(n, d, λ) -graphs: PROPERTIES AND APPLICATIONS

Benny Sudakov Princeton University

・ロト・日本・モート・モー うへで

What makes a graph random?

QUESTIONS:

- What are the essential properties of random graphs?
- How can one tell when a given graph behaves like a random graph?
- How to create deterministically graphs that look random-like?

A POSSIBLE ANSWER:

Probably the most important characteristic of truly random graph is its *edge distribution*. Thus may be a pseudo-random graph is a graph whose edge distribution resembles the one of a random graph with the same edge density.

Spectra of graphs

NOTATION:

The adjacency matrix A_G of a graph G has $a_{uv} =$ number of edges from u to v. It is a symmetric matrix with real eigenvalues $\lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n$.

DEFINITION:

G is an (n, d, λ) -graph if it is d-regular, has n vertices, and $\max_{i\geq 2}|\lambda_i|\leq \lambda.$

REMARK:

- If G is d-regular, then $\lambda_1 = d$.
- If $d \le n/2$ and G is (n, d, λ) , then $\lambda \ge \sqrt{\frac{d(n-d)}{n-1}} = \Omega(\sqrt{d})$.

・ロト・雪ト・雪ト・雪・ 今日・

EDGE DISTRIBUTION

NOTATION:

Let G be an (n, d, λ) -graph. For $B, C \subseteq V(G)$ $e(B, C) = |\{(b, c) \in E(G) \mid b \in B, c \in C\}|$ $e(B) = \frac{1}{2}e(B, B) = |\{(b, b') \in E(G) \mid b, b' \in B\}|$

THEOREM: (Alon, Alon-Chung 80's)

• For any $B, C \subseteq V(G)$ (not necessarily disjoint)

$$\left| e(B,C) - \frac{d}{n} |B| |C| \right| \leq \lambda \sqrt{|B| |C|}$$

• For any $B \subseteq V(G)$

$$\left| e(B) - \frac{d}{n} \frac{|B|^2}{2} \right| \leq \frac{1}{2} \lambda |B| \left(1 - \frac{|B|}{n} \right)$$

COROLLARY: (*Hoffman*)

The independence number of an (n, d, λ) -graph G is at most

$$\alpha(G) \leq \frac{\lambda}{d+\lambda}n$$

COROLLARY:

The maximum number of edges in a cut of G

$$\operatorname{MaxCut}(G) \leq \frac{d+\lambda}{4}n = \frac{e(G)}{2} + \frac{\lambda n}{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DEFINITION:

The vertex boundary of $X \subset V(G)$ in a graph G is

$$\partial X = \{y \in V(G) \setminus X \mid \exists x \in X : \{x, y\} \in E(G)\}.$$

COROLLARY: (Alon-Milman 84, Tanner 84)

If G is an (n, d, λ) -graph G and $X \subset V(G)$ of size at most n/2, then $2(d-\lambda)$

$$|\partial X| \geq \frac{2(d-\lambda)}{3d-2\lambda}|X|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Converse results

THEOREM: (Alon 1986)

If G is d-regular graph with eigenvalues $\lambda_1 = d \ge \lambda_2 \ge \ldots \ge \lambda_n$ such that $|\partial X| \ge c|X|$ for every $X \subset V, |X| \le n/2$, then

$$\lambda_2 \leq d - \frac{c^2}{4+2c^2}.$$

THEOREM: (Bilu and Linial 2004)

If G = (V, E) is *d*-regular graph with eigenvalues $\lambda_1 = d \ge \lambda_2 \ge \ldots \ge \lambda_n$ such that for every $B, C \subset V$

$$e(B,C)-\frac{d}{n}|B||C| \leq \alpha \sqrt{|B||C|},$$

then $\max\left\{|\lambda_2|, |\lambda_n|\right\} \leq O\big(\alpha \log(d/\alpha)\big).$

CHROMATIC NUMBER

DEFINITION:

Chromatic number $\chi(G)$ is the minimum number of colors needed to color V(G) such that adjacent vertices get different colors.

THEOREM: (Hoffman)	
If G is and (n, d, λ) -graph then	$\chi(G) \geq 1 + \frac{d}{\lambda}.$

$$\text{If } G \text{ is } (n,d,\lambda) \text{ and } d \leq 2n/3 \text{ then } \quad \chi(G) \leq O\left(\frac{d}{\log(1+d/\lambda)}\right).$$

THEOREM: (Alon, Krivelevich and S. 99 and Vu 00)

The choice number of G satisfies a similar inequality.

DEFINITION:

Graph G is hamiltonian if it has Hamilton cycle, i.e., a cycle containing all vertices of G.

THEOREM:(Krivelevich and S. 02)If G is and (n, d, λ) -graph with

$$n < \frac{d}{\log n},$$

then G is hamiltonian.

CONJECTURE:

There exist an $\epsilon > 0$ such that if $\lambda < \epsilon d$ then G is hamiltonian.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Small subgraphs

SETTING:

• H = fixed graph with s vertices, r edges and max. degree Δ .

• G = (V, E) is an (n, d, λ) -graph and $U \subseteq V$ of size m.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Remark:

If $d^r \gg \lambda n^{r-1}$ then G contains a complete graph K_{r+1} .

SPECTRAL TURÁN'S THEOREM

QUESTION:

How large can be K_{r+1} -free subgraph of (n, d, λ) -graph?

(Every G has such subgraph with at least $\frac{r-1}{r}e(G)$ edges.)

Тнеопем: (*S., Szabó, Vu 2005*)

Let $r \ge 2$, and let G be an (n, d, λ) -graph with $d^r \gg \lambda n^{r-1}$. Then the size of the largest K_{r+1} -free subgraph of G is $\frac{r-1}{r}e(G) + o(e(G)).$

REMARKS:

- The complete graph K_n has d = n − 1 and λ = 1. Thus we have an asymptotic extension of Turán's theorem.
- The theorem is tight for r = 2. By a result of Alon, there are (n, d, λ) -graphs with $d^2 = \Theta(\lambda n)$ which contain no triangles.

FRIEDMAN 03:

For every fixed $\epsilon > 0$ and $d \ge 3$, a random *d*-regular graph on *n* vertices is, asymptotically almost surely, an (n, d, λ) -graph with $\lambda = 2\sqrt{d-1} + \epsilon$.

PALEY GRAPH:

- $V(G) = \mathbb{Z}_p$, where p is a prime $p = 1 \pmod{4}$.
- $(i,j) \in E(G)$ iff $i j = r^2 \pmod{p}$ is a quadratic residue.

G is an (n, d, λ) -graph with

$$n = p, \quad d = \frac{p-1}{2}, \quad \lambda = \frac{1+\sqrt{p}}{2}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Erdős-Rényi graph:

G is polarity graph of lines-point incidence graph of finite projective plane of order q.

- V(G) = lines through the origin in \mathbb{F}_q^3 , q is a prime power.
- Two lines are adjacent if they orthogonal.

G has no 4-cycles and is an (n, d, λ) -graph with

$$n = q^2 + q + 1$$
, $d = q + 1$, $\lambda = \sqrt{q}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

LUBOTZKY-PHILLIPS-SARNAK 86, MARGULIS 88:

For every d = p + 1 where p is prime $p = 1 \pmod{4}$, there are infinitely many $(n, d, 2\sqrt{d-1})$ -graphs.

Alon 94:

For every $k, 3 \not\mid k$ there is a triangle-free (n, d, λ) -graph with

$$n=2^{3k}, \quad d=(1/4+o(1))n^{2/3}, \quad \lambda=(9+o(1))n^{1/3}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Applications: MaxCut

DEFINITION:

f(G) = the number of edges in MaxCut, i.e., a maximum bipartite subgraph of G.

CLAIM: (*Folklore*)

Every graph G with m edges contains a cut of size at least m/2.

THEOREM: (*Edwards 73,75*)

Every graph G with m edges contains a cut (a bipartite subgraph) of size at least

$$f(G) \geq \frac{m}{2} + \frac{-1 + \sqrt{8m+1}}{8} = \frac{m}{2} + \Omega(\sqrt{m}).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

CONJECTURE: (Erdős 70's)

If G contains no short cycles than it has bigger cut.

THEOREM: (Alon 96, improving Erdős-Lovász, Poljak-Tuza, Shearer)

If G is triangle-free and has m edges then

$$f(G) \geq \frac{m}{2} + \Omega(m^{4/5}).$$

The constant 4/5 tight

PROOF OF TIGHTNESS:

Use an (n, d, λ) -graph with $d \approx \frac{1}{4}n^{2/3}$, $\lambda \approx 9n^{1/3}$, no triangles.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

MAXCUT IN GRAPHS OF HIGH GIRTH

THEOREM: (Alon, Bollobás, Krivelevich and S. 02)

If G has girth (length of the shortest cycle) r and m edges, then

$$f(G) \geq \frac{m}{2} + \Omega(m^{\frac{r}{r+1}}).$$

This is tight for r = 5 (and r = 4).

PROOF OF TIGHTNESS:

Uses a random modification of Erdős-Renyi graph, which is C_4 -free $(n, d \approx n^{1/2}, \lambda \approx n^{1/4})$ -graph. Hence $m = \Omega(n^{3/2})$ and

MaxCut
$$\leq \frac{m}{2} + \frac{\lambda n}{4} = \frac{m}{2} + O(n^{5/4}) = \frac{m}{2} + O(m^{5/6}).$$

CONJECTURE:

Exponent $\frac{r}{r+1}$ is tight also for all r > 5.

Conjecture:

For every fixed H there is $c_H > 3/4$ such that if G is an H-free graph with m edges, then

$$f(G) \geq \frac{m}{2} + \Omega(m^{c_H}).$$

THEOREM: (Alon, Krivelevich and S. 05)

- H = cycle of length r = 4, 6, 10 then $c_H = \frac{r+1}{r+2}$.
- $H = K_{2,s}$ complete bipartite graph with parts of size 2 and $s \ge 2$ then $c_H = 5/6$.
- $H = K_{3,s}$ complete bipartite graph with parts of size 3 and $s \ge 3$ then $c_H = 4/5$.

A GEOMETRIC PROBLEM

PROBLEM: (Lovász 79)

Estimate
$$f(n) = \max \left| \left| \sum_{i=1}^{n} v_i \right| \right|$$
, where

•
$$v_i \in \mathbb{R}^n$$
 and $||v_i|| = 1$.

• Among any three v_i's some two are orthogonal.

RESULTS:

• Konyagin 81:

• Kashin-Konyagin 83:

$$\Omega(n^{0.54}) \leq f(n) \leq n^{2/3}$$
$$\Omega\left(\frac{n^{2/3}}{\log^{1/2} n}\right) \leq f(n).$$

THEOREM: (

(Alon 94)

$$f(n) \ge (1/6 - o(1))n^{2/3}$$

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへで

PROOF OF LOWER BOUND:

G is a triangle-free (n, d, λ) -graph with $d = \Omega(n^{2/3})$, $\lambda = O(n^{1/3})$. A is its adjacency matrix.

 $\frac{1}{\lambda}(A + \lambda I)$ is positive semidefinite, so there is matrix B such that $B^T B = \frac{1}{\lambda}(A + \lambda I)$.

Let v_1, v_2, \ldots, v_n be the columns of *B*. Then

• Each $||v_i|| = 1$.

۲

• Among any three v_i's some two are orthogonal.

$$ig|ig|\sum_{i=1}^n v_iig|ig|^2 = \sum_{i,j} \Big[rac{1}{\lambda}(A+\lambda I)\Big]_{ij} \ = n+rac{nd}{\lambda} = \Omega(n^{4/3}).$$

DEFINITION:

Given \mathcal{H} a family of graphs (e.g., all trees, planar graphs and etc.), G is called \mathcal{H} -universal if it contains copy of every $H \in \mathcal{H}$.

GOAL: (motivated by VLSI design)

Find sparse universal graph G for \mathcal{H} .

(Use limited resources to achieve max. flexibility)

THEOREM: (Bhatt, Chung, Leighton, Rosenberg 89)

If \mathcal{H} is all trees on *n* vertices of maximum degree at most *D*, then there is universal *G* of order *n* with maximum degree $\leq f(D)$.

NEARLY SPANNING TREES IN $(n, d, \overline{\lambda})$ -GRAPHS

THEOREM: *87*)

Let $D\geq$ 2, $0<\epsilon<1/2$ and let G be an (n,d,λ) -graph such that

(Alon-Krivelevich-S. 06, extending Friedman-Pippenger

$$rac{d}{\lambda} \geq \Omega\left(\; rac{D^{5/2} \log(2/\epsilon)}{\epsilon} \;
ight)$$

Then G contains a copy of every tree with $(1 - \epsilon)n$ vertices and with maximum degree at most D.

Remark:

Random regular graphs, Lubotzky-Phillips-Sarnak graphs etc. are universal for almost spanning trees of bounded degree.

VERY BRIEF SKETCH:

- Cut tree T into pieces T₁,..., T_s, s = f(D, ε) of decreasing size. Embed T piece by piece respecting previous embedding.
- Use result of Friedman-Pippenger that if every subset X of graph G of size at least 2k satisfies that $|\partial X| \ge D|X|$, then G contains every tree on k vertices with maximum degree D.
- Use the fact that if induced subgraph of (n, d, λ) -graph has minimal degree at least $\Omega(\lambda \sqrt{D})$, then it is a very good expander.

CONJECTURE:

There is a constant C_D such that (n, d, λ) -graph with $d/\lambda > C_D$ contains every spanning tree of maximum degree at most D.

DEFINITION:

A graph property \mathcal{P} is *monotone* if it is closed under deleting edges and vertices. It is *dense* if there are *n*-vertex graphs with $\Omega(n^2)$ edges satisfying it.

EXAMPLES:

- $\mathcal{P} = \{ G \text{ is 5-colorable} \}.$
- $\mathcal{P} = \{ G \text{ is triangle-free} \}.$
- $\mathcal{P} = \{G \text{ has a 2-edge coloring with no monochromatic } K_6\}$

DEFINITION:

Given a graph G and a monotone property \mathcal{P} , denote by

 $E_{\mathcal{P}}(G) =$ smallest number of edge deletions needed to turn G into a graph satisfying \mathcal{P} .

THEOREM: (Alon, Shapira, S. 2005)

- For every monotone *P* and *e* > 0, there exists a linear time, deterministic algorithm that given graph *G* on *n* vertices computes number *X* such that |*X* − *E*_{*P*}(*G*)| ≤ *en*².
- For every monotone dense *P* and δ > 0 it is NP-hard to approximate E_P(G) for graph of order n up to an additive error of n^{2-δ}.

REMARK:

Prior to this result, it was not even known that computing $E_{\mathcal{P}}(G)$ precisely for dense \mathcal{P} is NP-hard. We thus answer (in a stronger form) a question of Yannakakis from 1981.

HARDNESS PROOF: EXAMPLE

Setting:

 \mathcal{P} = property of being *H*-free, $\chi(H) = r + 1$. $E_{r-col}(F)$ = number of edge-deletions needed to make graph *F*

r-colorable. Computing $E_{r-col}(F)$ is NP-hard.

REDUCTION:

- Given F, let F' = blow-up of F : vertex ← large independent set, edge ← complete bipartite graph. Take union of F' with an appropriate (n, d, λ)-graph to get a graph G with large minimum degree.
- $E_{r-col}(F)$ changes in a controlled way, i.e., knowledge of an accurate estimate for $E_{r-col}(G)$ tells us the value of $E_{r-col}(F)$. Moreover $|E_{r-col}(G) - E_{\mathcal{P}}(G)| \leq n^{2-\gamma}$.
- Thus, approximating E_P(G) up to an additive error of n^{2-δ} is as hard as computing E_{r-col}(F).