Symplectic Topology Example Sheet 11

Dietmar Salamon
ETH Zürich

16 May 2013

Exercise 11.1. Define $f: \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ by $f(z):=\frac{1}{4}|z|^{2}$. Prove that

$$
\omega_{f}:=-d\left(d f \circ J_{0}\right)=\omega_{0} .
$$

Exercise 11.2. Let L be a Riemannian manifold. Define $f: T^{*} L \rightarrow \mathbb{R}$ by

$$
f\left(q, v^{*}\right):=\frac{1}{2}\left|v^{*}\right|^{2}
$$

for $v^{*} \in T_{q}^{*} L$. Let J be the almost complex structure on $T^{*} L$ induced by the Riemannian metric. Prove that J is compatible with $\omega_{\text {can }}$ and

$$
d f \circ J=\lambda_{\text {can }}, \quad \omega_{f}:=-d(d f \circ J)=\omega_{\text {can }}
$$

Hint 1: Choose standard coordinates $x^{1}, \ldots, x^{n}, y_{1}, \ldots y_{n}$ on $T^{*} L$, so that f is given by $f(x, y)=\frac{1}{2} \sum_{i, j} y_{i} g^{i j}(x) y_{j}$. Denote the coordinates on $T_{\left(q, v^{*}\right)} T^{*} L$ by $\xi^{1}, \ldots, \xi^{n}, \eta_{1}, \ldots, \eta_{n}$. Show that the Riemannian metric determines a splitting $T_{\left(q, v^{*}\right)} T^{*} L \cong T_{q} L \oplus T_{q}^{*} L$, which in local coordinates is given by

$$
\left(\xi^{i}, \eta_{j}\right) \mapsto\left(\xi^{i}, \eta_{j}-\sum_{k, \ell} \Gamma_{j k}^{\ell}(x) y_{\ell} \xi^{k}\right) .
$$

Hint 2: Show that J is given by $(\xi, \eta) \mapsto(\widehat{\xi}, \widehat{\eta})$, where

$$
\begin{align*}
\widehat{\xi}^{i} & :=-\sum_{j} g^{i j}(x)\left(\eta_{j}-\sum_{k, \ell} \Gamma_{j k}^{\ell}(x) y_{\ell} \xi^{k}\right) \tag{1}\\
\widehat{\eta}_{j} & :=\sum_{k, \ell} \Gamma_{j k}^{\ell}(x) y_{\ell} \widehat{\xi}^{k}+\sum_{k} g_{j k}(x) \xi^{k}
\end{align*}
$$

Exercise 11.3. Let (M, ω) be symplectically aspherical and consider the product $\widetilde{M}:=M \times M$ with the symplectic form $\widetilde{\omega}:=\operatorname{pr}_{2}^{*} \omega-\mathrm{pr}_{1}^{*} \omega$. Prove that

$$
\int_{\mathbb{D}} v^{*} \widetilde{\omega}=0
$$

for every smooth map $v: \mathbb{D} \rightarrow \widetilde{M}$ (on the closed unit disc $\mathbb{D} \subset \mathbb{C}$) with boundary values in the diagonal $\Delta:=\{(p, p) \mid p \in M\} \subset \widetilde{M}$.

Exercise 11.4. Let (M, ω) be a symplectic manifold without boundary, let $[0,1] \times M \rightarrow \mathbb{R}:(t, p) \mapsto H_{t}(p)$ be a compactly supported time-dependent smooth Hamiltonian function, let $[0,1] \times M \rightarrow M:(t, p) \mapsto \psi_{t}(p)$ be the Hamiltonian isotopy generated by H_{t} via

$$
\begin{equation*}
\partial_{t} \psi_{t}=X_{t} \circ \psi_{t}, \quad \psi_{0}=\mathrm{id}, \quad \iota\left(X_{t}\right) \omega=d H_{t} \tag{2}
\end{equation*}
$$

and let $L \subset M$ be a Lagrangian submanifold. Prove that $\psi_{t}(L)=L$ for all t if and only if $\left.H_{t}\right|_{L}$ is constant for every t.

Exercise 11.5. Let L be a closed manifold and let $\Lambda \subset T^{*} L$ be a compact exact Lagrangian submanifold and choose a compactly supported smooth function $H: T^{*} L \rightarrow \mathbb{R}$ such that

$$
\left.\left(\lambda_{\text {can }}+d H\right)\right|_{\Lambda}=0
$$

For $t \in \mathbb{R}$ define $\Lambda_{t} \subset T^{*} L$ and $H_{t}: T^{*} L \rightarrow \mathbb{R}$ by

$$
\Lambda_{t}:=\left\{\left(q, e^{t} v^{*}\right) \mid\left(q, v^{*}\right) \in \Lambda\right\}, \quad H_{t}\left(q, v^{*}\right):=e^{t} H\left(q, e^{-t} v^{*}\right)
$$

Let $\left\{\psi_{t}\right\}_{t \in \mathbb{R}}$ be the Hamiltonian isotopy generated by H_{t} via (2). Prove that $\psi_{t}(\Lambda)=\Lambda_{t}$ for every $t \in \mathbb{R}$.

Exercise 11.6. Show that the formula

$$
\phi(s+\mathbf{i} t):=\frac{e^{\pi(s+i t}-\mathbf{i}}{e^{\pi(s+i t}+\mathbf{i}}
$$

defines a holomorphic diffeomorphism from the strip $\mathbb{S}:=\mathbb{R}+\mathbf{i}[0,1]$ to the twice punctured disc $\mathbb{D} \backslash\{ \pm 1\}$.

Exercise 11.7. Let (M, ω) be a symplectic manifold, let $L \subset M$ be a Lagrangian submanifold, and let $F_{s, t} d s+G_{s, t} d t \in \Omega^{1}\left(\mathbb{D}, \Omega^{0}(M)\right)$. Define

$$
\widetilde{M}:=\mathbb{D} \times M, \quad \widetilde{L}:=S^{1} \times L,
$$

and

$$
\widetilde{\omega}:=\omega-d^{\widetilde{M}}(F d s-G d t)+c d s \wedge d t .
$$

Prove that \widetilde{L} is a Lagrangian submanifold of $(\widetilde{M}, \widetilde{\omega})$ if and only if the function

$$
\cos (\theta) G_{e^{\mathbf{i} \theta}}-\sin (\theta) F_{e^{\mathbf{i} \theta}}: M \rightarrow \mathbb{R}
$$

is constant on L for every $\theta \in \mathbb{R}$.
Exercise 11.8. Let $\left\{X_{t}\right\}_{0 \leq t \leq 1}$ be a smooth family of vector fields on a compact Riemannian manifold M and let $x_{\nu}:[0,1] \rightarrow M$ be a sequence of smooth functions such that

$$
\lim _{\nu \rightarrow \infty} \int_{0}^{1}\left|\dot{x}_{\nu}(t)-X_{t}\left(x_{\nu}(t)\right)\right|^{2} d t=0
$$

Prove that there exists a subsequence $x_{\nu_{i}}$ which converges uniformly, and weakly in thw $W^{1,2}$-topology, to a solution $x:[0,1] \rightarrow M$ of the differential equation

$$
\dot{x}(t)=X_{t}(x(t)) .
$$

Hint: Embed M into some Euclidean space and use Arzéla-Ascoli and Banach-Alaoglu.

Exercise 11.9. Assume the moduli space $\mathcal{M}(A, J) / \mathrm{G}$ (of all J-holomorphic spheres with values in a closed almost complex manifold (M, J), representing the homology class $A \in H_{2}(M ; \mathbb{Z})$, modulo the action of $\left.\mathrm{G}:=\operatorname{PSL}(2, \mathbb{C})\right)$ is compact and that every element of $\mathcal{M}(A, J)$ is injective. Define

$$
\widetilde{\mathcal{M}}_{0, k}(A, J):=\left\{\left(u, z_{1}, \ldots, z_{k}\right) \in \mathcal{M}(A, J) \times\left(S^{2}\right)^{k} \mid z_{i} \neq z_{j} \text { for } i \neq j\right\}
$$

The reparametrization group $\mathrm{G}=\operatorname{PSL}(2, \mathbb{C})$ acts on the space $\widetilde{\mathcal{M}}_{0, k}(A, J)$ by $\phi^{*}\left(u, z_{1}, \ldots, z_{k}\right):=\left(u \circ \phi, \phi^{-1}\left(z_{1}\right), \ldots, \phi^{-1}\left(z_{k}\right)\right)$ for $\phi \in \mathrm{G}$. Denote the quotient space by $\mathcal{M}_{0, k}(A, J):=\widetilde{\mathcal{M}}_{0, k}(A, J) / \mathrm{G}$ and consider the evaluation map $\operatorname{ev}_{J}: \mathcal{M}_{0, k}(A, J) \rightarrow M^{k} \backslash \Delta$ given by ev ${ }_{J}\left(\left[u, z_{1}, \ldots, z_{k}\right]\right):=\left(u\left(z_{1}\right), \ldots, u\left(z_{k}\right)\right)$, where $\Delta:=\left\{\left(p_{1}, \ldots, p_{k}\right) \in M^{k} \mid p_{i} \neq p_{j}\right.$ for $\left.i \neq j\right\}$ denotes the fat diagonal. Prove that ev_{J} is proper, i.e. the preimage of a compact subset of $M^{k} \backslash \Delta$ is compact. Deduce that the image of ev ${ }_{J}$ is a closed subset of $M^{k} \backslash \Delta$ (in the relative topology).

Exercise 11.10. Consider the tautological line bundle

$$
L:=\widetilde{\mathbb{C}}^{2}:=\left\{\left(\left[w_{1}: w_{2}\right],\left(z_{1}, z_{2}\right)\right) \in \mathbb{C} P^{1} \times \mathbb{C}^{2} \mid w_{1} z_{2}=w_{2} z_{1}\right\} \subset \mathbb{C P}^{1} \times \mathbb{C}^{2}
$$

over $\mathbb{C P}{ }^{1}$. Denote the zero section of L by $Z:=\mathbb{C P}^{1} \times\{0\}$. Prove that Z has self-intersection number $Z \cdot Z=-1$ in L. Find an orientation reversing diffeomorphism $f: L \rightarrow \mathbb{C} \mathrm{P}^{2} \backslash\{[1: 0: 0]\}$. Is there an orientation preserving diffeomorphism from L to the complement of a point in $\mathbb{C P}^{2}$?
Exercise 11.11. Let $X \subset \mathbb{C} P^{3}$ be a smooth quadric (i.e. the zero set of a homogeneous polynomial of degree two in four variables $z_{0}, z_{1}, z_{2}, z_{3}$, with zero as a regular value of its restriction to $\mathbb{C}^{4} \backslash\{0\}$, divided by $\left.\mathbb{C}^{*}\right)$. Let $H \subset \mathbb{C P}^{3}$ be a hyperplane tangent to X. Prove that $X \cap H$ is a union of two lines intersecting in precisely one point. Deduce that X is diffeomorphic to $\mathbb{C} P^{1} \times \mathbb{C} P^{1}$. Find an explicit formula for such a diffeomorphism in the cases

$$
\begin{aligned}
X & :=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{0} z_{1}=z_{2} z_{3}\right\} \\
Y & :=\left\{\left[z_{0}: z_{1}: z_{2}: z_{3}\right] \in \mathbb{C P}^{3} \mid z_{0}^{2}+z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=0\right\}
\end{aligned}
$$

Exercise 11.12. Let Σ be a closed oriented 2-manifold and let dvol ${ }_{\Sigma} \in \Omega^{2}(\Sigma)$ be an area form. Denote $\mathrm{G}:=\mathrm{SO}(3)$ and identify its Lie algebra $\mathfrak{g}:=\mathfrak{s o}(3)$ with \mathbb{R}^{3} (i.e. a vector $\xi \in \mathbb{R}^{3}$ determines a skew-symmetric matrix $R_{\xi} \in \mathfrak{s o}(3)$ via the cross product $R_{\xi} \eta:=\xi \times \eta$, so that $R_{\xi \times \eta}=\left[R_{\xi}, R_{\eta}\right]$ and $g R_{\xi} g^{-1}=R_{g \xi}$ for $\xi, \eta \in \mathbb{R}^{3}$ and $\left.g \in \mathrm{SO}(3)\right)$. Let $\pi: P \rightarrow \Sigma$ be a principal G-bundle. Denote the (right) action of G on P by $P \times \mathrm{G} \rightarrow P:(p, g) \mapsto p g$, denote the induced action of $g \in \mathrm{G}$ on the tangent bundle by $T_{p} P \rightarrow T_{p g} P: v \mapsto v g$, and denote the infinitesimal action of $\xi \in \mathbb{R}^{3}$ by

$$
p \xi:=\left.\frac{d}{d t}\right|_{t=0} p \exp \left(t R_{\xi}\right) \in T_{p} P
$$

for $p \in P$. Let $A \in \Omega^{1}\left(P, \mathbb{R}^{3}\right)$ be a connection 1-form on P, i.e. it satisfies $A_{p g}(v g)=g^{-1} A_{p}(v)$ and $A_{p}(p \xi)=\xi$ for $p \in P, v \in T_{p} P, g \in \mathrm{G}, \xi \in \mathbb{R}^{3}$. Define the 1-form $\alpha \in \Omega^{1}\left(P \times S^{2}\right)$ by

$$
\alpha_{(p, x)}(v, \widehat{x}):=\left\langle x, A_{p}(v)\right\rangle,
$$

let dvol ${ }_{S^{2}}:=x_{1} d x_{2} \wedge d x_{3}+x_{2} d x_{3} \wedge d x_{1}+x_{3} d x_{1} \wedge d x_{2}$ be the standard $\operatorname{SO}(3)-$ invariant volume form on S^{2}, and define $\omega_{A, c} \in \Omega^{2}\left(P \times S^{2}\right)$ by

$$
\omega_{A, c}:=\operatorname{pr}_{S^{2}}^{*} \operatorname{dvol}_{S^{2}}-d \alpha+c \cdot\left(\pi \circ \operatorname{pr}_{P}\right)^{*} \operatorname{dvol}_{\Sigma}
$$

Prove that, for $c>0$ sufficiently large, $\omega_{A, c}$ descends to a symplectic form on $M:=P \times_{\mathrm{G}} S^{2}$, where $[p, x] \equiv\left[p g, g^{-1} x\right]$ for $p \in P, x \in S^{2}, g \in \mathrm{SO}(3)$.

