GRID RAMSEY PROBLEM AND RELATED QUESTIONS

Benny Sudakov, ETH

joint with D. Conlon, J. Fox and C. Lee

HALES-JEWETT THEOREM

DEFINITION:

Let $[m] = \{1, 2, ..., m\}$, $a \in [m]^n$ and let S be a non-empty set of coordinates.

A combinatorial line is $a_S(1), a_S(2), \ldots, a_S(m)$, where $a_S(t)$ is a vector $b \in [m]^n$ such that $b_i = t, i \in S$ and $b_i = a_i, i \notin S$.

Hales-Jewett Theorem

DEFINITION:

Let $[m] = \{1, 2, ..., m\}$, $a \in [m]^n$ and let S be a non-empty set of coordinates.

A combinatorial line is $a_S(1), a_S(2), \ldots, a_S(m)$, where $a_S(t)$ is a vector $b \in [m]^n$ such that $b_i = t, i \in S$ and $b_i = a_i, i \notin S$.

Example:

$$m = 3, n = 6$$

- 1 3 1 2 1 3 2 3 2 2 2 3 3 3 3 2 3 3

HALES-JEWETT THEOREM

DEFINITION:

Let $[m] = \{1, 2, ..., m\}$, $a \in [m]^n$ and let S be a non-empty set of coordinates.

A combinatorial line is $a_S(1), a_S(2), \ldots, a_S(m)$, where $a_S(t)$ is a vector $b \in [m]^n$ such that $b_i = t, i \in S$ and $b_i = a_i, i \notin S$.

THEOREM: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r-coloring of $[m]^n$ contains a monochromatic line.

HALES-JEWETT THEOREM

THEOREM: (Hales-Jewett 1963)

For every m, r and sufficiently large n, every r-coloring of $[m]^n$ contains a monochromatic line.

Informally, if the cells of a n-dimensional $m \times m \times \cdots \times m$ cube are colored with r colors, there must be one row, column, or certain diagonal all of whose cells are the same color, i.e., the multi-player tictac-toe game cannot end in a draw if the board has high dimesion.

Easy Corollary

THEOREM: (van der Waerden 1927)

For every r, m and sufficiently large N, every r-coloring of [N] contains a monochromatic arithmetic progression of length m.

Easy Corollary

THEOREM: (van der Waerden 1927)

For every r, m and sufficiently large N, every r-coloring of [N] contains a monochromatic arithmetic progression of length m.

Proof. Consider mapping f from $[m]^n$ into [N],

$$f(a_1,\ldots,a_n)=\sum_{i=1}^n a_i m^{i-1}.$$

Color every $a \in [m]^n$ by the color of f(a). Then a monochromatic line in this coloring gives a monochromatic arithmetic progression of length m in the original coloring of [N].

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^d$ is a *homothetic copy* of $V \subset \mathbb{Z}^d$ iff $U = u + \lambda V$ for some vector $u \in \mathbb{Z}^d$ and integer λ .

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^d$ is a *homothetic copy* of $V \subset \mathbb{Z}^d$ iff $U = u + \lambda V$ for some vector $u \in \mathbb{Z}^d$ and integer λ .

THEOREM: (Gallai-Witt 1943, 1951)

For all r and $V \subset \mathbb{Z}^d$, every r-coloring of \mathbb{Z}^d contains a monochromatic homothetic copy of V.

EASY COROLLARY

Definition: A set $U \subset \mathbb{Z}^d$ is a homothetic copy of $V \subset \mathbb{Z}^d$ iff $U = u + \lambda V$ for some vector $u \in \mathbb{Z}^d$ and integer λ .

THEOREM: (Gallai-Witt 1943, 1951)

For all r and $V \subset \mathbb{Z}^d$, every r-coloring of \mathbb{Z}^d contains a monochromatic homothetic copy of V.

Proof. Let $V = \{v_1, \dots, v_m\}$. Map $[m]^n$ into \mathbb{Z}^d ,

$$f(a_1,\ldots,a_n)=\sum_{i=1}^n v_{a_i}.$$

Color every $a \in [m]^n$ by the color of f(a). Then a monochromatic line in this coloring gives a homothetic copy of V in the original coloring of \mathbb{Z}^d .

HALES-JEWETT NUMBERS

Definition: The *Hales-Jewett number HJ*(r, m) is the minimum n such that every r-coloring of $[m]^n$ contains a monochromatic line.

HALES-JEWETT NUMBERS

Definition: The *Hales-Jewett number HJ(r, m)* is the minimum n such that every r-coloring of $[m]^n$ contains a monochromatic line.

THEOREM: (Shelah 1988)

HJ(r, m) is at most iterated tower function, i.e., primitive recursive.

HALES-JEWETT NUMBERS

Definition: The *Hales-Jewett number HJ(r, m)* is the minimum n such that every r-coloring of $[m]^n$ contains a monochromatic line.

THEOREM: (Shelah 1988)

HJ(r, m) is at most iterated tower function, i.e., primitive recursive.

Remarks:

- Greatly improves the original Ackermann type bound.
- Main step in the proof is the "Grid-type lemma", which reduces the size of the alphabet from m to m-1.

DEFINITION:

A **Grid graph** $\Gamma_{m,n}$ is a graph on the set of vertices $[m] \times [n]$ such that (i,j) is adjacent to (i',j') iff i=i' or j=j'.

DEFINITION:

A **Grid graph** $\Gamma_{m,n}$ is a graph on the set of vertices $[m] \times [n]$ such that (i,j) is adjacent to (i',j') iff i=i' or j=j'.

- We call the i^{th} row the set of vertices $\{i\} \times [n]$ and $[m] \times \{j\}$ is called the j^{th} column.
- Rows, columns of $\Gamma_{m,n}$ are complete graphs K_n, K_m respectively.

A *Grid graph* $\Gamma_{m,n}$ is a graph on the set of vertices $[m] \times [n]$ such that (i,j) is adjacent to (i',j') iff i=i' or j=j'.

Definition: A rectangle in an edge-colored $\Gamma_{m,n}$ is alternating if vertical/horizontal pairs of edges have the same color. Coloring is alternating-free if it has no such rectangle.

A *Grid graph* $\Gamma_{m,n}$ is a graph on the set of vertices $[m] \times [n]$ such that (i,j) is adjacent to (i',j') iff i=i' or j=j'.

Definition: A rectangle in an edge-colored $\Gamma_{m,n}$ is alternating if vertical/horizontal pairs of edges have the same color. Coloring is alternating-free if it has no such rectangle.

GRID RAMSEY FUNCTION:

G(r) is the minimum integer n such that every r-edge coloring of $\Gamma_{n,n}$ contains an alternating rectangle.

LEMMA: (Shelah 1988)

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

LEMMA: *(Shelah 1988)*

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

Proof. Let $n = r^{\binom{r+1}{2}} + 1$ and consider an r-edge coloring of $\Gamma_{r+1,n}$. Recall that every column is a complete graph K_{r+1} and thus there at most $r^{\binom{r+1}{2}}$ ways to r-color its edges.

LEMMA: (Shelah 1988)

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

Proof. Let $n = r^{\binom{r+1}{2}} + 1$ and consider an r-edge coloring of $\Gamma_{r+1,n}$. Recall that every column is a complete graph K_{r+1} and thus there at most $r^{\binom{r+1}{2}}$ ways to r-color its edges.

Since $n > r^{\binom{r+1}{2}}$ there are two columns j,j', whose edges are identically colored. There are r+1 edges of the grid graph between vertices in these columns. Since there are only r colors, two of these edges (say in rows i and i') have the same color. Then $\{i,i'\} \times \{j,j'\}$ is an alternating rectangle. \square

LEMMA: (Shelah 1988)

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

LEMMA: *(Shelah 1988)*

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

Remarks:

- A very similar (more general) grid-type lemma is a key step in Shelah's proof.
- This simple bound is difficult to improve. The only known improvement is by an additive lower-order term (Gyárfás).
- Best lower bound has order r^3 (Faudree-Gyárfás-Szönyi and Heinrich)

Grid Lemma

LEMMA: *(Shelah 1988)*

$$G(r) \leq r^{\binom{r+1}{2}} + 1.$$

Remarks:

- A very similar (more general) grid-type lemma is a key step in Shelah's proof.
- This simple bound is difficult to improve. The only known improvement is by an additive lower-order term (Gyárfás).
- Best lower bound has order r^3 (Faudree-Gyárfás-Szönyi and Heinrich)

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

THEOREM: (Conlon, Fox, Lee and S. 2014+)

• The grid Ramsey function is not polynomial. Moreover,

$$G(r) \geq r^{\log^{3/2-o(1)}r}.$$

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

THEOREM: (Conlon, Fox, Lee and S. 2014+)

• The grid Ramsey function is not polynomial. Moreover,

$$G(r) \geq r^{\log^{3/2-o(1)}r}.$$

• There exist an alternating-free r-edge coloring of $\Gamma_{m,n}$ with

$$m = cr^2$$
 and $n = r^{(\frac{1}{2} - o(1))r^2}$

QUESTION: (Graham, Rothschild and Spencer 1990)

Is the function G(r) polynomial in r?

THEOREM: (Conlon, Fox, Lee and S. 2014+)

The grid Ramsey function is not polynomial. Moreover,

$$G(r) \geq r^{\log^{3/2-o(1)}r}.$$

• There exist an alternating-free r-edge coloring of $\Gamma_{m,n}$ with

$$m = cr^2$$
 and $n = r^{(\frac{1}{2} - o(1))r^2}$.

Remark: The second result gives some evidence why it is hard to improve the upper bound on G(r).

Definition: For two edge colorings c_1 , c_2 of K_n , let \mathcal{G}_{c_1,c_2} be the subgraph of K_n containing all the edges e with $c_1(e) = c_2(e)$.

Definition: For two edge colorings c_1 , c_2 of K_n , let \mathcal{G}_{c_1,c_2} be the subgraph of K_n containing all the edges e with $c_1(e) = c_2(e)$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ iff there are r-edge colorings c_1, \ldots, c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_j}) \leq r$, for all $i \neq j$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1, \ldots, c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$, for all $i \neq i'$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1,\ldots,c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r, \quad \text{for all} \quad i \neq i'.$

Proof. Color the edges of the i^{th} row using c_i .

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1,\ldots,c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$, for all $i \neq i'$.

Proof. Color the edges of the i^{th} row using c_i .

Color vertical edge $(i,j) \sim (i',j)$ between rows i,i' with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_i,c_{i'}}$.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1, \ldots, c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$, for all $i \neq i'$.

Proof. Color the edges of the i^{th} row using c_i .

Color vertical edge $(i,j) \sim (i',j)$ between rows i,i' with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_i,c_{i'}}$.

By definition, if horizontal edges $(i,j) \sim (i,j')$ and $(i',j) \sim (i',j')$ have the same color, then the vertices j,j' are adjacent in $\mathcal{G}_{c_i,c_{i'}}$ and have distinct colors.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1, \ldots, c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$, for all $i \neq i'$.

Proof. Color the edges of the i^{th} row using c_i .

Color vertical edge $(i,j) \sim (i',j)$ between rows i,i' with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_i,c_{i'}}$.

By definition, if horizontal edges $(i,j) \sim (i,j')$ and $(i',j) \sim (i',j')$ have the same color, then the vertices j,j' are adjacent in $\mathcal{G}_{c_i,c_{i'}}$ and have distinct colors.

Hence, the vertical edges $(i,j) \sim (i',j)$ and $(i,j') \sim (i',j')$ have distinct colors as well.

LEMMA:

There is an alternating-free r-edge coloring of $\Gamma_{m,n}$ if there are r-edge colorings c_1, \ldots, c_m of the complete graph K_n with $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$, for all $i \neq i'$.

Proof. Color the edges of the i^{th} row using c_i .

Color vertical edge $(i,j) \sim (i',j)$ between rows i,i' with the color of the vertex j in the r-coloring of $\mathcal{G}_{c_i,c_{i'}}$.

By definition, if horizontal edges $(i,j) \sim (i,j')$ and $(i',j) \sim (i',j')$ have the same color, then the vertices j,j' are adjacent in $\mathcal{G}_{c_i,c_{i'}}$ and have distinct colors.

Hence, the vertical edges $(i,j) \sim (i',j)$ and $(i,j') \sim (i',j')$ have distinct colors as well.

This shows that there are no alternating rectangles.

Proof recipe

- Choose a partition $E(K_n) = E_1 \cup \cdots \cup E_t$ such that any union of "few" parts has "small" chromatic number.
- Generate c_i by assigning to every part E_j randomly one of r colors.
- Any two such colorings will agree only on small number of parts, i.e., chromatic number of $\mathcal{G}_{c_i,c_{i'}}$ will be small.

Identify the vertex set [n] with binary strings of length $t = \log n$, i.e., $x = (x_1, \dots, x_t)$ if $x - 1 = \sum x_i 2^{i-1}$.

Identify the vertex set [n] with binary strings of length $t = \log n$, i.e., $x = (x_1, \dots, x_t)$ if $x - 1 = \sum x_i 2^{i-1}$.

Definition: An edge partition $E_1 \cup \cdots \cup E_t$ of the complete graph K_n is obtained by taking E_i to be all the edges (x, y), such that i is the minimum index for which $x_i \neq y_i$.

Identify the vertex set [n] with binary strings of length $t = \log n$, i.e., $x = (x_1, \dots, x_t)$ if $x - 1 = \sum x_i 2^{i-1}$.

Definition: An edge partition $E_1 \cup \cdots \cup E_t$ of the complete graph K_n is obtained by taking E_i to be all the edges (x, y), such that i is the minimum index for which $x_i \neq y_i$.

EASY OBSERVATION:

The union of any s parts in this partition have chromatic number at most 2^s .

Identify the vertex set [n] with binary strings of length $t = \log n$, i.e., $x = (x_1, \dots, x_t)$ if $x - 1 = \sum x_i 2^{i-1}$.

Definition: An edge partition $E_1 \cup \cdots \cup E_t$ of the complete graph K_n is obtained by taking E_i to be all the edges (x, y), such that i is the minimum index for which $x_i \neq y_i$.

EASY OBSERVATION:

The union of any s parts in this partition have chromatic number at most 2^s .

Indeed, every E_i is a bipartite graph with parts containing all $x, x_i = 0$ and all $y, y_i = 1$. Therefore $\chi(E_i) = 2$.

Since $\chi(H \cup H') \leq \chi(H) \cdot \chi(H')$ for any pair of graphs on the same vertex set, the claim follows.

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \ge r^{0.4 \log r}$$

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \ge r^{0.4 \log r}$$

Proof. Let $n = r^{0.4 \log r}$ and $E_1 \cup \cdots \cup E_t$ be the edge partition of K_n with union of any s parts having chromatic number $\leq 2^s$.

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \ge r^{0.4 \log r}$$

Proof. Let $n = r^{0.4 \log r}$ and $E_1 \cup \cdots \cup E_t$ be the edge partition of K_n with union of any s parts having chromatic number $\leq 2^s$.

Form c_i , i = 1, ..., n by coloring every part E_j randomly and independently in one of r colors.

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \geq r^{0.4 \log r}$$

Proof. Let $n = r^{0.4 \log r}$ and $E_1 \cup \cdots \cup E_t$ be the edge partition of K_n with union of any s parts having chromatic number $\leq 2^s$.

Form c_i , i = 1, ..., n by coloring every part E_j randomly and independently in one of r colors.

Note, $\chi(\mathcal{G}_{c_i,c_{i'}}) > r$ only if $c_i, c_{i'}$ agree on at least $\log(r+1)$ parts.

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \geq r^{0.4 \log r}$$

Proof. Let $n = r^{0.4 \log r}$ and $E_1 \cup \cdots \cup E_t$ be the edge partition of K_n with union of any s parts having chromatic number $\leq 2^s$.

Form $c_i, i = 1, ..., n$ by coloring every part E_j randomly and independently in one of r colors.

Note, $\chi(\mathcal{G}_{c_i,c_{i'}}) > r$ only if $c_i, c_{i'}$ agree on at least $\log(r+1)$ parts.

Since $t = \log n = 0.4 \log^2 r$, this event has probability

$$\mathbb{P} \le \binom{t}{\log(r+1)} r^{-\log(r+1)} = r^{-(1+o(1))\log r} \ll 1/n^2.$$

THEOREM: (Conlon, Fox, Lee and S.)

$$G(r) \geq r^{0.4 \log r}$$

Proof. Let $n = r^{0.4 \log r}$ and $E_1 \cup \cdots \cup E_t$ be the edge partition of K_n with union of any s parts having chromatic number $\leq 2^s$.

Form $c_i, i = 1, ..., n$ by coloring every part E_j randomly and independently in one of r colors.

Note, $\chi(\mathcal{G}_{c_i,c_{i'}}) > r$ only if $c_i, c_{i'}$ agree on at least $\log(r+1)$ parts.

Since $t = \log n = 0.4 \log^2 r$, this event has probability

$$\mathbb{P} \le \binom{t}{\log(r+1)} r^{-\log(r+1)} = r^{-(1+o(1))\log r} \ll 1/n^2.$$

Thus, with high probability $\chi(\mathcal{G}_{c_i,c_{i'}}) \leq r$ for all $i \neq i'$, which gives alternating-free r-edge coloring of $\Gamma_{n,n}$.

DEFINITION:

A (p,q)-coloring of the complete k-uniform hypergraph $K_n^{(k)}$ is an edge-coloring in which every copy of $K_p^{(k)}$ receives at least q colors.

DEFINITION:

A (p,q)-coloring of the complete k-uniform hypergraph $K_n^{(k)}$ is an edge-coloring in which every copy of $K_p^{(k)}$ receives at least q colors.

Remarks:

- (p, q)-colorings were introduced by Erdős-Shelah in 1975 and then were systematically studied by Erdős-Gyárfás in the 90s.
- The case q=2 is a classical Ramsey coloring with no monochromatic p-clique.

DEFINITION:

A (p,q)-coloring of the complete k-uniform hypergraph $K_n^{(k)}$ is an edge-coloring in which every copy of $K_p^{(k)}$ receives at least q colors.

Remarks:

- (p, q)-colorings were introduced by Erdős-Shelah in 1975 and then were systematically studied by Erdős-Gyárfás in the 90s.
- The case q=2 is a classical Ramsey coloring with no monochromatic p-clique.

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of [n].

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of [n].

Color the vertical edge $(i,j) \sim (i',j)$ by the color of $\{j,i,i'\}$ with $j \in A$ and $i,i' \in B$, color the horizontal edge $(i,j) \sim (i,j')$ of the grid by the color of the triple $\{j,j',i\}$ with $j,j' \in A$ and $i \in B$.

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

Proof. Let $A \cup B$ be an arbitrary partition of the vertices into two equal parts, which we regard as two copies of [n].

Color the vertical edge $(i,j) \sim (i',j)$ by the color of $\{j,i,i'\}$ with $j \in A$ and $i,i' \in B$, color the horizontal edge $(i,j) \sim (i,j')$ of the grid by the color of the triple $\{j,j',i\}$ with $j,j' \in A$ and $i \in B$.

Every alternating rectangle in the grid gives a copy of $K_4^{(3)}$ with only two colors.

CLAIM:

Every (4,3)-coloring of $K_{2n}^{(3)}$ which uses r colors gives an alternating-free r-coloring of $\Gamma_{n,n}$.

Remarks: Converse statement is also true. By amplifying "slightly" the number of colors one can construct from an alternating-free coloring of grid a (4,3)-coloring of a complete 3-uniform hypergraph.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q-1 colors on its edges.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q-1 colors on its edges.

• Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q - 1 colors on its edges.

- Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.
- Erdős-Gyárfás noticed that F(r, 9, 34) is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q - 1 colors on its edges.

- Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.
- Erdős-Gyárfás noticed that F(r, 9, 34) is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.
- If n = r + 2 then at every vertex there are 2 edges of the same color, giving K_3 with at most 2 colors. So $F(r, 3, 3) \le r + 2$.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q - 1 colors on its edges.

- Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.
- Erdős-Gyárfás noticed that F(r, 9, 34) is connected to the celebrated Ruzsa-Szemerédi's (6, 3)-theorem.
- If n = r + 2 then at every vertex there are 2 edges of the same color, giving K_3 with at most 2 colors. So $F(r, 3, 3) \le r + 2$.
- For p > 3, $F(r, p, \binom{p}{2}) \approx \sqrt{2r}$, since all the edge-colors in such coloring must be distinct.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q-1 colors on its edges.

- Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.
- If n=r+2 then at every vertex there are 2 edges of the same color, so $F(r,3,3) \le r+2$. For p>3, $F(r,p,\binom{p}{2}) \approx \sqrt{2r}$, since all the edge-colors in such coloring must be distinct.

DEFINITION:

 $F(r, p, q) = \min n$ such that every r-edge-coloring of a complete graph K_n contains a K_p with at most q-1 colors on its edges.

- Note that F(r, p, 2) is the usual r-colored Ramsey number of K_p . Thus $F(r, p, 2) \ge 2^r$ is exponential in r.
- If n=r+2 then at every vertex there are 2 edges of the same color, so $F(r,3,3) \le r+2$. For p>3, $F(r,p,\binom{p}{2}) \approx \sqrt{2r}$, since all the edge-colors in such coloring must be distinct.

QUESTION: (Erdős-Gyárfás 90s)

As q varies from 2 to $\binom{p}{2}$, when F(r, p, q) becomes polynomial?

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proof. By induction on p. We already have that $F(r,3,3) \le r+2$.

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proof. By induction on p. We already have that $F(r,3,3) \le r+2$.

Suppose we have an r-edge-coloring of K_n such that every p-clique has at least p colors. Fix a vertex v.

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proof. By induction on p. We already have that $F(r,3,3) \le r+2$.

Suppose we have an r-edge-coloring of K_n such that every p-clique has at least p colors. Fix a vertex v.

There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proof. By induction on p. We already have that $F(r,3,3) \le r+2$.

Suppose we have an r-edge-coloring of K_n such that every p-clique has at least p colors. Fix a vertex v.

There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Every (p-1)-set S in X has at least p-1 colors, otherwise $S \cup \{v\}$ will have fewer than p colors, contradiction.

Polynomial growth

Proposition: (Erdős-Gyárfás)

$$F(r,p,p)=O(r^{p-2}).$$

Proof. By induction on p. We already have that $F(r,3,3) \le r+2$.

Suppose we have an r-edge-coloring of K_n such that every p-clique has at least p colors. Fix a vertex v.

There is a color that appears on at least $\frac{n-1}{r}$ edges incident to v, so let X be the set of vertices connected to v by these edges.

Every (p-1)-set S in X has at least p-1 colors, otherwise $S \cup \{v\}$ will have fewer than p colors, contradiction.

Hence
$$|X| = O(r^{p-3})$$
 and therefore $n = O(r|X|) = O(r^{p-2})$.

Erdős-Gyárfás conjecture

QUESTION: (Erdős-Gyárfás 90s)

What is the minimum q such that F(r, p, q) becomes polynomial in r? Is it q = p?

Erdős-Gyárfás conjecture

QUESTION: (Erdős-Gyárfás 90s)

What is the minimum q such that F(r, p, q) becomes polynomial in r? Is it q = p?

Remark: We saw that $F(r,3,2) \ge 2^r$, so this holds for p=3. It was established also for p=4,5 by Mubayi 1998 and Eichhorn-Mubayi 2000.

Erdős-Gyárfás conjecture

QUESTION: (Erdős-Gyárfás 90s)

What is the minimum q such that F(r, p, q) becomes polynomial in r? Is it q = p?

Remark: We saw that $F(r,3,2) \ge 2^r$, so this holds for p=3. It was established also for p=4,5 by Mubayi 1998 and Eichhorn-Mubayi 2000.

THEOREM: (Conlon, Fox, Lee and S. 2014+)

For all $p \ge 4$,

$$F(r,p,p-1) \geq r^{c \log^{\frac{1}{p-3}} r}.$$

CONCLUDING REMARKS AND OPEN PROBLEM

QUESTION: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_n such that the union of any q colors has chromatic number at most p?

Concluding remarks and open problem

QUESTION: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_n such that the union of any q colors has chromatic number at most p?

Remark: Since $\chi(H \cup H') \le \chi(H) \cdot \chi(H')$ for any pair of graphs on the same vertex set, one must have

$$p^{r/q} \geq n$$
.

Can this be achieved?

Concluding remarks and open problem

QUESTION: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_n such that the union of any q colors has chromatic number at most p?

Remark: Since $\chi(H \cup H') \le \chi(H) \cdot \chi(H')$ for any pair of graphs on the same vertex set, one must have

$$p^{r/q} \ge n$$
.

Can this be achieved?

Note that, for $r = \log n$ and $p = 2^q$ such coloring exists.

CONCLUDING REMARKS AND OPEN PROBLEM

QUESTION: (Conlon, Fox, Lee and S.)

Is there an r-edge coloring of K_n such that the union of any q colors has chromatic number at most p?

Remark: Since $\chi(H \cup H') \leq \chi(H) \cdot \chi(H')$ for any pair of graphs on the same vertex set, one must have

$$p^{r/q} \ge n$$
.

Can this be achieved?

Note that, for $r = \log n$ and $p = 2^q$ such coloring exists.

Question: What happens if we want the union of q colors to have chromatic number $\ll 2^q$?

CONCLUDING REMARKS AND OPEN PROBLEM

PROPOSITION: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_n with $r = 2^{3\sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3\sqrt{q\log q}}$.

Concluding remarks and open problem

PROPOSITION: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_n with $r=2^{3\sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3\sqrt{q\log q}}$.

Remark: This result was used to prove that $G(r) \geq r^{\log^{3/2-o(1)} r}$.

CONCLUDING REMARKS AND OPEN PROBLEM

PROPOSITION: (Conlon, Fox, Lee and S.)

There is an edge-coloring of K_n with $r = 2^{3\sqrt{\log n}}$ colors in which the union of any q colors has chromatic number at most $2^{3\sqrt{q\log q}}$.

Remark: This result was used to prove that $G(r) \geq r^{\log^{3/2-o(1)} r}$.

QUESTION: (Conlon, Fox, Lee and S.)

What is the maximum n = n(r) such that there is an r-edge coloring of K_n in which union of every 2 colors has chromatic number at most 3?

