TURÁN'S THEOREM: VARIATIONS AND GENERALIZATIONS

Benny Sudakov
Princeton University and IAS

Extremal Graph Theory

PROBLEM:

Determine or estimate the size of the largest configuration with a given property.

Example: Forbidden subgraph problem

Given a fixed graph H, find

$$
e x(n, H)=\max \{e(G)|H \not \subset G,|V(G)|=n\}
$$

Which G are extremal, i.e., achieve maximum?

$K_{r+1}=$ complete graph of order $r+1$

Turán graph $T_{r}(n)$: complete r-partite graph with equal parts.

$$
t_{r}(n)=e\left(T_{r}(n)\right)=\frac{r-1}{2 r} n^{2}+O(r)
$$

Theorem: (Turán 1941, Mantel 1907 for $r=2$)
For all $r \geq 2$, the unique largest K_{r+1}-free graph on n vertices is $T_{r}(n)$.

General graphs

Definition:

Chromatic number of graph H

$$
\chi(H)=\min \left\{k \mid V(H)=V_{1} \cup \cdots \cup V_{k}, V_{i}=\text { independent set }\right\}
$$

Theorem: (Erdős-Stone 1946, Erdős-Simonovits 1966)

Let H be a fixed graph with $\chi(H)=r+1$. Then

$$
e x(n, H)=t_{r}(n)+o\left(n^{2}\right)=(1+o(1)) \frac{r-1}{2 r} n^{2} .
$$

Remark:

This gives an asymptotic solution for non-bipartite H.

LOCAL DENSITY

PROBLEM: (Erdős 1975)

Suppose $0 \leq \alpha, \beta \leq 1, r \geq 2$, and G is a K_{r+1}-free graph on n vertices in which every αn vertices span at least βn^{2} edges.

How large can β be as a function of α ?

EXAMPLE:

When $\alpha=1$, Turán's theorem implies that $\beta=\frac{r-1}{2 r}$.

Remark:

Szemerédi's regularity lemma implies that for fixed H with $\chi(H)=r+1 \geq 3$, the bound on the local density for H-free graphs is the same as for K_{r+1} free graphs.

LARGE SUBSETS

Conjecture: (Erdős, Faudree, Rousseau, Schelp)

There exists a constant $c_{r}<1$ such that for $c_{r} \leq \alpha \leq 1$, the Turán graph has the largest local density with respect to subsets of size α.

Theorem: (Keevash and S., Erdős et al. for $r=2$)
There exists $\epsilon_{r}>0$ such that if G is a K_{r+1}-free graph of order n and $1-\epsilon_{r} \leq \alpha \leq 1$, then G contains a subset of size αn which spans at most

$$
\frac{r-1}{2 r}(2 \alpha-1) n^{2}
$$

edges. Equality is attained only by the Turán graph $T_{r}(n)$.

Conjecture: (Erdós, Faudree, Rousseau, Schelp)
Any triangle-free graph G on n vertices should contain a set of αn vertices that spans at most

- $\frac{2 \alpha-1}{4} n^{2}$ edges if $17 / 30 \leq \alpha \leq 1$.
- $\frac{5 \alpha-2}{25} n^{2}$ edges if $1 / 2 \leq \alpha \leq 17 / 30$.

Theorem: (Krivelevich 1995)

Conjecture holds for $0.6 \leq \alpha \leq 1$, i.e., the Turán graph $T_{2}(n)$ has the largest local density with respect to subsets in this range.

Conjecture: (Erdős 1975)

Any triangle-free graph G on n vertices should contain a set of $n / 2$ vertices that span at most $n^{2} / 50$ edges.

EXAMPLES:

- $C_{5}(n)=$ blow-up of 5-cycle.

$$
e\left(C_{5}(n)\right)=\frac{1}{5} n^{2}
$$

- $P(n)=$ blow-up of Petersen graph.

$$
e(P(n))=\frac{3}{20} n^{2}
$$

Theorem: (Krivelevich 1995)

Any triangle-free graph contains a set of size $n / 2$ which spans at most $n^{2} / 36$ edges.

Theorem: (Keevash and S. 2005)

- Let G be a triangle-free graph on n vertices with at least $n^{2} / 5$ edges, such that every set of $\lfloor n / 2\rfloor$ vertices of G spans at least $n^{2} / 50$ edges. Then $n=10 m$ for some integer m, and $G=C_{5}(n)$.
- Conjecture also holds for triangle-free graphs on n vertices with at most $n^{2} / 12$ edges.

$K_{r+1}-$ FREE GRAPHS,$r \geq 3$

Conjecture: (Chung and Graham 1990)

Among K_{r+1}-free graphs of order n, the Turán graph $T_{r}(n)$ has the largest local density with respect to sets of size αn for all $\frac{1}{2} \leq \alpha \leq 1$ and $r \geq 3$.
In particular, every K_{4}-free graph on n vertices contains a set of size $n / 2$ that spans at most $n^{2} / 18$ edges.

REMARK:

- For K_{4}-free graphs the result of Keevash and S. shows that the conjecture holds when $\alpha>0.861$.
- It is easy to show that every K_{4}-free graph on n vertices contains a set of size $n / 2$ that spans at most $n^{2} / 16$ edges.

Max Cut in H-free graphs

PROBLEM: (Erdős)

Let G be an H-free graph on n vertices. How many edges (as a function of n) does one need to delete from G to make it bipartite?

REMARK:

For every G it is enough to delete at most half of its edges to make it bipartite. Hence the extremal graph should be dense.

Observation: (Krivelevich)

Let G be a d-regular H-free graph on n vertices and S be a set of size $n / 2$. Then

$$
\begin{aligned}
\frac{d n}{2} & =\sum_{s \in S} d(s)=2 e(S)+e(S, \bar{S}) \\
& =\sum_{s \in \bar{S}} d(s)=2 e(\bar{S})+e(S, \bar{S})
\end{aligned}
$$

i.e. $e(S)=e(\bar{S})$. Deleting the $2 e(S)$ edges within S or \bar{S} makes the graph bipartite, so if we could find S spanning at most βn^{2} edges, we would delete at most $2 \beta n^{2}$ edges and make G bipartite.

Conjecture: (Erdős 1969)

If G is a triangle-free graph of order n, then deleting at most $n^{2} / 25$ edges is enough to make G bipartite.

Theorem: (Erdő́s, Faudree, Pach, Spencer 1988)

- If G has at least $n^{2} / 5$ edges then the conjecture is true.
- Every triangle-free graph of order n can be made bipartite by deleting at most $(1 / 18-\epsilon) n^{2}$ edges.

K_{4}-FREE GRAPHS

ExAMPLE:

The Turán graph $T_{3}(n)$ has $n^{3} / 27$ triangles and every edge is in $\leq n / 3$ of them. We need to delete $\geq \frac{n^{3} / 27}{n / 3}=n^{2} / 9$ edges to make it bipartite.

Conjecture: (Erdős)

Every K_{4}-free graph with n vertices can be made bipartite by deleting at most $(1 / 9+o(1)) n^{2}$ edges.

Making K_{4}-FREE GRAPH BIPARTITE

Theorem: (S. 2005)

Every K_{4}-free graph G with n vertices can be made bipartite by deleting at most $n^{2} / 9$ edges, and the only extremal graph which requires deletion of that many edges is the Turán graph $T_{3}(n)$.

PROBLEM:

Prove that deleting at most $\frac{r-2}{4 r} n^{2}$ edges for even $r \geq 4$ and $\frac{(r-1)^{2}}{4 r^{2}} n^{2}$ edges for odd $r \geq 5$ will be enough to make every $K_{r+1}-$ free graph of order n bipartite.

Problem: (Erdős 1983)

Find conditions on a graph G which imply that the largest K_{r+1}-free subgraph and the largest r-partite subgraph of G have the same number of edges.

Theorem: (Babai, Simonovits and Spencer 1990)

Almost all graphs have this property, i.e., the largest K_{r+1}-free subgraph and the largest r-partite subgraph of the random graph $G(n, 1 / 2)$ almost surely have the same size.

LARGE MINIMUM DEGREE IS ENOUGH

Theorem: (Alon, Shapira, S. 2005)

Let H be a fixed graph of chromatic number $r+1 \geq 3$ which contains an edge whose removal reduces its chromatic number, e.g., H is the clique K_{r+1}. Then there is a constant $\mu=\mu(H)>0$ such that if G is a graph on n vertices with minimum degree at least $(1-\mu) n$ and Γ is the largest H-free subgraph of G, then Γ is r-partite.

REMARK:

- In the special case when H is a triangle, this was proved by Bondy, Shen, Thomassé, Thomassen and in a stronger form by Balogh, Keevash, S.
- In this theorem μ is of order r^{-2}.

WHEN IS THE MAX. \triangle-FREE SUBGRAPH BIPARTITE?

Conjecture: (Balogh, Keevash, S.)

Let G be a graph of order n with \min. degree $\delta(G) \geq\left(\frac{3}{4}+o(1)\right) n$. Then the largest triangle-free subgraph of G is bipartite.

EXAMPLE:

Substitute \forall vertex of a 5 -cycle by a clique of size $n / 5, \forall$ edge by a complete bipartite graph, add remaining edges with probability $\theta<3 / 8$. The \min. degree can be as close to $3 n / 4$ as needed.

$$
\text { Max Cut }=\left(\frac{17}{100}+\frac{2}{25} \theta\right) n^{2}<n^{2} / 5 .
$$

Theorem: (Balogh, Keevash, S., extending Bondy et al.)

If the minimum degree $\delta(G) \geq 0.791 n$, then the largest triangle-free subgraph of G is bipartite.

Large minimum degree and H-Free subgraphs

Theorem: (Alon, Shapira, S.)

Let H be a fixed graph with chromatic number $r+1>3$. There exist constants $\gamma=\gamma(H)>0$ and $\mu=\mu(H)>0$ such that if G is a graph on n vertices with minimum degree at least $(1-\mu) n$ and Γ is the largest H-free subgraph of G, then Γ can be made r-partite by deleting $O\left(n^{2-\gamma}\right)$ edges.

Remarks:

- When G is a complete graph K_{n}, this gives the Erdős-Stone-Simonovits theorem.
- The error term $n^{2-\gamma}$ cannot be avoided.

EDGE-DELETION PROBLEMS

Definition:

A graph property \mathcal{P} is monotone if it is closed under deleting edges and vertices. It is dense if there are n-vertex graphs with $\Omega\left(n^{2}\right)$ edges satisfying it.

ExAMPLES:

- $\mathcal{P}=\{G$ is 5 -colorable $\}$.
- $\mathcal{P}=\{G$ is triangle-free $\}$.
- $\mathcal{P}=\left\{G\right.$ has a 2-edge coloring with no monochromatic $\left.K_{6}\right\}$

Definition:

Given a graph G and a monotone property \mathcal{P}, denote by
$E_{\mathcal{P}}(G)=$ smallest number of edge deletions needed to turn G into a graph satisfying \mathcal{P}.

Theorem: (Alon, Shapira, S. 2005)

- For every monotone \mathcal{P} and $\epsilon>0$, there exists a linear time, deterministic algorithm that given graph G on n vertices computes number X such that $\left|X-E_{\mathcal{P}}(G)\right| \leq \epsilon n^{2}$.
- For every monotone dense \mathcal{P} and $\delta>0$ it is $N P$-hard to approximate $E_{\mathcal{P}}(G)$ for graph of order n up to an additive error of $n^{2-\delta}$.

Remark:

Prior to this result, it was not even known that computing $E_{\mathcal{P}}(G)$ precisely for dense \mathcal{P} is NP-hard. We thus answer (in a stronger form) a question of Yannakakis from 1981.

Hardness: EXAMPLE

SETTING:

$\mathcal{P}=$ property of being H-free, $\chi(H)=r+1$.
$E_{r-c o l}(F)=$ number of edge-deletions needed to make graph F r-colorable. Computing $E_{r \text {-col }}(F)$ is $N P$-hard.

Reduction:

- Given F, let $F^{\prime}=$ blow-up of F : vertex \leftarrow large independent set, edge \leftarrow complete bipartite graph. Add edges to F^{\prime} in a pseudo-random way to get a graph G with large minimum degree.
- $E_{r-c o l}(F)$ changes in a controlled way, i.e., knowledge of an accurate estimate for $E_{r \text {-col }}(G)$ tells us the value of $E_{r \text {-col }}(F)$.
- Since G has large minimum degree,

$$
\left|E_{r-c o l}(G)-E_{\mathcal{P}}(G)\right| \leq n^{2-\gamma} .
$$

- Thus, approximating $E_{\mathcal{P}}(G)$ up to an additive error of $n^{2-\delta}$ is as hard as computing $E_{r-c o l}(F)$.

Another extension

Claim: (Folklore)

Every graph G contains a K_{r+1}-free subgraph with at least $\frac{r-1}{r} e(G)$ edges.

Question:

For which G is the size of the largest $K_{r+1}-$ free subgraph

$$
\frac{r-1}{r} e(G)+o(e(G)) ?
$$

ExAMPLES:

- Holds for the complete graph K_{n} by Turán's theorem.
- Hold almost surely for the random graph $G(n, p)$ of appropriate density.

Spectra of graphs

Notation:

The adjacency matrix A_{G} of a graph G has $a_{i j}=1$ if $(i, j) \in E(G)$ and 0 otherwise. It is a symmetric matrix with real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$. If G is d-regular, then $\lambda_{1}=d$.

Definition:

G is an (n, d, λ)-graph if it is d-regular, has n vertices, and

$$
\max _{i \geq 2}\left|\lambda_{i}\right| \leq \lambda
$$

REMARK:

A large spectral gap, i.e., when $\lambda \ll d$, implies that the edges of G are distributed as in the random graph $G\left(n, \frac{d}{n}\right)$.

Properties of (n, d, λ)-GRAPHS

Proposition: (Alon)

Let G be an (n, d, λ)-graph and $B, C \subseteq V(G)$. Then

$$
\left.e(B, C)-\frac{d}{n}|B||C| \right\rvert\, \leq \lambda \sqrt{|B \| C|}
$$

FACTS:

- Let $B=C$ be the set of neighbors of a vertex v in G. Then $|B|=|C|=d$ and the above inequality gives that if

$$
d^{2} \gg \lambda n
$$

then there is an edge in the neighborhood of v, i.e., G contains a triangle.

- Using induction one can show that if $d^{r} \gg \lambda n^{r-1}$ then every (n, d, λ)-graph contains cliques of size $r+1$.

Spectral Turán's theorem

Theorem: (S., Szabó, Vu 2005)

Let $r \geq 2$, and let G be an (n, d, λ)-graph with $d^{r} \gg \lambda n^{r-1}$. Then the size of the largest K_{r+1}-free subgraph of G is

$$
\frac{r-1}{r} e(G)+o(e(G)) .
$$

Remarks:

- The complete graph K_{n} has $d=n-1$ and $\lambda=1$. Thus we have an asymptotic extension of Turán's theorem.
- The theorem is tight for $r=2$. By the result of Alon, there are (n, d, λ)-graphs with $d^{2}=\Theta(\lambda n)$ which contain no triangles.

Problem:

Find constructions of K_{r+1}-free (n, d, λ)-graphs with $d^{r} \approx \lambda n^{r-1}$.

