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THEOREM: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r-coloring of [m]"
contains a monochromatic line.

Informally, if the cells of a n-dimensional
m X m X --- x m cube are colored with
r colors, there must be one row, column,
or certain diagonal all of whose cells are
the same color, i.e., the multi-player tic-
tac-toe game cannot end in a draw if the
board has high dimesion.
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For every r, m and sufficiently large N, every r-coloring of [N]
contains a monochromatic arithmetic progression of length m.
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THEOREM: (van der Waerden 1927)

For every r, m and sufficiently large N, every r-coloring of [N]
contains a monochromatic arithmetic progression of length m.

Proof. Consider mapping f from [m]” into [N],

n
f(ai,...,an) = Za,-m"_l.
i=1

Color every a € [m]" by the color of f(a). Then a monochromatic
line in this coloring gives a monochromatic arithmetic progression
of length m in the original coloring of [N]. O



EASY COROLLARY

Definition: A set U C Z9 is a homothetic copy of V C Z9 iff
U = u+ \V for some vector u € Z9 and integer \.



EASY COROLLARY

Definition: A set U C Z9 is a homothetic copy of V C Z9 iff
U = u+ \V for some vector u € Z9 and integer \.

THEOREM: (Gallai-Witt 1943, 1951)

For all r and V' C Z9, every r-coloring of Z9 contains a
monochromatic homothetic copy of V.




EASY COROLLARY

Definition: A set U C Z9 is a homothetic copy of V C Z9 iff
U = u+ \V for some vector u € Z9 and integer \.

THEOREM: (Gallai-Witt 1943, 1951)

For all r and V' C Z9, every r-coloring of Z9 contains a
monochromatic homothetic copy of V.

Proof. Let V = {vi,...,Vmn}. Map [m]" into Z9,

n

f(ai,...,an) = Zvar

i=1
Color every a € [m]" by the color of f(a). Then a monochromatic

line in this coloring gives a homothetic copy of V in the original
coloring of Z9. O
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HALES-JEWETT NUMBERS

Definition: The Hales-Jewett number HJ(r, m) is the minimum n
such that every r-coloring of [m]" contains a monochromatic line.

THEOREM: (Shelah 1988)

HJ(r, m) is at most iterated tower function, i.e., primitive
recursive.

Remarks:

@ Greatly improves the original Ackermann type bound.

@ Main step in the proof is the “Grid-type lemma”, which
reduces the size of the alphabet from m to m — 1.
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GRID GRAPH

A Grid graph I, , is a graph on the set of vertices [m] X [n] such
that (/,/) is adjacent to (i',j) iff i = i' or j = .

o We call the i*" row the set of vertices {i} x [n] and [m] x {j}
is called the j™ column.

@ Rows, columns of I, , are complete graphs K, K,
respectively.
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A Grid graph T,  is a graph on the set of vertices [m] x [n] such
that (/,) is adjacent to (/',j") iff i =" or j = .

Definition: A rectangle in an edge-colored (0.0) @.i)
['mn is alternating if vertical/horizontal pairs
of edges have the same color. Coloring is
alternating-free if it has no such rectangle.
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A Grid graph ', » is a graph on the set of vertices [m] x [n] such
that (/,) is adjacent to (/',j") iff i =" or j = .

Definition: A rectangle in an edge-colored (0.0) @.i)
['mn is alternating if vertical/horizontal pairs
of edges have the same color. Coloring is
alternating-free if it has no such rectangle.
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sRID RAMSEY FUNCTION:

G(r) is the minimum integer n such that every r-edge coloring of
I'h,» contains an alternating rectangle.
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coloring of I',11,. Recall that every column is
a complete graph K,;11 and thus there at most
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r\ 2 ) ways to r-color its edges.
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LEMMA: (Shelah 1988)

G(r) < A2 + 1.

r+1
Proof. Let n = r(" )+1 and consider an r-edge
) coloring of I',11,. Recall that every column is
J J' a complete graph K,.; and thus there at most

(3) i
r\ 2 ) ways to r-color its edges.

Since n > A(3) there are two columns j,/’,
whose edges are identically colored. There are
r 4+ 1 edges of the grid graph between vertices
in these columns. Since there are only r colors,
two of these edges (say in rows i and /") have the
same color. Then {i, "} x {j,j'} is an alternating
rectangle. O
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LEMMA: (Shelah 1988)

G(r) < r(rzl) + 1.

Remarks:
@ A very similar (more general) grid-type lemma is a key step in
Shelah's proof.

@ This simple bound is difficult to improve. The only known
improvement is by an additive lower-order term (Gyarfas).

@ Best lower bound has order r3 (Faudree-Gyérfas-Szonyi and
Heinrich)
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SOME NEW RESULTS

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

THEOREM: (Conlon, Fox, Lee and S. 2014+)

@ The grid Ramsey function is not polynomial. Moreover,

G(r) > ros*0r,

@ There exist an alternating-free r-edge coloring of ', , with

m=cr® and n= r(G—o()r*

Remark: The second result gives some evidence why it is hard to
improve the upper bound on G(r).
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Definition: For two edge colorings ci, o of Kj, let G, ¢, be the
subgraph of K, containing all the edges e with ci(e) = c(e).

There is an alternating-free r-edge coloring of I, , iff there are
r-edge colorings ci, ..., cm of the complete graph K, with
X(gc,-,cj) S r, for a” I#J




KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with
X(Geey) <ry forall i




KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with
X(Geey) <ry forall i

Proof. Color the edges of the it" row using c;.



KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with

X(Geey) <ry forall i

Proof. Color the edges of the it" row using c;.

Color vertical edge (7,)) ~ (i, j) between rows i, i" with the color
of the vertex j in the r-coloring of G, .



KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with
X(Geey) <ry forall i

Proof. Color the edges of the it" row using c;.

Color vertical edge (7,)) ~ (i, j) between rows i, i" with the color
of the vertex j in the r-coloring of G, .

By definition, if horizontal edges (i,/) ~ (i,j") and (', j) ~ (', j')
have the same color, then the vertices j, j’ are adjacent in Geivco
and have distinct colors.



KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with

X(Geey) <ry forall i

Proof. Color the edges of the it" row using c;.

Color vertical edge (7,)) ~ (i, j) between rows i, i" with the color
of the vertex j in the r-coloring of G, .

By definition, if horizontal edges (i,/) ~ (i,j") and (', j) ~ (', j')
have the same color, then the vertices j, j’ are adjacent in Geivco
and have distinct colors.

Hence, the vertical edges (i,;) ~ (i',j) and (i,/") ~ (i',j") have
distinct colors as well.



KEY OBSERVATION

There is an alternating-free r-edge coloring of 'y, , if there are
r-edge colorings ci, ..., ¢y of the complete graph K|, with

X(Geey) <ry forall i

Proof. Color the edges of the it" row using c;.

Color vertical edge (i,j) ~ (i, j) between rows i, i’ with the color
of the vertex j in the r-coloring of G, .

By definition, if horizontal edges (i,/) ~ (i,j") and (', j) ~ (', j')
have the same color, then the vertices j, " are adjacent in G, c,
and have distinct colors.

Hence, the vertical edges (i,;) ~ (i',j) and (i,/") ~ (i',j") have
distinct colors as well.

This shows that there are no alternating rectangles. O



PROOF RECIPE

@ Choose a partition E(K,) = E; U---UE;
such that any union of “few” parts has
“small"” chromatic number.

@ Generate ¢; by assigning to every part E;
randomly one of r colors.

@ Any two such colorings will agree only on
small number of parts, i.e., chromatic
number of gc,.,c,,, will be small.
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e, x=(x,...,x) if x = 1= x2"1.
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AN EDGE PARTITION OF K,

Identify the vertex set [n] with binary strings of length t = log n,
e, x=(x,...,x) if x = 1= x2"1.

Definition: An edge partition £y U - - - U E; of the complete graph
K, is obtained by taking E; to be all the edges (x,y), such that i
is the minimum index for which x; # y;.

The union of any s parts in this partition have chromatic number
at most 2°.

Indeed, every E; is a bipartite graph with parts containing all
x,x; =0 and all y,y; = 1. Therefore x(E;) = 2.

Since x(H U H') < x(H) - x(H’) for any pair of graphs on the
same vertex set, the claim follows.
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SUPERPOLYNOMIAL BOUND

THEOREM: (Conlon, Fox, Lee and S.)

G(r) > r0.4 log r

Proof. Let n = r04'98" and EF; U --- U E; be the edge partition of
K, with union of any s parts having chromatic number < 2°.

Form ¢j,i =1,...,n by coloring every part E; randomly and
independently in one of r colors.

Note, x(G¢;,c,) > r only if ¢;, ¢y agree on at least log(r + 1) parts.

Since t = log n = 0.4log? r, this event has probability

t — log(r+1) —(14o0(1)) log r 2
< g g '
P <Iog(r-|— 1)>r d < 1/n

Thus, with high probability x(Gc,.c,) < r for all i # i, which gives
alternating-free r-edge coloring of ', .. O
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@ (p, g)-colorings were introduced by Erdés-Shelah in 1975 and
then were systematically studied by Erd6s-Gyarfas in the 90s.

@ The case g = 2 is a classical Ramsey coloring with no
monochromatic p-clique.
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edge-coloring in which every copy of K,gk) receives at least g colors.

is an

A (p, g)-coloring of the complete k-uniform hypergraph K,(,k

Remarks:

@ (p, g)-colorings were introduced by Erdés-Shelah in 1975 and
then were systematically studied by Erd6s-Gyarfas in the 90s.

@ The case g = 2 is a classical Ramsey coloring with no
monochromatic p-clique.
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alternating-free r-coloring of I, .
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by the color of the triple {j, /', i} with j,j// € A
and i € B.




RAMSEY-TYPE PROBLEM

Every (4, 3)-coloring of Kz(g) which uses r colors gives an
alternating-free r-coloring of ', .

Proof. Let AU B be an arbitrary partition of the vertices into two
equal parts, which we regard as two copies of [n].

Color the vertical edge (i,j) ~ (i',j) by the
color of {j,i,i"} with j € Aand i,i" € B, color
the horizontal edge (/,j) ~ (i,j) of the grid

by the color of the triple {j, /', i} with j,j// € A
and i € B.

Every alternating rectangle in the grid gives a
copy of KF) with only two colors. O




RAMSEY-TYPE PROBLEM

Every (4, 3)-coloring of Kz(z) which uses r colors gives an
alternating-free r-coloring of ', .

Remarks: Converse statement is also true. By amplifying
“slightly” the number of colors one can construct from an
alternating-free coloring of grid a (4, 3)-coloring of a complete
3-uniform hypergraph.
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RAMSEY-TYPE PROBLEM

F(r,p,q) = min n such that every r-edge-coloring of a complete
graph K, contains a K, with at most g — 1 colors on its edges.

e Note that F(r,p,2) is the usual r-colored Ramsey number of
Kp. Thus F(r,p,2) > 2" is exponential in r.

@ If n = r+ 2 then at every vertex there are 2 edges of the same
color, so F(r,3,3) < r+2. For p>3, F(r,p,(5)) = v2r,
since all the edge-colors in such coloring must be distinct.

QUESTION: (Erd8s-Gydrfas 90s)

As q varies from 2 to (’2’) when F(r, p,q) becomes polynomial?
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POLYNOMIAL GROWTH

PROPOSITION: (Erdés-Gydrfds)

F(r,p,p) = O(r”_z).

Proof. By induction on p. We already have that F(r,3,3) < r+2.

Suppose we have an r-edge-coloring of K, such that every p-clique
has at least p colors. Fix a vertex v.

There is a color that appears on at least ”;rl edges incident to v,
so let X be the set of vertices connected to v by these edges.

Every (p — 1)-set S in X has at least p — 1 colors, otherwise
S U{v} will have fewer than p colors, contradiction.

Hence |X| = O(rP=3) and therefore n = O(r|X|) = O(rP2). O
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QUESTION: (Erd8s-Gydrfas 90s)

What is the minimum g such that F(r, p, g) becomes polynomial
inr?lsitg=p?
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ERDOS-GYARFAS CONJECTURE

QUESTION: (Erd8s-Gydrfas 90s)

What is the minimum g such that F(r, p, g) becomes polynomial
inr?lsitg=p?

Remark: We saw that F(r,3,2) > 2", so this holds for p = 3. It
was established also for p = 4,5 by Mubayi 1998 and
Eichhorn-Mubayi 2000.

THEOREM: (Conlon, Fox, Lee and S. 2014+)

For all p > 4,
1
F(n p.p— 1) > rclogP‘—3 r
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CONCLUDING REMARKS AND OPEN PROBLEM

QUESTION: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K, such that the union of any g
colors has chromatic number at most p?

Remark: Since x(HU H") < x(H) - x(H’) for any pair of graphs
on the same vertex set, one must have

pr/q Z n.
Can this be achieved?

Note that, for r = log n and p = 29 such coloring exists.

Question: What happens if we want the union of g colors to have
chromatic number <« 297
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CONCLUDING REMARKS AND OPEN PROBLEM

PROPOSITION: (Conlon, Fox, Lee and S.)

There is an edge-coloring of Kj, with r = 23V/°8" colors in which
the union of any g colors has chromatic number at most 23valoga,

Remark: This result was used to prove that G(r) > rlog** W,

QUESTION: (Conlon, Fox, Lee and S.)

What is the maximum n = n(r) such that there is an r-edge
coloring of K, in which union of every 2 colors has chromatic
number at most 37
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