# Turán's Theorem: <br> GENERALIZATIONS AND APPLICATIONS 

Benny Sudakov<br>UCLA

## Extremal Graph Theory

## TYPICAL GOAL:

Determine or estimate the maximum or minimum possible size of a discrete structure (e.g., graph or hypergraph) satisfying certain restrictions.

## TYPICAL GOAL:

Determine or estimate the maximum or minimum possible size of a discrete structure (e.g., graph or hypergraph) satisfying certain restrictions.

## Examples and applications:

- Discrete geometry
- Additive number theory
- Probability
- Harmonic Analysis
- Computer Science
- Coding Theory


## Problem:

Given a fixed graph $H$, e.g.,

determine ex $(n, H)$, the maximum number of edges in a graph on $n$ vertices that does not contain a copy of $H$.

## Problem:

Given a fixed graph $H$, e.g.,

determine ex $(n, H)$, the maximum number of edges in a graph on $n$ vertices that does not contain a copy of $H$.

MANTEL 1907: Every triangle-free graph on $n$ vertices has at most $\left\lfloor n^{2} / 4\right\rfloor$ edges.

## PROBABILISTIC INEQUALITY

## THEOREM: (Katona 1969)

Let $X_{1}, X_{2}$ are i.i.d. random vectors in $\mathbb{R}^{d}$. Then

$$
\mathbb{P}\left[\left|X_{1}+X_{2}\right| \geq 1\right] \geq \frac{1}{2} \mathbb{P}^{2}\left[\left|X_{1}\right| \geq 1\right]
$$

## THEOREM: (Katona 1969)

Let $X_{1}, X_{2}$ are i.i.d. random vectors in $\mathbb{R}^{d}$. Then

$$
\mathbb{P}\left[\left|X_{1}+X_{2}\right| \geq 1\right] \geq \frac{1}{2} \mathbb{P}^{2}\left[\left|X_{1}\right| \geq 1\right]
$$

## ObSERVATION:

Let $v_{1}, \ldots, v_{n}$ be vectors in $\mathbb{R}^{d}$ with length at least 1 . Then pairs $(i, j)$ such that $\left|v_{i}+v_{j}\right|<1$ can not form a triangle. Therefore there are at least $\frac{n(n-2)}{2}$ pairs $i \neq j$ with $\left|v_{i}+v_{j}\right| \geq 1$.

## THEOREM: (Katona 1969)

Let $X_{1}, X_{2}$ are i.i.d. random vectors in $\mathbb{R}^{d}$. Then

$$
\mathbb{P}\left[\left|X_{1}+X_{2}\right| \geq 1\right] \geq \frac{1}{2} \mathbb{P}^{2}\left[\left|X_{1}\right| \geq 1\right]
$$

## OBSERVATION:

Let $v_{1}, \ldots, v_{n}$ be vectors in $\mathbb{R}^{d}$ with length at least 1 . Then pairs $(i, j)$ such that $\left|v_{i}+v_{j}\right|<1$ can not form a triangle. Therefore there are at least $\frac{n(n-2)}{2}$ pairs $i \neq j$ with $\left|v_{i}+v_{j}\right| \geq 1$.

Proof. Let $a=\mathbb{P}\left[\left|X_{1}\right| \geq 1\right]$ and let $b=\mathbb{P}\left[\left|X_{1}+X_{2}\right| \geq 1\right]$. Sample independently $X_{1}, \ldots, X_{m}$ from the distribution. Then there are $n \approx$ am vectors $\left|X_{i}\right| \geq 1$ and $\approx b m(m-1)$ pairs $\left|X_{i}+X_{j}\right| \geq 1$.

Thus

$$
b m(m-1) \geq \frac{n(n-2)}{2} \approx \frac{1}{2} a^{2} m^{2} .
$$


$K_{r+1}=$ complete graph of order $r+1$


Turán graph $T_{r}(n)$ : complete $r$-partite graph with equal parts.

$$
t_{r}(n)=e\left(T_{r}(n)\right)=\frac{r-1}{2 r} n^{2}+O(r)
$$


$K_{r+1}=$ complete graph of order $r+1$


Turán graph $T_{r}(n)$ : complete $r$-partite graph with equal parts.

$$
t_{r}(n)=e\left(T_{r}(n)\right)=\frac{r-1}{2 r} n^{2}+O(r)
$$

Theorem: (Turán 1941, Mantel 1907 for $r=2$ )
For all $r \geq 2$, the unique largest $K_{r+1}$-free graph on $n$ vertices is $T_{r}(n)$.

## Question:

What is the Turán number ex $(n, H)$ for a general graph $H$ ?
E.g., $H=$


## Definition:

The chromatic number $\chi(H)$ is the minimum number of colors needed to color $V(H)$, so that adjacent vertices have distinct colors.


## Definition:

The chromatic number $\chi(H)$ is the minimum number of colors needed to color $V(H)$, so that adjacent vertices have distinct colors.


## THEOREM: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let $H$ be a fixed graph with $\chi(H)=r+1$. Then

$$
e x(n, H)=t_{r}(n)+o\left(n^{2}\right)=(1+o(1)) \frac{r-1}{2 r} n^{2} .
$$

Remark: Determines the asymptotics of Turán numbers ex $(n, H)$ for all graphs with chromatic number at least 3 .

## COMPLETE BIPARTITE GRAPHS

Corollary:
For any constant $\varepsilon>0$ and large $n$, every $n$-vertex graph with at least $\varepsilon n^{2}$ edges contains all fixed bipartite graphs.

## COMPLETE BIPARTITE GRAPHS

## Corollary:

For any constant $\varepsilon>0$ and large $n$, every $n$-vertex graph with at least $\varepsilon n^{2}$ edges contains all fixed bipartite graphs.

Application: Let $S \subset \mathbb{Z}^{2}$ and define density of $S$

$$
d(S)=\lim \sup _{k \rightarrow \infty} d_{k}(S), \quad \text { where } \quad d_{k}(S)=\max _{\substack{A, B \subset \mathbb{Z} \\|A|=|B|=k}} \frac{S \cap A \times B}{|A||B|} .
$$

Is it an interesting definition?

## COMPLETE BIPARTITE GRAPHS

## Corollary:

For any constant $\varepsilon>0$ and large $n$, every $n$-vertex graph with at least $\varepsilon n^{2}$ edges contains all fixed bipartite graphs.

Application: Let $S \subset \mathbb{Z}^{2}$ and define density of $S$

$$
d(S)=\lim \sup _{k \rightarrow \infty} d_{k}(S), \quad \text { where } \quad d_{k}(S)=\max _{\substack{A, B \subset \mathbb{Z} \\|A|=|B|=k}} \frac{S \cap A \times B}{|A||B|} .
$$

Is it an interesting definition?
Claim: For every $S \subset \mathbb{Z}^{2}, d(S)$ is either 0 or 1 !

## COMPLETE BIPARTITE GRAPHS

## Corollary:

For any constant $\varepsilon>0$ and large $n$, every $n$-vertex graph with at least $\varepsilon n^{2}$ edges contains all fixed bipartite graphs.

Application: Let $S \subset \mathbb{Z}^{2}$ and define density of $S$

$$
d(S)=\lim \sup _{k \rightarrow \infty} d_{k}(S), \quad \text { where } \quad d_{k}(S)=\max _{\substack{A, B \subset \mathbb{Z} \\|A|=|B|=k}} \frac{S \cap A \times B}{|A||B|} .
$$

Is it an interesting definition?
Claim: For every $S \subset \mathbb{Z}^{2}, d(S)$ is either 0 or 1 !

## Theorem: (Kővári, Sós and Turán 1954)

Let $K_{r, s}$ be a complete bipartite graph with parts of size $r$ and $s$. Then for all $r \leq s$ there is a constant $c=c(r, s)$ such that

$$
e x\left(n, K_{r, s}\right) \leq c n^{2-1 / r} .
$$

Problem: (Erdős 1946)
What is the maximum possible number of unit distances among $n$ points in the plane?

## UNIT DISTANCES

Problem: (Erdős 1946)
What is the maximum possible number of unit distances among $n$ points in the plane?

## ObSERVATION:

Connect two points by an edge if the distance between them is 1 . Note that this graph can not have $K_{2,3}$. Thus, from estimate on ex $\left(n, K_{2,3}\right)$ the number of unit distances is at most $O\left(n^{3 / 2}\right)$.


## UNIT DISTANCES

PROBLEM: (Erdős 1946)
What is the maximum possible number of unit distances among $n$ points in the plane?

## Observation:

Connect two points by an edge if the distance between them is 1 . Note that this graph can not have $K_{2,3}$. Thus, from estimate on ex $\left(n, K_{2,3}\right)$ the number of unit distances is at most $O\left(n^{3 / 2}\right)$.

## Remarks:

- The best current upper bound for this problem is $O\left(n^{4 / 3}\right)$.
- It is conjectured that the number of unit distance is $\leq n^{1+o(1)}$.


## REPRESENTING SQUARES ECONOMICALLY

Problem: (Wooley, Erdős-Newman)
Let $A \subset \mathbb{Z}$ such that $A+A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$ contains $1^{2}, 2^{2}, \ldots n^{2}$. How small can set $A$ be?

## Representing squares economically

Problem: (Wooley, Erdős-Newman)
Let $A \subset \mathbb{Z}$ such that $A+A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$ contains $1^{2}, 2^{2}, \ldots n^{2}$. How small can set $A$ be?

$$
\begin{aligned}
& \text { Theorem: (Erdős-Newman) } \\
& \qquad|A| \geq n^{2 / 3-o(1)} .
\end{aligned}
$$

## REPRESENTING SQUARES ECONOMICALLY

Problem: (Wooley, Erdős-Newman)
Let $A \subset \mathbb{Z}$ such that $A+A=\left\{a+a^{\prime} \mid a, a^{\prime} \in A\right\}$ contains $1^{2}, 2^{2}, \ldots n^{2}$. How small can set $A$ be?

## ThEOREM: (Erdős-Newman)

$$
|A| \geq n^{2 / 3-o(1)}
$$

Sketch: For every $1 \leq x \leq n$ connect some pair ( $a, a^{\prime}$ ) such that $a+a^{\prime}=x^{2}$ by an edge. If $|A|=m=n^{2 / 3-\epsilon}$ then this graph has $m$ vertices, $n \geq m^{3 / 2+\epsilon}$ edges and by estimate on ex $\left(m, K_{2, s}\right)$ contains a pair $a_{1}, a_{2}$ with at least $s=n^{\delta}$ common neighbors. Then $a_{1}-a_{2}$ can be written as a difference of two squares in $n^{\delta}$ ways and hence has too many devisor.

## Growth of Turán numbers

Question:
What parameter of the bipartite graph $H$ might determine the growth of ex $(n, H)$ ?

## Growth of Turán numbers

## QuESTION:

What parameter of the bipartite graph $H$ might determine the growth of ex $(n, H)$ ?

Known:

- For complete bipartite graphs $K_{r, s}$ for $s>(r-1)$ !.
- For cycles of even length $C_{2 k}$ for $k=2,3,5$.


## Growth of Turán numbers

## QuEsTION:

What parameter of the bipartite graph $H$ might determine the growth of ex $(n, H)$ ?

## Known:

- For complete bipartite graphs $K_{r, s}$ for $s>(r-1)$ !.
- For cycles of even length $C_{2 k}$ for $k=2,3,5$.


## Open:

- Complete bipartite graph with equal parts of size 4.
- Cycle of length 8.
- The 3-cube.


Definition: A graph is $r$-degenerate if each of its subgraphs has a vertex of degree at most $r$.

## DEGENERATE BIPARTITE GRAPHS

Definition: A graph is $r$-degenerate if each of its subgraphs has a vertex of degree at most $r$.

## Conjecture: (Erdős 1966)

Every $r$-degenerate bipartite $H$ satisfies ex $(n, H) \leq O\left(n^{2-1 / r}\right)$.
Remark: For all $r$ this estimate is best possible.

## Degenerate bipartite graphs

Definition: A graph is $r$-degenerate if each of its subgraphs has a vertex of degree at most $r$.

## Conjecture: (Erdős 1966)

Every $r$-degenerate bipartite $H$ satisfies ex $(n, H) \leq O\left(n^{2-1 / r}\right)$.
Remark: For all $r$ this estimate is best possible.

## Theorem: (Alon-Krivelevich-S. 2003)

Conjecture holds for every $H$ in which vertices of one part have degrees at most $r$. For general $r$-degenerate bipartite $H$

$$
e x(n, H) \leq O\left(n^{2-\frac{1}{4 r}}\right)
$$

Question: How many copies of a fixed bipartite graph H must exist in an n-vertex graph with $m$ edges?

Question: How many copies of a fixed bipartite graph H must exist in an n-vertex graph with $m$ edges?

DEFINITION:

- $h_{H}(G)=$ the number of homomorphisms from $H$ to $G$.
- $t_{H}(G)=\frac{h_{H}(G)}{|G|^{|H|}}=$ fraction of mappings from $H$ to $G$ which are homomorphisms.


## Sidorenko's conjecture

Question: How many copies of a fixed bipartite graph H must exist in an n-vertex graph with $m$ edges?

## DEFINITION:

- $h_{H}(G)=$ the number of homomorphisms from $H$ to $G$.
- $t_{H}(G)=\frac{h_{H}(G)}{|G|^{|H|}}=$ fraction of mappings from $H$ to $G$ which are homomorphisms.


## Conjecture: (Erdős-Simonovits 84, Sidorenko 93)

For every bipartite $H$ and every $n$-vertex $G$ with $p n^{2} / 2$ edges,

$$
t_{H}(G) \geq p^{e(H)}
$$

Conjecture: $\forall$ bipartite $H$ and $n$-vertex $G$ with $p n^{2} / 2$ edges,

$$
t_{H}(G) \geq p^{e(H)} .
$$

Remarks:

- Random graphs with edge probability $p$ achieve minimum.

Conjecture: $\forall$ bipartite $H$ and $n$-vertex $G$ with $p n^{2} / 2$ edges,

$$
t_{H}(G) \geq p^{e(H)}
$$

Remarks:

- Random graphs with edge probability $p$ achieve minimum.
- Known for trees, even cycles, complete bipartite graphs, cubes.

Conjecture: $\forall$ bipartite $H$ and $n$-vertex $G$ with $p n^{2} / 2$ edges,

$$
t_{H}(G) \geq p^{e(H)}
$$

## Remarks:

- Random graphs with edge probability $p$ achieve minimum.
- Known for trees, even cycles, complete bipartite graphs, cubes.
- Has connections to matrix theory [BR], Markov chains [BP], graph limits [L], and quasi-randomness.


## Conjecture:

$\mu$ is the Lebesgue measure on $[0,1], h(x, y) \geq 0$ is bounded, measurable function on $[0,1]^{2}, H=(U, V, E)$ is bipartite graph with $U=\left\{u_{1}, \ldots, u_{t}\right\}, V=\left\{v_{1}, \ldots, v_{s}\right\}$ and $|E(H)|=q$. Then

$$
\int \prod_{\left(u_{i}, v_{j}\right) \in E} h\left(x_{i}, y_{j}\right) d \mu^{s+t} \geq\left(\int h d \mu^{2}\right)^{q}
$$

## Theorem: (Conlon-Fox-S. 2010)

Sidorenko's conjecture holds for every bipartite $H=(U, W)$ which has a vertex $u^{*} \in U$ adjacent to all vertices in the part $W$. This also gives an asymptotic version of the conjecture for all graphs.

## THEOREM: (Conlon-Fox-S. 2010)

Sidorenko's conjecture holds for every bipartite $H=(U, W)$ which has a vertex $u^{*} \in U$ adjacent to all vertices in the part $W$. This also gives an asymptotic version of the conjecture for all graphs.

## Key idea:

- Let $G$ be an $n$-vertex graph with $p n^{2} / 2$ edges and let $v$ be a random vertex of $G$. Then almost all small subsets $S \subset N(v)$ have at least $c_{H} p^{|S|} n$ common neighbors, which, apart from the constant factor $c_{H}$, is the expected size of the common neighborhood of a subset of size $|S|$ in the random graph $G_{n, p}$.


## Sidorenko's conjecture

## THEOREM: (Conlon-Fox-S. 2010)

Sidorenko's conjecture holds for every bipartite $H=(U, W)$ which has a vertex $u^{*} \in U$ adjacent to all vertices in the part $W$. This also gives an asymptotic version of the conjecture for all graphs.

## Key idea:

- Let $G$ be an $n$-vertex graph with $p n^{2} / 2$ edges and let $v$ be a random vertex of $G$. Then almost all small subsets $S \subset N(v)$ have at least $c_{H} p^{|S|} n$ common neighbors, which, apart from the constant factor $c_{H}$, is the expected size of the common neighborhood of a subset of size $|S|$ in the random graph $G_{n, p}$.
- Use this observation to show that there exist a constant $C_{H}$ such that a probability $t_{H}(G)$ that a random mapping from $H$ to $G$ is a homomorphism is at least $c_{H} p^{e(H)}$.


## Sidorenko's conjecture

## THEOREM: (Conlon-Fox-S. 2010)

Sidorenko's conjecture holds for every bipartite $H=(U, W)$ which has a vertex $u^{*} \in U$ adjacent to all vertices in the part $W$. This also gives an asymptotic version of the conjecture for all graphs.

## Key idea:

- Let $G$ be an $n$-vertex graph with $p n^{2} / 2$ edges and let $v$ be a random vertex of $G$. Then almost all small subsets $S \subset N(v)$ have at least $c_{H} p^{|S|} n$ common neighbors, which, apart from the constant factor $c_{H}$, is the expected size of the common neighborhood of a subset of size $|S|$ in the random graph $G_{n, p}$.
- Use this observation to show that there exist a constant $C_{H}$ such that a probability $t_{H}(G)$ that a random mapping from $H$ to $G$ is a homomorphism is at least $c_{H} p^{e(H)}$.
- Use a tensor power trick to show that $c_{H}=1$.


## Observation:

The size of the maximum bipartite subgraph of a graph G

The size of the maximum triangle-free subgraph of a graph $G$

Observation:

The size of the maximum bipartite subgraph of a graph G

The size of the maximum triangle-free subgraph of a graph $G$

TURÁN's THEOREM: Equality if $G$ is a complete graph.

Observation:
The size of the maximum bipartite subgraph of a graph $G$

The size of the maximum triangle-free subgraph of a graph $G$

TURÁN's THEOREM: Equality if $G$ is a complete graph.

## Problem: (Erdős 1983)

Find conditions on a graph $G$ which imply that the largest $K_{r+1}$-free subgraph and the largest $r$-partite subgraph of $G$ have the same number of edges.

## Theorem: (Alon, Shapira, S. 2009)

Let $H$ be a fixed graph with chromatic number $r+1>3$. There exist constants $\gamma=\gamma(H)>0$ and $\mu=\mu(H)>0$ such that if $G$ is a graph on $n$ vertices with minimum degree at least $(1-\mu) n$ and $\Gamma$ is the largest $H$-free subgraph of $G$, then

- $\Gamma$ can be made $r$-partite by deleting $O\left(n^{2-\gamma}\right)$ edges.
- If $H$ is a is a clique $K_{r+1}$, then $\Gamma$ is $r$-partite.


## LARGE MINIMUM DEGREE IS ENOUGH

## Theorem: (Alon, Shapira, S. 2009)

Let $H$ be a fixed graph with chromatic number $r+1>3$. There exist constants $\gamma=\gamma(H)>0$ and $\mu=\mu(H)>0$ such that if $G$ is a graph on $n$ vertices with minimum degree at least $(1-\mu) n$ and $\Gamma$ is the largest $H$-free subgraph of $G$, then

- $\Gamma$ can be made $r$-partite by deleting $O\left(n^{2-\gamma}\right)$ edges.
- If $H$ is a is a clique $K_{r+1}$, then $\Gamma$ is $r$-partite.

Remark: Since a complete graph has minimum degree $n-1$, this extends Turán's and Erdős-Stone-Simonovits theorems to all graphs with large minimum degree.

## EDGE-DELETION PROBLEMS

Definition:
A graph property $\mathcal{P}$ is monotone if it is closed under deleting edges and vertices. It is dense if there are $n$-vertex graphs with $\Omega\left(n^{2}\right)$ edges satisfying it.

## DEFINITION:

A graph property $\mathcal{P}$ is monotone if it is closed under deleting edges and vertices. It is dense if there are $n$-vertex graphs with $\Omega\left(n^{2}\right)$ edges satisfying it.

## Examples:

- $\mathcal{P}=\{G$ is 5 -colorable $\}$.
- $\mathcal{P}=\{G$ is triangle-free $\}$.
- $\mathcal{P}=\left\{G\right.$ has a 2-edge coloring with no monochromatic $\left.K_{6}\right\}$.


## EDGE-DELETION PROBLEMS

## DEFINITION:

A graph property $\mathcal{P}$ is monotone if it is closed under deleting edges and vertices. It is dense if there are $n$-vertex graphs with $\Omega\left(n^{2}\right)$ edges satisfying it.

## Examples:

- $\mathcal{P}=\{G$ is 5 -colorable $\}$.
- $\mathcal{P}=\{G$ is triangle-free $\}$.
- $\mathcal{P}=\left\{G\right.$ has a 2-edge coloring with no monochromatic $\left.K_{6}\right\}$.


## DEFINITION:

Given a graph $G$ and a monotone property $\mathcal{P}$, let
$E_{\mathcal{P}}(G)=$ smallest number of edge deletions needed to turn $G$ into a graph satisfying $\mathcal{P}$.

## Theorem: (Alon, Shapira, S. 2009)

- For every monotone $\mathcal{P}$ and $\epsilon>0$, there exists a linear-time deterministic algorithm that, given a graph $G$ on $n$ vertices, computes a number $X$ such that $\left|X-E_{\mathcal{P}}(G)\right| \leq \epsilon n^{2}$.
- For every monotone dense $\mathcal{P}$ and $\delta>0$, approximating $E_{\mathcal{P}}(G)$ within an additive error of $n^{2-\delta}$ is $N P$-hard.


## Theorem: (Alon, Shapira, S. 2009)

- For every monotone $\mathcal{P}$ and $\epsilon>0$, there exists a linear-time deterministic algorithm that, given a graph $G$ on $n$ vertices, computes a number $X$ such that $\left|X-E_{\mathcal{P}}(G)\right| \leq \epsilon n^{2}$.
- For every monotone dense $\mathcal{P}$ and $\delta>0$, approximating $E_{\mathcal{P}}(G)$ within an additive error of $n^{2-\delta}$ is NP-hard.


## Remarks:

- Answers in a strong form a question of Yannakakis from 1981. For many monotone dense $\mathcal{P}$ it even wasn't known before that computing $E_{\mathcal{P}}(G)$ precisely is NP-hard.


## Approximation and hardness

## Theorem: (Alon, Shapira, S. 2009)

- For every monotone $\mathcal{P}$ and $\epsilon>0$, there exists a linear-time deterministic algorithm that, given a graph $G$ on $n$ vertices, computes a number $X$ such that $\left|X-E_{\mathcal{P}}(G)\right| \leq \epsilon n^{2}$.
- For every monotone dense $\mathcal{P}$ and $\delta>0$, approximating $E_{\mathcal{P}}(G)$ within an additive error of $n^{2-\delta}$ is NP-hard.


## Remarks:

- Answers in a strong form a question of Yannakakis from 1981. For many monotone dense $\mathcal{P}$ it even wasn't known before that computing $E_{\mathcal{P}}(G)$ precisely is NP-hard.
- First result uses a strengthening of Szemerédi regularity lemma to approximate $G$ by a fixed size weighted graph $W$.
- Second result uses generalizations of Turán and Erdős-Stone-Simonovits theorems together with spectral techniques.

In this talk we presented several extremal problems and results and gave examples of connection between Extremal Graph
Theory and other areas of mathematics. In the future it is safe to predict that the number of such examples will only grow.

In this talk we presented several extremal problems and results and gave examples of connection between Extremal Graph Theory and other areas of mathematics. In the future it is safe to predict that the number of such examples will only grow.

These connections with other mathematical disciplines and the fundamental nature of the area will ensure that in the future Extremal Graph Theory will continue to play an essential role in the development of mathematics.

