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Embedding Trees in Graphs

Question:

Given a graph G , what trees T can be embedded in G?

G

T

Goal: Find sufficient conditions on G in order to contain all trees
from a certain family.



Basic facts

Folklore result

Any graph G of minimum degree d contains all trees with d edges.

This is obviously tight (G is a clique of size d + 1). So, embedding
trees of size |T | > d requires some additional assumptions...

Obvious restrictions

|T | ≤ |G |.
Degrees in T ≤ degrees in G .
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Natural Classes of Graphs

Meta-result

In suitable classes of graphs, trees can be embedded up to trivial
bounds on size and degrees.

Examples:

1 Graphs of girth g: not containing any cycle shorter than g .

2 H-free graphs: not containing a bipartite subgraph H.

3 Expanding graphs: any ”sufficiently small” set of vertices X ,
has many neighbors outside of X .

4 Random graphs.

These graphs typically have order n much larger than min degree d ;
e.g., for girth 2k + 1, the number of vertices must be n = Ω(dk).
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The Erdös-Sós conjecture

Erdös-Sós Conjecture

Any graph G of average degree d contains all trees with d edges.

Brandt-Dobson, Haxell- Luczak, Jiang ’01: Any graph of girth
2k + 1 and minimum degree d contains all trees with kd
edges and maximum degree ≤ d .

Ajtai-Komlós-Simonovits-Szemerédi: (unpublished) For
sufficiently large d , the Erdös-Sós conjecture is true: any
graph of average degree d contains all trees of size at most d .

Note

High girth helps. Can we embed even larger trees in such graphs?
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Tree embeddings in expanding graphs

Definition

NG (X ) = {v ∈ V (G ) : there is u ∈ X adjacent to v}

Pósa ’76, Friedman-Pippenger ’87: If |NG (X )| ≥ (d + 1)|X |
for all X ⊂ V (G ), |X | ≤ 2t − 2, then G contains all trees of
size t and maximum degree ≤ d .

Benjamini, Schramm ’97: Any infinite graph with a positive
Cheeger constant h(G ) = infX

|N(X )\X |
|X | contains an infinite

tree with positive Cheeger constant.

Note

Since H-free graphs (for bipartite H) are locally expanding, this
gives a tree-embedding result for any class of H-free graphs. E.g.,
graphs of girth 2k + 1 contain all trees of size O(dk−1). Is this the
best we can do? Graphs of girth k must have size Ω(dk).
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Tree embeddings in random graphs

Definition

Gn,p contains each possible edge independently with probability p.

Ajtai-Komlós-Szemerédi, de la Vega ’79: A random graph
Gn,d/n contains with high probability (w.h.p.) a path of length
c(d)n where limd→∞ c(d) = 1.

de la Vega ’88: For any tree T of size c1n and maximum
degree ∆ ≤ c2d , Gn,d/n contains T w.h.p.

Alon-Krivelevich-Sudakov ’07: Gn,d/n contains all trees of

size (1− ε)n and maximum degree ∆ = Õ(d1/3) w.h.p.

Question

Does Gn,d/n contain large trees with degrees proportional to d?
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Our results - graphs of high girth

Theorem 1

Let ε < 1
k , d sufficiently large. Any graph of girth 2k + 1 and min

degree d contains all trees of size ε
10dk and max degree ≤ (1− ε)d .

Remarks:

From Friedman-Pippenger, we get trees of size O(dk−1).

In particular, for C4-free graphs, it gives trees of size O(d),
which is trivial. We can embed trees of size |T | = O(d2),
which might be the size of G (projective plane).

Jiang proves that G contains all trees of max degree ≤ d and
size ≤ kd . If we strengthen the max degree condition slightly,
to (1− ε)d , we can embed trees of size εdk .
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Our results - Ks,t-free graphs

Theorem 2

Let s ≥ t ≥ 2. Any Ks,t-free graph of min degree d contains all
trees of size cd1+1/(t−1) and max degree ≤ 1

256d .

Remarks:

From Friedman-Pippenger, we do not get any non-trivial
result, since subsets of size Ω(d) do not expand enough.

Since there are Ks,t-free graphs with minimum degree d and
O(d1+1/(t−1)) vertices (known examples for s > (t − 1)!), one
cannot aspire to embed trees of larger size.
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Our results - random graphs

Theorem 3

Let d ≥ nε for some constant ε > 0. Then the random graph
Gn,d/n contains w.h.p. all trees of size 1

16εn and max degree ≤ εd .

Remarks:

For every fixed tree T of size O(n) and max degree O(d), it
was proved by De la Vega that T ⊂ Gn,d/n w.h.p. However, it
is much harder to prove that Gn,p contains all trees w.h.p.

Simultaneous embedding was known for trees of size (1− ε)n
and degree Õ(d1/3) [Alon-Krivelevich-Sudakov]. We improve
the degree bound to O(d), at the cost of a constant factor in
the size of T .
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The Algorithm

Self-avoiding tree-indexed random walk

Let T be a rooted tree. Start by embedding the root arbitrarily. In
each step, pick u ∈ V (T ) which is embedded already, and place its
children randomly among the unoccupied neighbors of f (u).

T

G
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Main Ideas

Meta-claim

The image f (T ) behaves essentially like a random subset of G , in
particular for each neighborhood N(v) we expect f (T ) to occupy
only a |T |/|G | << 1 fraction of N(v).

For each vertex v ∈ V , we define a bad event if N(v) was
visited too often by the embedding.

Using martingale tail inequalities and the structure of G , we
analyze the probability of a bad event.

A careful counting scheme estimates the probability that any
bad event occurs.



Conclusion

Open questions

Instead of requiring girth 2k + 1 in Theorem 1, suppose G has
no cycles of length 2k. Does our algorithm still work?

It seems that the algorithm should work for any
pseudorandom graph, but our analysis breaks down because
two vertices might share too many neighbors.

For random graphs Gn,d/n, the analysis can be extended to

degrees d = ω(e
√

log n). What about sparse graphs, with d
constant?


