Discrete Kakeya-TYPE PROBLEMS AND SMALL BASES

Noga Alon Boris Bukh Benny Sudakov

KAKEYA PROBLEM

DEFINITION:

Besicovitch set is a set $U \subset \mathbb{R}^{d}$ containing a translate of every unit line segment.

Problem: (Kakeya)

How small can a Besicovitch set be?

Amazing Fact: (Besicovitch)

There are Besicovitch sets of Lebesgue measure zero.

KAKEYA PROBLEM

Conjecture:

Every Besicovitch set in \mathbb{R}^{d} has Minkowski dimension d.

THEOREM: (Bourgain)

If every set $X \subset \mathbb{Z} / p \mathbb{Z}$ containing a translate of every k-term arithmetic progression is of size at least $c_{k} p^{1-\epsilon(k)}$ with $\epsilon(k) \rightarrow 0$ as $k \rightarrow \infty$, then Kakeya conjecture follows.

UNIVERSAL SETS

Definition:

If \mathcal{F} is family of subsets in a group G, then $U \subset G$ is \mathcal{F}-universal if for every $F \in \mathcal{F}$ there is $g \in G$ such that $g F \subset U$.
For $\mathcal{F}=\{$ all k-element sets of $G\} \mathcal{F}$-universal U is said to be k-universal.

OBSERVATION:

If U is k-universal, then $|U| \geq \frac{1}{2}|G|^{1-1 / k}$.
Proof. There are $\binom{|U|}{k} k$-element subsets of U, and the orbit of a k-set under multiplication by G has size at most $|G|$. Therefore

$$
|G|\binom{|U|}{k} \geq\binom{|G|}{k} .
$$

Question:

How tight is this lower bound?

Theorem: (Alon-Bukh-S.)

For every finite group G there is a k-universal set of size at most $|G|^{1-1 / k} \log ^{1 / k}|G|$.

Remark. For $k \geq \log \log |G|$ this is tight, as $\log ^{1 / k}|G|$ is bounded by a constant.

Theorem: (Alon-Bukh-S.)

- For cyclic G, there is a k-universal set of size $72|G|^{1-1 / k}$.
- If G is abelian, there is a k-universal set of size $8^{k} k|G|^{1-1 / k}$.
- If $G=S_{n}$ is a symmetric group, there is a k-universal set of size $(3 k+1)!|G|^{1-1 / k}$.

Small Bases

DEFINITION:

A set of integers B is a basis for a set of integers A if

$$
A \subset B+B=\left\{b_{1}+b_{2}: b_{1}, b_{2} \in B\right\}
$$

Observation:

- $\{0\} \cup A$ is a basis for A.
- $\{0,1,2, \ldots, \sqrt{n}\} \cup\{0, \sqrt{n}, 2 \sqrt{n}, \ldots, n\}$ is a basis for $[n] \supset A$.

Thus every $A \subset[n]$ has basis of size at most $\min (|A|+1,3 \sqrt{n})$.

THEOREM: (Erdős-Newman '77)

If $m<n^{1 / 2-\epsilon}$ or $m>n^{1 / 2+\epsilon}$ then there is a set $A \subset[n]$ of size m such that every basis for A has size at least $c(\epsilon) \min (|A|, \sqrt{n})$.

SETS OF SIZE \sqrt{n}

TheOrem: (Erdős-Newman '77)

There is a set $A \subset[n]$ of size \sqrt{n} such that every basis of A has size at least $\sqrt{n} \frac{\log \log n}{\log n}$.

Proof. Every subset of size t can be basis for at most $\binom{t^{2}}{\sqrt{n}}$ sets A. There are $\binom{n}{\sqrt{n}}$ subsets A, therefore

$$
\binom{n}{t}\binom{t^{2}}{\sqrt{n}} \geq\binom{ n}{\sqrt{n}} .
$$

Problem: (Erdős-Newman '77)

Does every $A \subset[n],|A|=\sqrt{n}$ have basis of size $o(\sqrt{n})$?

THEOREM: (Alon-Bukh-S.)

For every subset $A \subset[n]$ of size \sqrt{n} there is a basis B of size

$$
|B| \leq 50 \sqrt{n} \frac{\log \log n}{\log n} .
$$

Sketch of proof. Partition $A=A_{1} \cup \ldots A_{m}$ into minimum number of disjoint sets of size at most k, such that each A_{i} is contained in the interval of length $\sqrt{n} \log n$. Then

$$
m=|A| / k+\sqrt{n} / \log n .
$$

Let B be a k-universal set for $\{1,2, \ldots, \sqrt{n} \log n\}$ of size $c(\sqrt{n} \log n)^{1-1 / k}$. By definition, for every A_{i} there is s_{i} such that $A_{i} \subset s_{i}+B$. Then $\left\{s_{1}, \ldots, s_{m}\right\} \cup B$ is a basis for A of size

$$
\sqrt{n} / k+\sqrt{n} / \log n+c(\sqrt{n} \log n)^{1-1 / k}
$$

For $k=\frac{\log n}{10 \log \log n}$ this is at most $O\left(\sqrt{n} \frac{\log \log n}{\log n}\right)$.

DEFINITION:

$$
\text { A set } X \subset G \text { is a non-doubling if }|X X| \leq 3|X|
$$

Theorem: (Alon-Bukh-S.)

If $X \subset G$ is non-doubling, then G contains a k-universal set for X of size $36|X|^{1-1 / k} \log ^{1 / k}|X|$.

Sketch of proof. Choose elements of $X X$ to be in U randomly and independently with $p=\left(\frac{|X|}{2 k^{3} \log |X|}\right)^{-1 / k}$. For every k-element $S \subset X$ and $x \in X$ the set $x S \subset X X$ is not contained in U with probability $1-p^{k}$. Since there are $|X| / k^{2}$ pairwise disjoint sets $x S$, the probability that U is not k-universal is at most

$$
\binom{|X|}{k}\left(1-p^{k}\right)^{|X| / k^{2}} \ll 1
$$

Erdős-NEWMAN IN GROUPS

Definition:

Group G of order n satisfies EN-condition if for every $A \subset G$ of size $|A| \leq \sqrt{n}$ there is a basis B of size $|B| \leq 50 \frac{\sqrt{n} \log \log n}{\log n}$.

Theorem: (Alon-Bukh-S.)

If group G of order n contains a non-doubling X satisfying

$$
\sqrt{n} \log ^{2} n \leq|X| \leq \sqrt{n} \log ^{10} n,
$$

then G satisfies EN-condition.

Theorem: (Alon-Bukh-S.)

- Every solvable group satisfies EN-condition.
- Every symmetric group S_{n} satisfies EN-condition.

BASES FOR POWERS

Question: (Wooley)

Let $P_{d}=\left\{1^{d}, 2^{d}, \ldots, n^{d}\right\}$ for $d \geq 2$. How large must a basis for this set be?

Theorem: (Erdős-Newman '77)

There is no basis of size $n^{2 / 3-\epsilon}$ for squares.

Theorem: (Alon-Bukh-S.)

There is no basis of size $n^{3 / 4-O(1 / \sqrt{d})}$ for P_{d}.

CONCLUDING REMARKS

Open Problems:

- Is there a k-universal set of size $c|G|^{1-1 / k}$ for every finite group G ?
- Do all finite groups satisfy EN-condition?
- Is it true that every basis for $P_{d}=\left\{1^{d}, 2^{d}, \ldots, n^{d}\right\}$ must have size at least $n^{1-o(1)}$?

