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Abstract : A new formulation for the Euler-Lagrange equation of the Will-
more functional for immersed surfaces in R™ is given as a nonlinear elliptic
equation in divergence form, with non-linearities comprising only Jacobians.
Letting H be the mean curvature vector of the surface, our new formulation
reads LH = 0, where L is a well-defined locally invertible self-adjoint elliptic op-
erator. Several consequences are studied. In particular, the long standing open
problem asking for a meaning to the Willmore Euler-Lagrange equation for im-
mersions having only L2-bounded second fundamental form is now solved. The
regularity of weak Willmore immersions with L?-bounded second fundamental
form is also established. Its proof relies on the discovery of conservation laws
which are preserved under weak convergence. A weak compactness result for
Willmore surfaces with energy less than 87 (the Li-Yau condition ensuring the
surface is embedded) is proved, via a point removability result established for
Wilmore surfaces in R™, thereby extending to arbitrary codimension the main
result in [KS3]. Finally, from this point-removability result, the strong com-
pactness of Willmore tori below the energy level 8 is proved both in dimension
3 (this had already been settled in [KS3]) and in dimension 4.

I Introduction

Not only do weak formulations of partial differential equations offer the pos-
sibility to enlarge the class of solutions to the space of singular solutions, but
they further provide a flexible setting in which the analysis of smooth solutions
becomes far more efficient. This is the idea which we will illustrate in this paper
by introducing a new weak formulation for Willmore surfaces.

Let X be a given oriented surface, and & be a smooth positive immersion of
3 into the Euclidean space R™, for some m > 3. We introduce the Gauss map
7i from ¥ into Gry,—2(R™), the Grassmanian of oriented (m — 2)-planes of R™,
which to every point x in 3 assigns the unit (m — 2)-vector defining the (m —2)-
plane Nq;(w)@(Z) orthogonal to the oriented tangent space Tq;(m)q)(E). The map
77 induces a projection map 7 ; namely, for every vector £ in Tig(m)(]Rm) , (&)
is the orthogonal projection of £ onto Nq;(m)q;(Z). Let now B, be the second
fundamental form of the immersion ®. It is a symmetric bilinear form on 7,
with values in NV, 5(z)<1)(2), explicitly given by B, = m; 0d?®. Using the ambient

scalar product in R™, we define the trace of éz, namely Here {ej, ez} is an
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arbitrary orthonormal basis of T,%. The mean curvature vector H(z) at a is

=

the vector in N(I;(E)CI)(E) given by

H(z) = %m(é@

Note that when m = 3, one finds H=H i1, where 7i is the unit normal vector,
and H = (k1 + k2)/2 is the average of the principal curvatures k1, k2 of the

-

surface at @(z).

Equipped with the aforementioned notation, the Willmore functional is the
Lagrangian

W(P(%)) ::/Z|ﬁ|2dvolg , (1.1)

where dvol, is the area form of the metric g induced on &(%) by the canonical
metric on R™.

This Lagrangian was seemingly first considered in the early twentieth century in
various works by Thomsen [Tho] and Schadow, and subsequently by Blaschke
[Bla]. It was reintroduced, and more systematically studied within the frame-
work of the conformal geometry of surfaces, by Willmore in 1965 [Wil]. The
Willmore functional also plays an important role in various areas of science. In
molecular biology, it is known as the Helfrich Model [Hef], where it appears as
a surface energy for lipid bilayers. In solid mechanics, the Willmore functional
arises as the limit-energy for thin-plate theory (see [FJM]). Finally, in general
relativity, the Lagrangian (I.1) appears as the main term in the expression of
the Hawking quasilocal mass (see [Haw] and [HI]).

The generic nature of the Willmore functional is partly due to its invariance un-
der conformal transformations of the metric of the ambient space. This amazing
property was first brought into light by White [Whi] in the case when m = 3;
and it was subsequently generalized by B.Y. Chen [Che].

In the present paper, we are interested in studying the critical points of (I.1)
for perturbations of the form P+ tg , where E is an arbitrary smooth map on X
into R™. These critical points are known as Willmore surfaces. The aforemen-
tioned property of the Willmore functional guarantees that Willmore surfaces
remain Willmore through conformal transformations of R™. Clearly, any min-
imal surface, i.e. one for which H = 0, is a Willmore surface. In fact, any
minimal surface realizes an absolute minimum of W. Many more Willmore sur-
faces are known, and works specialized with producing such surfaces are profuse
(see for examples [Wil2] and [PS]).
Willmore, in the case m = 3, and thereafter Weiner [Wei], for general m, es-
tablished that Willmore surfaces satisfy an Euler-Lagrange equation!. Prior to
stating this equation, we need to introduce some notation. Given any vector
W in N(I;(z)tf)(z) , consider the symmetric endomorphism AY of T,% satisfying

g(AT(X),Y) = B,(X,Y) - @, where - denotes the standard scalar product in
R™ | for every pair of vectors X and Y in 7,%. The map A, : @ — AY is a

lthis equation was allegedly already known to Thomsen, Schadow, and Blaschke; thus
several decades before Willmore and Weiner “revived” it.



homomorphism from N, 5(96)(5(2) into S¢X,, the linear space of symmetric endo-

morphisms on T,Y. We next define A, =tA,0A, , which is an endomorphism

of N(f)(z)tf(Z). If {1, is an orthonormal basis of T, %, and if L is a vector

in Ng, ®(X), then it is readily seen that A(L) = 3,  Bo(&,€)) Ba(@, &) L.
With this notation, ® is a smooth Willmore immersion if and only if it satisfies
Euler-Lagrange equation

A H-2HP? H+AH)=0 (1.2)

where A is the negative covariant Laplacian for the connection D in the normal
bundle N®(X) derived from the ambient scalar product in R™. Namely, for
every section o of N®(X), one has Dgo = (0. X). Note that when m = 3,
since H = H i, (1.2) becomes

AJH+2H (H?-K)=0 (1.3)

where Ay is the negative Laplace operator for the induced metric g on 5(2),
while K is the scalar curvature of (3(%), g).

Despite their elegant aspect, (I.2) and (I.3) yield challenging mathematical
difficulties. Observe indeed that the highest order term A, A in (1.2) (resp.
Ay H in (1.3)) is nonlinear, since the metric g defining the Laplace operator
depends on the immersion $. One further difficulty is embodied by the “incom-
patibilty” between the Euler-Lagrange equations (I1.2)-(I.3) and the Lagrangian
(I.1). More precisely, the minimal regularity assumption ensuring that the La-
grangian (I.1) is finite, namely that the second fundamental form B be square-
integrable on @(E), is insufficient for the nonlinearities in the equations (I1.2)
and (L.3) to have a distributional meaning: the expression |H|? H requires at
least that H be in L3.

Recently, the author proved in [Ril] that any Euler-Lagrange equation aris-
ing from a two-dimensional conformally invariant Lagrangian with quadratic
growth (e.g. the harmonic map equation into a Riemannian submanifold and
the prescribed mean curvature equation) can be written in divergence form.
This feature has numerous consequences for the analysis of the Euler-Lagrange
equation. It allows in particular to extend the set of solutions to subspaces of dis-
tributions with very low regularity requirements. The results developed in [Ril]
hinted that they could be extended to other conformally invariant equations
such as the harmonic map equations into Lorentzian manifolds. Considering
in addition the correspondence established by Bryant [Bry] between Willmore
surfaces in R? and harmonic maps into the Minkowski sphere S*! C R*!, the
author found a strong encouragement for seeking a divergence form for the Will-
more Euler-Lagrange equation (I.1).

We now state the first main result of this paper.

Theorem 1.1 The Willmore Euler-Lagrange Equation (1.2) is equivalent to

d (*g dH — 3%, wﬁ(dﬁ)) —dx (dﬁ/\ H) =0 (14)



where x4 is the Hodge operator on X associated to the induced metric g, and
where x is the Hodge operator on p-vectors in R™ defined as follows. If («, 3)
is a pair of p-vectors in R™, one has

ahf = {,f)*1

where (o, B) is the scalar product for the canonical metric in R™. In particular,
x1 is the positively oriented unit m-vector in R™.

In particular, a conformal immersion 3 from the flat disc D?> = % into R™
is Willmore if and only if

AH — 3 div(ri(VH)) + div (VLﬁ A ﬁ) —0 (L5)

where the operators A, div, V, and V+ are understood with respect to the flat
metric on D*. Namely, A = 02 + 92, div = tr oV, V = (04,,0,,), and

V= (=0sy,0uy)- O

Note that owing to the conformal invariance of our problem, it is sufficient
to prove (I.5). The more general version (I.4) may then be deduced through a
change of coordinates.

This first result justifies the following terminology: for a given map 7 from
D? into Gy,—2(R™), we shall denote the Willmore operator by Lz, which is the
operator that to a function @ from D? into R™ assigns

L = AT — 3 div(m7(VW)) + div x (Vi Ab) . (1.6)

Although this is not difficult to verify, it is somewhat surprising that this elliptic
operator is self-adjoint: for any choice of map @ in W12(D?, Gr,,—2(R™)) and
for any choice of compactly supported maps @ and @ from D? into R™, there

holds:
/ U-Eﬁw’:/ LU0 . (L.7)
D2 D2

where L is the interior multiplication between g¢-vectors and p-vectors, with
q > p, producing (q — p)-vectors in R™ (for details, see [Fe] 1.5.1 and 1.7.5). For
every choice of ¢, p, and (m — ¢ + p)-forms, respectively «, 3, and v, we have:

(alB,7) = {a, B A7)
With this notation, we infer
div(mz (VW) = A[RL(AlL(x))] — AL(VAL d(z)) — VAL(AL @) (z) . (1.8)

When the unit (m — 2)-vector 7 belongs to W12, the distribution £z given
by (1.6) is well-defined for any « in L?(D?). Thus our new formulation reconciles
the Euler-Lagrange equations (I.4) and (I.5) with the Lagrangian (I.1). Indeed,
the former have a distributional meaning under the least possible regularity



requirement for the immersion ®(¥); namely that the Gauss map be in W2
with respect to the induced metric.

Before giving a weak formulation to Willmore immersions, we first introduce
the notion of Weak immersion with L?-bounded second fundamental form.

Definition I.1 [Weak immersions with L2-bounded second fundamen-
tal form] Let d be a W2 map from a two-dimensional manifold ¥ into R™.
® is called a weak immersion with locally L?-bounded second fundamental form
if for every x € X there exists an open disk D in X, a constant C > 0, and a
sequence of smooth embeddings Pk from D? into R™, such that

i)
HA($(D)) # 0

H?(DF(D)) < C < 400
/ |B¥? dvolx < sm
D 3

TN weakly in W2

where H? is the two-dimensional Hausdorﬁmeasure, B* is the second funda-
mental form associated to the embedding ®*, and g* denotes the metric on
®*(X) obtained via the pull-back by ®F of the induced metric. O

For example, W22 graphs in R? of maps from R? into R are weak immersions
with L?-bounded second fundamental form.

The following result was established by F. Hélein (cf. Theorem 5.1.1 in
[Hel]), thereby generalizing a result of T. Toro [Tol], [To2], and of S. Miiller
and V. Sverak [MS].

Theorem 1.2 [Existence of local conformal coordinates for weak im-
mersions| Let ® be a weak immersion from a two-dimensional manifold ¥ into
R™ with L?-bounded second fundamental form. Then for every x in X, there
exist an open disk D in X containing x and a homeomorphism W of D such
that ® o U is a conformal bilipschitz immersion. The metric g on D induced
by the standard metric of R™ is continuous in this parametrization. Moreover,
the Gauss map it of this immersion is in WH2(D, Gry,—o(R™)) relative to the
induced metric g. (I

We are now ready to define the notion of weak Willmore immersion with
L?-bounded second fundamental form.



Definition 1.2 [Weak Willmore immersions with L?-bounded second

fundamental form] A weak immersion o from a two-dimensional manifold 3
into R™ with L?-bounded second fundamental form is Willmore when

AH — 3 div(rz(VH)) + div* (viﬁ A ﬁ) —0 nD'(D? (L.9)

holds about every point x € ¥ in a conformal parametrization from the two-
dimensional disk D?, as indicated in Theorem I.2. The operators A, div, V,
and V* are as in Theorem I1.1. O

Observe that this definition is sensible, since, as previously noted, the expression
VH - 3n:(VH) + (Vi A H)

has a distributional meaning so soon as the Gauss map 7 lies in W2, Note
also that the notion of W22 Willmore graph in R? naturally ensues from Defi-
nition 1.2, .

We next state the second main result of the present paper.

Theorem 1.3 [Regularity for weak Willmore immersions] Let d be a
weak Willmore immersion from a two-dimensional manifold ¥ into R™ with
L2-bounded second fundamental form. Then <I_5(E) 1s the image of a real analytic
immersion. (Il

As we shall discover in the sequel, the following conservation laws play a
central role in proving the above regularity result.

Theorem 1.4 [Conservation laws for weak Willmore immersions] Let 3
be a weak Willmore immersion from the flat disk D? into R™ with L?-bounded
second fundamental form. Suppose that P is conformal. We let L be the map
from D? into R™ satisfying

—

VAL :=VH - 3n3(VH) + «(Via A H) . (1.10)

Then there holds B B
Vo.-V-L=0 (I.11)
and . . B B
VEAVIL =2 (-1)" V {*(ﬁI_H)} LV . (1.12)
Furthermore, denoting respectively by S and R th_’e scal_qr and thg 2—vect0_7:—val_yed
function on D? implicitly defined via VS := L -V® and VR := VO A L +
2 (=)™ {*(ﬁLﬁ)} LV®, one finds that

VIR = (—1)m ! *(ﬁovﬁ)—i—*ﬁ VS . (1.13)

Here o is the first order contraction between multivectors. It satisfies o @ § =
al_B when B is a 1-vector; and e (BA~v) = (e f) Ay + (—1)P1(xevy) A S
when (B and v are respectively any p-vector and any q-vector.

Let us note that (1.13) implies that on D? there holds

AR = (-1)""'xV'ie VR + V*(xii)- VS . (L.14)
g



Owing to the isotropy of the Fuclidean space, the operators A, x, L, and e
all commute with differentiation in D?. Accordingly, the identities (I.11) and
(I.12) express the vanishing of linear combinations of certain Jacobians. Thanks
to this very special structure, it will be possible to pass to the limit under weak
convergence of Willmore surfaces having uniformly bounded Willmore energies.
This observation also justifies the use of the term “conservation laws” to de-
scribe (I.11) and (I.12). Interestingly enough, it is shown in [BR] that these
conservation laws are in fact equivalent to the Willmore Euler-Lagrange equa-
tion (I.9). This remarkable feature enables in particular to infer that weak limits
of Willmore equations are themselves Willmore.

Equation (I.14) shows that the Laplacian of R arises as a linear combination
of Jacobians. With the help of Wente-type estimates (such as those described
n [Hel]), this important fact will be used in Section III to deduce that the
Gauss map 7 is continuous. In turn, the continuity of the Gauss map yields
the following e-regularity theorem?, which itself implies the regularity of weak
Willmore immersions stated in Theorem I.3.

Theorem 1.5 [e—regularity for weak Willmore immersions| Let P be a
weak Willmore immersion from the unit two-dimensional disk D? into R™ with
L% bounded second fundamental form. There exists a constant € > 0, indepen-
dent of cp with the following property. Let n be the Gauss map corresponding
to the weak immersion ®. We assume that ® is the bilipschitz parametrization
given by theorem 1.2. If

/ |Vii|* dvoly < e (I.15)
D2

then for every k € N, there is a positive constant Cy depending only on k, and
such that

”Vkﬁ”%xw%/z) < Cy / |Vii|? dvol, . (1.16)
Here D2/2 is the disk of radius 1/2 in the flat metric on D?. (I

Another fundamental task consists in describing the “boundary” of the mod-
uli space of closed Willmore surfaces with given genus and bounded Willmore
energy. To this end, one aims at describing the limiting behavior of sequences of
Willmore surfaces S,, with fixed topology and bounded Willmore energy. Mod-
ulo the action of the Mdbius group of conformal transformations of R™ (which
preserve the Willmore Lagrangian, and therefore the Willmore equation (1.4)),
it is always possible to fix the area of each S, to be equal to 1. Then, us-
ing a Federer /Fleming-type argument, a subsequence is extracted such that the
current of integration on S, converges for the Flat topology to some limiting
integral current of integration S (refer to [Fe] for the terminology on integral
currents). Because S, has a uniformly bounded Willmore energy and a fixed
topology, the L% norm (relative to the induced metric) of its second fundamental
form, and hence the W12 norm of the Gauss map over the surface, are bounded.
Calling upon Theorem 1.5, a classical argument of compactness concentration
allows to deduce that S, converges to S, in a suitable parametrization and in

2this result is established through different means in [KS1] for smooth Willmore surfaces.



the C*-topology, outside of finitely many points {p1,-- -, px}. This strong con-
vergence implies that S is a smooth Willmore surface a-priori outside of these
points. It then appears natural to ask whether these singular points are “remov-
able”. This is the content of the following theorem, which extends to arbitrary
codimension the main result in [KS3].

Theorem 1.6 [Point removability for Willmore immersions] Let d be
a continuous map from D? into R™ with <I_5(0) = xg. Assume that ® realizes
a finite-area Willmore immersion over D? \ {0} and that the W12 energy of
the Gauss map on D*\ {0} is bounded. Let p be the restriction to ®(D?) of
the two-dimensional Hausdorff measure H? in R™ weighed by the multiplicity
function from §(D2) into N which to each point in §(D2) assigns its number of
preimages under 3. Suppose that xo has density less than 2:

lim inf 7H(BT (;0))
r—0 mr

<2 . (1.17)

Then Q_S(DQ) is a CY-submanifold of R™ for every a < 1. Moreover, zfﬁ de-
notes the mean curvature vector of this submanifold, then there exists a constant
vector Hy such that H(xz) — Holog|x — xo| is a C%*-function on ®(D?). Here
|z — xo| denotes the distance in ®(D?) between x and xo. When Hy =0, ® is
an analytic Willmore immersion on the whole D?. (I

We remind the reader that Bryant [Bry] has produced counterexamples to the
above removability result when (I1.17) is weakened to

m
lim inf MLW =2 . (1.18)

r—0 r
Assuming the validity of Theorem 1.6 when m = 3, Kuwert and Schétzle were
able to establish the fact that the limit S of a sequence of smooth Willmore sur-
faces S, is again a smooth Willmore submanifold in R?, under the hypothesis
that the Willmore energy of each S, is less than 87 — ¢, for any fixed § > 0.
This last assumption ensures that S is a graph about each p;, ¢ = 1---k, and
that the residue ﬁo vanishes at every p;. A careful inspection of the argument
leading to these consequences (cf. page 344 in [KS3]) reveals that the restriction

to codimension 1 is in fact unnecessary.

The removability Theorem 1.6 yields the last main result of this paper.

Theorem 1.7 [Weak compactness of Willmore surfaces below 87| Let
m > 2 be an arbitrary integer, and let 6 > 0. Consider a sequence S,, C R™ of
smooth closed Willmore embeddings with uniformly bounded topology, unit area,
and Willmore energy W (S,,) bounded above by 81 — 0. Assume further that S,
converges weakly as varifolds to some limit S which realizes a non-zero current.
Then S is itself a smooth Willmore embedding. O

A theorem of Montiel® [Mon] states that any non-umbillic Willmore 2-sphere
in R* has Willmore energy larger than 87. This result along with an argument
from [KS3] (cf. pp. 350-351) may be combined to our removability theorem to
produce

3already known in R3 from the work of Bryant [Bry].



Theorem 1.8 [Strong compactness of Willmore tori with energy below
8] Let m = 3 or m = 4, and let 6 > 0 be arbitrary. The space of Willmore
tori embedded in R™ having Willmore energy less that 8w — § is compact — up
to Mobius transformations — under smooth convergence of compactly contained
surfaces in R™. O

This result extends to dimension 4 Theorem 5.3 from [KS3], which is established
in dimension 3.

A central role in the analysis of Willmore surfaces developed in this paper is
played by the following observation, which, for the sake of brevity, is presented
only for m = 3. Consider an L? map @ from D? into R3. We assume that it lies
in the kernel of the Willmore operator £, where 7 is some map in W12(D? §?2);
namely Lz = 0. We introduce the following Hodge decomposition:

Vi@ — 37y (Vi) = VA+ VB | (1.19)

with the boundary condition A = 0 on D2 Let {€1, &, €} be the canonical
basis of R3. Then A and B = Z?:1 B;¢; satisfy:

AA=VHAV R =0y, H A 0,,7 — 0y H A Oyt
3
AB; = 3div(rn (VD)) = SZ V(nin;) - Viw; (1.20)
j=1
3
=3 0y (niny) Opywy — Oy, (nimy) Dpywy
j=1

where @ = Y7 w; & and @ = 3.0, n; &. The system (1.20) bears a striking
feature: all of the involved nonlinearities are linear combinations of Jacobians!
Such a special algebraic structure plays a distinctive role in geometric analysis.
This was probably first discovered by Wente [Wen]. In [Hel], Hélein gives a
detailed account of the consequence borne by those “Jacobian structures”. In
the present work, we shall make extensive use of Wente-type estimates.

Final Remarks :

i) The analysis which we are developing in this paper points to a new direc-
tion for reaching a new proof of Simon’s result [Si2] on the existence of

embedded energy-minimizing Willmore tori in R™, for every m > 3 (see
[BR)).

ii) Our approach should be particularly helpful in the study of the Willmore
flow, as initiated in the works of Kuwert and Schétzle [KS1], [KS2], and
[KS3]. See also [Sim].

iii) Observe that the Hodge decomposition (1.19) applied to the mean curva-
ture vector H yields the system
AA=VHAV7
(L.21)
AB = —3VH -V*i



Since [, |VA]> + |VB|? = [, 4|VH|? + |H[? |V7i|?, optimal Wente-type
estimates applied to (I.21) should produce interesting lower bounds for
the Willmore energy of Willmore immersions of tori.

The paper is organized as follows. In Section 2, the conservation laws satis-
fied by Willmore surfaces (proof of Theorem 1.1) are established. In Section 3,
we give a proof of the regularity of weak Willmore immersions (Theorem 1.3).
The point-removability result for Willmore graphs (Theorem 1.6) is proved in
Section 4. Finally, the Appendix is devoted to the study of various intrinsic
properties of the Willmore operator Lz.
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II Conservation Laws for Willmore Surfaces

II.1 The Euler-Lagrange Willmore equation in divergence
form

This subsection is devoted to proving Theorem I.1.

Throughout this section, the operators V, V+, div, and A are understood
with respect to the flat metric on the unit 2-dimensional disk D? = {z €
C; |z| < 1}. Let ® be a smooth conformal embedding of the unit disk D2
into R”, and let X = &(D?). We introduce the function X via

o8
63@2

o8
axl

6/\:

where x; and x5 are the real and imaginary parts of the coordinate z on D?2.
Because of the topology of D?, the normal bundle to ¥ is trivial and there
exists therefore a smooth map 7(z) = (71(2), -, @m_2(2)) from D? into the
orthonormal (m — 2)-frames in R™ such that

{fi1(2), -+, im—2(2)} is a positive orthonormal basis to Nz 2

where Ng % = (T<f>(z) )+ is the (m — 2)-plane orthonormal to the tangent
plane T(I;(Z)Z. We denote by {é1,é>} the orthonormal basis of T(I;(Z)E given by

0P
8:@-

5}' = 6_)\

10



With this notation, the second fundamental form h, which is a symmetric 2-form
on T@(Z)E into N(I;(Z)E, may be expressed as

h=Y"he i, (&) ® (&) , with k= —e (%,aj) . (IL1)
a,i,j K

Hence the mean curvature vector H is

m—2 m—2

7 a = 1 «a a =

H=Y H", = 5 > (B + ) e (I1.2)
a=1 a=1

Let 7 be the (m — 2)-vector of R™ defined as i = 7y A --- A fia. Using the
operator x, whose definiton was recalled in the Introduction, we may identify
vectors and (m — 1)-vectors in R™. For instance, there holds:

—

*(ﬁ A\ €1) = €2 and * (ﬁ A 52) = 76_’1 . (113)
Since {1, €3, 71 - - - iyp—2} forms a basis for Tq;(z)]Rm, we have the expansion
m—2 2
Vita = Y (Viia, i) fig + > _(Vila, &) &
B=1 i=1
valid for every a = 1,---,m — 2. Consequently, it follows that
*(AAVEL) = (VEiig, 1) & — (VEiia, &) & . (IL.4)
Note that the symmetry of the second fundamental form (i.e. hf; = h$;) and

the conformality of ) imply

Ofa .\ (0
(6—951’62> = (5962 ,61) . (IL5)

Combining (I1.4) and (IL.5) thus yields

*(7 A V+7)

(%, o7
B 81'1 y €2 . N (9:02 s €2 -
B AP B T
a.’L'l ; €1 a$2 ; €1
- Oty . - % - (I1.6)
B 81'1 y €2 , N 81'1 ; €1 -
R (L
Oxa Oz

This implies
Vg 4 (7 A Vi)

-2 1 0 (IL.7)
=Y (Vi) fig — 2> H® e+ el .
=1 0 1

11
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Substituting the identity 8%.(5 = e € into the latter, we reach the important
equality

Vite + (i A Vi) = Z Vite,fig) g — 2HYV® . (IL.8)

Following the “Coulomb gauge extraction method” presented in the proof of
Lemma 4.1.3 from [Hel], we may choose a trivialization {fiy,- -+, 7,—2} of the
orthonormal frame bundle associated to our trivial bundle N¥ and satisfying

div(Vitg,g) =0 , ¥V 1<a,f<m—2 . (IL.9)
The identities (I1.8) and (I1.9) may be combined so as to produce:
div (Vita + (i A V'ii,))

m— (I1.10)
Z Vite,fig) - Vilg — 2VH® - V& — 2H* AD
On the other hand, an elementary classical computation gives
Ad =2 H . (I1.11)
Bringing altogether the two last identities, we obtain now
div (Viig +*( A V'iiy))
(I1.12)

Z Vila,iig) - Vilg — 2VH® - V® — 4e®* H* H

Multiplying throughout by H®, summing over a = 1,---,m — 2, and using the
expression for H* V& given in (I1.8), we infer that

m—2 m—2
> H® div (Viig + (i AV iia)) = > VH® - Viig
a=1 a=1
m—2
—% Y VH"-ii AV*il,
a1 (I1.13)
m—2 m—2
= > H®(Viia,iig) - Viig— > VH" - (Via,iig) iig
a,f=1 a,f=1
—4e> H* H

For our future needs, we find helpful to recast (I1I.13) in the form

m— m—2 m—2
Z “ Afig — Y VH® - Viig —x Y div (H* i A Vi)
a=1 a=1

a=1
m—2 m—2
= > H®(Vita,ilg) - Viig— > VH®"-(Vila,iig) iig (11.14)
a,f=1 a,f=1
m—2
~2% Y H* div (i AV'iia) —4e* H* H
a=1

12



We next develop a more “tractable” expression for * ZZ:f H* div (ﬁ A VJ-ﬁa).
To this end, we note first that (I1.4) yields

*div (i A Vi)
= (V4iii,, Vey) & — (Viil,, Véy) &
+(VEig, €1) - Véy — (Vg &) - Ve
(IL.15)

-2
(V ity itp) - (i1, Ver) & — (i, V) €]

I
3w 3
i

—

+ [(VLﬁa, 51) . (Véé, ﬁﬁ) — (VLﬁa, 52) . (Véi, ﬁﬁ)] ng
=1

On the other hand, the symmetry of h implies that

(Viita, €1) - (Véa, fig) — (Viiia, &) - (Vér, fig)
6902 1 6m1’nﬁ axl 1 a$27nﬁ

Olia z 9¢&; fAa) — 8& &

.’11'27 2 axlv 3 2 3

o diig .\ _ %aq

2) 1 81'1, 2

@ ) (22,) + (22,7

23 2 81'1’ 1

=éﬂ%%—ﬁ@—@%+%%}

+
FI&
Si

7

QJQ3
Q

m

(IL.16)

™y

7,
x

(
(

QJQa
Q
ml

§|2

2A Zha hﬁ 2)\ He Hﬁ

Bringing altogether (I1.15) and (I1.16) produces:
m—2
* Y H div (7 A Vi)
a=1

m—2
= Y H® (V'iia,iig) - [(fig, V&) & — (i, VEy) é1] (IL.17)

a,B=1
2)\ Z hoz hﬁ 2k |ﬁ|2 ﬁ
a,3,1,j
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Again for our future purposes, we recast the latter in the form

m—2

—2% Y H® div (i NV iia) —4e® |[HI” H
a=1
m—2

=2 3" H® (Viiia,ii) - (g, Vé1) & — (i, VEy) @] (IL.18)
a,B=1

—2e® N R b +4e® |HI* H

J
a,B,i,]

H is a section of NX. By definition, the covariant (negative) Laplacian of
H relative to the connection derived from the orthogonal projection 7z (with
respect to the standard scalar product in R™) on the fibers of NX satisfies

e AL H = mpdiv(mz(VH))
Introducing (I1.9), the latter may be recast as

ePALH =Y madiv (VH fi + H® (Vit, iig) i)

o

=Y AH" o +2) VH® - (Viia,iig) fig (IL.19)
[e] o,

+ Y HY(Vila,iig) - (Vitg, ii,) il

B,y

Demanding that the embedding & be Willmore is tantamount to assuming that
(I.2) holds (see [Weil]), which in our notation becomes

ALH+ > ngH HP g —2HP H=0 . (I1.20)

J
,3,0,8

In this case, we deduce from (II.18) that

m—2
~2% > H® div (i A Vi) — 4e* |H|* H
a=1
m=2 (I1.21)
=2 Y H* (V'ila,ilg) - [(fig, VEL) & — (i, V) &]
a,f=1
—|—2€2)‘ ALﬁ

Combining altogether (11.14), (I1.19), and (I1.21), we see that the conformal

14



embedding ® is Willmore if and only if there holds:

m—2 m—2 m—2
> H® Aiig — Y VH®-Viig —x 3 _ div (H* i A Vi)
a=1

a=1 a=1
m—2 m—2
= Y H®(Vila,ilg) - Viig — Y _ VH"-(Vila,iig) il
a,f=1 a,f=1
m—2
S o SN o - N 11.22
-2 Z H® (Vtiig,fig) - (g, VEL) & — (75, V) &1] ( )
a,B=1
+2) AH i +4% VH® - (Viia,iig) i
o a,f
+2 Y HY(Vily, iig) - (Viig, i) i,
a,B,y

Our next goal consists in showing that (I1.22) can be brought into divergence

form.
To this end, we first note that

(Vg ig) - [(7ig, VEL) & — (g, VEy) &]
ofs Ofa .\ (07 _\] .
(5ea)-(Grm) (5oa)] =

Oy L\ (9 -\ (95 \]
.’11'17 2 axlv B 8m2’ 2 1

Oy, 6,2)} & (11.23)
X
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Whence we have

m—2
+2 Y H® (Vila,iig) - [(Vilg, &) & + (Viig, &) é]
a,B=1

Next, it follows from (Vii,,7ig) = —(Viig, M) that

m—2
> H* H? (Viia,iig) - V=0
a,B=1

which is introduced into (I1.24) to yield

Z Vtita, iig) - (g, VEL) & — (iig, Vér) &]
a,f=
12 3" HO (Vita,fig) - (Viia, i) i,
a,B,y
Z V?’La,ng) Vﬁg
a,B=

(IL.24)

(I1.25)

(I1.26)

Upon substituting the latter into (II.22), we conclude that the conformal em-

bedding $ is Willmore if and only if

ST HO Afla— S VH - Viia -+ S div (H® 7 AV 7,
2 > D div ( i)

m—2
H® (Vila,iig) - Viig+2 Y AH® il

1 a=1

3
w

+
w

VH® - (Vitg, ilg) il

1Miim

[

Q
@

With the help of the condition (I1.9), we recast (I1.27) in the form

mz H® Aty — mz_: VH® - Viiy — *mz div (H* i AV*ii,)

m—2 m—2
=3div | Y H*(Viia,iig) fig| +2 >  AH® il
a,B=1 a=1

Let us note that
m—2
—xdiv Y H* i NV i = divs (Vi AH)

a=1

16
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and that

m—2 m—2
> H(Vila,iig) il = 7(VH) = Y VH%, . (I1.30)
a,B=1 a=1

These last two identities enable us to finally express the Willmore equation
(I1.28) in the desired divergence form; namely:

AH — 3 div(nz(VH)) + div * (viﬁ A ﬁ) -0 . (IL.31)

II.2 The proofs of the conservation laws (1.11) and (I.12),
and of the identity (I.13)

Assume that (I.9) holds on D? for a bilipschitz conformal immersion &. Consider
the map L from D? into R™ defined via

VAL :=VH —3mz(VH) + x(V*a A H) . (11.32)
A simple argument guarantees that Lis uniquely defined up to a multiplicative
constant.

Our first aim is to establish (I.11). Using again a local framing of the normal
and of the tangent bundles to the immersion, we have:

m—2
(VAN H) = * > HY Nacpiia NV Agsa fia Aty
B,7=1
m—2
=—% Y HY AV, (I1.33)
y=1
m—2
==Y H [(VV'iiy, &) & — (Viiy, &) é]
y=1
Accordingly, we find
m—2
VA ANH) VO =— " HY Vii,-V® . (I1.34)
y=1

Since clearly Wﬁ(Vﬁ ) - Vo = 0, we have thus proved that

m—2
VL. V®=VH-V&- > H"Vii, - V® . (I1.35)

y=1
On the other hand, the fact that 7., - Vo =0 implies:

m—2
VH-V®=)>"H'Vi, Vo . (11.36)

v=1

The desired identity (I.11) follows at once from substituting (I1.36) into (IL.35).

17



Our second aim consists in recovering identity (I.12). To this end, we first
note that

m—2 m—2
VOAVH =Y VH" V&N, + Y H VEAVi, . (I1.37)
y=1 y=1

Secondly, there holds

—3V® A m;(VH)
m—2 m—2
=3V Ams( Y VH -iiy) = 3V® Ama( ) | HY Vi) (I1.38)
y=1 y=1 '
m—2 m—2
=—3VOA Y VHY-ii, —3VOA > H7 (Viiy,ila) fia
y=1 a,y=1
And thirdly, using (I1.34), we find
m—2
VOA«(VIAAH) = =VOA D HY [(V'ity, &) & — (VViiy, &) &
~y=1
m—2
=Y m {((%zn.y,axl@) - ((%ln.y,am(l))} GNE =0 ,
y=1
(I1.39)

owing to the symmetry of the second fundamental form.
Bringing altogether (I1.37), (I1.38), and (I1.39) finally yields the desired

m—2 m—2
VOAVIL=-2)" VH" -V®Aiiy+ Y HY VP AVii,
=1 y=1
m—2
—3V® A HY (Vity, i) o
a;ﬂ ’ (IL.40)
m—2 m—2
=-2Y VH"-V®Aji,—2 > H' V®AVii,
y=1 y=1
= 2V AVH

We shall now compute the term* V(x(7L H))LV-®. For this, we first
observe that

m—2
ALH = (=1)""HY Aapy fia - (I1.41)
y=1

Hence there holds

*@LH) = (-1)" e Aey NH | (I1.42)

4the reader will find a rationale for looking at this particular term by considering the case
m = 3, whereby all of the necessary computations greatly simplify.
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thereby yielding:
(-1)m=3 v [*(ﬁl_ﬁ)} — @ ANGVH+VEANGANH+E AV NH . (11.43)

Next, we have that

—

, . oH o
(é’l/\é'g/\VH)I_VJ‘@: Pandl i (I g ane
6902 63@2

+eré) A 0H & (96, & ne
LN 9 9z, 2 1 A\ ez

(I1.44)
This last identity may further be simplified using the symmetry of the second

fundamental form. More precisely, (I11.44) becomes:

—

- - H H
(a A&y A VH) Lvid —eron 2L og 208
O Oz (11.45)
= V& AVH
On the other hand, there holds
. - 3 2\, 0% ¢ _\ 09
(Va /\é’g/\H)LVL‘I) =_ (—1 /\é’g/\H)l_— + (i /\@/\H)L—
r1 Oxo Oxo X1
€ - 0€; -
= e (—1,*2) BN+ LN H
X1 8561
m—2
oe1 . -
= e (a—zl’n,y) iy NH
~y=1
(IT.46)
and similarly
4 - & =\, 09 & =\, 0
(aAvggAH)Lv% = (an2AH)L= (A2 nH )L
6901 Hib) 6902 6901
oe. oe. -
by 2 o - A 2
=— — NH — NH
(6951’61) ! te 6902
m—2
08 . -
= Z e (a—u’n,y) iy A H
y=1
(I1.47)
Adding (I1.46) and (I1.47) together, we find that
(va A&y A ﬁ) LVid + (a A VeEy A H) LVid
e e e (I1.48)
1. 2 . = )
= e [(71’”7)4—(8—@’”7)} iy N H
y=1
=22 HAH=0
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We may now combine (I1.43), (I1.45), and (I1.48) to deduce the identity
(~1)™3 v [*(ﬁl_ﬁ)} LVi3 =VEAVH . (I1.49)
Upon introducing (I1.40) into the latter, we have proved that
VEAVLIL =2 (~1)" 2V [*(m_ﬁ)} LVid . (IL.50)
This is the desired result, thereby ending the proof of the conservation law (1.12).

In order to complete the proof of Theorem 1.4, there remains to establish
identity (I.13). To this end, we first note that

m—2
*(ALH) =% (Z(—m—l HY Nagry ﬁa> — (=)™ 3@ AnenH . (IL51)

y=1
From this, it follows at once that
*ALH)LVS = (1) 2V S AH . (I1.52)

Hence, from the defining identity for R, namely

— -

VR:=V®AL+2(-1)"[x(ALH)| AVS (11.53)

we find . o L
VR=VOANL+2V'OANH . (I1.54)

Using 7L V® = 0, we infer from (IL.54) that
TeVIR=—(ALL)AV*® 4+ 2(iLH)AVS . (IL.55)

Let us next introduce the decomposition I = N+T', where N = 7(L) is normal
to T,y ®(D?), while T'is contained in T, ®(D?). In particular, we thus have
il L =#ALN. Furthermore, there holds:

m—2
X [(m_ﬁ) A v%’} =5 | SN Ao T AVEE
ot (IL56)
= (-1)" Ve AN
A similar computation shows that
« [(ﬁl_ﬁ) A vé} — ()" VS AG . (IL57)
Combining (I1.55), (I1.56), and (I1.57) produces now:
(1) % [ﬁo VLR} =VOAN+2V+E A H
(I1.58)

=VR-VOAT
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We consider next the function S on D? defined through the identity V.S = LY.
Since T'=L- €, €1 + L - €5 €5, we derive easily

.88 a8
A - o
T=2" = . I1.59
€ 8361 e+ 8352 = ( )
This implies that
VOANT = —&1 ANé VS = —%it VIS . (11.60)

Finally, bringing altogether (I1.58) and (I1.60), we recover (1.13), thereby com-
pleting the proof of Theorem 1.4. O

III The Regularity of Weak Willmore Graphs

This section is devoted to the proof of the regularity result stated in Theorem I.5.

With the help of the results derived in the previous section, we shall first
demonstrate that the second derivative of the conformal immersion ® belongs
to the Lorentz space® L?*!; namely:

/0+<>o H”C €L ¢ |V2|(x) > u}‘% dp < +oo . (IIL1)

The fact that V2® lies in L2 implies in particular that the gradient of the Gauss
map 7 also belongs to L?1. A generalized version of the Sobolev Embedding
Theorem then shows that the Gauss map is continuous. The immersion thus
looks locally like a graph. Once this is established, we shall have the means to
obtain the e-regularity result stated in Theorem 1.5.

III.1 Proof of the fact that V2® lies in L?!

We begin by observing that the gradient of L belongs to L' H~*. From this, it
follows that L is in the space L**° (which is the Marcinkiewicz space L2-weak,
see [Ta2]). Thus, from (I1.53), we deduce that VR € L?°.

For the reader’s convenience, we recall a Wente-type estimate established
in [Hel] (cf. Theorem 3.4.5). Let a and b be two functions on D? such that
Va € L*»*(D?) and Vb € L?*(D?). Then there is a unique solution ¢ in
Wy ?(D?,R) satisfying

Ap=Va-V+th in D?
(II1.2)
=0 on dD?

Moreover, there exists a positive constant C, independent of a and b, such that

||V(pHL2(D2) S CllvaHLz,oo(Dz) ||VbHL2(D2) . (HI?))

San introduction to Lorentz spaces may be found in [Ta2].
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This result may be directly applied to (I.14) so as to conclude that VR € L2.
With the help of (I.13), we find similarly that VS € L2

The celebrated compensation compactness result by Coifman, Lions, Meyer,
and Semmes [CLMS] (see also Theorems 3.2.2 and 3.2.9 in [Hel]) may also be
applied to (I.14). It shows that V2R € L!. Scalar-multiplying (1.13) throughout

by i enables us to conclude that V.S € W' which follows from V2R e L
and 77 € W12,

Let us note next that (I1.54) gives:

OR 9% - 0%

—— =—_—ANL-2=—AH . I11.4
Ox1 Ox1 0xa ( )
Applying the interior product with é5 to this identity yields that
. OR - 0d  OR a8
2 H=—-—1L &+ (L &) —=—Lé&+—¢& . 1.5
€ (9:61 = + ( 62) 8961 8951 €2 + 8x2 “ ( )

By introducing our aforementioned findings, there follows that H e W' and
thus, in particular, that H € L*'. Using now (I1.11) and calling upon Theorem
3.3.3 from [Hel], we conclude at once that V2® belongs to L*!, as desired.

I11.2 Proof of Theorem 1.5

Suppose that ® is a conformal Willmore immersion with second derivative in
the Lorentz space L%!. We shall establish the e-regularity result stated in The-
orem L.5.

According to Definition 1.2, assuming that $ is a weak Willmore immersion is
tantamount to requiring that the mean curvature H satisfy (I1.9). Let us denote
by x a smooth cut-off function equal to 1 on D% /2 (the two-dimensional disk

of radius 1/2 centered on the origin) and compactly supported in D?. Since
L7zH =0, we have

La(xH)= 2div(Vyx H) — H Ax — 6 div(mz(H) V)
+3(H - Vi) -it-Vx 4 3(H - 1) - Vit - Vx (I1L.6)

—3Axma(H) — HAV*it-Vy

Let now

G1 = 2div(Vx H) — H Ax — 6 div(mz(H) V) — 3Axmz(H) (IT1.7)
and

Go=3(H - Vi) - iAiNx+3(H @) - Vit -Vx—HAV i -Vy . (IIL.8)

Observe that there holds

19152 (p2y < C \H? (IIL.9)

D2\D?,,
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and
G2l 21 (p2y < C/ |H||V#A| . (I11.10)
D2

D3,
Let @7 be the solution of (A.5) given by Lemma A.1 with § = g1; and let
¥y be the solution of (A.30) given by Lemma A.3 with § = G2 (refer to the

Appendix). These solutions satisfy the estimates

1
2
IVl <c| [ R (IIL11)
D\D?,,
and
HWQHLQ,wgc/ \H||V#t| < Ce? / |ﬁ|2] . (IIL12)
D\D?,, D\D?,,

We note that v := xﬁ—ﬁl — Uiy belongs to L2(D2), and that it satisfies L7;U = 0.
In addition, since  is compactly supported in D?, it follows that V# is the sum
of a compactly supported distribution in the interior of D? and of a function in
L%, The trace of ¥ on 0D? is therefore well-defined, and it is in fact equal to
Zero.

Assuming now that Vi lies in the Lorentz space L?1(D?) enables us to apply
Lemma A.8. In particular, we deduce that U is identically 0. Therefore, we have
proved that V(xH) € L?°. More precisely:

/ |H|? : (II1.13)
D2\ D2

1/2

||V(Xﬁ)||L2,oo(D2) <C

On D%/W there holds Lz (xH) = L:(H) = 0. We find helpful to introduce the
following Hodge decomposition on D? /2

VH —317(VH) =VC +V*D+7 | (II1.14)

where 7 is harmonic, and with the boundary conditions C' = 0 on dD? /2 and
0D/0v =0 on Df . It is not difficult to see that C' and D satisfy the systems

/2
AC =div(H AV*YE)  in D},
(TI1.15)
C=0 on 6D%/2 ,
and .
AD = 3div(r(V*H)) in D)
oD (I11.16)
E =0 on (9D%/2

The right-hand sides of (IT1.15) and of (IIL.16) are Jacobians of H and 7.
Since Vit € L*(D3 ;) and VH € L»*(D3 ,), the Wente-type estimate (IIL.3)
yields

I9Csao2 ) + 19 Dlzac2 ) < CUVitllae ) IVH ooz ) - (TL1T)
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Moreover, because 7 is harmonic, there holds the estimate
||ﬂ\L2(D1,4) < C||7?||L2700(D1/2) . (IT1.18)
Let us also note that
\VH — 373(VH)| > |VH| . (II1.19)
Compiling now (II1.17), (II1.18), and (I11.19) into (III.14) implies

||Vﬁ|\L2(D§/4) < ClIViillL2pz ) HVﬁHLQ&O(Df/Z) + HVﬁ||L2’°°(Df/2)
(IIL.20)

We may consider a Hodge decomposition analogous to (II1.14), but on Df /4
in place of D? /o For this new decomposition, the Wente inequality® (3.47)

in Theorem 3.4.1 from [Hel] may be used in place of (IIL.3). Arguing mutatis
mutandis as we did above then yields the estimate

IVH| 212 ) < ClIViillL2pz, ) IVH 202, ) +IVH | L2002 ) - (11121)

As explained in [Hel], VA belongs to L?!(D?). From (IL.9), it thus follows that
Vi is in LOO(Df/S). Moreover, via combining (II1.13), (I11.20), and (I11.21), we
infer that

HVﬁH%w(Df/g)gC /D |Vi? . (I11.22)

This last estimate can now easily be bootstrapped within the Willmore equation
so as to obtain (I1.16) for general k. This concludes the proof of Theorem 1.5. O

IV Point Removability for Willmore Graphs

This section is devoted to proving the statement of Theorem I.6.

As explained in [KS3] (pp. 332-334), under the assumptions of Theorem 1.6,
we may consider the Lipschitz conformal parametrization ® obtained by fol-
lowing arguments based on Huber’s result on conformal parametrizations of

complete surfaces in R™ [Hub], along with the estimates given in the work by
Miiller and Sverdk [MS].

If our surface is Willmore outside of some point (to be removed), then the pre-
image of that point under the map & must lie inside D2. Applying, if necessary,
an appropriate Mobius transformation, we may assume without loss of generality
that the point to be removed has pre-image 0. According to Theorem 1.3, we
know that ® is C*° in D2\ {0}. Moreover, it follows from (1.16) that there
exists a positive function §(r) such that lim,~ o d(r) = 0 and

2| [Vii(2)| + |2 [V?ii(2)] < 8(|z]) ¥ @€ D*\{0} . (IV.1)

Soriginally derived by Luc Tartar in [Tal].
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The distances are understood in the flat metric on D2. Owing to some estimates
on the function A (defined at the beginning of Subsection II.1) proved in [MS],
that distance is equivalent to the distance with respect to the induced metric.

Given € > 0, we may restrict our attention to a smaller disk and apply an
appropriate dilation, so as to obtain from the property of §(|z|) and from (IV.1)
the estimate

llal V@I + [ AP <e . (1v.2)

Next, since H belongs to L?(D?), the distribution L H makes sense in D'(D?).
In addition, because ® is Willmore in D2 \ {0} by hypothesis, the distribution
Eﬁﬁ is supported on zero, and it is thus a finite linear combination of derivatives
of the Dirac mass at the origin. Yet, as L7 H is a sum of an H—2 distribution and
of derivatives of L' functions, it ensues that £;H must in fact be proportional
to the Dirac mass centered at the origin; namely:

LaH =26 . (Iv.3)

In anticipation of our ultimate goal, we introduce the constant I;TO defined via
co = —4mHy. Per Lemma A.4 from the Appendix, let now L solve the problem

LiL=—-4nHy,  inD? |
(IV.4)
L=0 on OD?

We know that VL € L. Since 7 is smooth over D2\ {0}, and since it satisfies
[||z[¥V*7]| 1, (p2) < 400, we can apply Lemma A.9 from the Appendix in each

annulus D2_,\ D2, ,, for i € N, to deduce that [ is in fact smooth in D?\ {0}
and that .
supzep2|z] |[VL(z)] < 400 . (IV.5)

As in the previous section, we find helpful to introduce the cut-off function
x compactly supported in D? and assuming the value 1 on D% /2 We also
introduce the functions g1 and ga, as we did in (II1.7) and (II11.8). And we
consider again the functions ¢, and vo whose properties are inventoried in the
paragraph following (III.10). In particular, according to (III.11) and (IIL.12),
we note that V@ and Vi, are in L?°°. Furthermore, just as we did for L to
deduce (IV.5), because Lz0; = 0 on Df/Q and because g; and g» are smooth,
we have for i € N that

supgepz|z| |VU;(z)] < o0 . (IV.6)

Let @ := H — @ — 7> — L. Clearly, @ belongs to L? and it solves L;w = 0. It
further is smooth on D?\ {0} and is equal to 0 on 9D?. We claim that 1 is in
fact identically 0 on D2. We shall now verify this fact.

For r > 0, let x,(2) = x(x/r). We consider a sequence ¢; of normalized eigen-
vectors of Lz in VVO1 ’2(D2, R™), with corresponding eigenvalue \;, and forming
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an orthonormal Hilbert basis” of L2(D? R™). Lemma A.1 from the Appendix
guarantees that A\; # 0. Furthermore, there holds:

(17Xr)w'$i:i. (1—x) @ Lid;
J g

1 . L
= | VX @ |V - 37a(V) - 6 A V7|
Ai D2
1 - - o
-+ | @-x) V- [wsi — 3ma(VE) — & A vLﬁ} (IV.7)
1 J D2

—

= [0 G tait 5 [V @ [VE - 3ma(VE)]

Ai D2 )\1 D2
1 .
- Vxr [V — 3m3(V@) — 6 A V] -
1 J D2

Since Lzw = 0 holds in the distributional sense, we find that

— | Vxe [V = 3m3(Vd) — @ A VEiE] = (Law, Xr)pr e =0 . (IV.8)
D2 0

Thus, in the last term of (IV.7), we can subtract from q;l the vector ¢, ;, which
is the average of q_ﬁ;- over D?\ D? /2> without modifying the equalities. Namely:

. oz .
/2(1 —Xr) W+ Py = )\—/2 Vxr W - {V@ — 37Tﬁ(v¢i)}
D1 top (IV.9)
—~ | VX [V = 3m5(Vi) — 0 A V] (i = Eni)
1 J D2

Let v(r) := sup, ja<|z|<,|®|* [VW|(z) + || |w|(x). This quantity enables us to
control the right-hand side of (IV.9), as we shall now demonstrate. Indeed,
using the Cauchy-Schwarz inequality, we have first that

1 - .
‘T Vi @ - [V@ - 3wﬁ(v¢i)} ’
1 J D2
v(r) oz
- D2\D§/2 r2 | ¢ | (IV-IO)

Using Lemma A.5 and the fact that lim,~ o v(r) = 0, which ensues from com-
bining altogether (IV.1), (IV.5), and (IV.6), we note that the left-hand side of
(IV.10) converges to 0 as r \, 0.

On the other hand, with the help of the Cauchy-Schwarz and of the Poincaré

Twhose existence is inferred from Lemma A.1 and the theorem of Hilbert-Schmidt.
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inequalities, we find that

1 o
}— / Vrr [V = 3m(Va) — A VA7 - (60 — )
D2

Aq
vir vir) 6(r R .
<c [ (r) +%] 6 — &l
Dg\Di/z T T
1 (IV.11)

1 2 o2
<Ci lr) +v(r) 6] = / 16: — il

r D2\D? ,

Véi?|®

< C; () + w(r) 6()] [ /D

2\D2,, |z[?

Calling again upon Lemma A.5, and because v(r) and §(r) both tend to zero
as r \, 0, it follows likewise that the left-hand side of (IV.11) tends to 0 as
r decreases to zero. Altogether, (IV.9), (IV.10), and (IV.11) thus imply that
Jp (1= xr) @+ (51 converges to zero as r tends to zero. In turn, this yields that

J D2 W+ q_ﬁ;- = 0. Since this holds for every 4, and since q_ﬁ; is an orthonormal basis
of L?, we conclude at once that < is indeed identically zero, and hence:

H=L+v, +7 . (IV.12)

We have previously seen that Lz7; = 0 on Df /2 From Lemma A.9, we
whence deduce that ¥; and ¥> are smooth on D% /2 It thus appears natural to

study next the asymptotic expansion of H near the origin. To this end, we first
observe that VA € L2, which follows from VL € L**. Then using (IL.11),
we infer that

AV =4 HVA+2e*VH € (| LP . (IV.13)

p<2

Since e = |V<f)|, we conclude from the latter that Ve* € L for every ¢ < +oc.
Bootstrapping this fact back into (IV.13) then implies that AV$ € L[>,
thereby showing that V27 € L%°°. Inspecting the proof of Theorem 5.1.1 from
[Hel], we find that the Coulomb framing {€1, €2} bears the same regularity as
that of 7. Whence V2¢&; € L%, This yields in particular that €; € C%® for
every 0 <a<land:=1,2.

We claim now that e;(0) - Hy = 0. To see why this must be true, note firstly
that H-€=0 implies:

—47;(0) - Hybo = & - div(VH — 375(VH) — H A Vi)
= div(&; - VH — 38, - H A V7)) — V&, - [vﬁ —3mz(VH) — H A vlﬁ}

= div(—H - V& — 3¢, - H AVY7) - VE, - [vﬁ ~ 3mn(VH) — HA vLﬁ}
(IV.14)
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Observe next that the right-hand side of (IV.14) belongs to LP, for some p > 1,
and that it should be proportional to the Dirac mass at the origin. Hence the
coefficient 47€;(0) - Hy must be zero, which settles at once the desired claim.

Letting R := L — Hy log ||, there holds:
LR = —3div(mz(Ho) Vg |z|) — Vg |z| Ho AV i . (IV.15)
Since Fﬁ(ﬁo) = (ﬁo . 51) 51 + (ﬁo . 52) 52 = (ﬁo . (51 — 51(0))) 51 + (ﬁo . (52 —
@(0))) &, and since €; € C% for every a < 1, as explained above, it thus
follows that Tﬁlﬂﬁ(ﬁo) € LP for every p < +00. We have therefore proved that
LzR € WP for every p < +00. Arguing as is done in the proof of Lemma A.1,

we find that R € Np<+oo WP, so that H—H, log || is in C%“ for every a < 1.
This concludes at once the proof of Theorem I.5. O

A Appendix

Lemma A.1 There exists eg > 0 such that for every 0 < € < €¢ , a positive
constant C independent of € exists, with the following property. For @t from D?
into the space of unit (m — 2)-vectors in R™, suppose there holds the bound:

/ |Vii|? do <e . (A.1)
DZ

Let g be an arbitrary distribution in the Sobolev space H_l(D2,Rm), dual to
W01’2(D2,Rm). Then there exists a unique map v in W01’2(D2,Rm) such that

AT — 3 div(17(V)) — div (FAVER) =G in D?
(A.2)
v=0 on 0D* |

and

[ v <c gl (A3)

Moreover, the operator Egl : § — T is self-adjoint and compact from L*(D?,R™)
into itself. O

Prior to proving Lemma A.1, it is helpful to establish first the following
intermediary result.

Lemma A.2 There exists eg > 0 such that for every 0 < € < €¢ , a positive
constant C independent of € exists, with the following property. For @t from D>
into the space of unit (m — 2)-vectors in R™, suppose there holds the bound:

/ Vi de <e . (A.4)
D2

Let § be an arbitrary distribution in the Sobolev space H~Y(D? R™), dual to
Wol’Q(DQ,Rm). Then there exists a unique map v in Wol’Q(DQ,Rm) such that
AT — 3 div(mz(VT) =G in D?
(A.5)
=0 on OD* |
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and

[ v <c g (A6)

Proof of Lemma A.2.
We first show that under the hypothesis (A.4), the following implication
holds for every C' in Wh2(D2 R™) :
AC =3 div(rz(VC)) =0 in D?
— cC=0 . (A7)
Cc=0 on 9D?
Since . .
div(VC = 3mz(VC)) =0
the Poincaré lemma guarantees that there exists D in W12(D2 R™) satisfying
VLD =vC - 3m3(VC) . (A.8)
This implies in particular that D is a W2 solution of the problem
AD =3V C*.V(ef &) +3) V' C" - V(e§ &) inD’
k=1 k=1 (A.9)

oD
— =0 on 0D? |
v
where CF are the coordinates of C in the canonical basis of R™. Here {&}, &}
is an orthonormal basis of the 2-dimensional subspace defined by its normal 7.
It is explicitly given in Lemma 5.1.4 from [Hel]. That same lemma also states

that there exists some constant C' such that
/ Ve |? + |Véy|? de < C / \Vii|? dz . (A.10)
D2 D2

A Wente-type W12 estimate derived in Lemma 3.1.2 from [Hel] may be adapted®
to our case so as to obtain the estimate

/ VB dz <Gy [/ Ve + V&2 d:z:]/ VEP da
D2 D2 D2

(A11)
< Cie / |VC|? dx
D2
On the other hand, let us note that (A.8) implies:
IVD|? = |rr(VO)? + d|ms(VO)* > [VCP (A12)

where 7 denotes the orthogonal projection on the 2-plane in R defined by the
normal 7i. Upon combining (A.11) and (A.12), we then deduce, for e < 1/(2C),

8Hélein considers a problem with Dirichlet boundary condition, whereas we are concerned
with Neumann boundary condition. However, a classical argument from elliptic theory allows
to pass from the former setting to the latter, and derive analogous estimates.
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that C = 0, thereby establishing the implication (A.7).
Let now § € H-1(D? R™) and B satisfy

AB=§  inD?

(A.13)
B=0 on OD?
We claim that there exists (A, F') such that
div F = div (WT(VJ‘/_D - %wﬁ(vLA)) in D?
curl F = —curl (TFT(Vé) - %Wﬁ(VE)) in D? (A.14)

Fv=0 on 0D? |

where A is the curl—part in the Hodge decomposition of mp(F) — 27 (F) given
by :
—AA = curl (ﬂ'T(ﬁ) - 27Tﬁ(ﬁ)) in D?
(A.15)

—

A=0 on 8D?

We attract the reader’s attention on the fact that in (A.14), F - v is an element
of R™. This is because F' € R2@R™ and v € R2®@ R. The dot product in F - v
is understood to act as scalar multiplication on the R? component, and as usual
multiplication on the second component.

The existence of a solution (A, F) to the system (A.14)-(A.15) is again a
consequence of Wente’s estimate. More precisely, we write on one hand:
div | wp(V*+A) — 17r~(v¢A) _3 i VARV (eh a)+§ i VARV (eh &)
2" 2 k=1 ' 2 k=1 ’
(A.16)
and on the other hand:

= 1 = 3w 3

curl (ﬂ'T(VB) — §7Tﬁ(VB)) =3 Z VBVt (ek 51)+§ Z VB*.V*(eh &)
k=1 k=1

(A.17)

where A* and B* are the coordinates of A and B. Therefore, using Wente’s
estimate, we obtain the a-priori inequalities

/ 2 <oy U |Vé’1|2+|Vé’2|2dac]/ VAP + |VB|2dx
D2 D2 D2

(A.18)
<Cye / IVA|? + |VB|?dx
D2
From (A.15) and standard elliptic estimates, we also have that
/ |VA]? dz < 03/ |F)? dz . (A.19)
D? D?
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Thus, for C3Cye < 1/2, a standard fixed-point argument yields the existence
and uniqueness of (4, ') satisfying (A.14) and (A.15).

Since )
div (ﬁ <7TT(VL/Y) - iﬂ'ﬁ(vlg))> =0 ,

there exists C in Wy'?(D2,R™) with

—

| ~
F— (WT(VJ‘A) — EFﬁ(VJ‘A)) =viC . (A.20)
Hence we deduce that
70 (F) = 213(F) = VYA + 77 (VE0) = 272(VEC) . (A.21)

Applying the curl operator throughout both sides of the latter, and calling upon
(A.15), we infer that C' solves the problem

AC — 3 div(r(VC)) = —curl (WT(VJ‘C;) - 27rﬁ(VJ‘C_”)) =0 inD?

C=0 on 8D?

) (A.22)
Then (A.7) implies that C' = 0, and hence that
mr(F) — 275(F) =Vt A | (A.23)
From (A.14), there exists @ in W ?(D? R™) satisfying
F=—np(VB)+ %wﬁ(vé) R (A.24)
Upon combining (A.23) and (A.24) together, it then follows that
VYA = VB + 7p(V0) — 2m3(VD) . (A.25)

Comparing this identity with (A.13), we conclude that ¢ solves (A.5). From
(A.7), this is the unique solution. Finally, (A.6) follows at once from (A.18) and
(A.19). This completes the proof of Lemma A.2. (]

Proof of Lemma A.1.
Let Ay ' denote the continuous isomorphism from H~'(D?, R™) into W, *(D?, R™),
which to some distribution § in H~!(D? R™) assigns the solution 7 of

AG=F  inD?
(A.26)
=0 on 0D?

We have seen in Lemma A.2 that the operator Azv := A¥ — 3 div(mz(V7))
is a continuous isomorphism from W, *(D? R™) into H~'(D? R™), and that
the norms of Az and of A;ll are independent of 77 satisfying (A.4) for ¢ < e,
where ¢ is the universal constant given in Lemma A.2. The invertibility of the

operator
Ayt AR (D) — Ayt div(T A VER)
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which maps VVO1 ’2(D2, R™) into itself, and with norm independent of 7 satisfying
(A.4) for € < gg, is clear. It is indeed a direct consequence of the invertibility
of Ay ! A mapping VVO1 ’Q(DQ,]Rm) into itself, and of the fact that Wente-type
estimates (cf. Theorem 3.1.2 of [Hel]) guarantee that the operator Ay 'div (7 A
V1) satisfies

|AT div(@ A VA7) [2s < C / ViPde / Vitl2de < C e 730
D2 D2

(A.27)
for every @ in Wy ?(D?,R™).
We have thus proved the first statement of Lemma A.1, and there only remains
to establish the compactness and self-adjointness of the operator E%l mapping
L? into itself. Compactness is clear, since £' maps H~(D? R™) into W, 2%,
which is a compact subspace of L2. Let § and h belong to L2(D?,R™) (chosen
to be smooth, for the time being). Upon setting @ := £ '(§) and @ := £ (h),
we find:

/ G- L7'(h) dx

AT -0 — 3 div(r5 (V) - — div (A V7)) -1 do

Qe

,
/ U+ AW+ 3m5(V0) - Vb + (F A Vi) - Vi da
D

(A.28)
A
/s

AW+ 3VT - 17(VW) — T - (Vi A Vi)

St

<y

AW — 37 - div (7 (VD)) — T - div (6 A Vi)

St

= [ i= [ et
D2

D2
Via a classical density argument, the latter confirms the self-adjointness of Egl,

thereby concluding the proof of Lemma A.1. O

We now extend the previous two lemmata to data in L'. First of all, we
prove

Lemma A.3 There exists eg > 0 such that for every 0 < € < €y, a constant
C > 0 independent of ¢ exists, with the following property. Let 7 from D? into
the space of unit (m — 2)-vectors in R™ satisfy

/ |Vii|? do <e . (A.29)
D2

When § is an arbitrary map in L*(D? R™), there exists a unique map v with
V7 in L**°(D? R? @ R™), and satisfying:
AT — 3 div(n; (VD)) — div (CAV*IR) =§  in D?
(A.30)
=0 on OD?
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Furthermore, there holds the estimate
[VUl|p2.0(p2) < C [|GllLip2) - (A.31)
O

Prior to proving Lemma A.3, we shall first establish the following result.

Lemma A.4 There exists €9 > 0 such that for every 0 < € < g , a constant
C > 0 independent of ¢ exists, with the following property. Let 7 from D? into
the space of unit (m — 2)-vectors in R™ satisfy

/ |Vi|? do <e . (A.32)
D2

When § is an arbitrary map in L*(D? R™), there exists a unique map T with
V7 in L»*(D? R? @ R™), and satisfying:

AT — 3 div(nz (V) =§  in D?

(A.33)
=0 on OD? |
and
V|| p2.0(p2) < C [|GllL1p2) - (A.34)
(I

Proof of Lemma A .4.

It suffices to adapt mutatis mutandis the arguments given in the proof of
Lemma A.2. One replaces the estimate (A.11) by its analogous Lorentz-space
version given in (I11.3); and substitutes the L?° norm in place of the L? norm
of the various quantities involved. (I

Proof of lemma A.3.

Let g be in L*(D? ,R™). We again set Az7 := Av — 3 div(r7(V¥)). Using
Lemma, A.4, we first derive the existence of ¥, with Viiy € L?*°, and satisfying
Aﬁ’[fo = g in l)2

(A.35)
170 =0 on 8D2

We argue next by induction. Let ¥y be given by (A.35), and ¥, for k > 1, is
the element of W,*(D2, R™) which solves

A AR (T) = Ay N div(T—1 AVER) (A.36)
where Aj !is the operator introduced in (A.26). We know that this problem
does have a solution. Indeed, if #%_1, with V#,_; in L?°, is given, according

to (II1.3), we find

185 div (@1 A V) lwre < C | VOeoi || p2ee | VTl (A.37)
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Moreover, we have seen in the proof of Lemma A.1 that Ag ' A5 is a contin-
uous isomorphism of VVO1 2 Paired to (A.37), this implies the existence and
uniqueness of 7. In addition, there holds:

IV 200 < (VU2 < C [|[VTio1]|p2.0 ||V L2 - (A.38)

Thus, under the hypothesis that C||V7i|[2 < 1/2, the series Y, _, U converges
to some limit ¢ = "7 U solving (A.30) and (A.31). The uniqueness of ¥
follows from that of the solution to A;(#) = g for arbitrary § € L! (established
in Lemma A.4), and from the aforementioned argument about C||V7i|| 2 being
bounded above by 1/2.

Lemma A.5 There exists €9 > 0 such that for every 0 < € < eg , a constant
C > 0 independent of ¢ exists, with the following property. Let @i from D? into
the space of unit (m — 2)-vectors in R™ satisfy

el V(@ ey + [ 1V do<e (4.39)

For some arbitrary § € L*(D?* R™), let ¥ be the unique map in W&’Q(DQ,R’”)
(given by Lemma A.2) such that

AT — 3 div(nz (VD)) — div (CAVTR) =G in D?

(A.40)
=20 on OD?
We denote by Ty and ¥, the maps from D? into R™ which satisfy
1
Uo(z) = —— v and U =0U-17p . (A.41)
2rlz| Jop,, o)
Then there holds:
q Vi, |? q q
||Vvo||2Loo(D2) +/ | é| +/ V25, |* <C / g . (A.42)
p2 |7 D2 D2
O

Before proving Lemma A.5, we first establish an intermediate result.

Lemma A.6 Let a and b be two functions, respectively in W22(D? R) and in
WhH2(D?,R), such that b € C1(D*\ {0}) and

sup o] [Vb|(x) < +oo0
zeD2\{0}

Let ¢ be the solution in W12 of the problem

Lo
P D1 012 O1a Oy (A.43)

=0 on OD?

We denote by pg and @ the functions on D? which satsify
1

—27lz| Jos, (o)

wo(x) @ and @1 =@—@y . (A.44)
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Then there holds the inequality:

[Veil? / 2 2
Vol v
IVeoltein + [ S+ [ 19%4]

(A.45)

<C V| (z)|]2 B Varl g2
< x| [VO|(2)l|5, + [ [V 57— + IVao|l%
D2 D2 |$|

O

Proof of Lemma A.6.
Since g is the first term in the Fourier decomposition of ¢ (relative to the
angular variable), we have

Apg= — —— — — —— =
o + (9:61 (9:62 (9:62 (9:61

Gao 6b0 Gao 6b0 (&u GbL 8al GbL) (A 46)
0

Indeed, it is clear from the fact that ag and by depend solely on |x| that

8al 6b0 aaL abo (’)ao GbL Gao abL
—_— = and — e — T

have null zeroth-order Fourier coefficient. This follows from the identities

aaL abo 8al abo 1% .

Oy Ory Oxy 01, 1 00 o(7)

Gag Oby _ Dag 9by _ .y 1001
Oz1 01y Oz 071 O\ 158

(A.47)

For the same reason, the first Jacobian on the right-hand side of (A.46) vanishes.
Calling again upon (A.47), we thus find:

aaL abL aaL abL

(A.48)

For notational convenience, let h(r) denote the right-hand side of (A.48). Then
we may write ¢g = 7~ [ h(s) sds. In particular, |¢o| may thus be bounded
as follows:

) 1
ool <o [ IVaLlIoY
wr B,

bl (A.49)
VaL 2
< Clllel (w8l | [ 2]
B, |7l
As for ¢, it satisfies the identity
pp, _ (22 00 00 b
L= (9:61 81'2 (9:62 8951 1 (A 50)

8961 (9:62 (9:62 (9:61

(8@0 b  Odag 6()) (aaL ob  Oa, ab)
1 1
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On one hand, we have

((’)ao ob (’)ao ab)
1

(A.51)
dag Ob  Oag Ob 9 / 9
< — | < b
- /DQ 0xy O0xo Oxy 011 CHVGOH D2 |V |
And on the other hand, there holds
[ (e b e 20 i
D2 8961 81'2 (9:62 8951 0 (A 52)

Oay 0b  Oa; Ob

6—951 6902 63@2 axl

2
|V(IJ_|2
< O[] [Vbl(2)]1% / :
D2 |9U|

<
DZ

The desired inequality (A.45) ensues upon combining altogether (A.49),
(A.51), and (A.52). This concludes the proof of Lemma A.6. O

Proof o_f: ltzmma é.S.
Let A, B, and C be the solutions of the problems

AA=§  inD?

(A.53)
A=0 on 0D?
AB = div(7 A Vi) in D?
(A.54)
B=0 on 0D?
and .
AC = 3 div(mz(V*7)) in D?
o0d (A.55)
oc =0 on dD?
v

It is clear that ¥ = A+ B+C. Applying standard elliptic estimates to (A.53), the
result of Lemma A.6 to (A.54), and the Neumann boundary condition version
of Lemma A.6 to (A.55), we obtain successively the estimates

1112 |V/L-|2 2 12 212 .
HVAOHOO + D2 |$|2 + D |V A| <C D2 |g| ) (A56)

. V5, |? . Vi, |2 .
IV + | VB,] + [ vBpsce U Vo, | +||wo||io} ;
D2 D?2 D?2

|| ||
(A.57)

and

- V(|2 . \orlk
||vco|\io+/ VL] +/ |V2C | |? < Ce U Vo +|v170|§o]
D?2 D?2 D?2

|2 |2
(A.58)
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Note that, as in (A.9), we have used the fact that div(m7 (V7)) is a Jacobian
of the form — 3, ; V4id* . V(ek €;), and that {€1, €2} is an orthonormal frame
generating the 2-plane normal to 7.

Upon choosing e small enough, and bringing together (A.56), (A.57), and (A.58),
we easily obtain the desired inequality (A.45), thereby concluding the proof of
Lemma A.5 is proved. O

Lemma A.7 There exists g > 0 such that for every 0 < e < g9 the following
holds. Let 7t be a W2 map from D? into the space of unit (m — 2)-vectors in
R™ such that

/ |Vi|? do <e . (A.59)
D2
Let 5 be a W12 eigenvector of Li, namely, for some constant X € R:

A — 3 div(rx(V)) — div (qB’A vlﬁ) =\é  inD?

(A.60)
gg =0 on 0D? |
Assume further that the gradient of 7i lies in the Lorentz space L1,
Then ¢ is Lipschitz with second derivatives in L*!. (I

Proof of lemma A.7.

We first prove that ¢ belongs to W(D?) for every 1 < p < +oo. For this,
let 2 < p < +00, and let ¢ be the constant in (1,2) given by 1/p=1/¢—1/2, so
that Wy ?(D?) embeds in LP. Defining § := A¢ € L1(D?), we can follow step by
step the proof of Lemma A.2,; starting from (A.13) and replacing the hypothesis
g € H™! by the hypothesis § € L?. Doing so, we first observe, with the help of
classical elliptic estimates, that

IVB||1r(p2) < C |7l a2y - (A.61)

Replacing Wente’s inequalities by classical L? bound for Calderén-Zygmund
operators, we then obtain the a-priori estimate

1
|Fllo(p2y < ClF|lwra <C [/ |VAJ? |Vel? + |VB|? |Vel
D2
< C VAl |IVéllz + | VB]| [Vl (A.62)

< Ce [|VAl, + V5]

From this estimate, just as in the proof of Lemma A.2, we deduce the existence
of ¥ solving Lzv = ¢. Only now, v lies in Wol’p for every p > 2. Owing to the
uniqueness result from Lemma A.2; it follows that every such @ (one for each
value of p > 2) coincides with ¢. Therefore, we find that ¢ € ﬂp<+OOW01’p(D2).

Let now g be a point in the interior of D?. For any € > 0, we can find a
radius p > 0 such that

V]l L20(B, (o)) < € . (A.63)
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Consider a smooth cut-off function x equal to 1 on Bj/5(0) and equal to 0
outside of B1(0) = D?. Let  be the function on the two-dimensional disk
defined by: .

ii(z) = ¢(px + x0) x()

Since q; € WhP(D?) for every p < +oo, in view of the computations (IIL.6),
(IIL.7), (II1.8), we infer the existence of k € L*'(D?) which satisfies:

Lad=Fk  inD?
(A.64)
w=0 on 9D?
We introduce now the Hodge decomposition of Vit — 37;(Viw) = VC + VD
on D2, with the boundary conditions C' = 0 on dD? and dD/0v = 0 on D?.
From (A.64), it is not difficult to verify that

AC = div(@ AV iE)+k in D?

(A.65)
C=0 on 9D? |
and that .
AD = 3div(rz (Vi) in D?
oF (A.66)
oD =0 on 0D?
ov

Since the space of L? functions on D? with first derivatives in L?! embeds in
L*°, we derive the a-priori estimates

IVClle(p2) + IV2C] 121 (p2) < C|AC 121 (p2)
(A.67)
< C ([kllz2ap2y + IVl 212y | Vd]lLe<]

and . ) = .
IV D L (p2) + IV2D]| 121 (p2) < CIAD 2102
(A.68)
< C || Viit| p2a(p2y ||V L

Note that we have used the fact that |div(mz(VW))| < C|Vii| |Va|. Thus,
choosing ¢ small enough in (A.63), we can repeat the construction given in the
proof of Lemma A.2 so as to infer the existence of a Lipschitz solution to (A.64)
with second derivatives in L>'. The uniqueness result from Lemma A.1 ensures

that this solution coincides with @. Whence ¢(px + xg) x(z) is Lipschitz with
second derivatives in L?!.

Taking into account the boundary condition 5 = 0, a similar argument can
be developed for any point xo on the boundary of D?. Doing so yields that
qg is Lipschitz with second derivatives in L?!, thereby completing the proof of
Lemma A.7. (I
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Lemma A.8 There exists eg > 0 such that for every 0 < e < g¢ the following
holds. Let it be a W2 map from D? into the space of unit (m — 2)-vectors in
R™ such that

/ VA2 do <e . (A.69)
D2

Assume further that Vii lies in the Lorentz space L*'(D?).

Let ¥ be a function in L*(D?) such that VT is the sum of a compactly supported
distribution in the open disk and of a function in L*>*°(D?) (in such a way
that the trace of ¥ on OD? is well defined). Suppose that ¥ satisfies in the
distributional sense the system

AT — 3 div(n; (VD)) — div (T A Vi) =0 in D?
(A.70)
v=20 on OD?

Then ¥ vanishes identically in D?. (I

Proof of Lemma A.8.

We consider a smoothing ¥5 of ¥ obtained through convolving with functions
whose supports shrink approaching the boundary of D?. As is easily seen, this
ensures that Vs € L%°°(D?), that ©5 = ¥ in a neighborhood of D?, and that
7y — ¥ in L2(D2,R™). As in Section IV, let ¢; be a sequence of normalized
eigenvectors of Lz in WO1 ’2(D2,Rm), with corresponding eigenvalues A; (these

cigenvalues are nonzero, according to Lemma A.1). Recall that {¢;} forms an
orthonormal Hilbert basis of L2(D?,R™). By definition, we have

/17,;~<5Z-:>\;1/ U5 Lidi . (A.71)
D2 D2

As explained in Lemma A.7, ¢; is Lipschitz with V2¢; € L>!. Furthermore,
Vs € L>*. And because both ¢; and ¥; vanish on D2, it follows that

/ T5 - Lags = <£ﬁ1767‘5i> BT Vp>2 . (A.72)
D2 wW-—-L.p 1W0,P

Note that A% converges to A# in H~2(D?), the dual space of Wj*(D?). In
addition, div(m;(V¥s)) converges to div(mz(V@)) in W~ & H=2(D?), while
div(s A Vi) converges to div(v A Vi) in W=1L1(D?). Taking these facts
into account, since gi_); lies in W1 N W?22(D?), the duality appearing on the
right-hand side of (A.72) becomes

0 Lt = (L (D), A.
/Dzv Ladi = (£ (v),¢>H72@W7M’W§,2QW&W : (A.73)

as ¢ approaches zero. B
Upon combining (A.70), (A.71), and (A.73), we deduce that [, 7 ¢; = 0, for

every i > 1. Whence, because {qgl} is a Hilbert basis for L2, it follows that ¥
vanishes identically in L2. This concludes at once the proof of Lemma A.8. [

With little effort, the proof of the previous lemma may be repeated mutatis
mutandis so as to yield the following result.
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Lemma A.9 There exists €9 > 0 such that for every 0 < € < €p, a constant
C > 0 independent of € exists, with the following property. Let 1 be a Lipschitz
map from D? into the space of unit (m — 2)-vectors in R™ satisfying

/ |Vi|? do <e . (A.74)
D2

Suppose that § is a map in LP(D?), for some p > 1; and that ¥ is an L? solution®

of

AT — 3 div(n; (VD)) — div (§ A Vi) =0 in D* . (A.75)

Then there holds:
HVQUHLP(Df/Z) < CIglrp2y + 190l L2 02)] (A.76)
where Df/Q is the disk of radius 1/2 centered on the origin. (Il

9this L? condition is not optimal. It is however sufficient to our purpose.
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