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What makes a graph random?

Questions:

What are the essential properties of random graphs?

How can one tell when a given graph behaves like a random
graph?

How to create deterministically graphs that look random-like?

A possible answer:

Probably the most important characteristic of truly random graph
is its edge distribution. Thus may be a pseudo-random graph is a
graph whose edge distribution resembles the one of a random
graph with the same edge density.



Spectra of graphs

Notation:

The adjacency matrix AG of a graph G has
auv = number of edges from u to v .

It is a symmetric matrix with real eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn.

Definition:

G is an (n, d , λ)-graph if it is d-regular, has n vertices, and

max
i≥2
|λi | ≤ λ.

Remark:

If G is d-regular, then λ1 = d .

If d ≤ n/2 and G is (n, d , λ), then λ ≥
√

d(n−d)
n−1 = Ω(

√
d).



Edge distribution

Notation:

Let G be an (n, d , λ)-graph. For B,C ⊆ V (G )

e(B,C ) =
∣∣ {(b, c) ∈ E (G ) | b ∈ B, c ∈ C}

∣∣
e(B) =

1

2
e(B,B) =

∣∣ {(b, b′) ∈ E (G ) | b, b′ ∈ B}
∣∣

Theorem: (Alon, Alon-Chung 80’s)

For any B,C ⊆ V (G ) (not necessarily disjoint)∣∣∣∣ e(B,C )− d

n
|B||C |

∣∣∣∣ ≤ λ
√
|B||C |,

For any B ⊆ V (G )∣∣∣∣ e(B)− d

n

|B|2

2

∣∣∣∣ ≤ 1

2
λ|B|

(
1− |B|

n

)
.



Independence number and MaxCut

Corollary: (Hoffman )

The independence number of an (n, d , λ)-graph G is at most

α(G ) ≤ λ

d + λ
n

Corollary:

The maximum number of edges in a cut of G

MaxCut(G ) ≤ d + λ

4
n =

e(G )

2
+

λn

4
.



Vertex expansion

Definition:

The vertex boundary of X ⊂ V (G ) in a graph G is

∂X =
{
y ∈ V (G )\X | ∃x ∈ X : {x , y} ∈ E (G )

}
.

Corollary: (Alon-Milman 84, Tanner 84)

If G is an (n, d , λ)-graph G and X ⊂ V (G ) of size at most n/2,
then

|∂X | ≥ 2(d − λ)

3d − 2λ
|X |.



Converse results

Theorem: (Alon 1986 )

If G is d-regular graph with eigenvalues λ1 = d ≥ λ2 ≥ . . . ≥ λn

such that |∂X | ≥ c |X | for every X ⊂ V , |X | ≤ n/2, then

λ2 ≤ d − c2

4 + 2c2
.

Theorem: (Bilu and Linial 2004 )

If G = (V ,E ) is d-regular graph with eigenvalues
λ1 = d ≥ λ2 ≥ . . . ≥ λn such that for every B,C ⊂ V∣∣∣∣ e(B,C )− d

n
|B||C |

∣∣∣∣ ≤ α
√
|B||C |,

then max
{
|λ2|, |λn|

}
≤ O

(
α log(d/α)

)
.



Chromatic number

Definition:

Chromatic number χ(G ) is the minimum number of colors needed
to color V (G ) such that adjacent vertices get different colors.

Theorem: (Hoffman )

If G is and (n, d , λ)-graph then χ(G ) ≥ 1 + d
λ .

Theorem: (Alon, Krivelevich and S. 99)

If G is (n, d , λ) and d ≤ 2n/3 then χ(G ) ≤ O
(

d
log(1+d/λ)

)
.

Theorem: (Alon, Krivelevich and S. 99 and Vu 00)

The choice number of G satisfies a similar inequality.



Hamiltonicity

Definition:

Graph G is hamiltonian if it has Hamilton cycle, i.e., a cycle
containing all vertices of G .

Theorem: (Krivelevich and S. 02 )

If G is and (n, d , λ)-graph with

λ <
d

log n
,

then G is hamiltonian.

Conjecture:

There exist an ε > 0 such that if λ < ε d then G is hamiltonian.



Small subgraphs

Setting:

H = fixed graph with s vertices, r edges and max. degree ∆.

G = (V ,E ) is an (n, d , λ)-graph and U ⊆ V of size m.

Theorem: (Alon)

If m� λ
(

n
d

)∆
then U contains

(1 + o(1))
s!

|Aut(H)|

(
m

s

)(
d

n

)r

copies of H

Remark:

If d r � λnr−1 then G contains a complete graph Kr+1.



Spectral Turán’s theorem

Question:

How large can be Kr+1-free subgraph of (n, d , λ)-graph?

(Every G has such subgraph with at least r−1
r

e(G) edges.)

Theorem: (S., Szabó, Vu 2005)

Let r ≥ 2, and let G be an (n, d , λ)-graph with d r � λnr−1. Then
the size of the largest Kr+1-free subgraph of G is

r−1
r e(G ) + o

(
e(G )

)
.

Remarks:

The complete graph Kn has d = n − 1 and λ = 1. Thus we
have an asymptotic extension of Turán’s theorem.

The theorem is tight for r = 2. By a result of Alon, there are
(n, d , λ)-graphs with d2 = Θ(λn) which contain no triangles.



Examples of (n, d , λ)-graphs

Friedman 03:

For every fixed ε > 0 and d ≥ 3, a random d-regular graph on n
vertices is, asymptotically almost surely, an (n, d , λ)-graph with

λ = 2
√

d − 1 + ε.

Paley graph:

V (G ) = Zp, where p is a prime p = 1(mod 4).

(i , j) ∈ E (G ) iff i − j = r2( mod p) is a quadratic residue.

G is an (n, d , λ)-graph with

n = p, d =
p − 1

2
, λ =

1 +
√

p

2
.



Examples of (n, d , λ)-graphs

Erdős-Rényi graph:

G is polarity graph of lines-point incidence graph of finite
projective plane of order q.

V (G ) = lines through the origin in F3
q, q is a prime power.

Two lines are adjacent if they orthogonal.

G has no 4-cycles and is an (n, d , λ)-graph with

n = q2 + q + 1, d = q + 1, λ =
√

q.



Examples of (n, d , λ)-graphs

Lubotzky-Phillips-Sarnak 86, Margulis 88:

For every d = p + 1 where p is prime p = 1(mod 4), there are

infinitely many (n, d , 2
√

d − 1)-graphs.

Alon 94:

For every k, 3 6 | k there is a triangle-free (n, d , λ)-graph with

n = 23k , d = (1/4 + o(1))n2/3, λ = (9 + o(1))n1/3.



Applications: MaxCut

Definition:

f (G ) = the number of edges in MaxCut, i.e., a maximum bipartite
subgraph of G .

Claim: (Folklore)

Every graph G with m edges contains a cut of size at least m/2.

Theorem: (Edwards 73,75)

Every graph G with m edges contains a cut (a bipartite subgraph)
of size at least

f (G ) ≥ m

2
+
−1 +

√
8m + 1

8
=

m

2
+ Ω(

√
m).



MaxCut in triangle-free graphs

Conjecture: (Erdős 70’s)

If G contains no short cycles than it has bigger cut.

Theorem: (Alon 96, improving Erdős-Lovász, Poljak-Tuza, Shearer)

If G is triangle-free and has m edges then

f (G ) ≥ m

2
+ Ω

(
m4/5

)
.

The constant 4/5 tight

Proof of tightness:

Use an (n, d , λ)-graph with d ≈ 1
4n2/3, λ ≈ 9n1/3, no triangles.



MaxCut in graphs of high girth

Theorem: (Alon, Bollobás, Krivelevich and S. 02)

If G has girth (length of the shortest cycle) r and m edges, then

f (G ) ≥ m

2
+ Ω

(
m

r
r+1
)
.

This is tight for r = 5 (and r = 4).

Proof of tightness:

Uses a random modification of Erdős-Renyi graph, which is C4-free
(n, d ≈ n1/2, λ ≈ n1/4)-graph. Hence m = Ω(n3/2) and

MaxCut ≤ m

2
+

λn

4
=

m

2
+ O(n5/4) =

m

2
+ O(m5/6).

Conjecture:

Exponent r
r+1 is tight also for all r > 5.



MaxCut in H-free graphs

Conjecture:

For every fixed H there is cH > 3/4 such that if G is an H-free
graph with m edges, then

f (G ) ≥ m

2
+ Ω

(
mcH

)
.

Theorem: (Alon, Krivelevich and S. 05)

H = cycle of length r = 4, 6, 10 then cH = r+1
r+2 .

H = K2,s complete bipartite graph with parts of size 2 and
s ≥ 2 then cH = 5/6.

H = K3,s complete bipartite graph with parts of size 3 and
s ≥ 3 then cH = 4/5.



A geometric problem

Problem: (Lovász 79)

Estimate f (n) = max
∣∣∣∣∑n

i=1 vi

∣∣∣∣, where

vi ∈ Rn and ||vi || = 1.

Among any three vi ’s some two are orthogonal.

Results:

Konyagin 81: Ω(n0.54) ≤ f (n) ≤ n2/3.

Kashin-Konyagin 83: Ω
(

n2/3

log1/2 n

)
≤ f (n).

Theorem: (Alon 94)

f (n) ≥
(
1/6− o(1)

)
n2/3.



A geometric problem

Proof of lower bound:

G is a triangle-free (n, d , λ)-graph with d = Ω(n2/3), λ = O(n1/3).
A is its adjacency matrix.

1
λ(A + λI ) is positive semidefinite, so there is matrix B such that

BTB = 1
λ(A + λI ).

Let v1, v2, . . . , vn be the columns of B. Then

Each ||vi || = 1.

Among any three vi ’s some two are orthogonal.

∣∣∣∣ n∑
i=1

vi

∣∣∣∣2 =
∑
i ,j

[ 1

λ
(A + λI )

]
ij

= n +
nd

λ
= Ω(n4/3).



Universal graphs

Definition:

Given H a family of graphs (e.g., all trees, planar graphs and etc.),
G is called H-universal if it contains copy of every H ∈ H.

Goal: (motivated by VLSI design)

Find sparse universal graph G for H.

(Use limited resources to achieve max. flexibility)

Theorem: (Bhatt, Chung, Leighton, Rosenberg 89)

If H is all trees on n vertices of maximum degree at most D, then
there is universal G of order n with maximum degree ≤ f (D).



Nearly spanning trees in (n, d , λ)-graphs

Theorem: (Alon-Krivelevich-S. 06, extending Friedman-Pippenger
87)

Let D ≥ 2, 0 < ε < 1/2 and let G be an (n, d , λ)-graph such that

d

λ
≥ Ω

(
D5/2 log(2/ε)

ε

)
Then G contains a copy of every tree with (1− ε)n vertices and
with maximum degree at most D.

Remark:

Random regular graphs, Lubotzky-Phillips-Sarnak graphs etc. are
universal for almost spanning trees of bounded degree.



Embedding strategy

Very brief sketch:

Cut tree T into pieces T1, . . . ,Ts , s = f (D, ε) of decreasing
size. Embed T piece by piece respecting previous embedding.

Use result of Friedman-Pippenger that if every subset X of
graph G of size at least 2k satisfies that |∂X | ≥ D|X |, then G
contains every tree on k vertices with maximum degree D.

Use the fact that if induced subgraph of (n, d , λ)-graph has
minimal degree at least Ω(λ

√
D), then it is a very good

expander.

Conjecture:

There is a constant CD such that (n, d , λ)-graph with d/λ > CD

contains every spanning tree of maximum degree at most D.



Edge-deletion problems

Definition:

A graph property P is monotone if it is closed under deleting edges
and vertices. It is dense if there are n-vertex graphs with Ω(n2)
edges satisfying it.

Examples:

P =
{
G is 5-colorable

}
.

P =
{
G is triangle-free

}
.

P =
{
G has a 2-edge coloring with no monochromatic K6

}
Definition:

Given a graph G and a monotone property P, denote by

EP(G ) = smallest number of edge deletions needed to turn
G into a graph satisfying P.



Approximation and hardness

Theorem: (Alon, Shapira, S. 2005)

For every monotone P and ε > 0, there exists a linear time,
deterministic algorithm that given graph G on n vertices
computes number X such that

∣∣X − EP(G )
∣∣ ≤ εn2.

For every monotone dense P and δ > 0 it is NP-hard to
approximate EP(G ) for graph of order n up to an additive
error of n2−δ.

Remark:

Prior to this result, it was not even known that computing EP(G )
precisely for dense P is NP-hard. We thus answer (in a stronger
form) a question of Yannakakis from 1981.



Hardness proof: example

Setting:

P = property of being H-free, χ(H) = r + 1.
Er -col(F ) = number of edge-deletions needed to make graph F

r -colorable. Computing Er -col(F ) is NP-hard.

Reduction:

Given F , let F ′ = blow-up of F : vertex ← large independent
set, edge ← complete bipartite graph. Take union of F ′ with
an appropriate (n, d , λ)-graph to get a graph G with large
minimum degree.

Er -col(F ) changes in a controlled way, i.e., knowledge of an
accurate estimate for Er -col(G ) tells us the value of Er -col(F ).

Moreover
∣∣Er -col(G )− EP(G )

∣∣ ≤ n2−γ .

Thus, approximating EP(G ) up to an additive error of n2−δ is
as hard as computing Er -col(F ).


