Grid Ramsey problem AND RELATED QUESTIONS

Benny Sudakov, ETH

joint with D. Conlon, J. Fox and C. Lee

Hales-Jewett Theorem

DEFINITION:

Let $[m]=\{1,2, \ldots, m\}, a \in[m]^{n}$ and let S be a non-empty set of coordinates.
A combinatorial line is $a_{S}(1), a_{S}(2), \ldots, a_{S}(m)$, where $a_{S}(t)$ is a vector $b \in[m]^{n}$ such that $b_{i}=t, i \in S$ and $b_{i}=a_{i}, i \notin S$.

Hales-Jewett Theorem

DEFINITION:

Let $[m]=\{1,2, \ldots, m\}, a \in[m]^{n}$ and let S be a non-empty set of coordinates.
A combinatorial line is $a_{S}(1), a_{S}(2), \ldots, a_{S}(m)$, where $a_{S}(t)$ is a vector $b \in[m]^{n}$ such that $b_{i}=t, i \in S$ and $b_{i}=a_{i}, i \notin S$.

Example:

$$
m=3, \quad n=6
$$

1	3	1	2	1	3
2	3	2	2	2	3
3	3	3	2	3	3

Hales-Jewett Theorem

DEFINITION:

Let $[m]=\{1,2, \ldots, m\}, a \in[m]^{n}$ and let S be a non-empty set of coordinates.
A combinatorial line is $a_{S}(1), a_{S}(2), \ldots, a_{S}(m)$, where $a_{S}(t)$ is a vector $b \in[m]^{n}$ such that $b_{i}=t, i \in S$ and $b_{i}=a_{i}, i \notin S$.

Example:

1	3	1	2	1	3
2	3	2	2	2	3
3	3	3	2	3	3

Theorem: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r-coloring of $[m]^{n}$ contains a monochromatic line.

Hales-Jewett Theorem

Theorem: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r-coloring of $[m]^{n}$ contains a monochromatic line.

Informally, if the cells of a n-dimensional $m \times m \times \cdots \times m$ cube are colored with r colors, there must be one row, column, or certain diagonal all of whose cells are the same color, i.e., the multi-player tic-tac-toe game cannot end in a draw if the board has high dimesion.

EASY COROLLARY

Theorem: (van der Waerden 1927)
For every r, m and sufficiently large N, every r-coloring of [N] contains a monochromatic arithmetic progression of length m.

EASY COROLLARY

Theorem: (van der Waerden 1927)

For every r, m and sufficiently large N, every r-coloring of [N] contains a monochromatic arithmetic progression of length m.

Proof. Consider mapping f from $[m]^{n}$ into $[N]$,

$$
f\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i} m^{i-1}
$$

Color every $a \in[m]^{n}$ by the color of $f(a)$. Then a monochromatic line in this coloring gives a monochromatic arithmetic progression of length m in the original coloring of $[N]$.

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^{d}$ is a homothetic copy of $V \subset \mathbb{Z}^{d}$ iff $U=u+\lambda V$ for some vector $u \in \mathbb{Z}^{d}$ and integer λ.

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^{d}$ is a homothetic copy of $V \subset \mathbb{Z}^{d}$ iff $U=u+\lambda V$ for some vector $u \in \mathbb{Z}^{d}$ and integer λ.

Theorem: (Gallai-Witt 1943, 1951)

For all r and $V \subset \mathbb{Z}^{d}$, every r-coloring of \mathbb{Z}^{d} contains a monochromatic homothetic copy of V.

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^{d}$ is a homothetic copy of $V \subset \mathbb{Z}^{d}$ iff $U=u+\lambda V$ for some vector $u \in \mathbb{Z}^{d}$ and integer λ.

Theorem: (Gallai-Witt 1943, 1951)

For all r and $V \subset \mathbb{Z}^{d}$, every r-coloring of \mathbb{Z}^{d} contains a monochromatic homothetic copy of V.

Proof. Let $V=\left\{v_{1}, \ldots, v_{m}\right\}$. Map $[m]^{n}$ into \mathbb{Z}^{d},

$$
f\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{n} v_{a_{i}}
$$

Color every $a \in[m]^{n}$ by the color of $f(a)$. Then a monochromatic line in this coloring gives a homothetic copy of V in the original coloring of \mathbb{Z}^{d}.

HALES-JEWETT NUMBERS

Definition: The Hales-Jewett number $H J(r, m)$ is the minimum n such that every r-coloring of $[m]^{n}$ contains a monochromatic line.

Hales-Jewett numbers

Definition: The Hales-Jewett number $H J(r, m)$ is the minimum n such that every r-coloring of $[m]^{n}$ contains a monochromatic line.

Theorem: (Shelah 1988)

$H J(r, m)$ is at most iterated tower function, i.e., primitive recursive.

Hales-Jewett numbers

Definition: The Hales-Jewett number $H J(r, m)$ is the minimum n such that every r-coloring of $[m]^{n}$ contains a monochromatic line.

Theorem: (Shelah 1988)

$H J(r, m)$ is at most iterated tower function, i.e., primitive recursive.

Remarks:

- Greatly improves the original Ackermann type bound.
- Main step in the proof is the "Grid-type lemma", which reduces the size of the alphabet from m to $m-1$.

GRID GRAPH

DEFINITION:
A Grid graph $\Gamma_{m, n}$ is a graph on the set of vertices $[m] \times[n]$ such that (i, j) is adjacent to $\left(i^{\prime}, j^{\prime}\right)$ iff $i=i^{\prime}$ or $j=j^{\prime}$.

GRID GRAPH

Definition:

A Grid graph $\Gamma_{m, n}$ is a graph on the set of vertices $[m] \times[n]$ such that (i, j) is adjacent to $\left(i^{\prime}, j^{\prime}\right)$ iff $i=i^{\prime}$ or $j=j^{\prime}$.

- We call the $i^{\text {th }}$ row the set of vertices $\{i\} \times[n]$ and $[m] \times\{j\}$ is called the $j^{\text {th }}$ column.
- Rows, columns of $\Gamma_{m, n}$ are complete graphs K_{n}, K_{m} respectively.

A Grid graph $\Gamma_{m, n}$ is a graph on the set of vertices $[m] \times[n]$ such that (i, j) is adjacent to $\left(i^{\prime}, j^{\prime}\right)$ iff $i=i^{\prime}$ or $j=j^{\prime}$.

Definition: A rectangle in an edge-colored $\Gamma_{m, n}$ is alternating if vertical/horizontal pairs of edges have the same color. Coloring is alternating-free if it has no such rectangle.

A Grid graph $\Gamma_{m, n}$ is a graph on the set of vertices $[m] \times[n]$ such that (i, j) is adjacent to $\left(i^{\prime}, j^{\prime}\right)$ iff $i=i^{\prime}$ or $j=j^{\prime}$.

Definition: A rectangle in an edge-colored $\Gamma_{m, n}$ is alternating if vertical/horizontal pairs of edges have the same color. Coloring is alternating-free if it has no such rectangle.

Grid Ramsey function:

$G(r)$ is the minimum integer n such that every r-edge coloring of $\Gamma_{n, n}$ contains an alternating rectangle.

GRID LEMMA

Lemma: (Shelah 1988)

$$
G(r) \leq r^{\binom{r+1}{2}}+1
$$

GRID LEMMA

Lemma: (Shelah 1988)

$$
G(r) \leq r^{\binom{+1}{2}}+1 .
$$

Proof. Let $n=r\left(\begin{array}{c}\binom{+1}{2}\end{array}+1\right.$ and consider an r-edge
 coloring of $\Gamma_{r+1, n}$. Recall that every column is a complete graph K_{r+1} and thus there at most $r\left(\begin{array}{c}\binom{r+1}{2}\end{array}\right.$ ways to r-color its edges.

LEMMA: (Shelah 1988)

$$
G(r) \leq r^{\binom{+1}{2}}+1 .
$$

Proof. Let $n=r\left(\begin{array}{c}\binom{+1}{2}\end{array}\right) 1$ and consider an r-edge
 coloring of $\Gamma_{r+1, n}$. Recall that every column is a complete graph K_{r+1} and thus there at most $r\binom{r+1}{2}$ ways to r-color its edges.
Since $n>r\left(\begin{array}{c}\binom{+1}{2}\end{array}\right.$ there are two columns j, j^{\prime}, whose edges are identically colored. There are $r+1$ edges of the grid graph between vertices in these columns. Since there are only r colors, two of these edges (say in rows i and i^{\prime}) have the same color. Then $\left\{i, i^{\prime}\right\} \times\left\{j, j^{\prime}\right\}$ is an alternating rectangle.

GRID LEMMA

LEMMA: (Shelah 1988)

$$
G(r) \leq r\left(\begin{array}{c}
\binom{+1}{2} \\
\hline
\end{array}\right.
$$

Lemma: (Shelah 1988)

$$
G(r) \leq r\left(\begin{array}{c}
\binom{+1}{2}
\end{array}+1\right.
$$

Remarks:

- A very similar (more general) grid-type lemma is a key step in Shelah's proof.
- This simple bound is difficult to improve. The only known improvement is by an additive lower-order term (Gyárfás).
- Best lower bound has order r^{3} (Faudree-Gyárfás-Szönyi and Heinrich)

Lemma: (Shelah 1988)

$$
G(r) \leq r\binom{r+1}{2}+1
$$

Remarks:

- A very similar (more general) grid-type lemma is a key step in Shelah's proof.
- This simple bound is difficult to improve. The only known improvement is by an additive lower-order term (Gyárfás).
- Best lower bound has order r^{3} (Faudree-Gyárfás-Szönyi and Heinrich)

Question: (Graham, Rothschild and Spencer 1990)

Is the function $G(r)$ polynomial in r ?

Some new results

Question: (Graham, Rothschild and Spencer 1990)
Is the function $G(r)$ polynomial in r ?

Some new results

Question: (Graham, Rothschild and Spencer 1990)

Is the function $G(r)$ polynomial in r ?

Theorem: (Conlon, Fox, Lee and S. 2014+)

- The grid Ramsey function is not polynomial. Moreover,

$$
G(r) \geq r^{\log ^{3 / 2-o(1)} r} .
$$

Question: (Graham, Rothschild and Spencer 1990)

Is the function $G(r)$ polynomial in r ?

Theorem: (Conlon, Fox, Lee and S. 2014+)

- The grid Ramsey function is not polynomial. Moreover,

$$
G(r) \geq r^{\log ^{3 / 2-o(1)} r}
$$

- There exist an alternating-free r-edge coloring of $\Gamma_{m, n}$ with

$$
m=c r^{2} \quad \text { and } \quad n=r^{\left(\frac{1}{2}-o(1)\right) r^{2}} .
$$

Some new results

Question: (Graham, Rothschild and Spencer 1990)

Is the function $G(r)$ polynomial in r ?

Theorem: (Conlon, Fox, Lee and S. 2014+)

- The grid Ramsey function is not polynomial. Moreover,

$$
G(r) \geq r^{\log ^{3 / 2-o(1)} r} .
$$

- There exist an alternating-free r-edge coloring of $\Gamma_{m, n}$ with

$$
m=c r^{2} \quad \text { and } \quad n=r^{\left(\frac{1}{2}-o(1)\right) r^{2}} .
$$

Remark: The second result gives some evidence why it is hard to improve the upper bound on $G(r)$.

Definition: For two edge colorings c_{1}, c_{2} of K_{n}, let $\mathcal{G}_{c_{1}, c_{2}}$ be the subgraph of K_{n} containing all the edges e with $c_{1}(e)=c_{2}(e)$.

Definition: For two edge colorings c_{1}, c_{2} of K_{n}, let $\mathcal{G}_{c_{1}, c_{2}}$ be the subgraph of K_{n} containing all the edges e with $c_{1}(e)=c_{2}(e)$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ iff there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with $\chi\left(\mathcal{G}_{c_{i}, c_{j}}\right) \leq r, \quad$ for all $\quad i \neq j$.

LEMMA:
There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with $\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad$ for all $\quad i \neq i^{\prime}$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with

$$
\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad \text { for all } \quad i \neq i^{\prime} .
$$

Proof. Color the edges of the $i^{\text {th }}$ row using c_{i}.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with

$$
\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad \text { for all } \quad i \neq i^{\prime} .
$$

Proof. Color the edges of the $i^{t h}$ row using c_{i}.
Color vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ between rows i, i^{\prime} with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_{i}, c_{i}}$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with

$$
\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad \text { for all } \quad i \neq i^{\prime}
$$

Proof. Color the edges of the $i^{t h}$ row using c_{i}.
Color vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ between rows i, i^{\prime} with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$.
By definition, if horizontal edges $(i, j) \sim\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right) \sim\left(i^{\prime}, j^{\prime}\right)$ have the same color, then the vertices j, j^{\prime} are adjacent in $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$ and have distinct colors.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with

$$
\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad \text { for all } \quad i \neq i^{\prime}
$$

Proof. Color the edges of the $i^{t h}$ row using c_{i}.
Color vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ between rows i, i^{\prime} with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$.
By definition, if horizontal edges $(i, j) \sim\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right) \sim\left(i^{\prime}, j^{\prime}\right)$ have the same color, then the vertices j, j^{\prime} are adjacent in $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$ and have distinct colors.

Hence, the vertical edges $(i, j) \sim\left(i^{\prime}, j\right)$ and $\left(i, j^{\prime}\right) \sim\left(i^{\prime}, j^{\prime}\right)$ have distinct colors as well.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m, n}$ if there are r-edge colorings c_{1}, \ldots, c_{m} of the complete graph K_{n} with

$$
\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r, \quad \text { for all } \quad i \neq i^{\prime}
$$

Proof. Color the edges of the $i^{t h}$ row using c_{i}.
Color vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ between rows i, i^{\prime} with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$.
By definition, if horizontal edges $(i, j) \sim\left(i, j^{\prime}\right)$ and $\left(i^{\prime}, j\right) \sim\left(i^{\prime}, j^{\prime}\right)$ have the same color, then the vertices j, j^{\prime} are adjacent in $\mathcal{G}_{c_{i}, c_{i^{\prime}}}$ and have distinct colors.

Hence, the vertical edges $(i, j) \sim\left(i^{\prime}, j\right)$ and $\left(i, j^{\prime}\right) \sim\left(i^{\prime}, j^{\prime}\right)$ have distinct colors as well.

This shows that there are no alternating rectangles.

- Choose a partition $E\left(K_{n}\right)=E_{1} \cup \cdots \cup E_{t}$
 such that any union of "few" parts has "small" chromatic number.
- Generate c_{i} by assigning to every part E_{j} randomly one of r colors.
- Any two such colorings will agree only on small number of parts, i.e., chromatic number of $\mathcal{G}_{c_{i}, c_{i}}$ will be small.

An EDGE PARTITION OF K_{n}

Identify the vertex set [n] with binary strings of length $t=\log n$, i.e., $x=\left(x_{1}, \ldots, x_{t}\right)$ if $x-1=\sum x_{i} 2^{i-1}$.

An edge partition of K_{n}

Identify the vertex set [n] with binary strings of length $t=\log n$, i.e., $x=\left(x_{1}, \ldots, x_{t}\right)$ if $x-1=\sum x_{i} 2^{i-1}$.

Definition: An edge partition $E_{1} \cup \cdots \cup E_{t}$ of the complete graph K_{n} is obtained by taking E_{i} to be all the edges (x, y), such that i is the minimum index for which $x_{i} \neq y_{i}$.

An edge partition of K_{n}

Identify the vertex set [n] with binary strings of length $t=\log n$, i.e., $x=\left(x_{1}, \ldots, x_{t}\right)$ if $x-1=\sum x_{i} 2^{i-1}$.

Definition: An edge partition $E_{1} \cup \cdots \cup E_{t}$ of the complete graph K_{n} is obtained by taking E_{i} to be all the edges (x, y), such that i is the minimum index for which $x_{i} \neq y_{i}$.

EASY OBSERVATION:

The union of any s parts in this partition have chromatic number at most 2^{s}.

An edge partition of K_{n}

Identify the vertex set [n] with binary strings of length $t=\log n$, i.e., $x=\left(x_{1}, \ldots, x_{t}\right)$ if $x-1=\sum x_{i} 2^{i-1}$.

Definition: An edge partition $E_{1} \cup \cdots \cup E_{t}$ of the complete graph K_{n} is obtained by taking E_{i} to be all the edges (x, y), such that i is the minimum index for which $x_{i} \neq y_{i}$.

EASY OBSERVATION:

The union of any s parts in this partition have chromatic number at most 2^{s}.

Indeed, every E_{i} is a bipartite graph with parts containing all $x, x_{i}=0$ and all $y, y_{i}=1$. Therefore $\chi\left(E_{i}\right)=2$.

Since $\chi\left(H \cup H^{\prime}\right) \leq \chi(H) \cdot \chi\left(H^{\prime}\right)$ for any pair of graphs on the same vertex set, the claim follows.

SUPERPOLYNOMIAL BOUND

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Proof. Let $n=r^{0.4 \log r}$ and $E_{1} \cup \cdots \cup E_{t}$ be the edge partition of K_{n} with union of any s parts having chromatic number $\leq 2^{s}$.

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Proof. Let $n=r^{0.4 \log r}$ and $E_{1} \cup \cdots \cup E_{t}$ be the edge partition of K_{n} with union of any s parts having chromatic number $\leq 2^{s}$.

Form $c_{i}, i=1, \ldots, n$ by coloring every part E_{j} randomly and independently in one of r colors.

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Proof. Let $n=r^{0.4 \log r}$ and $E_{1} \cup \cdots \cup E_{t}$ be the edge partition of K_{n} with union of any s parts having chromatic number $\leq 2^{s}$.

Form $c_{i}, i=1, \ldots, n$ by coloring every part E_{j} randomly and independently in one of r colors.

Note, $\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right)>r$ only if $c_{i}, c_{i^{\prime}}$ agree on at least $\log (r+1)$ parts.

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Proof. Let $n=r^{0.4 \log r}$ and $E_{1} \cup \cdots \cup E_{t}$ be the edge partition of K_{n} with union of any s parts having chromatic number $\leq 2^{s}$.

Form $c_{i}, i=1, \ldots, n$ by coloring every part E_{j} randomly and independently in one of r colors.
Note, $\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right)>r$ only if $c_{i}, c_{i^{\prime}}$ agree on at least $\log (r+1)$ parts.
Since $t=\log n=0.4 \log ^{2} r$, this event has probability

$$
\mathbb{P} \leq\binom{ t}{\log (r+1)} r^{-\log (r+1)}=r^{-(1+o(1)) \log r} \ll 1 / n^{2}
$$

Theorem: (Conlon, Fox, Lee and S.)

$$
G(r) \geq r^{0.4} \log r
$$

Proof. Let $n=r^{0.4 \log r}$ and $E_{1} \cup \cdots \cup E_{t}$ be the edge partition of K_{n} with union of any s parts having chromatic number $\leq 2^{s}$.

Form $c_{i}, i=1, \ldots, n$ by coloring every part E_{j} randomly and independently in one of r colors.
Note, $\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right)>r$ only if $c_{i}, c_{i^{\prime}}$ agree on at least $\log (r+1)$ parts.
Since $t=\log n=0.4 \log ^{2} r$, this event has probability

$$
\mathbb{P} \leq\binom{ t}{\log (r+1)} r^{-\log (r+1)}=r^{-(1+o(1)) \log r} \ll 1 / n^{2}
$$

Thus, with high probability $\chi\left(\mathcal{G}_{c_{i}, c_{i^{\prime}}}\right) \leq r$ for all $i \neq i^{\prime}$, which gives alternating-free r-edge coloring of $\Gamma_{n, n}$.

RAMSEY-TYPE PROBLEM

Definition:

A (p, q)-coloring of the complete k-uniform hypergraph $K_{n}^{(k)}$ is an edge-coloring in which every copy of $K_{p}^{(k)}$ receives at least q colors.

RAMSEY-TYPE PROBLEM

Definition:

A (p, q)-coloring of the complete k-uniform hypergraph $K_{n}^{(k)}$ is an edge-coloring in which every copy of $K_{p}^{(k)}$ receives at least q colors.

Remarks:

- (p, q)-colorings were introduced by Erdős-Shelah in 1975 and then were systematically studied by Erdős-Gyárfás in the 90s.
- The case $q=2$ is a classical Ramsey coloring with no monochromatic p-clique.

Ramsey-TYpe PROBLEM

Definition:

A (p, q)-coloring of the complete k-uniform hypergraph $K_{n}^{(k)}$ is an edge-coloring in which every copy of $K_{p}^{(k)}$ receives at least q colors.

Remarks:

- (p, q)-colorings were introduced by Erdős-Shelah in 1975 and then were systematically studied by Erdős-Gyárfás in the 90s.
- The case $q=2$ is a classical Ramsey coloring with no monochromatic p-clique.

Claim:

Every (4, 3)-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

RAMSEY-TYPE PROBLEM

Claim:
Every (4, 3)-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

Ramsey-TYpe PROBLEM

Claim:
Every (4, 3)-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of $[n]$.

Claim:

Every $(4,3)$-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of $[n]$.

Color the vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ by the color of $\left\{j, i, i^{\prime}\right\}$ with $j \in A$ and $i, i^{\prime} \in B$, color the horizontal edge $(i, j) \sim\left(i, j^{\prime}\right)$ of the grid
 by the color of the triple $\left\{j, j^{\prime}, i\right\}$ with $j, j^{\prime} \in A$ and $i \in B$.

ClAim:

Every $(4,3)$-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of $[n]$.

Color the vertical edge $(i, j) \sim\left(i^{\prime}, j\right)$ by the color of $\left\{j, i, i^{\prime}\right\}$ with $j \in A$ and $i, i^{\prime} \in B$, color the horizontal edge $(i, j) \sim\left(i, j^{\prime}\right)$ of the grid
 by the color of the triple $\left\{j, j^{\prime}, i\right\}$ with $j, j^{\prime} \in A$ and $i \in B$.

Every alternating rectangle in the grid gives a copy of $K_{4}^{(3)}$ with only two colors.

CLAIM:

Every (4, 3)-coloring of $K_{2 n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n, n}$.

Remarks: Converse statement is also true. By amplifying "slightly" the number of colors one can construct from an alternating-free coloring of grid a (4,3)-coloring of a complete 3-uniform hypergraph.

RAMSEY-TYPE PROBLEM

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

RAMSEY-TYPE PROBLEM

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.

RAMSEY-TYPE PROBLEM

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.
- Erdős-Gyárfás noticed that $F(r, 9,34)$ is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.

RAMSEY-TYPE PROBLEM

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.
- Erdős-Gyárfás noticed that $F(r, 9,34)$ is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.
- If $n=r+2$ then at every vertex there are 2 edges of the same color, giving K_{3} with at most 2 colors. So $F(r, 3,3) \leq r+2$.

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.
- Erdős-Gyárfás noticed that $F(r, 9,34)$ is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.
- If $n=r+2$ then at every vertex there are 2 edges of the same color, giving K_{3} with at most 2 colors. So $F(r, 3,3) \leq r+2$.
- For $p>3, F\left(r, p,\binom{p}{2}\right) \approx \sqrt{2 r}$, since all the edge-colors in such coloring must be distinct.

RAMSEY-TYPE PROBLEM

Definition:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.
- If $n=r+2$ then at every vertex there are 2 edges of the same color, so $F(r, 3,3) \leq r+2$. For $p>3, F\left(r, p,\binom{p}{2}\right) \approx \sqrt{2 r}$, since all the edge-colors in such coloring must be distinct.

Ramsey-TYpe PROBLEM

DEFINITION:

$F(r, p, q)=\min n$ such that every r-edge-coloring of a complete graph K_{n} contains a K_{p} with at most $q-1$ colors on its edges.

- Note that $F(r, p, 2)$ is the usual r-colored Ramsey number of K_{p}. Thus $F(r, p, 2) \geq 2^{r}$ is exponential in r.
- If $n=r+2$ then at every vertex there are 2 edges of the same color, so $F(r, 3,3) \leq r+2$. For $p>3, F\left(r, p,\binom{p}{2}\right) \approx \sqrt{2 r}$, since all the edge-colors in such coloring must be distinct.

Qubstion: (Erdős-Gyárfás 90s)

As q varies from 2 to $\binom{p}{2}$, when $F(r, p, q)$ becomes polynomial?

PoLYNOMIAL GROWTH

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

PoLYNOMIAL GROWTH

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

Proof. By induction on p. We already have that $F(r, 3,3) \leq r+2$.

Polynomial growth

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

Proof. By induction on p. We already have that $F(r, 3,3) \leq r+2$. Suppose we have an r-edge-coloring of K_{n} such that every p-clique has at least p colors. Fix a vertex v.

POLYNOMIAL GROWTH

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

Proof. By induction on p. We already have that $F(r, 3,3) \leq r+2$.
Suppose we have an r-edge-coloring of K_{n} such that every p-clique has at least p colors. Fix a vertex v.

There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Polynomial growth

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

Proof. By induction on p. We already have that $F(r, 3,3) \leq r+2$.
Suppose we have an r-edge-coloring of K_{n} such that every p-clique has at least p colors. Fix a vertex v.

There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Every $(p-1)$-set S in X has at least $p-1$ colors, otherwise $S \cup\{v\}$ will have fewer than p colors, contradiction.

Polynomial growth

Proposition: (Erdős-Gyárfás)

$$
F(r, p, p)=O\left(r^{p-2}\right)
$$

Proof. By induction on p. We already have that $F(r, 3,3) \leq r+2$.
Suppose we have an r-edge-coloring of K_{n} such that every p-clique has at least p colors. Fix a vertex v.
There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Every $(p-1)$-set S in X has at least $p-1$ colors, otherwise $S \cup\{v\}$ will have fewer than p colors, contradiction. Hence $|X|=O\left(r^{p-3}\right)$ and therefore $n=O(r|X|)=O\left(r^{p-2}\right)$.

ERDŐS-GYÁRFÁS CONJECTURE

Question: (Erdős-Gyárfás 90s)

What is the minimum q such that $F(r, p, q)$ becomes polynomial in r ? Is it $q=p$?

ERDŐS-GYÁRFÁS CONJECTURE

Question: (Erdős-Gyárfás 90s)

What is the minimum q such that $F(r, p, q)$ becomes polynomial in r ? Is it $q=p$?

Remark: We saw that $F(r, 3,2) \geq 2^{r}$, so this holds for $p=3$. It was established also for $p=4,5$ by Mubayi 1998 and Eichhorn-Mubayi 2000.

ERDŐS-GYÁRFÁS CONJECTURE

Question: (Erdős-Gyárfás 90s)

What is the minimum q such that $F(r, p, q)$ becomes polynomial in r ? Is it $q=p$?

Remark: We saw that $F(r, 3,2) \geq 2^{r}$, so this holds for $p=3$. It was established also for $p=4,5$ by Mubayi 1998 and Eichhorn-Mubayi 2000.

Theorem: (Conlon, Fox, Lee and S. 2014+)
For all $p \geq 4$,

$$
F(r, p, p-1) \geq r^{c \log ^{\frac{1}{p-3}} r} .
$$

CONCLUDING REMARKS AND OPEN PROBLEM

Question: (Conlon, Fox, Lee and S.)
Is there an r-edge coloring of K_{n} such that the union of any q colors has chromatic number at most p ?

CONCLUDING REMARKS AND OPEN PROBLEM

Qubstion: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_{n} such that the union of any q colors has chromatic number at most p ?

Remark: Since $\chi\left(H \cup H^{\prime}\right) \leq \chi(H) \cdot \chi\left(H^{\prime}\right)$ for any pair of graphs on the same vertex set, one must have

$$
p^{r / q} \geq n
$$

Can this be achieved?

CONCLUDING REMARKS AND OPEN PROBLEM

Question: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_{n} such that the union of any q colors has chromatic number at most p ?

Remark: Since $\chi\left(H \cup H^{\prime}\right) \leq \chi(H) \cdot \chi\left(H^{\prime}\right)$ for any pair of graphs on the same vertex set, one must have

$$
p^{r / q} \geq n
$$

Can this be achieved?
Note that, for $r=\log n$ and $p=2^{q}$ such coloring exists.

CONCLUDING REMARKS AND OPEN PROBLEM

Question: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_{n} such that the union of any q colors has chromatic number at most p ?

Remark: Since $\chi\left(H \cup H^{\prime}\right) \leq \chi(H) \cdot \chi\left(H^{\prime}\right)$ for any pair of graphs on the same vertex set, one must have

$$
p^{r / q} \geq n
$$

Can this be achieved?
Note that, for $r=\log n$ and $p=2^{q}$ such coloring exists.

Question: What happens if we want the union of q colors to have chromatic number $\ll 2^{q}$?

CONCLUDING REMARKS AND OPEN PROBLEM

Proposition: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_{n} with $r=2^{3 \sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3 \sqrt{q \log q}}$.

CONCLUDING REMARKS AND OPEN PROBLEM

Proposition: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_{n} with $r=2^{3 \sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3 \sqrt{q \log q}}$.

Remark: This result was used to prove that $G(r) \geq r^{\log ^{3 / 2-o(1)} r}$.

CONCLUDING REMARKS AND OPEN PROBLEM

Proposition: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_{n} with $r=2^{3 \sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3 \sqrt{q \log q}}$.

Remark: This result was used to prove that $G(r) \geq r^{\log ^{3 / 2-o(1)} r}$.

Qubstion: (Conlon, Fox, Lee and S.)

What is the maximum $n=n(r)$ such that there is an r-edge coloring of K_{n} in which union of every 2 colors has chromatic number at most 3 ?

