Symplectic Topology Example Sheet 9

Dietmar Salamon ETH Zürich

23 April 2013

Exercise 9.1. Denote the standard basis of \mathbb{R}^{2n} by e_1, \ldots, e_{2n} . Let $\lambda > 0$ and let $A \in \mathbb{R}^{2n \times 2n}$ be a matrix that satisfies

$$Ae_1 = \lambda e_1, \qquad Ae_2 = \lambda e_2.$$

Prove that the transposed matrix A^T maps the closed unit ball $B^{2n}(1)$ into $B^2(\lambda) \times \mathbb{R}^{2n-2}$.

Exercise 9.2. Let $f : (0, \infty) \to (0\infty)$ be a smooth function and define $\omega_f \in \Omega^2(\mathbb{R}^{2n} \setminus \{0\})$ by

$$\omega_f := F^* \omega_0, \qquad F(z) := f(|z|) \frac{z}{|z|}.$$

Prove that ω_f is compatible with the standard complex structure J_0 . Hint: Use complex notation and show that ω_f is a (1, 1)-form.

In the next exercise we denote the coordinates on \mathbb{C}^n by $z = (z_1, \ldots, z_n)$ and abbreviate

$$dz \wedge d\overline{z} := \sum_{j=1}^{n} dz_{j} \wedge d\overline{z}_{j},$$

$$z \cdot d\overline{z} := \sum_{j=1}^{n} z_{j} d\overline{z}_{j},$$

$$\overline{z} \cdot dz := \sum_{j=1}^{n} \overline{z}_{j} dz_{j}.$$
(1)

Exercise 9.3. Define the 1-forms $\alpha_0 \in \Omega^1(\mathbb{C}^n)$ and $\alpha_{\text{FS}} \in \Omega^1(\mathbb{C}^n \setminus \{0\})$ by

$$\alpha_{0} := \frac{\mathbf{i}}{4} (z \cdot d\overline{z} - \overline{z} \cdot dz),$$

$$\alpha_{FS} := \frac{\mathbf{i}}{4|z|^{2}} (z \cdot d\overline{z} - \overline{z} \cdot dz).$$
(2)

Prove that

$$\omega_{0} := d\alpha_{0} = \frac{\mathbf{i}}{2} dz \wedge d\overline{z} = \frac{\mathbf{i}}{2} \partial \overline{\partial} |z|^{2},$$

$$\rho_{\mathrm{FS}} := d\alpha_{\mathrm{FS}} = \frac{\mathbf{i}}{2} \left(\frac{dz \wedge d\overline{z}}{|z|^{2}} - \frac{\overline{z} \cdot dz \wedge z \cdot d\overline{z}}{|z|^{4}} \right) = \frac{\mathbf{i}}{2} \partial \overline{\partial} \log\left(|z|^{2}\right).$$
(3)

Thus ρ_{FS} is the pullback of the Fubini–Study form ω_{FS} under the projection pr : $\mathbb{C}^n \setminus \{0\} \to \mathbb{C}P^{n-1}$. Define $F_{\lambda} : \mathbb{C}^n \setminus \{0\} \to \mathbb{C}^n \setminus B^{2n}(\lambda)$ by

$$F_{\lambda}(z) := \sqrt{\lambda^2 + |z|^2} \frac{z}{|z|} = \sqrt{1 + \frac{\lambda^2}{|z|^2}} z$$

and prove that

$$F_{\lambda}^* \alpha_0 = \alpha_0 + \lambda^2 \alpha_{\rm FS}, \qquad F_{\lambda}^* \omega_0 = \omega_0 + \lambda^2 \rho_{\rm FS}$$

Exercise 9.4. Let $u: \mathbb{C} \to \mathbb{C}^n$ be a holomorphic function of the form

$$u(z) = z^m v(z)$$

where $v(0) \neq 0$. Prove that

$$\lim_{\delta \to 0} \int_{|z|=\delta} u^* \alpha_{\rm FS} = m\pi.$$
(4)

Hint: Consider first the case $v(z) \equiv a$ for some nonzero vector $a \in \mathbb{C}^n$.

Exercise 9.5. Prove that the set

$$\widetilde{\mathbb{C}}^n := \left\{ ([w_1 : \dots : w_n], (z_1, \dots, z)) \in \mathbb{C}P^{n-1} \times \mathbb{C}^n \,|\, z_j w_k = z_k w_j \,\forall \, j, k \right\}$$

is a complex submanifold of $\mathbb{C}\mathrm{P}^{n-1}\times\mathbb{C}^n$ and that

$$Z := \mathbb{C}\mathrm{P}^{n-1} \times \{0\}$$

is a complex submanifold of $\widetilde{\mathbb{C}}^n$. Prove that the pullback of $\omega_0 + \lambda^2 \rho_{\text{FS}}$ under the projection $\pi : \widetilde{\mathbb{C}}^n \setminus Z \to \mathbb{C}^n \setminus \{0\}$ extends to a Kähler form on $\widetilde{\mathbb{C}}^n$. **Exercise 9.6.** Let $J \in \mathcal{J}(\mathbb{CP}^2, \omega_{\mathrm{FS}})$ be any almost complex structure on \mathbb{CP}^2 that is compatible with the Fubini–Study form ω_{FS} . Let $A := [\mathbb{CP}^1]$ be the positive generator of $H_2(\mathbb{CP}^2; \mathbb{Z})$, i.e. the homology class of the line. Consider the evaluation map

$$\operatorname{ev}_2 : \mathcal{M}_2(A; J) := \frac{\mathcal{M}(A; J) \times S^2 \times S^2}{\operatorname{PSL}(2, \mathbb{C})} \to \mathbb{C}\operatorname{P}^2 \times \mathbb{C}\operatorname{P}^2.$$

Prove that an element $(p_1, p_2) \in \mathbb{CP}^2 \times \mathbb{CP}^2$ is a regular value of ev_2 if and only if $p_1 \neq p_2$. Deduce that any two distinct points in \mathbb{CP}^2 are contained in the image of a *unique* (up to reparametrization) *J*-holomorphic sphere representing the homology class *A*.