Symplectic Topology Example Sheet 10

Dietmar Salamon
ETH Zürich

2 May 2013

Let (M, ω) be a closed symplectic manifold and let

$$
H:[0,1] \times M \rightarrow \mathbb{R}
$$

be a smooth function. For $0 \leq t \leq 1$ define $H_{t}: M \rightarrow \mathbb{R}$ by

$$
H_{t}(p):=H(t, p)
$$

and let $\left\{\phi_{t}\right\}_{0 \leq t \leq 1}$ be the isotopy generated by H via

$$
\begin{equation*}
\partial_{t} \phi_{t}=X_{t} \circ \phi_{t}, \quad \phi_{0}=\mathrm{id}, \quad \iota\left(X_{t}\right) \omega=d H_{t} . \tag{1}
\end{equation*}
$$

We have seen in the lecture course that ϕ_{t} is a symplectomorphism of (M, ω) for every t. The time-1 map is called the Hamiltonian symplectomorphism generated by H and will be denoted by

$$
\phi_{H}:=\phi_{1} .
$$

The set of Hamiltonian symplectomorphisms of (M, ω) will be denoted by

$$
\operatorname{Ham}(M, \omega):=\left\{\phi_{H} \mid H \in C^{\infty}([0,1] \times M)\right\}
$$

Note that for every $\phi \in \operatorname{Ham}(M, \omega)$ there are many Hamiltonian functions $H:[0,1] \times M \rightarrow \mathbb{R}$ such that $\phi_{H}=\phi$.

Exercise 10.1. Prove that $\operatorname{Ham}(M, \omega)$ is a subgroup of $\operatorname{Diff}(M, \omega)$.

Exercise 10.2. The Hofer norm of a function $H:[0,1] \times M \rightarrow \mathbb{R}$ is defined by

$$
\|H\|:=\int_{0}^{1}\left(\max _{M} H_{t}-\min _{M} H_{t}\right) d t
$$

The Hofer distance of two symplectomorphisms $\phi_{0}, \phi_{1} \in \operatorname{Ham}(M, \omega)$ is the real number

$$
d\left(\phi_{0}, \phi_{1}\right):=\inf _{\phi_{H}=\phi_{1} \circ \phi_{0}^{-1}}\|H\|,
$$

where the infimum is taken over all smooth functions $H:[0,1] \times M \rightarrow \mathbb{R}$ that generate the symplectomorphism $\phi_{1} \circ \phi_{0}^{-1}=\phi_{H}$. Prove that the Hofer distance $d: \operatorname{Ham}(M, \omega) \times \operatorname{Ham}(M, \omega) \rightarrow[0, \infty)$ satisfies the following axioms.
(Symmetry) For all $\phi_{0}, \phi_{1} \in \operatorname{Ham}(M, \omega)$

$$
d\left(\phi_{0}, \phi_{1}\right)=d\left(\phi_{1}, \phi_{0}\right)
$$

(Triangle Inequality) For all $\phi_{0}, \phi_{1}, \phi_{2} \in \operatorname{Ham}(M, \omega)$

$$
d\left(\phi_{0}, \phi_{2}\right) \leq d\left(\phi_{0}, \phi_{1}\right)+d\left(\phi_{1}, \phi_{2}\right)
$$

(Invariance) For all $\phi_{0}, \phi_{1}, \psi \in \operatorname{Ham}(M, \omega)$

$$
d\left(\phi_{0} \circ \psi, \phi_{1} \circ \psi\right)=d\left(\psi \circ \phi_{0}, \psi \circ \phi_{1}\right)=d\left(\phi_{0}, \phi_{1}\right)
$$

(Conjugacy) For all $\phi_{0}, \phi_{1} \in \operatorname{Ham}(M, \omega)$ and all $\psi \in \operatorname{Diff}(M, \omega)$

$$
d\left(\psi^{-1} \circ \phi_{0} \circ \psi, \psi^{-1} \circ \phi_{1} \circ \psi\right)=d\left(\phi_{0}, \phi_{1}\right)
$$

Exercise 10.3. For $H:[0,1] \times M \rightarrow \mathbb{R}$ define

$$
\|H\|^{\prime}:=\int_{0}^{1} \sqrt{\int_{M} H_{t}^{2} \frac{\omega^{n}}{n!}} d t
$$

For $\phi_{0}, \phi_{1} \in \operatorname{Ham}(M, \omega)$ define

$$
d^{\prime}\left(\phi_{0}, \phi_{1}\right):=\inf _{\phi_{H}=\phi_{1} \circ \phi_{0}^{-1}}\|H\|^{\prime}
$$

where the infimum is taken over all smooth functions $H:[0,1] \times M \rightarrow \mathbb{R}$ that satisfy $\phi_{H}=\phi_{1} \circ \phi_{0}^{-1}$ and $\int_{M} H_{t} \omega^{n}=0$ for all t. Prove that the function $d^{\prime}: \operatorname{Ham}(M, \omega) \times \operatorname{Ham}(M, \omega) \rightarrow \mathbb{R}$ also satisfies the axioms listed in Exercisee 10.2. (Note: It turns out that the Hofer distance is always nondegenerate, however, a theorem by Eliashberg and Polterovich asserts that the function d^{\prime} vanishes on every symplectic manifold.)

Let $\left(\Sigma, j\right.$, dvol $\left._{\Sigma}\right)$ be a closed Riemann surface, (M, ω) be a symplectic manifold, let $\Sigma \rightarrow \mathcal{J}(M, \omega): z \mapsto J_{z}$ be a smooth family of ω-compatible almost complex structures, and let $K \in \Omega^{1}\left(\Sigma, C^{\infty}(M)\right)$ be a 1-form on Σ with values in the space of smooth functions on M. Thus K assigns to each $z \in \Sigma$ a linear map

$$
T_{z} \Sigma \rightarrow C^{\infty}(M): \widehat{z} \mapsto K_{z, \widehat{z}}
$$

and to each point $p \in M$ a 1-form $K(p) \in \Omega^{1}(\Sigma)$ via $K(p)_{z}(\widehat{z}):=K_{z, \widehat{z}}(p)$. Note that K can be also thought of as a 1-form on the product manifold

$$
\widetilde{M}:=\Sigma \times M
$$

which assigns to a tangent vector $(\widehat{z}, \widehat{p}) \in T_{(z, p)} \widetilde{M}=T_{z} \Sigma \times T_{p} M \rightarrow \mathbb{R}$ the real number $K_{z, \bar{z}}(p)$. When understood as a 1-form on \widetilde{M} the differential of K will be denoted by $d^{\widetilde{M}} K \in \Omega^{2}(\widetilde{M})$. When understood as 1-form on Σ with values in $C^{\infty}(M)$, the differential of K will be denoted by $d^{\Sigma} K \in \Omega^{2}\left(\Sigma, C^{\infty}(M)\right)$; this 2 -form is defined by defined by

$$
\left(d^{\Sigma} K\right)_{z}\left(\widehat{z}_{1} \widehat{z}_{2}\right)(p):=(d(K(p)))_{z}\left(\widehat{z}_{1}, \widehat{z}_{2}\right)
$$

for $p \in M, z \in \Sigma$, and $\widehat{z}_{1}, \widehat{z}_{2} \in T_{z} \Sigma$.
Define the function $R_{K}: \Sigma \times M \rightarrow \mathbb{R}$ by

$$
R_{K} \operatorname{dvol}_{\Sigma}:=d^{\Sigma} K+\frac{1}{2}\{K \wedge K\} .
$$

Here $\frac{1}{2}\{K \wedge K\} \in \Omega^{2}\left(\Sigma, C^{\infty}(M)\right)$ is the 2-form which assigns to each pair $\widehat{z}_{1}, \widehat{z}_{2} \in T_{z} \Sigma$ the Poisson bracket $\left\{K_{z, \widehat{z}_{1}}, K_{z, \widehat{z}_{2}}\right\} \in C^{\infty}(M)$.

Denote by $\operatorname{pr}_{\Sigma}: \widetilde{M} \rightarrow \Sigma$ and $\operatorname{pr}_{M}: \widetilde{M} \rightarrow M$ the obvious projections, choose a function $\kappa: \Sigma \rightarrow(0, \infty)$, and define $\widetilde{\omega} \in \Omega^{2}(\widetilde{M})$ by

$$
\widetilde{\omega}:=\operatorname{pr}_{M}^{*} \omega-d^{\widetilde{M}} K+\operatorname{pr}_{\Sigma}^{*}\left(\kappa \operatorname{dvol}_{\Sigma}\right)
$$

For $u: \Sigma \rightarrow M$ define

$$
d_{K} u:=d u+X_{K}(u),
$$

where $X_{K}(u) \in \Omega^{1}\left(\Sigma, u^{*} T M\right)$ is defined by $\left(X_{K}(u)\right)_{z}(\widehat{z}):=X_{K_{z, \bar{z}}}(u(z))$, and

$$
\bar{\partial}_{J, K}(u):=\left(d_{K} u\right)^{0,1}:=\frac{1}{2}\left(d_{K} u+J(u) \circ d_{K} u \circ j\right) .
$$

Exercise 10.4. Prove that

$$
\frac{\widetilde{\omega}^{n+1}}{(n+1)!}:=\left(\kappa-R_{K}\right) \operatorname{pr}_{\Sigma}^{*} \operatorname{dvol}_{\Sigma} \wedge \operatorname{pr}_{M}^{*} \frac{\omega^{n}}{n!}
$$

If $\bar{\partial}_{J, K}(u)=0$ prove that

$$
E_{K}(u):=\frac{1}{2} \int_{\Sigma}\left|d_{K} u\right|_{J}^{2} \operatorname{dvol}_{\Sigma}=\int_{\Sigma} u^{*} \omega+\int_{\Sigma} R_{K}(u) \mathrm{dvol}_{\Sigma}
$$

Relate this to the energy identity for the \widetilde{J}-holomorphic curve $\widetilde{u}: \Sigma \rightarrow \widetilde{M}$ defined by $\widetilde{u}(z):=(z, u(z))$. Do the solutions of the perturbed equation $\bar{\partial}_{J, K}(u)=0$ minimize the energy $E_{K}(u)$ in their homology class? What is the relation between $E_{K}(u)$ and $E(\widetilde{u})$. Hint: See Exercise 4.1. Carry out the calculations in local coordinates on Σ.

