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Hales-Jewett Theorem

Definition:

Let [m] = {1, 2, . . . ,m}, a ∈ [m]n and let S be a non-empty set of
coordinates.

A combinatorial line is aS(1), aS(2), . . . , aS(m), where aS(t) is a
vector b ∈ [m]n such that bi = t, i ∈ S and bi = ai , i 6∈ S .

Example:

m = 3, n = 6

1 3 1 2 1 3
2 3 2 2 2 3
3 3 3 2 3 3

Theorem: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r -coloring of [m]n

contains a monochromatic line.
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Hales-Jewett Theorem

Theorem: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r -coloring of [m]n

contains a monochromatic line.

Informally, if the cells of a n-dimensional
m × m × · · · × m cube are colored with
r colors, there must be one row, column,
or certain diagonal all of whose cells are
the same color, i.e., the multi-player tic-
tac-toe game cannot end in a draw if the
board has high dimesion.



Easy corollary

Theorem: (van der Waerden 1927)

For every r ,m and sufficiently large N, every r -coloring of [N]
contains a monochromatic arithmetic progression of length m.

Proof. Consider mapping f from [m]n into [N],

f (a1, . . . , an) =
n∑

i=1

aim
i−1.

Color every a ∈ [m]n by the color of f (a). Then a monochromatic
line in this coloring gives a monochromatic arithmetic progression
of length m in the original coloring of [N]. �
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Easy corollary

Definition: A set U ⊂ Zd is a homothetic copy of V ⊂ Zd iff
U = u + λV for some vector u ∈ Zd and integer λ.

Theorem: (Gallai-Witt 1943, 1951)

For all r and V ⊂ Zd , every r -coloring of Zd contains a
monochromatic homothetic copy of V .

Proof. Let V = {v1, . . . , vm}. Map [m]n into Zd ,

f (a1, . . . , an) =
n∑

i=1

vai .

Color every a ∈ [m]n by the color of f (a). Then a monochromatic
line in this coloring gives a homothetic copy of V in the original
coloring of Zd . �
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Hales-Jewett numbers

Definition: The Hales-Jewett number HJ(r ,m) is the minimum n
such that every r -coloring of [m]n contains a monochromatic line.

Theorem: (Shelah 1988)

HJ(r ,m) is at most iterated tower function, i.e., primitive
recursive.

Remarks:

Greatly improves the original Ackermann type bound.

Main step in the proof is the “Grid-type lemma”, which
reduces the size of the alphabet from m to m − 1.
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Grid graph

Definition:

A Grid graph Γm,n is a graph on the set of vertices [m]× [n] such
that (i , j) is adjacent to (i ′, j ′) iff i = i ′ or j = j ′.

We call the i th row the set of vertices {i} × [n] and [m]× {j}
is called the j th column.

Rows, columns of Γm,n are complete graphs Kn,Km

respectively.
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Grid graph

A Grid graph Γm,n is a graph on the set of vertices [m]× [n] such
that (i , j) is adjacent to (i ′, j ′) iff i = i ′ or j = j ′.

Definition: A rectangle in an edge-colored
Γm,n is alternating if vertical/horizontal pairs
of edges have the same color. Coloring is
alternating-free if it has no such rectangle.

(i, j) (i, j')

(i', j) (i', j')

Grid Ramsey function:

G (r) is the minimum integer n such that every r -edge coloring of
Γn,n contains an alternating rectangle.
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Grid lemma

Lemma: (Shelah 1988)

G (r) ≤ r(r+1
2 ) + 1.

 j  j'

i

i'

Proof. Let n = r(r+1
2 ) +1 and consider an r -edge

coloring of Γr+1,n. Recall that every column is
a complete graph Kr+1 and thus there at most

r(r+1
2 ) ways to r -color its edges.

Since n > r(r+1
2 ) there are two columns j , j ′,

whose edges are identically colored. There are
r + 1 edges of the grid graph between vertices
in these columns. Since there are only r colors,
two of these edges (say in rows i and i ′) have the
same color. Then {i , i ′}×{j , j ′} is an alternating
rectangle. �
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Grid lemma

Lemma: (Shelah 1988)

G (r) ≤ r(r+1
2 ) + 1.

Remarks:

A very similar (more general) grid-type lemma is a key step in
Shelah’s proof.

This simple bound is difficult to improve. The only known
improvement is by an additive lower-order term (Gyárfás).

Best lower bound has order r3 (Faudree-Gyárfás-Szönyi and
Heinrich)

Question: (Graham, Rothschild and Spencer 1990)

Is the function G (r) polynomial in r?
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Some new results

Question: (Graham, Rothschild and Spencer 1990)

Is the function G (r) polynomial in r?

Theorem: (Conlon, Fox, Lee and S. 2014+)

The grid Ramsey function is not polynomial. Moreover,

G (r) ≥ r log
3/2−o(1) r .

There exist an alternating-free r -edge coloring of Γm,n with

m = cr2 and n = r (
1
2
−o(1))r2 .

Remark: The second result gives some evidence why it is hard to
improve the upper bound on G (r).
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Key observation

Definition: For two edge colorings c1, c2 of Kn, let Gc1,c2 be the
subgraph of Kn containing all the edges e with c1(e) = c2(e).

Lemma:

There is an alternating-free r -edge coloring of Γm,n iff there are
r -edge colorings c1, . . . , cm of the complete graph Kn with

χ(Gci ,cj ) ≤ r , for all i 6= j .
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There is an alternating-free r -edge coloring of Γm,n if there are
r -edge colorings c1, . . . , cm of the complete graph Kn with

χ(Gci ,ci′ ) ≤ r , for all i 6= i ′.

Proof. Color the edges of the i th row using ci .

Color vertical edge (i , j) ∼ (i ′, j) between rows i , i ′ with the color
of the vertex j in the r -coloring of Gci ,ci′ .
By definition, if horizontal edges (i , j) ∼ (i , j ′) and (i ′, j) ∼ (i ′, j ′)
have the same color, then the vertices j , j ′ are adjacent in Gci ,ci′
and have distinct colors.

Hence, the vertical edges (i , j) ∼ (i ′, j) and (i , j ′) ∼ (i ′, j ′) have
distinct colors as well.

This shows that there are no alternating rectangles. �
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Proof recipe

Choose a partition E (Kn) = E1 ∪ · · · ∪ Et

such that any union of “few ” parts has
“small ” chromatic number.

Generate ci by assigning to every part Ej

randomly one of r colors.

Any two such colorings will agree only on
small number of parts, i.e., chromatic
number of Gci ,ci′ will be small.



An edge partition of Kn

Identify the vertex set [n] with binary strings of length t = log n,
i.e., x = (x1, . . . , xt) if x − 1 =

∑
xi2

i−1.

Definition: An edge partition E1 ∪ · · · ∪ Et of the complete graph
Kn is obtained by taking Ei to be all the edges (x , y), such that i
is the minimum index for which xi 6= yi .

Easy observation:

The union of any s parts in this partition have chromatic number
at most 2s .

Indeed, every Ei is a bipartite graph with parts containing all
x , xi = 0 and all y , yi = 1. Therefore χ(Ei ) = 2.

Since χ(H ∪ H ′) ≤ χ(H) · χ(H ′) for any pair of graphs on the
same vertex set, the claim follows.
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Superpolynomial bound

Theorem: (Conlon, Fox, Lee and S.)

G (r) ≥ r0.4 log r

Proof. Let n = r0.4 log r and E1 ∪ · · · ∪ Et be the edge partition of
Kn with union of any s parts having chromatic number ≤ 2s .

Form ci , i = 1, . . . , n by coloring every part Ej randomly and
independently in one of r colors.

Note, χ(Gci ,ci′ ) > r only if ci , ci ′ agree on at least log(r + 1) parts.

Since t = log n = 0.4 log2 r , this event has probability

P ≤
(

t

log(r + 1)

)
r− log(r+1) = r−(1+o(1)) log r � 1/n2.

Thus, with high probability χ(Gci ,ci′ ) ≤ r for all i 6= i ′, which gives
alternating-free r -edge coloring of Γn,n. �
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Ramsey-type problem

Definition:

A (p, q)-coloring of the complete k-uniform hypergraph K
(k)
n is an

edge-coloring in which every copy of K
(k)
p receives at least q colors.

Remarks:

(p, q)-colorings were introduced by Erdős-Shelah in 1975 and
then were systematically studied by Erdős-Gyárfás in the 90s.

The case q = 2 is a classical Ramsey coloring with no
monochromatic p-clique.

Claim:

Every (4, 3)-coloring of K
(3)
2n which uses r colors gives an

alternating-free r -coloring of Γn,n.
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Claim:

Every (4, 3)-coloring of K
(3)
2n which uses r colors gives an

alternating-free r -coloring of Γn,n.

Proof. Let A ∪ B be an arbitrary partition of the vertices into two
equal parts, which we regard as two copies of [n].

Color the vertical edge (i , j) ∼ (i ′, j) by the
color of {j , i , i ′} with j ∈ A and i , i ′ ∈ B, color
the horizontal edge (i , j) ∼ (i , j ′) of the grid
by the color of the triple {j , j ′, i} with j , j ′ ∈ A
and i ∈ B.

Every alternating rectangle in the grid gives a

copy of K
(3)
4 with only two colors. �
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Ramsey-type problem

Claim:

Every (4, 3)-coloring of K
(3)
2n which uses r colors gives an

alternating-free r -coloring of Γn,n.

Remarks: Converse statement is also true. By amplifying
“slightly ” the number of colors one can construct from an
alternating-free coloring of grid a (4, 3)-coloring of a complete
3-uniform hypergraph.



Ramsey-type problem

Definition:

F (r , p, q) = min n such that every r -edge-coloring of a complete
graph Kn contains a Kp with at most q − 1 colors on its edges.

Note that F (r , p, 2) is the usual r -colored Ramsey number of
Kp. Thus F (r , p, 2) ≥ 2r is exponential in r .

Erdős-Gyárfás noticed that F (r , 9, 34) is connected to the
celebrated Ruzsa-Szemerédi’s (6, 3)-theorem.

If n = r + 2 then at every vertex there are 2 edges of the same
color, giving K3 with at most 2 colors. So F (r , 3, 3) ≤ r + 2.

For p > 3, F (r , p,
(p
2

)
) ≈
√

2r , since all the edge-colors in
such coloring must be distinct.
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Polynomial growth

Proposition: (Erdős-Gyárfás)

F (r , p, p) = O
(
rp−2

)
.

Proof. By induction on p. We already have that F (r , 3, 3) ≤ r + 2.

Suppose we have an r -edge-coloring of Kn such that every p-clique
has at least p colors. Fix a vertex v .

There is a color that appears on at least n−1
r edges incident to v ,

so let X be the set of vertices connected to v by these edges.

Every (p − 1)-set S in X has at least p − 1 colors, otherwise
S ∪ {v} will have fewer than p colors, contradiction.

Hence |X | = O(rp−3) and therefore n = O(r |X |) = O(rp−2). �
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Erdős-Gyárfás conjecture

Question: (Erdős-Gyárfás 90s)

What is the minimum q such that F (r , p, q) becomes polynomial
in r? Is it q = p?

Remark: We saw that F (r , 3, 2) ≥ 2r , so this holds for p = 3. It
was established also for p = 4, 5 by Mubayi 1998 and
Eichhorn-Mubayi 2000.

Theorem: (Conlon, Fox, Lee and S. 2014+)

For all p ≥ 4,

F (r , p, p − 1) ≥ r c log
1

p−3 r .
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Concluding remarks and open problem

Question: (Conlon, Fox, Lee and S.)

Is there an r -edge coloring of Kn such that the union of any q
colors has chromatic number at most p?

Remark: Since χ(H ∪ H ′) ≤ χ(H) · χ(H ′) for any pair of graphs
on the same vertex set, one must have

pr/q ≥ n.

Can this be achieved?

Note that, for r = log n and p = 2q such coloring exists.

Question: What happens if we want the union of q colors to have
chromatic number � 2q?
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Concluding remarks and open problem

Proposition: (Conlon, Fox, Lee and S.)

There is an edge-coloring of Kn with r = 23
√
log n colors in which

the union of any q colors has chromatic number at most 23
√
q log q.

Remark: This result was used to prove that G (r) ≥ r log
3/2−o(1) r .

Question: (Conlon, Fox, Lee and S.)

What is the maximum n = n(r) such that there is an r -edge
coloring of Kn in which union of every 2 colors has chromatic
number at most 3?
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