# CYCLES AND CLIQUE-MINORS IN EXPANDERS 

Benny Sudakov<br>UCLA and Princeton University

## EXPANDERS

## Definition:

The vertex boundary of a subset $X$ of a graph $G$ : $\partial X=\{$ all vertices in $G \backslash X$ with at least one neighbor in $X\}$.

## Definition:

- Graph $G$ on $n$ vertices is an expander if $\forall X \subset G$ of order at most $n / 2, \frac{|\partial X|}{|X|}$ is "large" (at least constant).
- $G$ is locally expander if $\frac{|\partial X|}{|X|}$ is "large" $\forall X \subset G$ up to a certain size.


## Applications:

Communication networks, Derandomization, Metric embeddings, Computational complexity, Coding theory, Markov chains, ...

## DEFINITION:

Graph $G$ is called $H$-free if it contains no subgraph (not necessarily induced) isomorphic to $H$.

## KEY OBSERVATION:

Let $H$ be a fixed bipartite graph and let $G$ be an $H$-free graph with minimum degree $d$. Then $G$ is locally expanding.

## Examples of $H$ :

- $C_{2 k}=$ cycle of length $2 k$.
- $K_{s, t}=$ complete bipartite graph with parts of size $s \leq t$.


## Expansion of H-FREE GRAPHS

## Theorem: (Bondy-Simonovits, Kövári-Sós-Turán )

- For every $C_{2 k}$-free graph $G$ on $n$ vertices, $e(G) \leq c n^{1+1 / k}$.
- For every $K_{s, t} t^{-}$free graph $G$ on $n$ vertices, $e(G) \leq c n^{2-1 / s}$.


## Corollary:

- If $G$ is a $C_{2 k}$-free graph with minimum degree $d$, then

$$
|\partial X|>2|X| \text { for all subsets } X,|X| \leq O\left(d^{k}\right)
$$

- If $G$ is a $K_{s, t}$-free graph with minimum degree $d$, then $|\partial X|>2|X|$ for all subsets $X,|X| \leq O\left(d^{s /(s-1)}\right)$.

Proof. If $|\partial X| \leq 2|X|$ and $|X|$ is "small", then $Y=X \cup \partial X$ has size at most $3|X|$ and at least $d|X| / 2$ edges. This contradicts the theorem.

## Cycle lengThs

## Definition:

- $\operatorname{cir}(G)=$ circumference of graph $G$ is the length of the longest cycle in $G$.
- $\mathcal{C}(G)=$ set of cycle lengths in $G$, i.e., all $\ell$ such that $C_{\ell} \subset G$.


## Typical questions:

- How large is the circumference of $G$ ?
- How many different cycle lengths are in $G$ ?
- What are the arithmetic properties of $\mathcal{C}(G)$, e.g., is there a cycle in $G$ whose length is a power of 2 ?


## TOY EXAMPLE:

If $G$ has minimum degree $d$ then $\operatorname{cir}(G) \geq d$ and $|\mathcal{C}(G)| \geq d-1$.

## Graphs of Large girth

## DEFINITION:

Girth of $G$ is the length of the shortest cycle in $G$.

## QuEsTION: (Ore 1967)

How large is $\operatorname{cir}(G)$ in graphs with min. degree $d$ and girth $2 k+1$ ?

## KNOWN RESULTS:

If $G$ has minimum degree $d$ and girth $2 k+1$, then

- $\operatorname{cir}(G) \geq \Omega(k d)$ - Ore 1967
- Improvements by Zhang, Zhao, Voss
- $\operatorname{cir}(G) \geq \Omega\left(d^{\left\lfloor\frac{k+1}{2}\right\rfloor}\right)$ - Ellingham and Menser 2000.


## Many cycle lengThs

## CONJECTURE: (Erdős 1992 )

If graph $G$ has average degree $d$ and girth $2 k+1$, then

$$
|\mathcal{C}(G)| \geq \Omega\left(d^{k}\right) .
$$

## Remarks:

- Tight for $k=2,3,5$, and "probably" for all $k$. It is believed that for every fixed $k$ there are graphs of order $O\left(d^{k}\right)$ with minimum degree $d$ and girth $2 k+1$.
- True for $k=2$ by Erdős, Faudree, Rousseau, and Schelp.


## Problem: (Erdős )

If $G$ has large (but constant) average degree, does it contain a cycle of length $2^{i}$ for some $i>0$ ?

## Theorem: (S.- Versträte)

Let $G$ be a graph with average degree $d$.

- If $G$ is $C_{2 k}$-free then $|\mathcal{C}(G)| \geq \Omega\left(d^{k}\right)$.
- If $G$ is $K_{s, t}$-free then $|\mathcal{C}(G)| \geq \Omega\left(d^{s /(s-1)}\right)$.

Moreover, $\mathcal{C}(G)$ contains an interval of consecutive even integers of this length.

## Theorem: (S.- Verstraëte )

If graph $G$ on $n$ vertices has average degree at least $e^{c \log ^{*} n}$ then $G$ contains a cycle of length $2^{i}$ for some $i>0$.
(True for any exponentially growing sequence of even numbers)

## Expansion and long path

LEMMA: (Pósa 1976 )
If every subset $X \subset G$ of size $|X| \leq m$ has $|\partial X|>2|X|$ then $G$ contains a path of length 3 m .


Rotation using the edge $\left(x_{i}, x_{k}\right), x_{i+1}$ is a new endpoint.

## Corollary:

If $G$ has average degree $d$ and no cycle of length $2 k$ then it contains a path of length $\Omega\left(d^{k}\right)$.

Let $G$ be a connected, bipartite graph with average degree $d$ and no cycle of length $2 k$. Fix any $v \in G$ and let $L_{i}$ be all the vertices in $G$ within distance $i$ from $v$. Note that

$$
\sum e\left(L_{i}, L_{i+1}\right)=e(G)=\frac{d}{2}|G|=\frac{d}{2} \sum\left|L_{i}\right| \geq \frac{d}{4} \sum\left(\left|L_{i}\right|+\left|L_{i+1}\right|\right)
$$



Therefore one of the induced subgraphs $G\left[L_{i}, L_{i+1}\right]$ has average degree at least $d / 2$. It has a path of length $\Omega\left(d^{k}\right)$ between $L_{i}$ and $L_{i+1}$, which together with $v$ gives a long cycle.

## GRAPH MINORS

## Definition:

Graph $\Gamma$ is a minor of graph $G$ if for every vertex $u \in \Gamma$ there is a connected subgraph $G_{u} \subset G$ such that

- $G_{u}$ and $G_{u^{\prime}}$ are vertex disjoint for all $u \neq u^{\prime}$.
- For every edge $\left(u, u^{\prime}\right)$ of $\Gamma$ there is an edge from $G_{u}$ to $G_{u^{\prime}}$.


1

## Clique minors

## UESTION:

Find sufficient condition for graph $G$ to contain given $\Gamma$ as a minor.

$$
\text { (e.g., when } \Gamma \text { is a clique) }
$$

## Conjecture: (Hadwiger 1943)

Every graph with chromatic number at least $k$ contains a clique on $k$ vertices as a minor.

Remark: Every graph with chromatic number $k$ contains a subgraph with minimum degree $k-1$.

## THEOREM: (Kostochka, Thomason 80's)

Every graph with average degree $d$ contains a clique-minor of order

$$
c \frac{d}{\sqrt{\log d}}
$$

## Minors in graphs of Large girth

## TheOrem: (Thomassen, Diestel-Rompel, Kühn-Osthus)

If $G$ has girth $2 k+1$ and average degree $d$, then it contains a minor with average degree $\Omega\left(d^{\frac{k+1}{2}}\right)$.

## ObSERVATION:

Any minor of graph $G$ has at most $e(G)$ edges and therefore has average degree at most $\sqrt{2 e(G)}$.

Remark: Graphs of order $O\left(d^{k}\right)$, with minimum degree $d$ and girth $2 k+1$, have $O\left(d^{k+1}\right)$ edges, so they cannot have minors with average degree $\gg d^{\frac{k+1}{2}}$.

## Qubstion:

Do we need the girth assumption? Is it enough to forbid cycle $C_{2 k}$ ?

## Minors in H-Free graphs

## TheOrem: (Kühn-Osthus)

Every $K_{s, t}$ free graph $G$ with average degree $d$ contains a minor with average degree $\Omega\left(\frac{d^{1+} \frac{1}{2(s-1)}}{\text { polylog } d}\right)$.

## Remarks:

- This implies that $H$-free graphs (for bipartite $H$ ) satisfy Hadwiger's conjecture.
- There is a $K_{s, t}-$ free graph on $O\left(d^{s /(s-1)}\right)$ vertices, with average degree $d$. It has $O\left(d^{2+1 /(s-1)}\right)$ edges and cannot contain a minor with average degree $\gg d^{1+\frac{1}{2(s-1)}}$.


## Conjecture: (Kühn-Osthus)

Every $K_{s, t}$-free graph with average degree $d$ contains a minor with average degree $\Omega\left(d^{1+\frac{1}{2(s-1)}}\right)$.

## NeW ReSULTS

## Theorem: (Krivelevich-S.)

Let $G$ be a graph with average degree $d$.

- If $G$ is $C_{2 k}$-free then it contains a minor with average degree

$$
\Omega\left(d^{\frac{k+1}{2}}\right)
$$

- If $G$ is $K_{s, t}-$ free then it contains a minor with average degree

$$
\Omega\left(d^{1+\frac{1}{2(s-1)}}\right)
$$

## Remark:

The same approach is used to prove both statements. One of its key ingredients is the expansion property of $H$-free graphs.

## Minors in EXPANDERS

## Definition:

A separator of a graph $G$ of order $n$ is a set of vertices whose removal separates $G$ into connected components of size $\leq 2 n / 3$.

## THEOREM: (Plotkin-Rao-Smith, improving on Alon-Seymour-Thomas)

If an $n$-vertex graph $G$ has no clique-minor on $h$ vertices, then it has a separator of order $O(h \sqrt{n \log n})$.

## COROLLARY: (Plotkin-Rao-Smith, Kleinberg-Rubinfeld)

Let $G$ be a graph on $n$ vertices and let $t>0$ be a constant. If all subsets $X \subset G$ of size at most $n / 2$ have $|\partial X| \geq t|X|$ then $G$ contains a clique-minor of order $\Omega\left(\sqrt{\frac{n}{\log n}}\right)$.

## Superconstant expansion

## Question:

What size clique-minors can one find in a graph $G$ on $n$ vertices, whose expansion factor $t \rightarrow \infty$ together with $n$ ?

## REMARKS:

- Proof based on separators can't give bound better than
$\sqrt{\frac{n}{\log n}}$ since every graph of order $n$ has separator of size $n / 3$.
- Random graph $G(n, t / n)$ has almost surely expansion factor $t$ and clique-minor of order $\Omega\left(\sqrt{\frac{n t}{\log n}}\right)$.
(Bollobás-Erdös-Catlin, improved by Fountoulakis-Kühn-Osthus)


## Question:

What if edges of $G$ are distributed like in the random graph?

## EXPANSION OF $C_{4}$-FREE GRAPHS REVISITED

## PROPOSITION:

Let $G$ be a $C_{4}$-free graph with minimum degree $d$, and let $X$ be a subset of $G$ of size $|X| \leq d$. Then $|\partial X| \geq \frac{d}{3}|X|$.

Proof. Suppose $|\partial X|<\frac{d}{3}|X|$. Since $e(X, \partial X)=(1+o(1)) d|X|$,

$$
\sum_{y \in \partial X}\binom{d_{X}(y)}{2} \geq|\partial X|\binom{\frac{e(X, \partial X)}{|\partial X|}}{2} \approx d|X| \geq\binom{|X|}{2}
$$

This gives a 4-cycle, contradiction.

## REMARKS:

- If $G$ is a $C_{4}$-free graph with $n=O\left(d^{2}\right)$ vertices and minimum degree $d$, then it has expansion factor $t=\frac{d}{3}=\Omega(\sqrt{n})$.
- There are similar results for all $H$-free graphs ( $H$ bipartite).


## NEW RESULT: EXPANDERS

## THEOREM: (Krivelevich-S.)

If all subsets $X \subset G$ of size $|X| \leq O(n / t)$ have $|\partial X| \geq t|X|$ then
$G$ contains a minor with average degree

$$
\Omega\left(\sqrt{\frac{n t \log t}{\log n}}\right)
$$

## Remarks:

- For $t=n^{\epsilon}$ this gives a minor with average degree $\Omega(\sqrt{n t})$ and thus also a clique-minor of order $\Omega(\sqrt{n t / \log n})$.
- The random graph $G(n, t / n)$ shows that this bound is tight.
- If $G$ is a $C_{4}$-free graph of order $n=O\left(d^{2}\right)$, then for $t=d / 3$ every subset of $G$ of size $O(n / t)$ expands by factor of $t$. Thus $G$ has a minor with average degree $\Omega(\sqrt{n t})=\Omega\left(d^{3 / 2}\right)$


## NEW RESULT: PSEUDO-RANDOM GRAPHS

## Definition:

A graph $G$ is $(p, \beta)$-jumbled if for every subset of vertices $X$

$$
\left.|e(X)-p| X\right|^{2} / 2|\leq \beta| X \mid
$$

## TheOrem: (Krivelevich-S.)

Every ( $p, \beta$ )-jumbled graph $G$ on $n$ vertices with $\beta=o(n p)$ contains a minor with average degree $\Omega(n \sqrt{p})$.

## Remarks:

- This is tight since such a graph $G$ has $O\left(n^{2} p\right)$ edges. It extends results of Thomason and Drier-Linial.
- Expansion factor of $(p, \beta)$-jumbled $G$ can be only $\frac{n p}{\beta} \ll n p$.
- If $G$ is an $(n, d, \lambda)$-graph then it is $(d / n, \lambda)$-jumbled. Hence if $\lambda=o(d)$ it has a minor with average degree $\Omega(\sqrt{n d})$.

