This means that C∞ Ei
ε = NiDi, so all the multiplicities Nk are uniquely

determined.

2.3.2 Easy case of non-accumulation

. The following result solves the "easy case" of non-accumulation of
singularities of multiplicity Q to a singularity p of the same multiplicity:
this "easy case" arises when the tangent cone at p is not made of Q times
the same disk. We will see how to handle the "difficult case" (tangent cone
made of Q times the same plane) in sections 2.4 and 2.4.5.

Define the set SingQ of singularities of multiplicity (or order) Q of the
Special Legendrian cycle C:

SingQ := {p ∈ C : p is a singular point, θ(p) = Q}.

In the same fashion we will use the notation

Sing≤Q := {p ∈ C : p is a singular point , θ(p) ≤ Q}.

Theorem 2.3.2. For a Special Legendrian cycle C, assume x0 ∈ SingQ,
Tx0C 0= Q!D", i.e. Tx0C = ⊕m

k=1NkDk, where Dk are distinct Special Legen-
drian disks and m ≥ 2. Then ∃r > 0 such that

SingQ ∩Br(x0) = {x0}.

proof of theorem 2.3.2. The proof uses techniques similar to those from
theorem 2.3.1. Take a normal chart with x0 = 0: by contradiction, assume
∃ xn → 0, with xn ∈ SingQ. Rename the Di’s so that D1 and D2 realize the
minimum γ of the angular distances D̂i, Dj. γ > 0 since T0C 0= Q!D" and
γ ≤ π

2 since this is the maximum for the Fubini-Study metric.
Define ρn = 2|xn| and blow up about 0 using ρn as rescaling factors. Up

to a possible exchange of the roles of D1 and D2 and up to a subsequence,
we can assume xn

2|xn| → p ∈ D2 ∩ ∂B1/2. Rotate B1 to ensure that D1 and D2

are contained in the 3π
4 -cone around D0

∼= [1, 0] and that Σ[0,1]
p is transversal
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0

D1

D2

W

3π
4

Σ[0,1]
p

p

Eα
1

Eα
2

these ΣX
p do not

cross ∂(Cx0,ρn B1)

∂(Cx0,ρn W )
must live here

D0

∂(Cx0,ρn B1)

lives here

V

Figure 2.3: Situation inside the ball B1. To avoid confusion in the picture,
we imagine that yn coincides with p. The dotted region corresponds to W .
Heuristic idea of the proof : any ΣX

p , X ∈ V , should intersect Cx0,ρn with
multiplicity Q near p, since there we have a point of multiplicity Q. But
there is mass of Cx0,ρn in W and this portion must also give a strictly positive
contribution to the intersection index of Cx0,ρn and ΣX

p . But now there is too
much intersection.

to the disks {Dj}mj=1. The situation is schematically described in figure 2.3
(read the caption for some heuristics of the proof).

Take α << γ; for all n large enough, thanks to lemma 2.3.3 we can ensure
that

spt(Cx0,ρn B1) ⊂ ∪mi=1E
α
i ∪ {0}, (2.7)

where Eα
i denotes the cone of width α around Di. Thanks to the position of

D1 and D2, we can find a small enough ball U ⊂ CP1 centered at [0, 1] such
that for any X ∈ U we have that ΣX

p is transversal to the disks {Dj}mj=1 and
that ΣX

p ∩ spt(∂(Cx0,ρn B1)) = ∅.
In this situation, thanks to lemma 2.2.2, we know that for X ∈ U and for

all large enough n
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k(Cx0,ρn B1,Σ
X
p ) = k(Tx0C,Σ

X
p ) =

n∑

j=1

Njk(Dj ,Σ
X
p ) ≤ Q. (2.8)

Let V be a ball strictly smaller than U with the same center and define

W := Eα
1 ∩ (∪X∈V ΣX

p ).

At each yn choose an open ball Vn ⊂ CP1 ∼= PH4
yn so that, for n ≥ n0 large

enough,

(i) ∀ X ∈ Vn we have that ΣX
yn is transversal to the disks {Dj}mj=1 and that

ΣX
yn ∩ spt(∂(Cx0,ρn B1)) = ∅;

(ii) setting Wn := Eα
1 ∩ (∪X∈VnΣX

yn), it holds W ⊂ ∩n≥n0Wn.

Properties (i) and (ii) can of course be achieved for yn close enough to p
and Vn perturbations of V .

Thanks to the convergence Cx0,ρn ⇀ Tx0C < D1, we can ensure that for
all n large enough

Cx0,ρn W 0= 0,

which trivially implies Cx0,ρn Wn 0= 0. Wn is foliated by ∪X∈VnΣX
yn and

∂(Cx0,ρn Wn) ⊂ ∪X∈∂VnΣX
yn by (2.7). Then by lemma 2.3.1 we have that,

for all Y ∈ Vn,

k(Cx0,ρn Wn,Σ
Y
yn) ≥ 1.

On the other hand, recalling remark 2.2.2, for ε small enough it must hold
k(Cx0,ρn Bε(yn),ΣY

yn) = Q for all but finitely many Y ’s (we only have to
exclude the Y ’s that build up TynC). Since Wn ∩ Bε(y0) = ∅, we get

k(Cx0,ρn B1,Σ
Y
yn) ≥ Q+ 1

But then

k(Cx0,ρn B1,Σ
Y
p ) ≥ Q + 1

by homotopy (by (i) and (ii) we do not cross the boundary of Cx0,ρn B1

during the homotopy). This contradicts (2.8).
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2.3.3 Relative Lipschitz-type estimate

. The following theorem still uses the same ideas and will be of central
importance for treating the more delicate case of a singular point p having
a tangent cone that is Q times the same plane. We can without loss of
generality assume that the plane involved is D0

∼= [1, 0]. The result shows
the "continuous behaviour" of tangent cones at points of multiplicity Q as
they approach p (see figure 2.6 in the next section).

Theorem 2.3.3. Let x0 be a singular point of order Q of a Special Legendrian
cycle, x0 ∈ SingQ, with Tx0C = Q!D0". Then ∀{yn}→ x0 sequence of points
having multiplicity Q, the following holds:

TynC → Q!D0".

Remark 2.3.2. The convergence in the statement can of course be understood
in the Flat-sense for currents in the tangent bundle and what we are proving
is:

∀ ε ∃δ s.t. |x− x0| < δ and θ(x) = Q⇒ F((TxC −Q!D0") B1(x0)) < ε .

We give however a more concrete definition in terms of "angles" between
the disks.

We are going to speak of "the angle between D0 and Dp" although these
disks may lie in the horizontal hyperplanes at different points. More precisely:
let D0 ⊂ H4

x0
and Dp ⊂ H4

p be holomorphic disks for the respective J-

structures. Then we can define D̂p, D0 after identifying the two hyperplanes
according to the coordinates induced by the first parallel foliation, see (2.2)
in section 2.1 (we can assume, without loss of generality x0 = (1, 0, 0)),
and taking the distance in the Fubini-Study metric. The convergence in the
theorem above amounts of course to the fact that the angles between D0 and
the disks of TxnC go to 0.

In the same fashion we will speak of Σ̂X
p , D0 for some 3-surface born at

p, meaning the angle between X and D0 as just explained.

proof of theorem 2.3.3. Work in a normal chart centered at x0. Assume,
by contradiction, that there exists {yn}→ 0 such that TynC 0→ Q!D0". Take
as rescaling factors ρn = 2|yn| and blow up about 0. Denote xn = yn

2|yn| and

keep denoting ⊕Q
i=1D

i
n the tangent disks at xn. Now, up to a subsequence,

for some α > 0, D̂i
n, D0 ≥ α > 0 and xn ∈ ∂B1/2 hold for all n. Choose

ε << α such that Eε
0 ∩ ∂B1 is disjoint from any Σp of the set {Σp | p ∈

Eε
0 ∩ ∂B1/2, Σ̂p, D0 ≥ α

2}, see figure 2.4. For a large enough n
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(i) Cx0,ρn B1 ⊂ Eε
0 ∪ {0} by lemma 2.3.3,

(ii) k(Cx0,ρn B1,Σq) = Q ∀ Σq with Σ̂q, D0 ≥ α
2 and q ∈ D0 ∩ B3/4(0) by

lemma 2.2.2 and remark 2.2.2.

Notational remark: the n fulfilling (i) and (ii) is chosen once for all.
Therefore we are going to drop, in the rest of this proof, the index n from all
the objects related to xn, in particular we will denote by x the point xn it-
self, by TxC = TxCx0,ρn = ⊕m

i=1NiDi
x (the total multiplicity is Q) the tangent

cone at xn and by Σi
x the 3-surface born at xn and containing Di

x. Moreover,
since the theorem is local, it is enough to look just at the dilated current
Cx0,ρn B1(0): by an abuse of notation we will write, during this proof, C
instead of Cx0,ρn B1(0).

From the contradiction assumption, at least for one index l, D̂l
x, D0 is

greater than a positive number very close to α.

Observe now the following: Take β << mini (=j{α, D̂i
x, D

j
x}. Consider the cone

Eβ
x,l around Σl

x. It is not possible that spt(C Eβ
x,l) ⊂ Σl

x: indeed, this would

imply that the current C Eβ
x,l must escape the barrier Eε

0 (by remark 2.1.1,

having no boundary in the interior of Eβ
x,l, C would have to coincide with the

Special Legendrian 2-sphere tangent to Dl
x), which contradicts lemma 2.3.3.

So take p ∈ sptC ∩ Eβ
x,l, p /∈ Σl

x. Let ΣP
x = Σx,p be the 3-surface born

at x going through p; surely P̂, D0 ≥ 3α
4 . We are going to show now that,

up to tilting ΣP
x a bit, we can assume that it is transversal to C and the

intersection is well-defined and non-zero.

Take δ << D̂l
x,Σx,p and r << dist(x, p) in such a way that (see figures

2.4 and 2.5)

(iii) k(C Br(x),Σx,p) = Q (possible by remark 2.2.2, since Σx,p is transver-
sal to TxC),

(iv) C Br(x) ⊂ Eδ
x ∪ {x} (by lemma 2.3.3, with Eδ

x denoting the δ-conic
neighbourhood of TxC).

By homotopy (see the remark following lemma 2.2.2)

k(C Br(x),Σ
Y
x ) = Q

for all but finitely many Y ’s in a small ball around P in CP1 (the finitely
many Y ’s we have to exclude are those that are tangent to the disks Di

x, so
to ensure that ΣY

x is transversal to TxC). The ball should be chosen small
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δ

Eε
0

∂C
is here

α

p

Σx,p

Eβ
x,l

Dl
x

x
Br(x)

0

Figure 2.4: The objects involved: with C, as in the proof, we mean
Cx0,ρn B1.

enough so that Ŷ, D0 ≥ α
2 and ΣY

x stays away from Eδ
x, so that these ΣY

x do
not cross ∂(C Br(x)), see figure 2.5.

We are going to apply lemma 2.3.1:

W = (∪Y ΣY
x ) ∩ (B1(x) \Br(x))

is a foliated neighbourhood of p and we have boundary of C neither on
W ∩ ∂B1 (by (i)) nor on W ∩ ∂Br(x) (by (iv) and by the choice of the Y ’s).

So, for the Y ’s that we have chosen, if r is small enough, then

k(C,ΣY
x ) = k(C Br(x),Σ

Y
x ) + k(C (B1 \Br(x)),Σ

Y
x ) ≥ Q+ 1.

But, by homotopy, going back to the standard notations, we find that
k(Cx0,ρn,Σ

Y
xn
) = k(Cx0,ρn,Σ

Y
w) for some w ∈ D0 ∩ B3/4(0) (identifying PH4

xn

and PH4
w). So we have contradicted (ii) .

The result just proved will be restated as a relative Lipschitz-type esti-
mate (for the multi-valued graph describing the current) in corollary 2.4.1.
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p

W

the Y ’s selected

δ

∂[C (B1 \Br(x)] is here

ΣP
x

Br(x)

x

Dl
x

on W ∩ ∂Br(x)

∂[C (B1 \Br(x)] = 0

Figure 2.5: Magnify around x: selection of W (shaded region).

2.4 First part of the inductive step: high order

singularities

Having established the previous results, in this section we start the proof
of the regularity theorem 3.0.2, which will go on in the next sections.

2.4.1 Logical Structure of the proof

. The proof proceeds by induction. By the monotonicity formula, the
multiplicity function is upper semi-continuous on the Special Legendrian C,
therefore the set of points with multiplicity ≥ N , for N ∈ N is closed in
C. Then, to achieve our result, a singular point q with multiplicity Q being
given, we only need to show that singular points of multiplicity ≤ Q cannot
accumulate onto q. The idea is hence to prove this result by induction on the
multiplicity Q: at each inductive step, we will assume that we are working
in a neighbourhood where Q is the maximal multiplicity.

Basis of induction : Q=1 We are in an open set where all points of
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the Special Legendrian C have multiplicity 1. Since C is minimal (H = 0)
and boundaryless, we can deduce the smoothness in this set straight from
Allard’s theorem, see [53]. We can however provide a self-contained argument
here: from theorem 2.3.3 we know that the tangent planes are continuous,
therefore C is a C1 current. A classical bootstrapping argument then leads
to C∞ regularity.

Assumptions for the inductive step : Q-1 ⇒ Q. We are in an open
ball B, where SingQ is a closed set (that could a priori have positive H2 -
measure) and C \SingQ is smooth except at the points Sing≤Q−1, which are
isolated in the open set C \ SingQ.
We are going to divide the proof of the inductive step into two parts:

;1 : SingQ is made of isolated points in B, i.e. there is no possibility of
accumulation of singularities of multiplicity Q to another singularity p
of the same multiplicity;

;2 : singularities of multiplicity ≤ Q−1 cannot accumulate onto a singularity
of multiplicity Q.

The proof of ;1 will be achieved in the present section 2.4: we aim to
prove

Theorem 2.4.1. Let B5 be a ball in which the highest multiplicity for the
Special Legendrian cycle C is Q. Assume that Sing≤Q−1 is made of isolated
points in (C B5) \SingQ. Then the set SingQ is made of isolated points in
B5.

Recall that there is an easy case of ;1 that we already proved: indeed,
for p ∈ SingQ having a tangent cone that is not Q times the same disk, the
result is just theorem 2.3.2.

Therefore we only need to prove ;1 if the tangent cone at p is Q!D". As
explained in the introduction, theorem 2.4.1 will be achieved after having in-
troduced a multi-valued graph that locally describes the Special Legendrian
current. In suitable coordinates the branches of the multi-valued graph sat-
isfy the elliptic system of PDEs (1.5), which is a perturbation of the classical
Cauchy-Riemann. Thanks to a W 1,2-regularity result for the average of the
multi-valued graph, we will translate the issue of accumulation of singula-
rities of multiplicity Q into a problem of accumulation of zeros for a new
multi-valued graph whose branches solve a PDE that is still a perturbation
of the classical Cauchy-Riemann. At this stage we will prove 2.4.1 by a
unique continuation argument.

Here are the two fundational steps for the unique continuation:
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• we find suitable coordinates in which the multi-valued graph satisfies
the PDEs (1.5);

• we study the regularity of the average of the multi-valued graph, show-
ing that it is W 1,2 on D2.

Once these steps will be achieved, the proof of ;1 will come to an end
with the unique continuation argument in subsection 2.4.5.

2.4.2 Choice of Coordinates

. We are now going to choose appropriate coordinates to guarantee later
a W 1,2-type estimate. In order to do that, we will need the result contained
in the next lemma. First observe the following:

Remark 2.4.1. Due to the construction of Σ, given any 3-surface ΣX
q and for

any point p ∈ ΣX
q , then Tp(ΣX

q ) ∩ H4
p is a complex line in H4

p . This can
be seen as follows: Tp(ΣX

q ) ∩ H4
p is a two-dimensional subspace since ΣX

q is
transversal to H4

p ; moreover one of the Special Legendrian spheres foliating
(and building up) ΣX

q must go through p and it is tangent to H4
p .

Remark 2.4.2. In the construction of the 3-surfaces ΣX
q performed in section

2.1, q was taken in a neighbourhood of the Special Legendrian 2-sphere L0.
We can parametrize this neighbourhood of L0 with a complex coordinate w
such that the point (1, 0, 0) ∈ L0 has coordinate 0. By abuse of notation we
will also write ΣX

w instead of ΣX
q when the point q ∈ L0 has coordinate w.

Lemma 2.4.1. There exist open neighbourhoods V, U of [0, 1] in CP1 so that
we can define11 the function:
d : B5

1 × V → B2
2 × U , given by d(p, Y ) = (w,X) s.t. ΣX

w contains p and
Y ⊂ TpΣX

w . Moreover, d is of class C1.
In other words, for any point p ∈ B5

1 and any almost vertical direction Y
there exist a unique point w ∈ L0 and direction X such that ΣX

w goes through
p with direction Y . Moreover this correspondence is C1.

proof of lemma 2.4.1. Take the following neighbourhood U of [0, 1] in
CP1, U = {[Z;W ] ∈ CP1 : |W | > 2|Z|}. Define the function

w̃ : B5
1 × U → B2

2

where w̃ = w̃(p,X) is the point in B2
2
∼= L0 ∩ B5

2 such that p ∈ ΣX
w̃ (w̃ is

uniquely defined since {ΣX
w } foliates B5

1 as the base point runs over L0). w̃

11By B5
1 we mean the 5-dimensional ball of radius 1. Analogously for B2

2 , which we
implicitly identify with the disk in C of radius 2.
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is a smooth function.
Recall remark 2.4.1. Denote by X̃ = X̃(p,X) ∈ CP1 the complex line12 in
H4

p such that X̃, as a 2-dimensional plane, is contained in the tangent to ΣX
w̃

at p. X̃(p,X) is a smooth perturbation of X, since the contact structure in
B5

1 is a smooth perturbation of the integrable structure C2 × R. Consider

D : B5
1 × U × B2

2 × U → C× CP1

D : (p, Y, w,X)→ (w − w̃(p,X), X̃(p,X)− Y ).

The function D is C1 and we can compute its (w,X)-differential

∂D

∂(w,X)
=

(
1 ∂w̃

∂X

0 ∂X̃
∂X ≈ 1

)

and its determinant is non-zero, therefore, by the implicit function theorem,
the set {D = 0} can be described as a graph over B5

1 × V

(p, Y, d(p, Y ))

for some d ∈ C1 and V ⊂ U . The condition D(p, Y, w,X) = 0 expresses the
fact that ΣX

w goes through p with direction Y , thus d satisfies the statement
of lemma 2.4.1.

Before starting the proof of non-accumulation of singularities of order Q
to a singular point x0 having tangent cone of the form Q!D", we are going to
set coordinates so that the current and the leaves of the chosen foliation ΣX

have only isolated and at most countably many points of non-transversality.
Recall that a parallel foliation {ΣX

p } for X fixed, of the type constructed
in section 2.1, locally induces a system of 5 real coordinates around x0 =
(1, 0, 0), the first two, (s, t), lying in the space of parameters L0 (the chosen
Special Legendrian 2-sphere) and the remaining three in Σ, see lemma 2.1.2
and the discussion about families of parallel foliations. We can also think of
having a complex coordinate on L0∩B5

2
∼= B2

2 rather than two real ones. This
means, for instance, that in this coordinates, if q ∈ L0 has coordinate z0 ∈ C,
the leaf ΣX

q is described by {(z0, b, c, a)}, as (b, c, a) describes to B3
2 ⊂ R3. In

the same vein, L0 is described by {(z, 0, 0, 0)} or by {(s, t, 0, 0, 0)}, where we
used respectively a complex and two real coordinates for L0 ∩B5

2
∼= B2

2 .
In the coordinates so induced by {ΣX

p }, introduce the projection map π :
B2

2 × B3
2 → B2

2 sending (z, b, c, a) to z.
Now we want to choose a privileged direction X to ensure the transver-

sality announced above. Recall that we are working in a neighbourhood of x0

12Recall that CP1 ∼= PH4
p .
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where the multiplicity is everywhere ≤ Q. Start with coordinates set in such
a way that x0 = 0, D = D0

∼= [1, 0] and the foliation we are using is given by

{Σ[0,1]
p }, and assume that we have blown up enough in order to ensure that

spt (C0,r B1) ⊂ Eδ ∪ {0} for some small δ (lemma 2.3.3) and that TyC0,r

makes an angle smaller than δ for any y ∈ SingQ (theorem 2.3.3).
Recall lemma 2.4.1 and let S be the smooth part of the current C0,r where
the tangent planes are in V . Denote by π2 the projection π2 : B2

2 × U → U .
Define the following function ψ : S → CP1

ψ(p) := π2(d(p, TpS)).

The tangent on S is a smooth function, thus, by composition, ψ is also
smooth. Therefore we can find a regular value X for ψ as close as we want
to [0, 1]. We choose then the coordinates induced by this ΣX , which we will
denote by {(z, b, c, a)} or by {(s, t, b, c, a)}, where z = s+ it. They have the
property that the leaves ΣX

z are tangent to the smooth part of the current
only at isolated points {ti}∞i=1 (they can possibly accumulate on the singular
set). As for the singular set, the points of multiplicity up to Q − 1 are
also isolated singularities by inductive assumption, so we can assume that
there is transversality there up to picking a new X, again among the regular
values (only a countable set of X must be avoided). On the set SingQ the
tangent cone makes a small angle with the horizontal, thanks to the Lipschitz
estimate from theorem 2.3.3.

2.4.3 Multi-valued graph

. With the coordinates just taken, denote by π the projection onto D0
∼=

{(z, 0, 0)}. Recall that we are also assuming to have dilated the current about
0 of a factor r small enough to ensure that Cr := C0,r B1 has support δ-
close to T0C and that TyCr makes an angle smaller than δ with T0C for any
y ∈ SingQ.

We can now say that, by intersection theory, except on the countable
set {π(ti)}, the leaves intersect C transversally and positively; as explained
in remark 2.2.2, for some R < 1, ΣX

z intersect the current at exactly Q
points (counted with multiplicities) for a.e. |z| < R. We have thus defined a
Q-valued function

{bi, ci,αi}Qi=1(z) : DR → R3, or

{ϕi,αi}Qi=1(z) : DR → C× R,

with DR = {(z, 0, 0), |z| < R}, ϕj = bj+icj . Equivalently, we have a function
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from DR into the Q-th symmetric product

SQ(C× R) =
(C× R)Q

∼ ,

where two Q-tuples are equivalent if one is a permutation of the other. When
using the notation {ϕi,αi}Qi=1 it should be kept in mind that the Q-tuples
are unordered, so the indexation is not global on DR.
The Q-valued function just constructed is L∞ since the current is contained
in a cone E2δ around DR.

Remark 2.4.3. Introduce the following notation:

A = DR \ π(SingQ), B = A \ π(Sing≤Q−1), G = B \ ∪∞i=1{π(ti)}.

π(SingQ) is a closed set since we are working in a neighbourhood where
Q is the highest multiplicity and thanks to the inductive hypotesis, therefore
A is open. B = DR \ π(Sing≤Q) is also open since Sing≤Q is a closed set.
G is open since we are taking away from the open set B a countable set of
isolated points that can only accumulate on the complement of B.
Observe that, locally on B, it is possible to give a coherent global indexation
of {ϕi,αi}Qi=1; i.e., for any point in B there is a small ball centered at this
point on which the multifunction is made of Q distinct smooth functions.

2.4.4 PDEs and Average

Define the average of the branches {ϕi,αi}Qi=1 by

Ψ̃ = (ϕ̃, α̃) :=

(∑Q
i=1 ϕi

Q
,

∑Q
i=1 αi

Q

)

,

which is a single-valued L∞ function on DR. The next steps aim to prove
that this average is actually a W 1,2 function. This will be achieved with
theorem 2.4.2. The strategy is as follows:

• after writing the PDEs satisfied by the branches of the Q-valued func-
tion at smooth points, we will estimate that the W 1,2-norm on G is
finite and bounded by the mass of the current;

• we will successively extend the estimate to B and A by using the fact
that, in dimension two, the W 1,2-capacity of an isolated point is zero;

• eventually, thanks to theorem 2.3.3, we will conclude that (ϕ̃, α̃) is W 1,2

on the whole of DR.
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PDEs As noted above, on the open set G the branches {ϕi,αi}Qi=1 are
locally smooth functions. We restrict ourselves to a small ball ∆ ⊂ G on
which they can be globally indexed and we are going to write the PDEs
satisfied by these Q functions coming from the fact that these (smooth)
pieces are calibrated by ω. Notice that also the derivatives of the Q branches
are well-defined functions. We are using coordinates (z, ζ , a) = (s, t, b, c, a),
where z = s + it, ζ = b + ic are complex and the others real. Recall that
Σ were built so that the coordinate vectors ∂

∂b and ∂
∂c are always tangent to

the 4-planes H4 of the horizontal distribution. Denote by J the J-structure
defined on these hyperplanes,

Jp : H
4
p → H4

p .

We can assume that each leaf Σz is parametrized in such a way that

J

(
∂

∂b

)
=

∂

∂c
, J

(
∂

∂c

)
= − ∂

∂b
. (2.9)

Recall that we are assuming, without loss of generality, that the origin of
DR×R3 corresponds to the point (1, 0, 0) ∈ C3 (this can be done by rotating
S5 via a rotation in SU(3)). We also assume that (s, t) are such that ∂

∂s
and ∂

∂t coincide respectively with ∂
∂x2 and ∂

∂x3 in C3 at the point 0, so ω(0) =
dx2∧dx3−dy2∧dy3 as a form in C3 is ds∧dt+db∧dc in the new coordinates.
Moreover,

∂

∂b
,
∂

∂c
,
∂

∂a
are always orthogonal to each other,

∂

∂b
,
∂

∂c
are also orthogonal to the unit fiber vector v (v = i

∂

∂r
in C3).

All the other scalar products of the13 coordinate vectors ∂
∂s ,

∂
∂t ,

∂
∂b ,

∂
∂c ,

∂
∂a at a

point p are bounded by K ε, for an arbitrarily small ε, as long as we blow-up
of a factor r small enough, since they are orthogonal at the point 0 and the
structure is smooth.

Analogously, since the fiber vector at 0 is also equal to ∂
∂a and orthogonal

to ∂
∂s ,

∂
∂t , we have

−K ε ≤ 〈 ∂
∂s

, v〉, 〈 ∂
∂t

, v〉, 〈 ∂
∂s

,
∂

∂a
〉, 〈 ∂

∂t
,
∂

∂a
〉 ≤ K ε . (2.10)

Further, with ωr :=
1
r2 ((rx)

∗(ω)), for any l we have that ‖ωr−ω(0)‖Cl(B1) →
0 as r → 0. Remark that ωr calibrates the blown-up current Cr.

13Throughout the section, K will always represent a constant independent of the chosen
∆ ⊂ DR.
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As we said before, each branch Ψj = (ϕj,αj) is a well-defined graph on
∆. We can focus on one precise branch, for a certain j ∈ {1, ..., Q}: the
parametrization of this smooth piece is

Λj(s, t) := (s, t, bj(s, t), cj(s, t),αj(s, t)),

with tangent vectors

∂Λj

∂s
=

(
1, 0, ∂bj∂s ,

∂cj
∂s ,

∂αj

∂s

)
,

∂Λj

∂t
=

(
0, 1, ∂bj∂t ,

∂cj
∂t ,

∂αj

∂t

)
. (2.11)

On each tangent space TpS5 extend J to a linear map defined on the whole
of TpS5

J : TpS
5 → TpS

5,

by setting J

(
∂

∂a

)
=

∂

∂a
(this is quite arbitrary). Introduce the following

notation for the coefficient of this map in the given basis:

J

(
∂

∂s

)
= ς

∂

∂s
+ λ

∂

∂t
+ η

∂

∂a
+ β

∂

∂b
+ γ

∂

∂c
,

where ς, η, β, γ are small in modulus, say less than some K · r since they are
equal to 0 at the point 0, while |λ| is close to 1. These five functions depend
on the variables (s, t, b, c, a), but we will not explicitly write this dependence.
For the other coefficients of J , recall (2.9) and the extension of J done above.
The condition of being a Special Legendrian expressed by proposition 2 is
then given by the two relations valid at any point:

∂Λj

∂s
∧ ∂Λj

∂t
⊂ H4, (2.12)

J

(
∂Λj

∂s

)
= λ

∂Λj

∂t
+ ς

∂Λj

∂s
. (2.13)

The fact that the last two coefficients must be exactly λ and ς will be clear
in a moment. We explicit now (2.13), using (2.11):

J

(
∂Λj

∂s

)
= ς

∂

∂s
+ λ

∂

∂t
+ η

∂

∂a
+ β

∂

∂b
+ γ

∂

∂c
+

∂bj
∂s

∂

∂c
− ∂cj

∂s

∂

∂b
+

∂αj

∂s

∂

∂a
=

= λ
∂Λj

∂t
+ ς

∂Λj

∂s
= (2.14)

= λ

(
∂

∂t
+

∂bj
∂t

∂

∂b
+

∂cj
∂t

∂

∂c
+

∂αj

∂t

∂

∂a

)
+ς

(
∂

∂s
+

∂bj
∂s

∂

∂b
+

∂cj
∂s

∂

∂c
+

∂αj

∂s

∂

∂a

)
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(from comparing the coefficients of ∂
∂s and ∂

∂t we can see why we needed λ
and ς in (2.13)). Identifying the coefficients of the coordinate vectors ∂

∂b and
∂
∂c in the first and third line of (2.14) leads to

{
−∂cj

∂s + β = λ∂bj
∂t + ς ∂bj

∂s ,
∂bj
∂s + γ = λ∂cj

∂t + ς ∂cj
∂s .

(2.15)

Substituting the expression for ∂cj
∂s given by the first line of (2.15) into

the second we get

∂bj
∂s

= λ
∂cj
∂t

+ ς

(
β − λ

∂bj
∂t
− ς

∂bj
∂s

)
− γ,

which implies
∂bj
∂s

=
λ

1 + ς2

(
∂cj
∂t
− ς

∂bj
∂t

+
ςβ − γ

λ

)
. (2.16)

Plugging this back into the first identity of (2.15) we get

∂cj
∂s

= − λ

1 + ς2

(
∂bj
∂t

+ ς
∂cj
∂t
− β + ςγ

λ

)
. (2.17)

Let us now draw some conclusions from (2.12). We have to impose that
∂Λj

∂s and ∂Λj

∂t are always orthogonal to the vertical fiber vector v. Since the first

two components of ∂Λj

∂s are fixed and equal (1, 0) and ∂
∂b ,

∂
∂c are orthogonal to

v, (2.12) means

〈 ∂
∂s

, v〉 = −∂αj

∂s
〈 ∂
∂a

, v〉. (2.18)

Doing the same with ∂Λj

∂t we obtain

〈 ∂
∂t

, v〉 = −∂αj

∂t
〈 ∂
∂a

, v〉. (2.19)

Since 〈 ∂
∂a

, v〉 is close to 1 (see (2.10)), we get

∣∣∣∣
∂αj

∂s

∣∣∣∣ ,
∣∣∣∣
∂αj

∂t

∣∣∣∣ ≤ K ε . (2.20)

We can rewrite14 equations (2.16), (2.17), (2.18) and (2.19) as

14Recall again that we are focusing on a chosen branch Ψj = (bj , cj ,αj), which describes
a smooth piece of the multi-valued graph above ∆.
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




∂bj
∂s

= A
∂cj
∂t

+B
∂bj
∂t

+ C

∂cj
∂s

= −A∂bj
∂t

+B
∂cj
∂t

+ F

∇αj = h(s, t,Ψj) .

(2.21)

Here A,B,C, F are smooth real functions of (s, t, bj(s, t), cj(s, t),αj(s, t))
with A(0, 0, 0, 0, 0) = 1, B(0, 0, 0, 0, 0) = C(0, 0, 0, 0, 0) = F (0, 0, 0, 0, 0) = 0,
so A is close to 1 and B,C, F are less than ε in modulus15. The R2-valued
function h is Lipschitz thanks to (2.20).

Complex PDE. We are going to rewrite the first two equations in
(2.21) in complex form, so we use the complex coordinate z = s + it, and
observe the function ϕj(z) = bj(s, t) + icj(s, t). The complex derivatives
∂
∂z = 1√

2

(
∂
∂s − i ∂

∂t

)
and ∂

∂z = 1√
2

(
∂
∂s + i ∂

∂t

)
will be denoted respectively by ∂

and ∂. Compute the first equation in (2.21) plus i times the second:

∂ϕj

∂s
= (−iA +B)

∂ϕj

∂t
+ C + iF.

Then

{ √
2 ∂ϕj = ((1− A)i+B)∂ϕj

∂t + C + iF,√
2 ∂ϕj = (−(1 + A)i+B)∂ϕj

∂t + C + iF.
(2.22)

We seek a function ν = ν1 + iν2 so that

(1− A)i+B = −(ν1 + iν2)(−(1 + A)i+B),

which rewrites, separating imaginary and real parts:

(
1 + A −B
B 1 + A

)(
ν1
ν2

)
=

(
1−A
−B

)
.

The matrix on the l.h.s. is a perturbation of 2 Id, and the vector on the
r.h.s. has norm bounded by ε, therefore we can invert the system and find
that there is a unique solution for ν = ν1 + iν2 whose norm is bounded by ε.
Then, setting µ = 1√

2
(1 + ν)(C + iF ) we can write, from (2.22),

∂ϕj + ν(z,ϕj ,αj)∂ϕj + µ(z,ϕj ,αj) = 0, (2.23)

15ε is a positive number which can be assumed as small as we wish: it is of order r, the
rescaling factor that we used for the blow-up.
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with ν, µ : Cz×Cζ×Ra → C smooth functions, ν(0) = µ(0) = 0, |ν|, |µ| ≤ ε.

The first two equations in (2.21), or equivalently equation (2.23), are
perturbations of the classical Cauchy-Riemann equations. Notice however
that the coefficients depend on s, t, bj(s, t), cj(s, t) and αj(s, t), and we need
the third equation in (2.21), to clarify the "α-dependence".

At this stage, we can estimate the L2-norm of the jacobian of Ψj using
(2.16), (2.17) and (2.20). Recall that the functions ς, η, β, γ are in modulus
smaller than K ε and λ is close to 1. The metrics in the base space ∆s,t and
in the target R3

b,c,a are perturbation of the standard euclidean metrics (at 0
they coincide with them), so

|DΨj|2 ≤ K

(∣∣∣∣
∂bj
∂s

∣∣∣∣
2

+

∣∣∣∣
∂bj
∂t

∣∣∣∣
2

+

∣∣∣∣
∂cj
∂s

∣∣∣∣
2

+

∣∣∣∣
∂cj
∂t

∣∣∣∣
2

+

∣∣∣∣
∂αj

∂s

∣∣∣∣
2

+

∣∣∣∣
∂αj

∂t

∣∣∣∣
2
)

≤

≤ K

(∣∣∣∣
∂bj
∂t

∣∣∣∣
2

+

∣∣∣∣
∂cj
∂t

∣∣∣∣
2

+ Cε2
)

+Kε2 ≤ K

(

1 +

∣∣∣∣
∂bj
∂t

∣∣∣∣
2

+

∣∣∣∣
∂cj
∂t

∣∣∣∣
2
)

. (2.24)

The constant K obtained at the end only depends on the factor r that we
used for the dilation and is valid for any smaller r, moreover it is independent
of the chosen ∆. We can assume that K = 2, since this constant gets closer
to 1 as r → 0.

W 1,2 estimate for the average. For Ψj = (bj , cj,αj) (we are still
focusing, locally on ∆, on a single smooth branch), consider (Ψj)

∗ ω0 =(
1 +

∂bj
∂s

∂cj
∂t
− ∂bj

∂t

∂cj
∂s

)
ds ∧ dt and plug in (2.16) and (2.17):

(Ψj)
∗ ω0 ≥ 1+

λ

1 + ς2

(
∂cj
∂t

)2

+
λ

1 + ς2

(
∂bj
∂t

)2

−ε
∣∣∣∣
∂bj
∂t

∂cj
∂t

∣∣∣∣−ε
∣∣∣∣
∂bj
∂t

∣∣∣∣−ε
∣∣∣∣
∂cj
∂t

∣∣∣∣ ≥

≥ 1

2

(

1 +

∣∣∣∣
∂bj
∂t

∣∣∣∣
2

+

∣∣∣∣
∂cj
∂t

∣∣∣∣
2
)

≥ 1

4

(
1 + |∇bj |2 + |∇cj |2

)
, (2.25)

where we used ε
∣∣∣∂bj∂t

∂cj
∂t

∣∣∣ ≤ 1
2

(
ε
(

∂bj
∂t

)2

+ ε
(

∂cj
∂t

)2
)

and ε
∣∣∣∂cj∂t

∣∣∣ ≤ 1
2

(
ε+ ε

(
∂cj
∂t

)2
)

,

the hypothesis on ς, η, β, γ,λ and (2.24) with K = 2 as said above.
Consider now ωr − ω0. Write this 2-form in the canonical basis in the coor-
dinates s, t, b, c, a. All the coefficients are smaller than ε in modulus, if r was
chosen small enough. Therefore

(Ψj)
∗ (ωr − ω0)
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is a 2-form in ds ∧ dt whose coefficient comes from summing products of

derivatives of Ψj . As above, we can bound this coefficient by ε

(
1 +

∣∣∣∂bj∂t

∣∣∣
2
+

∣∣∣∂cj∂t

∣∣∣
2
)

.

Using this fact, together with (2.25) and the triangle inequality we have
∫

∆

(Ψj)
∗ ωr ≥

(
1

4
− ε

)∫

∆

1 + |∇bj |2 + |∇cj|2.

Recalling (2.24) we can finally write the desired estimate:
∫

∆

|DΨj|2 ≤ K

∫

∆

(Ψj)
∗ ωr = K

∫

Ψj(∆)

ωr = K · H2(Ψj(∆)), (2.26)

with a constant K independent of the chosen ∆. We can therefore conclude,
recalling the notations taken during the inductive assumptions,

Lemma 2.4.2. On the set G =
(
DR \ Sing≤Q

)
\ ∪∞i=1{π(ti)} it holds

Q∑

i=1

∫

G

(
|Dϕi|2 + |Dαi|2

)
≤ K · H2(Cr) <∞

and therefore the average function Ψ̃ = (ϕ̃, α̃) is W 1,2(G) with norm bounded
by the mass of Cr (we already knew that it is L∞).

The next considerations will allow us to extend this estimate for (ϕ̃, α̃) to
the set B = G∪∞i=1{π(ti)}. One can do this in a straightforward way recalling
that the capacity of a point in R2 is zero. Anyway we also give a direct
proof. Rename for notational convenience qi = π(ti) and take B2

ρi(qi) ⊂ B
balls centered at the qi’s so that

∑
i ρi ≤ δ, for δ chosen arbitrarily small.

Let ξ be any test-function in C∞
c (B). Then

∣∣∣∣

∫

B
ϕ̃
∂ξ

∂s

∣∣∣∣ ≤

∣∣∣∣∣

∫

∪iBρi (qi)

ϕ̃
∂ξ

∂s

∣∣∣∣∣
+

∣∣∣∣∣

∫

B\∪iBρi(qi)

∂ϕ̃

∂s
ξ

∣∣∣∣∣
+

∑

i

∣∣∣∣∣

∫

∂Bρi (qi)

ϕ̃ξ〈 ∂
∂s

, ν〉

∣∣∣∣∣

≤ Cδ2‖ϕ̃‖∞‖∇ξ‖∞ + ‖ϕ̃‖W 1,2(G)‖ξ‖L2(B) + Cδ‖ϕ̃‖∞‖ξ‖∞.

Since δ was arbitrarily small,
∣∣∣∣

∫

B
ϕ̃
∂ξ

∂s

∣∣∣∣ ≤ ‖ϕ̃‖W 1,2(G)‖ξ‖L2(B).

We can do the same for the t-derivative. For α̃ things are even easier, indeed
α̃ is Lipschitz. Therefore the average function is W 1,2 on B with the same
norm as on G. We can do the same passing from B to A = DR \ SingQ:
again we have to add a (countable) set of points which are isolated in A, so
the same as above applies. Eventually we have proved
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Lemma 2.4.3. On the set A = DR \SingQ the average function Ψ̃ = (ϕ̃, α̃)
defines a W 1,2 map from A into C × R with norm bounded by the mass of
Cr.

The next step will establish the definitive result on the whole of DR.
The following corollary is basically a restatement of theorem 2.3.3 as a

relative Lipschitz estimate, in terms of coordinates in which the current
is seen as a multi-valued graph:

Corollary 2.4.1. Let x0 ∈ SingQ and Tx0C = Q!D0", as before. Take
coordinates D2 × C× R so that x0 is at the origin and D0 is identified with
D2 × {0}.

Then ∀ ε > 0 ∃r = r(ε, x0) such that

∀x = (z, ζ , a) ∈ CQ := {p ∈ C : θ(p) = Q} and x′ = (z′, ζ ′, a′) ∈ sptC∩Br(x0)

we have the estimate |(ζ , a)− (ζ ′, a′)|C×R ≤ ε |z − z′|R2.

proof of corollary 2.4.1. The estimate for the third coordinate a is obvi-
ous. We need to show that, identifying C ≡ R2,

|(ζ − ζ ′)|R2 ≤ ε |z − z′|R2 .

We are going to use theorem 2.3.3, which guarantees the continuity at 0 of
tangent cones at points in CQ. Choose r s.t. ∀x ∈ B2r(0) having multiplicity

Q the angular distance D̂0, TxC is less than ε
2 ; we can also guarantee that

k(C B2r(0),Σ
X
w ) = Q (2.27)

for any w ∈ D0 ∩ B3r/4(0) and Y ∈ CP1 realizing D̂0, Y ≥ ε. Assume by
contradiction that we can find x ∈ CQ and y ∈ sptC, with x, y ∈ Br(0) for
which

|(ζ − ζ ′)|R2 > ε |z − z′|R2

holds. Then take Σx,y: this 3-surface is transversal to the current at x since
̂TxC,Σx,y > ε

2 and we can tilt it a bit finding a ΣY
x transversal to C, with

T̂xC, Y > ε
2 and with a non-zero intersection, as already done in the proof of

theorem 2.3.3. Then

k(C B2r(0),Σ
Y
x ) = k(C Bρ(x),Σ

Y
x )+k(C (B2r(0)−Bρ(x)),Σ

Y
x ) ≥ Q+1,

for some small enough ρ << dist(x, y). Since D̂0, Y > ε, we can homotope
ΣY

x into a ΣY
w for some w ∈ D0 ∩ B3r/4(0) keeping it away from C on ∂B2r,

so we are contradicting the identity in (2.27).
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0

counted twice
D0 counted twice

Figure 2.6: An example for Q = 2, with the current sketched as two curves.
The tangents at points of multiplicity 2 flatten as they approach 0.

Theorem 2.4.2. The average function Ψ̃ : DR → R3 is in W 1,2(DR).

proof of theorem 2.4.2. SingQ is a closed set (possibly with positive H2-
measure) and on F = π(SingQ) (still a closed set) Ψ̃ coincides with the Q
branches {Ψi}Qi=1. We know that the Lipschitz estimate of corollary 2.4.1
holds for any couple of points x, y such that Ψ̃(x) ∈ SingQ. In particular,
Ψ̃|F is Lipschitz, it is therefore possible to extend it to a function u defined
on the whole of DR which is Lipschitz with constant K equal 3 times the
Lipschitz constant of Ψ̃|F (see [25] sec. 2.10.44). Let δ be positive and
arbitrarily small. Take now a smooth compactly supported function σδ such
that

σδ(x) =

{
1 if dist(x,F) ≤ δ
0 if dist(x,F) ≥ 2δ

and |Dσδ| ≤ k
δ for some k > 0. Explicitly σδ can be defined as follows: take

a smooth bump-function χ on [0,∞), which is 1 on [0, 1) and 0 on [2,∞).

Set χr,y(x) = χ
(

|x−y|
r

)
for x, y ∈ C. Define

σδ(z) =
G

δ4

∫

{x:dist(x,F)≤ 3δ
2 }

χ δ
4 ,z

(w)dwdw,

the right normalization constant G depending on
∫∞
0 χ(t)t3dt. Introduce

Ψ̃δ := σδu+ (1− σδ)Ψ̃

and notice that, for any δ > 0, this function is W 1,2. Moreover, for x ∈
{dist(x,F) ≤ 2δ}, denoting by p ∈ F the point realizing this distance, from
corollary 2.4.1 and by the definition of u

|(u− Ψ̃)(x)| = |u(x)− u(p) + Ψ̃(p)− Ψ̃(x)| ≤ 2K|p− x| ≤ 4Kδ.

In the lines that follow, D denotes the partial derivative with respect to either
of the coordinates s, t; notice that, in order to control DΨ̃δ, we need to take
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DΨ̃ only on the set {dist(x,F) ≥ δ} # A, since elsewhere 1− σδ = 0, so we
can freely take derivatives.

DΨ̃δ = (Dσδ)u+ σδDu− (Dσδ)Ψ̃ + (1− σδ)DΨ̃ =

= (Dσδ)(u− Ψ̃) + σδDu+ (1− σδ)DΨ̃.

We can now compute

‖DΨ̃δ‖2L2(DR) ≤
∫

{δ≤dist(x,F)≤2δ}
|Dσδ|2|u− Ψ̃|2 +

∫

DR

|σδ|2|Du|2+

+

∫

{dist(x,F)≥δ}
|1− σδ|2|DΨ̃|2 ≤ c(K, k) + ‖DΨ̃‖2L2(A) ≤ c(K, k).

So the W 1,2-norm of the Ψ̃δ are uniformly bounded as δ → 0, therefore, by
compactness, we can find a sequence Ψ̃δn , δn → 0, which converges in L2

and weakly* in W 1,2 to some ψ ∈ W 1,2(DR). On the other hand, from the
computation above,

|Ψ̃δ − Ψ̃| = |σδ(u− Ψ̃)| =






0 on F
≤ 4Kδ on {dist(x,F) ≤ 2δ}− F
0 on {dist(x,F) ≥ 2δ} ,

so Ψ̃δn converge uniformly to Ψ̃ on DR. Therefore H2-a.e. it holds ψ = Ψ̃
and theorem 2.4.2 is proven.

2.4.5 End of the proof of ;1: unique continuation

In this section we will complete the proof of ;1, the first part of the
inductive step, i.e. the fact that there is no possibility of accumulation among
singularities of equal multiplicity.

Hölder estimate. We are going to establish the following

Theorem 2.4.3. (Hölder estimate) For any small enough disk DR, there
exist constants C, δ > 0 such that, for any r ≤ R,

Q∑

j=1

∫

Dr

|∇ϕj|2 ≤ Crδ. (2.28)

This easily yields ∫

Dr

|∇Ψ̃|2 ≤ Crδ. (2.29)
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Remark 2.4.4. This decay implies that Ψ̃ is δ
2-Hölder thanks to Morrey’s

embedding theorem, see [44] for instance.

Remark 2.4.5. The integral in (2.28) should always be understood as

Q∑

j=1

(∫

(Dr−F)\π(Sing≤Q−1)

|dϕj|2ds dt+
∫

F
|∇ ϕ̃ |2∇H2

)
,

where F = π(SingQ); recall that all branches agree with the average on F
and that Sing≤Q−1 is made of at most countably many points, isolated in
Dr − F .

proof of theorem 2.4.3. Remark that the αj-s are Lipschitz thanks to
(2.20); therefore, once (2.28) will be established, (2.29) will follow imme-
diately.

We are going to analyse the behaviour of the function

y(r) =
Q∑

j=1

∫

Dr

|∇ϕj|2.

Remark that, with our choice of ∂ and ∂, it holds |∇ϕj|2 = |∂ϕj |2 + |∂ϕj|2.
We already showed in the previous section that, for any r small enough,
y(r) is finite, being bounded by the mass of the current in the cylinder
Zr = Dr × R3 = {|z| ≤ r}. Recalling that C is boundaryless,

(C Zr)(dζ ∧ dζ) = (∂(C Zr))

(
ζdζ − ζdζ

2

)
= i〈C, |z|, r〉

(
Im(ζdζ)

)
.

Denote by T the simple 2-vector describing the oriented approximate tangent
plane to the rectifiable set C; by definition

(C Zr)(
i

2
dζ ∧ dζ) =

Q∑

j=1

∫

{ϕj ,αj}(Dr)

i

2
〈dζ ∧ dζ, T 〉dH2 =

=
Q∑

j=1

∫

Dr−F
(|∂ϕj |2 − |∂ϕj|2)ds dt+

Q∑

j=1

∫

SingQ

i

2
〈dζ ∧ dζ, T 〉dH2 =

=
Q∑

j=1

∫

Dr−F
(|∇ϕj|2 − 2|∂ϕj|2)ds dt+

Q∑

j=1

∫

SingQ

i

2
〈dζ ∧ dζ, T 〉dH2.

Recalling that the average ϕ̃ is W 1,2 and that the tangent plane at points
in SingQ is Q times the tangent to the average, we can rewrite this last term
as
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Q∑

j=1

∫

Dr−F

(
|∇ϕj|2 − 2|∂ϕj |2

)
ds dt+Q

∫

F

(
|∇ ϕ̃ |2 − 2|∂ ϕ̃ |2

)
dH2.

So we have
Q∑

j=1

∫

Dr−F
|∇ϕj|2ds dt+Q

∫

F
|∇ ϕ̃ |2dH2 =

=
Q∑

j=1

∫

Dr−F
2|∂ϕj|2ds dt+Q

∫

F
2|∂ ϕ̃ |2dH2 + 〈C, |z|, r〉

(
−1
2
Im(ζdζ)

)
.

(2.30)
Now (2.23), which is satisfied by the smooth parts of {ϕj}Qj=1, i.e. on DR \F
minus countably many points, gives

Q∑

j=1

∫

Dr−F
|∂ϕj |2ds dt ≤ C1ε

2
Q∑

j=1

∫

Dr−F
|∇ϕj|2ds dt + C2r

2. (2.31)

Putting (2.30) and (2.31) together,

y(r) =
Q∑

j=1

(∫

Dr−F
|∇ϕj |2ds dt+

∫

F
|∇ ϕ̃ |2dH2

)
≤

≤ 3Q

∫

F
|∇ ϕ̃ |2dH2 +K1〈C, |z|, r〉

(
−1
2
Im(ζdζ)

)
+ C3r

2.

By corollary 2.4.1, |∇ ϕ̃ | is bounded by a small constant on F , so

y(r) ≤ K1〈C, |z|, r〉
(
−1
2
Im(ζdζ)

)
+K2r

2. (2.32)

The slice of the current with |z| = r exists as a rectifiable 1-current for a.e.
r, as explained in lemma 1 of [28], page.152. On the set DR \ F , the multi-
valued graph is smooth except at a countable set of isolated points. For
all but countably many choices of r, ∂Dr will avoid this set.For a.e. r the
current 〈C, |z|, r〉 is described by the same multi-valued graph {ϕj}. This
multi-valued graph, being one-dimensional, can be actually described as a
superposition of honest W 1,2 functions as follows:

(i) ∂Dr∩F = ∅: for such a r, {ϕj} is smooth on ∂Dr, then, starting from any
point in the multigraph, we can follow the loop and we will eventually
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come back to the same point after a certain number n of laps, n1 ≤ Q.
Then we can define the function g1 to be equal ϕj on an interval I1 of
length 2πn1r, and g1 has the same value at the endpoints of I1. Then
do the same, starting from a point that was not covered yet by g1. This
procedure leads to the construction of K smooth functions gk, K ≤ Q.
By [24], page 164, gk are W 1,2 for a.e. r, since it is the restriction of a
W 1,2 function to a line.

(ii) ∂Dr∩F 0= ∅: in this case the set ∂Dr−F , being open in ∂Dr, must be an
at most countable union of open intervals ∪i(ai, bi). Then ∂Dr ∩ F =
∪i[bi, ai+1]. On each (ai, bi) we can give a coherent labelling to the
{ϕj}, while on the [bi, ai+1] all the branches agree. Then we can write
the multi-valued graph as a superposition of Q functions gi. Each
gi is W 1,2: in fact, on each (ai, bi) we can use the result from [24]
again, and therefore for a.e. r, gi|∂Dr−F is W 1,2. Then we can get that
gi ∈ W 1,2(∂Dr) by the same argument that we used to prove theorem
2.4.2 by means of the Lipschitz property from theorem 2.3.3, which
holds on ∂Dr ∩ F .

Then, using Hölder’s and Poincaré’s inequalities, we can write (in the follow-
ing computation λk denotes the average of gk on Ik and the fourth equality
is justified by

∫
Ik
dgk = 0, which comes from the fact that gk takes the same

value at the endpoints of Ik):

∣∣∂(C Zr))(ζdζ)
∣∣ =

∣∣〈C, |z|, r〉(ζ ∧ dζ)
∣∣ =

∣∣∣∣∣

Q∑

j=1

(∫

∂Dr−F
ϕjdϕj +

∫

∂Dr∩F
ϕ̃ dϕ̃

)∣∣∣∣∣

=

∣∣∣∣∣

∑

k

∫

Ik

gkdgk

∣∣∣∣∣
=

∣∣∣∣∣

∑

k

∫

Ik

(gk − λk)dgk

∣∣∣∣∣
≤

∑

k

(∫

Ik

|gk − λk|2
) 1

2
(∫

Ik

|∇gk|2
) 1

2

≤
∑

k

Knkr

(∫

Ik

|∇gk|2
)
≤ KQr

Q∑

j=1

(∫

∂Dr−F
|∇ϕj |2 +

∫

∂Dr∩F
|∇ ϕ̃ |2

)
.

(2.33)
The function y(r) is weakly increasing in r and absolutely continuous, being
an integral; therefore it is a.e. differentiable and, thanks to (2.32) and (2.33),
satisfies at a.e. r (we can assume k > 1) the inequality

y(r) ≤ kry′(r) + cy2.

By setting υ(r) = y(r)− c
1−2kr

2, we turn the inequality into

υ(r) ≤ krυ′(r).
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This yields
υ(ρ) ≤ Cρ

1
k

and then, adding c
1−2kr

2, we get the desired estimate for y(r):

y(r) ≤ Crδ,

for some δ := 1
k > 0.

Unique continuation argument: this will conclude the proof of ;1 and
is inspired to the techniques used in [58], and before by Aronszajn in [3]. For
this section we are going to describe our current by a multi-valued graph
DR → C2, by setting the fourth (real) coordinate equal 0. So we have a
multi-valued graph {ϕj(z),αj(z)}Qj=1, with α purely real. The average ϕ̃(z),
is a W 1,2, Hölder (and bounded) function, α̃(z) is Lipschitz.

Lemma 2.4.4. There exists a constant K such that, if R is small enough,
there exists a W 1,2 and C1,δ solution w(z) : DR → C to the equation

∂w + ν(ϕ̃, α̃)∂w = 0 (2.34)

that is a perturbation of the identity, precisely it satisfies

|w(z)− z| ≤ KR|z|.

proof of lemma 2.4.4. For a function u defined on the whole of C, we
seek w of the form w = χR(1 + u(z))z, where χR is a radial, smooth cut-off
function equal to 1 on DR and 0 on the complement of D2R. The requests
on w can be translated as follows

∂̄u+ χRν(ϕ̃, α̃)∂u + χR
ν(ϕ̃, α̃)

z
(1 + u) = 0,

|u| ≤ KR.

It is very important at this stage to observe that ν(ϕ̃,α̃)
z is an L∞ function

thanks to the Lipschitz estimate of corollary 2.4.1, although it need not
be continuous; so there is some constant K (independent of R) such that
ν(ϕ̃,α̃)

z ≤ K (still from corollary 2.4.1 we actually know that this constant
goes to 0 as R goes to 0). The solution u will be found by a fixed point
method.

Consider the16 space H = {f ∈ W 1,2(C) such that ∇f ∈ L2,λ}, for some
λ > 0 to be chosen later. By a result due to Morrey, these functions are

16Here we make use of the Morrey space

L2,λ :=

{

g : C→ R : ‖g‖2L2,λ := sup
x0∈C,ρ>0

1

ρλ

∫

Bρ(x0)
|g|2 <∞

}

.
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λ
2 -Hölder; they also decay at infinity, therefore they are bounded. H is a
Banach space with the norm whose square is

‖f‖2H = ‖f‖2L∞ + ‖∇f‖2L2 + ‖∇f‖2L2,λ =

= sup
C

|f |2 +
∫

C
|∇f |2 + sup

x0∈C,ρ>0

1

ρλ

∫

Bρ(x0)

|∇f |2.

Define the functional P on H that sends f to P(f)

P(f)(z) =
1

2πi

∫

C

χRν(ϕ̃, α̃)∂f + χR
ν(ϕ̃,α̃)

ξ (1 + f)

ξ − z
dξdξ̄

(all the functions in the integral are functions of ξ). For any fixed z, the
integral is finite: this can be seen as follows, by breaking it up as a series
of integrals over annuli An(z) centered at z with outer and inner radii re-
spectively R

2n and R
2n+2 (all the constants we are calling K are independent of

R);

∑

n

2n+2

R

∫

An(z)

|χRν(ϕ̃, α̃)∂f | +
∣∣∣∣χR

ν(ϕ̃, α̃)

ξ

∣∣∣∣ +
∣∣∣∣χR

ν(ϕ̃, α̃)

ξ
f

∣∣∣∣ ≤

≤ KR
∑

n

2n

R

(∫

An(z)

|χR|
) 1

2
(∫

An(z)

|∂f |2
) 1

2

+
∑

n

KR

2n
+

∑

n

KR‖f‖L∞

2n
,

(2.35)
where we used || ν(ϕ̃,α̃)z ||L∞(DR) ≤ K; thanks to the finiteness of ‖∇f‖2L2,λ we
can bound the first term in the following way:

∑

n

2n
(∫

An(z)

|χR|
) 1

2
(∫

An(z)

|∂f |2
) 1

2

≤ R
∑

n

(∫

An(z)

|∂f |2
) 1

2

=

= R
∑

n

Rλ/2

2
nλ
2

((
2n

R

)λ ∫

An(z)

|∂f |2
) 1

2

≤ KR‖∇f‖L2,λ. (2.36)

Note that
|P(0)| ≤ KR

and from the computations in (2.35) and (2.36) we also see that

‖P(f)− P(0)‖L∞ ≤ KR‖f‖H. (2.37)
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Also observe that, since we only need to integrate on ξ ∈ B2R(0), for |z| ≥ 4R
we have |ξ − z| ≥ |z|

2 , so |P(f)| is bounded by KR2

|z| (‖∇f‖L2 + ‖f‖L∞).

P(f) is in W 1,2 (we will shortly show that P(f) ∈ H) and solves

∂̄(P(f)) = −χRν(ϕ̃, α̃)∂f − χR
ν(ϕ̃, α̃)

z
(1 + f), (2.38)

since 1
z−ξ is the fundamental solution for the operator ∂̄; in fact, 1

z−ξ =
∂
∂z (ln |z − ξ|), and ∂̄∂ = i∆, compare [29], page.17.

Therefore, what we are looking for is a fixed point for P in H . Observe
that P is an affine functional, therefore, to show that it is a contraction in
H , it will be enough to show

P(0) ∈ H,

‖P(f)− P(0)‖H ≤ k‖f‖H ,

for any f and for some 0 < k < 1. From (2.38),

‖∂̄(P(f)− P(0))‖L2 ≤ KR(‖∇f‖L2 + ‖f‖L∞)

and, since P(f)−P(0) decays at infinity as 1
|z| , we can integrate by parts to

get

‖∇(P(f)− P(0))‖L2 = K‖∂̄(P(f)− P(0))‖L2 ≤ KR(‖∇f‖L2 + ‖f‖L∞).
(2.39)

The fact that

‖D(P(f)− P(0))‖L2,λ ≤ KR(‖Df‖L2 + ‖f‖L2,λ)

follows from equation (2.38) by theorem 5.4.1. in [44], page. 146.
The last estimate, together with (2.37) and (2.39), implies

‖P(f)− P(0)‖H ≤ KR‖f‖H .

Similarly we can show that P(0) ∈ H , with ‖P(0)‖H ≤ KR. If R is small
enough (recall that ν

z ≤ K independently of R), we have a contraction and
by Caccioppoli’s fixed point theorem we have the existence of a unique fixed
point u for P and

‖u‖L∞ ≤ 2KR.

So we have a Hölder function w = z(1 + u) solution to (2.34). Since ν(ϕ̃, α̃)
is Hölder-continuous of exponent δ thanks to theorem 2.4.3, by means of a
Shauder-type estimate w is C1,δ.
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Remark 2.4.6. Observe that |w(z) − z| ≤ KR|z| implies that at 0, ∂w ≈
1, ∂̄w ≈ 0, with perturbations of order KR. By taking R smaller if necessary,
we can assume, since w is C1,δ, that ∂w and ∂̄w stay as close as we like to 1
and 0 in BR.

Core of the proof of theorem 2.4.1. We are now ready to complete
the proof of non-accumulation, which will go on until the end of this section.
Take the function G : C3 → C3 given by

G(z, ζ , a) = (z, ζ − ϕ̃(z), a− α̃(z)),

and consider the pushforward Γ := G∗C. The map G is proper (if K is com-
pact, G−1(K) is closed by continuity and bounded since the average function
is L∞) and W 1,2: this gives that the pushforward is well-defined and com-
mutes with the boundary operator. The point here is that the W 1,2 function
G, from a domain in R2 into R3, can be approximated by C1 functions Gε as
ε → 0 so that the minors DGε converge weakly in L1 to the minors of DG
(see [28], pages 232-233 Propositions 2 and 3). This implies that ∂Γ = 0 and
that the current Γ is described by the multi-valued graph

{σj , τj} = {ϕj − ϕ̃,αj − α̃}. (2.40)

From (2.23), the smooth parts of {σj} solve

∂σj + ν(ϕ̃, α̃)∂σj +
Q∑

k=1

Sk
j σk +

Q∑

k=1

T k
j τk = 0, (2.41)

with |T k
j |, |Sk

j | ≤ K(1 +
Q∑

i=1

|∇ϕi| +
Q∑

i=1

|∇αi|). Therefore, by the Hölder

estimate in theorem 2.4.3, |T k
j |, |Sk

j | are in L2(DR). As for {τj}, from (2.18)
and (2.19) we have that

∇αj(z) = h(z,ϕj(z),αj(z)),

for a smooth R2-valued h, so

∂τj =
Q∑

k=1

Ak
jσk +

Q∑

k=1

Bk
j τk ,

with Ak
j , B

k
j bounded; for ∂τj we have a similar equation, since the τj are real

(so the equation we wrote actually contains the whole information on the
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0

0

C

Γ = G∗(C)

Figure 2.7: A sketch for a 3-valued graph. The average is the dotted line in
the first picture. By subtracting it, we get a new 3-valued graph: the points of
multiplicity 3 are turned into zeros. The new 3-valued graph still represents
a boundaryless current, thanks to the W 1,2-estimate on the average.

two real derivatives). Putting them together (we keep writing A,B although
these coefficient are different)

∂τj + ν(ϕ̃, α̃)∂τj +
Q∑

k=1

Ak
jσk +

Q∑

k=1

Bk
j τk = 0, (2.42)

with Ak
j , B

k
j bounded.

Observe that singularities of order Q in C have the property that all the
branches coincide at those points, therefore they are zeros of the multi-valued
graph {σj , τj}.

Assume by contradiction the existence of a sequence of singular points in
SingQ accumulating onto 0.

Then we can take N points qn ∈ F = π(SingQ) which lie in Dr, with
N as large as we want and r < R arbitrarily small and {σj, τj}(qn) = 0, for
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n = 1, ..., N . In the estimates to come, one should always pay attention to
the fact that the constants obtained must not depend on the chosen N and
r, unless otherwise specified.

Define the function

g(z) := ΠN
i=1(w(z)− w(qi)),

with the w obtained in the previous lemma. Then g is a C1, W 1,2 function
and it solves on DR

∂g + ν(ϕ̃, α̃)∂g = 0.

Take F : C3 → C3

F (z, ζ , a) =

(
z,χr(z)

ζ

g(z)
,χr(z)

a

g(z)

)
, (2.43)

where χr is a radial, smooth cut-off, 1 on Br, 0 on the complement ofB2r, with
gradient bounded by K

r ; we are going to analyse the pushforward F∗(G∗(C)).
First observe that, on any set of the form DR \ ∪Ni=1Bδ(qi) for δ as small as
we want, F is a C1, Lipschitz and proper function. Set

Aδ := (DR \ ∪Ni=1Bδ(qi))× C× C;

we can restrict Γ to Aδ, writing Γδ := Γ Aδ, and then the pushforward
∆δ := F∗(Γδ) is a well defined i.m. rectifiable current with finite mass, and
it can develop boundary only on (∪Ni=1∂Bδ(qi))× C× C. Now we will prove

Lemma 2.4.5. Sending δ → 0, we can define the pushforward ∆ := F∗(Γ) =
F∗(G∗(C)) on the whole of DR × C× C, and ∆ is a boundaryless current of
finite mass. Then we can rewrite the following relation

∆(dζdζ̄) = ∂∆(ζdζ̄)

as a standard integration by parts formula, where both integrals are finite:
∫

B2r(0)

∑

j

∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

=

∫

B2r(0)

∑

j

∣∣∣∣∂
(
χrσj

g

)∣∣∣∣
2

. (2.44)

Remark 2.4.7. Formula (2.44) is the only thing we will need in the sequel.
The finiteness of the integrals was not clear in the analogous formula used in
[58].

Remark 2.4.8. In this formula ∇
(

χrσj

g

)
is understood to be 0 on the set

F = π(SingQ). The reason for this will be clear during the proof. On the
complement DR \ π(SingQ) the gradient is well-defined since the functions
are smooth except at the isolated points π(Sing≤Q−1).
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proof of lemma 2.4.5. From what we said before, ∆ can develop boundary
only on (∪Ni=1qi)×C×C. Moreover, ∆ is described by the multi-valued graph

{
χrσj

g
,
χrτj
g

}Q

j=1

. (2.45)

From theorem 2.3.3, this multi-valued graph is bounded on DR, indeed we
only have to check it at the points qi: on some neighbourhood of a chosen
qk, thanks to corollary 2.4.1,

|σj(z)| = |σj(z)− σ(qk)| ≤ K|z − qk|.

By Lagrange’s theorem, if the mentioned neighbourhood was chosen small
enough (its size should be much smaller than the distances between the qi’s),
then g(z) ≈ ΠN

i=1(z−qi); more precisely, K1ΠN
i=1|z−qi| ≤ |g(z)| ≤ K2ΠN

i=1|z−
qi| with K1, K2 close to 1 (the perturbation is due to the perturbations ∂w ≈ 1
and ∂w ≈ 0). Therefore

|σj(z)| ≤ K{qi}|g(z)|,

where K{qi} is a constant that depends on the choices of r and the set {qi}
(more precisely the constant is of order Πi (=j |qi − qj |−1). This will not be
problematic, all that matters to us is the fact that

{
χrσj

g
,
χrτj
g

}Q

j=1

is bounded. We further observe that, thanks to the equation solved by g, the
multi-valued graph {

σj

g
,
τj
g

}Q

j=1

satisfies, on DR \ F ,

∂

(
σj

g

)
+ ν(ϕ̃, α̃)∂

(
σj

g

)
+

Q∑

k=1

Sk
j

(
σk

g

)
+

Q∑

k=1

T k
j

(
τk
g

)
= 0, (2.46)

∂

(
τj
g

)
+ ν(ϕ̃, α̃)∂

(
τj
g

)
+

Q∑

k=1

Ak
j

(
σk

g

)
+

Q∑

k=1

Bk
j

(
τk
g

)
= 0, (2.47)

with the coefficients A,B, S, T as above.
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Step 1: ∆ has finite mass. Remark that the closed set F = π(SingQ) is
included in {z : ∀i σi(z) = τi(z) = 0}. The integer multiplicity rectifiable
current ∆δ possesses a.e. on F \ ∪Ni=1Bδ(qi) an approximate tangent plane
that must be horizontal, i.e. it must be the plane (z, 0, 0). Indeed, this is true
at any point of density 1 of the set {z : ∀i σi(z) = τi(z) = 0} \ ∪Ni=1Bδ(qi),
as can be seen from the definition of tangent plane (see [28] page 92).

Let us observe the action of ∆δ on dζ ∧ dζ̄. By the observation we just

made, this action gives 0 on F , therefore we can extend ∇
(

χrσj

g

)
to be 0 on

F \ ∪Ni=1Bδ(qi) (compare remark 2.4.8). With this understood we can write:

∆δ(dζ ∧ dζ̄) =

∫

B2r\∪N
i=1Bδ(qi)

∑

j

d

(
χrσj

g

)
∧ d

(
χrσj

g

)
=

=

∫

B2r\∪N
i=1Bδ(qi)

∑

j

∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

−
∣∣∣∣∂

(
χrσj

g

)∣∣∣∣
2

. (2.48)

By (2.46) and the triangle inequality |a−b|2 ≥ |b|2
2 −|a|

2 we get, recalling that
|ν| ≤ ε, (the integrals in the following lines are performed on an arbitrary
measurable set disjoint from ∪Ni=1Bδ(qi)):

∫ ∑

j

∣∣∣∣∣

Q∑

k=1

Sk
j

(
σk

g

)
+

Q∑

k=1

T k
j

(
τk
g

)∣∣∣∣∣

2

=

∫ ∑

j

∣∣∣∣∂
(
σj

g

)
+ ν(ϕ̃, α̃)∂

(
σj

g

)∣∣∣∣
2

≥

≥
∫ ∑

j






∣∣∣∂
(

σj

g

)∣∣∣
2

2
− ε2

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2




 =

=

∫ ∑

j

(
1

2
+ ε2

) ∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

+ ε2
∑

j

(∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

−
∣∣∣∣∂

(
χrσj

g

)∣∣∣∣
2
)

=

=

∫ ∑

j

(
1

2
+ ε2

) ∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

+ ε2∆δ(dζ ∧ dζ̄) =

=

∫ ∑

j

(
1

2
+ ε2

)∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

+ ε2∂∆δ(ζ ∧ dζ̄). (2.49)

Notice that the first term at the beginning of the last chain of inequalities
is finite, from the condition on the T ’s and S’s, and the fact that σk

g ,
τk
g is

bounded.
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Let us restrict to a small ball Bλ(qi): we will show that

lim
ρ→0

∫

Bλ(qi)\Bρ(qi)

∑

j

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

is finite; the global finiteness on DR will follow since the qi’s are finite and
there are no poles elsewhere. In a first moment we are going to construct a
sequence ρn ↓ 0 for which M(∂∆ρn) is equibounded. Since ∆ρ = F∗(Γρ) and
||∇F ||L∞(Bλ(qi)\Bρ(qi)) ≤ K

ρ , from [28], page 134, we get

M(∂∆ρ) ≤
K

ρ
M(∂Γρ). (2.50)

Moreover, from slicing theory, see Prop. 2 in [28], page 154,

1

(λ/n)2

∫ λ
n

0

M(∂Γρ)dρ =
1

(λ/n)2

∫ λ
n

0

M(〈Γ, |z|, ρ〉) ≤ 1

(λ/n)2
M(Γ (Bλ

n
(qi)×C2))

and this is bounded as n→∞ by the monotonicity formula, since the tangent
is horizontal at (qi, 0, 0) and the multiplicity of this point is Q. Then

1

(λ/n)

∫ λ
n

0

M(∂Γρ)dρ ≤ K
λ

n
,

so by the mean-value theorem there is λ
4n ≤ ρn ≤ λ

n such that

M(∂Γρn) ≤ 2
1

(λ/n)

∫ λ
n

0

M(∂Γρ)dρ ≤ 2K
λ

n
≤ 8Kρn.

Now (2.50) yields that M(∂∆ρn) are equibounded.
As observed above, σj

g is L∞, therefore the function ζ is bounded on ∆,
so there is some constant which bounds uniformly in n

|∂∆ρn(ζdζ̄)|.

This yields, together with the inequality (2.49) used with δ = ρn on the set
Bλ(qi) \Bρn(qi),

lim
ρn→0

∫

Bλ(qi)\Bρn (qi)

∑

j

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

<∞;

consequently

lim
ρ→0

∫

Bλ(qi)\Bρ(qi)

∑

j

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

<∞,
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since this integral is a monotone function of ρ, so the limit must exist and it
is enough to check in on a sequence. Once we have the finiteness of

∫

DR

∑

j

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

,

using |∆ρn(dζ ∧ dζ̄)| = |∂∆ρn(ζdζ̄)| < ∞ again, by (2.48) we also get the
finiteness of ∫

DR

∑

j

∣∣∣∣∂
(
σj

g

)∣∣∣∣
2

.

This implies that the Jacobian minors of σj

g are in L1, so the finiteness of the

mass can be obtained by the Area formula17, see [28] page 225.

Step 2: ∆ has no boundary. As said above, we only have to exclude
boundary terms localized at the points qi. As before, we restrict ourselves
to ∆ Bλ(qi) × C2. During this step, we will keep denoting this current
by ∆. To simplify things, we will test ∂∆ only on the 1-forms χρ(z)ζdζ̄,
which is needed for the integration by parts formula (2.44); the proof for
other 1-forms is similar18. Since the possible boundary in the interior of DR

is localized only in qi × C2, the result will be the same for any ρ.

∂∆(χρ(z)ζdζ̄) = ∆(dχρ ∧ ζdζ̄) + ∆(χρdζ ∧ dζ̄).

From the previous step,

|∆(χρdζ ∧ dζ̄)| ≤
∫

B2ρ(qi)

∑

j

∣∣∣∣∇
(
σj

g

)∣∣∣∣
2

→ 0

for ρ→ 0. Let us now analyse the first term:

∣∣∆(dχρ ∧ ζdζ̄)
∣∣ =

∣∣∣∣∣

∫

B2ρ(qi)\Bρ(qi)

∑

j

∂χρ
σj

g
∂̄

(
σj

g

)∣∣∣∣∣
≤

≤
∫

B2ρ(qi)\Bρ(qi)

K

ρ

∥∥∥∥
σj

g

∥∥∥∥
L∞

∣∣∣∣∇
(
σj

g

)∣∣∣∣

17Recall that it is enough to apply the Area formula to the smooth parts of the current
∆ that are above DR \ F . The rest of the current lies in F , which has finite measure.

18For the reader who is familiar with the support theorem for Flat-currents (see [28]
page 525), we remark that the absence of boundary can be obtained by showing, via an
approximation argument, that ∂∆ is a Flat 1-current. The quoted theorem then implies
that ∂∆ = 0.
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and by Hölder’s inequality

≤
∥∥∥∥
σj

g

∥∥∥∥
L∞

K

ρ
2ρ

(∫

B2ρ(qi)

∑

j

∣∣∣∣∇
(
σj

g

)∣∣∣∣
2
) 1

2

.

This integral goes to 0 as ρ→ 0 thanks to the previous step. So there is no
boundary term at any of the qi when we test on the one form ζdζ̄.

We are now ready to finish the proof of non accumulation started before
lemma 2.4.5: recall that we assumed, by contradiction, the existence of N
points qn ∈ F = π(SingQ) which lie in Dr, with N as large as we want and
r < R arbitrarily small and {σj , τj}(qn) = 0, for n = 1, ..., N . From Leibnitz
rule and (2.46)

∫

B2r

∑

j

∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

≤ Kr−2

∫

B2r\Br

∑

j

∣∣∣∣
σj

g

∣∣∣∣
2

+

∫

B2r

∑

j

|χr|2
∣∣∣∣∂̄

(
σj

g

)∣∣∣∣
2

= Kr−2

∫

B2r\Br

∑

j

∣∣∣∣
σj

g

∣∣∣∣
2

+

∫

B2r

∑

j

|ν(ϕ̃, α̃)|2 |χr|2
∣∣∣∣∂

(
σj

g

)∣∣∣∣
2

+

+K

∫

B2r

(

1 +
Q∑

i=1

|∇ϕi|2 +
Q∑

i=1

|∇αi|2
)

∑

j

(∣∣∣∣χr
σj

g

∣∣∣∣
2

+

∣∣∣∣χr
τj
g

∣∣∣∣
2
)

.

Now, using |ν| ≤ ε and (2.44) (notice that the previous lemma and the
fact that {σ

g ,
τ
g} is bounded guarantee the finiteness of all terms),

∫

B2r

∑

j

|ν(ϕ̃, α̃)|2
∣∣∣∣χr∂

(
σj

g

)∣∣∣∣
2

=

∫

B2r

∑

j

|ν(ϕ̃, α̃)|2
∣∣∣∣−∂χr

(
σj

g

)
+ ∂

(
χrσj

g

)∣∣∣∣
2

≤ Kε2r−2

∫

B2r\Br

∑

j

∣∣∣∣
σj

g

∣∣∣∣
2

+ ε2
∫

B2r

∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

.

Putting all together, with a further use of (2.44) on the l.h.s., we get

∫

B2r

∑

j

∣∣∣∣∇
(
χrσj

g

)∣∣∣∣
2

= 2

∫

B2r

∑

j

∣∣∣∣∂̄
(
χrσj

g

)∣∣∣∣
2

≤ Kr−2

∫

B2r−Br

∑

j

∣∣∣∣
σj

g

∣∣∣∣
2

+

(2.51)
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+K

∫

B2r

(

1 +
Q∑

i=1

|∇ϕi|2 +
Q∑

i=1

|∇αi|2
)

∑

j

(∣∣∣∣χr
σj

g

∣∣∣∣
2

+

∣∣∣∣χr
τj
g

∣∣∣∣
2
)

.

Similarly, from (2.47), and using the analogous partial integration

∫

B2r(0)

∑

j

∣∣∣∣∂̄
(
χrτj
g

)∣∣∣∣
2

=

∫

B2r(0)

∑

j

∣∣∣∣∂
(
χrτj
g

)∣∣∣∣
2

,

we get

∫

B2r

∑

j

∣∣∣∣∇
(
χrτj
g

)∣∣∣∣
2

≤ Kr−2

∫

B2r\Br

∑

j

∣∣∣∣
τj
g

∣∣∣∣
2

+ (2.52)

+K

∫

B2r

(

1 +
Q∑

i=1

|∇ϕi|2 +
Q∑

i=1

|∇αi|2
)

∑

j

(∣∣∣∣χr
σj

g

∣∣∣∣
2

+

∣∣∣∣χr
τj
g

∣∣∣∣
2
)

.

Set now v := max
j

{∣∣∣∣χr
σj

g

∣∣∣∣ ,
∣∣∣∣χr

τj
g

∣∣∣∣

}
. This function is W 1,2: indeed, this

is true on D2r \ π(Sing≤Q), since it is the maximum of W 1,2 functions; then
by arguments already used,

• π(Sing≤Q−1) are isolated points so we can extend the W 1,2 estimate to
D2r \ π(SingQ);

• then we extend to D2r \ (∪Ni=1Bδ(qi) ∩ F) for any arbitrarily small δ,
thanks to the fact that v = 0 on on SingQ \ {qi};

• finally, sending δ → 0, to the whole of DR since the qi are isolated.

Also observe that, by the Cauchy-Schwarz inequality, |∇(|v|)| ≤ |∇v|, so

∫

B2r

|∇v|2 ≤
∫

B2r

∑

j

∣∣∣∣∇
(
χrσj

g

)∣∣∣∣
2

+
∑

j

∣∣∣∣∇
(
χrτj
g

)∣∣∣∣
2

,

so (3.53) and (2.52) imply

∫

B2r

|∇v|2 ≤ Kr−2

∫

B2r\Br

∑

j

(∣∣∣∣
σj

g

∣∣∣∣
2

+

∣∣∣∣
τj
g

∣∣∣∣
2
)

+

+K

∫

B2r

(

1 +
Q∑

i=1

|∇ϕi|2 +
Q∑

i=1

|∇αi|2
)

v2.
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Recall that
(
1 +

∑Q
i=1 |∇ϕi|2 +

∑Q
i=1 |∇αi|2

)
is L1 by theorem 2.4.3 (Hölder

estimate); then, by lemma 5.4.1. in [44], we get the existence of δ > 0 such
that the last term can be bounded by

∫

B2r

(

1 +
Q∑

i=1

|∇ϕi|2 +
Q∑

i=1

|∇αi|2
)

v2 ≤ Krδ
∫

B2r

|∇v|2,

so we can write

r2
∫

B2r

|∇v|2 ≤ K

∫

B2r\Br

∑

j

(∣∣∣∣
σj

g

∣∣∣∣
2

+

∣∣∣∣
τj
g

∣∣∣∣
2
)

;

now, since v ∈ W 1,2
0 (B2r), by Poincaré’s inequality

∫

B2r

v2 ≤ K

∫

B2r\Br

∑

j

(∣∣∣∣
σj

g

∣∣∣∣
2

+

∣∣∣∣
τj
g

∣∣∣∣
2
)

.

Since
∑

j

(∣∣∣∣χr
σj

g

∣∣∣∣
2

+

∣∣∣∣χr
τj
g

∣∣∣∣
2
)

≤ 2Qv2 by definition of v, and χr = 1 on Br,

the last inequality implies the following Carleman-type estimate
∫

Br/4

∑

j

(∣∣∣∣
σj

g

∣∣∣∣
2

+

∣∣∣∣
τj
g

∣∣∣∣
2
)

≤ K

∫

B2r\Br

∑

j

(∣∣∣∣
σj

g

∣∣∣∣
2

+

∣∣∣∣
τj
g

∣∣∣∣
2
)

, (2.53)

with K independent of r and the cardinality N of the set {qi}. Assume that
the {qi} were chosen much inside Dr, say in Dr/4. Then, from the definition
of g, if r was chosen small enough (which doesn’t influence K), on the l.h.s.

of (2.53) g ≤
(
3r
4

)N
, while on the r.h.s. g ≥

(
3|z|
4

)N
, so we get

∫

Br/4

∑

j

|σj |2 + |τj|2 ≤ K

∫

B2r\Br

(
r

|z|

)2N ∑

j

|σj |2 + |τj|2;

letting N go to infinity, we can make the r.h.s. as small as we wish, which
implies ∫

Br/4

∑

j

|σj|2 + |τj |2 = 0,

i.e. all the branches of the multigraph describing our original current must
agree with the average on a neighbourhood of 0. But then this average must
be itself a Special Legendrian counted Q times, therefore it must be smooth
in this neighbourhood thanks to the basic step of the induction. We have
therefore completed the proof of ;1.
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2.5 Proof of ;2: non-accumulation of lower-order

singularities

To complete the proof of the inductive step, we have to exclude the pos-
sibility of accumulation of points in Sing≤Q−1 to a singularity of order Q.

Let x0 ∈ SingQ; from theorem 2.4.1 (and recalling the monotonicity
formula) we can assume that we work in a ball B5 centered at x0 such that
all the points of C in this ball are of multiplicity at most Q and

B5 ∩ SingQ = {x0}.

By the inductive assumption, the other singularities in B5 are isolated and
of multiplicity ≤ Q− 1.

Thus we can take local coordinates about x0 in such a way that C is given
by a Q−valued graph over D2 that we denote by

{(ϕj(z),αj(z))}j=1···Q ,

where z = x + iy is the coordinate in the Disk D2, ϕi ∈ C and αi ∈ R and
where for all j ∈ {1, · · · , Q} it holds (ϕj(0),αj(0)) = (0, 0).

Assumption on the multiplicity. In order to simplify the exposition,
we assume that all smooth points of C B5 have multiplicity exactly 1. The
following argument shows that there is no loss of generality in doing so19.

If a smooth point p has multiplicity M ≥ 2, it must have a neighbourhood
all made of smooth points of equal multiplicity M . Take the maximal of such
neighbourhoods and denote it by U . This smooth submanifold, counted once,
constitutes an i.m. current U in B5, whose smooth points have multiplicity
1, possibly having singularities located at the same points where the singular
points of C were.

We claim that U is a boundaryless current. Let us prove it. Let {qi}
be the at most countable singularities of C of order ≤ Q− 1, possibly accu-
mulating onto 0. First of all, from the maximality of U we can deduce that
the topological boundary ∂U inside the smooth 2-dimensional submanifold
(C \ {0}) \ ∪qi is empty. This implies that ∂U must be supported at the
singularities. Thanks to this, we can localize U to a neighbourhood V 5

i of
each isolated singularity and we can exclude the presence of boundary at
each qi as follows. By abuse of notation we keep denoting by U the localized
current.

19This assumption is not really needed to perform the proof presented in this last section,
however it makes it less technical.
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We will write Bλ for the ball B5
λ(qi). For almost any choice of λ > 0,

the slice of U with ∂Bλ exists as a 1-dimensional rectifiable current of finite
mass and it is the same current, with opposite sign, as the boundary of
Uλ := U (V 5

i \Bλ). Moreover from slicing theory we have
∫ λ

0

M(∂Uλ)dλ ≤M(U Bλ) ≤M(C Bλ).

From the monotonicity formula and by the mean value theorem, we get the
existence of a sequence {λn}→ 0 of positive real numbers such that

M(∂Uλn) ≤ Kλn,

which implies that ∂Uλn ⇀ 0. On the other hand, Uλn ⇀ U since M(U −
Uλn) = M(U Bλn)→ 0, therefore ∂Uλn ⇀ ∂U and we get ∂U = 0.

Once we have excluded the presence of boundary located at the singular-
ities qi, we can perform the same argument to exclude boundary located at
0. So U is boundaryless20.

The current C−(M−1)U is thus still a Special Legendrian cycle and has
exactly the same singularities as C; it is therefore enough to prove the result
about non accumulation for this Special Legendrian “subcurrent”, in order to
get in for C. Starting now from C − (M − 1)U , we can inductively repeat
the argument and get to the desired assumption of having multiplicity 1 at
all smooth points.

We still denote by π the map on C which assigns the coordinate z. With
the assumption just discussed, the singularities of order ≤ Q− 1 are located
exactly at the points π−1(zl) for which zl 0= 0 and

∃j 0= k s.t. (ϕj(z0),αj(z0)) = (ϕk(z0),αk(z0)) . (2.54)

As recalled at the beginning of this section, we are working under the as-
sumption that the points in (2.54) form a discrete set in D2 \ 0, therefore
at most countable. Away from them, each branch j of the multiple valued
graph satisfies a system21 of the form






∂zϕj = ν((ϕj ,αj), z) ∂zϕj + µ((ϕj,αj), z)

∇αj = h((ϕj,αj), z),
(2.55)

20An alternative argument to exclude boundary located at the singular set, is to use
an analogous approximation Un of U obtained by "cutting out" smaller and smaller balls
around the singular set and show that ∂Un is a Cauchy sequence in the Flat-norm, therefore
obtaining that ∂U is a Flat 1-dimensional current. The support theorem (see [28] page
525) tells us that a non-zero Flat 1-current cannot be supported on a set of 0-Hausdorff
dimension, therefore ∂U = 0.

21These are the equations we derived in (2.21) and (2.23). With respect to the notations
in sections 2.4 and 2.4.5, we are changing here the signs of the functions ν and µ.
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where ν and µ are smooth complex valued functions on R5 such that ν(0) =
µ(0) = 0 and h is a smooth R2−valued map on R5.

To complete the proof of the main result we need to show

Theorem 2.5.1. With the previous notations, let 0 be a singular point of
multiplicity Q of the Special Legendrian cycle. If we are working under the
(inductive) assumption that all the other singularities are of order ≤ Q − 1
and are isolated in B5\{0}, then there is no accumulation at 0 of singularities
of the form (2.54).

The proof of the theorem 2.5.1 we are giving below is inspired by the
homological type argument in [58], pages 85-86. The heuristic idea has been
given in the introduction: we want to find a function that is able to “detect”
the presence of isolated singularities when its topological degree is observed.
Global bounds on the degree imply that it is impossible ho have a sequence
of isolated singularities in Sing≤Q−1C accumulating onto 0.

In view of this ideas, we are now going to analyse the structure of the
Special Legendrian current in a neighbourhood of an isolated singular point
q.

The structure of an isolated singularity. Recalling our assumption
on multiplicities, given an isolated singular point q in C, for a small enough
radius ρ, C B5

ρ(q) can be represented as

C B5
ρ(q) = ⊕N

k=1Lk, (2.56)

where each Lk is either a smooth Special Legendrian embedded disk, or an
immersed one branched at q; N is bounded by the multiplicity of q in C and
Lk 0= Ll if k 0= l.

We give a brief description of the reason why this is true. Consider the
slice 〈C, |p−q| = ρ〉: this is a smooth, one-dimensional, boundaryless current
γ, so it is made of several smooth simple closed curves γi, each one counted
with multiplicity 1.

Each γi can be obtained as the image of a circle (ρ cos t, ρ sin t) ⊂ R2 ≡ C
through a smooth simple map. By the smoothness assumption on all points
of γi, we can get a smooth parametrization from an annulus in C to a subset
of C contained in a corresponding annulus. Take the maximal extension:
since there are no other singularities, this must be a smooth simple map
from Bρ \ {0} into (C Bρ) \ {q}.

By a removable singularity theorem, this map can be extended smoothly
in 0. There is no real need to invoke such a theorem: the extension to 0
is obviously continuous, and it is indeed smooth by standard elliptic theory.
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Thus get a smooth map from Bρ into C Bρ; repeat the same argument for
all connected components i’s. A mass comparison shows that this procedure
must cover the whole of C Bρ.

Remark 2.5.1. For each branched disk Lk in (2.56), we have a smooth parametriza-
tion from D2 ⊂ C into R5, with a critical point at 0. Just like in section 2.4,
by using (2.1), the calibrating condition for the Special Legendrian yields
that the parametrization is a pseudo-holomorphic curve 22.

By elliptic theory and conformality, as explained in section 6 of [42],
one can change coordinates diffeomorhically and find that, in the new co-
ordinates, the parametrization is of the form (wI , f(w)) for w ∈ D2 ⊂ C,
f : D2 → R3, I ∈ N, I ≥ 1, f(w) = o(|w|I). However, we are not going to
make use of this result.

Relative difference of branches around an isolated singularity.
The following discussion is needed to understand the behaviour of the differ-
ence functions ϕi − ϕj and αi − αj for i 0= j in a small neighbourhood of an
isolated singularity q; let zl = π(q) and be M the multiplicity of q. Choose
a neighbourhood centered at q, having a cylindrical form B2

ρ × B3
ρ , with ρ

small enough so that C (B2
ρ × B3

ρ) is discribed as a M-valued graph above
B2

ρ(zl), namely
{(ϕj(z),αj(z))}j=1···M .

Remark that (ϕj(zl),αj(zl)) coincide for all j = 1, ...,M , while for z 0= zl
we have (ϕj(z),αj(z)) 0= (ϕi(z),αi(z)) whenever i 0= j (this follows from the
assumption on multiplicities taken at the beginning of this section).

Above any z ∈ B2
ρ(zl)\{zl}, consider the difference vector ((ϕi−ϕj)(z), (αi−

αj)(z)) ∈ R3 for any choice of i 0= j. The tail and head of this vector will
belong respectively to some Lk and Ll, possibly with k = l. Observe that,
moving this vector by continuity for z 0= zl, this condition on head and tail
will be preserved with the same k and l; remark that if k = l the difference
vector is joining two points of the same branched disk, while if k 0= l it is
joining points belonging to different disks. In figure 2.8, picture on the left,
there is an attempt to visualize this in the case of a single branched disk (so
k = l) that gives rise to a 2-valued graph locally around the branch point.

22The term pseudo-holomorphic curve is commonly used for a map taking values in
an almost-complex manifold, so an even-dimensional manifold with an almost complex
structure J on the tangent bundle (on each tangent J2 = −Id). So here there is an abuse
of terminology, since our parametrization takes values in R5 with a J that is defined on
the 4-dimensional hyperplanes of the contact distribution. However we can extend J to
R5 × R by setting that the vertical vector of R5 (orthogonal to the hyperplanes) is sent
into the extra direction added. This gives an almost complex structure on R6, we can look
at the parametrization as R6-valued, so that it becomes pseudo-holomorphic.
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For any fixed choice of (k, l) ∈ {1, ..., N} × {1, ..., N}, we are now going
to analyse the functions ϕi − ϕj and αi − αj for i 0= j s.t.

(ϕi,αi) belongs to a branch of Lk and (ϕj,αj) to a branch of Ll, (2.57)

with particular interest to the behaviour of the difference vector when it
evolves as described above.

This means that, in the discussion that follows, leading to lemmas 2.5.2
and 2.5.3, we need to focus only on the disks Lk and Ll of (2.56).

From the second equation of the Special Legendrian system (2.55), taking
differences, we get locally

∇(αi − αj) = F · (ϕi − ϕj) +G · (αi − αj), (2.58)

where F,G are bounded functions of (z,ϕi(z),ϕj(z),αi(z),αj(z)) depending
on the derivatives of h; so they satisfy |F |, |G| ≤ K0 < ∞. Take a positive
t < 1

4K0
. In the ball {|z − zl| ≤ t)}, consider the point w where |αi − αj |

realizes its maximum, taken over all possible choices of i 0= j satisfying (2.57).
Along the segment I joining zl to w, we can coherently label αi, αj, ϕi and
ϕj as smooth functions with αi(zl) = αj(zl) and ϕi(zl) = ϕj(zl). It makes
then sense to integrate the equation (2.58) above along the segment I and
get

(αi − αj)(w) =

∫ t

0

(F |I)(s)(ϕi − ϕj)(s)ds+

∫ t

0

(G|I)(s)(αi − αj)(s)ds

for t = |w| ≤ t.

Notational convention: remark that we are using k, l for the fixed choice of
disks in (2.56); for the branches of the M-valued graph describing C (B2

ρ ×
B3

ρ) we use, instead, the letters i, j. In the present discussion, we are go-
ing to denote by ||αi − αj ||L∞(B2(zl,t)) the quantity sup{|αi − αj |(z) : z ∈
B2(zl, t) and i 0= j are as in (2.57)}. An analogous convention holds for
||ϕi − ϕj||L∞(B2(zl,t)).

Thus taking the L∞-norm over all possible choices of i 0= j satisfying
(2.57) with the fixed choice of (k, l), we have

||αi − αj||L∞(B2(zl,t)) = |αi − αj|(t) ≤

≤ K0t||ϕi − ϕj||L∞(B2(zl,t)) +K0t||αi − αj||L∞(B2(zl,t));

this implies

||αi − αj ||L∞(B2(zl,t)) ≤
1

2
||ϕi − ϕj ||L∞(B2(zl,t)),
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with i and j as prescribed in (2.57). Choosing t smaller at the beginning, we
can get an arbitrarily small constant instead of 1

2 : therefore

||αi − αj||L∞(B2(zl,t))

||ϕi − ϕj||L∞(B2(zl,t))
→ 0 as t→ 0. (2.59)

For i 0= j as in (2.57), we introduce the following multivalued graph on
{|z| ≤ 1}, with ρ > 0:

(
Θρ

ij(z),Ξ
ρ
ij(z)

)
=

(
(ϕi − ϕj)(zl + ρz)

||ϕi − ϕj ||L∞(B2(zl,ρ))
,

(αi − αj)(zl + ρz)

||ϕi − ϕj||L∞(B2(zl,ρ))

)
.

Remark 2.5.2. This multi-valued graph has either one or two connected com-
ponents. The former case happens when k = l, the latter when k 0= l. In the
latter case, however, the two connected components are symmetrical with
respect to (z, 0, 0): one of them is just minus the other. Of course, this hap-
pens when we take ϕi − ϕj and then ϕj − ϕi. So we can basically assume to
be always dealing with a unique connected component.

We are interested in the behaviour of
(
Θρ

ij(z),Ξ
ρ
ij(z)

)
as ρ→ 0.

Thanks to (2.59), both Θρ
ij and Ξρ

ij are smaller or equal than 1 in modulus;
more precisely Ξρ

ij goes uniformly to 0 as ρ→ 0 and |Θρ
ij| always realizes the

value 1 by definition. From (2.55) and (2.58), the branches of this multivalued
graph solve locally on {0 < |z| ≤ 1} equations of the following type:

{
∂Θρ

ij(z) + ν(zl + ρz)∂Θρ
ij(z) + ρS(ρz)Θρ

ij(z) + ρT (ρz)Ξρ
ij(z) = 0

∇Ξρ
ij(z) = ρF (ρz)Θρ

ij(z) + ρG(ρz)Ξρ
ij(z),

(2.60)

with F,G ∈ L∞ and S, T ∈ L2.
We prove now:

Lemma 2.5.1. As ρ → 0 the multi-valued graph
(
Θρ

ij(z),Ξ
ρ
ij(z)

)
converges

uniformly to a multi-valued graph (Θij(z), 0), where Θij is holomorphic in

the variable w =

√
1

1 + |ν(zl)|2
z + ν(zl)

√
1

1 + |ν(zl)|2
z and homogeneous,

i.e. there is τ ∈ Q such that, for any λ ∈ (0,∞) it holds Θij(λz) = λτΘij(z).

proof of lemma 2.5.1. All the multivalued graphs of the sequence are pinched
at 0. By an argument similar to the one used in theorem 2.4.3, we can de-
duce a uniform Hölder estimate on

(
Θρ

ij(z),Ξ
ρ
ij(z)

)
independent of ρ. By

Ascoli-Arzelà’s theorem, as ρ → 0, we can extract a subsequence converg-
ing uniformly to a multi-valued graph (Θij(z),Ξij(z)) and, as we said above,
Ξij(z) ≡ 0.
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To complete the proof, we need to prove that this limit is unique, homo-
geneous and holomorphic in w.

In a way reminiscent of the discussion preceeding 2.5.1, the unique con-
nected component of (z, (ϕi − ϕj)(zl + ρz), (αi − αj)(zl + ρz)) (always with
i 0= j as in (2.57)) can be smoothly parametrized by a map from the unit
disk D2 ⊂ C into D2 × C× R.

This can be achieved as follows. When the difference vector (ϕi−ϕj ,αi−
αj)(zl+ρ0z) (observed as an object in C×C×R) evolves by continuity with
a fixed ρ0 as in figure 2.8, it comes back to the starting position after that the
projection of its tail onto the first C-factor has made I laps, for some integer
I that depends on the branching order of Ll and Lk. So we can parametrize
the multi-valued graph (z, (ϕi − ϕj)(zl + ρ0z), (αi − αj)(zl + ρ0z)) restricted
to ∂D2 × C × R as a smooth curve from ∂D2 into C × C × R of the form
(zI ,φlk(z), alk(z)). Now, by the smoothness of the current out of the isolated
singularity, this map can be extended to a smooth map (zI ,φlk(z), alk(z))
from D2 \ {0} into C × C × R, describing {(z, (ϕi − ϕj)(zl + ρ0z), (αi −
αj)(zl + ρ0z)) : |z| ≤ 1} on (D2 \ {0})× C× R.

By a standard computation we can translate (2.60) into a first order
system for (φlk, alk) of the schematic form

{
∂φlk(z) + ν̃(z)∂φlk(z) + S̃(z)φlk(z) + T̃ (z)alk(z) = 0

∇alk(z) = F̃ (z)φlk(z) + G̃(z)alk(z) = 0
, (2.61)

with C1,σ coefficients (0 < σ < 1) and |ν̃| small. Elliptic regularity yields
that the extension of (zI ,φlk(z), alk(z)) to D2, which is obviously continous
at 0, is actually at least C2.

Moreover, after the linear change of coordinates z → w

w =

√
1

1 + |ν(zl)|2
z + ν(zl)

√
1

1 + |ν(zl)|2
z ,

and by taking the ∂w-derivative of the first equation, we get an inequality of
the form

|∆̃φlk|(w) ≤ K|Dφlk|(w) +K|φlk|(w),

where K is a positive constant and ∆̃ is an elliptic second order operator
that coincides with the Laplacian for w = 0. By elliptic theory, the function
f(ρ) := ‖φlk‖L∞(B2

ρ) cannot have derivatives at 0 all vanishing, see theorem
1.1 and corollary 1 on page 41 of [42] (this theorem is basically due to Hart-
man and Wintner).
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Fix z ∈ ∂D2 ⊂ C. Then, since f(ρ) is just ‖ϕi − ϕj‖L∞(B2(zl,ρ)), we can
write

Θij(z) := lim
ρ→0

Θρ
ij(z) = lim

ρ→0

(ϕi − ϕj)(zl + ρz)

f(ρ)
(2.62)

and

Θij(λz) := lim
ρ→0

Θρ
ij(λz) = lim

ρ→0

(ϕi − ϕj)(zl + ρλz)

f(ρ)
. (2.63)

This blow-up can be equivalently expressed in terms of φlk. What we are
looking for in (2.62) and (2.63) are respectively Φlk(z) := limρ→0

φlk(ρz)
f(ρ) and

Φlk(λz) = limρ→0
φlk(λρz)

f(ρ) . As we saw above, the function f is smooth and it
is not possible that all of its derivatives at ρ = 0 vanish.

It is then enough to restrict to the segment joining zl to z and apply De
L’Hopital’s theorem to compute the two limits: we get that there is k ∈ N,
namely the first integer such that f (k)(0) 0= 0, for which Φ(λz) = λkΦ(z).
This immediately gives Θij(λz) = λτΘij(z) for τ = k

Q and the uniqueness of
the limit.

Moreover, it is not difficult to see that the convergence Θρ
ij → Θij is more

that just uniform: indeed, the gradients are equibounded and equicontinuous,
so we can pass (2.60) to the limit and get that (Θij(z),Ξij(z)) must solve,
locally on {0 < |z| ≤ 1},

{
∂Θij(z) + ν(zl)∂Θij(z) = 0, with |ν(zl)| << 1,

∇Ξij(z) = 0.
(2.64)

Therefore, since (Θij(0),Ξij(0)) = (0, 0), from the second equation we recover
once again (Θij(z),Ξij(z)) must be of the form (Θij(z), 0). Consider now the
equation for Θij : again with the linear change of complex variable z → w,
we can deduce that Θij solves

∂

∂w
Θij(w) = 0;

thus Θij is holomorphic w.r.t. the variable w. We will also say that it is
almost-holomorphic in z.

The fact that Θij is holomorphic in w and homogeneous implies that Θij

is always non-zero on ∂D2. Indeed, if we had a zero on y ∈ ∂D2, Θij would
be zero on the whole segment joining 0 to y: recalling that there is a unique
connected component and by holomorphicity we would then get that Θij is
zero on the whole of D2, contradicting that its L∞-norm is 1.



110 CHAPTER 2. SPECIAL LEGENDRIAN CYCLES IN S5

Lemma 2.5.2. Fix (k, l) ∈ {1, ..., N} × {1, ..., N}; for i 0= j s.t. (ϕi,αi)
belongs to a branch of Lk and (ϕj,αj) to a branch of Ll (possibly with k = l),
the following holds: for any δ > 0 there is ρ > 0 small enough, s.t.

|z − zl| < ρ⇒ |αi − αj |2

|ϕi − ϕj|2 + |αi − αj|2
(z) < δ.

In particular, for |z − zl| < ρ and z 0= zl, we have ϕi − ϕj 0= 0 for i 0= j.

proof of lemma 2.5.2. By contradiction, if for some δ > 0 and a sequence

zn → zl we had |αi−αj |2
|ϕi−ϕj |2+|αi−αj |2

(zn) ≥ δ, the sequence

(
Θ|zn−zl|

ij (z),Ξ|zn−zl|
ij (z)

)

could not converge to a limit of the form (Θij(z), 0).

Lemma 2.5.3. Fix (k, l) ∈ {1, ..., N} × {1, ..., N}; by lemma 2.5.2, for ρ
small enough and for i 0= j s.t. (ϕi,αi) belongs to a branch of Lk and (ϕj,αj)
to a branch of Ll (possibly with k = l), it makes sense to compute the degree
of

ϕi − ϕj

|ϕi − ϕj |
on the closed curve γ = Ll∩π−1{|z−zl| = ρ}. This degree is strictly positive.

proof of lemma 2.5.3. See figure 2.8 for a visual explanation. γ is a closed,
connected curve; orient it so that its projection π(γ) on C winds positively.
Fix then, with an arbitrary starting point on γ, any determination of the
vector ϕi − ϕj and let it evolve along γ in the given direction, keeping its
tail on the curve; meanwhile, its head will move along a closed curve in Lk,
which could be either the same or a different curve. In the former case we
are staying inside the same branched disk Ll, in the latter we are dealing
with two different disks Lk and Ll. In any case, the vector will eventually
come back to the initial one after having run, possibly more than once (say

I times), over the whole of γ. We then get a smooth map
ϕi − ϕj

|ϕi − ϕj |
from a

multiple cover γ ⊕ ...⊕ γ of γ to S1. The multiple cover is homeomorphic to
S1, so it makes sense to consider the degree of the S1-valued map ϕi−ϕj

|ϕi−ϕj | on
γ ⊕ ... ⊕ γ. Introduce the multi-valued graph ϕi − ϕj for i, j in the Lk and
Ll involved. This multi-valued graph has a unique connected component (or
two symmetrical ones). By lemma 2.5.1

ϕi − ϕj

|ϕi − ϕj |
(zl + ρz) =

Θρ
ij

|Θρ
ij|
(z)→ Θij

|Θij|
(z)
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γ

S1

C

C× R

|z − zl| = ρ

start from here

Figure 2.8: On the left, an attempt to represent γ = π−1{|z − zl| = ρ} in
the case of a two-valued graph in C × C × R. We observe the evolution of
the difference vector joining points above the same z ∈ {|z − zl| = ρ} ⊂ C:
as the tail of the difference vector runs along γ, we keep track (picture on
the right) of the normalized difference vector projected on the second C-
factor an observe how it winds around S1. If we are around an isolated
singularity, then we find that the represented map from γ to S1 has strictly
positive degree. In this particular picture, after having run once along γ the
normalized difference vector winds once positively around S1.

uniformly, so it must contribute with a strictly positive degree on γ⊕ ...⊕γ if
ρ was small enough, since so happens Θij, which is almost-holomorphic.

Some heuristics. Roughly speaking, with lemmas 2.5.2 and 2.5.3 we
have found out that, by observing the relative differences between branches,
we can somehow “count” the points in Sing≤Q−1.

Indeed, locally around each q ∈ Sing≤Q−1, we have functions defined
via the relative differences of branches that are able to catch the presence
of p by producing a strictly positive integer contribution when the degree is
observed.

However, both in the definition of these functions ϕi−ϕj

|ϕi−ϕj | and in the proof
of the strict positiveness of the degree, we made a key use of the structure
(2.56) of C around an isolated singularity q. This allowed us, locally around
q, a “separation of the branches”: we were able to focus just on the disks Ll
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and Lk involved in the evolution of the difference vector. With the use of
PDEs and parametrizations, we were lead to the results on Θij and to the
control on the degree.

Moreover we have produced a way to “count’ singularities with func-
tions that are only defined close enough to the singular point itself. As we
get further from the singularity it might happen that the difference vector
(ϕi− ϕj ,αi− αj)(z) has zero C-component, so we cannot construct a global
function that counts singularities by looking only at ϕi − ϕj .

With the notations taken at the beginning of this section, we are thus
lead to the following questions:

• can we produce a similar function that is well-defined in a whole neigh-
bourhood of 0 ∈ D2 and whose degree still detects the presence of
points in Sing≤Q−1?

• can we find a lower bound for the degree of this function, to allow a
homotopy argument as sketched in the introduction?

Remark that we have no information about the structure of C around
the origin, unlike it happened in the situation (2.56). A natural candidate
function on D2 to collect the information on the degree of the difference
between branches would be (Πi (=j(ϕi − ϕj),Πi (=j(αi − αj)). However this
function does not solve any appealing equation.

To overcome this difficulty we are going to introduce a new 2-dimensional
space π∗C that is modelled on the current C but allows to observe the relative
difference of branches without having to separate them and, most important,
with the use of this new space we will be able to write equations for the
difference of branches: this will be crucial in answering the second question.

More precisely, due to dimensional reasons rooted in the problem, we will
produce a function u on the space π∗C × R taking values in C × R: this
function will mimic the behaviour of the difference vector when we are close
enough to an isolated singularity.

Recalling the heuristic ideas from the introduction, we can see that the
technical reason is that we need a function u that vanishes exactly at the sin-
gular points and for which we can take the degree of u

|u| : since the difference of
branches is naturally an element of C×R, we need to add an extra-dimension
to π∗C in order to have a notion of topological degree.

The core of the proof of theorem 2.5.1 will be lemma 2.5.5, where we
bound from below the degree of u

|u| . Lemma 2.5.4 is a restatement of lemma
2.5.3 in terms of the new space π∗C × R and of the function u. These two
results together allow the homological argument that yields theorem 2.5.1.
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Proof of the non-accumulation. Denote by π∗C the following subset
of R3 × R3 ×D2 :

π∗C :=






ξ = (ζ1, ζ2, z) ∈ R3 × R3 ×D2 s.t. ∃j, k ∈ {1 · · ·Q}

satisfying ζ1 = (ϕj(z),αj(z)) and ζ2 = (ϕk(z),αk(z))





.

By an abuse of notation we will also write ζ1 = (ϕ1,α1) and ζ2 = (ϕ2,α2),
moreover23 we denote z = π(ξ) - i.e. π is extended naturally to π∗C.

Observe that C ⊂ π∗C as the result of the identification of C with the
points (ζ1, ζ2, z) such that ζ1 = ζ2. Away from these points, π∗C \C realizes a
smooth 2-dimensional oriented submanifold of R3×R3×D2 with local chart
given by z.

On π∗C we define the function

d(ξ) := |ζ1 − ζ2| =
√
|α1 − α2|2 + |ϕ1 − ϕ2|2 ,

which is smooth and non-zero on π∗C \ C. On π∗C \ C we define

∆(ξ) :=
|α1 − α2|2

|α1 − α2|2 + |ϕ1 − ϕ2|2
.

Let φ be a smooth non negative compactly supported function satisfying

φ(s) =






1 for s < 1,

0 for s > 2.

For 1 > δ > 0 we denote φδ(·) = φ(·/δ).
Let δ < 1 be a regular value of the function ∆ on π∗C \ C we define a

stretching-contracting map

Sδ : R3 −→ R3

in the following way : Sδ is axially symmetric about the z−axis, |Sδ(x, y, z)| =
|(x, y, z)| and the following conditions are satisfied:

Sδ(x, y, z) =






Sδ(x, y, z) = sgn(z) (0, 0,
√
x2 + y2 + z2) if

z2

x2 + y2 + z2
> δ,

Sδ(x, y, z) = (x, y, z) if
z2

x2 + y2 + z2
<

δ

2
,

23Here ζi (i ∈ {1, 2}) will always be an element of R3 of the form (ϕj(z),αj(z)); it
should not be confused with the complex coordinate ζ in Cz × Cζ × Ra used in sections
2.4 and 2.4.5, which will anyway not appear in this section.
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with a smooth join for δ
2 ≤

z2

x2+y2+z2 ≤ δ chosen so to ensure det(DSδ) > 0.
Denote by N the following 3-dimensional manifold:

N := {(ξ, t) ∈ (π∗C \ C)× R} .

Set

D = Dδ :=
1

√
1
δ − 1

.

Observe that D > 0 has been chosen in particular in such a way that

D−1 |α1 − α2| ≤ |ϕ1 − ϕ2| ⇐⇒ ∆(ξ) ≤ δ ⇐⇒ φδ(∆(ξ)) = 1 .
(2.65)

At this stage we are going to make a short digression to choose a suitable
value for δ < 1 (besides the requirement that δ be a regular value of ∆),
which will be kept throughout the rest of the section.

Let R be the radius of D2. Denote by Br, for r ≤ R, the part of π∗C \C
above the set {|z| < r}, Br := π−1(B2

r (0)). For any δ < 1, express the set
{∆ > δ} as the union of its connected components, i.e. {∆ > δ} = ∪iAi

δ.
We are going to prove the following claim: there exist δ < 1 and r < R s.t.

∀i and ∀r ≤ r Ai
δ ∩ ∂Br 0= ∅ ⇒ Ai

δ ∩ ∂BR = ∅. (2.66)

To prove the claim, we argue by contradiction: assume the existence of
sequences δn → 1, rn → 0 for which we can always find a connected com-
ponent intersecting both ∂Brn and ∂BR. Then we can choose C1 curves γn,
parametrized by arc length, joining ∂Brn to ∂BR and staying inside the cor-
responding connected component. Up to a subsequence, by Ascoli-Arzelà’s
theorem, we can assume the existence of a uniform limit curve γ, joining 0
to ∂BR. The function ∆ is greater than δn on the image of γn, therefore

δn → 1⇒ ∆ ◦ γ ≡ 1⇒ |ϕ1 − ϕ2|→ 0 as n→∞.

The limit curve γ could a priori be merely continuous and not C1. We can
write, from (2.58), for any n and for any t in the domain of γn:

|α1 − α2|(γn(t)) ≤ |ϕ1 − ϕ2|(γn(0)) +K0

∫ t

0

|α1 − α2|(γn(s)) ds.

Sending to the limit as n→∞

|α1 − α2|(γ(t)) ≤ K0

∫ t

0

|α1 − α2|(γ(s)) ds,
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thus α1 − α2 is identically 0 on the curve γ; here ϕ1 − ϕ2 also vanishes and
therefore the image of γ is a line of singularities, contradiction. Thus the
claim is proved. End of the digression.

Now, for the δ just chosen, take any positive r ≤ r arbitrarily small and
such that π−1(∂B2

r (0)) does not intersect the set of zl satisfying (2.54). Let

ε0 := inf

{
d(ξ)√
1 +D2

; ξ ∈ (π∗C \ C) ∩ π−1(∂B2
r (0))

}
.

By the assumption on r, ε0 > 0.
Let ε > 0 be a regular value less than ε0 for the function |ϕ1−ϕ2|. Denote

by g the following function on π∗C \ C :

g(ξ) :=
ϕ1 − ϕ2

max{|α1 − α2|, Dε} .

Observe that since (C B5) \ {0} is assumed to be a smooth Special Leg-
endrian curve and since (ϕj(0),αj(0)) = (0, 0) for all j, |ϕ1 − ϕ2|−1({ε}) is
a smooth compact curve in π∗C \ C for any regular value ε > 0. Observe
moreover that since ε < ε0 we have that

(π∗C \ {ξ ; ∆(ξ) > δ}) ∩
(
|ϕ1 − ϕ2|−1({ε})

)
∩ π−1(∂B2

r (0)) = ∅ . (2.67)

Define the open set U in π∗C \ C made of the connected components of
{∆ > δ} that intersect Br = π−1(B2

r (0)) (and therefore not ∂BR thanks to
(2.66)).

For any fixed r ≤ r, choose ε small enough as follows: firstly, ε < ε0;
secondly, take

ε < min
{
|ϕ1 − ϕ2|(ξ) : ξ ∈ ∂ (U ∩ (BR \Br)) \ ∂Br ⊂ ∂U

}
.

The minimum on the r.h.s. is strictly positive. Indeed, if it were 0, then
either we would have a singular point that realizes it, or a smooth point where
∆ = 1. In the former case, lemma 2.5.2 tells us that there is a neighbourhood
of the singularity where {∆ < δ

2}, therefore it cannot be a boundary point
of U , since in U we have ∆ > δ. In the latter case there ought to be a
neighbourhood where {∆ > δ}, so it could not be a boundary point.

Finally define the open set in π∗C \ C

Σε,r = ({|ϕ1 − ϕ2| < ε} ∩ Br) ∪ U.

Σε,r has the following properties:
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(i)
zl ∈ π(Σε,r)⇒ zl ∈ π(Br), since there are no singularities in U

due to lemma 2.5.2;

(ii)

p ∈ ∂Σε,r ⇒
{

|ϕ1 − ϕ2|(p) = ε
∆(p) ≤ δ

or

{
|ϕ1 − ϕ2|(p) ≥ ε

∆(p) = δ
,

so |g| ≡
√

1

δ
− 1 = D−1 on ∂Σε,r.

Thus δ and ε have been chosen in such a way that ∂Σε,r is a closed smooth
compact curve in π∗C \ C which is included in the level set |g|−1({D−1}).
Remark that ∂Σε,r is obtained by homotopy from the loop π−1{|z| = r}
without crossing any singularity of C ⊂ π∗C.

On N we define the map v given by

v : N −→ S2

(ξ, t) −→ (g(ξ),α1 − α2 + tφδ ◦∆(ξ))
√

|g(ξ)|2 + |α1 − α2 + tφδ ◦∆(ξ)|2
.

Observe that |g(ξ)|2+ |α1−α2+ tφδ ◦∆(ξ)|2 = 0 implies that |ϕ1−ϕ2| = 0.
If α1 − α2 0= 0 then φδ ◦ ∆(ξ) = 0 and hence we would have |α1 − α2| = 0
which is a contradiction. Hence v is well-defined smooth map on N . Finally
define the S2-valued map u by

u := Sδ ◦ v : N → S2.

On the complement of Σε,r the map v simplifies to

v(ξ) =
(g(ξ),α1 − α2 + t)

√
|g(ξ)|2 + |α1 − α2 + t|2

. (2.68)

From the definition of Sδ, for any two-form ω on S2 we have hence that, on
N\(Σε,r×R), (Sδ◦v)∗ω = 0 for |t| > 1/ε (Assuming without loss of generality
that d(ξ) is bounded by 1 on π∗C). Hence the degree of u restricted to any
closed compact curve in the complement of Σε,r times R is well defined since
in N \ (Σε,r × R) we have u∗ω 0= 0 only on a compact set.

The rest of the section is occupied with the proof of the following two
lemmas, which will imply by a simple homotopy argument that can be found
at the end of the section, that the number of zl is uniformly bounded and
theorem 2.5.1 will be proved.
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Lemma 2.5.4. For any zl as in (2.54) and for ρ > 0 small enough

∫

π−1(∂B2
ρ(zl))×R

u∗ω ≥ 1, (2.69)

where ω is an arbitrary 2−form on S2 such that
∫
S2 ω = 1.

Lemma 2.5.5. Under the previous notations, there exists a constant K ∈ R+

independent of r and ε such that (the indexes of the two-form are to be
understood mod 3)

∫

∂Σε,r×R
u∗

(
3∑

i=1

xj dxj+1 ∧ dxj−1

)

≥ −K . (2.70)

proof of lemma 2.5.5. This constitutes the core of the proof of theorem
2.5.1.

Recall that |g(ξ)| ≡ D−1 on ∂Σε,r. Denote λ the following function on
Σε,r × R

λ(ξ, t) :=
√
D−2 + (α1 − α2 + t)2 .

We additionally denote by w the following C×R-valued map24 on Σε,r×R :

w(ξ, t) :=
(g(ξ),α1 − α2 + t)

λ
.

Observe that w = v on ∂Σε,r × R.
First we claim that

∫

Σε,r×R
|(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3)| dH2 dt N < +∞ . (2.71)

We now prove the claim (2.71). We write on one hand

S∗
δ (dx

1 ∧ dx2 ∧ dx3) = det(DSδ)(y) dy
1 ∧ dy2 ∧ dy3

and locally on the other hand

w∗(dy1 ∧ dy2 ∧ dy3) = λ−3df 1 ∧ df 2 ∧ d(α1 − α2 + t)+

+λ−2 dλ−1 ∧
(
f 1 df 2 − f 2 df 1

)
∧ d(α1 − α2 + t)+

+λ−2 (α1 − α2 + t) df 1 ∧ df 2 ∧ dλ−1,

(2.72)

24Sometimes we will also look at w as a R3-valued map.
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where25 locally f(z) = f 1(z) + if 2(z) := g1(ξ(z)) + ig2(ξ(z)). Observe now
that the following 3- and 2-forms are zero

df 1 ∧ df 2 ∧ d(α1 − α2) ≡ 0 and dλ−1 ∧ d(α1 − α2 + t) ≡ 0 . (2.73)

Hence (2.72) becomes, from the definition of λ,

w∗(dy1 ∧ dy2 ∧ dy3) = λ−3df 1 ∧ df 2 ∧ dt

−λ−5(α1 − α2 + t)2 df 1 ∧ df 2 ∧ dt

= λ−5 D−2 df 1 ∧ df 2 ∧ dt.

(2.74)

We rewrite

w∗(dy1 ∧ dy2 ∧ dy3) =
i

2
λ−5 D−2

[
|∂zf |2 − |∂zf |2

]
dz ∧ dz ∧ dt . (2.75)

We first estimate the following integral :
∫ +∞

−∞
det(DSδ)(w(ξ, t)) λ−5dt ≤ Cδ

∫ +∞

−∞

dτ

(D−2 + τ 2)
5
2

≤ Cδ. (2.76)

Observe that

|∇f | ≤ ε−1D−1|∇(ϕ1 − ϕ2)|+ ε−2D−2|ϕ1 − ϕ2||∇(α1 − α2)| . (2.77)

Since
∫
D2

∑Q
j=1(|∇ϕj|2 + |∇αj|2) < +∞ combining (2.73), (2.76) and (2.77)

we obtain the claim (2.71).

We now establish the lower bound (2.70). To that purpose we compute
an equation for f .

From the equations in (2.55) we deduce that locally





∂z(ϕ1 − ϕ2) = ν(ϕ2,α2) ∂z(ϕ1 − ϕ2) + [ν(ϕ1,α1)− ν(ϕ2,α2)] ∂zϕ1+

+µ(ϕ1,α1)− µ(ϕ2,α2),

∇(α1 − α2) = h(ϕ1,α1)− h(ϕ2,α2).
(2.78)

We have that

∂zf =
∂z(ϕ1 − ϕ2)

max{|α1 − α2|, Dε}
− f 1|α1−α2|>Dε

∂z|α1 − α2|
max{|α1 − α2|, Dε}

, (2.79)

25g1 and g2 denote respectively the real and imaginary part of g.
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where 1|α1−α2|>Dε is the characteristic function of the set where |α1 − α2| >
Dε. Inserting now (2.78) in (2.79) we obtain

∂zf = ν(ϕ2,α2)
∂z(ϕ1 − ϕ2)

max{|α1 − α2|, Dε}
+

[ν(ϕ1,α1)− ν(ϕ2,α2)]

max{|α1 − α2|, Dε}
∂za1

+
µ(ϕ1,α1)− µ(ϕ2,α2)

max{|α1 − α2|, Dε} − f 1|α1−α2|>Dε
∂z|α1 − α2|

max{|α1 − α2|, Dε} .

(2.80)
From (2.80) we deduce

∂zf = ν(ϕ2,α2) ∂zf + ν(ϕ2,α2) f 1|α1−α2|>Dε
∂z|α1 − α2|

max{|α1 − α2|, Dε}
+

+
[ν(ϕ1,α1)− ν(ϕ2,α2)]

max{|α1 − α2|, Dε} ∂za1 +
µ(ϕ1,α1)− µ(ϕ2,α2)

max{|α1 − α2|, Dε} −

−f 1|α1−α2|>Dε
∂z|α1 − α2|

max{|α1 − α2|, Dε} .

(2.81)
Using now the second equation in (2.78) we obtain the existence of a constant
K0 > 0 such that

|∇(α1 − α2)| ≤ K0 [|ϕ1 − ϕ2|+ |α1 − α2|] . (2.82)

This later fact gives
∣∣∣∣

∇(α1 − α2)

max{|α1 − α2|, Dε}

∣∣∣∣ ≤ K0 [|f |+ 1] . (2.83)

Combining (2.81) and (2.83) we obtain the following bound : there exists
K1 > 0 and K2 > 0 such that

|∂zf − ν(ϕ2,α2) ∂zf | ≤ K1 [|f |+ 1] |∂zϕ1|+K2

[
|f |2 + 1

]
. (2.84)

From (2.75) we have that
∫

Σε,r×R
(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) =

=

(∫

π(Σε,r)

D−2
[
|∂zf |2 − |∂zf |2

] i

2
dz ∧ dz

)(∫ +∞

−∞
det(DSδ) ◦ w λ−5 dt

)
.

(2.85)
Since det(DSδ)(y) ≥ 0 on R3,

η(z) :=

∫ +∞

−∞
det(DSδ) ◦ w λ−5 dt ≥ 0 .



120 CHAPTER 2. SPECIAL LEGENDRIAN CYCLES IN S5

Moreover we also have the following bound given by (2.76)

η ≤ CD = Cδ . (2.86)

Using (2.84) we then deduce the following lower bound:
∫

Σε,r×R
(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) ≥

≥
∫

π(Σε,r)

D−2
[
1− ν2(ϕ2,α2)|∂zf |2

]
η

i

2
dz ∧ dz−

−C̃δ

∫

π(Σε,r)

[
4(K1)

2(|f |+ 1)2 |∂zϕ1|2 + 4(K2)
2 (|f |2 + 1)2

] i

2
dz ∧ dz .

(2.87)
Using the fact that |f(z)| = |g(ξ)| ≤ D−1 on Σε,r, and that, for r small
enough |ν(ϕ2,α2)| < 1/2, we obtain the existence of a constant Kδ such that

∫

Σε,r×R
(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) ≥

≥ −Kδ

∫

D2

Q∑

j=1

[
|∇ϕj|2 + 1

] i

2
dz ∧ dz ≥ −K,

(2.88)

with K > 0 independent of r and ε.
Recall now that w = v on ∂Σε,r × R. Then by Stokes theorem

∫

Σε,r×R
(Sδ◦w)∗(dx1∧dx2∧dx3) =

∫

∂Σε,r×R
(Sδ◦w)∗

(
3∑

i=1

xj dxj+1 ∧ dxj−1

)

=

=

∫

∂Σε,r×R
(Sδ ◦ v)∗

(
3∑

i=1

xj dxj+1 ∧ dxj−1

)

.

This is the desired lower bound (2.70) and lemma 2.5.5 is proved.

proof of lemma 2.5.4. The result follows straight from lemma 2.5.3. Ob-
serve that, by lemma 2.5.2 and by homotopy, the degree computed there is
the same as the degree of the function

ϕi − ϕj

Dε
=

ϕi − ϕj

max{|αi − αj|, Dε} = g

on the loop {|φi − φj| = ε} around zl. By the same computation performed
in (2.85) (we can take without loss of generality ω =

∑3
i=1 x

j dxj+1∧ dxj−1),
since the degree of g is exactly

∫
π(Σε,r)

D−2 [|∂zf |2 − |∂zf |2] i
2dz ∧ dz, we get

that the degree of Sδ ◦ w is strictly positive.
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proof of theorem 2.5.1. We argue by contradiction. If we had countably
many singularities of the form (2.54) accumulating onto 0, around each such
singular point, on π−1(∂B2

ρ(zl))×R, we would have a strictly positive degree
for u, thanks to lemma 2.5.4. Let us observe, however, the degree of u
on ∂Br × R; this is the same as the degree of u on ∂Σr,ε × R, since these
two 2-surfaces are homotopic and we do not cross any singularity during
this homotopy (see (ii) on page 64 and recall that u is smooth out of the
singularities). Choosing r smaller and smaller, we must then have, under the
contradiction assumption, that the degree of u on ∂Br × R goes to −∞ as
r → 0, which contradicts lemma 2.5.5.



122 CHAPTER 2. SPECIAL LEGENDRIAN CYCLES IN S5



Chapter 3

Semi-calibrated Legendrians in a

contact 5-manifold

As descibed in section 1.5.2, the result of the previous chapter is gen-
eralized here to contact 5-manifolds (M5,α) with certain almost complex
structures. The content of this chapter is [5].

We recall the setting (the description partially overlaps with the presenta-
tion in the introduction). Let M = M5 be a five-dimensional contact mani-
fold with contact form α. We will assume M oriented by the top-dimensional
form α ∧ (dα)2.

The contact distribution (also called horizontal distribution) H of 4-
dimensional hyperplanes {Hp}p∈M defined by

Hp := Ker αp (3.1)

is non-integrable by (1.6). The integral submanifolds of maximal dimension
for the contact structure are of dimension two and are called Legendrians.

Given an almost-complex structure J on the horizontal distribution and
a horizontal, non-degenerate two-form β, we say that J is compatible with
β if:

β(v, w) = β(Jv, Jw), β(v, Jv) > 0 for any v, w ∈ H. (3.2)

In this situation, we can define an associated Riemannian metric gJ,β on the
horizontal sub-bundle by setting

gJ,β(v, w) := β(v, Jw).

We can extend J to an endomorphism of the tangent bundle TM by
setting

J(Rα) = 0. (3.3)

123
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and the metric to a Riemannian metric on the tangent bundle by

g := gJ,β + α⊗ α. (3.4)

The Reeb vector field Rα is orthogonal to the hyperplanes H for the
metric g.

The following example will be important for the proof of the main result
of this chapter.

Example (the standard contact structure on R5).
Using coordinates (x1, y1, x2, y2, t) the standard contact form is ζ = dt−

(y1dx1+ y2dx2). The expression for dζ is dx1dy1+ dx2dy2 and the horizontal
distribution is given by

Ker ζ = Span{∂x1 + y1∂t, ∂x2 + y2∂t, ∂y1 , ∂y2}. (3.5)

The standard almost complex structure I compatible with dζ is the en-
domorphism {

I(∂xi + yi∂t) = ∂yi
I(∂yi) = −(∂xi + yi∂t)

i ∈ {1, 2}. (3.6)

I and dζ induce, as described above, the metric gζ := dζ(·, I·) + α(·)α(·)
for which the hyperplanes Ker ζ are orthogonal to the t-coordinate lines,
which are the integral curves of the Reeb vector field. The metric gζ projects
down to the standard euclidean metric on R4, so the projection

π : R5 → R4

(x1, y1, x2, y2, t) → (x1, y1, x2, y2)
(3.7)

is an isometry from (R5, gζ) to (R4, geucl).

The following will be useful in the sequel:

Remark 3.0.3. Observing (3.5), we can see that, for any q ∈ R4, all the
hyperplanes Hπ−1(q) are parallel in the standard euclidean space R5. Thus
the lift of a vector in R4 = {t = 0} with base-point q to an horizontal
vector based at any point of the fiber π−1(q) has always the same coordinate
expression along this fiber.

As discussed in section 1.5.2, we will be interested in two-dimensional
Legendrians which are invariant for suitable almost complex structures de-
fined on the horizontal distribution. What we require for an almost-complex
structure J on the horizontal sub-bundle is the following Lagrangian con-
dition
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dα(Jv, v) = 0 for any v ∈ H. (3.8)

This requirement amounts to asking that any J-invariant 2-plane must be
Lagrangian for the symplectic form dα. It is also equivalent to the following
anti-compatibility condition

dα(v, w) = −dα(Jv, Jw) for any v, w ∈ H. (3.9)

It is immediate that (3.9) implies (3.8). On the other hand, using (3.8):

0 = dα(J(v+w), v+w) = dα(Jv, v)+ dα(Jw,w)+ dα(Jv, w)+dα(Jw, v) =

= dα(Jv, w) + dα(Jw, v) ,

so
dα(Jv, w) = dα(v, Jw) for any horizontal vectors v and w.

Writing this with Jv instead of v, and being J an endomorphism of H , we
obtain (3.9).

The main result we present is the following

Theorem 3.0.2. Let M be a five-dimensional manifold endowed with a con-
tact form α and let J be an almost-complex structure defined on the horizontal
distribution H = Ker α, such that dα(Jv, v) = 0 for any v ∈ H.

Let C be an integer multiplicity rectifiable cycle of dimension 2 in M such
that H2-a.e. the approximate tangent plane TxC is J-invariant1.

Then C is, except possibly at isolated points, the current of integration
along a smooth two-dimensional Legendrian curve.

In chapter 2 we proved the corresponding regularity property for Special
Legendrian Integral cycles2 in S5. From Proposition 2 in chapter 2, it follows
that theorem 3.0.2 applies in particular to Special Legendrians in S5 and
therefore generalizes that result.

Here we looked for a natural general setting in which an analysis analogous
to the one in the previous chapter could be performed. This lead to the
assumptions taken above, in particular to conditions (3.8) and (3.9).

1Representing a 2-plane as a simple 2-vector v∧w, the condition of J-invariance means
v ∧ w = Jv ∧ Jw. With (3.3) in mind, we see that a J-invariant 2-plane must be tangent
to the horizontal distribution.

2Special Legendrian cycles are briefly described in section 3.3, where the reader may
also find other examples where theorem 3.0.2 applies.



126 CHAPTER 3. SEMI-CALIBRATED LEGENDRIANS IN 5-D

In Proposition 4 of the present chapter we describe a direct application
of this theorem to semi-calibrations. The cycles under investigations are
indeed generally almost-minimizers (also called λ-minimizers) of the area
functional: in the last section we will see some cases when they are also
minimal, in the sense of vanishing mean curvature.

We will need to construct families of 3-dimensional surfaces3 which locally
foliate the 5-dimensional ambient manifold and that have the property of
intersecting positively the Legendrian, J-invariant cycles.

After having achieved this by solving a perturbation of Laplace’s equation,
the proof of theorem 3.0.2 can be completed by following that in the previous
chapter verbatim: an overview is presented at the end of section 4.4. To prove
the existence of a solution to the perturbed Laplace’s equation, we need to
work in adapted coordinates (see proposition 5 and the discussion which
precedes it).

The results needed for the proof of theorem 3.0.2 are in section 4.4 and
the reader may go straight to that. In section 3.1 we show the existence
of J-structures satisfying (3.8) or (3.9) and discuss how they are related to
2-forms, in particular to semi-calibrations. In the last section we discuss
examples and possible applications of theorem 3.0.2.

3.1 Almost complex structures and two-forms.

3.1.1 Self-dual and anti self-dual forms.

On a contact 5-manifold (M,α), take an almost-complex structure I
compatible with the symplectic form dα, and let g be the metric defined by
g(v, w) := dα(v, Iw) + α⊗ α.

The metric g induces a metric on the horizontal sub-bundle H , which also
inherits an orientation from M.

Any horizontal two-form can be split in its self-dual and anti self-dual
parts as follows.

Let ∗ be the Hodge-star operator acting on the cotangent bundle T ∗M.
Define the operator

@ : Λ2(TM)→ Λ2(TM), @(β) := ∗(α ∧ β), (3.10)

and remark that @ naturally restricts to an automorphism of the space of
horizontal forms Λ2(H):

@ : Λ2(H)→ Λ2(H), @(β) := ∗(α ∧ β). (3.11)

3This existence result is where (3.8) and (3.9) play a determinant role.
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This operator satisfies @2 = id.
This yields the orthogonal eigenspace decomposition

Λ2(H) = Λ2
+(H)⊕ Λ2

−(H), (3.12)

where Λ2
±(H) is the eigenspace relative to the eigenvalue ±1 of @. These

eigenspaces are referred to as the space of self-dual and the space of anti
self-dual two-forms4.

In other words, we can restrict to the horizontal sub-bundle with the
inherited metric and orientation and define the Hodge-star operator on hor-
izontal forms by using the same definition as the general one, but confining
ourselves to the horizontal forms. We get just the @ defined above.

3.1.2 From a two-form to J .

In a contact 5-manifold (M,α), given a horizontal two-form ω (with
some conditions), is there an almost complex structure compatible with ω
and satisfying dα(Jv, v) = 0 for any v ∈ H ?

In this section, by answering positively the above question, we will also
estabilish the existence of such anti-compatible almost complex structures.

Assume that, on a contact 5-manifold (M,α), a two-form ω is given, that
satisfies

ω ∧ dα = 0 (3.13)

and
ω ∧ ω 0= 0. (3.14)

Conditions (3.13) and (3.14) automatically give that ω is horizontal5, ιRαω =
0. Without loss of generality, we may assume that

ω ∧ ω = f(dα)2 for a strictly positive6 function f . (3.15)

Take an almost-complex structure I compatible with the symplectic form
dα, and let g = gdα,I be the metric defined by g(v, w) := dα(v, Iw) + α⊗ α.

Decompose ω = ω+ + ω−, where ω+ is the self-dual part and ω− is the
anti self-dual part. By definition dα is self-dual for g: so we have

ω− ∧ dα = 〈ω−, dα〉dvolg|H = 0 ,

4This is basically how self-duality was defined in [59].
5This can be checked in coordinates pointwise. Alternatively one can adapt the proof

of [13], Proposition 2.
6Indeed, the non-zero condition in (3.14) implies that (3.15) holds with f either every-

where positive or everywhere negative. The case f < 0 can be treated after a change of
orientation on M just in the same way.
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since Λ2
+ and Λ2

− are orthogonal subspaces. Therefore (3.13) can be restated
as

ω+ ∧ dα = 0. (3.16)

Consider now the form7

ω̃+ :=

√
2

‖ω+‖
ω+.

It is self-dual and of norm
√
2, so there exists a unique almost complex

structure on the horizontal bundle that is compatible with g and ω̃+. It is
defined by

J := g−1(ω̃+).

We want to show that dα(Jv, v) = 0 for any v ∈ H .
To this aim, it is enough to work pointwise in coordinates. We can choose

an orthonormal basis for H (at the chosen point) of the form {e1 = X, e2 =
IX, e3 = Y, e4 = IY } and denote by

{e1, e2, e3, e4} (3.17)

the dual basis of orthonormal one-forms. Then dα has the form e12+ e34,
where we use eij as a short notation for ei ∧ ej . The forms e12 + e34, e13+ e42

and e14+e23 are an orthonormal basis for Λ2
+. The fact that ω+ is orthogonal

to dα implies that

ω+ = a(e13 + e42) + b(e14 + e23). (3.18)

and ‖ω+‖2 = 2(a2 + b2), therefore ω̃+ = cos θ(e13 + e42) + sin θ(e14 + e23) for
some θ depending on the chosen point, cos θ = a√

a2+b2
, sin θ = b√

a2+b2
. Then

the explicit expression for J is

J(e1) = cos θe3 + sin θe4
J(e2) = − cos θe4 + sin θe3
J(e3) = − cos θe1 − sin θe2
J(e4) = cos θe2 − sin θe1

(3.19)

and an easy computation shows that dα(v, J(v)) = 0 for any v ∈ H .

7The notation ‖ ‖ denotes here the standard norm for differential forms coming from
the metric on the manifold. It should not be confused with the comass, which is denoted
by ‖ ‖∗. They are in general different: for example, in R4 with the euclidean metric
and standard coordinates (x1, x2, x3, x4), the 2-form β = dx1 ∧ dx2 + dx3 ∧ dx4 has norm
‖β‖ =

√
2 and comass ‖β‖∗ = 1.
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Next we prove that this J is compatible with ω, in the sense of (3.2).
The almost complex structure J is surely compatible with ω+, since this

form is just a scalar multiple of ω̃+, and the metric associated to (ω̃+, J) is
‖ω+‖√

2
g when restricted to the horizontal bundle.

Let us now look at ω−. It is interesting to observe that

ω−(v, w) = ω−(Jv, Jw). (3.20)

This can be once again checked pointwise in coordinates, as above. An
orthonormal basis for Λ2

+ is given by the forms e12−e34, e13−e42 and e14−e23,
therefore ω− is a linear combination of these forms, each of which can be
checked to satisfy the invariance expressed in (3.20) with respect to J .

On the other hand, these anti self-dual forms do not give a positive real
number when applied to (v, Jv) for an arbitrary v ∈ H . However, due to
(3.15) we can show that ω(v, Jv) = ω+(v, Jv) + ω−(v, Jv) > 0 for any v.

Indeed, write again

ω+ = a(e13 + e42) + b(e14 + e23), (3.21)

ω− = A(e12 − e34) + B(e13 − e42) + C(e14 − e23). (3.22)

So we can compute

ω+ ∧ ω+ = (a2 + b2)(dα)2 and ω− ∧ ω− = −(A2 +B2 + C2)(dα)2. (3.23)

Condition (3.15), recalling that ω+ ∧ ω− = 0, then reads

f(dα)2 = ω+ ∧ ω+ + ω− ∧ ω− =
(
(a2 + b2)− (A2 +B2 + C2)

)
(dα)2 (3.24)

with a positive f , so (a2 + b2) > (A2 +B2 + C2). Observe that

ω−(ei, J(ei)) = ±B cos θ ± C sin θ,

with cos θ = a√
a2+b2

, sin θ = b√
a2+b2

. We can bound | ± B cos θ ± C sin θ| ≤√
B2 + C2, so

ω(ei, J(ei)) = ω+(ei, J(ei)) + ω−(ei, J(ei)) =
√
a2 + b2 + ω−(ei, J(ei))

≥
√
a2 + b2 −

√
A2 +B2 + C2 > 0.

This means that the almost complex structure J is compatible with ω in
the sense of (3.2) and they induce a metric g̃(v, w) := ω(v, Jw) for which J
is orthogonal and ω is self dual and of norm

√
2. This gives a positive answer

to the question raised in the beginning of this section.

Moreover we get
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Proposition 3. Given a contact 5-manifold (M,α), there exist almost com-
plex structures J such that dα(v, Jv) = 0 for all horizontal vectors v.

Indeed, we can get a two-form ω satisfying (3.13) and (3.15). This can
be done locally8 and then we can get a global form by using a partition of
unity on M. The previous discussion in this subsection then shows how to
construct the requested almost complex structure from ω, thereby proving
that anti-invariant almost complex structures exist.

Also remark that the almost complex structure J anti-compatible with
dα that we constructed is orthogonal for the metric g associated to dα and
I. Indeed, after having built the two-form ω satisfying (3.13) and (3.15), we
defined J from its self-dual part (suitably rescaled) and from the metric g.

By changing the almost complex structure I compatible with dα, we can
get different anti-compatible structures.

We conclude with the following proposition, which gives a condition to
ensure the applicability of theorem 3.0.2 to a semi-calibration.

Proposition 4. Let (M,α) be a contact 5-manifold, with a metric g defined9

by g = dα(·, I·) for an almost complex structure I compatible with dα.
Let ω be a two-form of comass 1, ‖ω‖∗ = 1, such that:

ω ∧ dα = 0, ω ∧ ω = (dα)2.

Then ω is self-dual with respect to g. Moreover the almost complex structure
J := g−1(ω) is anti-compatible with dα and the (semi)-calibrated two-planes
are exactly the J-invariant ones.

Therefore theorem 3.0.2 applies to such an ω, yielding the regularity of
ω-(semi)calibrated cycles. The Special Legendrian semi-calibration treated
in chapter 2 fulfils the requirements of Proposition 4.

proof of proposition 4. Decompose ω = ω+ + ω− as in (3.21) and (3.22).
Evaluating ω on the unit simple 2-vector

1√
a2 + b2 + A2

e1 ∧ (ae3 + be4 + Ae2)

we get
√
a2 + b2 + A2. The condition ‖ω‖∗ = 1 implies a2 + b2 + A2 ≤ 1.

8For example, work on an open ball where we can apply Darboux’s theorem (see [8] or
[41]), which allows us to work with the standard contact structure of R5 described in the
introduction (compare the explanation at the beginning of section 3.2.1).

9This is equivalent to asking that dα is self-dual and of norm
√
2 for g.
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On the other hand, expliciting ω ∧ ω = (dα)2 as in (3.23), we obtain

a2 + b2 − A2 − B2 − C2 = 1.

Hence −B2 − C2 ≥ 2A2, which trivially yields A = B = C = 0, so ω is a
self-dual form.

A self-dual form of comass 1 expressed as in (3.21) must be of the form

cos θ(e13 + e42) + sin θ(e14 + e23)

and the corresponding almost-complex structure J = g−1(ω) has the expres-
sion (3.19) and is anti-compatible with dα.

Take two orthonormal vectors v, w. Since ω(v, w) = 〈v,−Jw〉g, we have
that

ω(v, w) = 1⇔ w = Jv,

from which we can see that the semi-calibrated 2-planes are exactly those
that are J-invariant for this J .

3.1.3 From J to a two-form.

In this subsection, we want to answer the following question, in some
sense the natural reverse to the one raised in the previous subsection.

Assume that, on a contact 5-manifold (M,α), an almost-complex struc-
ture J on the horizontal distribution H is given, which satisfies dα(Jv, v) =
0 for any v ∈ H . Is there a two-form that is compatible with J in the sense
of (3.2)?

Let I be an almost-complex structure compatible with the symplectic
form dα, and let g be the metric on M defined by g(v, w) := dα(v, Iw)+α⊗α.

Define a two-form Ω by

Ω(X, Y ) := dα(JX,
1

2
(JI − IJ)Y ).

We can see that Ω is compatible with J as follows

• Ω(JX, JY ) = 1
2dα(JX, JIJY + IY ) =

= −dα(X, 1
2IJY ) + dα(X, 12JIY ) = Ω(X, Y ),

• Ω(X, JX) = 1
2dα(X, JIJX + IX) =

= 1
2dα(JX, IJX) + 1

2dα(X, IX) > 0,
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where we used the anti-compatibility property (3.9). It also follows that
the metric g̃(X, Y ) := Ω(X, JY ) + α ⊗ α is related to g by g̃(X, Y ) =
1
2(g(X, Y ) + g(JX, JY )) when restricted to the horizontal sub-bundle.

In local coordinates, also just pointwise for a basis of the form {e1 =
X, e2 = IX, e3 = Y, e4 = IY } as in (3.17), it can be checked by a direct
computation that Ω also satisfies Ω ∧ dα = 0.

The two-form Ω is a semi-calibration on the manifold M endowed with
the metric g̃. Indeed, since J preserves the g̃-norm, for any two vectors v, w
at p which are orthonormal with respect to g̃ it holds

Ω(v, w) = 〈v,−Jw〉g̃ ≤ |v|g̃|Jw|g̃ = |v|g̃|w|g̃ = 1,

and equality is realized if and only if Jv = w. This means that a 2-plane
is Ω-calibrated if and only if it is J-invariant, so theorem 3.0.2 applies to
Ω-semicalibrated cycles10.

If J is an orthogonal transformation with respect to g, the anti-compatibi-
lity with dα yields, for all horizontal vectors X, Y ,






g(X, Y ) = g(JX, JY ) =
= dα(JX, IJY ) = dα(X, JIJY )

= dα(IX, (IJ)2Y ) = −g(X, (IJ)2Y )
⇒ g(X, (Id+ (IJ)2)Y ) = 0.

Thus (IJ)2 = −Id when restricted to H , so IJ = −JI.
Hence Ω(X, Y ) := dα(X, JIY ). In this case Ω is a self-dual form of norm√

2 and comass ‖Ω‖∗ = 1 with respect to g 11.

3.2 Proof of theorem 3.0.2

3.2.1 Positive foliations

The regularity property in Theorem 3.0.2 is local. It is therefore enough
to prove the statement for an arbitrarily small neighbourhood B5(p) ⊂ M
of any chosen p ∈M.

From Darboux’s theorem, we know that there is a diffeomorphism12 Φ
from a ball centered at the origin of the standard contact manifold (R5, dt−

10We remark here that, being semi-calibrated, such a cycle will satisfy an almost-
monotonicity formula at every point, as explained in [47].

11Observe that, in this case, we have that pointwise {Id, I, J, IJ} form a quaternionic
structure.

12In the usual terminology, for example see [41] or [8], it is called a contactomorphism
or contact transformation.
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y1dx1 − y2dx2) to such a neighbourhood B5(p), with Φ∗(α) = dt− (y1dx1 +
y2dx2). The structure J on M can be pulled-back to an almost complex
structure on R5 via Φ:

(Φ∗J)(X) := (Φ−1)∗[J(Φ∗X)] for X ∈ R5.

Condition (3.8) yields

d(Φ∗α)((Φ∗J)X,X) = (Φ∗dα)((Φ−1)∗J(Φ∗X), X) =

= dα(J(Φ∗X),Φ∗X) = 0 for any X horizontal vector in R5. (3.25)

Therefore the induced almost complex structure Φ∗J is anti-compatible
with the symplectic form d(Φ∗α) = dx1dy1 + dx2dy2.

It is now clear that we can afford to work in a ball centered at 0 of the
standard contact structure (R5, ζ) with an almost complex structure J such
that dζ(v, Jv) = 0.

In view of the construction of "positive foliations", we can start with the
following question: given a point in R5 and a J-invariant plane through it,
can we find an embedded Legendrian disk that is J-invariant and has the
chosen plane as tangent?

The following is of fundamental importance:

Remark 3.2.1. Given a legendrian immersion of a 2-surface in R5, any tangent
plane D to it necessarily satisfies the condition dα(D) = 0 (see [48]). (3.9)
is therefore a necessary condition for the local existence of J-invariant disks
through a point in any chosen direction.

On the other hand, always from [48], we know that every Lagrangian in
R4 can be uniquely lifted to a Legendrian in R5 after having chosen a starting
point in R5.

In this subsection we will prove, in particular, the sufficiency of condition
(3.9) for the local existence of a J-invariant Legendrian for which we assign
its tangent at a chosen point.

With a slight abuse of notation, we can view J(0) as an almost complex
structure on R4. With the notation in (3.7) and remark 3.0.3 in mind, we
define the almost complex structure J0 on the horizontal distribution of R5

by J0[(π−1)(V )] := (π−1)[J(0)(V )], for any vector V in R4 with arbitrary
base-point.

By definition, J and J0 agree at the origin. Let us analyse, in a first
moment, the case J = J0 everywhere. Due to the fact that J0 is projectable
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onto R4 things get simple and we can explicitly find an embedded Legendrian
disk that is J0-invariant and with tangent at 0 the given D. This goes as
follows: the plane D is J(0)-invariant in R4, and by the condition dα(D) = 0
it is lagrangian for the symplectic form dα. Therefore, by the result in [48],
the plane can be lifted to a legendrian surface D̃ in R5 passing through 0.
This surface is then trivially J0-invariant, due to the fact that J0 projects
down to J(0), and the tangent to D̃ at 0 is D since H0 = R4.

What about the case of a general J? We want to use a fixed point
argument in order to find a J-invariant Legendrian close to D̃. To achieve
that, we need to ensure that we are working in a neighbourhood of the origin
in R5 where J − J0 is bounded in a suitable Cm,ν-norm.

Dilate R5 about the origin as follows:

Λr : (x1, y1, x2, y2, t)→
(
x1

r
,
y1
r
,
x2

r
,
y2
r
,
t

r

)
.

This dilation changes the contact structure: indeed, pulling-back the stan-
dard contact form by Λ−1

r , we get

r2
(
1

r
dt− (y1dx

1 + y2dx
2)

)
;

thus the horizontal hyperplanes are

Span{∂x1 + ry1∂t, ∂x2 + ry2∂t, ∂y1 , ∂y2}.

The dilation has therefore the effect of "flattening" (with respect to the
euclidean geometry) the horizontal distribution13.

We also pull back by Λr the almost complex structure J and for r small
enough we can ensure that ‖Λ∗

rJ − J0‖C2,ν = r‖J − J0‖C2,ν(Br) is as small as
we want.

Finding Legendrians in the dilated contact structure that are invariant
for Λ∗

rJ is the same as finding J-invariant Legendrians in (R5, ζ) in a smaller
ball around 0: we can go from the first to the second via Λ−1

r . It is then
enough to work in (R5, (Λ−1

r )∗ζ), with the almost complex structure Λ∗
rJ .

By abuse of notation, we will drop the pull-backs and forget the factor
r2; our assumptions, to summarize, will be as follows:

α =
(
1
rdt− (y1dx1 + y2dx2)

)

dα = dx1dy1 + dx2dy2

‖J − J0‖C2,ν(B1) ≤ ε for an arbitrarily small ε.
(3.26)

13The dilation
(
x1

r , y1

r ,
x2

r , y2

r ,
t
r2

)
, on the other hand, would leave the horizontal dis-

tribution unchanged. This non-homogeneous transformation would still allow the proof
of proposition 5, but in view of propositions 7 and 8 it is convenient to work with the
"flattened" distribution.
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Basic example. What can we say about an almost complex structure
J on (R5, ζ) such that dζ(v, Jv) = 0 (and dζ(v, w) = −dζ(Jv, Jw)) for all
horizontal vectors v and w?

These conditions, applied to the vectors ∂x1 + y1∂t, ∂x2 + y2∂t, ∂y1 , ∂y2 ,
together with J2 = −Id, give, after little computation, that J must have the
following coordinate expression for some smooth functions σ, β, γ, δ of five
coordinates14:






J(∂x1 + y1∂t) = σ(∂x1 + y1∂t) + β(∂x2 + y2∂t) + γ∂y2
J(∂x2 + y2∂t) = −σ(∂x2 + y2∂t) + δ(∂x1 + y1∂t)− γ∂y1

J(∂y1) = σ∂y1 + δ∂y2 +
1+σ2+βδ

γ (∂x2 + y2∂t)

J(∂y2) = −σ∂y2 − 1+σ2+βδ
γ (∂x1 + y1∂t) + β∂y1 .

(3.27)

Local existence of J-invariant Legendrians. The results that we are
going to prove, in particular the proofs of propositions 5, 7 and 8, follow the
same guidelines as the proofs presented in the appendix of [50], with the due
changes. In particular, equation (3.35) takes the place of equation (A.2) in
[50]. In the 5-dimensional contact case that we are addressing, therefore, we
will face a second order elliptic problem, in contrast to the 4-dimensional
almost-complex case where the equation was of first order.

With remark 3.2.1 in mind, we will see that, in order to produce a solution
of our problem, we will need to adapt coordinates to the chosen data, i.e. the
point and the direction. Later on, with (3.48) and (3.52), we will understand
the dependence on the data for the solutions obtained.

At that stage we will be able to produce the key tool for the proof of
theorem 3.0.2: foliations made of 3-dimensional surfaces having the property
of intersecting any J-invariant Legendrian in a positive way, see the discussion
following proposition 8.

Proposition 5. Let (R5,α) be the contact structure described in (3.26), with
J an almost-complex structure defined on the horizontal distribution H =
Ker α such that dα(Jv, v) = 0 for any v ∈ H.

Then, if ε is small enough15, for any J-invariant 2-plane D passing
through 0, there exists locally an embedded Legendrian disk that is J-invariant
and goes through 0 with tangent D.

Recalling the discussion at the beginning of this section, we can see that
we are actually showing the following:

14We assume here that γ 0= 0. Remark that β and γ cannot both be 0, since J2 = −Id.
15It will be clear after the proof that ε must be small compared to 1

‖J0‖N2 , where N is
a constant depending on an elliptic operator defined from J0.
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Proposition 6. Let M be a five-dimensional manifold endowed with a con-
tact form α and let J be an almost-complex structure defined on the horizontal
distribution H = Ker α such that dα(Jv, v) = 0 for any v ∈ H.

Then at any point p ∈ M and for any J-invariant 2-plane D in TpM,
there exists an embedded Legendrian disk L that is J-invariant and goes
through p with tangent D.

proof of proposition 5. Step 1. Before going into the core of the proof, in
the first two steps we perform a suitable change of coordinates.

The hyperplane H0 coincides with R4 = {t = 0}. Up to an orthog-
onal change of coordinates in H0 = R4 (the t-coordinate stays fixed), we
can assume to have D = ∂x1 ∧ J(∂x1), with dα = dx1dy1 + dx2dy2. This
can be done as follows. If D = v ∧ J(v), for a horizontal unit vector v at
0, choose an orthogonal coordinate system, still denoted by (x1, y1, x2, y2),
defined by {∂x1 , ∂y1 , ∂x2 , ∂y2} := {v, I(v),W, IW}, where I is the standard
complex structure in (3.6) and W is a vector orthonormal to v and J(v) for
the metric gζ in (3.7).

There is freedom on the choice of W ; in step 2 we will determine it
uniquely by imposing a further condition16. Before doing this we are going
to make the notation less heavy.

This linear change of coordinates has not affected the fact that the hyper-
planes Hπ−1(q) are parallel17 in the standard coordinates of R5. This means
that, if we take a vector ∂xi [resp. ∂yi ] in R4, with base-point q ∈ R4,
its lift to a horizontal vector based at any point of the fiber π−1(q) has a
coordinate expression of the form ∂xi + Kxi∂t [resp. ∂yi + Kyi∂t], where
Kxi = Kxi(x1(q), x2(q), y1(q), y2(q)) and Kyi = Kyi(x1(q), x2(q), y1(q), y2(q))
are linear funtions of the coordinates of q (they come from the last coordinate
change).

We are interested in the expression for J in a neighbourhood of the origin.
J acts on the horizontal vectors ∂xi +Kxi∂t, ∂yi +Kyi∂t. However, since the
functions Kxi, Kyi are independent of t, by abuse of notation we will forget
about the ∂t-components of the horizontal lifts and speak of the action of J
on ∂xi, ∂yi , keeping in mind that the coefficients of the linear map J are not
constant along a fiber, i.e. J cannot be projected onto R4.

With this in mind, recalling (3.27), the expression for J in the unit ball
B1(0) ⊂ R5 is as follows: there are smooth functions σ, β, γ, δ depending on
the five coordinates of the chosen point, such that18

16This will be needed in view of Step 4.
17See remark 3.0.3.
18In (3.28) we are assuming that γ 0= 0. This is not restrictive. We can assume to be

working in an open set where at least one of the functions β and γ is everywhere non-zero.
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




J(∂x1) = σ∂x1 + β∂x2 + γ∂y2
J(∂x2) = −σ∂x2 + δ∂x1 − γ∂y1

J(∂y1) = σ∂y1 + δ∂y2 +
1+σ2+βδ

γ ∂x2

J(∂y2) = −σ∂y2 − 1+σ2+βδ
γ ∂x1 + β∂y1 .

(3.28)

Step 2. Denote the values of these coefficients at 0 by δ(0) = δ0, β(0) =
β0, σ(0) = σ0, γ(0) = γ0. We take now coordinates, that we underline to
distinguish them from the old ones, determined by the transformation






∂x1 = ∂x1

∂y1 = ∂y1
∂x2 =

γ0√
β2
0+γ2

0

∂x2 − β0√
β2
0+γ2

0

∂y2

∂y2 =
β0√
β2
0+γ2

0

∂x2 +
γ0√
β2
0+γ2

0

∂y2

∂t = ∂t .

(3.29)

In the new coordinates, the endomorphism J at 0 acts on ∂x1 as

J0(∂x1) = σ0∂x1 +
√

β2
0 + γ2

0∂y2

and the symplectic form dα still has the standard expression.
From now on we will write these new coordinates again as (x1, y1, x2, y2, t),

without underlining them.
To summarize what we did in steps 1 and 2: we will now work in the unit

ball of R5 with the symplectic form dα = dx1dy1 + dx2dy2 on the horizontal
distribution and an almost complex structure J such that ‖J − J0‖C2,ν < ε
for some small ε that we will determine precisely later on, and such that J
is expressed by (3.28) with smooth functions σ, β, γ, δ depending on the five
coordinates and satisfying β0 = 0, γ0 > 0. The J-invariant plane D is given
by D = ∂x1 ∧ J(∂x1).

The double coordinate change in steps 1 and 2 can be characterized as
the unique change of coordinates such that dα = dx1dy1 + dx2dy2 and D =
∂x1 ∧ J(∂x1) = γ0(∂x1 ∧ ∂y2) (for a positive γ0).

Step 3. We are looking for an embedded Legendrian disk with tangent D
at the origin, therefore we will seek a Legendrian that is a graph over D =
∂x1 ∧ ∂y2 . Recall from [48] that the projection of any Legendrian immersion
in R5 is a Lagrangian in R4 with respect to the symplectic form dα. A

If this is the case for β and not for γ, a change of coordinates sending ∂x2
→ ∂y2

and
∂y2
→ −∂x2

would lead us to (3.28) again.
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Lagrangian graph over D = ∂x1 ∧ ∂y2 must be of the form (see III.2 of [30],
in particular lemma 2.2)

(
x1,

∂f(x1, y2)

∂x1
,−∂f(x1, y2)

∂y2
, y2

)
for some f : D2

x1,y2 → R. (3.30)

The minus in the x2-component is due to the fact that I(∂y2) = −∂x2 ,
while I(∂x1) = ∂y1 . Our problem can be now restated as follows: find a func-
tion f : D2 → R such that the lift L with starting point 0 of the Lagrangian
disk

L(x1, y2) :=

(
x1,

∂f

∂x1
,− ∂f

∂y2
, y2

)

is J-invariant19.
The J-invariance condition is a constraint on the tangent planes: it is

expressed by the following equation for the lift L of L:

J

(
∂L
∂x1

)
= (1 + λ)

∂L
∂y2

+ µ
∂L
∂x1

, (3.31)

with λ and µ unknown, real-valued functions. However, thanks to what
we observed in step 1, the tangent vectors ∂L

∂x1
and ∂L

∂y2
to the lift L at any

point have the first four components which equal ∂L
∂x1

and ∂L
∂y2

at the projection
of the chosen point, independently of where we are lifting along the fiber; the
fifth component of ∂L

∂x1
and ∂L

∂y2
is uniquely determined by the other four and

by the point (x1, y1, x2, y2) in R4. We will therefore consider equation (3.31)
only for ∂L

∂x1
and ∂L

∂y2
.

We denote the partial derivatives ∂f(x1,y2)
∂x1

, ∂f(x1,y2)
∂y2

, ∂2f(x1,y2)
∂x2

1
, ∂2f(x1,y2)

∂x1∂y2

and ∂2f(x1,y2)
∂y22

respectively by f1, f2, f11, f12 and f22. Then

L(x1, y2) =






x1

f1
−f2
y2




 ,

∂L

∂x1
=






1
f11
−f12

0




 ,

∂L

∂y2
=






0
f12
−f22

1




 . (3.32)

It should be however born in mind that J does depend on where we are
lifting! After little manipulation, making use of (3.28), the equation in (3.31)
reads:

19By lift of L with starting point 0, we mean that the t-component of L(0, 0) is 0.
At this point we can see how, in the 5-dimensional contact case, the necessity of lifting

naturally leads to a second-order equation. In the 4-dimensional almost-complex case, one
does not need to worry about lifting.
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




σ − δf12 − µ
σf11 − (1− γ)f12 − λf12 − µf11

∆f + β + 1+σ2+βδ−γ
γ f11 + σf12 + λf22 + µf12

γ − 1 + δf11 − λ




 =






0
0
0
0




 , (3.33)

with σ, β, γ, δ evaluated at the lift of L = (x1, f1,−f2, y2) in R5 with
starting point 0.

From the first and fourth line of (3.33) we get

µ = −δf12 + σ, λ = γ − 1 + δf11. (3.34)

The second line of (3.33) can be checked to hold automatically true with
these values of µ and λ. Then we need to find f solving the third line of
(3.33) with the µ and λ given in (3.34). We stress once again that (3.33)
should be solved for f with σ, β, γ, δ depending on the lift of (x1, f1,−f2, y2).
Let us write the third line of (3.33) explicitly. It reads

2∑

i,j=1

Mijfij = δ(f 2
12 − f11f22)− β +

2∑

i,j=1

Aijfij, (3.35)

where M and A are the matrices

M =

(
1+σ2

0
γ0

−σ0

−σ0 γ0

)

, A =

(
1+σ2+βδ

γ − 1+σ2
0

γ0
σ − σ0

σ − σ0 γ0 − γ

)

. (3.36)

M is a positive definite matrix and satisfies, for any vector (ξ1, ξ2) ∈ R2, the
ellipticity condition

2∑

i,j=1

Mijξiξj ≥ k(ξ21 + ξ22) for a positive k.

Remark also that, at the origin, β(0) = 0 and A is the zero matrix. The zero
function f = 0, describes the disk D. We want to solve equation (3.35) by
a fixed point method in order to find a solution f close to 0. We will write
Mf for the elliptic operator on the left hand side of (3.35).

Consider the functional F defined as follows: for h ∈ C2,ν let F(h) be
the solution of the following well-posed elliptic problem:

{
M [F(h)] = δh(h2

12 − h11h22)− βh + Aijhhij

F(h) |∂D2 = 0 ,
(3.37)
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where by δh, βh and Aijh we mean respectively the functions δ, β and Aij

evaluated at the lift20 of (x1, h1,−h2, y2) in R5 and considered as functions
of (x1, y2). A fixed point of F is a solution of (3.35). We know from elliptic
regularity that F(h) belongs to the space C2,ν and Schauder estimates give

‖F(h)‖C2,ν ≤ N‖δh(h2
12 − h11h22)− βh + Aijhij‖C0,ν (3.38)

for an universal constant N (depending on k). To make the notation simpler
in the following, we will assume N > 2.

We are about to show the following claim: for ‖J −J0‖C2,ν small enough,
the functional F is a contraction from the closed ball

{
h ∈ C2,ν : ‖h‖C2,ν ≤ 1

48max{1, |δ0|}N

}
(3.39)

into itself.
First of all, let us compute, for h, g ∈ C2,ν ,

M [F(h)− F(g)] = δh(h
2
12 − g212 + g11g22 − h11h22)+

(g212 − g11g22)(δh − δg) + (βg − βh) + Aijhhij − Aijggij =

= δh[(h12 + g12)(h12 − g12) + g11(g22 − h22) + h22(g11 − h11)]+ (3.40)

+(g212 − g11g22)(δh − δg) + (βg − βh) + Aijh(hij − gij) + (Aijh − Aijg)gij.

Remark that we have bounds of the form
{

‖δh‖C1 ≤ ‖δ‖C0 + 2‖∇δ‖C0‖h‖C2 ,
‖δh − δg‖C1 ≤ 2(‖δ‖C2‖h‖C2 + 2‖∇δ‖C0)‖h− g‖C2,

(3.41)

where the norms are taken in the unit ball B5
1(0). Similar bounds hold

true for β and Aij .
For ‖J − J0‖C2,ν small enough, in particular if ‖δ‖C2 ≤ 2|δ0|, Schauder

theory applied to equation (3.40) with boundary data (F(h)−F(g)) |∂D2 = 0
gives

‖F(h)− F(g)‖C2,ν ≤

N
(
4|δ0|(‖h‖C2,ν + ‖g‖C2,ν) + 4‖g‖2C2,ν + 4‖β‖C2 + 6‖A‖C2

)
‖h− g‖C2,ν .

(3.42)
Let us now estimate, again by (3.38)

‖F(h)‖C2,ν ≤ 4N |δ0|‖h‖2C2,ν + 2N‖A‖C1‖h‖C2,ν + ‖β‖C1. (3.43)

20As always, we are lifting the point (0, h1(0, 0),−h2(0, 0), 0) ∈ R4 to the point
(0, h1(0, 0),−h2(0, 0), 0, 0) ∈ R5. This determines the lift of (x1, h1,−h2, y2) uniquely.
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If ‖β‖C2 + ‖A‖C2 ≤ 1
24max{1,|δ0|}N2 , which surely holds for ‖J − J0‖C2,ν

small enough, by (3.42) and (3.43) we get that F is a contraction of the
forementioned ball (3.39). By Banach-Caccioppoli’s theorem, there exists a
unique fixed point f of F , so we get a solution to equation (3.35) of small
C2,ν-norm.

More precisely, from (3.43) we get

‖f‖C2,ν ≤ K(ε), (3.44)

where K(ε) is a constant that goes to zero as ε→ 0.
The lift of (x1, f1,−f2, y2) is an embedded, J-invariant, Legendrian disk

that we denote L0,D. This disk, however, does not necessarily pass through
the origin.

Step 4. In step 3 we constructed a J-invariant disk that is a small C2,ν-
perturbation of D but that might not pass through 0.

We need to generalize the construction performed in step 3. Let us
set up notations: we are working in the unit ball of R5, with coordinates
(x1, y1, x2, y2, t), such that the point p in the statement of Proposition 5 is
the origin 0 and D is the plane ∂x1 ∧ JP (∂x1) at the origin. The almost com-
plex structure J satisfies ‖J − J0‖C2,ν < ε for some positive ε as small as we
want. An upper bound for ε was described in step 3.

Denote by Zr := {(0, y1, x2, 0, t) : x2
2 + y21 ≤ r2, |t| ≤ r}. For any point

P ∈ B1(0) ⊂ R5, the set of J-invariant planes at P can be parametrized by
CP1: we will use the following identification between HP and C2

∂x1 = (0, 1), JP (∂x1) = (0, i), ∂y1 = (1, 0), JP (∂y1) = (i, 0). (3.45)

Passing to the quotient, we get a pointwise identification ηP between
{Π : Π is a J-invariant 2-plane in HP} and CP1. In this identification, for
any point P the planes ∂x1 ∧ JP (∂x1) are represented by [0, 1] ∈ CP1.

We denote by UP
r the set of J-invariant planes at P which are identified

via ηP with Ur := {[W1,W2] ∈ CP1 : |W1| ≤ r|W2|}. This allows us to regard
the set

{(P,X) with P ∈ Zr and X ∈ UP
r }

as the product manifold
Zr × Ur.

For any couple (P,X) ∈ Z1×U1, we can set coordinates adapted to (P,X)
as follows: after a translation sending 0 to P , we can rotate the coordinate
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axis by choosing vX , the orthogonal projection of ∂x1 onto the closed, 2-
dimensional, unit ball in X and setting the new ∂x1 to be vX

|vX | . With this

choice, we can perform the same change of coordinate21 that we had in steps
1,2 and 3.

Now, using a fixed point argument as in step 3, we can associate to any
couple (P,X) ∈ Z1 × U1 a J-invariant disk that we denote by LP,X .

The estimate given by (3.44) implies that |TLP,X − X| ≤ K(ε), so in
particular we have TLP,X ∈ U1+K(ε).

Hence LP,X is transversal to the 3-dimensional plane {(0, y1, x2, 0, t)}.
Consider the point Q := LP,X ∩ {(0, y1, x2, 0, t)} and the tangent plane to
LP,X at Q. We get a map

Ψ : Z1 × U1 → Z1+K(ε) × U1+K(ε)

Ψ(P,X) = (Q, TQLP,X).

Condition (3.44) tells us that

‖Ψ− Id‖C2,ν ≤ K(ε), (3.46)

where K(ε) → 0 as ε → 0. Therefore Ψ is invertible on an open set Ur,
and Ur is ε-close to U1. So, for ‖J − J0‖C2,ν ≤ ε small enough, by inverting
Ψ we get that for every point Q in Zr and any J-invariant disk Y through
Q lying in U q

r , we can find a couple (P,X) ∈ Z1 × U1 such that LP,X goes
through Q with tangent Y .

In particular we can find an embedded, J-invariant Legendrian disk which
goes through 0 with tangent ∂x1 ∧ J∂x1 .

Remark that, due to the smoothness of J , the same proof performed using
the space Cm,ν for any m ≥ 2 rather than C2,ν gives that the disks LP,X are
in fact C∞-smooth.

We have thus proved Proposition 5.

Remark again that we have actually shown more: in the coordinates
described in (3.45), for each couple (p,X), p ∈ Z1, X ∈ U1 ⊂ CP1 we can
find 22 an embedded, J-invariant Legendrian disk which goes through p with
tangent X.

This will be useful for the next results.

21In the sequel we will denote by EP,X the affine map which induces this change of
coordinates.

22The above proof actually yielded the result for an open set Ur with r close to 1, but
of course we can assume that it holds for r = 1.
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Dependence on the choice of coordinates. In the previous proof we
constructed, from each couple (p,X), p ∈ Z1, X ∈ U1 ⊂ CP1, a disk Lp,X

whose projection Lp,X in R4 is described, in suitable coordinates for which
X = ∂x1 ∧ ∂y2 , as a graph (x1, f1,−f2, y2). To make notations adapted to
what we want to develop in this section, we will write f p,X instead of f for
the function whose gradient describes the graph.

Given (p,X), in step 4 we chose uniquely the change of coordinates to
perform in order to write the equations that lead to the solution f p,X of
(3.35). We denote the affine map that induces the change of coordinates
by Ep,X . The function f p,X(x1, y2) solves equation (3.35) with coefficients
δ, β, σ, γ depending on Ep,X , therefore we will now write it as

Mp,X
ij f p,X

ij = δp,X
(
(f p,X)212 − (f p,X)11(f

p,X)22
)
− βp,X +

2∑

i,j=1

Ap,X
ij (f p,X)ij,

(3.47)
where Mp,X and Ap,X are as in (3.36) but we explicited the (p,X)-depen-

dence. All the functions in (3.47) are functions of (x1, y2), but we want to
see how the solution f p,X(x1, y2) changes with (p,X). In this section we will
denote by ∇X and ∇p the gradients with respect to the variables X ∈ U1 and
p ∈ Z1. The x1 and y2 derivatives will still be denoted by pedices i, j ∈ {1, 2}.

Lemma 3.2.1. As X ∈ U1 and p ∈ Z1 ⊂ R5, the solutions f p,X of the
corresponding equations (3.47) satisfy

for s, l ∈ {0, 1, 2}, ‖∇s
p∇l

Xf
p,X‖C2,ν ≤ K(ε), (3.48)

where K(ε) is a constant that goes to 0 as ε → 0 (so we can make K(ε) as
small as we want by dilating enough).

Proof. Differentiating (3.47) w.r.t. X we get:

Mp,X
ij (∇Xf

p,X)ij = (∇Xδp,X)
(
(f p,X)212 − (f p,X)11(f

p,X)22
)
+

+δp,X
(
2(f p,X)12(∇Xf

p,X)12 − (f p,X)11(∇Xf
p,X)22 − (f p,X)22(∇Xf

p,X)11
)
−

−∇Xβp,X + (∇XA
p,X)ij(f

p,X)ij + Ap,X
ij (∇Xf

p,X)ij − (∇XM
p,X)ij(f

p,X)ij .

The quantities ∇Xδp,X, ∇XMp,X , etc, are all bounded in C2,ν-norm by
some constant K (uniform in p and X) which depends on ‖J‖C2,ν and ‖E‖C2,ν .

Recalling that ‖f p,X‖C2,ν ≤ K(ε), by elliptic theory we get that ∇Xf p,X

satisfies

‖∇Xf
p,X‖C2,ν ≤ K(ε) + ‖∇Xβp,X‖C0,ν .
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Ep,X was chosen so that the function βp,X(x1, y2) satisfies βp,X(0, 0) = 0
for all (p,X). Therefore

for s, l ∈ {0, 1, 2} ∇s
p∇l

Xβp,X = 0 when evaluated at (x1, y2) = (0, 0).

Then it is not difficult to see that

for s, l ∈ {0, 1, 2}, ‖∇s
p∇l

Xβp,X‖C1 ≤ K(ε) for (x1, y2) ∈ D2.

Therefore
‖∇Xf

p,X‖C2,ν ≤ K(ε).

In an analogous fashion we can get estimates of the form

for s, l ∈ {0, 1, 2}, ‖∇s
p∇l

Xf
p,X‖C2,ν ≤ K(ε).

Legendrians as graphs on the same disk. For each couple (p,X) ∈
Z1 × U1, we have that the embedded disk LΨ−1(p,X) passes through p with
tangent X.

So far, each f p,X was produced in the system of coordinates induced by
Ep,X , so Lp,X was seen as a graph on X. However, thanks to (3.44), Lp,X is
also a C2,ν-graph over [0, 1] for any X ∈ U1. We will now look at all X ∈ U1

and at all Lp,X as graphs on [0, 1]. In particular we will concentrate on the
planes X through points (0, t) ∈ R4 ×R and on LΨ−1((0,t),X), the J-invariant
Legendrian which goes through (0, t) with tangent X.

Any X ∈ U (0,t)
1 , which is a J-invariant 2-plane through (0, t), is described

as the graph over ∂x1 ∧ ∂y2 ∼= [0, 1] of an affine R2-valued function

HX : (x1, y2)→ (hX
1 ,−hX

2 ).

If t = 0, we can use complex notation, identifying H0 = R4 with C2 as in
(3.45), so

∂x1 = (0, 1), J0(∂x1) = (0, i), ∂y1 = (1, 0), J0(∂y1) = (i, 0). (3.49)

Then, if X = [W1,W2], we have that HX can be expressed as

HX : z → ζ =
W1

W2
z.

Otherwise, if t 0= 0, HX is just an affine function since J(0,t) 0= J0 in
general.
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What about LΨ−1((0,t),X), the projection of LΨ−1((0,t),X) onto R4? It was

described as the graph of the function “gradient of fΨ−1((0,t),X)“ over the unit
disk in the 2-plane given by the second component of Ψ−1((0, t), X).

Of course, if we want to write it as a graph on ∂x1 ∧ ∂y2 , we will only
be able to do so on a restricted disk, for example {(x1, y2) : |x2

1 + y22| ≤ 1
2}.

To simplify the exposition, however, we will assume that fΨ−1((0,t),X) was
defined on a larger disk DX inside X so that, for any X ∈ U1, LΨ−1((0,t),X)

can be written as a graph on the unit disk {(x1, y2) : |x2
1 + y22| ≤ 1} in the

∂x1 ∧ ∂y2-plane.
We will denote by D0 the 2-dimensional unit disk, and we will identify it

with {(x1, y2) : |x2
1 + y22| ≤ 1} in the ∂x1 ∧ ∂y2-plane.

It is not difficult to see that, for each choice of t and X, there are a diffeo-
morphism d from D0 to the enlarged disk DX and an affine transformation T
of R2 depending on X, t and Ψ−1((0, t), X) such that, over D0, LΨ−1((0,t),X)

is the graph of a function of the form

H t,X + F t,X : D0 → R2, with F t,X := T ◦ ∇fΨ−1((0,t),X) ◦ d. (3.50)

Both d and T, due to the estimate (3.46), have bounded derivatives

n, s, l ∈ {0, 1, 2}, ‖∇n
z∇s

p∇l
XT‖L∞ + ‖∇n

z∇s
p∇l

Xd‖L∞ ≤ K <∞, (3.51)

uniformly in X ∈ U1, p ∈ Z1 and z ∈ D0.
For X ∈ U1, from the definition (3.50), using (3.51), (3.48) and (3.46),

we get, for n, s, l ∈ {0, 1, 2},

‖∇n
z∇s

p∇l
XF

t,X‖L∞ ≤ K‖∇n
z∇s

p∇l
Xf

Ψ−1((0,t),X)‖L∞ ≤ K(ε), (3.52)

with K(ε)→ 0 as ε→ 0.

Construction of the 3-dimensional surfaces: polar foliation. Us-
ing coordinates as in (3.49), so that the hyperplane H0 is identified with C2,
we expressed each LΨ−1((0,t),X) as the graph of the following function

H t,X + F t,X : D0 → R2 = C,

which is a perturbation of the affine function H t,X representing the projection
on R4 of the disk X through (0, t).

For the construction that we are about to make, we need to fix a smooth
determination of vectors VX ∈ X for X ∈ U1. There are many ways to do so,
we will do it as follows. In our coordinates ∂x1 ∈ [0, 1]. Then, in the unit disk
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centered at 0 inside X, chose the vector vX that minimizes23 the distance to
∂x1 and take VX = vX

|vX | .

For any t ∈ (−1, 1), and for each X ∈ U1, at the point (0, t) ∈ R5 (here
0 ∈ R4), take the 2-plane given by X t := VX ∧ J(0,t)(VX). In this notation,
X = X0. For each X and t, consider the Legendrian LΨ−1((0,t),Xt) going
through the point (0, t) with tangent X t: we will now denote it by L̃t,Xt . As
t ∈ (−1, 1), the union

ΣX
0 := ∪t∈(−1,1)L̃t,Xt (3.53)

gives rise to a 3-dimensional smooth surface, as can be seen by writing the
parametrizaton of ΣX

0 on D0 × (−1, 1) and using (3.52) 24.
Each L̃t,Xt has a projection L̃0,Xt onto R4 which has a representation as

the graph on D0 of the function

HXt
+ FXt

: D0 → R2 = C.

From L̃0,Xt , the surface L̃t,Xt is uniquely recovered by lifting with starting
point (0, t).

Now with a little more effort we can show:

Proposition 7. For X ∈ U1, the 3-surfaces ΣX
0 foliate the set {(ζ , z, t) :

|ζ | ≤ |z| ≤ 1, |t| ≤ 1
2} ⊂ C× C× R = R5.

Remark 3.2.2. Following the terminology used in chapter 2, we can restate
this proposition by saying that there exist locally polar foliations made of
3-surfaces built from embedded, Legendrian, J-invariant disks.

Proof. Choose any point q = (ζq, zq, tq) ∈ B5 ⊂ R5 = C × C × R which lies
inside the set {|ζ | ≤ |z| ≤ 1, |t| ≤ 1

2}. We need to show the existence and
uniqueness of X ∈ U1 such that q ∈ ΣX

0 .
For X ∈ U1, denote by Q = Q(q,X) the intersection point

Q = Q(q,X) := ΣX
0 ∩ {(ζ , z, t) : z = zq, t = tq}. (3.54)

This is well-defined because |TΣX
0 −X| ≤ K(ε) and the 3-plane spanned

by X and ∂t is transversal to the 2-plane {(ζ , z, t) : z = zq, t = tq} and they
have a unique intersection point. By intersection theory, for ε small enough,
Q is well defined for all X ∈ U1.

23There is no geometric meaning in this particular choice, we are just suggesting a
smooth determination of vectors, any choice would work the same.

24Actually, from (3.52) we get that ΣX
0 is C2-smooth. However, (3.48) and (3.52) can be

proved in the same way for higher-order derivatives, so we can get that ΣX
0 are as smooth

as we want.
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Consider the map

χq : U1 → CP1

X → [ζQ, zq]
(3.55)

Due to the structure of ΣX
0 , the intersection Q is actually realized, for a

certain t, as

Q = L̃0,Xt ∩ {(ζ , z, t) : z = zq, t = tq} (3.56)

and we can also write

χq(X) = [(HXt
+ FXt

)(zq), zq] (3.57)

for the right t.
We will now prove that χq is a C1-perturbation of the identity map, which

is nothing else but

Id : U1 → U1

X → [HX(zq), zq].
(3.58)

More precisely, we will prove that, independently of q,

‖∇(χq − Id)‖L∞ ≤ K(ε), (3.59)

for a constant K(ε) that is an infinitesimal of ε.
We can use the chart X = [W1,W2] =

W1
W2

on U1 ⊂ CP1. Then we must
estimate

‖∇(χq − Id)‖L∞ =

∥∥∥∥∥
∇X

(
(HXt

+ FXt
)(zq)

zq
− HX(zq)

zq

)∥∥∥∥∥
L∞

≤
∥∥∥∇z∇X

(
HXt −HX + FXt

)∥∥∥
L∞
≤

∥∥∥∇z∇X(H
Xt −HX)

∥∥∥
L∞

+
∥∥∥∇z∇XF

Xt
∥∥∥
L∞
≤ K(ε),

thanks to (3.52).
Thus χq is a diffeomorphism from U1 to an open subset of CP1 that tends

to U as ε → 0. This means that we can invert χq and, for any chosen q we

can find Xq := (χq)−1([ζq, zq]) such that q ∈ Σ
Xq

0 .
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Construction of the 3-dimensional surfaces: parallel foliation.
We are always using coordinates as in (3.49), so that H0 is identified with
C2.

Choose a J-invariant plane X ∈ U1 passing through 0. We are going to
produce a family of “parallel” 3-dimensional surfaces which foliate a neigh-
bourhood of 0, where parallel means the following: each 3-surface has tangent
planes which are everywhere ε-close to X ∧ ∂t in C2,ν-norm.

This can be done in several ways, we choose the following. Take the
vector v in the unit ball inside X which minimizes the distance to ∂x1, and
set V = v

|v| . Parallel transport (in the euclidean sense25) the vector V to each

point P in the 2-plane {z = 0, t = 0} and consider the family of J-invariant
planes

{XP} := {V ∧ JP (V )}P∈{z=0,t=0}.

Now, for each P , consider the line of points that project to P via π :
R5 → R4, and denote them by (P, t). Take the Legendrian, J-invariant 2-
surface going through the point (P, t) with tangent X t

P = V ∧ J(P,t)(V ): we
will denote it by L̃P,t,X . Define the 3-dimensional surface

ΣX
P := ∪t∈(−1,1)L̃P,t,X. (3.60)

As in (3.53), this is a smooth 3-surface.

Proposition 8. For a fixed X ∈ U1, the 3-surfaces

{ΣX
P }P∈{z=0,t=0,|ζ|≤1}

foliate the set {(ζ , z, t) : |ζ | ≤ 1, |z| ≤ 1, |t| ≤ 1
2} ⊂ C× C× R = R5.

Remark 3.2.3. Again, using the terminology of chapter 2, we are showing
that there exist (locally) families of parallel foliations made of 3-surfaces built
from embedded, Legendrian, J-invariant disks. Each family is determined by
a "direction" X at 0.

Proof. Take any q = (ζq, zq, tq) ∈ B5 ⊂ R5 = C × C × R. Denote by
Q = Q(q,X) the intersection point

Q = Q(q, P ) := ΣX
P ∩ {(ζ , z, t) : z = zq, t = tq}. (3.61)

This is well-defined because |TΣX
P −X| ≤ K(ε) and the 3-plane spanned

by X and ∂t is transversal to the 2-plane {(ζ , z, t) : z = zq, t = tq} and they
have a unique intersection point. By intersection theory, for ε small enough,
Q is uniquely well-defined for all P ∈ {z = 0, t = 0}.

25Again, this is just a possible way of doing it: there is no direct geometric meaning.
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Consider the map

Γq : D2
1 ⊂ {z = 0, t = 0} → R2 ∼= {(ζ , z, t) : z = zq, t = tq}

P → Q = Q(q, P ) .
(3.62)

With an argument very similar to the one in proposition 7, we can prove
that Γq is a C1-perturbation of the identity map and therefore the family

{ΣX
P }P∈{z=0,t=0,|ζ|≤1} (3.63)

foliates {|ζ | ≤ 1, |z| ≤ 1, |t| ≤ 1
2}.

Remark, from the construction of these 3-surfaces Σ, that each of them is
made by attaching J-invariant Legendrian disks along a fiber of the contact
structure. This fact yields the following fundamental

positive intersection property: each Σ constructed above has the
property of intersecting positively any transversal J-invariant Legendrian.

The proof is just analogous to the corresponding corollary 2.1.1 of chapter
2. The key point is that two transversal J-invariant 2-planes in a hyperplane
Hp intersect themselves positively with respect to the orientation inherited
by Hp. The 3-surfaces Σ are smooth perturbations of a 3-plane of the form
X ∧ ∂t for a J-invariant 2-plane X, so the result follows by continuity.

At this stage we have all the ingredients to show theorem 3.0.2 by fol-
lowing the proof of sections 2.2, 2.3, 2.4 and 2.5. For the convenience of
the reader, here follows a brief overview of the forementioned proof with
references to the corresponding sections.

3.2.2 Structure of the proof

A standard blow-up procedure, combined with the almost-monotonicity
formula for semi-calibrated cycles26, yields that C has a “stratified” structure:
the multiplicity is well-defined and integer-valued at every point and, for

26Recall that in section 3.1.3 we remarked that J-invariant 2-planes are just the semi-
calibrated ones for a suitable 2-form Ω, therefore an almost-monotonicity formula (see [47]
and the appendix to this thesis) holds with respect to the metric induced by J and Ω.
Precisely, for any point x0, denoting by Br the geodesic ball of radius r, we have that
M(C Br(x0))

r2
= R(r) +O(r) for a function R which is monotonically non-increasing as

r ↓ 0 and tends to the multiplicity at x0 as r ↓ 0, and a function O(r) which is infinitesimal.
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Q ∈ N, the set CQ of points having multiplicity ≤ Q is open in M. This
allows a localization of the problem by restricting to CQ and we can prove
the final result by induction on the multiplicity for increasing integers Q.

A first outcome of the existence of foliations with the positive intersection
property, is a self-contained proof of the uniqueness of tangent cones (section
2.3). This result was proved for general semi-calibrated cycles in [47] and for
area-minimizing ones in [62], using different techniques.

Next, still exploiting the algebraic property of positive intersection, we
can locally describe our current C as a multi-valued graph from a two-
dimensional disk into R3 (section 2.4). The inductive step is divided into
two parts: in the first we show that singularities of order Q cannot accumu-
late onto a singularity of the same multiplicity (section 2.4.5). In the second
part, we prove that singularities of multiplicity ≤ Q− 1 cannot accumulate
on a singularity of order Q (section 2.5).

In the first part of the inductive step, we translate the J-invariance con-
dition into a system of first-order PDEs for the multi-valued graph. These
equations are “perturbations” of the classical Cauchy-Riemann equations, al-
though in this case we have two real variables and three functions. We prove
a W 1,2-estimate on the average of the branches of the multi-valued graph
(theorem 2.4.2). Then we complete the proof of the first part of the in-
ductive step by suitably adapting the unique continuation argument used in
[58].

For the second part of the inductive step (section 2.5) we use a homo-
logical argument. On a space modelled on C × R, we produce a S2-valued
function u which allows to “count” the lower-multiplicity singularities by look-
ing at its degree on the level sets of |u| (lemma 2.5.4). A lower bound for
the degree (lemma 2.5.5) then yields the result. This argument is inspired
to the one used in [58], however the fifth coordinate induces a more involved
and rather lengthy argument.

3.3 Final remarks

Examples. Let us illustrate some examples where the regularity result
of theorem 3.0.2 applies.

• Let Y be a Calabi-Yau 3-fold and denote by Θ the so-called holomorphic
volume form and by β the symplectic form. Any27 hypersurface M5 ⊂ Y of

27A Calabi-Yau 3-fold has real dimension 6. By hypersurface we mean here that the
real codimension is 1.
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contact type inherits a contact structure from the symplectic structure of Y
(see [41]), namely the structure associated to the one-form α = ιNβ, where
N denotes a unit Liouville vector field and ι denotes the interior product.
The form Re(ιNΘ) fulfils the requirements of proposition 4.

A typical situation is the following: let Y = C3, with the standard com-
plex structure I, and Θ = dz1∧dz1∧dz3. Take f to be a smooth and strictly
plurisubharmonic function on C3. Choose M5 to be any level set {f = k}, for
k ∈ R; this is a hypersurface of contact type, with N = ∇f

|∇f | the normalized

gradient field (see [23]). The 2-form

ω = Re(ιNΘ)

(restricted to M) is a horizontal two-form for this contact structure and
satisfies ω∧dα = 0, ω∧ω = (dα)2. Moreover ω is of comass 1 (for the metric
induced on M by C3), it is therefore a semi-calibration. Then we deduce from
proposition 4 that integral cycles semi-calibrated by ω are smooth except
possibly at isolated point singularities.

This yields, for example, a regularity result on some Special Lagrangian
cycles in C3 that are invariant under a non-zero vector field. Recall that a
current is Special Lagrangian if it is calibrated by the (closed) form Re(Θ) =
Re(dz1 ∧ dz1 ∧ dz3). In particular Special Lagrangians are mass-minimizers.

For example, a Special Lagrangian cycle that is invariant under the gra-
dient flow of a smooth and strictly plurisubharmonic function f : C3 →
(−∞,+∞) has, in every bounded region, a singular set made of at most
finitely many flow lines of ∇f .

• In the previous framework, we can also recover the Special Legendrians
in S5. Consider the canonical embedding E : S5 ↪→ C3 and denote by N the
radial vector field N := r ∂

∂r in C3. The sphere inherits from the symplectic

manifold (C3,
3∑

i=1

dzi ∧ dzi) the contact structure given by the form

γ := E∗ιN (
3∑

i=1

dzi ∧ dzi).

The 3-form Ω = Re(dz1∧dz2∧dz3) is known as Special Lagrangian calibration
in C3. The Special Legendrian semi-calibration is defined as the following 2-
form on S5 (of comass 1):

ω := E∗ιNΩ = Re(z1dz
2 ∧ dz3 + z2dz

3 ∧ dz1 + z3dz
1 ∧ dz2).
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ω-semicalibrated cycles are known as Special Legendrians.
We remark that there is a natural projection Π : S5 → CP2 (Hopf projec-

tion) whose kernel is given by the Reeb vectors of the contact distribution.
The Reeb vector field can be integrated to obtain closed orbits which are
nothing but the Hopf fibers eiθp, for p ∈ S5 and θ ∈ [0, 2π). Every Special
Legendrian curve is projected via Π to a minimal Lagrangian in CP2 (see
[48]).

• The same as in the first example of this section applies, more generally,
in a contact 5-manifold with an SU(2)-structure, as defined in [13]. In the
mentioned work, it is proved that, if the data are analytic and hypo, then this
5-manifold embeds in a Calabi-Yau 3-fold. Our regularity result, however,
only requires the SU(2)-structure on a contact 5-manifold.

• A special case of interest is that of a Sasaki-Einstein 5-manifold (see
[8] and the related notion of hypo-contact SU(2)-structures in [13]). In this
case, denoting by α the contact form, the structure I, compatible with dα,
is integrable on the horizontal subbundle and there exists a holomorphic 2-
form Ω that is parallel along the horizontal subbundle: with reference to
proposition 4, we can take ω = Re(eiφΩ), for a fixed φ ∈ [0, 2π], and get the
regularity for ω-semicalibrated cycles.

It is interesting that, in such a contact manifold, a legendrian curve is
minimal (i.e. the mean curvature vanishes) if and only if it is semicalibrated
by ω = Re(eiφΩ), for a fixed φ ∈ [0, 2π].

This is the analog of what happens for Lagrangians in Calabi-Yau mani-
folds (see [30] III.2.D) and the proof is just the same as in that case.

• Let us look at the following situation, [49]. Let S3 be the unit sphere
in R4 and consider the following Riemannian 5-manifold

N5 = {(e1, e2) ∈ S3 × S3 : 〈e1, e2〉R4 = 0},

endowed with the metric inherited from R4 × R4.
The tangent space to N5 at a point (e1, e2), is identified with those U =

(U1, U2) ∈ R4 × R4, such that 〈U1, e1〉R4 = 0, 〈U2, e2〉R4 = 0 and 〈U1, e2〉R4 +
〈U2, e1〉R4 = 0.

At every (e1, e2) ∈ N5, consider the tangent vector v = (−e2, e1) ∈
T(e1,e2)N

5 and take the orthogonal hyperplane H(e1,e2) = v⊥ ⊂ T(e1,e2)N
5.

The distribution H defines a contact structure on N5. It can be described
by the one-form α(e1,e2)(U) = 1

2 (〈e1, U2〉R4 − 〈e2, U1〉R4) with associated sym-
plectic form Ω(U, V ) = 〈U1, V2〉R4 − 〈V1, U2〉R4.

By integrating the Reeb vectors v, we get closed fibers isomorphic to S1

of the form
{(cos θe1 − sin θe2, sin θe1 + cos θe2)}θ∈[0,2π).
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The map28

Π : N5 → G2(R4) ∼= CP1 × CP1

(e1, e2) → e1 ∧ e2

is an orthogonal projection whose kernel is given by the Reeb vectors.
Define the following 2-form on N5

ω(U, V ) := e1 ∧ e2 ∧ (U1 ∧ V2 − V1 ∧ U2),

for U, V tangent vectors to N5 at (e1, e2).

It can be checked that ω is a horizontal form of comass 1 and our regularity
result applies to ω-semicalibrated cycles.

• In [61], the authors introduce the notions of Contact Calabi-Yau mani-
folds and Special Legendrians in Contact Calabi-Yau manifolds. With regard
to the notation in [61], the two-form Re ε is a calibration (it is assumed to be
closed) and Proposition 4 yields the regularity of calibrated cycles in dimen-
sion 5. We still get the regularity result if we drop the closedness assumption
on ε.

What else? We conclude with a short motivational digression regarding
theorem 3.0.2, in connection to general calibrations.

For a general calibrating 2-form ϕ in a 5-dimensional manifold M , let
us look, at every point, at the set Gϕ of calibrated 2-planes: as explained
in [30] (Thm. II 7.16) or [34] (Thm. 4.3.2), there exist suitable orthogonal
coordinates at the chosen point such that Gϕ is the same as the set of 2-planes
calibrated by one of the following canonical forms

dx1 ∧ dx2 + dx3 ∧ dx4 or dx1 ∧ dx2.

At the points where the first case is realized, we can define an almost complex
structure J such that calibrated 2-planes are identified with the J-invariant
ones. If moreover the manifold M is contact, then, as we already discussed,
a calibrated manifold (or also an integer multiplicity rectifiable current) can
have as tangents only those J-invariant planes which are Lagrangian for the
symplectic form on the horizontal distribution. Therefore, if we require the
calibration to admit, for every point p and calibrated 2-plane Π at p, a
calibrated submanifold passing through p with tangent Π, the corresponding
J must fulfil conditions (3.8) and (3.9).

28Here G2(R4) denotes the Grassmannian of 2-planes in R4. We have the identification
G2(R4) ∼= CP1 × CP1 by splitting into the self-dual and anti self-dual components.
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In many instances, a calibration is considered interesting if it admits a
lot of calibrated submanifolds29. Indeed, the richer the family of calibrated
submanifolds is, more examples of area-minimizing surfaces and their possible
singularities can we get. On a contact 5-manifold, therefore, our assumption
on J includes, in some sense, the most generic cases of calibrations.

This 5-dimensional situation can be considered as the analogue of the
one addressed in [50] and [58] in dimension 4, or in [51] for general even
dimension, where the corresponding regularity for J-holomorphic cycles is
proven.

29This point of view is present both in [30] and in [34].



Chapter 4

Tangent cones to positive (1, 1)
cycles

In this chapter we prove a uniqueness result for tangent cones to positive
(1, 1)-De Rham currents of finite mass and zero boundary in arbitrary almost
complex manifolds. Absolute uniqueness is known to fail (already in Cn)
and our result applies to non-isolated points of positive density. The key
idea is an implementation, for currents in an almost complex setting, of the
classical blow up of curves in algebraic or symplectic geometry. Unlike the
classical approach in complex manifolds, we cannot rely on plurisubharmonic
potentials. The content of this chapter is [6] and an overview was given in
section 1.5.3. We nonetheless recall the setting briefly, in order to tress a few
important points that are needed later.

Let (M, J) be a smooth almost complex manifold of dimension 2n + 2
(with n ∈ N∗), endowed with a non-degenerate 2-form ω compatible with J .
If dω = 0 then we have a symplectic form, but we will not need to assume
closedness. Let g be the associated Riemannian metric, g(·, ·) := ω(·, J ·).

The form ω is a semi-calibration on M. A useful equivalent charac-
terization for the fact that a unit simple 2-vector at x is in Gx, i.e. it is
ωx-calibrated, is obtained as follows.

Testing on w1 ∧ w2 such that w1 and w2 are unit orthogonal vectors at
x for gx and recalling that J is an othogonal endomorphism of the tangent
space we get

ωx(w1 ∧ w2) = 1⇔ gx(Jx(w1), w2) = 1⇔ Jx(w1) = w2. (4.1)

Thus a 2-plane is in Gx if an only if it is Jx-invariant or, in other words,
if an only if it is Jx-holomorphic.

155
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So an equivalent way to express ω-positiveness for a current T (see section
1.4 for the usual definition) is that ‖T‖-a.e. *T belongs to the convex hull
of J-holomorphic simple unit 2-vectors, in particular *T itself is J-invariant.
For this reason ω-positive normal cycles are also called positive (1, 1)-normal
cycles. Remarkably the (1, 1)-condition only depends on J , so a positive
(1, 1)-cycle is ω-positive for any J-compatible couple (ω, g).

As described in section 1.5.3, we are concerned with the study of tangent
cones to positive (1, 1)-cycles. Consider a dilation of T around x0 of factor
r which, in normal coordinates around x0, is expressed by the push-forward

of T under the action of the map
x− x0

r
:

(Tx0,r B1)(ψ) :=

[(
x− x0

r

)

∗
T

]
(χB1ψ) = T

(
χBr(x0)

(
x− x0

r

)∗

ψ

)
.

(4.2)
The current Tx0,r is positive for the two-form ωx0,r :=

1
r2 (r|x−x0|)∗ω and

with respect to the metric gx0,r(X, Y ) := 1
r2 g ((r|x− x0|)∗X, (r|x− x0|)∗Y ).

We have the equality M(Tx0,r B1) = M(T Br(x0))
r2 , where the masses are

computed respectively with respect to gx0,r and g.

The fact that
M(T Br(x0))

r2
is monotonically almost-decreasing as r ↓ 0

gives that, for r ≤ r0 (for a small enough r0), we are dealing with a fam-
ily of currents {Tx0,r B1} that satisfy the hypothesis of Federer-Fleming’s
compactness theorem (see [28] page 141) with respect to the flat metric (the
metrics gx0,r converge, as r → 0, uniformly to the flat metric g0).

Thus there exist a sequence rn → 0 and a rectifiable boundaryless current
T∞ such that

Tx0,rn B1 → T∞.

This procedure is called the blow up limit and the idea goes back to De Giorgi
[17]. Any such limit T∞ turns out to be a cone (a so called tangent cone
to T at x0) with density at the origin the same as the density of T at x0.
Moreover T∞ is ωx0-positive.

The main issue regarding tangent cones is whether the limit T∞ depends
or not on the sequence rn ↓ 0 yielded by the compactness theorem, i.e.
whether T∞ is unique or not. This question was already raised in [30] and
much is still to be found out.

The fact that a current possesses a unique tangent cone is a symptom of
regularity, roughly speaking of regularity at infinitesimal level. It is generally
expected that currents minimizing (or almost-minimizing) functionals such
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as the mass should have fairly good regularity properties. This issues are
however hard in general.

As discussed in section 1.5.3, the uniqueness of tangent cones is only
known for some particular classes of integral currents. Passing normal cur-
rents, things get harder and the uniqueness of tangent cones to ω-positive
normal 2-cycles fails in general, already in the case of the complex manifold
(Cn, J0), where J0 is the standard complex structure: this was proven by
Kiselman [36]. Further works extended the result to arbitrary dimension and
codimension (see [9] and [10], where conditions on the rate of convergence of
the mass ratio are given, under which uniqueness holds).

While in the integrable case (Cn, J0) positive cycles have been studied
quite extensively, there are no results avaliable for (1, 1) cycles when the
structure J is almost complex.

In this work we prove the following result:

Theorem 4.0.1. Given an almost complex (2n + 2)-dimensional manifold
(M, J,ω, g) as above, let T be a (1, 1)-normal cycle, i.e. a ω-positive normal
2-cycle.

Let x0 be a point of positive density ν(x0) > 0 and assume that there is a
sequence xm → x0 of points xm 0= x0 all having positive densities ν(xm) and
such that ν(xm)→ ν(x0).

Then the tangent cone at x0 is unique and is given by ν(x0)!D" for a
certain Jx0-invariant disk D.

The notation !D" stands for the current of integration on D. Our proof
actually yields the stronger result stated in theorem 4.1.1.

In the integrable case, theorem 4.0.1 follows from Siu’s result [56], but in
the almost complex setting techniques ought to be different, due to the lack
of a plurisubharmonic potential for the current.

In a certain sense Siu’s result shows that, in the integrable case, unique
continuation is still valid for positive (1, 1)-cycles if we only look at points of
positive density. Then we can roughly rephrase theorem 4.0.1 by saying that
unique continuation is valid at the infinitesimal level for these points.

In the next section we recall some facts on monotonicity and tangent
cones for ω-positive cycles and state the stronger theorem 4.1.1.

In section 4.2 we construct suitable coordinates, used in section 4.3 for
the almost complex implementation of the algebraic blow up. In section 4.3
we also prove that the proper transform actually yields a current of finite
mass and without boundary. The appendix contains two lemmas: pseudo
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holomorphic maps preserve both the (1, 1)-condition and the densities. With
all this, in section 4.4 we conclude the proof.

In section 4.5, for sake of completeness, we revisit the main aspects in
the counterexample [36] to the general uniqueness of tangent cones; the al-
gebraic blow up proves effective for a clearer picture of the geometry of this
counterexample.

4.1 Tangent cones to (1, 1)-normal cycles.

Given an almost complex (2n+ 2)-dimensional manifold (M, J,ω, g), let
T be a ω-positive normal 2-cycle. Tangent cones are a local matter, it suffices
then to work in a chart around the point under investigation.

One of the key properties of positive currents is the following almost
monotonicity property for the mass-ratio. The statement here follows from
proposition 11 in the appendix, which is in turn borrowed from [47].

Proposition 9. Let T be a ω-positive normal cycle in an open and bounded
set of R2n+2, endowed with a metric g and a semicalibration ω. We assume
that g and ω are L-Lipschitz for some constant L > 1 and that 1

5I ≤ g ≤ 5I,
where I is the identity matrix, representing the flat metric.

Let Br(x0) be the ball of radius r around x0 with respect to the metric gx0

and let M be the mass computed with respect to the metric g. There exists
r0 > 0 depending only on L such that, for any x0 and for r ≤ r0 the mass

ratio M(T Br(x0))
πr2 is an almost-increasing function in r, i.e.

M(T Br(x0))

πr2
=

R(r) + or(1) for a function R that is monotonically non-increasing as r ↓ 0
and a function or(1) which is infinitesimal of r.

Independently of x0, the perturbation term or(1) is bounded in modulus
by C · L · r, where C is a universal constant.

The fact that r0 and C do not depend on the point yield that the density
ν(x) of T is an upper semi-continuous function; the proof is rather standard.

Another very important consequence of monotonicity is that the mass
is continuous and not just lower semi-continuous under weak convergence
of semicalibrated or positive cycles. Basically this is due to the fact that
computing mass for a ω-positive cycle amounts to testing it on the form ω,
as described in (1.4); testing on forms is exactly how weak convergence is
defined.

This fact is of key importance for this work and will be formally proved
when needed (see (4.26) in section 4.4).
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Let us now focus on tangent cones. If we perform the blow up procedure
around a point of density 0, then the limiting cone is unique and is the zero-
current. So in this situation there is no issue about the uniqueness of the
tangent cone.

We are therefore interested in the limiting behaviour around a point x0

of strictly positive density ν(x0) > 0.

From [9] we know that any normal positive 2-cone in Cn+1 is a positive
Radon measure on CPn. Combining1 this with the fact that a tangent cone
T∞ at x0 to a ω-positive cycle is ωx0-positive and has density ν(x0) at the
vertex, we get that T∞ is represented by a Radon measure, with total measure
ν(x0), on the set of ωx0-calibrated 2-planes. Precisely, there exists a positive
Radon measure τ on CPn such that, denoting by DX the unit disk in B2n+2

1 (0)
corresponding to X ∈ CPn, the action of T∞ on any two-form β is expressed
as

T∞(β) =

∫

CPn

{∫

DX

〈β, *DX〉 dL2

}
dτ(X). (4.3)

Let x0 be a point of positive density ν(x0) > 0 and assume that there is
a sequence xm → x0 of points of positive density ν(xm) ≥ κ > 0 for a fixed
κ > 0. By upper-semicontinuity of ν it must be ν(x0) ≥ κ.

Blow up around x0 for the sequence of radii |xm−x0|: up to a subsequence
we get a tangent cone T∞. What can we immediately say about this cone?

With these dilations, the currents Tx0,|xm−x0| always have a point ym :=
xm−x0
|xm−x0| on the boundary of B1 with density ν(ym) ≥ κ. By compactness we
can assume ym → y ∈ ∂B1. By monotonicity, for any fixed δ > 0, localizing
to the ball Bδ(y) we find, using (1.4) and recalling from (4.2) that T∞ and
Tx0,r are positive respectively for ωx0 and ωx0,r,

M(T∞ Bδ(y)) = T∞(χBδ(y)ωx0) = lim
m

Tx0,|xm−x0|(χBδ(y)ωx0) =

lim
m

Tx0,|xm−x0|

[
χBδ(y)

|xm − x0|2
(|xm − x0|(x− x0))

∗ ω

]
=

= lim
m

M(Tx0,|xm−x0| Bδ(y)) ≥ κπδ2,

which2 implies that y has density ν(y) ≥ κ.

1As explained in [36] and [9], the family of possible tangent cones at a point x0 must
be a convex and connected subset of the space of ωx0

-positive cones with density ν(x0).
2This computation is an instance of the fact that the mass is continuous under weak con-

vergence of positive currents, unlike the general case when it is just lower semi-continuous.
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Therefore T∞ “must contain” κ!D", where D is the holomorphic disk
through 0 and y; i.e. T∞−κ!D" is a ωx0-positive cone having density ν(x0)−κ
at the vertex.

More precisely, what we have just shown the following well-known

Lemma 4.1.1. Let x0 be a point of positive density ν(x0) > 0 and assume
that there is a sequence xm → x0, xm 0= x0, of points of positive density
ν(xm) ≥ κ > 0 for a fixed κ > 0. Let {yα}α∈A be the set of accumulation
points on ∂B1 for the sequence ym := xm−x0

|xm−x0| . Let Dα be the holomorphic

disk through 0 and yα (for the structure Jx0). Then for every α ∈ A there is
at least a tangent cone to T at x0 of the form κ!Dα"+ T̃α, for a ωx0-positive
cone T̃α.

In other words, each κ!Dα" “must appear” in at least one tangent cone.
What about all other (possibly different) tangent cones that we get by choos-
ing different sequences of radii?

The following result shows that any tangent cone to T at x0 “must con-
tain” each disk κ!Dα", for all α ∈ A. Let H : S2n+1 → CPn be the standard
Hopf projection.

Theorem 4.1.1. Given an almost complex (2n + 2)-dimensional manifold
(M, J,ω, g), let T be a ω-positive normal 2-cycle.

Let x0 be a point of positive density ν(x0) > 0 and assume that there is
a sequence of points {xm} such that xm → x0, xm 0= x0 and the xm have
positive density ν(xm) ≥ κ for a fixed κ > 0.

Let {yα}α∈A be the set of accumulation points in CPn for the sequence

ym := H
(

xm−x0
|xm−x0|

)
. Let Dα be the holomorphic (for the structure Jx0) disk

in Tx0 M containing 0 and H−1(yα).
Then the points yα’s are finitely many and any tangent cone T∞ to T at

x0 is such that T∞ −⊕ακ!Dα", is a ωx0-positive cone.

Remark 4.1.1. It follows that the cardinality of the yα’s is bounded by
⌈
ν(x0)
κ

⌉
.

In particular, theorem 4.0.1 follows from this result.

4.2 Pseudo holomorphic polar coordinates

T is ω-positive 2-cycle of finite mass in a (2n + 2)-dimensional almost
complex manifold endowed with a compatible metric and form, (M, J,ω, g);
T is also called a positive (1, 1)-normal cycle.

Since tangent cones to T at a point x0 are a local issue it suffices to work in
a chart. We can assume straight from the beginning to work in the geodesic
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ball of radius 2, in normal coordinates centered at x0; for this purpose it
is enough to start with the current T already dilated enough around x0.
Always up to a dilation, without loss of generality we can actually start with
the following situation.

T is a ω-positive normal cycle in the unit ball B2n+2
2 (0), the coordinates

are normal, J is the standard complex structure at the origin, ω is the stan-
dard symplectic form at the origin, ‖ω−ω0‖C2,ν(B2n+2

2 ) and ‖J−J0‖C2,ν(B2n+2
2 )

are small enough.

The dilations needed for the blow up are expressed by the map
x

r
for r > 0

(we are in a normal chart centered at the origin). So in these coordinates we
need to look at the family of currents

T0,r :=
(x
r

)

∗
T.

It turns out effective, however, to work in coordinates adapted to the
almost-complex structure, as we are going to explain in this section.

With coordinates (z0, ...zn) in Cn+1, we use the notation (ε is a small
positive number)

S̃ε := {(z0, z1, ...zn) ∈ B2n+2
1+ε ⊂ Cn+1 : |(z1, ..., zn)| < (1 + ε)|z0|}. (4.4)

We have a canonical identification of X = [z0, z1, ..., zn] ∈ CPn with the
2-dimensional plane DX = {ζ(z0, z1, ..., zn) : ζ ∈ C}, which is complex for
the standard structure J0.

As X ranges in the open ball

Vε ⊂ CPn, Vε := {[z0, z1, ..., zn] : |(z1, ..., zn)| < (1 + ε)|z0|},
the planes DX foliate the sector S̃ε. We thus canonically get a polar

foliation of the sector, by means of holomorphic disks.

Let the ball (of radius 2) B2n+2
2 ⊂ R2n+2 be endowed with an almost

complex structure J . The same set as in (4.4), this time thought of as a
subset of (B2n+2

2 , J), will be denoted by Sε.
We can get a polar foliation of the sector S0, by means of J-pseudo holo-

morphic disks; this is achieved by perturbing the canonical foliation exhibited
for S̃ε. The case n = 1 is lemma A.2 in the appendix of [50], the proof is
however valid for any n: here is the statement.

Existence of a J-pseudo holomorphic polar foliation. There exists
α0 > 0 small enough such that, if ‖J − J0‖C2,ν(B2n+2

2 ) < α0 and J = J0 at the
origin, then the following holds.
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There exists a diffeomorphism

Ψ : S̃ε → (B2n+2
2 , J) , (4.5)

continuous up to the origin, with Ψ(0) = 0, with the following properties
(see top picture of figure 4.1):

(i) Ψ sends the 2-disk DX ∩ S̃ε represented by X = [z0, z1, ...zn] ∈ CPn to
an embedded J-pseudo holomorphic disk through 0 with tangent DX

at the origin;

(ii) the image of Ψ contains S0 = B2n+2
1 ∩ {|(z1, ..., zn)| < |z0|};

(iii) ‖Ψ−Id‖C2,ν(Sε) < C0, where C0 is a positive constant that can be made
as small as wished by assuming α0 small enough.

The collection {Ψ
(
DY

)
: Y ∈ Vε} of these embedded J-pseudo holomor-

phic disks foliates a neighbourhood of the sector S0; we will call it a J-pseudo
holomorphic polar foliation.

The proof (see [50]) also shows that, in order to foliate S0, the ε needed
in (4.5) can be made small by taking α0 small enough.

Rescale the foliation. We are now going to use this polar foliation to
construct coordinates adapted to J .

The result in [50] actually shows that there exists α0 such that for all
α ∈ [0,α0], if ‖J − J0‖C2,ν(B2n+2

2 ) = α and J = J0 at the origin, then there
is a map Ψα yielding a polar foliation with ‖Ψα − Id‖C2,ν(Sε) < oα(1) (an
infinitesimal of α).

We make use however only of the result for α0, as we are about to explain.
When we dilate the current T in normal coordinates with a factor r and look
at the dilated current in the new ball B2n+2

2 , we find that it is of type (1, 1)
for Jr, where Jr := (λ−1

r )∗J , i.e. Jr(V ) := (λr)∗[J ((λ−1
r )∗V )].

As r → 0 it holds ‖Jr − J0‖C2,ν(B2n+2
2 ) → 0. Once we have applied

the existence result of the J-pseudo holomorphic polar foliation to the ball
B2n+2

2 endowed with J (assuming ‖J−J0‖C2 < α0), then we get a Jr-pseudo
holomorphic polar foliation of (B2, Jr) just as follows.

Let λ̃r be the dilation (in euclidean coordinates) x→ x
r ; we use the tilda

to remind that we are in S̃ε. The same dilation in normal coordinates in
Ψ(Sε) ⊂ (B2n+2

2 , J) is denoted by λr. Introduce the map (see figure 4.1)

Ψr : S̃ε →
(
B2n+2

2 , Jr

)

x → λr ◦Ψ ◦ λ̃−1
r (x).

(4.6)
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Sε

Sε

Ψ

Ψr

shrink dilate

D X Ψ (DX)

Figure 4.1: J-pseudo holomorphic polar foliation via Ψ and Jr-pseudo holo-
morphic polar foliation via Ψr.

Ψr clearly yields a Jr-pseudo holomorphic polar foliation for the ball
B2n+2

2 endowed with Jr. Remark, in view of (4.10), that Ψr can actually be
defined on the sector λ̃r(S̃ε).

From the proof in [50] we get that3 Ψr → Id in C1(Sε) as r → 0.

Adapted coordinates. The aim is to pull back the problem on S̃ε via
Ψ. Endow for this purpose S̃ε with the almost complex structure Ψ∗J .

Recall that we have in mind to look at T0,r in
(
B2n+2

2 , Jr

)
as r → 0. So

we are going to study the family

(
Ψ−1

r

)
∗

[
T0,r

(
Ψr(S̃ε)

)]

as r → 0. For each r > 0 these currents are (1, 1)-normal cycles in S̃ε

endowed with the almost complex structure Ψ∗
rJr, as proved in lemma B.0.1.

It is elementary to check that

Ψ∗
rJr = (λ̃−1

r )∗Ψ∗λ∗
rJr = (λ̃−1

r )∗Ψ∗J,

so we can equivalently look, for r > 0, at S̃ε with the almost complex struc-
ture (λ̃−1

r )∗Ψ∗J . The latter is obtained from (S̃ε,Ψ∗J) by dilation. Remark

3This follows, with reference to the notation in [50], by observing that the map Ξq on
page 84 (associated to the diffeomorphism that we called Ψ) satisfies Ξq → Id uniformly
as q → 0, by the condition that above we called (i). Then the C1,ν bounds there and
Ascoli-Arzelà’s theorem yield that Ψr → Id in C1.
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that Ψ∗
rJr → J0 in C0 as r → 0; moreover, assuming α0 small enough, the

fact that DΨ is C0-close to I yields |∇ (Ψ∗J)| ≤ 2|∇J |.
We are looking, in normal coordinates, at a sequence T0,rn := (λrn)∗T =(

x
rn

)

∗
T → T∞. Restricting to Ψrn(S̃ε), i.e. T0,rn Ψrn(S̃ε), we pull back the

problem on S̃ε and look at

(
Ψ−1

rn

)
∗

(
T0,rn Ψrn(S̃ε)

)
. (4.7)

Recalling that Ψr → Id in C1 and that T0,rn have equibounded masses
we have, for any two-form β,

(
Ψ−1

rn

)
∗

(
T0,rn Ψrn(S̃ε)

)
(β)− (Id)∗

(
T0,rn Ψrn(S̃ε)

)
(β)→ 0. (4.8)

This follows with a proof as in step 2 of lemma B.0.2, by writing the
difference (Ψrn

−1)∗β−Id∗β in terms of the coefficients of β. Then from (4.7)
and (4.8) we get

lim
n→∞

(
Ψ−1

rn

)
∗

(
T0,rn Ψrn(S̃ε)

)
=

(
lim
n→∞

(λrn)∗ T
)

Sε . (4.9)

In the last equality we are identifying the space with the tilda and the
one without. On the other hand by (4.5) we have

(
Ψ−1

rn

)
∗

(
T0,rn Ψrn(S̃ε)

)
=

[(
Ψ−1

rn

)
∗ λrn∗

(
T Ψ(S̃ε)

)]
S̃ε

=
[(

λ̃rn

)

∗

(
Ψ−1

)
∗

(
T Ψ(S̃ε)

)]
S̃ε.

(4.10)

What we have obtained with (4.9) and (4.10) is that, using Ψ, we can
just pull back T to S̃ε endowed with Ψ∗J , Ψ∗g and Ψ∗ω and dilate with λ̃r

and observe what happens in the limit. All the possible limits of this family
are cones, namely all the possible tangent cones to the original T , restricted
to the sector Sε.

All the information we need about the family T0,r S0 can be obtained in
this way. So we are substituting the blow up in normal coordinates with a dif-
ferent one, that behaves well with respect to J and has the same asymptotic
behaviour, i.e. it yields the same cones.

Remark that lemmas B.0.1 and B.0.2 tell us that (Ψ−1)∗

(
T Ψ(S̃ε)

)
is

still (1, 1) and the densities are preserved. Observe that we cannot use the

monotonicity formula for (Ψ−1)∗

(
T Ψ(S̃ε)

)
at the origin, since 0 is now a

boundary point. However the monotonicity for T reflects into the following
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Lemma 4.2.1. For the current (Ψ−1)∗

(
T Ψ(S̃ε)

)
, with respect to the flat

metric in Sε, it holds

M
(
(Ψ−1)∗

(
T Ψ(S̃ε)

)
(Br ∩ S̃ε)

)

πr2
≤ K (4.11)

with a constant K independent of r.

proof of lemma 4.2.1. We denote, only for this proof, by C the current

(Ψ−1)∗

(
T Ψ(S̃ε)

)
. Since |DΨ− I| ≤ crν (where I = D(Id) is the identity

matrix) and g = g0 +O(r2) (where g0 is the flat metric), we also get Ψ∗g =
g0 +O(rν).

Comparing the masses of C with respect to g0 and Ψ∗g we get

Mg0

(
C (Br ∩ S̃ε)

)
≤ (1 + |O(rν)|)MΨ∗g

(
C (Br ∩ S̃ε)

)
,

where Br is always euclidean. Now recall that, by the positiveness of the
currents,

MΨ∗g

(
C (Br ∩ S̃ε)

)
=

(
C (Br ∩ S̃ε)

)
(Ψ∗ω) = Mg

(
T Ψ(Br ∩ S̃ε)

)
.

The condition |Ψ− Id| ≤ cr1+ν implies that Ψ(Br ∩ S̃ε) ⊂ Br+cr1+ν ∩ Sε.
In Sε coordinates are normal, so, putting all together:

Mg0

(
C (Br ∩ S̃ε)

)

r2
≤ (1 + |O(rν)|) (r + cr1+ν)2

r2
Mg (T Br+cr1+ν)

(r + cr1+ν)2
,

which is equibounded in r by almost monotonicity (proposition 9).

So we restate our problem in the following terms, where we drop the tildas
and the pull-backs (resp. push-forwards) via Ψ (resp. Ψ−1), since there will
be no more confusion arising.

New setting: pseudo holomorphic polar coordinates.
Endow Sε ⊂ B2n+2

2 (0) with a smooth almost complex structure J such
that, denoting by J0 the standard complex structure,

• there is Q > 0 such that for any 0 < r < 1, |J − J0|C0(Sε∩Br) < Q · r
and |∇J | < Q (and Q can be assumed to be small);
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• the 2-planes DX (for X ∈ Vε) foliating the sector Sε are J-pseudo
holomorphic.

Let ω and g be respectively a compatible non-degenerate two-form and
the associated Riemannian metric such that ‖ω − ω0‖C0(Sε∩Br) < Q · r and
‖g − g0‖C0(Sε∩Br) < Q · r, where ω0 and g0 are the standard ones.

Let T be a normal (1, 1)-cycle in Sε.

Study the asymptotic behaviour as r → 0 of the family (λr)∗ T , where
λr =

Id
r in euclidean coordinates. More precisely we can restate theorem 4.1.1

as follows; in theorem 4.1.1 we can assume, up to a rotation and passing to
a subsequence, that yn = xn

|xn| → (1, 0, ..., 0).

Proposition 10. With the assumptions just made on J and T , assume that
there exists a sequence xm → 0, 0 0= xm ∈ Sε, of points all having densities
ν(xm) ≥ κ for a fixed κ > 0 and such that ym := xm

|xm| → (1, 0, ..., 0). Then
any limit

lim
rn→0

(λrn)∗ T

is a (1, 1)-cone (for J0) of the form κ!D[1,0,...,0]"+ T̃ , where T̃ is also a (1, 1)-
cone for J0 (T̃ possibly depending on {rn}).

Remark 4.2.1. As observed in (4.11), our new T satisfies, with respect to the

flat metric, M(T (Br∩Sε))
r2 ≤ K for a constant independent of r.

Remark 4.2.2. For the proof of proposition 10 is suffices to understand the
asymptotic behaviour of T in S0, which we will just denote by S. So at some
point we will look at T S and this current has boundary on ∂S. Indeed the
operation is defined in such a way that it yields a current with support in
S, but we still view it as a current in the open set Sε.

On the other hand we may wish to look at T S as a current in the open
set S, which means that we only test it against forms compactly supported
in S: it this case T is boundaryless in S. It will be specified when we wish
to do so.

4.3 Algebraic blow up

The classical symplectic (or algebraic) blow up was recalled in the intro-
duction. More details can be found in [41]. C̃n+1 is a complex line bundle
over CPn, that we view as an embedded sumbanifold in CPn × Cn+1. We
use standard coordinates on CPn × Cn+1 coming from the product, so we
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have 2n “horizontal variables” and 2n + 2 “vertical variables”. The standard
symplectic form on CPn×Cn+1 is given by the two form ϑCPn +ϑCn+1 , where
ϑCPn is the standard symplectic form4 on CPn extended to CPn × Cn+1 (so
independent of the “vertical variables”) and ϑCn+1 is the symplectic two-form
on Cn+1, extended to CPn × Cn+1 (so independent of the “horizontal vari-
ables”). To ϑCPn +ϑCn+1 we associate the standard metric, i.e. the product of
the Fubini-Study metric on CPn and the flat metric on Cn+1. The associated
complex structure is denoted I0.

As a complex submanifold, C̃n+1 inherits from the ambient space a com-
plex structure, still denoted I0, and the restricted symplectic form ϑ0 :=
E∗ (ϑCPn + ϑCn+1), where E is the embedding in CPn × Cn+1. Let further g0

denote the ambient metric restricted to C̃n+1: g0 is then compatible with I0
and ϑ0, i.e. ϑ0(·, ·) := g0(·,−I0·).

We now turn to the almost complex situation and will adapt the previous
construction by building on the results of section 4.2.

Implementation in the almost complex setting. With the notation

Sε = {(z0, z1, ...zn) ∈ B2n+2
1+ε ⊂ Cn+1 : |(z1, ..., zn)| < (1 + ε)|z0|}

as in (4.4), let S = S0. Also denote by Vε :=
{∑n

j=1
|zj |2
|z0|2 < 1 + ε

}
⊂ CPn

and V = V0.

The inverse image Φ−1(Sε) is given by {(8, z) ∈ Vε×Cn+1 : 0 < |z| <
1 + ε}. The union Φ−1(Sε) ∪ (Vε×{0}) will be denoted by Aε.

Aε is an open set in C̃n+1 but we will endow it with other almost complex
structures, different from I0, so Aε should be thought of just as an oriented
manifold and the structure on it will be specified in every instance.

We will keep using the same letters Φ−1 and Φ to denote the restricted
maps

Φ−1 : S → A
Φ : A → S ∪ {0}

(4.12)

also when we look at these spaces just as oriented manifolds (not complex
ones). We will make use of the notation

4In the chart Cn ≡ {z0 0= 0} of CPn, the form ϑCPn is expressed, using coordinates
Z = (Z1, ..., Zn), by ∂∂f , where f = i

2 log(1 + |Z|2) (see [41]). The metric gFS associated
to ϑCPn and to the standard complex structure is called Fubini-Study metric and it fulfils
1
4 I ≤ gFS ≤ 4I when we compare it to the flat metric on the domain {|Z| < 1}.
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Sρ := S ∩B2n+2
ρ and Aρ := Φ−1(Sρ) ∪ (V×{0}) .

It should be kept in mind that Φ−1 and Φ in (4.12) can be extended a bit
beyond their boundaries, namely to Sε and to Aε := Φ−1(Sε) ∪ (Vε×{0}).

V

D
2

Φ

Φ
−1

0

Figure 4.2: Blowing up the origin. The maps Φ−1 : S → A and Φ : A →
S ∪ {0}.

Define on A \ (CPn × {0}):

• the almost complex structure I := Φ∗J , i.e. I(·) := (Φ−1)∗JΦ∗(·),

• the metric g(·, ·) := g0(·, ·) + g0(I·, I·),

• the non-degenerate two-form ϑ(·, ·) := g(I·, ·) = g0(I·, ·)− g0(·, I·).

The triple (I, g,ϑ) is smooth on A \ (CPn× {0}) and makes it an almost
complex manifold. We do not know yet, however, the behaviour of (I, g,ϑ)
as we approach V×{0}.

Lemma 4.3.1 (the new structure is Lipschitz). The almost complex
structure I fulfils

|I − I0|(·) ≤ cdistg0( · , CPn × {0}),

for c = C ·Q, where C is a dimensional constant and Q is as in the hypothesis
on J (just before proposition 10). I can thus be extended continuously across
across CPn × {0}.

Analogously we have |g−g0|(·) ≤ cdistg0( · , CPn×{0}) and |ϑ−ϑ0|(·) ≤
cdistg0( · , CPn×{0}). The triple (I, g,ϑ) can be extended across CPn×{0}
to the whole of A by setting it to be the standard (I0, g0,ϑ0) on CPn × {0}.
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The structures I, g,ϑ so defined are globally Lipschitz-continuos on A, with
Lipschitz constant L+C ·Q, where L > 0 is an upper bound for the Lipschitz
constants of I0, g0 and ϑ0.

proof of lemma 4.3.1. Recall that Φ is holomorphic for the standard struc-
tures J0 and I0. With respect to the flat metric on S, we can choose an
orthonormal basis at any point q 0= 0 made as follows:

{L1, J0(L1), L2, J0(L2), ..., Ln, J0(Ln),W, J0(W )},

where W and J0(W ) span the J0-complex 2-plane through the origin and q.
The map (Φ−1)∗ is holomorphic and sends this basis to one at (Φ−1)(q) ∈
A, sending W and I0(W ) to a pair of vectors spanning the fiber through
(Φ−1)(q). On the vertical vectors (Φ−1)∗ is length preserving, while for the

others |(Φ−1)∗Lj| = |(Φ−1)∗J0(Lj)| =
√

1+|q|2

|q| , as one can compute from the
explicit expression of the Fubini-Study metric.

Reversing this construction we can choose two basis, respectively at p and
q = Φ(p), as follows.

{H1, I0(H1), ..., Hn, I0(Hn), V, I0(V )}
made of g0-unit vectors with scalar products w.r.t g0 bounded by |q|√

1+|q|2
,

and

{√
1 + |q|2
|q| K1,

√
1 + |q|2
|q| J0(K1), ...,

√
1 + |q|2
|q| Kn,

√
1 + |q|2
|q| J0(Kn),W, J0(W )

}

,

orthonormal at q = Φ(p), such that:

(i) Kj := Φ∗Hj and W := Φ∗V ;

(ii) V and I0(V ) are vertical, i.e. they span the vertical fiber through p: by
(i), W and J0(W ) span the J0-complex 2-plane through the origin and
q.

By the assumption that J is close to J0 in B1 we can write the action of
J on K1 as

J(K1) = (1 + λ)J0(K1) +
n∑

j=1

µjKj +
n∑

j=2

µ̃jJ0(Kj)+

+
|q|

√
1 + |q|2

σW1 +
|q|

√
1 + |q|2

σ̃J0(W1).

(4.13)
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Here λ, µj, µ̃j, σ and σ̃ are functions on S depending on J−J0, evaluated
at q, so their moduli are bounded by |J − J0|(q) < Q|q|.

Let us write the action of I on H1 explicitly: by definition of I, using
(4.13),

I(H1) :=
(
Φ−1

)
∗JΦ∗(H1) =

(
Φ−1

)
∗J(K1) =

= ((1 + λ) ◦ Φ)I0(H1) +
n∑

j=1

(µj ◦ Φ)Hj +
n∑

j=2

(µ̃j ◦ Φ)I0(Kj)+

+
|q|

√
1 + |q|2

(σ ◦ Φ)V1 +
|q|

√
1 + |q|2

(σ̃ ◦ Φ)I0(V1).

(4.14)

Similar expressions are obtained for the actions on Hj and I0(Hj) for all
j. Now

J(W ) = σW + (1 + σ̃)J0(W ),

since the 2-plane spanned by W and J0(W ) is J-pseudo holomorphic by
hypothesis.

Here σ and σ̃ are functions on S depending on J − J0, evaluated at q,
and their moduli are bounded by |J − J0| < Q|q|.

So the action of I on V is explicitly given by

I(V ) :=
(
Φ−1

)
∗JΦ∗(V ) =

(
Φ−1

)
∗J(W ) =

= (σ ◦ Φ)
(
Φ−1

)
∗(W ) + ((1 + σ̃) ◦ Φ)

(
Φ−1

)
∗J0(W )

= (σ ◦ Φ)V + ((1 + σ̃) ◦ Φ)I0(V ). (4.15)

So we have, from (4.14) and (4.15) that there exists c = C ·Q (for some
dimensional constant C) such that (I − I0) at the point p = (Φ−1)(q) has
norm ≤ c|q| = c distg0( · , CPn × {0}).

The analogous estimates on g and ϑ follow by their definition. So we can
extend the triple (I, g,ϑ) across CPn×{0} in a Lipschitz continuous fashion.

From (4.14) and (4.15) we also get that I is, globally in A, a Lipschitz
continuous perturbation of I0, and the same goes for g and ϑ: indeed the
Lipschitz constants of λ, µj, µ̃j, σ and σ̃ are controlled by C · Q, for some
dimensional constant C (which can be taken the same as the C above, by
choosing the larger of the two).
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Remark 4.3.1. The importance of working with coordinates adapted to J ,
as chosen in section 4.2, relies in the fact that this allows to obtain the
Lipschitz extension across CPn×{0}, which could fail on the vertical vectors
if coordinates were taken arbitrary.

The aim is now to translate our problem in the new space (A, I, g,ϑ).
The trouble is that the push-forward of T via Φ−1 can only be done away
from the origin and the map Φ−1 degenerates as we get closer to 0.

For any ρ > 0 we can take the proper transform of T (S \Sρ) by pushing
forward via Φ−1, since this is a diffeomorphism away from the origin:

Pρ :=
(
Φ−1

)
∗ (T (S \Sρ)) .

What happens when ρ→ 0 ? The following two lemmas yield the answers.

Lemma 4.3.2. The current P := limρ→0 Pρ = limρ→0 (Φ−1)∗ (T (S \Sρ)) is
well-defined as the limit of currents of equibounded mass to be a current of
finite mass in A.

The mass of P , both with respect to g and to g0, is bounded by a dimen-
sional constant C times the mass of T .

Lemma 4.3.3. The current P := limρ→0 Pρ = limρ→0 (Φ−1)∗ (T (S \Sρ)) is
a ϑ-positive normal cycle in the open set A.

A little notation before the proofs. For any ρ consider the dilation λρ(·) :=
·
ρ , sending Bρ to B1, and the map

Λρ : Aρ → A, Λρ := Φ−1 ◦ λρ ◦ Φ, (4.16)

which in the coordinates of CPn × Cn+1 reads Λρ(8, z) =
(
8, zρ

)
.

proof of lemma 4.3.2. The currents T and T0,r are defined in Sε and by
remark 4.2.1, i.e. by the monotonicity formula, we have a uniform bound on
the masses: M(T0,r) ≤ K.

The map Φ−1 is pseudo holomorphic with respect to J and I by definition
of I; thus each Pρ = (Φ−1)∗ (T (S \Sρ)) is ϑ-positive by construction (see
lemma B.0.1), so M(Pρ) = Pρ(ϑ), where the mass is computed here with
respect to g, the metric defined before lemma 4.3.1. The currents Pρ and Pρ′ ,
for ρ > ρ′, coincide on A \Aρ, therefore in order to study the limit as ρ→ 0,
it is enough to look at a chosen sequence ρk → 0 and prove that Pρk have
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equibounded masses and thus converge to a limit P , which must then be the
limit of the whole family Pρ.

1st step: choice of the sequence. Denote by 〈T, |z| = r〉 the slice of a
current T with the sphere ∂Br. Choose ρk so to ensure

• (i) Tρk ⇀ T∞ in S for a certain cone T∞,

• (ii) M(〈Tρk , |z| = 1〉) are equibounded by 4K.

This is achieved as follows: take a sequence ρ′k fulfilling (i); remark 4.2.1
tells us that M(Tρ′k

) are equibounded by a constant K independent of k. By
slicing theory (see [28])

∫ 1

1
2

M(〈Tρ′k
, |z| = r〉)dr ≤M(Tρ′k

(B1 \B 1
2
)) ≤ K,

thus at least half of the slices 〈Tρ′k
, |z| = r〉r∈[ 12 ,1] have masses ≤ 2K. For

every k we can choose 1
2 ≤ sk ≤ 1 such that all the slices 〈Tρ′k

, |z| = sk〉 exist
and have mass ≤ 2K. Then with ρk = skρ′k it holds

M(〈Tρk , |z| = 1〉) = M

((
λ ρk

ρ′
k

)

∗

〈
Tρ′k

, |z| = sk =
ρk
ρ′k

〉)
≤ 2 · 2K

and since
ρ′k
2 ≤ ρk ≤ ρ′k the sequence Tρk also converges to the same T∞.

Since 〈Tρk , |z| = 1〉 = (λρk)∗ 〈T, |z| = ρk〉, condition (ii) also reads

M (〈T, |z| = ρk〉) ≤ 4Kρk. (4.17)

2nd step: uniform bound on the masses. We use in A standard coordi-
nates inherited from CPn × Cn+1, i.e. we have 2n horizontal variables (from
CPn) and 2n+ 2 vertical variables.

The standard symplectic form ϑ0 is E∗(ϑCPn +ϑCn+1), as in the beginning
of section 4.3. We want to estimate M(Pρ) = Pρ(ϑ) = Pρ(ϑ0) + Pρ(ϑ− ϑ0).

Let us first deal with Pρ(E∗ϑCPn) = T0,ρ (S \Sρ)((Φ−1)
∗E∗ϑCPn). It is

convenient here to keep in mind that ϑ0 is actually defined on Aε and consider
(Φ−1)

∗E∗ϑCPn as a form on Sε, since Φ−1 also extends to Sε. The map E◦Φ−1 :

Sε → Aε has the coordinate expression (z0, ...zn)→
(
( z1z0 , ...,

zn
z0
), (z0, ...zn)

)
∈

Vε×Cn+1, using the chart z0 0= 0 on Vε ⊂ CPn.
Using the explicit expression of ϑCPn (see [41] and the beginning of this

section) we can write in the domain Sε, where z0 0= 0,
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(
Φ−1

)∗E∗(ϑCPn) = ∂∂ log

(

1 +
n∑

j=1

|zj |2

|z0|2

)

.

We are neglecting a factor i
2 , which would not play any significant role in

this proof. In particular (Φ−1)
∗E∗(ϑCPn) = dη, where

η =
1

2

(

∂ log

(

1 +
n∑

j=1

|zj |2

|z0|2

)

− ∂ log

(

1 +
n∑

j=1

|zj|2

|z0|2

))

.

We thus have

Pρ(ϑCPn) = (T (S \Sρ)) (
(
Φ−1

)∗
ϑCPn) = (T (S \Sρ)) (dη) =

= ∂ [T (S \Sρ)] (η) .

The boundary of T (S \Sρ) is made of three portions: two live in the
spheres ∂B1 and ∂Bρ and the third one is given by the slice of (T Sε) (B1 \
Bρ) with the hypersurface

∑n
j=1

|zj |2
|z0|2 = 1. There is no loss of generality in

assuming that these slices exists.
The explicit form of η then implies that the latter portion of boundary,

i.e. the slice of T with the hypersurface
∑n

j=1
|zj |2
|z0|2 = 1, has zero action on η.

We can thus write

Pρ(ϑCPn) = 〈T S, |z| = 1〉 (η)− 〈T S, |z| = ρ〉 (η) .
Now observe the comass of η. The comasses are equivalent up to a uni-

versal constant C to the maximum modulus of the coefficients of the form.
We can explicitly compute ‖η‖∗ ≤ C

ρ , where ρ is the distance from the origin.
Now we focus on the sequence ρk chosen in step 1, for which (ii) and

(4.17) hold. We thus get, independently of ρk,

|Pρk(ϑCPn)| ≤ 4K C. (4.18)

The estimate

|Pρ(E∗ϑCn+1)| = |T0,ρ (S \Sρ)(
(
Φ−1

)∗E∗ϑCn+1)| ≤ K (4.19)

follows easily since Φ−1 is lenght-preserving in the vertical coordinates
and thus (E ◦ Φ−1)∗ preserves the comass of ϑCn+1 .

Now let us consider |Pρ(ϑ − ϑ0)|. Thanks to the Lipschitz control from
lemma 4.3.1, i.e. |ϑ−ϑ0|(·) ≤ cdistg0(·,CPn×{0}), the two-form (Φ−1)∗(ϑ−
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ϑ0) in S has comass ≤ c·C
ρ ≤

C
ρ , where ρ is the distance from the origin and

C is a dimensional constant (c can be assumed to be smaller that 1).

We can then decompose S = ∪∞j=0Aj, where Aj = S ∩
(
B 1

2j
\B 1

2j+1

)
. As

observed in remark 4.2.1 it holds M(T Aj) ≤ K 1
22j . On the other hand the

comass of (Φ−1)
∗
(ϑ− ϑ0) in Aj is ≤ C 2j+1.

Therefore summing on all j’s we can bound

|Pρ(ϑ− ϑ0)| =
∣∣(T S)

((
Φ−1

)∗
(ϑ− ϑ0)

)∣∣ ≤

≤ K C
∞∑

j=0

2j+1 1

22j
= K C

∞∑

j=0

21−j = 4K C, (4.20)

so |Pρ(ϑ− ϑ0)| is also equibounded independently of ρ.

Putting (4.18), (4.19) and (4.20) together, we obtain that M(Pρk) are
uniformly bounded by K times a dimensional constant C. By compactness
there exists a current P in A such that Pρ ⇀ P .

So far we were taking the mass with respect to g. Since g is c-close
to g0, for a small constant c, an analogous bound holds, up to doubling the
constant C, for the mass of P computed with respect to g0. This observation
is needed later in section 4.4.

Our next aim is to prove that the current P just obtained is in fact a
cycle in the open set A. A priori this is not clear, for in the limit ρ→ 0 some
boundary could be created on CPn × {0}.

proof of lemma 4.3.3. Step 1. We are viewing P as a current in the open
set A in the manifold C̃n+1, so the same should be done for the currents
Pρ := (Φ−1)∗ (T (S \Sρ)). Given a sequence ρk → 0, we want to observe the
boundaries ∂Pρk . Up to a subsequence we may assume that ρk is such that
T0,ρk ⇀ T∞ for a certain cone. Then the boundaries ∂Pρk satisfy, as k →∞,
by the definition (4.16) of Λρk :

(Λρk)∗(∂Pρk) = −
(
Φ−1

)
∗〈T0,ρk , |z| = 1〉⇀ −

(
Φ−1

)
∗〈T∞, |z| = 1〉. (4.21)

Recall that we are viewing Pρk as currents in the open set A, so also
T (S \Sρ) should be thought of as a current in the open set S: this is why
the only boundary comes from the slice of T with |z| = ρk.
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Moreover if the sequence is chosen (and we will do so) as in step 1 of lemma
4.3.2, then (Λρk)∗(∂Pρk) have equibounded masses, since so do ∂(T0,ρk) and
Φ−1 is a diffeomorphism on ∂B1.

The current T∞ has a special form: it is a (1, 1)-cone, so the 1-current
〈T∞, |z| = 1〉 has an associated vector field that is always tangent to the Hopf
fibers5 of S2n+1.

Step 2. We want to show that P is a cycle in A, i.e. that ∂Pρk → 0 as
n→∞. The boundary in the limit could possibly appear on CPn× {0} and
we can exclude that as follows.

Let α be a 1-form of comass one with compact support in A and let
us prove that ∂Pρk(α) → 0. Since A is a submanifold in CPn × Cn+1, we
can extend α to be a form in CPn × Cn+1. Let us write, using horizontal
coordinates {tj}2nj=1 on CPn and vertical ones {sj}2n+2

j=1 for Cn+1, α = αh+αv,
where αh is a form in the dtj ’s, αv in the dsj’s. Rewrite, viewing Pρn as
currents in CPn × Cn+1,

∂Pρk(α) = [(Λρk)∗(∂Pρk)]
(
Λ−1

ρk
)∗α

)
.

The map Λ−1
ρk

is expressed in our coordinates by (t1, ..., t2n, s1, ...sn) →
(t1, ..., t2n, ρks1, ...ρks2n+2), therefore

(Λ−1
ρk
)∗α = αn

h + αn
v ,

where the decomposition is as above and with ‖αn
h‖∗ ≈ ‖αh‖∗ and ‖αn

v‖∗ !
ρk‖αv‖∗. The signs ≈ and ! mean respectively equality and inequality of
the comasses up to a dimensional constant, so independently of the index n
of the sequence.

As k → ∞ it holds αk
h → α∞

h in some C5-norm, where ‖α∞
h ‖∗ ! 1 and

α∞
h is a form in the dtj’s. More precisely α∞

h coincides with the restriction of
αh to CPn × {0}, extended to CPn ×Cn+1 independently of the sj variables.
We can write

∣∣[(Λρk)∗(∂Pρk)] (α
k
h)
∣∣ ≤

∣∣[(Λρk)∗(∂Pρk)] (α
k
h − α∞

h )
∣∣+ |[(Λρk)∗(∂Pρk)] (α

∞
h )|

and both terms on the r.h.s. go to 0. The first, since M((Λρk)∗(∂Pρk)) are
equibounded and |αk

h − α∞
h |→ 0; the second because we can use (4.21) and

(Φ−1)∗∂(T∞) has zero action on a form that only has the dtj’s components,
as remarked in step 1.

5The Hopf fibration is defined by the projection H : S2n+1 ⊂ Cn+1 → CPn,
H(z0, ..., zn) = [z0, ..., zn]. The Hopf fibers H−1(p) for p ∈ CPn are maximal circles
in S2n+1, namely the links of complex lines of Cn+1 with the sphere.
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Moreover

∣∣[(Λρk)∗(∂Pρk)] (α
k
v)
∣∣→ 0,

because (Λρk)∗(∂Pρk) = −(Φ−1)∗〈T0,ρk , |z| = 1〉 have equibounded masses
by the choice of ρk, while ‖αk

v‖∗ ! ρk‖αv‖∗ have comasses going to 0.

Therefore no boundary appears in the limit and P is a normal cycle in
A. The fact that it is ϑ-positive follows easily by the fact that so are the
currents Pρ, as remarked in the beginning of the proof of lemma 4.3.2.

Summarizing, we define the current P thus constructed to be the proper
transform of the positive (1, 1)-normal cycle T S. P is a normal and ϑ-
positive cycle in A, where the semicalibration ϑ is Lipschitz (and actually
smooth away from CPn × {0}). Therefore the almost monotonicity formula
holds true for P . Observe that the metric g on A fulfils the hypothesis
1
5I ≤ g ≤ 5I of proposition 9, being a perturbation of g0, which is in turn
built from the Fubini-Study metric.

4.4 Proof of the result

With the assumptions in proposition 10, we have to observe a sequence
T0,rn = (λrn)∗T as rn → 0. These currents have equibounded masses by
(4.11).

Take any converging sequence T0,rn := (λrn)∗T ⇀ T∞ for rn → 0. Take
the proper transform of each T0,rn and denote it by Pn. Lemmas 4.3.2 and
4.3.3 yield that Pn is a ϑn-positive cycle, for a semicalibration ϑn in the
manifold A. ϑn is smooth away from V×{0} and it is Lipschitz-continuous,
with |ϑn − ϑ0| < cndistg0(·,CPn × {0}). Recalling lemma 4.3.1 we can see
that, since the almost complex structure Jrn on S fulfils |Jrn−J0| < (Qrn) ·r
in S (by dilation), then the constants cn go to 0 as n→∞. Analogously we
get that the Lipschitz constants of ϑn are uniformly bounded.

By lemma 4.3.2 the masses of Pn are uniformly bounded in n (with respect
to g0), since so are the masses of T0,rn , M(T0,rn) ≤ K.

So by compactness, up to a subsequence that we do not relabel, we can
assume Pn ⇀ P∞ as n→∞ for a normal cycle P∞.

Lemma 4.4.1. P∞ is a ϑ0-positive cycle; more precisely it is the proper
transform of T∞.
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Proof. ϑ0-positiveness follows stright from the ϑn-positiveness of Pn and |ϑn−
ϑ0| < cndistg0(·,CPn × {0}), cn → 0.

Recall that ϑ0 = E∗(ϑCPn + ϑCn+1); we want to estimate

M(P∞ Aρ) = (P∞ Aρ)(ϑ0) = lim
n→∞

(Pn Aρ)(ϑ0).

Write

(Pn Aρ)(ϑ0) = (Pn Aρ)(E∗ϑCPn) + (Pn Aρ)(E∗ϑCn+1). (4.22)

Let us bound the second term on the r.h.s.

(Pn Aρ)(E∗ϑCn+1) = (Λρ)∗(Pn Aρ)
(
(Λ−1

r )∗(E∗ϑCn+1)
)
.

The current (Λρ)∗(Pn Aρ) is the proper transform of T0,ρrn , therefore
(lemma 4.3.2) M ((Λρ)∗(Pn Aρ)) ≤ K C independently of n; the form in
brackets (Λ−1

r )∗(E∗ϑCn+1) has comass bounded by ρ2. Altogether

(Pn Aρ)(E∗ϑCn+1) ≤ K C ρ2.

To bound the first term on the r.h.s. of (4.22), let P be the proper
transform of T ; using that (Λrn)

∗E∗ϑCPn = E∗ϑCPn we can write

(Pn Aρ)(E∗ϑCPn) = (P Arnρ)(E
∗ϑCPn) ≤M

(
P Arnρ

)
≤M

(
P Aρ

)
,

which goes to 0 as ρ→ 0 by lemma 4.3.2. Summarizing we get that there
exists a function oρ(1) that is infinitesimal as ρ→ 0, such that |(Pn Aρ)(ϑ0)| ≤
oρ(1) (the point is that oρ(1) can be chosen independently of n).

Therefore also M(P∞ Aρ) = limn→∞(Pn Aρ)(ϑ0) ≤ oρ(1), which means
that

P∞ = lim
ρ→0

P∞ (A \Aρ). (4.23)

Recall now that the proper transform is a diffeomorphism away from the
origin, thus

P∞ (A \Aρ) = lim
n

(
Φ−1

)
∗T0,rn (S \Sρ) =

(
Φ−1

)
∗T∞ (S \Sρ),

which concludes, together with (4.23), the proof that P∞ is the proper
transform of (Φ−1)∗T∞.
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Recalling (4.3), the previous lemma tells us that P∞ is of a very special

form. Denoting V :=
{∑n

j=1
|zj |2
|z0|2 < 1

}
⊂ CPn and, for each disk DX in S,

LX the disk such that Φ(LX) = DX , we have

P∞(β) =

∫

V

{∫

LX

〈β, *LX〉 dL2

}
dτ |V(X). (4.24)

When we take the proper transform the density is conserved going from
S to Φ−1(S), since Φ−1 is a diffeomorphism on S (see lemma B.0.2).

We are ready to conlcude the proof of proposition 10, and therefore of
theorems 4.0.1 and 4.1.1.

proof of proposition 10. The points xm
|xm| converge to the point (1, 0, ..., 0)

in D ∩ S2n+1, where D is the disk D = D[1,0,...0].
We want to show that any converging sequence T0,rn := (λrn)∗T ⇀ T∞ is

such that the cone T∞ contains κ!D".

Let us apply the proper transform to T0,rn and get Pn as in lemma 4.4.1.
Fix n: there is a sequence {xm} tending to the origin of points with densities
≥ κ. By lemma B.0.2 the points pm := (Φ−1)(xm) have density ≥ κ for Pn.
It easily seen that it holds pm → p0 = ([1, 0, ...0], 0) ∈ CPn × Cn+1.

By upper semi-continuity of the density (which follows from the almost
monotonicity formula for Pn) we get that p0 also has density ≥ κ for Pn.

Doing this for every n we get that we are dealing with a sequence of
normal cycles Pn all having the point p0 as a point of density ≥ κ. We wish
to prove that, being the cycles Pn positive, then the point p0 is also of density
≥ κ for the limit P∞.

The cycles Pn are ϑn-positive so for any δ > 0 it holds

M(Pn Bδ(p0)) = (Pn Bδ(p0))(ϑn).

By weak convergence

M(P∞ Bδ(p0)) = (P∞ Bδ(p0))(ϑ0) =

= lim
n→∞

(Pn Bδ(p0))(ϑ0).

We can split

(Pn Bδ(p0))(ϑ0) = (Pn Bδ(p0))(ϑ0 − ϑn) + (Pn Bδ(p0))(ϑn). (4.25)

The semi-calibrations ϑn have uniform bounds on their Lipschitz con-
stants, say 2L. The metrics at p0 coincide with g0 independently of n. We
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can therefore use the almost monotonicity formula for Pn at p0 (proposition
9) to get

(Pn Bδ(p0))(ϑn) = M(Pn Bδ(p0)) ≥ π(κ− C2Lδ)δ2,

where C is a universal constant. The forms ϑn fulfil |ϑn − ϑ0| < cn in
Bδ(p0) and cn → 0 as n→∞. Therefore we can bound, from (4.25),

|(Pn Bδ(p0))(ϑ0)| ≥ −cnK C +M(Pn Bδ(p0)) ≥ −cnK C + πκδ2− 2CLδ3.

Since cn → 0 we can conclude

M(P∞ Bδ(p0)) ≥ πκδ2 − 2CLδ3 (4.26)

independently of δ, which means that p0 is a point of density ≥ κ for the
ϑ0-positive cycle P∞.

Recall the structure of P∞: it is made by the holomorphic disks LX

weighted with the positive measure τ , so if y0 has density ≥ κ, then the disk
L[1,0,...0] must be weighted with a mass ≥ κ, in other words the measure τ
must have an atom of mass ≥ κ at y0.

So P∞ is of the form κ!L[1,0,...0]" + P̃ , for a ϑ0-positive current P̃ . Trans-
forming back via Φ, T∞ contains the disk κ!D", as required.

4.5 Kiselman’s counterexample revisited

We would like to provide a geometric picture of Kiselman’s counterexam-
ple [36]. The blow up used in the proof turns out to be useful again. From
now on, for sake of simplicity, we assume to be working in the integrable case
(C2, J0,ω0), with coordinates z = (z1, z2). The word positive will be used
instead of ω0-positive.

We briefly recall the connection between plurisubharmonic functions and
positive currents.

A plurisubharmonic (psh) function f is, by definition, an upper semi-
continuous function whose restriction to complex lines is subharmonic. Equiv-
alently, the Levi form Lij :=

∂2f
∂zi∂zj

, for i, j ∈ {1, 2}, is positive definite. This

last condition automatically implies that ∂2f
∂zi∂zj

are Radon measures.

For i ∈ {1, 2}, denote by ∂i : Λk → Λk+1 (respectively ∂i) the operator
on forms whose action on a function f is given by ∂i(f) := ∂f

∂zi
dzi (resp.
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∂i(f) :=
∂f
∂zi

dzi). So the two-form

∂∂f = (∂1 + ∂2)
(
∂1 + ∂2

)
f =

∑

ij

∂2f

∂zi∂zj
dzi ∧ dzj

has measure coefficients and gives rise to a normal positive cycle Tf , which
acts on a two-form β as follows

Tf (β) :=

∫

C2

∂∂f ∧ β.

Recall that ∂2 = ∂
2
= 0. Since the standard differential d equals ∂+∂, the

two-form ∂∂f is closed and Tf is easily seen to be a cycle: for any one-form
α

∂Tf (α) :=

∫

C2

∂∂f ∧ dα =

∫

C2

d(∂∂f) ∧ α = 0.

With this in mind, every positive cone with density ν at the vertex (as-
sume without loss of generality that the vertex is at the origin) is repre-
sentable as a plurisubharmonic function h with the following homogeneity
property (see [36])

h(tz) = ν log |t|+ h(z), for any t ∈ C, z ∈ C2.

More precisely (see [9]), denoting π : C2 → CP1 the standard projection,
h is of the form ν log |z| + f ◦ π for some f : CP1 → R.

Let us see a concrete example, where we translate the question from C2

to C̃2 using the algebraic blow up. Let us fix notations first.
We send the point 0 0= (z1, z2) ∈ C2 to the point ([z1, z2], z1, z2) ∈ C̃2 ⊂

CP1 × C2. Using the chart z1
z2

on CP1, we can identify ([z1, z2], z1, z2) with
( z1z2 ,

z1
z2
z2, z2) = (a,λa,λ) ∈ C × C2 with a,λ ∈ C. Therefore we can locally

identify the complex line bundle C̃2 with C×C with coordinates (a,λ). The
holomorphic planes through the origin are sent to the holomorphic planes
{p}× C. The image of a sphere of radius r in C2 is, after the blow-up, the
hypersurface |λ| = r√

1+|a|2
.

A positive cone in C2, with density ν at the vertex (placed at the origin)
is given by assigning a positive Radon measure on CP1, having total mass
ν. Let us blow-up the origin of C2 and move to C× C. We have a measure
µ on the first C-factor, i.e. a measure on the set of “vertical” holomorphic
planes. Consider the psh function ν log |λ| + f (a) (with ν = |µ|), where
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f(a) =
∫
C log |ζ − a|dµ(ζ), i.e. f is the convolution of µ with the fundamental

solution of the Laplace oerator in C. In particular, ∆f = µ.
The current ∂∂ (ν log |λ|+ f(a)) is the sum of the current associated to

the 2-surface C× {0} with multiplicity ν and the current associated to inte-
gration on the vertical 2-planes, weighted with µ. 6

To fix ideas, let ν = 1. Let us assume that, for r1 < R2, in the domain
R2√
1+|a|2

< |λ| < R1√
1+|a|2

the current is very close to the plane ν!{p1}×C" and

for r2√
1+|a|2

< |λ| < r1√
1+|a|2

it is very close to the plane ν!{p2} × C", where

{p1} × C and {p2} × C are distinct “vertical” holomorphic planes. To fix
ideas, let f, g be such that ∆f and ∆g are positive measures of total mass 1,
very close to Dirac deltas placed respectively in correspondence of the points
p1 and p2.

Question: how can we extend the current across the intermediate do-
main r1√

1+|a|2
< |λ| < R2√

1+|a|2
in such a way that it is globally positive and

boundaryless?

Consider the currents T1 and T2 representable as integration of the actions
of the vertical planes with weights c1∆f and c2∆g, with c1 > c2 > 1. In terms
of psh functions, T1 = c1∂∂f and T2 = c2∂∂g. Consider the function

E(a,λ) := c2g(a)− c1f(a)− (c1 − c2) log |λ|.

Its level sets Eη = {E = η} are the hypersurfaces |λ| = e
c2g−c1f−η

c1−c2 . Choose
a positive value of η, large enough in modulus, so to ensure that the cor-
responding level set Eη is contained in the intermediate domain r1√

1+|a|2
<

|λ| < R2√
1+|a|2

.

Set the current χ{E≥η}T1 + χ{E≤η}T2, which equals T1 above Eη and T2

below Eη. Such a current develops a boundary on Eη given by the slices
of T1 and T2 with the level set Eη. Precisely the boundary is given by the
1-current of integration along the “vertical” circles Eη ∩ ({a}× C) weighted
with −c1∆f + c2∆g.

Claim: there exists a positive 2-current, supported in Eη, whose bound-
ary is the same as the boundary just described with opposite sign.

This can be seen explicitly as follows. Let us consider the one form ι∇Eω0.
Its differential is given, through Cartan’s formula, by d(ι∇Eω0) = L∇Eω0, the
Lie derivative of ω0 along the gradient field.

6By going back to the coordinates z1 = aλ, z2 = λ, we can recover the psh function on
C2: for this purpose it is convenient to rewrite ν log |λ|+f (a) = ν log |λ|+ν log

√
1 + |a|2−

ν log
√
1 + |a|2+f (a), so that the inverse transform of ν log |λ|+ν log

√
1 + |a|2 is ν log |z|.
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It holds, as we are about to see, on the set {λ 0= 0},

L∇Eω0 = (c1∆f − c2∆g)

(
i

2
da ∧ da

)
. (4.27)

Let us compute this Lie derivative. For the sake of notation, only for
this computation we take coordinates x1, x2, x3, x4 so that a = x1 + ix2 and
λ = x3 + ix4 = 0 and denote by ∂j the derivations w.r.t. xj . So we write
ω0 = dx1 ∧ dx2 + dx3 ∧ dx4 and ∇E = (∂iE)∂i.

L∇Edx
1 ∧ dx2 = (L∇Edx

1) ∧ dx2 + dx1 ∧ (L∇Edx
2) =

= (dL∇Ex
1) ∧ dx2 + dx1 ∧ (dL∇Ex

2) = (d(∂1E)) ∧ dx2 + dx1 ∧ (d(∂2E))

= (∂k∂1E)dxk ∧ dx2 + (∂k∂2E)dx1 ∧ dxk = (∂1∂1E + ∂2∂2E)dx1 ∧ dx2.

In the last equality we used the specific form of E. An analogous com-
putation yields

L∇Edx
3 ∧ dx4 = (∂3∂3E + ∂4∂4E)dx3 ∧ dx4.

Away from {λ = x3+ix4 = 0}, the Laplacian (∂3∂3E+∂4∂4E) = ∆(log λ)
vanishes, so (4.27) is proven.

If we take, in the boundaryless 3-surface Eη, the 2-current corresponding
in duality to the one-form ι∇ηω0, this is positive and its boundary is the 1-
current dual to d(ι∇Eω0), i.e. its boundary erases exactly that of χ{E≥η}T1+
χ{E≤η}T2. So the claim is proved: this current fills the gap between T1 and
T2 along Eη.

This operation seems a bit magical, but is nothing else than the geometric
picture corresponding to the operation of taking the supremum of the psh
functions c1f and c2g−η. Since psh functions are closed under this operation,
the current ∂∂(sup{c1f, c2g − η}) is guaranteed to be positive and bound-
aryless: Eη is the set where the two functions are equal and the operation of
taking the sup amounts to filling the gap along Eη with the current ι∇Eω0.

Remarks on the counterexample [36]. The construction described
in this section is exacly what Kiselman does, although the geometric picture
in [36] is a bit hidden by the fact that everything is expressed in terms of psh
functions. The current he constructs is made by iterating the construction:
with suitable choices of the parameters involved he alternates currents defined
in suitable domains r2√

1+|a|2
< |λ| < r1√

1+|a|2
and ensures that the measures

that we called ∆f and ∆g have different limits.
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The failure of uniqueness of tangent cone for a positive (1, 1) cycle must
happen at a point x0 where there exists δ > 0 so that the Lelong number ν
fulfils ν(x0) ≥ ν(x) + δ for all points x in a neghbourhood of x0. This fact
follows, in the complex setting, from Siu’s result [56], while for an almost
complex setting it is yielded by theorem 4.0.1.

Indeed, the current constructed in [36] has the property that the point
x0 where it fails to have a unique tangent cone is an isolated point of strictly
positive density. Therefore the proof given in this chapter for theorem 4.0.1
fails in that case.

We can make a few more comments on the “shape” of the current in
[36]. It follows from the discussion in this section, and with reference to
the notations used before, that the current χ{E≥η}T1 + χ{E≤η}T2 is perfectly
“vertical”.

If we observe the slices of the current ∂∂(sup{c1f, c2g−η}) with “vertical”
holomorphic planes, we get zero contribution to the slicing for χ{E≥η}T1 +
χ{E≤η}T2, since the current is perfectly vertical there. As for the current
supported in Eη, dual to ι∇Eω0, we get indeed a positive contribution to the
slicing, but the amount is only c1−c2

λ , which can be made very small if the
parameters are suitably chosen.

Considerations based on slicing theory tell us that slicing the algebraic
blow up (Φ−1)∗ T0,rn of a positive (1, 1) current T (dilated around x0 of a
factor rn) must lead to slices of finite mass for almost all verical planes;
moreover the slices of (Φ−1)∗ T0,rn should tend to zero as rn → 0. It follows
then that this can only happen if (Φ−1)∗ T0,rn is “mostly vertical”, as described
before. Then we get a heuristic argument that forces the “shape” of a positive
(1, 1) current to be just like the one exhibited in [36], if it has to have a non-
unique tangent cone.
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Appendix A

Almost monotonicity formula

The following almost-monotonicity formula for positive or semi-calibrated
cycles is proved in [47], Proposition 1, for a C1 semi-calibration: the same
proof works as well for a form with Lipschitz-continous coefficients (this is
needed in chapter 4), so we only give the statement.

Let the ball of radius 2 in Rd be endowed with a metric g and a two-
form ω such that both g and ω have Lipschitz-continuous coefficients (with
respect to the standard distance) and ω has unit comass for g. The metric g
is represented by a matrix and we further assume that 1

5I ≤ g ≤ 5I, where I
is the identity matrix. So g is a Lipshitz perturbation of the flat metric.

Let T be a ω-positive normal cycle. Then we have a 2-vector field *T (x),
of unit mass with respect to g. This means that for ‖T‖-a.a. x, *T (x) =∑N(x)

k=1 λk(x)*Tk(x), a convex combination of ω(x)-calibrated unit simple 2-
vectors. The mass refers pointwise to the metric gx.

Proposition 11. In the previous hypothesis, there exists r0 > 0 and C > 0,
depending only on the Lipschitz constants of g and ω such that, given an
arbitrary point x0 ∈ B1(0), the following holds.

Denote by Br(x0) (respectively Bs(x0)) the ball around x0 of radius r
(respectively s) with respect to the metric gx0; let | · | be the distance for gx0

and | · |g the mass-norm with respect to g. Let ∂
∂r be the unit radial vector

field with respect to x0 and gx0.
For any 0 < s < r < r0, we have

eCr + Cr

r2
(T Br(x0)) (ω)−

eCs + Cs

s2
(T Bs(x0)) (ω)

≥
∫

Br\Bs(x0)

1

|x− x0|2
N(x)∑

k=1

λk(x)

∣∣∣∣*Tk(x) ∧
∂

∂r

∣∣∣∣
2

g(x)

d‖T‖
(A.1)
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and

eCr − Cr

r2
(T Br(x0)) (ω)−

eCs − Cs

s2
(T Bs(x0)) (ω)

≤
∫

Br\Bs(x0)

1

|x− x0|2

N(x)∑

k=1

λk(x)

∣∣∣∣*Tk(x) ∧
∂

∂r

∣∣∣∣
2

g(x)

d‖T‖.
(A.2)
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Behaviour under diffeomorphisms

The following two lemmas are used in chapter 4 when pushing forward a
positive cycle under a diffeomorphism.

Lemma B.0.1. [the pushforward of a (1, 1)-current via a pseudoholo-
morphic diffeomorphism is (1, 1)]

Let C be a normal positive (1, 1)-current in an open set U ⊂ R2N , en-
dowed with an almost complex structure J1 and a compatible metric g1 (so
the associated two-form is uniquely determined, but we will not need it). Let
f : U → R2N be a smooth pseudoholomorphic diffeomorphism, where R2N

is endowed with an almost complex structure J2 and a compatible metric g2.
Then f∗C is a positive (1, 1)-normal current in for (R2N , J2, g2).

proof of lemma B.0.1. We are going to use the characterization in (4.1).
The current C is represented by a couple (µC , *C), where µC is a Radon mea-
sure and *C is a unit 2-vector field, well defined µC-a.e. The (1, 1) condition
can be expressed by the fact that *C =

∑M
j=1 λj

*Cj, with
∑M

j=1 λj = 1, λj ≥ 0

and *Cj are unit simple J1-invariant.
The push-forward f∗C can be represented by the Radon measure f∗µC

and the 2-vector field (defined f∗µC-a.e.) f∗ *C, the latter is however not of
unit mass. Denoting by ‖ · ‖ the mass norm on 2-vectors with respect to g2,
we rewrite it as

f∗ *C =
M∑

j=1

λjf∗ *Cj =
M∑

j=1

λj · ‖f∗ *Cj‖
f∗ *Cj

‖f∗ *Cj‖
=

=

(
M∑

j=1

λj · ‖f∗ *Cj‖
)

M∑

j=1

λj · ‖f∗ *Cj‖(∑M
j=1 λj · ‖f∗ *Cj‖

) f∗ *Cj

‖f∗ *Cj‖
,
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where each simple 2-vector f∗ 7Cj

‖f∗ 7Cj‖
is of unit mass and J2-invariant (by the

hypothesis on f).
We can then represent f∗C by the Radon measure

(
M∑

j=1

λj · ‖f∗ *Cj‖
)

f∗µC

and the 2-vector field

M∑

j=1

λj · ‖f∗ *Cj‖(∑M
j=1 λj · ‖f∗ *Cj‖

) f∗ *Cj

‖f∗ *Cj‖
,

that is a convex combination of unit simple J2-holomorphic 2-vectors.

Lemma B.0.2. [the density is preserved]
Let U , V be open sets in R2n+2, ω be a calibration in U , T be a normal

ω-positive 2-cycle in U , f : U → V be a diffeomorphism. Be ν(p) ≥ 0 the
density of T at p ∈ U . Then the current f∗T has 2-density equal to ν(p) at
the point f(p) ∈ V .

proof of lemma B.0.2. Up to translations, which do not affect densities,
we may assume p = f(p) = 0, the origin of R2n+2. We use coordinates
q = (q1, q2, ..., q2n+2).

Step 1. Assume that f is linear. Choose any sequence of radii Rn ↓ 0
and dilate the current f∗T around 0 with the chosen factors, i.e. observe the
sequence: (

Id

|Rn|

)

∗
(f∗T ) =

(
Id

|Rn|
◦ f

)

∗
T.

By the linearity of f this is the same as
(
f ◦ Id

|Rn|

)

∗
T = f∗

(
Id

|Rn|

)

∗
T.

The assumptions yield a subsequence Rnj such that
(

Id
|Rnj |

)

∗
T ⇀ T∞ for

a cone T∞, whose density at the vertex is ν(0). So

f∗

(
Id

|Rnj |

)

∗
T ⇀ f∗T∞.
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Recall that T∞ is represented by a positive Radon measure on the 2-
planes, with total mass ν(0). The linearity of f gives that f∗T∞ is still a cone
with the same density ν(0) at the vertex, so we have found a subsequence Rnj

such that
(

Id
|Rnj |

)

∗
(f∗T ) weakly converges to a cone with density ν(0). Since

the sequence Rn was arbitrary, we get in particular that f∗T has 2-density
equal to ν(0) at the point f(0) = 0.

Step 2. For a general f , write f(q) = Df(0) · q + o(|q|).

As before, we have to observe

(
Id

|Rn|

)

∗
(f∗T ). We show that this sequence

has the same limiting behaviour as

(
Id

|Rn|

)

∗
((Df(0) · q)∗T ), for which Step

1 applies.
We estimate the difference of the actions on a two-form β supported in

the unit ball B1:

(
Id

|Rn|

)

∗
[f∗T − (Df(0) · q)∗T ] (β) =

= T

(
f ∗

(
Id

|Rn|

)∗

β − (Df(0) · q)∗
(

Id

|Rn|

)∗

β

)
.

Writing explicitly β =
∑

I βIdqI , where dqI = dqi ∧ dqj for i 0= j ∈
{1, 2, ..., 2n+ 2}, the difference in brackets reads1

∑

I

βI ◦ Id
|Rn| ◦ f − βI ◦ Id

|Rn| ◦ (Df(0) · q)
R2

n

df I .

This form is supported, for n large enough, in a ball of radius ≤ 1
2|Df(0)|Rn

around 0. Moreover, for each I, we can estimate from above, for n large
enough:

|df I|

∣∣∣∣∣
βI ◦ Id

|Rn| ◦ f − βI ◦ Id
|Rn| ◦ (Df(0) · q)

R2
n

∣∣∣∣∣
≤

≤
‖f‖C1(B1)‖βi‖C1(B1)

R3
n

· |o(|q|)| ≤ |o(1)|
R2

n

,

for a function o(1), infinitesimal as n → ∞, depending on β and ‖f‖C2.
Using monotonicity, we get a constant K > 0, depending on ν(0) and ‖f‖C1,

1Writing f = (f1, f2, ..., f2n+2) and I = (i, j) the notation df I stands for d(f i)∧d(f j),
as in [28] (page 120).
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such that M
(
T B 1

2|Df(0)|Rn

)
≤ KR2

n for n large enough. These estimates

imply

T

(
f ∗

(
Id

|Rn|

)∗

β − (Df(0) · q)∗
(

Id

|Rn|

)∗

β

)
→ 0 as n→∞,

so the limiting behaviour of

(
Id

|Rn|

)

∗
(f∗T ) must be the same as that

of

(
Id

|Rn|

)

∗
((Df(0) · q)∗T ). In particular the density of f∗T at the point

f(0) = 0 is ν(0).
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