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DUSA MCDUFF AND DIETMAR A. SALAMON

Abstract. The most substantive change here is to the proof of Theorem
6.2.6 (ii): the previous argument did not handle transversality quite correctly.
We have listed some other smaller corrections. We intend to update this file
from time to time and so welcome further comments.

p 20, line 12–14: Replace the sentence beginning: A smooth map u : Σ → M
is conformal . . . by: “Every J-holomorphic curve u : Σ → M is conformal with
respect to gJ , i.e. its differential preserves angles, or, equivalently, it preserves
inner products up to a common positive factor. The converse holds when M has
dimension two.”

p 48, line 2: The second minus sign should be plus.
pp 102/103: Simplify the proof of Step 3 (the old proof was correct but this one
is shorter and more elegant):

Step 3. We prove the identity

(1) lim
R→∞

lim
ν→∞

E(uν ;BRδν ) = m0.

By definition of m0 there is a sequence εν such that

(2) lim
ν→∞

E(uν ;Bεν ) = m0, lim
ν→∞

εν = 0.

More precisely, for every ` ∈ N, there exists ε` ∈ (0, 1/`) and ν` ∈ N such that

|E(uν ;Bε`
) −m0| ≤ 1/`

for ν ≥ ν`. Suppose, without loss of generality, that ε`+1 < ε` and ν`+1 > ν` for
every `. Then the sequence εν , defined by εν := ε` for ν` ≤ ν < ν`+1, satisfies (2).
(Note that we may be unable to choose εν so that E(uν ;Bεν ) is precisely m0

because the sequence uν : Br → M may consist of maps with energy less than m0

converging away from 0 to a constant.) Since Rεν → 0 for every R ≥ 1, we also
have limν→∞ E(uν ;BRεν ) = m0 and hence

(3) lim
ν→∞

E
(
uν, A(δν , Rεν)

)
= δ/2

for every R ≥ 1. We consider two cases.
If δν/εν is bounded away from zero then there is a constant R > 0 such that

Rδν ≥ εν for ν sufficiently large. Hence E
(
uν ;BRδν

)
≥ E

(
uν ;Bεν

)
for large ν and

so (1) follows from (2).
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If δν/εν → 0 then, by (3) and Lemma 4.7.3 with eT = R ≥ 2, we have

lim
ν→∞

E
(
uν ;A(Rδν , εν)

)
≤

c

R2µ
lim

ν→∞
E

(
uν ;A(δν , Rεν)

)
≤

cδ

2R2µ
.

Hence, by (2),

lim
ν→∞

E(uν ;BRδν ) ≥ m0 −
cδ

2R2µ

and (1) follows by taking the limit R → ∞. This proves Step 3.

p 107, line 3: Every sequence ... has a subsequence which converges ...

p 119, line 15: Replace duν(z) : C → Tu(z)M by duν(z) : C → Tuν(z)M .

p 128: The last sentence before Step 4 should read: “Now (5.4.5) follows by taking
the limit ε→ 0. This proves Step 3.”

p 151/152: Change the proof of Theorem 6.2.6 (ii), starting with line -6 on page
151, as follows.

Now consider the projections

p` : M∗({Aα};J
`) → J `, π` : M̃∗

0,T ({Aα};J
`) → J `.

These are Fredholm maps of indices

index(p`) = 2n(1 + e(T )) + 2c1(A), index(π`) = µ(A, T ) + dimGT .

Hence, by the Sard–Smale theorem A.5.1, the set J `
reg(T, {Aα}) of common regular

values of p` and π` is of the second category in J ` for ` sufficiently large. Moreover,
an almost complex structure J ∈ J ` is a common regular value of p` and π` if and
only if it satisfies the conditions of Definition 6.2.1

Now, for every K > 0, consider the subset M∗
K({Aα};J

`) ⊂ M∗({Aα};J
`) of

all tuples (u, J) ∈ M∗({Aα};J
`) that satisfy

‖duα‖L∞ ≤ K

and

inf
ζ∈S2\{zα}

d(uα(zα), uα(ζ))

d(zα, ζ)
≥

1

K
, inf

ζ∈S2

d(uα(zα), uβ(ζ)) ≥
1

K

for every α ∈ T , β ∈ T \{α}, and some collection of points {zα}α∈T in S2. Likewise,
let ZK(T ) ⊂ Z(T ) be the set of all tuples z ∈ Z(T ) that satisfy

d(zαβ , zαγ) ≥
1

K
, d(zi, zj) ≥

1

K
, d(zαβ , zi) ≥

1

K

for all α, β 6= γ, i 6= j with αEβ, αEγ, and αi = αj = α, and denote

M̃∗
0,T ;K({Aα}; J) := M̃∗

0,T ({Aα}; J) ∩

(
M∗

K({Aα};J
`) × ZK(T )

)
.

Then the projections

p`
K : M∗

K({Aα};J
`) → J `, π`

K : M̃∗
0,T ;K({Aα};J

`) → J `

are proper Fredholm maps and so the set J `
reg,K(T, {Aα}) of common regular values

of p`
K and π`

K is open and dense in J ` for ` sufficiently large. By the same reasoning
the set

Jreg,K(T, {Aα}) := J `
reg,K(T, {Aα}) ∩ Jτ (M,ω)



is open in Jτ (M,ω). Moreover, since J `
reg,K(T, {Aα}) is dense in J ` for ` sufficiently

large it follows as in the proof of Theorem 3.1.5 that Jreg,K(T, {Aα}) is dense in
Jτ (M,ω). Hence the set

Jreg(T, {Aα}) =
⋂

K>0

Jreg,K(T, {Aα})

is a countable intersection of open and dense sets in Jτ (M,ω). This proves (ii).

p 160: The condition “F (W ) is compact” is needed in the definition of bordant
pseudocycles.

p 161, before Lemma 6.5.5: Replace “dim M” by “dim X”.

p 251: The condition
∫

M
Htω

n = 0 should be mentioned in the construction of
Remark 8.2.11 (i).

p 272/273: The condition
∫

M
Htω

n = 0 is required in Corollary 8.6.10. It is
used in the last displayed equation of the proof which refers to the construction of
Remark 8.2.11.

p 285: Lemma 9.1.9 requires the assumption
∫

M Hλ
t ω

n = 0 for all t and λ.

p 340: The last line in the proof of Proposition 9.7.2 should read:

Hence the loop t 7→ φ−1 ◦ ψt ◦ φ is smoothly isotopic to t 7→ ψt and preserves the
symplectic form ωλ. This proves the proposition.

p 356: The constant c0 in Proposition 10.5.1 depends not only on p but also on c.

p 373: The assertion of Step 2 should read: “For every ε > 0 there are positive

constants δ2 and ε2 such that, for every (δ,R) ∈ A(δ2), the following holds...“

p 378/9: The proof of Step 4 should read: “First choose ε1 > 0 such that the
assertion of Step 1 holds. Then choose ε2 > 0 and δ2 < δ0(c) such that the
assertion of Step 2 holds with this constant ε1. Finally, choose ε3 > 0 and δ3 < δ2
such that the assertion of Step 3 holds with this constant ε2. Now...”

p 379/381: Replace S0 by S0 in Theorem 10.8.1 (twice), Remark 10.8.2 (once),
and in equation (10.8.1) (once).

p 392: Add the following remark after Example 11.1.4 and before Remark 11.1.5.
The notation eA := φ(δA) ∈ Λ is meaningful only for A ∈ Keff(M,ω). However,

in Example 11.1.4 (i-vii) the homomorphism φ : Γ(M,ω) → Λ extends naturally
to the group ring of H2(M) and then the notation eA := φ(δA) ∈ Λ is meaningful
for every A ∈ H2(M). (In some cases the restriction c1(A) ≥ 0 is required.) In
Example 11.1.4 (ii-iv) we have

ι(eA) =

{
1, if A = 0,
0, otherwise,

and Example 11.1.4 (i), (v), (vi) we have

ι(eA) =

{
1, if c1(A) = ω(A) = 0,
0, otherwise.

These two formulas agree if we restrict attention to classes A ∈ Keff(M,ω).

p 393: At the end of Remark 11.1.6 the sign # is missing in the finiteness condition.

p 394: Add the following remark before Remark 11.1.7.



In the notation of Remark 11.1.6 the quantum product of two quantum coho-
mology classes a =

∑
A aA ⊗ eA and b =

∑
B bB ⊗ eB is

a ∗ b =
∑

A,B,C,ν,µ

GWM
C,3(aA, bB, eν)gνµeµ ⊗ eA+B+C

and the pairing (11.1.4) is

〈a, b〉 =
∑

A,B

ι(eA+B)

∫

M

aA ^ bB = α(a ∗ b), α(a) :=
∑

A

ι(eA)

∫

M

aA.

Here the classes aA are not required to have pure degree and the integral over M is
understood as the integral of the component in degree 2n. (For the notation ι(eA)
see the Remark after Example 11.1.4.)

p 404, line 7: Replace ε(ν) = r(r + 1)/2 by ε(ν) = (−1)r(r+1)/2.

p 421: In line 4 from below it should read deg(u) = 〈x1, L〉 = 1.

p 443, line -6: The displayed formula and subsequent text should read

α(at) :=

∫

M

at = tN ∈ C, at :=
∑

i

tiei.

The corresponding pairing can be written in the form (11.1.4) with ι equal to the
identity map from Λ = C to R = C. Hence Proposition 11.1.9 shows that H is a
Frobenius algebra over C. If we must use ...

p 447, line 7: Replace (11.5.3) by (11.5.6). and on line -15 replace gj by ej.

p 454, Rmk 12.1.1: Replace “Cohen–James–Segal” by “Cohen–Jones–Segal”.

p 457: The discussion uses nonexistence of holomorphic spheres with negative
Chern numbers for generic 2-parameter families of almost complex structures (in
the proof that Φαβ is independent of the homotopy from Jα to Jβ used to define it).
This holds only under the strong semipositivity assumption (8.5.1). If one wants
to prove the Arnold conjecture in the general semipositive case with the methods
described in the book, then one has to fix a generic almost complex structure J
once and for all, and then construct Floer homology groups that are independent
of H but, apriori, might depend on J . The best way around this subtlety would be
to assume (8.5.1) and allow J to depend on t.

p 509: Refer to “Abraham–Robbin, Transversal Mappings and Flows, Benjamin,
1970” for the proof of Sard’s theorem with sharp differentiability hypotheses. This
doesn’t follow from the proof in Milnor’s book.

p 512: The proof of Exercise B.1.2 (ii) is surprisingly nontrivial. The hard part
is to prove that, if u ∈ W 1,p(Ω) and v ∈ W 1,∞(Ω), then the weak derivatives of
uv are given by the Leibnitz rule ∂i(uv) = (∂iu)v + u(∂iv). These functions are
obviously in Lp and the result then follows by induction. The proof of the Leibnitz
rule requires Proposition B.1.4. Prove the result first when u is smooth and then
approximate u on a compact subset of Ω by a sequence of smooth functions.

p 513, line 1/2: Replace “a unit vector ...” by “a nonzero vector ξ ∈ Rn, a
constant δ > 0, and a Lipschitz continuous function f : ξ⊥ → R such that f(0) = 0,
|f(η)| < δ for |η| ≤ δ, and”.



p 520, lines 1-3: Replace the first three lines by the text. “n times with m = n−1.
In the kth step we integrate over xk and obtain

∫
|u|n/(n−1) dx1 · · · dxk

≤

k∏

i=1

(∫
|∂iu|dx1 · · · dxk

)1/(n−1) n∏

i=k+1

(∫
|∂iu| dx1 · · · dxkdxi

)1/(n−1)

.

(where the kth factor doesn’t depend on xk). With k = n this gives ...”

p 522: In Propositions B.1.21 and B.1.22 assume that Ω ⊂ Rn is bounded.
The hint in the proof of Proposition B.1.22 only works for functions in C1(Ω̄).

To deal with general functions u ∈ W 1,p(Ω) one can argue as follows. Assume that
u vanishes on the boundary and extend u to all of Rn by u(x) := 0 for x ∈ Rn \Ω.
Then the extended function is in W 1,p(Rn). To see this one can approximate u on
Ω̄ by a sequence of smooth functions uj : Ω̄ → R, using Proposition B.1.4. Then it
follows from Proposition B.1.21 that uj |∂Ω converges to zero in Lp(∂Ω). Hence it
follows from the divergence theorem that

∫

Ω

(
u(∂iφ) + (∂iu)φ

)
= lim

j→∞

∫

Ω

(
uj(∂iφ) + (∂iuj)φ

)
= lim

j→∞

∫

∂Ω

νiujφ = 0

for every test function φ ∈ C∞(Ω̄) (and not just for φ ∈ C∞
0 (Ω)). This proves that

the extended function u belongs to W 1,p(Rn). Since u vanishes outside of Ω we can
now approximate u by a sequence in W 1,p(Ω) which vanishes near ∂Ω and hence

belongs to W 1,p
0 (Ω).

p 529: In the assertion of Step 2 (ii) (and in the proof of Step 3) replace Q by
B :=

⋃
iQi. Replace the proof of Step 2 by the following argument.

For k ∈ Zn and ` ∈ Z denote

Q(k, `) :=
{
x ∈ Rn | 2−`ki ≤ xi ≤ 2−`(ki + 1), i = 1, . . . , n

}
.

Let Q := {Q(k, `) | k ∈ Zn, ` ∈ Z} and Q0 ⊂ Q be the set of all Q ∈ Q satisfying

tVol(Q) < ‖f‖L1(Q)

and

Q ( Q′ ∈ Q =⇒ ‖f‖L1(Q′) ≤ tVol(Q′).

Then every decreasing sequence of cubes in Q contains at most one element of Q0.
Hence every Q ∈ Q0 satisfies assertion (i) and any two cubes in Q0 have disjoint
interiors. Now let

B :=
⋃

Q∈Q0

Q.

Then

x ∈ Rn \B, x ∈ Q ∈ Q =⇒
1

Vol(Q)
‖f‖L1(Q) ≤ t.

(Otherwise take a maximal cube Q ∈ Q that satisfies tVol(Q) < ‖f‖L1(Q) and

contains x. This cube would belong to Q0 and so x ∈ B.) Thus we have proved that,
for every x ∈ Rn \B, there is a sequence of decreasing cubes Q` ∈ Q containing x
such that Vol(Q`)

−1 ‖f‖L1(Q`)
≤ t. Hence it follows from Lebesgue’s differentiation

theorem that |f(x)| ≤ t for almost every x ∈ Rn \B. This proves Step 2.



p 560: The proof of equation (C.4.2) is wrong. To correct it, choose a family of
(nonlocal) Lagrangian boundary conditions for the operator D01 ⊕D12 connecting
F1 ⊕ F1 to the diagonal in Ē|Γ1

⊕ E|Γ1
.

p 587, line 12: Replace “αi = i” by “αi = α”.
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ETH-Zürich

E-mail address: salamon@math.ethz.ch

URL: http://www.math.ethz.ch/~salamon


