DISCRETE KAKEYA-TYPE PROBLEMS AND SMALL BASES

Noga Alon

Boris Bukh

Benny Sudakov

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Kakeya Problem

DEFINITION:

Besicovitch set is a set $U \subset \mathbb{R}^d$ containing a translate of every unit line segment.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

PROBLEM: (Kakeya)

How small can a Besicovitch set be?

AMAZING FACT: (*Besicovitch*)

There are Besicovitch sets of Lebesgue measure zero.

CONJECTURE:

Every Besicovitch set in \mathbb{R}^d has Minkowski dimension d.

THEOREM: (*Bourgain*)

If every set $X \subset \mathbb{Z}/p\mathbb{Z}$ containing a translate of every k-term arithmetic progression is of size at least $c_k p^{1-\epsilon(k)}$ with $\epsilon(k) \to 0$ as $k \to \infty$, then Kakeya conjecture follows.

UNIVERSAL SETS

DEFINITION:

If \mathcal{F} is family of subsets in a group G, then $U \subset G$ is \mathcal{F} -universal if for every $F \in \mathcal{F}$ there is $g \in G$ such that $gF \subset U$. For $\mathcal{F} = \{ all \ k-element \ sets \ of \ G \} \mathcal{F}$ -universal U is said to be k-universal.

OBSERVATION:

If U is k-universal, then
$$|U| \ge \frac{1}{2}|G|^{1-1/k}$$
.

Proof. There are $\binom{|U|}{k}$ *k*-element subsets of *U*, and the orbit of a *k*-set under multiplication by *G* has size at most |G|. Therefore $|G|\binom{|U|}{k} \ge \binom{|G|}{k}$.

QUESTION:

How tight is this lower bound?

THEOREM: (*Alon-Bukh-S*.)

For every finite group G there is a k-universal set of size at most $|G|^{1-1/k} \log^{1/k} |G|$.

Remark. For $k \ge \log \log |G|$ this is tight, as $\log^{1/k} |G|$ is bounded by a constant.

THEOREM: (*Alon-Bukh-S*.)

- For cyclic G, there is a k-universal set of size $72|G|^{1-1/k}$.
- If G is abelian, there is a k-universal set of size $8^k k |G|^{1-1/k}$.
- If G = S_n is a symmetric group, there is a k-universal set of size (3k + 1)!|G|^{1-1/k}.

DEFINITION:

A set of integers B is a basis for a set of integers A if

$$A \subset B + B = \{b_1 + b_2 : b_1, b_2 \in B\}.$$

OBSERVATION:

•
$$\{0\} \cup A$$
 is a basis for A.

•
$$\{0, 1, 2, \dots, \sqrt{n}\} \cup \{0, \sqrt{n}, 2\sqrt{n}, \dots, n\}$$
 is a basis for $[n] \supset A$.

Thus every $A \subset [n]$ has basis of size at most $\min(|A| + 1, 3\sqrt{n})$.

THEOREM: (*Erdős-Newman '77*)

If $m < n^{1/2-\epsilon}$ or $m > n^{1/2+\epsilon}$ then there is a set $A \subset [n]$ of size m such that every basis for A has size at least $c(\epsilon) \min(|A|, \sqrt{n})$.

THEOREM: (Erdős-Newman '77)

There is a set $A \subset [n]$ of size \sqrt{n} such that every basis of A has size at least $\sqrt{n} \frac{\log \log n}{\log n}$.

Proof. Every subset of size t can be basis for at most $\binom{t^2}{\sqrt{n}}$ sets A. There are $\binom{n}{\sqrt{n}}$ subsets A, therefore

$$\binom{n}{t}\binom{t^2}{\sqrt{n}} \ge \binom{n}{\sqrt{n}}.$$

(日) (同) (三) (三) (三) (○) (○)

PROBLEM: (Erdős-Newman '77)

Does every $A \subset [n], |A| = \sqrt{n}$ have basis of size $o(\sqrt{n})$?

THEOREM: (Alon-Bukh-S.)

For every subset $A \subset [n]$ of size \sqrt{n} there is a basis B of size $|B| \le 50\sqrt{n} \frac{\log \log n}{\log n}$.

Sketch of proof. Partition $A = A_1 \cup ... A_m$ into minimum number of disjoint sets of size at most k, such that each A_i is contained in the interval of length $\sqrt{n} \log n$. Then

$$m=|A|/k+\sqrt{n}/\log n.$$

Let *B* be a *k*-universal set for $\{1, 2, ..., \sqrt{n} \log n\}$ of size $c(\sqrt{n} \log n)^{1-1/k}$. By definition, for every A_i there is s_i such that $A_i \subset s_i + B$. Then $\{s_1, ..., s_m\} \cup B$ is a basis for *A* of size $\sqrt{n}/k + \sqrt{n}/\log n + c(\sqrt{n} \log n)^{1-1/k}$.

(日) (同) (三) (三) (三) (○) (○)

For $k = \frac{\log n}{10 \log \log n}$ this is at most $O\left(\sqrt{n} \frac{\log \log n}{\log n}\right)$.

SMALL UNIVERSAL SETS: PROBABILISTIC APPROACH

DEFINITION:

A set $X \subset G$ is a non-doubling if $|XX| \leq 3|X|$.

THEOREM: (Alon-Bukh-S.)

If $X \subset G$ is non-doubling, then G contains a k-universal set for X of size $36|X|^{1-1/k} \log^{1/k} |X|$.

Sketch of proof. Choose elements of XX to be in U randomly and independently with $p = \left(\frac{|X|}{2k^3 \log |X|}\right)^{-1/k}$. For every k-element $S \subset X$ and $x \in X$ the set $xS \subset XX$ is not contained in U with probability $1 - p^k$. Since there are $|X|/k^2$ pairwise disjoint sets xS, the probability that U is not k-universal is at most

$$\binom{|X|}{k} (1-p^k)^{|X|/k^2} \ll 1.$$

(日) (同) (三) (三) (三) (○) (○)

Erdős-Newman in groups

DEFINITION:

Group G of order n satisfies EN-condition if for every $A \subset G$ of size $|A| \leq \sqrt{n}$ there is a basis B of size $|B| \leq 50 \frac{\sqrt{n} \log \log n}{\log n}$.

THEOREM: (*Alon-Bukh-S.*)

If group G of order n contains a non-doubling X satisfying $\sqrt{n}\log^2 n \le |X| \le \sqrt{n}\log^{10} n$, then C satisfies EN condition

then G satisfies EN-condition.

THEOREM: (*Alon-Bukh-S*.)

- Every solvable group satisfies EN-condition.
- Every symmetric group S_n satisfies EN-condition.

QUESTION: (Wooley)

Let $P_d = \{1^d, 2^d, \dots, n^d\}$ for $d \ge 2$. How large must a basis for this set be?

THEOREM: (Erdős-Newman '77)

There is no basis of size $n^{2/3-\epsilon}$ for squares.

THEOREM: (*Alon-Bukh-S*.)

There is no basis of size $n^{3/4-O(1/\sqrt{d})}$ for P_d .

OPEN PROBLEMS:

- Is there a k-universal set of size c|G|^{1-1/k} for every finite group G?
- Do all finite groups satisfy EN-condition?
- Is it true that every basis for $P_d = \{1^d, 2^d, \dots, n^d\}$ must have size at least $n^{1-o(1)}$?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●