CYCLES AND CLIQUE-MINORS IN EXPANDERS

Benny Sudakov UCLA and Princeton University

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

The vertex boundary of a subset X of a graph G:

 $\partial X = \{ \text{all vertices in } G \setminus X \text{ with at least one neighbor in } X \}.$

DEFINITION:

- Graph G on n vertices is an expander if ∀X ⊂ G of order at most n/2, ^{|∂X|}/_{|X|} is "large" (at least constant).
- G is locally expander if $\frac{|\partial X|}{|X|}$ is "large" $\forall X \subset G$ up to a certain size.

APPLICATIONS:

Communication networks, Derandomization, Metric embeddings, Computational complexity, Coding theory, Markov chains, ...

Graph G is called H-free if it contains no subgraph (not necessarily induced) isomorphic to H.

KEY OBSERVATION:

Let H be a fixed bipartite graph and let G be an H-free graph with minimum degree d. Then G is locally expanding.

Examples of H:

- C_{2k} = cycle of length 2k.
- $K_{s,t}$ = complete bipartite graph with parts of size $s \leq t$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EXPANSION OF H-FREE GRAPHS

THEOREM: (Bondy-Simonovits, Kövári-Sós-Turán)

- For every C_{2k} -free graph G on n vertices, $e(G) \leq c n^{1+1/k}$
- For every $K_{s,t}$ -free graph G on n vertices,

$$e(G) \leq c n^{2-1/s}.$$

COROLLARY:

- If G is a C_{2k} -free graph with minimum degree d, then $|\partial X| > 2|X|$ for all subsets $X, |X| \le O(d^k)$.
- If G is a $K_{s,t}$ -free graph with minimum degree d, then $|\partial X| > 2|X|$ for all subsets $X, |X| \le O(d^{s/(s-1)})$.

Proof. If $|\partial X| \le 2|X|$ and |X| is "small", then $Y = X \cup \partial X$ has size at most 3|X| and at least d|X|/2 edges. This contradicts the theorem.

CYCLE LENGTHS

DEFINITION:

• cir(G) = circumference of graph G is the length of the longest cycle in G.

• C(G) = set of cycle lengths in G, i.e., all ℓ such that $C_{\ell} \subset G$.

TYPICAL QUESTIONS:

- How large is the circumference of G?
- How many different cycle lengths are in G?
- What are the arithmetic properties of C(G), e.g., is there a cycle in G whose length is a power of 2?

TOY EXAMPLE:

If G has minimum degree d then $cir(G) \ge d$ and $|\mathcal{C}(G)| \ge d-1$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

GRAPHS OF LARGE GIRTH

DEFINITION:

Girth of G is the length of the shortest cycle in G.

QUESTION: (Ore 1967)

How large is cir(G) in graphs with min. degree d and girth 2k + 1?

KNOWN RESULTS:

- If G has minimum degree d and girth 2k + 1, then
 - $cir(G) \ge \Omega(kd)$ Ore 1967
 - Improvements by Zhang, Zhao, Voss
 - $cir(G) \ge \Omega(d^{\lfloor \frac{k+1}{2} \rfloor})$ Ellingham and Menser 2000.

MANY CYCLE LENGTHS

Remarks:

- Tight for k = 2, 3, 5, and "probably" for all k. It is believed that for every fixed k there are graphs of order $O(d^k)$ with minimum degree d and girth 2k + 1.
- True for k = 2 by Erdős, Faudree, Rousseau, and Schelp.

PROBLEM: (Erdős)

If G has large (but constant) average degree, does it contain a cycle of length 2^i for some i > 0?

THEOREM: (S.- Verstraëte)

Let G be a graph with average degree d.

- If G is C_{2k} -free then $|\mathcal{C}(G)| \geq \Omega(d^k)$.
- If G is $K_{s,t}$ -free then $|\mathcal{C}(G)| \ge \Omega(d^{s/(s-1)}).$

Moreover, C(G) contains an interval of consecutive even integers of this length.

THEOREM: (S.- Verstraëte)

If graph G on n vertices has average degree at least $e^{c \log^* n}$ then G contains a cycle of length 2^i for some i > 0.

(True for any exponentially growing sequence of even numbers)

EXPANSION AND LONG PATH

LEMMA: (*Pósa 1976*)

If every subset $X \subset G$ of size $|X| \leq m$ has $|\partial X| > 2|X|$ then G contains a path of length 3m.

Rotation using the edge (x_i, x_k) , x_{i+1} is a new endpoint.

COROLLARY:

If G has average degree d and no cycle of length 2k then it contains a path of length $\Omega(d^k)$.

Let G be a connected, bipartite graph with average degree d and no cycle of length 2k. Fix any $v \in G$ and let L_i be all the vertices in G within distance i from v. Note that

 $\sum e(L_i, L_{i+1}) = e(G) = \frac{d}{2}|G| = \frac{d}{2}\sum |L_i| \ge \frac{d}{4}\sum (|L_i| + |L_{i+1}|).$

Therefore one of the induced subgraphs $G[L_i, L_{i+1}]$ has average degree at least d/2. It has a path of length $\Omega(d^k)$ between L_i and L_{i+1} , which together with v gives a long cycle.

Graph Γ is a minor of graph G if for every vertex $u \in \Gamma$ there is a connected subgraph $G_u \subset G$ such that

- G_u and $G_{u'}$ are vertex disjoint for all $u \neq u'$.
- For every edge (u, u') of Γ there is an edge from G_u to $G_{u'}$.

QUESTION:

Find sufficient condition for graph G to contain given Γ as a minor.

(e.g., when Γ is a clique)

CONJECTURE: (Hadwiger 1943)

Every graph with chromatic number at least k contains a clique on k vertices as a minor.

Remark: Every graph with chromatic number k contains a subgraph with minimum degree k - 1.

MINORS IN GRAPHS OF LARGE GIRTH

THEOREM: (Thomassen, Diestel-Rompel, Kühn-Osthus)

If G has girth 2k + 1 and average degree d, then it contains a minor with average degree $\Omega(d^{\frac{k+1}{2}})$.

OBSERVATION:

Any minor of graph G has at most e(G) edges and therefore has average degree at most $\sqrt{2e(G)}$.

Remark: Graphs of order $O(d^k)$, with minimum degree d and girth 2k + 1, have $O(d^{k+1})$ edges, so they cannot have minors with average degree $\gg d^{\frac{k+1}{2}}$.

QUESTION:

Do we need the girth assumption? Is it enough to forbid cycle C_{2k} ?

MINORS IN H-FREE GRAPHS

Remarks:

- This implies that *H*-free graphs (for bipartite *H*) satisfy Hadwiger's conjecture.
- There is a $K_{s,t}$ -free graph on $O(d^{s/(s-1)})$ vertices, with average degree d. It has $O(d^{2+1/(s-1)})$ edges and cannot contain a minor with average degree $\gg d^{1+\frac{1}{2(s-1)}}$.

CONJECTURE: (Kühn-Osthus)

Every $K_{s,t}$ -free graph with average degree d contains a minor with average degree $\Omega(d^{1+\frac{1}{2(s-1)}})$.

THEOREM: (*Krivelevich-S*.)

Let G be a graph with average degree d.

- If G is C_{2k} -free then it contains a minor with average degree $\Omega(d^{\frac{k+1}{2}}).$
- If G is $K_{s,t}$ -free then it contains a minor with average degree

$$\Omega(d^{1+\frac{1}{2(s-1)}}).$$

REMARK:

The same approach is used to prove both statements. One of its key ingredients is the expansion property of H-free graphs.

A separator of a graph G of order n is a set of vertices whose removal separates G into connected components of size $\leq 2n/3$.

THEOREM: (Plotkin-Rao-Smith, improving on Alon-Seymour-Thomas)

If an *n*-vertex graph G has no clique-minor on h vertices, then it has a separator of order $O(h\sqrt{n \log n})$.

COROLLARY: (*Plotkin-Rao-Smith*, *Kleinberg-Rubinfeld*)

Let G be a graph on n vertices and let t > 0 be a constant. If all subsets $X \subset G$ of size at most n/2 have $|\partial X| \ge t|X|$ then G contains a clique-minor of order $\Omega\left(\sqrt{\frac{n}{\log n}}\right)$.

SUPERCONSTANT EXPANSION

QUESTION:

What size clique-minors can one find in a graph G on n vertices, whose expansion factor $t \to \infty$ together with n?

Remarks:

- Proof based on separators can't give bound better than $\sqrt{\frac{n}{\log n}}$ since every graph of order *n* has separator of size *n*/3.
- Random graph G(n, t/n) has almost surely expansion factor t and clique-minor of order $\Omega(\sqrt{\frac{nt}{\log n}})$.

(Bollobás-Erdős-Catlin, improved by Fountoulakis-Kühn-Osthus)

QUESTION:

What if edges of G are distributed like in the random graph?

EXPANSION OF C_4 -FREE GRAPHS REVISITED

PROPOSITION:

Let G be a C₄-free graph with minimum degree d, and let X be a subset of G of size $|X| \le d$. Then $|\partial X| \ge \frac{d}{3}|X|$.

Proof. Suppose $|\partial X| < \frac{d}{3}|X|$. Since $e(X, \partial X) = (1 + o(1))d|X|$,

$$\sum_{y\in\partial X} \binom{d_X(y)}{2} \geq |\partial X| \binom{\frac{e(X,\partial X)}{|\partial X|}}{2} \approx d|X| \geq \binom{|X|}{2}.$$

This gives a 4-cycle, contradiction.

REMARKS:

- If G is a C_4 -free graph with $n = O(d^2)$ vertices and minimum degree d, then it has expansion factor $t = \frac{d}{3} = \Omega(\sqrt{n})$.
- There are similar results for all *H*-free graphs (*H* bipartite).

NEW RESULT: EXPANDERS

THEOREM: (Krivelevich-S.)

If all subsets $X \subset G$ of size $|X| \leq O(n/t)$ have $|\partial X| \geq t |X|$ then

G contains a minor with average degree

$$\Omega\left(\sqrt{\frac{nt\log t}{\log n}}\right)$$

Remarks:

- For $t = n^{\epsilon}$ this gives a minor with average degree $\Omega(\sqrt{nt})$ and thus also a clique-minor of order $\Omega(\sqrt{nt/\log n})$.
- The random graph G(n, t/n) shows that this bound is tight.
- If G is a C_4 -free graph of order $n = O(d^2)$, then for t = d/3every subset of G of size O(n/t) expands by factor of t. Thus G has a minor with average degree $\Omega(\sqrt{nt}) = \Omega(d^{3/2})$

A graph G is (p, β) -jumbled if for every subset of vertices X $|e(X) - p|X|^2/2| \le \beta |X|.$

THEOREM: (Krivelevich-S.)

Every (p, β) -jumbled graph G on n vertices with $\beta = o(np)$ contains a minor with average degree $\Omega(n\sqrt{p})$.

Remarks:

- This is tight since such a graph G has $O(n^2p)$ edges. It extends results of Thomason and Drier-Linial.
- Expansion factor of (p, β) -jumbled G can be only $\frac{np}{\beta} \ll np$.
- If G is an (n, d, λ) -graph then it is $(d/n, \lambda)$ -jumbled. Hence if $\lambda = o(d)$ it has a minor with average degree $\Omega(\sqrt{nd})$.