NEARLY OPTIMAL EMBEDDINGS OF TREES

Benny Sudakov
UCLA and IAS
Jan Vondrák
Princeton University

Embedding Trees in Graphs

QuESTION:

Given a graph G, what trees T can be embedded in G ?

Goal: Find sufficient conditions on G in order to contain all trees from a certain family.

BASIC FACTS

Folklore Result
Any graph G of minimum degree d contains all trees with d edges.

BASIC FACTS

Folklore Result

Any graph G of minimum degree d contains all trees with d edges.

This is obviously tight (G is a clique of size $d+1$). So, embedding trees of size $|T|>d$ requires some additional assumptions...

Obvious Restrictions

- $|T| \leq|G|$.
- Degrees in $T \leq$ degrees in G.

Meta-Result

In suitable classes of graphs, trees can be embedded up to trivial bounds on size and degrees.

Meta-Result

In suitable classes of graphs, trees can be embedded up to trivial bounds on size and degrees.

Examples:
(1) Graphs of girth g : not containing any cycle shorter than g.
(2) H-free graphs: not containing a bipartite subgraph H.
(3) Expanding graphs: any "sufficiently small" set of vertices X, has many neighbors outside of X.
(4) Random graphs.

These graphs typically have order n much larger than min degree d; e.g., for girth $2 k+1$, the number of vertices must be $n=\Omega\left(d^{k}\right)$.

Erdös-Sós Conjecture

Any graph G of average degree d contains all trees with d edges.

- Brandt-Dobson, Haxell-Łuczak, Jiang '01: Any graph of girth $2 k+1$ and minimum degree d contains all trees with $k d$ edges and maximum degree $\leq d$.
- Ajtai-Komlós-Simonovits-Szemerédi: (unpublished) For sufficiently large d, the Erdös-Sós conjecture is true: any graph of average degree d contains all trees of size at most d.

The Erdös-Sós conjecture

Erdös-Sós Conjecture

Any graph G of average degree d contains all trees with d edges.

- Brandt-Dobson, Haxell-Łuczak, Jiang '01: Any graph of girth $2 k+1$ and minimum degree d contains all trees with $k d$ edges and maximum degree $\leq d$.
- Ajtai-Komlós-Simonovits-Szemerédi: (unpublished) For sufficiently large d, the Erdös-Sós conjecture is true: any graph of average degree d contains all trees of size at most d.

Note

High girth helps. Can we embed even larger trees in such graphs?

DEFINITION

$$
N_{G}(X)=\{v \in V(G): \text { there is } u \in X \text { adjacent to } v\}
$$

- Pósa '76, Friedman-Pippenger '87: If $\left|N_{G}(X)\right| \geq(d+1)|X|$ for all $X \subset V(G),|X| \leq 2 t-2$, then G contains all trees of size t and maximum degree $\leq d$.
- Benjamini, Schramm '97: Any infinite graph with a positive Cheeger constant $h(G)=\inf _{X} \frac{|N(X) \backslash X|}{|X|}$ contains an infinite tree with positive Cheeger constant.

DEFINITION

$$
N_{G}(X)=\{v \in V(G): \text { there is } u \in X \text { adjacent to } v\}
$$

- Pósa '76, Friedman-Pippenger '87: If $\left|N_{G}(X)\right| \geq(d+1)|X|$ for all $X \subset V(G),|X| \leq 2 t-2$, then G contains all trees of size t and maximum degree $\leq d$.
- Benjamini, Schramm '97: Any infinite graph with a positive Cheeger constant $h(G)=\inf _{X} \frac{|N(X) \backslash X|}{|X|}$ contains an infinite tree with positive Cheeger constant.

Note

Since H-free graphs (for bipartite H) are locally expanding, this gives a tree-embedding result for any class of H-free graphs. E.g., graphs of girth $2 k+1$ contain all trees of size $O\left(d^{k-1}\right)$. Is this the best we can do? Graphs of girth k must have size $\Omega\left(d^{k}\right)$.

DEFINITION

$G_{n, p}$ contains each possible edge independently with probability p.

- Ajtai-Komlós-Szemerédi, de la Vega '79: A random graph $G_{n, d / n}$ contains with high probability (w.h.p.) a path of length $c(d) n$ where $\lim _{d \rightarrow \infty} c(d)=1$.
- de la Vega '88: For any tree T of size $c_{1} n$ and maximum degree $\Delta \leq c_{2} d, G_{n, d / n}$ contains T w.h.p.
- Alon-Krivelevich-Sudakov '07: $G_{n, d / n}$ contains all trees of size $(1-\epsilon) n$ and maximum degree $\Delta=\tilde{O}\left(d^{1 / 3}\right)$ w.h.p.

Tree embeddings in Random graphs

DEFINITION

$G_{n, p}$ contains each possible edge independently with probability p.

- Ajtai-Komlós-Szemerédi, de la Vega '79: A random graph $G_{n, d / n}$ contains with high probability (w.h.p.) a path of length $c(d) n$ where $\lim _{d \rightarrow \infty} c(d)=1$.
- de la Vega '88: For any tree T of size $c_{1} n$ and maximum degree $\Delta \leq c_{2} d, G_{n, d / n}$ contains T w.h.p.
- Alon-Krivelevich-Sudakov '07: $G_{n, d / n}$ contains all trees of size $(1-\epsilon) n$ and maximum degree $\Delta=\tilde{O}\left(d^{1 / 3}\right)$ w.h.p.

Qubstion

Does $G_{n, d / n}$ contain large trees with degrees proportional to d ?

OUR RESULTS - GRAPHS OF HIGH GIRTH

Theorem 1
Let $\epsilon<\frac{1}{k}, d$ sufficiently large. Any graph of girth $2 k+1$ and min degree d contains all trees of size $\frac{\epsilon}{10} d^{k}$ and max degree $\leq(1-\epsilon) d$.

TheOrem 1

Let $\epsilon<\frac{1}{k}$, d sufficiently large. Any graph of girth $2 k+1$ and min degree d contains all trees of size $\frac{\epsilon}{10} d^{k}$ and max degree $\leq(1-\epsilon) d$.

Remarks:

- From Friedman-Pippenger, we get trees of size $O\left(d^{k-1}\right)$.
- In particular, for C_{4}-free graphs, it gives trees of size $O(d)$, which is trivial. We can embed trees of size $|T|=O\left(d^{2}\right)$, which might be the size of G (projective plane).
- Jiang proves that G contains all trees of max degree $\leq d$ and size $\leq k d$. If we strengthen the max degree condition slightly, to $(1-\epsilon) d$, we can embed trees of size ϵd^{k}.

OUR RESULTS $-K_{s, t}$-FREE GRAPHS

Theorem 2
Let $s \geq t \geq 2$. Any $K_{s, t}$-free graph of min degree d contains all trees of size $c d^{1+1 /(t-1)}$ and max degree $\leq \frac{1}{256} d$.

Our Results - $K_{s, t}$-FRee graphs

Theorem 2
Let $s \geq t \geq 2$. Any $K_{s, t}$-free graph of min degree d contains all trees of size $c d^{1+1 /(t-1)}$ and max degree $\leq \frac{1}{256} d$.

Remarks:

- From Friedman-Pippenger, we do not get any non-trivial result, since subsets of size $\Omega(d)$ do not expand enough.
- Since there are $K_{s, t} t^{-}$free graphs with minimum degree d and $O\left(d^{1+1 /(t-1)}\right)$ vertices (known examples for $s>(t-1)$!), one cannot aspire to embed trees of larger size.

OUR RESULTS - RANDOM GRAPHS

Theorem 3

Let $d \geq n^{\epsilon}$ for some constant $\epsilon>0$. Then the random graph $G_{n, d / n}$ contains w.h.p. all trees of size $\frac{1}{16} \epsilon n$ and max degree $\leq \epsilon d$.

TheOrem 3

Let $d \geq n^{\epsilon}$ for some constant $\epsilon>0$. Then the random graph $G_{n, d / n}$ contains w.h.p. all trees of size $\frac{1}{16} \epsilon n$ and max degree $\leq \epsilon d$.

Remarks:

- For every fixed tree T of size $O(n)$ and max degree $O(d)$, it was proved by De la Vega that $T \subset G_{n, d / n}$ w.h.p. However, it is much harder to prove that $G_{n, p}$ contains all trees w.h.p.
- Simultaneous embedding was known for trees of size $(1-\epsilon) n$ and degree $\tilde{O}\left(d^{1 / 3}\right)$ [Alon-Krivelevich-Sudakov]. We improve the degree bound to $O(d)$, at the cost of a constant factor in the size of T.

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

The Algorithm

SELF-AVOIDING TREE-INDEXED RANDOM WALK

Let T be a rooted tree. Start by embedding the root arbitrarily. In each step, pick $u \in V(T)$ which is embedded already, and place its children randomly among the unoccupied neighbors of $f(u)$.

Meta-claim

The image $f(T)$ behaves essentially like a random subset of G, in particular for each neighborhood $N(v)$ we expect $f(T)$ to occupy only a $|T| /|G| \ll 1$ fraction of $N(v)$.

- For each vertex $v \in V$, we define a bad event if $N(v)$ was visited too often by the embedding.
- Using martingale tail inequalities and the structure of G, we analyze the probability of a bad event.
- A careful counting scheme estimates the probability that any bad event occurs.

Open questions

- Instead of requiring girth $2 k+1$ in Theorem 1 , suppose G has no cycles of length $2 k$. Does our algorithm still work?
- It seems that the algorithm should work for any pseudorandom graph, but our analysis breaks down because two vertices might share too many neighbors.
- For random graphs $G_{n, d / n}$, the analysis can be extended to degrees $d=\omega\left(e^{\sqrt{\log n}}\right)$. What about sparse graphs, with d constant?

