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Maslov’s famous index for a loop of Lagrangian subspaces was interpreted
by Arnold [1] as an intersection number with an algebraic variety known as
the Maslov cycle. Arnold’s general position arguments apply equally well
to the case of a path of Lagrangian subspaces whose endpoints lie in the
complement of the Maslov cycle. Our aim in this paper is to define a Maslov
index for any path regardless of where its endpoints lie. Our index is in-
variant under homotopy with fixed endpoints and is additive for catenations.
Duistermaat [4] has proposed a Maslov index for paths which is not additive
for catenations but is independent of the choice of the Lagrangian subspace
used to define the Maslov cycle. By contrast our Maslov index depends on
this choice.

We have been motivated by two applications in [10] and [12] as well as
the index introduced by Conley and Zehnder in [2] and [3]. In [12] we show
how to define a signature for a certain class of one dimensional first order
differential operators whose index and coindex are infinite. In [10] we relate
the Maslov index to Cauchy Riemann operators such as those that arise in

∗This research has been partially supported by the SERC.
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Floer theory. Our index formula in [10] generalizes the one in [5] and the one
in [13].

We use our Maslov index for paths of Lagrangian subspaces to define a
Maslov index for paths of symplectic matrices. We characterize this latter
index axiomatically. This leads us to a stratification of the symplectic group
Sp(2n) where the connected strata are characterized by pairs (k, ν) with
k = 0, 1, . . . , n and ν ∈ Z2. Our Maslov index is invariant under homotopies
where the endpoints are allowed to vary in a stratum. Our index µ satisfies
the identity

µ +
ka − kb

2
≡ νa − νb (mod 2)

where (ka, νa) and (kb, νb) characterize the strata at the left and right end-
points, respectively. The number on the left is an integer.

Arnold defined the intersection number for a closed loop by transversal-
ity arguments. For paths with fixed endpoints this approach does not work
when an endpoint lies in a stratum of the Maslov cycle of codimension big-
ger than 1. To surmount this difficulty we introduce the notion of simple
and regular crossings of the Maslov cycle. A simple crossing is a transverse
crossing in the usual sense. It can only occur in a codimension-1 stratum. A
regular crossing can occur at any point of the Maslov cycle and it has a well
defined crossing index (an integer of modulus less than or equal to n). Regu-
lar crossings are isolated. For a curve with only regular crossings our Maslov
index is the sum of the crossing indices with the endpoints contributing half.
A crossing in a codimension-1 stratum is simple if and only if it is regular
and for such crossings the crossing index is ±1 in agreement with Arnold’s
definition.

1 Generalities

The standard symplectic structure on R
2n = R

n × R
n is defined by

ω(z1, z2) = 〈x1, y2〉 − 〈x2, y1〉

for zk = (xk, yk) ∈ R
n × R

n. A subspace Λ is called Lagrangian iff it has
dimension n and ω(z1, z2) = 0 for all z1, z2 ∈ Λ. A Lagrangian frame for a
Lagrangian subspace Λ is an injective linear map Z : R

n → R
2n whose image
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is Λ. Such a frame has the form

Z =

(
X
Y

)
(1)

where X, Y are n × n-matrices and

Y T X = XT Y.

The last n (or first n) columns of a symplectic matrix Ψ form a Lagrangian
frame.

A quadratic form on a vector space V can be viewed as a map from
V to the dual space V ∗. If R

2n = V ⊕ W is a Lagrangian splitting then
W can be identified with V ∗ via the symplectic form. In this situation
every Lagrangian subspace transverse to W is the graph of a quadratic form
A : V → V ∗ = W . For each Lagrangian subspace Λ ∈ L(n) we will define a
canonical isomorphism

TΛL(n) → S2(Λ) : (Λ, Λ̂) 7→ Q = Q(Λ, Λ̂)

between the tangent space at Λ and the space of quadratic forms on Λ.

Theorem 1.1 Let Λ(t) ∈ L(n) be a curve of Lagrangian subspaces with
Λ(0) = Λ and Λ̇(0) = Λ̂.

(1) Let W be a fixed Lagrangian complement of Λ and for v ∈ Λ and small
t define w(t) ∈ W by v + w(t) ∈ Λ(t). Then the form

Q(v) =
d

dt

∣∣∣∣∣
t=0

ω(v, w(t))

is independent of the choice of W .

(2) If Z(t) = (X(t), Y (t)) is a frame for Λ(t) as in (1) then

Q(v) = 〈X(0)u, Ẏ (0)u〉 − 〈Y (0)u, Ẋ(0)u〉

where v = Z(0)u.
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(3) The form Q is natural in the sense that

Q(ΨΛ, ΨΛ̂) ◦ Ψ = Q(Λ, Λ̂)

for a symplectic matrix Ψ.

Proof: Choose co-ordinates so that Λ(0) = R
n × 0. Then any Lagrangian

complement of Λ(0) is the graph of a symmetric matrix B ∈ R
n×n:

W = {(By, y) : y ∈ R
n}

and for small t the Lagrangian subspace Λ(t) is the graph of a symmetric
matrix A(t) ∈ R

n×n:

Λ(t) = {(x, A(t)) : x ∈ R
n}.

Hence v = (x, 0), w(t) = (By(t), y(t)), and y = A(t)(x + By(t)). Hence
ω(v, w(t)) = 〈x, y(t)〉 and

Q(v) = 〈x, ẏ(0)〉 = 〈x, Ȧ(0)x〉.

The result is independent of B and this proves (1).
To prove (2) assume that W = 0 × R

n is the vertical and choose a frame
Z(t) = (X(t), Y (t)) for Λ(t). Then v = (X(0)u, Y (0)u) and w(t) = (0, y(t))
where Y (0)u + y(t) = Y (t)X(t)−1X(0)u. Hence ω(v, w(t)) = 〈X(0)u, y(t)〉
and

Q(v) = 〈X(0)u, ẏ(0)〉

= 〈X(0)u, Ẏ (0)u〉 − 〈X(0)u, Y (0)X(0)−1Ẋ(0)u〉

= 〈X(0)u, Ẏ (0)u〉 − 〈Ẋ(0)u, Y (0)u〉

The last equation follows from the identity XT Y = Y T X. This proves (2).
Statement (3) is an obvious consequence of the definition. 2

Remark 1.2 The previous work can be defined in the language of differential
geometry as follows. Denote by F(n) the manifold of Lagrangian frames.
Then we have a principal bundle

GL(n; R) ↪→ F(n) → L(n).
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For Λ ∈ L(n) denote by FΛ the fibre of F(n) over Λ. It is the set of
Lagrangian frames for Λ. The tangent space to F(n) at Z = (X, Y ) is
the space of all pairs ζ = (ξ, η) of n × n-matrices such that the matrix

S(X, Y, ξ, η) = ξT Y − ηTX

is symmetric. The tangent space to the fibre over Λ is the subspace deter-
mined by S(Z, ζ) = 0. The tangent space to L(n) at Λ can be identified with
the quotient

TΛL(n) = TZF(n)/TZFΛ.

By Theorem 1.1 (2) the matrix S(Z, Ż) determines the quadratic form Q.

Remark 1.3 A unitary Lagrangian frame is one whose columns are or-
thonormal in R

2n. The space of unitary frames is naturally diffeomorphic to
the unitary group U(n) via Z 7→ X + iY . Hence there is a principal bundle

O(n) ↪→ U(n) → L(n).

Remark 1.4 Another principal bundle is

St(2n) ↪→ Sp(2n) → L(n).

Here Sp(2n) denotes the symplectic group and St(2n) denotes the stabilizer
subgroup of all symplectic matrices Ψ such that Ψ(0 × R

n) = 0 × R
n. The

symplectic matrices have the block form

Ψ =

(
A B
C D

)
, Ψ−1 =

(
DT −BT

−CT AT

)
(2)

and the stabilizer subgroup is defined by B = 0. In this bundle the projection
Sp(2n) → L(n) sends Ψ to Ψ(0 × R

n).

Remark 1.5 The graph

Gr(G) = {(x, Gx) : x ∈ R
n}

of a matrix G ∈ R
n×n is Lagrangian iff G is symmetric. If Ψ is a symplectic

matrix with B = C = 0 then

ΨGr(G) = Gr(DGDT ).

If Λ is a Lagrangian subspace transverse to the vertical 0 × R
n with frame

Z = (X, Y ) then X is invertible and Λ is the graph of the symmetric matrix

G = Y X−1.
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2 Lagrangian paths

Every Lagrangian subspace V determines a decomposition of the space of
Lagrangian subspaces as a disjoint union

L(n) =
n⋃

k=0

Σk(V )

where Σk(V ) is the submanifold of those Lagrangian subspaces which inter-
sect V in a subspace of dimension k. The codimension of Σk(V ) is k(k+1)/2.
We will prove in Theorem 4.2 below that each stratum Σk(V ) is connected.
The Maslov cycle determined by V is the algebraic variety

Σ(V ) = Σ1(V ) =
n⋃

k=1

Σk(V ).

The tangent space to Σk(V ) at a point Λ ∈ Σk(V ) is given by

TΛΣk(V ) =
{
Λ̂ ∈ TΛL(n) : Q(Λ, Λ̂)|Λ∩V = 0

}
.

Let Λ : [a, b] → L(n) be smooth curve of Lagrangian subspaces. A crossing
for Λ is a number t ∈ [a, b] for which Λ(t) intersects V nontrivially, i.e. for
which Λ(t) ∈ Σ(V ). The set of crossings is compact. At each crossing time
t ∈ [a, b] we define the crossing form

Γ(Λ, V, t) = Q(Λ(t), Λ̇(t))|Λ(t)∩V .

By Theorem 1.1 (3), the crossing form is natural in the sense that

Γ(ΨΛ, ΨV, t) ◦ Ψ = Γ(Λ, V, t) (3)

for every symplectic matrix Ψ. If V = R
n ×0 and Λ(t) = Gr(A(t)) for a path

of symmetric matrices A(t) then at each crossing

Γ(Λ, V, t)(v) = 〈x, Ȧ(t)x〉

for v = (x, 0) with x ∈ ker A(t).
A curve Λ : [a, b] → L(n) is tangent to Σk(V ) at a crossing t if and only

if Λ(t) ∈ Σk(V ) and the crossing form Γ(Λ, V, t) = 0. A crossing t is called
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regular if the crossing form Γ(Λ, V, t) is nonsingular. It is called simple if
it is regular and in addition Λ(t) ∈ Σ1(V ). A curve has only simple crossings
if and only if it is transverse to every Σk(V ). Intuitively, a curve has only
regular crossings if and only if it is transverse to the algebraic variety Σ(V ).
For a curve Λ : [a, b] → L(n) with only regular crossings we define the
Maslov index

µ(Λ, V ) = 1

2
sign Γ(Λ, V, a) +

∑

a<t<b

sign Γ(Λ, V, t) + 1

2
sign Γ(Λ, V, b)

where the summation runs over all crossings t. (It is easy to show that regular
crossings are isolated. See Theorem 2.3 below.)

Lemma 2.1 Suppose Λ0, Λ1 : [a, b] → L(n) with Λ0(a) = Λ1(a) and Λ0(b) =
Λ1(b) have only regular crossings. If Λ0 and Λ1 are homotopic with fixed
endpoints then they have the same Maslov index.

Lemma 2.2 Every Lagrangian path Λ : [a, b] → L(n) is homotopic with fixed
endpoints to one having only regular crossings.

These lemmata are proved below. Together they enable us to define the
Maslov index for every continuous path. The Maslov index then has the
following properties.

Theorem 2.3 (Naturality) For Ψ ∈ Sp(2n)

µ(ΨΛ, ΨV ) = µ(Λ, V ).

(Catenation) For a < c < b

µ(Λ, V ) = µ(Λ|[a,c], V ) + µ(Λ|[c,b], V ).

(Product) If n′ + n′′ = n identify L(n′) × L(n′′) as a submanifold of L(n)
in the obvious way. Then

µ(Λ′ ⊕ Λ′′, V ′ ⊕ V ′′) = µ(Λ′, V ′) + µ(Λ′′, V ′′).
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(Localization) If V = R
n × 0 and Λ(t) = Gr(A(t)) then the Maslov index

of Λ is given by the spectral flow1

µ(Λ, V ) = 1

2
signA(b) − 1

2
signA(a). (4)

(Homotopy) Two paths Λ0, Λ1 : [a, b] → L(n) with Λ0(a) = Λ1(a) and
Λ0(b) = Λ1(b) are homotopic with fixed endpoints if and only if they
have the same Maslov index.

(Zero) Every path Λ : [a, b] → Σk(V ) has Maslov index µ(Λ, V ) = 0.

Proof: We prove this theorem and the previous lemmata in eight steps.

Step 1: Suppose A(t) ∈ R
n×n is a smooth path of symmetric matrices with

rank A(0) = n − k. Then there exists a matrix α̂ ∈ R
k×k, and smooth curves

D(t) ∈ GL(n) and γ(t) ∈ GL(n − k) such that

D(t)A(t)D(t)T =

(
α̂t + O(t2) 0

0 γ(t)

)
.

for t near 0.

Without loss of generality assume that A has the block form

A(t) =

(
α(t) β(t)
β(t)T γ(t)

)

where α and β vanish at 0 and γ is invertible. Now factor A as

A(t) =

(
1l βγ−1

0 1l

)(
α − βγ−1βT 0

0 γ

)(
1l 0

γ−1β(t)T 1l

)

Now take D(t) to be the inverse of the first matrix on the right and α̂ = α̇(0).

Step 2: Every Lagrangian path Λ may be approximated by a path Λ′ with the
same endpoints having regular crossings at the ends and simple crossings in
the interior.

By naturality of the crossing operator (3) we may assume that V = R
n×0

and Λ(a) and Λ(b) are graphs. Now use step 1 at to obtain regular crossings at

1A special case of this formula appears in Duistermaat [4] Lemma 2.5.
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the endpoints by a small perturbation. Then Λ(t) ∈ Σ0(V ) for a < t ≤ a + ε
and b − ε ≤ t < b. Now use transversality.

Step 3: Assume V = R
n × 0 and Λ(t) is the graph of a symmetric matrix

A(t) ∈ R
n×n with a regular crossing at t = t0. Then

sign A(t0 ± ε) = sign A(t0) ± sign Γ(Λ, V, t0).

Hence the localization axiom holds for paths with regular crossings.

This follows from Kato’s selection theorem [7] about the eigenvalues of
a smooth one parameter family of symmetric matrices. Alternatively, note
that the crossing operator Γ(Λ, V, t0) is represented by the symmetric matrix
α̂ of step 1. To prove the localization axiom in the case of regular crossings
note that both sides of (4) satisfy the catenation axiom.

Step 4: If the path Λ in step 2 has only regular crossings then it has the
same Maslov index as Λ′.

The crossing index at the ends is unchanged. By naturality of the crossing
operator (3) and step 3 we have

sign Γ(Λ, V, t0) =
∑

|t−t0|<ε

sign Γ(Λ′, V, t).

at each interior crossing t0 ∈ (a, b).

Step 5: Two paths which have only simple crossings, are homotopic with
fixed endpoints, and have endpoints in Σ0(V ) have the same Maslov index.

For k ≥ 2 the codimension of Σk(V ) is bigger than 2 and hence a generic
homotopy misses Σk(V ). By the arguments of [9] the intersection number is
well-defined and depends only on the homotopy class.

Step 6: We prove Lemma 2.1

By naturality of the crossing operator (3) we may assume that V = R
n×0

and Λ0(a) = Λ1(a) and Λ0(b) = Λ1(b) are graphs. By step 4 we may assume
without loss of generality that Λ0 and Λ1 have only simple crossings in the
interior. Choose ε > 0 so small that Λj(t) ∈ Σ0(V ) and Λs(t) is a graph for
a < t ≤ a+ε and b−ε ≤ t < b. Now perturb the homotopy if necessary such
that the paths s 7→ Λs(a + ε) and s 7→ Λs(b − ε) have only simple crossings.
By the localization axiom (step 3) these paths have Maslov index

µ(s 7→ Λs(a + ε)) = 1

2
sign Γ(Λ1, V, a) − 1

2
sign Γ(Λ0, V, a)
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µ(s 7→ Λs(b − ε)) = 1

2
sign Γ(Λ0, V, b) − 1

2
sign Γ(Λ1, V, b).

Introduce the intermediate path Λ′ which is the catenation of the paths
Λ0|[a,a+ε], Λs(a + ε), Λ1|[a+ε,b−ε], Λ1−s(b − ε), and Λ0|[b−ε,b]. By Step 5 all
three paths Λ0, Λ′, and Λ1 have the same Maslov index.

We have now proved Lemma 2.1 and Lemma 2.2. Hence the Maslov index
is now well defined for all paths.

Step 7: Two paths Λ0 and Λ1 with the same endpoints and the same Maslov
index are homotopic.

By step 6 we may assume without loss of generality that Λ0(t) = Λ1(t)
for a ≤ t ≤ a + ε and b − ε ≤ t ≤ b. By step 4 we may assume that
both paths have only simple crossings in the interior. Hence it suffices to
prove that every loop γ : S1 → L(n) of Lagrangian subspaces which has only
simple crossings and has Maslov index zero is contractible. Since the Maslov
index is zero there is at least one pair of adjacent crossings of opposite sign.
Since Σ1(V ) is connected2 homotop to a curve where these crossings occur
at the same point of Σ1(V ). Since Σ0(V ) is contractible remove this pair of
crossings.

We have now proved the homotopy axiom. The localization axiom was
proved in step 3 for paths with only regular crossings. Hence it holds always.
The naturality axiom, the catenation axiom, and the product axiom are all
obvious for curves with regular crossings and hence hold generally. The final
step is

Step 8: The zero axiom holds.

For any smooth path Λ : [a, b] → Σk(V ) define the cone

K(t) =
{
Λ̂ ∈ TΛ(t)L(n) : Q(Λ(t), Λ̂)(v) > 0 for v ∈ Λ(t) ∩ V

}
.

Choose a smooth section Λ̂(t) ∈ K(t) and choose a smooth deformation
[0, 1] × [a, b] → L(n) : (s, t) 7→ Λs(t) such that

Λ0 = Λ,
∂Λs

∂s

∣∣∣∣∣
s=0

= Λ̂.

2This is proved in Corollary 4.4 below.
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Then Λs(t) ∈ Σ0(V ) for 0 < s ≤ ε with ε > 0 sufficiently small. The path Λ
is homotopic to the catenation of the three paths s 7→ Λs(a), t 7→ Λε(t), and
s 7→ Λε−s(b). The first has Maslov index k, the second has Maslov index 0
and the last has Maslov index −k. 2

A Lagrangian homotopy Λs : [a, b] → L(n) is called a stratum homo-
topy with respect to V if Λs(a) and Λs(b) each remain in the same stratum.
This means that there are integers ka = ka(Λs, V ) and kb = kb(Λs, V ) such
that

Λs(a) ∈ Σka
(V ), Λs(b) ∈ Σkb

(V )

for all s. The following theorem is a corollary of Theorem 4.7 below.

Theorem 2.4 Two Lagrangian paths are stratum homotopic with respect to
V if and only if they have the same invariants µ, ka, kb. These invariants
are related by

µ +
ka − kb

2
∈ Z.

In particular, the Maslov index of a loop is an integer.

Remark 2.5 In applications it is often required to compute the the crossing
form explicitly in terms of a Lagrangian frame. If V = R

n × 0 and Z(t) =
(X(t), Y (t)) is a frame for Λ(t) then at each crossing

Γ(Λ, V, t)(v) = 〈X(t)u, Ẏ (t)u〉

for v = (X(t)u, 0) with Y (t)u = 0. If V = 0 × R
n then

Γ(Λ, V, t)(v) = −〈Y (t)u, Ẋ(t)u〉

for v = (0, Y (t)u) with X(t)u = 0. (See Theorem 1.1 (2).) This corresponds
to the geometric picture for n = 1. If Λ(t) crosses the x-axis and rotates
towards the y-achsis then the rotation is counter-clockwise so the Maslov
index is positive. Conversely, if Λ(t) crosses the y-axis and rotates towards
the x-achsis then the rotation is clockwise so the Maslov index is negative.

Remark 2.6 Let Λ(t) = Λ(t+1) be a loop of Lagrangian subspaces. Choose
a lift Z(t) = (X(t), Y (t)) of unitary frames. Then for any Lagrangian sub-
space V

µ(Λ, V ) =
α(1) − α(0)

π
, det(X(t) + iY (t)) = eiα(t).
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To see this note that both sides are homotopy invariants, are additive for
direct sums, and agree in the case n = 1. In the case n = 1 a unitary frame
has the form X(t) = cos α(t) and Y (t) = sin α(t). A crossing occurs where
α(t0) ∈ πZ and the crossing index is the sign of α̇(t0). (See previous remark.)

3 Lagrangian pairs

Now consider a pair of curves Λ, Λ′ : [a, b] → L(n). Define the relative
crossing form Γ(Λ, Λ′, t) on Λ(t) ∩ Λ′(t) by

Γ(Λ, Λ′, t) = Γ(Λ, Λ′(t), t) − Γ(Λ′, Λ(t), t).

and call the crossing regular if this fom is nondegenerate. For a pair with
only regular crossings define the relative Maslov index by

µ(Λ, Λ′) = 1

2
sign Γ(Λ, Λ′, a) +

∑

a<t<b

sign Γ(Λ, Λ′, t) + 1

2
sign Γ(Λ, Λ′, b).

In the case Λ′(t) ≡ V this agrees with the previous definition. Theorem 3.2
below can be used to extend the definition to continuous pairs. The relative
Maslov index for pairs of Lagrangian paths was used by Viterbo [15] in the
case of transverse endpoints.

Theorem 3.1 The Maslov index is natural in the sense that

µ(ΨΛ, ΨΛ′) = µ(Λ, Λ′)

for a path of symplectic matrices Ψ : [a, b] → Sp(2n).

Proof: The crossing form of the pair (ΨΛ, ΨΛ′) at is given by

Γ(ΨΛ, ΨΛ′, t) ◦ Ψ(t) = Γ(Λ, Λ′, t). (5)

To prove this note that the forms Q(ΨΛ, Ψ̇Λ, t) and Q(ΨΛ′, Ψ̇Λ′, t) agree on
the intersection Ψ(t)(Λ(t) ∩ Λ′(t)). The equation (5) shows that if the pair
(Λ, Λ′) has only regular crossings then so does the pair (ΨΛ, ΨΛ′) and in this
case the Maslov indices agree. Hence they agree always. 2
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Theorem 3.2 Consider the symplectic vector space (R2n × R
2n, (−ω) × ω).

Then3

µ(ΨΛ, Λ′) = µ(Gr(Ψ), Λ × Λ′).

In particular, when Ψ(t) ≡ 1l we have

µ(Λ, Λ′) = µ(∆, Λ × Λ′) (6)

where ∆ ⊂ R
2n × R

2n is the diagonal.

Proof: We first prove (6). Denote ω̄ = (−ω) × ω and Λ(t) = Λ(t) × Λ′(t).
Then ∆ ∩ Λ(t) is the set of pairs v̄ = (v, v) with v ∈ Λ(t) ∩ Λ′(t). With this
notation we shall prove that the crossing form is given by

Γ(∆, Λ × Λ′, t)(v̄) = Γ(Λ, Λ′(t), t)(v) − Γ(Λ′, Λ(t), t)(v). (7)

To see this choose a Lagrangian subspace W = W × W ′ such that W is
transverse to Λ(t) and W ′ is transverse to Λ′(t). Given v ∈ R

n and s near t
choose w(s) ∈ W and w′(s) in W ′ such that

v + w(s) ∈ Λ(s), v + w′(s) ∈ Λ′(s).

Then v̄ ∈ ∆, w̄(s) = (w(s), w′(s)) ∈ W , v̄ + w̄(s) ∈ Λ(s), and

−ω̄(v̄, w̄(s)) = ω(v, w(s))− ω(v, w′(s)).

Differentiate this identity with respect to s at s = t to obtain (7). This
proves the theorem in the case Ψ(t) ≡ 1l.

To prove the result in the general case define the symplectomorphism
Ψ(t) of (R2n × R

2n, ω̄) by Ψ(t)(z, z′) = (z, Ψ(t)z′). Then Ψ∆ = Gr(Ψ) and
Ψ(Λ × Ψ−1Λ′) = Λ × Λ′. Hence

µ(Gr(Ψ), Λ × Λ′) = µ(∆, Λ × Ψ−1Λ′)

= µ(Λ, Ψ−1Λ′)

= µ(ΨΛ, Λ′).

The second equality follows from (6) and the last equality from Theorem 3.1.
2

3Below we define the Maslov index of a path of symplectic matrices as the special case
Λ(t) = Λ′(t) = 0 × R

n.
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Care must be taken when considering homotopies of Lagrangian pairs.
For example if (Λ0, Λ

′
0) and (Λ1, Λ

′
1) are Lagrangian pairs with the same

endpoints and the same Maslov index they need not be homotopic with fixed
endpoints. Only Λ0 ⊕Λ′

0 and Λ1 ⊕Λ′
1 are homotopic with fixed endpoints as

Lagrangian paths in (R2n × R
2n, (−ω) × ω). However we have the following

Corollary 3.3 The number µ(Λ, Λ′) is a homotopy invariant in the case

Λ(a) ∩ Λ′(a) = 0, Λ(b) ∩ Λ′(b) = 0.

The homotopy (Λs, Λ
′
s), 0 ≤ s ≤ 1, is required to preserve the condition on

the endpoints. Two pairs (Λ0, Λ
′
0) and (Λ1, Λ

′
1) are homotopic in this sense

if and only if they have the same Maslov index.

Proof: If two pairs are homotopic then, by Theorem 3.2, they have the same
Maslov index. Conversely, suppose that Λj(a)∩Λ′

j(a) = 0 = Λj(b)∩Λ′
j(b) for

j = 0, 1 and µ(Λ0, Λ
′
0) = µ(Λ1, Λ

′
1). Choose any smooth map [0, 1]× [a, b] →

Sp(2n) : (s, t) 7→ Ψs(t) such that

Ψ0(t)Λ
′
0(t) = V, Ψ1(t)Λ

′
1(t) = V.

Then Ψj(a)Λj(a) and Ψj(b)Λj(b) are transverse to V for j = 0, 1 and, by
Theorem 3.1,

µ(Ψ0Λ0, V ) = µ(Ψ1Λ1, V ).

By Theorem 2.4 the paths Ψ0Λ0 and and Ψ1Λ1 are stratum homotopic with
respect to V . Hence there exists a smooth homotopy [0, 1] × [a, b] → L(n) :
(s, t) 7→ Λs(t) from Λ0 to Λ1 such that

Ψs(a)Λs(a) ∩ V = 0, Ψs(b)Λs(b) ∩ V = 0

for all s. The required homotopy is the pair (Λs, Λ
′
s) where Λ′

s(t) = Ψs(t)
−1V .

2

Remark 3.4 The Maslov index for pairs gives rise to an alternative proof of
the zero axiom for the Maslov index of paths. By the naturality Theorem 3.1
the axiom can be reduced to the case of a constant path: choose a path of
symplectic matrices Ψ(t) such that both Ψ(t)V and Ψ(t)Λ(t) are constant.
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Theorem 3.5 Let V0, V1, Λ0, Λ1 be any four Lagrangian subspaces.

(1) The half integer

s(V0, V1; Λ0, Λ1) = µ(Λ, V1) − µ(Λ, V0)

is independent of the choice of the path Λ : [a, b] → L(n) joining Λ0 =
Λ(a) with Λ1 = Λ(b). It is called the Hörmander index [6], [4].

(2) s(Λ0, Λ1; V0, V1) = −s(V0, V1; Λ0, Λ1).

(3) If Vj = Gr(Aj) and Λj = Gr(Bj) for symmetric matrices Aj and Bj then

s(V0, V1; Λ0, Λ1) = 1

2
sign (B1 − A1) − 1

2
sign (B0 − A1)

− 1

2
sign (B1 − A0) + 1

2
sign (B0 − A0).

Proof: Choose a path of symplectic matrices Ψ : [0, 1] → Sp(2n) such that
Ψ(0) = 1l and Ψ(1)V0 = V1. Consider the smooth map

[0, 1] × [a, b] → L(n) : (s, t) 7→ Λ(s, t) = Ψ(s)−1Λ(t).

The Maslov index around the boundary (relative to the Lagrangian subspace
V0) is zero. Hence

µ(Λ1, ΨV0) − µ(Λ0, ΨV0) = µ(Λ, V1) − µ(Λ, V0).

The number on the left depends only on the endpoints of the path Λ while
the number on the right is independent of the choice of Ψ. This proves (1)
and (2). To prove (3) choose Λ(t) = Gr(B(t)) where B(t) = (1− t)B0 + tB1.
2

4 Symplectic paths

For a path of symplectic matrices Ψ : [a, b] → Sp(2n) and a Lagrangian
subspace V define the Maslov index

µ(Ψ) = µ(ΨV, V ), V = 0 × R
n.
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The stratum

Spk(2n) = {Ψ ∈ Sp(2n) : dim (ΨV ∩ V ) = k}

is the preimage of Σk(V ) under the fibration Sp(2n) → L(n) : Ψ 7→ ΨV
of Remark 1.4. Thus Ψ ∈ Spk(2n) iff rank B = n − k and Ψ ∈ Sp0(2n)
iff det(B) 6= 0 in the block decomposition (2). The stratum Spk(2n) is a
submanifold of Sp(2n) of codimension k(k + 1)/2.

The Maslov index µ(Ψ) can be viewed as the intersection number of the
path Ψ with the Maslov cycle

Sp1(2n) = Sp(2n) \ Sp0(2n) =
n⋃

k=1

Spk(2n).

The Maslov index is a half-integer and is an integer if the endpoints Ψ(t0) and
Ψ(t1) lie in Sp0(2n). The set Sp0(2n) consists of those symplectic matrices
Ψ which admit a generating function S = S(x0, x1) in the sense that

(x1, y1) = Ψ(x0, y0) ⇐⇒ y0 = −
∂S

∂x0
, y1 =

∂S

∂x1
.

When we speak of crossings, regular crossings, etc for a curve of symplectic
matrices Ψ we mean the corresponding concept for the curve of Lagrangian
subspaces ΨV relative to the Maslov cycle Σ(V ). Since the last n columns of
Ψ form a Lagrangian frame for ΨV the crossing form Γ(Ψ, t) : ker B(t) → R

is given by
Γ(Ψ, t)(y) = −〈D(t)y, Ḃ(t)y〉

where B(t) and D(t) are as in (2).

Theorem 4.1 The Maslov index is characterized by the following axioms.

(Homotopy) Two paths which begin at Ψ0 and end at Ψ1 are homotopic
with end points fixed if and only if they have the same Maslov index.

(Zero) For each k every path in Spk(2n) has Maslov index zero.

(Catenation) If Ψ : [a, b] → Sp(2n) and a < c < b then

µ(Ψ) = µ(Ψ|[a,c]) + µ(Ψ|[c,b]).
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(Product) If n′+n′′ = n identify Sp(2n′)×Sp(2n′′) as a subgroup of Sp(2n)
in the obvious way. Then

µ(Ψ′ ⊕ Ψ′′) = µ(Ψ′) + µ(Ψ′′).

(Normalization) For a symplectic shear

Ψ(t) =

(
1l B(t)
0 1l

)

on the interval [a, b] the Maslov index is given by

µ(Ψ) = 1

2
sign B(a) − 1

2
sign B(b).

Proof: The homotopy axiom follows from the homotopy lifting property for
the fibration St(2n) ↪→ Sp(2n) → L(n) of Remark 1.4. The other axioms are
obvious. The proof that the axioms characterize the Maslov index requires
the following

Theorem 4.2 Each stratum Spk(2n) has two components.

Proof: Denote by Fk(n) the space of Lagrangian frames Z = (X, Y ) such
that rank X = n − k. Then there is a fibration

F → Spk(2n) → Fk(n)

whose fiber F is the space of symmetric n × n-matrices. We prove that the
space Fk(n) has two components. To see this we construct a map

ν : Fk(n) → Z2

called the parity. A Lagrangian frame Z = (X, Y ) ∈ Fk(n) is said to be in
normal form if

X =

(
X1 0
0 0

)
, Y =

(
Y1 0
Y3 Y4

)
,

where X1 ∈ R
(n−k)×(n−k) is nonsingular. The condition that the frame be

Lagrangian is that the matrix XT
1 Y1 ∈ R

(n−k)×(n−k) be symmetric. For any
Lagrangian frame in normal form define the parity ν(Z) by

(−1)ν(Z) = sign det(X1) det(Y4).

17



Two Lagrangian frames Z = (X, Y ) ∈ Fk(n) and Z ′ = (X ′, Y ′) ∈ Fk(n) are
called equivalent if there exist matrices L, M ∈ R

n×n such that

X ′ = LT XM, Y ′ = L−1Y M, det(L) > 0, det(M) > 0. (8)

Every Lagrangian frame is equivalent to one in normal form: first choose
L and M such that X ′ = LT XM is as required; then the condition on
Y ′ = L−1Y M is satisfied automatically. If Z and Z ′ are equivalent normal
forms related by (8) then

M =

(
M1 0
M3 M4

)
, L =

(
L1 L2

0 L4

)
,

hence
X ′

1 = LT
1 X1M1, Y ′

4 = L−1
4 Y4M4,

and hence ν(Z) = ν(Z ′). This shows that the map ν extends to a unique map
Fk(n) → Z2 which is invariant under the above equivalence relation. Now
any two equivalent Lagrangian frames lie in the same component of Fk(n).
Moreover, for k < n every normal form can be connected to one where Y = 1l
and either X1 = 1l or X1 = diag(1, . . . , 1,−1). If k = n then X = 0 and
(−1)ν(Z) = sign det Y . Hence ν(Z) characterizes the components of Fk(n).
2

Remark 4.3 If Z = (B, 1l) is a Lagrangian frame of a graph (of x as a
function of y) then the parity ν(B, 1l) is the number of negative eigenvalues
of the symmetric matrix B mod 2.

Corollary 4.4 Each stratum Σk(V ) is connected.

Proof: Each Lagrangian subspace Λ admits two Lagrangian frames of dis-
tinct parity. 2

Remark 4.5 For Ψ ∈ Spk(2n) define

ν(Ψ) = ν(B, D)
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where B and D are the matrices in the block decomposition (2). For a
symplectic shear (A = D = 1l and C = 0) the parity ν(Ψ) is the index of B
modulo 2. Notice that

Ψ ∈ Sp0(2n) =⇒ (−1)ν(Ψ) = sign det B,

Ψ ∈ Spn(2n) =⇒ (−1)ν(Ψ) = sign det D.

Remark 4.6 The open stratum Sp0(2n) is homotopy equivalent to O(n).
This follows from the exact sequence of the fibration

St(2n) → Sp0(2n) → Σ0(V ).

The base Σ0(V ) is contractible and hence Sp0(2n) is homotopy equivalent
to St(2n). Now St(2n) deformation retracts onto GL(n) (the set of all ma-
trices Ψ ∈ Sp(2n) with B = C = 0) and GL(n) deformation retracts onto
O(n). The two components of Sp0(2n) are distinguished by the sign of the
determinant of B in the block decomposition (2).

A homotopy Ψs : [a, b] → Sp(2n) of symplectic paths is called a stratum
homotopy if the ranks of the matrices Bs(a) and Bs(b) in the block decom-
position (2) are independent of s. Call a path of symplectic shears in Sp(2n)
neutral if it has Maslov index zero, its endpoints are in the open stratum
Sp0(2n), and n ∈ 4Z. Two paths Ψ0 and Ψ1 are called stably stratum ho-
motopic if there exist two neutral paths Ψ′

0 and Ψ′
1 such that Ψ0 ⊕ Ψ′

0 and
Ψ1⊕Ψ′

1 are stratum homotopic. This is an equivalence relation since a prod-
uct of neutral paths is neutral. For any symplectic path Ψ : [a, b] → Sp(2n)
define ka = ka(Ψ) and kb = kb(Ψ) by

Ψ(a) ∈ Spka
(2n), Ψ(b) ∈ Spkb

(2n)

and denote

νa = νa(Ψ) = ν(Ψ(a)), νb = νb(Ψ) = ν(Ψ(b)).

These four numbers are invariant under stable stratum homotopy. By the
homotopy, zero, and catenation axioms the Maslov index is invariant under
stratum homotopy. By the product axiom it is invariant under stable stratum
homotopy.
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Theorem 4.7 Two paths in Sp(2n) are stratum homotopic if and only they
have the same invariants µ, ka, kb, νa, νb. These invariants are related by

µ +
ka − kb

2
∈ Z (9)

and

µ +
ka − kb

2
≡ νa − νb (mod 2). (10)

Theorem 4.8 Two symplectic paths Ψ0 : [a, b] → Sp(2n0) and Ψ1 : [a, b] →
Sp(2n1) are stably stratum homotopic if and only if n1 − n0 ∈ 4Z and they
have the same invariants µ, ka, kb, νa, νb.

Theorem 4.9 Every symplectic path is stably stratum homotopic to a sym-
plectic shear.

Proof: We prove these three theorems in six steps.

Step 1: A symplectic shear satisfies (9), (10)

Assume first that Ψ(t) is a symplectic shear with right upper block B(t).
Let n−

b be the number of negative eigenvalues of B(b) and n+
b = n− n−

b − kb

be the number of positive eigenvalues. Similarly for B(a). Hence νa ≡
n−

a (mod 2) and νb ≡ n−
b (mod 2). Hence

µ = 1

2
sign B(a) − 1

2
sign B(b)

=
n+

a − n−
a

2
−

n+
b − n−

b

2

=
n − 2n−

a − ka

2
−

n − 2n−
b − kb

2

=
kb − ka

2
+ n−

b − n−
a .

Step 2: If n, ka, kb ∈ Z, νa, νb ∈ Z2, and µ ∈ R satisfy (9), (10), and

0 ≤ ka, kb ≤ n, |µ| < n − 1 −
ka + kb

2
(11)

then there exists a symplectic shear in Sp(2n) with these given invariants.

Take B(a) and B(b) to be diagonal matrices with diagonal entries 0, 1, −1
such that B(a) has ka zeros and n−

a minus signs with n−
a ≡ νa(mod 2) and
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similarly for B(b). Then the proof of step 1 shows that the path of symplectic
shears has Maslov index µ = (kb − ka)/2 + n−

b − n−
a . Every number µ which

satisfies (9), (10), and (11) can be obtained this way.

Step 3: Two paths in Sp(2n) are stratum homotopic if and only if they have
the same invariants µ, ka, kb, νa, νb.

Suppose two paths have the same invariants. By Theorem 4.2 we may
assume they have the same endpoints. Now use the homotopy axiom.

Step 4: We prove Theorem 4.8.

The indices are obviously invariant under stable stratum homotopy. Con-
versely, assume that the paths Ψ0 : [a, b] → Sp(2n0) and Ψ1 : [a, b] → Sp(2n1)
have the same invariants and n1 − n0 ∈ 4Z. Choose neutral extensions Ψ′

0

and Ψ′
1 such that n0 + n′

0 = n1 + n′
1. Then the paths Ψ0 ⊕ Ψ′

0 and Ψ1 ⊕ Ψ′
1

have the same invariants. By step 3 they are stratum homotopic.

Step 5: Every symplectic path Ψ is stably stratum homotopic to a symplectic
shear.

Choose a neutral path Ψ′ : [a, b] → Sp(2n′) with n′ > 2µ. Now use step 2
to find a symplectic shear in Sp(2n+2n′) with the same invariants as Ψ. By
step 3 this path is stratum homotopic to Ψ ⊕ Ψ′.

Step 6: Every symplectic path satisfies (9), (10)

Use step 5 and step 1. 2

Proof of Theorem 4.1 continued: The axioms assert that every putative
Maslov index is a stable stratum homotopy invariant. By Theorem 4.9 every
symplectic path is stably stratum homotopic to a symplectic shear. Hence the
normalization axiom shows that the putative Maslov index and the Maslov
index agree. 2

Proof of Theorem 2.4: By naturality, assume without loss of generality
that V = 0 × R

n. Then any lift Ψ : [a, b] → Sp(2n) of a Lagrangian path Λ :
[a, b] → L(n) under the projection Ψ 7→ Λ = ΨV has the same invariants µ,
ka, kb. By Theorem 4.7 they satisfy (9). The numbers ka and kb are obviously
stratum homotopy invariants. The Maslov index µ is by the homotopy, zero,
and catenation axioms. Now assume that the Lagrangian paths Λ0 and Λ1

have the same invariants µ, ka, kb. By Corollary 4.4 we may assume that
they have the same endpoints. Now use the homotopy axiom. 2
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Remark 4.10 Equation (9) shows that the Maslov index of a symplectic
loop is an even integer. This follows also from the exact sequence of Re-
mark 1.3.

Corollary 4.11 (Homotopy with a free end) Two curves Ψ0 and Ψ1 in
Sp(2n) with Ψj(a) = 1l and Ψj(b) ∈ Sp0(2n) are homotopic within this class
if and only if they have the same Maslov index.

Proof: ka = 0, νa = 0, kb = n. Hence (9) shows that that νb(Ψ0) = νb(Ψ1)
whenever µ(Ψ0) = µ(Ψ1). 2

Corollary 4.12 If Ψ(a) = 1l and Ψ(b) ∈ Sp0(2n) then µ(Ψ) + n/2 ∈ Z and

(−1)µ(Ψ)+n/2 = sign B

where B is as in (2).

Proof: Theorem 4.7 and Remark 4.5. 2

Let Λ0, Λ1 : R → L(n) be Lagrangian paths with transverse endpoints.
Choose orientations of Λ0 and Λ1 and define the relative intersection
number ε(Λ0, Λ1) = 1 if the orientations R

2n induced by the two splittings
Λ0(a) ⊕ Λ1(a) and Λ0(b) ⊕ Λ1(b) agree; otherwise define ε(Λ0, Λ1) = −1.

Corollary 4.13 For Λ0 and Λ1 as above

(−1)µ(Λ0,Λ1) = ε(Λ0, Λ1).

Proof: Choose a symplectic path Ψ : [a, b] → Sp(2n) such that Ψ(t)Λ0(t) =
Λ1(t). By Theorem 4.7

(−1)µ(Λ0,Λ1) = ε(µ(Ψ))

= (−1)ν(Ψ(b))−ν(Ψ(a))

= sign det B(a) · sign det B(b)

= ε(Λ0, Λ1).

Here B(t) is as in (2) and the last but one equality follows from Remark 4.5.
To prove the last equality assume Λ0(t) = 0 × R

n so that the matrix Z(t) =
(B(t), D(t)) is a Lagrangian frame of Λ1(t) where D is also as in (2). 2
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5 Other Maslov indices

For two matrices Ψ21 and Ψ10 in Sp0(2n) the define the composition form

Q(Ψ21, Ψ10) = B−1
21 B20B

−1
10

where Ψ20 = Ψ21Ψ10 and Bkj is the right upper block in the decomposition (2)
of Ψkj. In [11] the composition form is related to the boundary terms that
arise in the calculus of variations. An alternative formula for the composition
form is

Q(Ψ21, Ψ10) = B−1
21 A21 + D10B

−1
10 . (12)

Let S̃p(2n) denote the universal cover of Sp(2n). Think of an element of
S̃p(2n) covering Ψ as a homotopy class (fixed endpoints) of paths Ψ̃ : [0, 1] →
Sp(2n) with Ψ̃(0) = 1l and Ψ̃(1) = Ψ. Denote by S̃pk(2n) the preimage of
Spk(2n) under the covering map. The following theorem is essentially due to
Leray [8], p.52.

Theorem 5.1 The restriction of the Maslov index to S̃p0(2n) is the unique
locally constant map µ : S̃p0(2n) → n/2 + Z such that

µ(Ψ̃20) = µ(Ψ̃21) + µ(Ψ̃10) + 1

2
sign Q(Ψ21, Ψ10) (13)

whenever Ψ̃20 = Ψ̃21Ψ̃10 and Ψ̃kj covers Ψkj.

Proof: We first prove that the Maslov index satisfies (13). Assume without
loss of generality that Ψ̃10(t) is constant for t ≥ 1/2 and Ψ̃21(t) = 1l for
t ≤ 1/2. Denote µkj = µ(Ψ̃kj). Then

µ20 = µ10 + µ(Ψ̃21Ψ10V, V )

= µ10 + µ(Ψ10V, Ψ̃−1
21 V )

= µ10 + µ21 − µ(V, Ψ̃−1
21 V ) + µ(Ψ10V, Ψ̃−1

21 V )

= µ10 + µ21 + µ(Ψ̃−1
21 V, V ) − µ(Ψ̃−1

21 V, Ψ10V )

= µ10 + µ21 + s(Ψ10V, V ; V, Ψ−1
21 V ).

The last equality follows from Theorem 3.5. If the matrices Ψkj are written
in block form as in (2) then

s(Ψ10V, V ; V, Ψ−1
21 V ) = 1

2
sign Q, Q = B−1

21 B20B
−1
10 .
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To see this take the formula of Theorem 3.5 (3) with A0 = −B10D
−1
10 , A1 =

B0 = 0, B1 = A−1
21 B21 and use the signature identity of Lemma 5.2 below

with A = A0 and B = −B1. In these expressions for Aj and Bj the signs are
reversed because the Lagrangian subspaces are graphs of x over y.

To prove uniqueness let ρ : Sp0(2n) → Z be the difference of the Maslov
index and a putative Maslov index. Then ρ is a homomorphism wherever
defined. Take a one parameter subgroup t 7→ Ψ(t) of Sp(2n) which passes
through every component of S̃p0(2n) and hits the Maslov cycle when t is an
integer. Then ρ ◦ Ψ defines a ‘homomorphism’ from R \ Z → Z. Any such
homomorphism vanishes identically. 2

Lemma 5.2 (The signature identity) Suppose A and B are real sym-
metric matrices and A, B, A + B are nonsingular. Then

sign A + sign B = sign (A + B) + sign (A−1 + B−1).

Proof: The matrices A, B and A + B are nonsingular if and only if the
path A(t) = A+ tB of symmetric matrices has only regular crossings. Hence
the spectral flow of this path is given by

1

2
sign (A + B) − 1

2
sign A =

∑

t

sign PtBPt.

Here the sum is over all numbers t ∈ (0, 1) such that det(A+ tB) = 0 and Pt

denotes the orthogonal projection onto ker(A + tB). The analogous formula
for the path A−1 + t−1B−1 on the interval ε ≤ t ≤ 1 is

1

2
sign B − 1

2
sign (A−1 + B−1) =

∑

t

sign QtB
−1Qt.

where Qt is the orthogonal projection onto ker(A−1 + t−1B−1). Since
ker(A−1 + t−1B−1) = B ker(A + tB) the right hand sides agree.

Here is an alternative proof. The symmetric matrices

M =

(
A 1l
1l D

)
, N =

(
D 1l
1l A

)

have the same signature. (They are similar.) The identity

PMP T =

(
A 0
0 D − A−1

)
, P =

(
1l 0

−A−1 1l

)
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shows that the signature of M is sign A+sign (D−A−1). Interchange D and
A and use sign N = sign M to obtain

sign A + sign (D − A−1) = sign D + sign (A − D−1).

Now replace D by −B−1. 2

Remark 5.3 Let Ψ(t) = Ψ(t + 1) be a loop of symplectic matrices. Then
the Maslov index µ(Ψ) agrees with the usual definition:

µ(Ψ) =
α(1) − α(0)

π

where

α(t) = det(X(t) + iY (t)),

(
X −Y
Y X

)
= (ΨΨT )−1/2Ψ.

This can be proved as in Remark 5.4 below. It also follows from Remark 2.6
above.

Remark 5.4 Consider the symplectic vector space (R2n × R
2n, ω̄) with ω̄ =

(−ω) × ω. If Ψ(a) = 1l and det(1l − Ψ(b)) 6= 0 then the index

µCZ(Ψ) = µ(Gr(Ψ), ∆)

is called the Conley-Zehnder index [2], [13]. This index is an integer and
satisfies

(−1)µ(Ψ)−n = sign det(1l − Ψ(b)).

This number is the parity of the Lagrangian frame (1l, Ψ(b)) for the graph
of Ψ(b). That our definition agrees with the one in [2] and [13] follows from
the homotopy invariance, the product formula, and by examining the case
n = 1. The path

Ψ(t) =

(
cos t − sin t
sin t cos t

)
, 0 ≤ t ≤ ε,

has Conley-Zehnder index µCZ(Ψ) = 1 when ε > 0 is small. To see this
with our definition choose a Lagrangian splitting R

2 × R
2 = V ⊕ W where
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V = ∆ and W = 0 × R × R × 0. (Warning: The sign of the symplectic form
on the first factor R

2 × 0 is reversed.) Given v̄ = (x0, y0, x0, y0) ∈ V choose
w̄(t) = (0, η(t), ξ(t), 0) ∈ W such that v̄ + w̄(t) ∈ Λ(t) = Gr(Ψ(t)). This
means that

x0 + ξ(t) = x0 cos t − (y0 + η(t)) sin t, y0 = x0 sin t + (y0 + η(t)) cos t.

Differentiate this identity at t = 0 and use ξ(0) = η(0) = 0 to obtain η̇(0) =
−x0 and ξ̇(0) = −y0. Hence the crossing form at t = 0 is given by

Γ(Gr(Ψ), ∆, 0)(v̄) =
d

dt

∣∣∣∣∣
t=0

ω̄(v̄, w̄(t))

= −x0η̇(0) − ξ̇(0)y0

= x2
0 + y2

0.

This quadratic form has signature 2.
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d’action et indice des systèmes Hamiltoniens, Bull. Soc. Math. France
115 (1987), 361–390.

27


