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Ramsey theorem

Definition:

The Ramsey number r(s, n) is the minimum N such that every
red-blue coloring of the edges of a complete graph KN on N
vertices contains a red clique of size s or a blue clique of size n.

Example: r(3, 3) = 6

Theorem: (Ramsey 1930)

For all s, n, the Ramsey number r(s, n) is finite.
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Diagonal Ramsey numbers

Theorem: (Erdős 1947, Erdős-Szekeres 1935)

2n/2 ≤ r(n, n) ≤ 22n.

Upper bound: Induction: r(s, n) ≤ r(s − 1, n) + r(s, n − 1).
Every vertex has less than r(s − 1, n) red neighbors and less than
r(s, n − 1) blue neighbors.

Lower bound: Color every edge randomly. Probability that a

given set of n vertices forms a monochromatic clique is 2 · 2−(n2).
Use the union bound.
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Graph Ramsey Theory

Definition:

r(G ) is the minimum N such that every 2-edge coloring of the
complete graph KN contains a monochromatic copy of graph G .

Questions: (Erdős et al. 70’s)

Can we strengthen Ramsey’s theorem to show that the
monochromatic clique has some additional structure?

What controls the growth of r(G ) as a function of the
number of vertices of G ?”

How large of a monochromatic set exists in edge-colorings of
KN satisfying certain restrictions?

...

Motivation: This will test the limits of current methods and may
also lead to the development of new techniques that eventually
would give better estimates for r(n, n).
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Heavy monochromatic sets

Definition: For S ⊂ N, let weight w(S) =
∑

i∈S
1

log i .

Questions: (Erdős 1981, 1st issue of Combinatorica)

What is the maximum w(S) for monochromatic clique S that
exists in every 2-edge-coloring of complete graph on {2, . . .N}?
Does it tend to infinity with N?

Remark: A simple application of r(n, n) ≤ 22n only gives
w(S) ≥ log N

2 · 1
log N = 1

2 .

Theorem: (Rödl 2003)

There is a monochromatic clique with weight ≈ log log log log N.
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Questions: (Erdős 1981, 1st issue of Combinatorica)

What is the maximum w(S) for monochromatic clique S that
exists in every 2-edge-coloring of complete graph on {2, . . .N}?
Does it tend to infinity with N?

Remark: A simple application of r(n, n) ≤ 22n only gives
w(S) ≥ log N

2 · 1
log N = 1

2 .

Theorem: (Rödl 2003)
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Heavy monochromatic sets

Upper bound (Rödl):

Partition vertices [2,N] into t = log log N intervals Ij = [22j−1
, 22j ).

Color edges inside interval Ij without monochromatic set of order

2 log 22j = 2j+1. Then Ij contributes at most 2j+1 log(1/22j−1
) = 4

to weight of any monochromatic clique S .

Let χ be a coloring of K[t] with no monochromatic set of order
2 log t. Color the edges from Ij to Ij ′ , j 6= j ′ by color χ(j , j ′).

All monochromatic S have

w(S) ≤ 4 · 2 log t = 8 log log log n.

Theorem: (Conlon-Fox-S. 2013+)

Maximum weight of monochromatic clique is Θ(log log log N).
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Bounded degree graphs

Conjecture: (Burr-Erdős 1975)

For every d there exists a constant cd such that if a graph G has n
vertices and maximum degree d , then

r(G ) ≤ cdn.

Theorem: (Chvátal-Rödl-Szemerédi-Trotter 1983)

Bounded degree graphs have linear Ramsey numbers.

Remark: Their proof used regularity lemma and thus gave huge,
tower-type bound on cd .

Theorem: (Graham-Rödl-Ruciński 2000)

2Ω(d) ≤ cd ≤ 2O(d log2 d) .
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2Ω(d) ≤ cd ≤ 2O(d log2 d) .



Bounded degree graphs

Conjecture: (Burr-Erdős 1975)
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Methods: Local density

Key idea: Suppose that a red-blue edge-coloring of the complete
graph KN has the following property:

For any two disjoint sets X ,Y of linear size there are at least
ε|X ||Y | red edges between them (i.e., density of red d(X ,Y ) ≥ ε).

If n/N is a sufficiently small constant, red contains copy of every
n-vertex bounded degree G .

Lemma: (Graham-Rödl-Ruciński, Fox-S.)

Let G be a graph on n vertices with maximum degree d . If
N-vertex graph H contains no copy of G , then it has a subset S of
order ε−4d log εN with edge density d(S) ≤ ε.

Remark: If density of red edges is less than 1
2d then we can find

blue copy of G greedily.
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Bounded degree graphs

Conjecture:

The Ramsey number of n-vertex graph with maximum degree d is
at most cdn with cd = 2O(d).

Theorem: (Conlon-Fox-S. 2009 & 2012)

Let G be an n-vertex graph with maximum degree d , then
r(G ) ≤ 2O(d log d) · n.

If G is bipartite, then
r(G ) ≤ d2d+4 · n.

Remark: The second result is tight and gives the best known
bound for Ramsey numbers of binary cubes. Cube Qd has vertex
set {0, 1}d and x , y are adjacent if x and y differ in exactly one
coordinate.
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Ramsey numbers of sparse graphs

Question: How large is r(G ) for a “sparse” graph on n vertices?

Definition:

A graph is d-degenerate if each of its subgraphs has a vertex of
degree at most d .

Remarks:

Every s vertices of such a graph span at most d · s edges.

Graphs with maximum degree d are d-degenerate.

Degenerate graphs include planar graphs, sparse random
graphs and might have vertices of very large degree.

Conjecture: (Burr-Erdős 1975)

If G is a d-degenerate n-vertex graph, then r(G ) is linear in n.
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Ramsey numbers of degenerate graphs

Linear bound is known for:

Bounded degree graphs (Chvátal-Rödl-Szemerédi-Trotter 83)

Planar graphs and graphs drawn on bounded genus surfaces
(Chen-Schelp 93)

Subdivisions of graphs (Alon 94)

Graphs with a fixed forbidden minor (Rödl-Thomas 97)

Sparse random graphs (Fox-S 09).

Theorem: (Kostochka-S. 2003)

The Ramsey number of any d-degenerate graph G on n vertices
satisfies

r(G ) ≤ n1+o(1).

Remark: Best upper bound on r(G ) is 2c
√

log n · n (Fox-S 09).
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Methods: Dependent random choice

Rough claim:

Every sufficiently dense graph G contains a large subset U in which
every/almost all sets of d vertices have many common neighbors.

Proof:

Let U be the set of vertices adja-
cent to every vertex in a random
subset R of G of an appropriate
size.

R

U

G

If some set of d vertices has only few common neighbors, it is
unlikely that all the members of R will be chosen among these
neighbors. Hence we do not expect U to contain any such d
vertices. �
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Maximizing the Ramsey number

Conjecture: (Erdős-Graham 1973)

Among all the graphs with m =
(n

2

)
edges and no isolated vertices,

the n-vertex complete graph has the largest Ramsey number.

Remark: The complete graph with m edges has O(
√

m) vertices.
Therefore its Ramsey number is bounded by 2O(

√
m).

Conjecture: (Erdős 1983)

Let G be a graph with m edges and no isolated vertices, then

r(G ) ≤ 2O(
√
m) .
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Maximizing the Ramsey number

Theorem: (S. 2011)

If G is a graph with m edges without isolated vertices, then

r(G ) ≤ 2250
√
m .

For bipartite G this was proved by Alon-Krivelevich-S 2003.

Lemma: (Erdős-Szemerédi 1972)

Every red-blue edge-coloring of KN which has at most N2

k red

edges contains a monochromatic clique of order Ω
(

k
log k log N

)
.

Remark: This coloring also contains two sets X and Y such that,
all edges in X and from X to Y have the same color and

|X | = t , |Y | ≥ k−20t/kN .
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Every red-blue edge-coloring of KN which has at most N2

k red

edges contains a monochromatic clique of order Ω
(

k
log k log N

)
.

Remark: This coloring also contains two sets X and Y such that,
all edges in X and from X to Y have the same color and

|X | = t , |Y | ≥ k−20t/kN .



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Sketch of the proof

Consider G with m edges and edge-coloring of KN with N = 2c
√
m.

Let U1 ⊂ G be vertices of degree ≥ 2
√

m and G1 = G − U1.
Note |U1| ≤

√
m and ∆(G1) ≤ 2

√
m.

Find X1 and Y1 in KN with all edges in X1 and from X1 to Y1

have the same color (say red), |X1| =
√

m and |Y1| = 2c1
√
m.

If Y1 have red copy of G1, embed U1 into X1. Otherwise by
[GRR] Y1 has subset of density 1/k2

1 , k1 � 1.

by [ES] find X2 and Y2 with all edges in X2 and from X2 to
Y2 have the same color, |X2| = k1

√
m and |Y2| = 2c2

√
m.

Let U2 ⊂ G be vertices of degree ≥ 2
√
m

k1
and G2 = G − U2.

Note |U2| ≤ k1
√

m ≤ |X2| and ∆(G2) ≤ 2
√
m

k1
.

Apply above process recursively with k1 � k2 � . . ..



Summary

The open problems which we mentioned, as
well as many more additional ones which we
skipped due to the lack of time, will provide
interesting challenges for future research and
will likely lead to the development of new pow-
erful methods in combinatorics.

These challenges, the fundamental nature of
Graph Ramsey Theory and its tight connection
with other areas will ensure that in the future
this subject, started by Paul Erdős 40 years
ago, will continue to play an essential role in
the development of discrete mathematics.
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