(n, d, λ)-GRAPHS:

PROPERTIES AND APPLICATIONS

Benny Sudakov
Princeton University

What makes a graph random?

QuEstions:

- What are the essential properties of random graphs?
- How can one tell when a given graph behaves like a random graph?
- How to create deterministically graphs that look random-like?

A POSSIBLE ANSWER:

Probably the most important characteristic of truly random graph is its edge distribution. Thus may be a pseudo-random graph is a graph whose edge distribution resembles the one of a random graph with the same edge density.

Spectra of graphs

Notation:

The adjacency matrix A_{G} of a graph G has

$$
a_{u v}=\text { number of edges from } u \text { to } v .
$$

It is a symmetric matrix with real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$.

DEFINITION:

G is an (n, d, λ)-graph if it is d-regular, has n vertices, and

$$
\max _{i \geq 2}\left|\lambda_{i}\right| \leq \lambda
$$

Remark:

- If G is d-regular, then $\lambda_{1}=d$.
- If $d \leq n / 2$ and G is (n, d, λ), then $\lambda \geq \sqrt{\frac{d(n-d)}{n-1}}=\Omega(\sqrt{d})$.

EDGE DISTRIBUTION

Notation:

Let G be an (n, d, λ)-graph. For $B, C \subseteq V(G)$

$$
\begin{gathered}
e(B, C)=|\{(b, c) \in E(G) \mid b \in B, c \in C\}| \\
e(B)=\frac{1}{2} e(B, B)=\left|\left\{\left(b, b^{\prime}\right) \in E(G) \mid b, b^{\prime} \in B\right\}\right|
\end{gathered}
$$

Theorem: (Alon, Alon-Chung 80's)

- For any $B, C \subseteq V(G)$ (not necessarily disjoint)

$$
\left|e(B, C)-\frac{d}{n}\right| B||C|| \leq \lambda \sqrt{|B||C|},
$$

- For any $B \subseteq V(G)$

$$
\left|e(B)-\frac{d}{n} \frac{|B|^{2}}{2}\right| \leq \frac{1}{2} \lambda|B|\left(1-\frac{|B|}{n}\right) .
$$

Independence number and MaxCut

Corollary: (Hoffman)

The independence number of an (n, d, λ)-graph G is at most

$$
\alpha(G) \leq \frac{\lambda}{d+\lambda} n
$$

Corollary:

The maximum number of edges in a cut of G

$$
\operatorname{MaxCut}(G) \leq \frac{d+\lambda}{4} n=\frac{e(G)}{2}+\frac{\lambda n}{4}
$$

VERTEX EXPANSION

Definition:

The vertex boundary of $X \subset V(G)$ in a graph G is

$$
\partial X=\{y \in V(G) \backslash X \mid \exists x \in X:\{x, y\} \in E(G)\}
$$

Corollary: (Alon-Milman 84, Tanner 84)

If G is an (n, d, λ)-graph G and $X \subset V(G)$ of size at most $n / 2$, then

$$
|\partial X| \geq \frac{2(d-\lambda)}{3 d-2 \lambda}|X| .
$$

Converse results

Theorem: (Alon 1986)

If G is d-regular graph with eigenvalues $\lambda_{1}=d \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ such that $|\partial X| \geq c|X|$ for every $X \subset V,|X| \leq n / 2$, then

$$
\lambda_{2} \leq d-\frac{c^{2}}{4+2 c^{2}}
$$

Theorem: (Bilu and Linial 2004)

If $G=(V, E)$ is d-regular graph with eigenvalues $\lambda_{1}=d \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ such that for every $B, C \subset V$

$$
\left.e(B, C)-\frac{d}{n}|B \| C| \right\rvert\, \leq \alpha \sqrt{|B||C|},
$$

then

$$
\max \left\{\left|\lambda_{2}\right|,\left|\lambda_{n}\right|\right\} \leq O(\alpha \log (d / \alpha))
$$

Chromatic number

DEFINITION:

Chromatic number $\chi(G)$ is the minimum number of colors needed to color $V(G)$ such that adjacent vertices get different colors.

Theorem: (Hoffman)

If G is and (n, d, λ)-graph then $\quad \chi(G) \geq 1+\frac{d}{\lambda}$.

> Theorem: (Alon, Krivelevich and S. 99)
> If G is (n, d, λ) and $d \leq 2 n / 3$ then $\quad \chi(G) \leq O\left(\frac{d}{\log (1+d / \lambda)}\right)$.

Theorem: (Alon, Krivelevich and S. 99 and Vu 00)
The choice number of G satisfies a similar inequality.

Hamiltonicity

Definition:

Graph G is hamiltonian if it has Hamilton cycle, i.e., a cycle containing all vertices of G.

Theorem: (Krivelevich and S. 02)

If G is and (n, d, λ)-graph with

$$
\lambda<\frac{d}{\log n}
$$

then G is hamiltonian.

Conjecture:

There exist an $\epsilon>0$ such that if $\lambda<\epsilon d$ then G is hamiltonian.

SMALL SUBGRAPHS

SETTING:

- $H=$ fixed graph with s vertices, r edges and max. degree Δ.
- $G=(V, E)$ is an (n, d, λ)-graph and $U \subseteq V$ of size m.

THEOREM: (Alon)

If $m \gg \lambda\left(\frac{n}{d}\right)^{\Delta}$ then U contains

$$
(1+o(1)) \frac{s!}{|\operatorname{Aut}(H)|}\binom{m}{s}\left(\frac{d}{n}\right)^{r}
$$

copies of H

Remark:

If $d^{r} \gg \lambda n^{r-1}$ then G contains a complete graph K_{r+1}.

Spectral Turán's theorem

Question:

How large can be K_{r+1}-free subgraph of (n, d, λ)-graph?
(Every G has such subgraph with at least $\frac{r-1}{r} e(G)$ edges.)

Theorem: (S., Szabó, Vu 2005)

Let $r \geq 2$, and let G be an (n, d, λ)-graph with $d^{r} \gg \lambda n^{r-1}$. Then the size of the largest K_{r+1}-free subgraph of G is

$$
\frac{r-1}{r} e(G)+o(e(G)) .
$$

Remarks:

- The complete graph K_{n} has $d=n-1$ and $\lambda=1$. Thus we have an asymptotic extension of Turán's theorem.
- The theorem is tight for $r=2$. By a result of Alon, there are (n, d, λ)-graphs with $d^{2}=\Theta(\lambda n)$ which contain no triangles.

EXAMPLES OF (n, d, λ)-GRAPHS

Friedman 03:

For every fixed $\epsilon>0$ and $d \geq 3$, a random d-regular graph on n vertices is, asymptotically almost surely, an (n, d, λ)-graph with

$$
\lambda=2 \sqrt{d-1}+\epsilon
$$

Paley graph:

- $V(G)=\mathbb{Z}_{p}$, where p is a prime $p=1(\bmod 4)$.
- $(i, j) \in E(G)$ iff $i-j=r^{2}(\bmod p)$ is a quadratic residue.
G is an (n, d, λ)-graph with

$$
n=p, \quad d=\frac{p-1}{2}, \quad \lambda=\frac{1+\sqrt{p}}{2} .
$$

EXAMPLES OF (n, d, λ)-GRAPHS

ERDŐS-RÉNYI GRAPH:

G is polarity graph of lines-point incidence graph of finite projective plane of order q.

- $V(G)=$ lines through the origin in \mathbb{F}_{q}^{3}, q is a prime power.
- Two lines are adjacent if they orthogonal.
G has no 4-cycles and is an (n, d, λ)-graph with

$$
n=q^{2}+q+1, \quad d=q+1, \quad \lambda=\sqrt{q} .
$$

EXAMPLES OF (n, d, λ)-GRAPHS

Lubotzky-Phillips-Sarnak 86, Margulis 88:

For every $d=p+1$ where p is prime $p=1(\bmod 4)$, there are infinitely many ($n, d, 2 \sqrt{d-1}$)-graphs.

Alon 94:

For every $k, 3 \nmid k$ there is a triangle-free (n, d, λ)-graph with

$$
n=2^{3 k}, \quad d=(1 / 4+o(1)) n^{2 / 3}, \quad \lambda=(9+o(1)) n^{1 / 3}
$$

Applications: MaxCut

DEFINITION:

$f(G)=$ the number of edges in MaxCut, i.e., a maximum bipartite subgraph of G.

Claim: (Folklore)

Every graph G with m edges contains a cut of size at least $m / 2$.

Theorem: (Edwards 73,75)

Every graph G with m edges contains a cut (a bipartite subgraph) of size at least

$$
f(G) \geq \frac{m}{2}+\frac{-1+\sqrt{8 m+1}}{8}=\frac{m}{2}+\Omega(\sqrt{m}) .
$$

MaxCut in triangle-Free graphs

Conjecture: (Erdős 70's)

If G contains no short cycles than it has bigger cut.

Theorem: (Alon 96, improving Erdős-Lovász, Poljak-Tuza, Shearer)

If G is triangle-free and has m edges then

$$
f(G) \geq \frac{m}{2}+\Omega\left(m^{4 / 5}\right)
$$

The constant $4 / 5$ tight

Proof of Tightness:

Use an (n, d, λ)-graph with $d \approx \frac{1}{4} n^{2 / 3}, \lambda \approx 9 n^{1 / 3}$, no triangles.

MaxCut in graphs of high girth

Theorem: (Alon, Bollobás, Krivelevich and S. 02)

If G has girth (length of the shortest cycle) r and m edges, then

$$
f(G) \geq \frac{m}{2}+\Omega\left(m^{\frac{r}{r+1}}\right)
$$

This is tight for $r=5$ (and $r=4$).

PROOF OF TIGHTNESS:

Uses a random modification of Erdős-Renyi graph, which is C_{4}-free $\left(n, d \approx n^{1 / 2}, \lambda \approx n^{1 / 4}\right)$-graph. Hence $m=\Omega\left(n^{3 / 2}\right)$ and

$$
\text { MaxCut } \leq \frac{m}{2}+\frac{\lambda n}{4}=\frac{m}{2}+O\left(n^{5 / 4}\right)=\frac{m}{2}+O\left(m^{5 / 6}\right)
$$

Conjecture:

Exponent $\frac{r}{r+1}$ is tight also for all $r>5$.

MaxCuT in H-FREE GRAPHS

Conjecture:

For every fixed H there is $c_{H}>3 / 4$ such that if G is an H-free graph with m edges, then

$$
f(G) \geq \frac{m}{2}+\Omega\left(m^{c_{H}}\right)
$$

Theorem: (Alon, Krivelevich and S. 05)

- $H=$ cycle of length $r=4,6,10$ then $c_{H}=\frac{r+1}{r+2}$.
- $H=K_{2, s}$ complete bipartite graph with parts of size 2 and

$$
s \geq 2 \text { then } \quad c_{H}=5 / 6
$$

- $H=K_{3, s}$ complete bipartite graph with parts of size 3 and

$$
s \geq 3 \text { then } \quad c_{H}=4 / 5
$$

A GEOMETRIC PROBLEM

PROBLEM: (Lovász 79)

Estimate $f(n)=\max \left\|\sum_{i=1}^{n} v_{i}\right\|$, where

- $v_{i} \in \mathbb{R}^{n}$ and $\left\|v_{i}\right\|=1$.
- Among any three v_{i} 's some two are orthogonal.

Results:

- Konyagin 81:

$$
\Omega\left(n^{0.54}\right) \leq f(n) \leq n^{2 / 3} .
$$

- Kashin-Konyagin 83:

$$
\Omega\left(\frac{n^{2 / 3}}{\log ^{1 / 2} n}\right) \leq f(n) .
$$

Theorem: (Alon 94)

$$
f(n) \geq(1 / 6-o(1)) n^{2 / 3}
$$

PROOF OF LOWER BOUND:

G is a triangle-free (n, d, λ)-graph with $d=\Omega\left(n^{2 / 3}\right), \lambda=O\left(n^{1 / 3}\right)$. A is its adjacency matrix.
$\frac{1}{\lambda}(A+\lambda I)$ is positive semidefinite, so there is matrix B such that

$$
B^{T} B=\frac{1}{\lambda}(A+\lambda I)
$$

Let $v_{1}, v_{2}, \ldots, v_{n}$ be the columns of B. Then

- Each $\left\|v_{i}\right\|=1$.
- Among any three v_{i} 's some two are orthogonal.
-

$$
\begin{aligned}
\left\|\sum_{i=1}^{n} v_{i}\right\|^{2} & =\sum_{i, j}\left[\frac{1}{\lambda}(A+\lambda I)\right]_{i j} \\
& =n+\frac{n d}{\lambda}=\Omega\left(n^{4 / 3}\right)
\end{aligned}
$$

DEFINITION:

Given \mathcal{H} a family of graphs (e.g., all trees, planar graphs and etc.), G is called \mathcal{H}-universal if it contains copy of every $H \in \mathcal{H}$.

GOAL: (motivated by VLSI design)

Find sparse universal graph G for \mathcal{H}.
(Use limited resources to achieve max. flexibility)

Theorem: (Bhatt, Chung, Leighton, Rosenberg 89)

If \mathcal{H} is all trees on n vertices of maximum degree at most D, then there is universal G of order n with maximum degree $\leq f(D)$.

NEARLY SPANNING TREES IN (n, d, λ)-GRAPHS

ThEOREM: (Alon-Krivelevich-S. 06, extending Friedman-Pippenger 87)

Let $D \geq 2,0<\epsilon<1 / 2$ and let G be an (n, d, λ)-graph such that

$$
\frac{d}{\lambda} \geq \Omega\left(\frac{D^{5 / 2} \log (2 / \epsilon)}{\epsilon}\right)
$$

Then G contains a copy of every tree with $(1-\epsilon) n$ vertices and with maximum degree at most D.

REMARK:

Random regular graphs, Lubotzky-Phillips-Sarnak graphs etc. are universal for almost spanning trees of bounded degree.

Embedding strategy

VERY BRIEF SKETCH:

- Cut tree T into pieces $T_{1}, \ldots, T_{s}, s=f(D, \epsilon)$ of decreasing size. Embed T piece by piece respecting previous embedding.
- Use result of Friedman-Pippenger that if every subset X of graph G of size at least $2 k$ satisfies that $|\partial X| \geq D|X|$, then G contains every tree on k vertices with maximum degree D.
- Use the fact that if induced subgraph of (n, d, λ)-graph has minimal degree at least $\Omega(\lambda \sqrt{D})$, then it is a very good expander.

Conjecture:

There is a constant C_{D} such that (n, d, λ)-graph with $d / \lambda>C_{D}$ contains every spanning tree of maximum degree at most D.

EDGE-DELETION PROBLEMS

DEFINITION:

A graph property \mathcal{P} is monotone if it is closed under deleting edges and vertices. It is dense if there are n-vertex graphs with $\Omega\left(n^{2}\right)$ edges satisfying it.

ExAMPLES:

- $\mathcal{P}=\{G$ is 5 -colorable $\}$.
- $\mathcal{P}=\{G$ is triangle-free $\}$.
- $\mathcal{P}=\left\{G\right.$ has a 2-edge coloring with no monochromatic $\left.K_{6}\right\}$

DEFInITION:

Given a graph G and a monotone property \mathcal{P}, denote by
$E_{\mathcal{P}}(G)=$ smallest number of edge deletions needed to turn G into a graph satisfying \mathcal{P}.

Theorem: (Alon, Shapira, S. 2005)

- For every monotone \mathcal{P} and $\epsilon>0$, there exists a linear time, deterministic algorithm that given graph G on n vertices computes number X such that $\left|X-E_{\mathcal{P}}(G)\right| \leq \epsilon n^{2}$.
- For every monotone dense \mathcal{P} and $\delta>0$ it is $N P$-hard to approximate $E_{\mathcal{P}}(G)$ for graph of order n up to an additive error of $n^{2-\delta}$.

Remark:

Prior to this result, it was not even known that computing $E_{\mathcal{P}}(G)$ precisely for dense \mathcal{P} is $N P$-hard. We thus answer (in a stronger form) a question of Yannakakis from 1981.

Hardness proof: example

SETTING:

$$
\begin{aligned}
& \mathcal{P}=\text { property of being } H \text {-free, } \chi(H)=r+1 \text {. } \\
& E_{r \text {-col }}(F)=\text { number of edge-deletions needed to make graph } F \\
& \quad r \text {-colorable. Computing } E_{r \text {-col }}(F) \text { is } N P \text {-hard. }
\end{aligned}
$$

Reduction:

- Given F, let $F^{\prime}=$ blow-up of $F:$ vertex \leftarrow large independent set, edge \leftarrow complete bipartite graph. Take union of F^{\prime} with an appropriate (n, d, λ)-graph to get a graph G with large minimum degree.
- $E_{r-c o l}(F)$ changes in a controlled way, i.e., knowledge of an accurate estimate for $E_{r-c o l}(G)$ tells us the value of $E_{r-c o l}(F)$. Moreover $\quad\left|E_{r-c o l}(G)-E_{\mathcal{P}}(G)\right| \leq n^{2-\gamma}$.
- Thus, approximating $E_{\mathcal{P}}(G)$ up to an additive error of $n^{2-\delta}$ is as hard as computing $E_{r-c o l}(F)$.

