DENSITY THEOREMS FOR BIPARTITE GRAPHS AND RELATED RAMSEY-TYPE RESULTS

Jacob Fox
Princeton
Benny Sudakov
UCLA and IAS

RAMSEY'S THEOREM

DEFINITION:

$r(G)$ is the minimum N such that every 2-edge-coloring of the complete graph K_{N} contains a monochromatic copy of graph G.

Theorem: (Ramsey-Erdős-Szekeres, Erdős)

$$
2^{t / 2} \leq r\left(K_{t}\right) \leq 2^{2 t}
$$

Question: (Burr-Erdős 1975)

How large is $r(G)$ for a sparse graph G on n vertices?

RAMSEY NUMBERS FOR SPARSE GRAPHS

Conjecture: (Burr-Erdős 1975)

For every d there exists a constant c_{d} such that if a graph G has n vertices and maximum degree d, then

$$
r(G) \leq c_{d} n
$$

Theorem:

(1) (Chvátal-Rödl-Szemerédi-Trotter 1983)
c_{d} exists.
(2) (Eaton 1998)

$$
c_{d} \leq 2^{2^{\alpha d}}
$$

(3) (Graham-Rödl-Ruciński 2000) Moreover, if G is bipartite,

$$
\begin{aligned}
2^{\beta d} & \leq c_{d}
\end{aligned} \leq 2^{\alpha d \log ^{2} d} .
$$

DENSITY THEOREM FOR BIPARTITE GRAPHS

Theorem: (Fox-S.)

Let G be a bipartite graph with n vertices and maximum degree d and let H be a bipartite graph with parts $\left|V_{1}\right|=\left|V_{2}\right|=N$ and εN^{2} edges. If $N \geq 8 d \varepsilon^{-d} n$, then H contains G.

Corollary:

For every bipartite graph G with n vertices and maximum degree d,

$$
r(G) \leq d 2^{d+4} n
$$

(D. Conlon independently proved that $r(G) \leq 2^{(2+o(1)) d} n$.)

Proof: Take $\varepsilon=1 / 2$ and H to be the graph of the majority color.

Ramsey numbers for cubes

Definition:

The binary cube Q_{d} has vertex set $\{0,1\}^{d}$ and x, y are adjacent if x and y differ in exactly one coordinate.

Conjecture: (Burr-Erdős 1975)

Cubes have linear Ramsey numbers, i.e., $\quad r\left(Q_{d}\right) \leq \alpha 2^{d}$.

Theorem:

(1) (Beck 1983)
$r\left(Q_{d}\right) \leq 2^{\alpha d^{2}}$.
(2) (Graham-Rödl-Ruciński 2000)
$r\left(Q_{d}\right) \leq 2^{\alpha d \log d}$.
(3) (Shi 2001)
$r\left(Q_{d}\right) \leq 2^{2.618 d}$.

New Bound: (Fox-S.)

$$
r\left(Q_{d}\right) \leq 2^{(2+o(1)) d}
$$

RAMSEY MULTIPLICITY

Conjecture: (Erdős 1962, Burr-Rosta 1980)

Let G be a graph with v vertices and m edges. Then every 2-edge-coloring of K_{N} contains

$$
\gtrsim 2^{1-m} N^{v}
$$

labeled monochromatic copies of G.

TheOREM:

(1) (Goodman 1959) True for $G=K_{3}$.
(2) (Thomason 1989) False for $G=K_{4}$.
(3) Fox 2007) For some G, \# of copies can be $\leq m^{-\alpha m} N^{v}$.

Conjecture: (Sidorenko 1993, Simonovits 1984)

Let G be a bipartite graph with v vertices and m edges and H be a graph with N vertices and $\varepsilon\binom{N}{2}$ edges. Then the number of labeled copies of G in H is $\gtrsim \varepsilon^{m} N^{v}$.

It is true for:

complete bipartite graphs, trees, even cycles, and binary cubes.

Theorem:

If G is bipartite with maximum degree d and $m=\Theta(d v)$ edges, then the number of labeled copies of G in H is at least $\varepsilon^{\Theta(m)} N^{v}$.

TOPOLOGICAL SUBDIVISION

DEFINITION:

A topological copy of a graph 「 is any graph formed by replacing edges of Γ by internally vertex disjoint paths.
It is called a k-subdivision if all paths have k internal vertices.

Conjecture: (Mader 1967, Erdős-Hajnal 1969)

Every graph with n vertices and at least $c p^{2} n$ edges contains a topological copy of K_{p}.
(Proved by Bollobás-Thomason and by Komlós-Szemerédi)

Conjecture: (Erdős 1979, proved by Alon-Krivelevich-S 2003)

Every n-vertex graph H with at least $c_{1} n^{2}$ edges contains the 1 -subdivision of K_{m} with $m=c_{2} \sqrt{n}$.

Subdivided Graphs

Question:

Can one find a 1 -subdivision of graphs other than cliques?

Known resulis: (Alon-Duke-Lefmann-Rödl-Yuster, Alon)

(1) Every n-vertex H with at least $c_{1} n^{2}$ edges contains the 3-subdivision of every graph Γ with $c_{2} n$ edges.
(2) If G is the 1 -subdivision of a graph Γ with n edges, then $r(G) \leq c n$.

Theorem: (Fox-S.)

If H has N vertices, εN^{2} edges, and $N>c \varepsilon^{-3} n$, then H contains the 1 -subdivision of every graph Γ with n edges.

Erdős-Hajnal conjecture

DEFINITION:

A graph on n vertices is Ramsey if both its largest clique and independent set have size at most $C \log n$.

Theorem: (Erdös-Hajnal, Promel-Rödl)

Every Ramsey graph on n vertices contains an induced copy of every graph G of constant size.
(Moreover, this is still true for G up to size $c \log n$.)

Conjecture (Erdős-Hajnal 1989)

Every graph H on n vertices without an induced copy of a fixed graph G contains a clique or independent set of size at least n^{ε}.

Erdős-Hajnal conjecture

A bi-clique is a complete bipartite graph with parts of equal size.

Known Results: (Erdős-Hajnal,Erdős-Hajnal-Pach)

If H has n vertices and no induced copy of G, then
(1) H contains a clique or independent set of size $e^{c \sqrt{\log n}}$.
(2) H or its complement \bar{H} has a bi-clique of size n^{ε}.

Theorem: (Fox-S.)

If H has n vertices and no induced copy of G of size k, then
(1) H has a clique or independent set of size $c e^{c \sqrt{\frac{\log n}{k}}} \log n$.
(2) H has a bi-clique or an independent set of size n^{ε}.

Hypergraph Ramsey numbers

A hypergraph is k-uniform if every edge has size k.

Definition:

For a k-uniform hypergraph G, let $r(G)$ be the minimum N such that every 2-edge-coloring of the complete k-uniform hypergraph $K_{N}^{(k)}$ contains a monochromatic copy of G.

Theorem: (Erdős-Hajnal,Erdős-Rado)

The Ramsey number of the complete k-uniform hypergraph $K_{n}^{(k)}$ satisfies

$$
t_{k-1}\left(c n^{2}\right) \leq r\left(K_{n}^{(k)}\right) \leq t_{k}(n)
$$

where the tower function $t_{i}(x)$ is defined by

$$
t_{1}(x)=x, t_{2}(x)=2^{x}, t_{3}(x)=2^{2^{x}}, \ldots, t_{i+1}(x)=2^{t_{i}(x)}, \ldots
$$

RAMSEY NUMBERS FOR SPARSE HYPERGRAPHS

CONJECTURE: (Hypergraph generalization of Burr-Erdős conjecture)

For every d and k there exists $c_{d, k}$ such that if G is a k-uniform hypergraph with n vertices and maximum degree d, then

$$
r(G) \leq c_{d, k} n .
$$

(1) (Kostochka-Rödl 2006) $r(G) \leq n^{1+o(1)}$.
(2) Proved for $k=3$ by Cooley-Fountoulakis-Kühn-Osthus and Nagle-Olsen-Rödl-Schacht.
(3) Proved for all k by Cooley-Fountoulakis-Kühn-Osthus and Ishigami.
(9) These proofs give Ackermann-type bound on $c_{d, k}$.

Theorem: (Conlon-Fox-S.)

If G is a k-uniform hypergraph with n vertices and maximum degree d, then $\quad r(G) \leq c_{d, k} n \quad$ with $\quad c_{d, k} \leq t_{k}(c d)$.

DEFINITIONS:

A topological graph G is a graph drawn in the plane with vertices as points and edges as curves connecting its endpoints such that any two edges have at most one point in common.
G is a thrackle if every pair of edges intersect.

Conjecture: (Conway 1960s)

Thrackle with n vertices has at most n edges.
In particular, every topological graph with more edges than vertices, contains a pair of disjoint edges.

Known: Every thrackle on n vertices has $O(n)$ edges.
(Lovász-Pach-Szegedy, Cairns-Nikolayevsky)

DISJOINT EDGES IN GRAPH DRAWINGS

Question:
Do dense topological graphs contain large patterns of pairwise disjoint edges?

Theorem: (Pach-Tóth)

Every topological graph with n vertices and at least $n(c \log n)^{4 k-8}$ edges has k pairwise disjoint edges.

Theorem: (Fox-S.)

Every topological graph with n vertices and $c_{1} n^{2}$ edges has two edge subsets $E^{\prime}, E^{\prime \prime}$ of size $c_{2} n^{2}$ such that every edge in E^{\prime} is disjoint from every edge in $E^{\prime \prime}$.

