Symplectic Topology Example Sheet 9

Dietmar Salamon
ETH Zürich

23 April 2013

Exercise 9.1. Denote the standard basis of $\mathbb{R}^{2 n}$ by $e_{1}, \ldots, e_{2 n}$. Let $\lambda>0$ and let $A \in \mathbb{R}^{2 n \times 2 n}$ be a matrix that satisfies

$$
A e_{1}=\lambda e_{1}, \quad A e_{2}=\lambda e_{2}
$$

Prove that the transposed matrix A^{T} maps the closed unit ball $B^{2 n}(1)$ into $B^{2}(\lambda) \times \mathbb{R}^{2 n-2}$.

Exercise 9.2. Let $f:(0, \infty) \rightarrow(0 \infty)$ be a smooth function and define $\omega_{f} \in \Omega^{2}\left(\mathbb{R}^{2 n} \backslash\{0\}\right)$ by

$$
\omega_{f}:=F^{*} \omega_{0}, \quad F(z):=f(|z|) \frac{z}{|z|}
$$

Prove that ω_{f} is compatible with the standard complex structure J_{0}. Hint: Use complex notation and show that ω_{f} is a $(1,1)$-form.

In the next exercise we denote the coordinates on \mathbb{C}^{n} by $z=\left(z_{1}, \ldots, z_{n}\right)$ and abbreviate

$$
\begin{align*}
d z \wedge d \bar{z} & :=\sum_{j=1}^{n} d z_{j} \wedge d \bar{z}_{j} \\
z \cdot d \bar{z} & :=\sum_{j=1}^{n} z_{j} d \bar{z}_{j}, \tag{1}\\
\bar{z} \cdot d z & :=\sum_{j=1}^{n} \bar{z}_{j} d z_{j} .
\end{align*}
$$

Exercise 9.3. Define the 1 -forms $\alpha_{0} \in \Omega^{1}\left(\mathbb{C}^{n}\right)$ and $\alpha_{F S} \in \Omega^{1}\left(\mathbb{C}^{n} \backslash\{0\}\right)$ by

$$
\begin{align*}
\alpha_{0} & :=\frac{\mathbf{i}}{4}(z \cdot d \bar{z}-\bar{z} \cdot d z), \\
\alpha_{\mathrm{FS}} & :=\frac{\mathbf{i}}{4|z|^{2}}(z \cdot d \bar{z}-\bar{z} \cdot d z) \tag{2}
\end{align*}
$$

Prove that

$$
\begin{align*}
\omega_{0} & :=d \alpha_{0}=\frac{\mathbf{i}}{2} d z \wedge d \bar{z}=\frac{\mathbf{i}}{2} \partial \bar{\partial}|z|^{2} \\
\rho_{\mathrm{FS}} & :=d \alpha_{\mathrm{FS}}=\frac{\mathbf{i}}{2}\left(\frac{d z \wedge d \bar{z}}{|z|^{2}}-\frac{\bar{z} \cdot d z \wedge z \cdot d \bar{z}}{|z|^{4}}\right)=\frac{\mathbf{i}}{2} \partial \bar{\partial} \log \left(|z|^{2}\right) \tag{3}
\end{align*}
$$

Thus ρ_{FS} is the pullback of the Fubini-Study form ω_{FS} under the projection pr : $\mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C} P^{n-1}$. Define $F_{\lambda}: \mathbb{C}^{n} \backslash\{0\} \rightarrow \mathbb{C}^{n} \backslash B^{2 n}(\lambda)$ by

$$
F_{\lambda}(z):=\sqrt{\lambda^{2}+|z|^{2}} \frac{z}{|z|}=\sqrt{1+\frac{\lambda^{2}}{|z|^{2}}} z
$$

and prove that

$$
F_{\lambda}^{*} \alpha_{0}=\alpha_{0}+\lambda^{2} \alpha_{\mathrm{FS}}, \quad F_{\lambda}^{*} \omega_{0}=\omega_{0}+\lambda^{2} \rho_{\mathrm{FS}}
$$

Exercise 9.4. Let $u: \mathbb{C} \rightarrow \mathbb{C}^{n}$ be a holomorphic function of the form

$$
u(z)=z^{m} v(z)
$$

where $v(0) \neq 0$. Prove that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \int_{|z|=\delta} u^{*} \alpha_{\mathrm{FS}}=m \pi \tag{4}
\end{equation*}
$$

Hint: Consider first the case $v(z) \equiv a$ for some nonzero vector $a \in \mathbb{C}^{n}$.
Exercise 9.5. Prove that the set

$$
\widetilde{\mathbb{C}}^{n}:=\left\{\left(\left[w_{1}: \cdots: w_{n}\right],\left(z_{1}, \ldots, z\right)\right) \in \mathbb{C P}^{n-1} \times \mathbb{C}^{n} \mid z_{j} w_{k}=z_{k} w_{j} \forall j, k\right\}
$$

is a complex submanifold of $\mathbb{C P}^{n-1} \times \mathbb{C}^{n}$ and that

$$
Z:=\mathbb{C} P^{n-1} \times\{0\}
$$

is a complex submanifold of $\widetilde{\mathbb{C}}^{n}$. Prove that the pullback of $\omega_{0}+\lambda^{2} \rho_{\mathbb{F S}}$ under the projection $\pi: \widetilde{\mathbb{C}}^{n} \backslash Z \rightarrow \mathbb{C}^{n} \backslash\{0\}$ extends to a Kähler form on $\widetilde{\mathbb{C}}^{n}$.

Exercise 9.6. Let $J \in \mathcal{J}\left(\mathbb{C P}^{2}, \omega_{\mathrm{FS}}\right)$ be any almost complex structure on $\mathbb{C P}^{2}$ that is compatible with the Fubini-Study form ω_{FS}. Let $A:=\left[\mathbb{C P}^{1}\right]$ be the positive generator of $H_{2}\left(\mathbb{C P}^{2} ; \mathbb{Z}\right)$, i.e. the homology class of the line. Consider the evaluation map

$$
\mathrm{ev}_{2}: \mathcal{M}_{2}(A ; J):=\frac{\mathcal{M}(A ; J) \times S^{2} \times S^{2}}{\operatorname{PSL}(2, \mathbb{C})} \rightarrow \mathbb{C P}^{2} \times \mathbb{C P}^{2}
$$

Prove that an element $\left(p_{1}, p_{2}\right) \in \mathbb{C P}^{2} \times \mathbb{C} P^{2}$ is a regular value of ev_{2} if and only if $p_{1} \neq p_{2}$. Deduce that any two distinct points in $\mathbb{C P}^{2}$ are contained in the image of a unique (up to reparametrization) J-holomorphic sphere representing the homology class A.

