Density theorems for bipartite graphs and related Ramsey-type results

Jacob Fox Princeton Benny Sudakov UCLA and IAS

DEFINITION:

r(G) is the minimum N such that every 2-edge-coloring of the complete graph K_N contains a monochromatic copy of graph G.

THEOREM: (RAMSEY-ERDŐS-SZEKERES, ERDŐS)

 $2^{t/2} \leq r(K_t) \leq 2^{2t}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

QUESTION: (Burr-Erdős 1975)

How large is r(G) for a sparse graph G on n vertices?

CONJECTURE: (Burr-Erdős 1975)

For every d there exists a constant c_d such that if a graph G has n vertices and maximum degree d, then $r(G) \leq c_d n.$

THEOREM:	
(Chvátal-Rödl-Szemerédi-Trotter 1983)	c _d exists.
(Eaton 1998)	$c_d \leq 2^{2^{lpha d}}.$
I (Graham-Rödl-Ruciński 2000)	$2^{\beta d} \leq c_d \leq 2^{\alpha d \log^2 d}.$
Moreover, if G is bipartite,	$r(G) \leq 2^{\alpha d \log d} n.$

THEOREM: (Fox-S.)

Let G be a bipartite graph with n vertices and maximum degree d and let H be a bipartite graph with parts $|V_1| = |V_2| = N$ and εN^2 edges. If $N \ge 8d\varepsilon^{-d}n$, then H contains G.

COROLLARY:

For every bipartite graph G with n vertices and maximum degree d,

 $r(G) \leq d2^{d+4}n.$

(D. Conlon independently proved that $r(G) \leq 2^{(2+o(1))d}n$.)

Proof: Take $\varepsilon = 1/2$ and H to be the graph of the majority color.

RAMSEY NUMBERS FOR CUBES

DEFINITION:

The binary cube Q_d has vertex set $\{0,1\}^d$ and x, y are adjacent if x and y differ in exactly one coordinate.

Conjecture: (Burr-Erdős 1975)

Cubes have linear Ramsey numbers, i.e., $r(Q_d) \leq \alpha 2^d$.

THEOREM:

- (Beck 1983)
- 2 (Graham-Rödl-Ruciński 2000)
- 3 (Shi 2001)

 $\begin{aligned} r(Q_d) &\leq 2^{\alpha d^2}.\\ r(Q_d) &\leq 2^{\alpha d \log d}.\\ r(Q_d) &\leq 2^{2.618d}. \end{aligned}$

NEW BOUND: (Fox-S.)

$$r(Q_d) \leq 2^{(2+o(1))d}.$$

CONJECTURE: (Erdős 1962, Burr-Rosta 1980)

Let G be a graph with v vertices and m edges. Then every 2-edge-coloring of K_N contains

$$\gtrsim 2^{1-m}N^{v}$$

labeled monochromatic copies of G.

THEOREM:① (Goodman 1959)True for $G = K_3$.② (Thomason 1989)False for $G = K_4$.③ (Fox 2007)For some G, # of copies can be $\leq m^{-\alpha m} N^{\nu}$.

CONJECTURE: (Sidorenko 1993, Simonovits 1984)

Let G be a bipartite graph with v vertices and m edges and H be a graph with N vertices and $\varepsilon {N \choose 2}$ edges. Then the number of labeled copies of G in H is $\gtrsim \varepsilon^m N^v$.

It is true for:

complete bipartite graphs, trees, even cycles, and binary cubes.

THEOREM:

If G is bipartite with maximum degree d and $m = \Theta(dv)$ edges, then the number of labeled copies of G in H is at least $\varepsilon^{\Theta(m)}N^{v}$.

TOPOLOGICAL SUBDIVISION

DEFINITION:

A topological copy of a graph Γ is any graph formed by replacing edges of Γ by internally vertex disjoint paths. It is called a *k*-subdivision if all paths have *k* internal vertices.

CONJECTURE: (Mader 1967, Erdős-Hajnal 1969)

Every graph with *n* vertices and at least cp^2n edges contains a topological copy of K_p .

(Proved by Bollobás-Thomason and by Komlós-Szemerédi)

CONJECTURE: (Erdős 1979, proved by Alon-Krivelevich-S 2003)

Every *n*-vertex graph *H* with at least $c_1 n^2$ edges contains the 1-subdivision of K_m with $m = c_2 \sqrt{n}$.

SUBDIVIDED GRAPHS

QUESTION:

Can one find a 1-subdivision of graphs other than cliques?

KNOWN RESULTS: (Alon-Duke-Lefmann-Rödl-Yuster, Alon)

- Every *n*-vertex *H* with at least $c_1 n^2$ edges contains the 3-subdivision of every graph Γ with $c_2 n$ edges.
- ② If G is the 1-subdivision of a graph Γ with n edges, then $r(G) \leq cn$.

THEOREM: (Fox-S.)

If H has N vertices, εN^2 edges, and $N > c\varepsilon^{-3}n$, then H contains the 1-subdivision of every graph Γ with n edges.

DEFINITION:

A graph on n vertices is *Ramsey* if both its largest clique and independent set have size at most $C \log n$.

THEOREM: (*Erdős-Hajnal, Promel-Rödl*)

Every Ramsey graph on n vertices contains an induced copy of every graph G of constant size.

(Moreover, this is still true for G up to size $c \log n$.)

CONJECTURE (Erdős-Hajnal 1989)

Every graph H on n vertices without an induced copy of a fixed graph G contains a clique or independent set of size at least n^{ε} .

Erdős-Hajnal conjecture

A *bi-clique* is a complete bipartite graph with parts of equal size.

KNOWN RESULTS: (Erdős-Hajnal, Erdős-Hajnal-Pach)

If H has n vertices and no induced copy of G, then

- H contains a clique or independent set of size $e^{c\sqrt{\log n}}$.
- **2** *H* or its complement \overline{H} has a bi-clique of size n^{ε} .

THEOREM: (Fox-S.)

If H has n vertices and no induced copy of G of size k, then

- *H* has a clique or independent set of size $ce^{c\sqrt{\frac{\log n}{k}}} \log n$.
- **2** *H* has a bi-clique or an independent set of size n^{ε} .

Hypergraph Ramsey numbers

A hypergraph is *k*-uniform if every edge has size *k*.

DEFINITION:

For a k-uniform hypergraph G, let r(G) be the minimum N such that every 2-edge-coloring of the complete k-uniform hypergraph $\mathcal{K}_N^{(k)}$ contains a monochromatic copy of G.

THEOREM: (*Erdős-Hajnal, Erdős-Rado*)

The Ramsey number of the complete k-uniform hypergraph $K_n^{(k)}$ satisfies

$$t_{k-1}(cn^2) \leq r(K_n^{(k)}) \leq t_k(n),$$

where the *tower function* $t_i(x)$ is defined by

$$t_1(x) = x, t_2(x) = 2^x, t_3(x) = 2^{2^x}, \dots, t_{i+1}(x) = 2^{t_i(x)}, \dots$$

(日) (同) (三) (三) (三) (○) (○)

RAMSEY NUMBERS FOR SPARSE HYPERGRAPHS

CONJECTURE: (Hypergraph generalization of Burr-Erdős conjecture)

For every d and k there exists $c_{d,k}$ such that if G is a k-uniform hypergraph with n vertices and maximum degree d, then $r(G) \leq c_{d,k}n$.

- (Kostochka-Rödl 2006) $r(G) \le n^{1+o(1)}$.
- Proved for k = 3 by Cooley-Fountoulakis-Kühn-Osthus and Nagle-Olsen-Rödl-Schacht.
- **9** Proved for all *k* by Cooley-Fountoulakis-Kühn-Osthus and Ishigami.
- These proofs give Ackermann-type bound on $c_{d,k}$.

THEOREM: (Conlon-Fox-S.)

If G is a k-uniform hypergraph with n vertices and maximum degree d, then $r(G) \le c_{d,k}n$ with $c_{d,k} \le t_k(cd)$.

DEFINITIONS:

A topological graph G is a graph drawn in the plane with vertices as points and edges as curves connecting its endpoints such that any two edges have at most one point in common.

G is a *thrackle* if every pair of edges intersect.

CONJECTURE: (Conway 1960s)

Thrackle with n vertices has at most n edges.

In particular, every topological graph with more edges than vertices, contains a pair of disjoint edges.

Known: Every thrackle on *n* vertices has *O*(*n*) edges. (*Lovász-Pach-Szegedy, Cairns-Nikolayevsky*)

DISJOINT EDGES IN GRAPH DRAWINGS

QUESTION:

Do dense topological graphs contain large patterns of pairwise disjoint edges?

THEOREM: (Pach-Tóth)

Every topological graph with *n* vertices and at least $n(c \log n)^{4k-8}$ edges has *k* pairwise disjoint edges.

THEOREM: (Fox-S.)

Every topological graph with *n* vertices and $c_1 n^2$ edges has two edge subsets E', E'' of size $c_2 n^2$ such that every edge in E' is disjoint from every edge in E''.