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Abstract : A new formulation for the Euler-Lagrange equation of the Will-
more functional for immersed surfaces in Rm is given as a nonlinear elliptic
equation in divergence form, with non-linearities comprising only Jacobians.
Letting ~H be the mean curvature vector of the surface, our new formulation
reads L ~H = 0, where L is a well-defined locally invertible self-adjoint elliptic op-
erator. Several consequences are studied. In particular, the long standing open
problem asking for a meaning to the Willmore Euler-Lagrange equation for im-
mersions having only L2-bounded second fundamental form is now solved. The
regularity of weak Willmore immersions with L2-bounded second fundamental
form is also established. Its proof relies on the discovery of conservation laws
which are preserved under weak convergence. A weak compactness result for
Willmore surfaces with energy less than 8π (the Li-Yau condition ensuring the
surface is embedded) is proved, via a point removability result established for
Wilmore surfaces in R

m, thereby extending to arbitrary codimension the main
result in [KS3]. Finally, from this point-removability result, the strong com-
pactness of Willmore tori below the energy level 8π is proved both in dimension
3 (this had already been settled in [KS3]) and in dimension 4.

I Introduction

Not only do weak formulations of partial differential equations offer the pos-
sibility to enlarge the class of solutions to the space of singular solutions, but
they further provide a flexible setting in which the analysis of smooth solutions
becomes far more efficient. This is the idea which we will illustrate in this paper
by introducing a new weak formulation for Willmore surfaces.

Let Σ be a given oriented surface, and ~Φ be a smooth positive immersion of
Σ into the Euclidean space Rm, for some m ≥ 3. We introduce the Gauss map
~n from Σ into Grm−2(R

m), the Grassmanian of oriented (m− 2)-planes of Rm,
which to every point x in Σ assigns the unit (m−2)-vector defining the (m−2)-

plane N~Φ(x)
~Φ(Σ) orthogonal to the oriented tangent space T~Φ(x)

~Φ(Σ). The map

~n induces a projection map π~n ; namely, for every vector ξ in T~Φ(x)(R
m) , π~n(ξ)

is the orthogonal projection of ξ onto N~Φ(x)
~Φ(Σ). Let now ~Bx be the second

fundamental form of the immersion ~Φ. It is a symmetric bilinear form on TxΣ
with values in N~Φ(x)

~Φ(Σ), explicitly given by ~Bx = π~n ◦d2~Φ. Using the ambient

scalar product in R
m, we define the trace of ~Bx, namely Here {e1, e2} is an
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arbitrary orthonormal basis of TxΣ. The mean curvature vector ~H(x) at x is

the vector in N~Φ(x)
~Φ(Σ) given by

~H(x) =
1

2
tr( ~Bx) .

Note that when m = 3, one finds ~H = H~n, where ~n is the unit normal vector,
and H = (κ1 + κ2)/2 is the average of the principal curvatures κ1, κ2 of the

surface at ~Φ(x).

Equipped with the aforementioned notation, the Willmore functional is the
Lagrangian

W (~Φ(Σ)) :=

∫

Σ

| ~H |2 d volg , (I.1)

where d volg is the area form of the metric g induced on ~Φ(Σ) by the canonical
metric on R

m.

This Lagrangian was seemingly first considered in the early twentieth century in
various works by Thomsen [Tho] and Schadow, and subsequently by Blaschke
[Bla]. It was reintroduced, and more systematically studied within the frame-
work of the conformal geometry of surfaces, by Willmore in 1965 [Wil]. The
Willmore functional also plays an important role in various areas of science. In
molecular biology, it is known as the Helfrich Model [Hef], where it appears as
a surface energy for lipid bilayers. In solid mechanics, the Willmore functional
arises as the limit-energy for thin-plate theory (see [FJM]). Finally, in general
relativity, the Lagrangian (I.1) appears as the main term in the expression of
the Hawking quasilocal mass (see [Haw] and [HI]).
The generic nature of the Willmore functional is partly due to its invariance un-
der conformal transformations of the metric of the ambient space. This amazing
property was first brought into light by White [Whi] in the case when m = 3 ;
and it was subsequently generalized by B.Y. Chen [Che].

In the present paper, we are interested in studying the critical points of (I.1)

for perturbations of the form ~Φ + t~ξ , where ~ξ is an arbitrary smooth map on Σ
into R

m. These critical points are known as Willmore surfaces. The aforemen-
tioned property of the Willmore functional guarantees that Willmore surfaces
remain Willmore through conformal transformations of Rm. Clearly, any min-
imal surface, i.e. one for which ~H ≡ 0 , is a Willmore surface. In fact, any
minimal surface realizes an absolute minimum of W . Many more Willmore sur-
faces are known, and works specialized with producing such surfaces are profuse
(see for examples [Wil2] and [PS]).
Willmore, in the case m = 3, and thereafter Weiner [Wei], for general m, es-
tablished that Willmore surfaces satisfy an Euler-Lagrange equation1. Prior to
stating this equation, we need to introduce some notation. Given any vector
~w in N~Φ(x)

~Φ(Σ) , consider the symmetric endomorphism A~w
x of TxΣ satisfying

g(A~w
x ( ~X), ~Y ) = Bx( ~X, ~Y ) · ~w , where · denotes the standard scalar product in

Rm , for every pair of vectors ~X and ~Y in TxΣ. The map Ax : ~w 7→ A~w
x is a

1this equation was allegedly already known to Thomsen, Schadow, and Blaschke; thus
several decades before Willmore and Weiner “revived” it.
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homomorphism from N~Φ(x)
~Φ(Σ) into SgΣx, the linear space of symmetric endo-

morphisms on TxΣ. We next define Ãx = tAx ◦Ax , which is an endomorphism
of N~Φ(x)

~Φ(Σ). If {~e1, ~e2} is an orthonormal basis of TxΣ , and if ~L is a vector

in N~Φ(x)
~Φ(Σ) , then it is readily seen that Ã(~L) =

∑

i,j
~Bx(~ei, ~ej) ~Bx(~ei, ~ej) · ~L.

With this notation, ~Φ is a smooth Willmore immersion if and only if it satisfies
Euler-Lagrange equation

∆⊥
~H − 2| ~H|2 ~H + Ã( ~H) = 0 , (I.2)

where ∆⊥ is the negative covariant Laplacian for the connection D in the normal
bundle N~Φ(Σ) derived from the ambient scalar product in Rm. Namely, for

every section σ of N~Φ(Σ) , one has D ~Xσ := π~n(σ∗
~X). Note that when m = 3,

since ~H = H ~n, (I.2) becomes

∆gH + 2H (|H |2 − K) = 0 , (I.3)

where ∆g is the negative Laplace operator for the induced metric g on ~Φ(Σ) ,

while K is the scalar curvature of (~Φ(Σ), g).

Despite their elegant aspect, (I.2) and (I.3) yield challenging mathematical

difficulties. Observe indeed that the highest order term ∆⊥
~H in (I.2) (resp.

∆g H in (I.3)) is nonlinear, since the metric g defining the Laplace operator

depends on the immersion ~Φ. One further difficulty is embodied by the “incom-
patibilty” between the Euler-Lagrange equations (I.2)-(I.3) and the Lagrangian
(I.1). More precisely, the minimal regularity assumption ensuring that the La-

grangian (I.1) is finite, namely that the second fundamental form ~B be square-

integrable on ~Φ(Σ), is insufficient for the nonlinearities in the equations (I.2)

and (I.3) to have a distributional meaning: the expression | ~H |2 ~H requires at

least that ~H be in L3.

Recently, the author proved in [Ri1] that any Euler-Lagrange equation aris-
ing from a two-dimensional conformally invariant Lagrangian with quadratic
growth (e.g. the harmonic map equation into a Riemannian submanifold and
the prescribed mean curvature equation) can be written in divergence form.
This feature has numerous consequences for the analysis of the Euler-Lagrange
equation. It allows in particular to extend the set of solutions to subspaces of dis-
tributions with very low regularity requirements. The results developed in [Ri1]
hinted that they could be extended to other conformally invariant equations
such as the harmonic map equations into Lorentzian manifolds. Considering
in addition the correspondence established by Bryant [Bry] between Willmore
surfaces in R3 and harmonic maps into the Minkowski sphere S3,1 ⊂ R4,1, the
author found a strong encouragement for seeking a divergence form for the Will-
more Euler-Lagrange equation (I.1).

We now state the first main result of this paper.

Theorem I.1 The Willmore Euler-Lagrange Equation (I.2) is equivalent to

d
(

∗g d ~H − 3 ∗g π~n(d ~H)
)

− d ⋆
(

d~n ∧ ~H
)

= 0 , (I.4)
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where ∗g is the Hodge operator on Σ associated to the induced metric g, and
where ⋆ is the Hodge operator on p-vectors in Rm defined as follows. If (α, β)
is a pair of p-vectors in R

m, one has

α ∧ ⋆β = 〈α, β〉 ⋆ 1 ,

where 〈α, β〉 is the scalar product for the canonical metric in Rm. In particular,
⋆1 is the positively oriented unit m-vector in Rm.

In particular, a conformal immersion ~Φ from the flat disc D2 = Σ into Rm

is Willmore if and only if

∆ ~H − 3 div(π~n(∇ ~H)) + div ⋆
(

∇⊥~n ∧ ~H
)

= 0 , (I.5)

where the operators ∆, div, ∇, and ∇⊥ are understood with respect to the flat
metric on D2. Namely, ∆ = ∂2

x1
+ ∂2

x2
, div = tr ◦ ∇, ∇ = (∂x1

, ∂x2
), and

∇⊥ = (−∂x2
, ∂x1

). �

Note that owing to the conformal invariance of our problem, it is sufficient
to prove (I.5). The more general version (I.4) may then be deduced through a
change of coordinates.

This first result justifies the following terminology: for a given map ~n from
D2 into Gm−2(R

m), we shall denote the Willmore operator by L~n, which is the
operator that to a function ~w from D2 into Rm assigns

L~n ~w := ∆~w − 3 div(π~n(∇~w)) + div ⋆ (∇⊥~n ∧ ~w) . (I.6)

Although this is not difficult to verify, it is somewhat surprising that this elliptic
operator is self-adjoint: for any choice of map ~n in W 1,2(D2, Grm−2(R

m)) and
for any choice of compactly supported maps ~v and ~w from D2 into Rm, there
holds:

∫

D2

~v · L~n ~w =

∫

D2

L~n~v · ~w . (I.7)

Another important quantity is

π~n(~v) := ~n (~n ~v) ,

where is the interior multiplication between q-vectors and p-vectors, with
q ≥ p, producing (q−p)-vectors in Rm (for details, see [Fe] 1.5.1 and 1.7.5). For
every choice of q, p, and (m − q + p)-forms, respectively α, β, and γ, we have:

〈α β, γ〉 = 〈α, β ∧ γ〉 .

With this notation, we infer

div(π~n(∇~w)) = ∆ [~n (~n ~w(x))] − ~n (∇~n ~w(x)) −∇~n (~n ~w)(x) . (I.8)

When the unit (m−2)-vector ~n belongs to W 1,2, the distribution L~n ~w given
by (I.6) is well-defined for any ~w in L2(D2). Thus our new formulation reconciles
the Euler-Lagrange equations (I.4) and (I.5) with the Lagrangian (I.1). Indeed,
the former have a distributional meaning under the least possible regularity
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requirement for the immersion ~Φ(Σ); namely that the Gauss map be in W 1,2

with respect to the induced metric.

Before giving a weak formulation to Willmore immersions, we first introduce
the notion of Weak immersion with L2-bounded second fundamental form.

Definition I.1 [Weak immersions with L2-bounded second fundamen-

tal form] Let ~Φ be a W 1,2-map from a two-dimensional manifold Σ into Rm.
~Φ is called a weak immersion with locally L2-bounded second fundamental form
if for every x ∈ Σ there exists an open disk D in Σ, a constant C > 0, and a
sequence of smooth embeddings ~Φk from D2 into Rm, such that

i)

H2(~Φ(D)) 6= 0

ii)

H2(~Φk(D)) ≤ C < +∞

iii)

∫

D

|Bk|2 dvolgk ≤
8π

3

iv)

~Φk ⇀ ~Φ weakly in W 1,2 ,

where H2 is the two-dimensional Hausdorff measure, Bk is the second funda-
mental form associated to the embedding ~Φk, and gk denotes the metric on
~Φk(Σ) obtained via the pull-back by ~Φk of the induced metric. �

For example, W 2,2 graphs in R3 of maps from R2 into R are weak immersions
with L2-bounded second fundamental form.

The following result was established by F. Hélein (cf. Theorem 5.1.1 in
[Hel]), thereby generalizing a result of T. Toro [To1], [To2], and of S. Müller
and V. Sveràk [MS].

Theorem I.2 [Existence of local conformal coordinates for weak im-

mersions] Let ~Φ be a weak immersion from a two-dimensional manifold Σ into
Rm with L2-bounded second fundamental form. Then for every x in Σ, there
exist an open disk D in Σ containing x and a homeomorphism Ψ of D such
that ~Φ ◦ Ψ is a conformal bilipschitz immersion. The metric g on D induced
by the standard metric of Rm is continuous in this parametrization. Moreover,
the Gauss map ~n of this immersion is in W 1,2(D, Grm−2(R

m)) relative to the
induced metric g. �

We are now ready to define the notion of weak Willmore immersion with
L2-bounded second fundamental form.
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Definition I.2 [Weak Willmore immersions with L2-bounded second

fundamental form] A weak immersion ~Φ from a two-dimensional manifold Σ
into Rm with L2-bounded second fundamental form is Willmore when

∆ ~H − 3 div(π~n(∇ ~H)) + div ⋆
(

∇⊥~n ∧ ~H
)

= 0 in D′(D2) (I.9)

holds about every point x ∈ Σ in a conformal parametrization from the two-
dimensional disk D2, as indicated in Theorem I.2. The operators ∆, div, ∇,
and ∇⊥ are as in Theorem I.1. �

Observe that this definition is sensible, since, as previously noted, the expression

∇ ~H − 3π~n(∇ ~H) + ⋆(∇⊥~n ∧ ~H)

has a distributional meaning so soon as the Gauss map ~n lies in W 1,2. Note
also that the notion of W 2,2 Willmore graph in R3 naturally ensues from Defi-
nition I.2, .

We next state the second main result of the present paper.

Theorem I.3 [Regularity for weak Willmore immersions] Let ~Φ be a
weak Willmore immersion from a two-dimensional manifold Σ into Rm with
L2-bounded second fundamental form. Then ~Φ(Σ) is the image of a real analytic
immersion. �

As we shall discover in the sequel, the following conservation laws play a
central role in proving the above regularity result.

Theorem I.4 [Conservation laws for weak Willmore immersions] Let ~Φ
be a weak Willmore immersion from the flat disk D2 into Rm with L2-bounded
second fundamental form. Suppose that ~Φ is conformal. We let ~L be the map
from D2 into Rm satisfying

∇⊥~L := ∇ ~H − 3π~n(∇ ~H) + ⋆(∇⊥~n ∧ ~H) . (I.10)

Then there holds
∇~Φ · ∇⊥~L = 0 (I.11)

and
∇~Φ ∧∇⊥~L = 2 (−1)m ∇

[

⋆(~n ~H)
]

∇⊥~Φ . (I.12)

Furthermore, denoting respectively by S and ~R the scalar and the 2-vector-valued
function on D2 implicitly defined via ∇S := ~L · ∇~Φ and ∇~R := ∇~Φ ∧ ~L +

2 (−1)m
[

⋆(~n ~H)
]

∇~Φ, one finds that

∇⊥ ~R = (−1)m−1 ⋆
(

~n • ∇~R
)

+ ⋆~n ∇S . (I.13)

Here • is the first order contraction between multivectors. It satisfies α • β =
α β when β is a 1-vector; and α • (β ∧ γ) = (α • β) ∧ γ + (−1)pq(α • γ) ∧ β
when β and γ are respectively any p-vector and any q-vector.

Let us note that (I.13) implies that on D2 there holds

∆~R = (−1)m−1 ⋆ ∇⊥~n • ∇~R + ∇⊥(⋆~n) · ∇S . (I.14)

�
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Owing to the isotropy of the Euclidean space, the operators ∧, ⋆, , and •
all commute with differentiation in D2. Accordingly, the identities (I.11) and
(I.12) express the vanishing of linear combinations of certain Jacobians. Thanks
to this very special structure, it will be possible to pass to the limit under weak
convergence of Willmore surfaces having uniformly bounded Willmore energies.
This observation also justifies the use of the term “conservation laws” to de-
scribe (I.11) and (I.12). Interestingly enough, it is shown in [BR] that these
conservation laws are in fact equivalent to the Willmore Euler-Lagrange equa-
tion (I.9). This remarkable feature enables in particular to infer that weak limits
of Willmore equations are themselves Willmore.

Equation (I.14) shows that the Laplacian of ~R arises as a linear combination
of Jacobians. With the help of Wente-type estimates (such as those described
in [Hel]), this important fact will be used in Section III to deduce that the
Gauss map ~n is continuous. In turn, the continuity of the Gauss map yields
the following ǫ-regularity theorem2, which itself implies the regularity of weak
Willmore immersions stated in Theorem I.3.

Theorem I.5 [ǫ−regularity for weak Willmore immersions] Let ~Φ be a
weak Willmore immersion from the unit two-dimensional disk D2 into Rm with
L2-bounded second fundamental form. There exists a constant ε > 0, indepen-
dent of ~Φ, with the following property. Let ~n be the Gauss map corresponding
to the weak immersion ~Φ. We assume that ~Φ is the bilipschitz parametrization
given by theorem I.2. If

∫

D2

|∇~n|2 dvolg ≤ ε , (I.15)

then for every k ∈ N, there is a positive constant Ck depending only on k, and
such that

‖∇k~n‖2
L∞(D2

1/2
) ≤ Ck

∫

D2

|∇~n|2 dvolg . (I.16)

Here D2
1/2 is the disk of radius 1/2 in the flat metric on D2. �

Another fundamental task consists in describing the “boundary” of the mod-
uli space of closed Willmore surfaces with given genus and bounded Willmore
energy. To this end, one aims at describing the limiting behavior of sequences of
Willmore surfaces Sn with fixed topology and bounded Willmore energy. Mod-
ulo the action of the Möbius group of conformal transformations of Rm (which
preserve the Willmore Lagrangian, and therefore the Willmore equation (I.4)),
it is always possible to fix the area of each Sn to be equal to 1. Then, us-
ing a Federer/Fleming-type argument, a subsequence is extracted such that the
current of integration on Sn converges for the Flat topology to some limiting
integral current of integration S (refer to [Fe] for the terminology on integral
currents). Because Sn has a uniformly bounded Willmore energy and a fixed
topology, the L2 norm (relative to the induced metric) of its second fundamental
form, and hence the W 1,2 norm of the Gauss map over the surface, are bounded.
Calling upon Theorem I.5, a classical argument of compactness concentration
allows to deduce that Sn converges to S, in a suitable parametrization and in

2this result is established through different means in [KS1] for smooth Willmore surfaces.
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the Ck-topology, outside of finitely many points {p1, · · · , pk}. This strong con-
vergence implies that S is a smooth Willmore surface a-priori outside of these
points. It then appears natural to ask whether these singular points are “remov-
able”. This is the content of the following theorem, which extends to arbitrary
codimension the main result in [KS3].

Theorem I.6 [Point removability for Willmore immersions] Let ~Φ be

a continuous map from D2 into Rm with ~Φ(0) = x0. Assume that ~Φ realizes
a finite-area Willmore immersion over D2 \ {0} and that the W 1,2 energy of

the Gauss map on D2 \ {0} is bounded. Let µ be the restriction to ~Φ(D2) of
the two-dimensional Hausdorff measure H2 in Rm weighed by the multiplicity
function from ~Φ(D2) into N which to each point in ~Φ(D2) assigns its number of

preimages under ~Φ. Suppose that x0 has density less than 2:

lim inf
r→0

µ(Bm
r (x0))

πr2
< 2 . (I.17)

Then ~Φ(D2) is a C1,α-submanifold of Rm for every α < 1. Moreover, if ~H de-
notes the mean curvature vector of this submanifold, then there exists a constant
vector ~H0 such that ~H(x) − ~H0 log |x − x0| is a C0,α-function on ~Φ(D2). Here

|x − x0| denotes the distance in ~Φ(D2) between x and x0. When ~H0 = 0, ~Φ is
an analytic Willmore immersion on the whole D2. �

We remind the reader that Bryant [Bry] has produced counterexamples to the
above removability result when (I.17) is weakened to

lim inf
r→0

µ(Bm
r (x0))

πr2
= 2 . (I.18)

Assuming the validity of Theorem I.6 when m = 3, Kuwert and Schätzle were
able to establish the fact that the limit S of a sequence of smooth Willmore sur-
faces Sn is again a smooth Willmore submanifold in R3, under the hypothesis
that the Willmore energy of each Sn is less than 8π − δ, for any fixed δ > 0.
This last assumption ensures that S is a graph about each pi, i = 1 · · ·k, and
that the residue ~H0 vanishes at every pi. A careful inspection of the argument
leading to these consequences (cf. page 344 in [KS3]) reveals that the restriction
to codimension 1 is in fact unnecessary.

The removability Theorem I.6 yields the last main result of this paper.

Theorem I.7 [Weak compactness of Willmore surfaces below 8π] Let
m > 2 be an arbitrary integer, and let δ > 0. Consider a sequence Sn ⊂ Rm of
smooth closed Willmore embeddings with uniformly bounded topology, unit area,
and Willmore energy W (Sn) bounded above by 8π − δ. Assume further that Sn

converges weakly as varifolds to some limit S which realizes a non-zero current.
Then S is itself a smooth Willmore embedding. �

A theorem of Montiel3 [Mon] states that any non-umbillic Willmore 2-sphere
in R4 has Willmore energy larger than 8π. This result along with an argument
from [KS3] (cf. pp. 350-351) may be combined to our removability theorem to
produce

3already known in R
3 from the work of Bryant [Bry].
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Theorem I.8 [Strong compactness of Willmore tori with energy below
8π] Let m = 3 or m = 4, and let δ > 0 be arbitrary. The space of Willmore
tori embedded in R

m having Willmore energy less that 8π − δ is compact – up
to Möbius transformations – under smooth convergence of compactly contained
surfaces in Rm. �

This result extends to dimension 4 Theorem 5.3 from [KS3], which is established
in dimension 3.

A central role in the analysis of Willmore surfaces developed in this paper is
played by the following observation, which, for the sake of brevity, is presented
only for m = 3. Consider an L2 map ~w from D2 into R3. We assume that it lies
in the kernel of the Willmore operator L~n, where ~n is some map in W 1,2(D2, S2);
namely L~n ~w = 0. We introduce the following Hodge decomposition:

∇~w − 3πN(∇~w) = ∇ ~A + ∇⊥ ~B , (I.19)

with the boundary condition ~A = 0 on ∂D2. Let {~ǫ1,~ǫ2,~ǫ3} be the canonical

basis of R3. Then ~A and ~B =
∑3

i=1 Bi~ǫi satisfy:














































∆ ~A = ∇ ~H ∧∇⊥~n = ∂x2

~H ∧ ∂x1
~n − ∂x1

~H ∧ ∂x2
~n

∆Bi = 3 div(πN (∇⊥ ~w)) = 3
3
∑

j=1

∇(ni nj) · ∇
⊥wj

= 3

3
∑

j=1

∂x2
(ni nj) ∂x1

wj − ∂x1
(ni nj) ∂x2

wj ,

(I.20)

where ~w =
∑3

i=1 wi ~ǫi and ~n =
∑3

i=1 ni ~ǫi. The system (I.20) bears a striking
feature: all of the involved nonlinearities are linear combinations of Jacobians!
Such a special algebraic structure plays a distinctive role in geometric analysis.
This was probably first discovered by Wente [Wen]. In [Hel], Hélein gives a
detailed account of the consequence borne by those “Jacobian structures”. In
the present work, we shall make extensive use of Wente-type estimates.

Final Remarks :

i) The analysis which we are developing in this paper points to a new direc-
tion for reaching a new proof of Simon’s result [Si2] on the existence of
embedded energy-minimizing Willmore tori in R

m, for every m ≥ 3 (see
[BR]).

ii) Our approach should be particularly helpful in the study of the Willmore
flow, as initiated in the works of Kuwert and Schätzle [KS1], [KS2], and
[KS3]. See also [Sim].

iii) Observe that the Hodge decomposition (I.19) applied to the mean curva-

ture vector ~H yields the system










∆ ~A = ∇ ~H ∧∇⊥~n

∆ ~B = −3∇H · ∇⊥~n .

(I.21)
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Since
∫

Σ
|∇ ~A|2 + |∇ ~B|2 =

∫

Σ
4|∇H |2 + |H |2 |∇~n|2, optimal Wente-type

estimates applied to (I.21) should produce interesting lower bounds for
the Willmore energy of Willmore immersions of tori.

The paper is organized as follows. In Section 2, the conservation laws satis-
fied by Willmore surfaces (proof of Theorem I.1) are established. In Section 3,
we give a proof of the regularity of weak Willmore immersions (Theorem I.3).
The point-removability result for Willmore graphs (Theorem I.6) is proved in
Section 4. Finally, the Appendix is devoted to the study of various intrinsic
properties of the Willmore operator L~n.
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thanks E. Kuwert and R. Schätzle for their valuable comments and suggestions
on the first draft of the present work. In particular, they drew attention on
the existence in the literature (cf. [Ru]) of a weak formulation of the Willmore
Euler-Lagrange equation in dimension 3.

II Conservation Laws for Willmore Surfaces

II.1 The Euler-Lagrange Willmore equation in divergence
form

This subsection is devoted to proving Theorem I.1.

Throughout this section, the operators ∇, ∇⊥, div, and ∆ are understood
with respect to the flat metric on the unit 2-dimensional disk D2 = {z ∈

C ; |z| < 1}. Let ~Φ be a smooth conformal embedding of the unit disk D2

into Rn, and let Σ = ~Φ(D2). We introduce the function λ via

eλ =

∣

∣

∣

∣

∣

∂~Φ

∂x1

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂~Φ

∂x2

∣

∣

∣

∣

∣

,

where x1 and x2 are the real and imaginary parts of the coordinate z on D2.
Because of the topology of D2, the normal bundle to Σ is trivial and there
exists therefore a smooth map ~n(z) = (~n1(z), · · · , ~nm−2(z)) from D2 into the
orthonormal (m − 2)-frames in Rm such that

{~n1(z), · · · , ~nm−2(z)} is a positive orthonormal basis to N~Φ(z)Σ ,

where N~Φ(z)Σ = (T~Φ(z)Σ)⊥ is the (m − 2)-plane orthonormal to the tangent

plane T~Φ(z)Σ. We denote by {~e1, ~e2} the orthonormal basis of T~Φ(z)Σ given by

~ei = e−λ ∂~Φ

∂xi
.
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With this notation, the second fundamental form h, which is a symmetric 2-form
on T~Φ(z)Σ into N~Φ(z)Σ, may be expressed as

h =
∑

α,i,j

hα
ij ~nα (~ei)

∗ ⊗ (~ej)
∗ , with hα

ij = −e−λ

(

∂~nα

∂xi
, ~ej

)

. (II.1)

Hence the mean curvature vector ~H is

~H =

m−2
∑

α=1

Hα ~nα =
1

2

m−2
∑

α=1

(hα
11 + hα

22)~nα . (II.2)

Let ~n be the (m − 2)-vector of Rm defined as ~n = ~n1 ∧ · · · ∧ ~n2. Using the
operator ⋆, whose definiton was recalled in the Introduction, we may identify
vectors and (m − 1)-vectors in Rm. For instance, there holds:

⋆(~n ∧ ~e1) = ~e2 and ⋆ (~n ∧ ~e2) = −~e1 . (II.3)

Since {~e1, ~e2, ~n1 · · ·~nm−2} forms a basis for T~Φ(z)R
m, we have the expansion

∇~nα =
m−2
∑

β=1

(∇~nα, ~nβ)~nβ +
2
∑

i=1

(∇~nα, ~ei)~ei ,

valid for every α = 1, · · · , m − 2. Consequently, it follows that

⋆(~n ∧∇⊥~nα) = (∇⊥~nα, ~e1) ~e2 − (∇⊥~nα, ~e2) ~e1 . (II.4)

Note that the symmetry of the second fundamental form (i.e. hα
ij = hα

ji) and

the conformality of ~Φ imply
(

∂~nα

∂x1
, ~e2

)

=

(

∂~nα

∂x2
, ~e1

)

. (II.5)

Combining (II.4) and (II.5) thus yields

⋆(~n ∧∇⊥~nα)

=









−

(

∂~nα

∂x1
, ~e2

)

(

∂~nα

∂x1
, ~e1

)









~e2 +









(

∂~nα

∂x2
, ~e2

)

−

(

∂~nα

∂x2
, ~e1

)









~e1

=









−

(

∂~nα

∂x1
, ~e2

)

−

(

∂~nα

∂x2
, ~e2

)









~e2 +









−

(

∂~nα

∂x1
, ~e1

)

−

(

∂~nα

∂x2
, ~e1

)









~e1

+

[(

∂~nα

∂x1
, ~e1

)

+

(

∂~nα

∂x2
, ~e2

)]

[(

1

0

)

~e1 +

(

0

1

)

~e2

]

.

(II.6)

This implies

∇~nα + ⋆(~n ∧∇⊥~nα)

=

m−2
∑

β=1

(∇~nα, ~nβ) ~nβ − 2eλ Hα

[(

1

0

)

~e1 +

(

0

1

)

~e2

]

.

(II.7)
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Substituting the identity ∂xj
~Φ = eλ ~ej into the latter, we reach the important

equality

∇~nα + ⋆(~n ∧∇⊥~nα) =
m−2
∑

β=1

(∇~nα, ~nβ) ~nβ − 2Hα ∇~Φ . (II.8)

Following the “Coulomb gauge extraction method” presented in the proof of
Lemma 4.1.3 from [Hel], we may choose a trivialization {~n1, · · · , ~nm−2} of the
orthonormal frame bundle associated to our trivial bundle NΣ and satisfying

div(∇~nα, ~nβ) = 0 , ∀ 1 ≤ α, β ≤ m − 2 . (II.9)

The identities (II.8) and (II.9) may be combined so as to produce:

div
(

∇~nα + ⋆(~n ∧∇⊥~nα)
)

=

m−2
∑

β=1

(∇~nα, ~nβ) · ∇~nβ − 2∇Hα · ∇~Φ − 2Hα ∆~Φ .

(II.10)

On the other hand, an elementary classical computation gives

∆~Φ = 2 e2λ ~H . (II.11)

Bringing altogether the two last identities, we obtain now

div
(

∇~nα + ⋆(~n ∧∇⊥~nα)
)

=

m−2
∑

β=1

(∇~nα, ~nβ) · ∇~nβ − 2∇Hα · ∇~Φ − 4 e2λ Hα ~H .

(II.12)

Multiplying throughout by Hα, summing over α = 1, · · · , m − 2, and using the
expression for Hα ∇~Φ given in (II.8), we infer that

m−2
∑

α=1

Hα div
(

∇~nα + ⋆(~n ∧∇⊥~nα)
)

−

m−2
∑

α=1

∇Hα · ∇~nα

− ⋆
m−2
∑

α=1

∇Hα · ~n ∧∇⊥~nα

=

m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · ∇~nβ −

m−2
∑

α,β=1

∇Hα · (∇~nα, ~nβ) ~nβ

−4 e2λ Hα ~H .

(II.13)

For our future needs, we find helpful to recast (II.13) in the form

m−2
∑

α=1

Hα ∆~nα −

m−2
∑

α=1

∇Hα · ∇~nα − ⋆

m−2
∑

α=1

div
(

Hα ~n ∧∇⊥~nα

)

=

m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · ∇~nβ −

m−2
∑

α,β=1

∇Hα · (∇~nα, ~nβ) ~nβ

−2 ⋆
m−2
∑

α=1

Hα div
(

~n ∧∇⊥~nα

)

− 4 e2λ Hα ~H .

(II.14)
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We next develop a more “tractable” expression for ⋆
∑m−2

α=1 Hα div
(

~n ∧∇⊥~nα

)

.
To this end, we note first that (II.4) yields

⋆div
(

~n ∧∇⊥~nα

)

= (∇⊥~nα,∇~e1) ~e2 − (∇⊥~nα,∇~e2) ~e1

+(∇⊥~nα, ~e1) · ∇~e2 − (∇⊥~nα, ~e2) · ∇~e1

=
m−2
∑

β=1

(∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ,∇~e2) ~e1]

+

m−2
∑

β=1

[

(∇⊥~nα, ~e1) · (∇~e2, ~nβ) − (∇⊥~nα, ~e2) · (∇~e1, ~nβ)
]

~nβ .

(II.15)

On the other hand, the symmetry of h implies that

(∇⊥~nα, ~e1) · (∇~e2, ~nβ) − (∇⊥~nα, ~e2) · (∇~e1, ~nβ)

=

(

−
∂~nα

∂x2
, ~e1

) (

∂~e2

∂x1
, ~nβ

)

+

(

∂~nα

∂x1
, ~e1

) (

∂~e2

∂x2
, ~nβ

)

+

(

∂~nα

∂x2
, ~e2

) (

∂~e2

∂x1
, ~nβ

)

−

(

∂~nα

∂x1
, ~e2

) (

∂~e2

∂x2
, ~nβ

)

=

(

∂~nα

∂x2
, ~e1

) (

∂~nβ

∂x1
, ~e2

)

−

(

∂~nα

∂x1
, ~e1

) (

∂~nβ

∂x2
, ~e2

)

−

(

∂~nα

∂x2
, ~e2

) (

∂~nβ

∂x1
, ~e1

)

+

(

∂~nα

∂x1
, ~e2

) (

∂~nβ

∂x2
, ~e1

)

= e2λ
[

hα
21h

β
12 − hα

11h
β
22 − hα

22h
β
11 + hα

12h
β
21

]

= e2λ
∑

i,j

hα
ij hβ

ij − 4e2λ Hα Hβ .

(II.16)

Bringing altogether (II.15) and (II.16) produces:

⋆
m−2
∑

α=1

Hα div
(

~n ∧∇⊥~nα

)

=

m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ,∇~e2) ~e1]

+e2λ
∑

α,β,i,j

hα
ij hβ

ij − 4e2λ | ~H |2 ~H .

(II.17)
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Again for our future purposes, we recast the latter in the form

−2 ⋆
m−2
∑

α=1

Hα div
(

~n ∧∇⊥~nα

)

− 4e2λ | ~H |2 ~H

= −2

m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

−2e2λ
∑

α,β,i,j

hα
ij hβ

ij + 4e2λ | ~H |2 ~H .

(II.18)

~H is a section of NΣ. By definition, the covariant (negative) Laplacian of
~H relative to the connection derived from the orthogonal projection π~n (with
respect to the standard scalar product in Rm) on the fibers of NΣ satisfies

e2λ∆⊥
~H := π~ndiv(π~n(∇ ~H)) .

Introducing (II.9), the latter may be recast as

e2λ∆⊥
~H :=

∑

α,β

π~ndiv (∇Hα ~nα + Hα (∇~nα, ~nβ) ~nβ)

=
∑

α

∆Hα ~nα + 2
∑

α,β

∇Hα · (∇~nα, ~nβ)~nβ

+
∑

α,β,γ

Hα(∇~nα, ~nβ) · (∇~nβ , ~nγ) ~nγ .

(II.19)

Demanding that the embedding ~Φ be Willmore is tantamount to assuming that
(I.2) holds (see [Wei]), which in our notation becomes

∆⊥
~H +

∑

i,j,α,β

hα
ij hβ

ij Hβ ~nα − 2| ~H |2 ~H = 0 . (II.20)

In this case, we deduce from (II.18) that

−2 ⋆
m−2
∑

α=1

Hα div
(

~n ∧∇⊥~nα

)

− 4e2λ | ~H |2 ~H

= −2

m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

+2e2λ ∆⊥
~H .

(II.21)

Combining altogether (II.14), (II.19), and (II.21), we see that the conformal
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embedding ~Φ is Willmore if and only if there holds:

m−2
∑

α=1

Hα ∆~nα −
m−2
∑

α=1

∇Hα · ∇~nα − ⋆
m−2
∑

α=1

div
(

Hα ~n ∧∇⊥~nα

)

=

m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · ∇~nβ −

m−2
∑

α,β=1

∇Hα · (∇~nα, ~nβ) ~nβ

−2
m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

+2
∑

α

∆Hα ~nα + 4
∑

α,β

∇Hα · (∇~nα, ~nβ)~nβ

+2
∑

α,β,γ

Hα(∇~nα, ~nβ) · (∇~nβ , ~nγ) ~nγ .

(II.22)

Our next goal consists in showing that (II.22) can be brought into divergence
form.
To this end, we first note that

(∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

=

[(

∂~nα

∂x2
, ~nβ

) (

∂~nβ

∂x1
, ~e1

)

−

(

∂~nα

∂x1
, ~nβ

) (

∂~nβ

∂x2
, ~e1

)]

~e2

+

[(

∂~nα

∂x2
, ~nβ

) (

∂~nβ

∂x1
, ~e2

)

−

(

∂~nα

∂x1
, ~nβ

) (

∂~nβ

∂x2
, ~e2

)]

~e1

=

[

−2

(

∂~nα

∂x2
, ~nβ

)

eλ Hβ −

(

∂~nα

∂x2
, ~nβ

) (

∂~nβ

∂x2
, ~e2

)

−

(

∂~nα

∂x1
, ~nβ

) (

∂~nβ

∂x1
, ~e2

)]

~e2

+

[

−2

(

∂~nα

∂x1
, ~nβ

)

eλ Hβ −

(

∂~nα

∂x1
, ~nβ

) (

∂~nβ

∂x1
, ~e1

)

−

(

∂~nα

∂x2
, ~nβ

) (

∂~nβ

∂x2
, ~e1

)]

~e1

= −2 Hβ (∇~nα, ~nβ) · ∇~Φ

−(∇~nα, ~nβ) · [(∇~nβ, ~e2) ~e2 + (∇~nβ, ~e1) ~e1] .

(II.23)
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Whence we have

−2
m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

= 4

m−2
∑

α=1

Hα Hβ (∇~nα, ~nβ) · ∇~Φ

+2
m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · [(∇~nβ , ~e2) ~e2 + (∇~nβ , ~e1) ~e1] .

(II.24)

Next, it follows from (∇~nα, ~nβ) = −(∇~nβ , ~nα) that

m−2
∑

α,β=1

Hα Hβ (∇~nα, ~nβ) · ∇~Φ ≡ 0 , (II.25)

which is introduced into (II.24) to yield

−2

m−2
∑

α,β=1

Hα (∇⊥~nα, ~nβ) · [(~nβ ,∇~e1) ~e2 − (~nβ ,∇~e2) ~e1]

+2
∑

α,β,γ

Hα (∇~nα, ~nβ) · (∇~nβ , ~nγ) ~nγ

= 2

m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · ∇~nβ .

(II.26)

Upon substituting the latter into (II.22), we conclude that the conformal em-

bedding ~Φ is Willmore if and only if

m−2
∑

α=1

Hα ∆~nα −

m−2
∑

α=1

∇Hα · ∇~nα − ⋆

m−2
∑

α=1

div
(

Hα ~n ∧∇⊥~nα

)

= 3

m−2
∑

α,β=1

Hα (∇~nα, ~nβ) · ∇~nβ + 2

m−2
∑

α=1

∆Hα ~nα

+3

m−2
∑

α,β=1

∇Hα · (∇~nα, ~nβ)~nβ .

(II.27)

With the help of the condition (II.9), we recast (II.27) in the form

m−2
∑

α=1

Hα ∆~nα −

m−2
∑

α=1

∇Hα · ∇~nα − ⋆

m−2
∑

α=1

div
(

Hα ~n ∧∇⊥~nα

)

= 3 div





m−2
∑

α,β=1

Hα (∇~nα, ~nβ) ~nβ



+ 2
m−2
∑

α=1

∆Hα ~nα .

(II.28)

Let us note that

− ⋆ div
m−2
∑

α=1

Hα ~n ∧∇⊥~nα = div ⋆ (∇⊥~n ∧ ~H) , (II.29)
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and that
m−2
∑

α,β=1

Hα (∇~nα, ~nβ) ~nβ = π~n(∇ ~H) −

m−2
∑

α=1

∇Hα~nα . (II.30)

These last two identities enable us to finally express the Willmore equation
(II.28) in the desired divergence form; namely:

∆ ~H − 3 div(π~n(∇ ~H)) + div ⋆
(

∇⊥~n ∧ ~H
)

= 0 . (II.31)

II.2 The proofs of the conservation laws (I.11) and (I.12),
and of the identity (I.13)

Assume that (I.9) holds on D2 for a bilipschitz conformal immersion ~Φ. Consider

the map ~L from D2 into Rm defined via

∇⊥~L := ∇ ~H − 3π~n(∇ ~H) + ⋆(∇⊥~n ∧ ~H) . (II.32)

A simple argument guarantees that ~L is uniquely defined up to a multiplicative
constant.

Our first aim is to establish (I.11). Using again a local framing of the normal
and of the tangent bundles to the immersion, we have:

⋆(∇⊥~n ∧ ~H) = ⋆

m−2
∑

β,γ=1

Hγ ∧α<β ~nα ∧∇⊥~nβ ∧β>α ~nα ∧ ~nγ

= − ⋆

m−2
∑

γ=1

Hγ ~n ∧∇⊥~nγ

= −

m−2
∑

γ=1

Hγ
[

(∇⊥~nγ , ~e1) ~e2 − (∇⊥~nγ , ~e2) ~e1

]

.

(II.33)

Accordingly, we find

⋆(∇⊥~n ∧ ~H) · ∇~Φ = −

m−2
∑

γ=1

Hγ ∇~nγ · ∇~Φ . (II.34)

Since clearly π~n(∇ ~H) · ∇~Φ = 0, we have thus proved that

∇⊥~L · ∇~Φ = ∇ ~H · ∇~Φ −

m−2
∑

γ=1

Hγ ∇~nγ · ∇~Φ . (II.35)

On the other hand, the fact that ~nγ · ∇~Φ = 0 implies:

∇ ~H · ∇~Φ =

m−2
∑

γ=1

Hγ ∇~nγ · ∇~Φ . (II.36)

The desired identity (I.11) follows at once from substituting (II.36) into (II.35).
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Our second aim consists in recovering identity (I.12). To this end, we first
note that

∇~Φ ∧∇ ~H =

m−2
∑

γ=1

∇Hγ · ∇~Φ ∧ ~nγ +

m−2
∑

γ=1

Hγ ∇~Φ ∧∇~nγ . (II.37)

Secondly, there holds

−3∇~Φ ∧ π~n(∇ ~H)

= −3∇~Φ ∧ π~n(

m−2
∑

γ=1

∇Hγ · ~nγ) − 3∇~Φ ∧ π~n(

m−2
∑

γ=1

Hγ ∇~nγ)

= −3∇~Φ ∧

m−2
∑

γ=1

∇Hγ · ~nγ − 3∇~Φ ∧

m−2
∑

α,γ=1

Hγ (∇~nγ , ~nα) ~nα .

(II.38)

And thirdly, using (II.34), we find

∇~Φ ∧ ⋆(∇⊥~n ∧ ~H) = −∇~Φ ∧

m−2
∑

γ=1

Hγ
[

(∇⊥~nγ , ~e1) ~e2 − (∇⊥~nγ , ~e2) ~e1

]

=
m−2
∑

γ=1

Hγ
[

(∂x2
nγ , ∂x1

~Φ) − (∂x1
nγ , ∂x2

~Φ)
]

~e1 ∧ ~e2 = 0 ,

(II.39)
owing to the symmetry of the second fundamental form.
Bringing altogether (II.37), (II.38), and (II.39) finally yields the desired

∇~Φ ∧∇⊥~L = −2
m−2
∑

γ=1

∇Hγ · ∇~Φ ∧ ~nγ +
m−2
∑

γ=1

Hγ ∇~Φ ∧∇~nγ

−3∇~Φ ∧

m−2
∑

α,γ=1

Hγ (∇~nγ , ~nα) ~nα

= −2

m−2
∑

γ=1

∇Hγ · ∇~Φ ∧ ~nγ − 2

m−2
∑

γ=1

Hγ ∇~Φ ∧∇~nγ

= −2∇~Φ ∧∇ ~H .

(II.40)

We shall now compute the term4 ∇(⋆(~n ~H)) ∇⊥~Φ. For this, we first
observe that

~n ~H =

m−2
∑

γ=1

(−1)γ−1Hγ ∧α6=γ ~nα . (II.41)

Hence there holds

⋆(~n ~H) = (−1)m−3~e1 ∧ ~e2 ∧ ~H , (II.42)

4the reader will find a rationale for looking at this particular term by considering the case
m = 3, whereby all of the necessary computations greatly simplify.
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thereby yielding:

(−1)m−3 ∇
[

⋆(~n ~H)
]

= ~e1 ∧~e2∇ ~H +∇~e1 ∧~e2 ∧ ~H +~e1 ∧∇~e2 ∧ ~H . (II.43)

Next, we have that

(

~e1 ∧ ~e2 ∧∇ ~H
)

∇⊥~Φ = eλ~e2 ∧
∂ ~H

∂x2
+ eλ

(

∂~nγ

∂x2
, ~e1

)

~e1 ∧ ~e2

+eλ~e1 ∧
∂ ~H

∂x1
− eλ

(

∂~nγ

∂x1
, ~e2

)

~e1 ∧ ~e2 .

(II.44)
This last identity may further be simplified using the symmetry of the second
fundamental form. More precisely, (II.44) becomes:

(

~e1 ∧ ~e2 ∧∇ ~H
)

∇⊥~Φ = eλ~e2 ∧
∂ ~H

∂x2
+ eλ~e1 ∧

∂ ~H

∂x1

= ∇~Φ ∧∇ ~H .

(II.45)

On the other hand, there holds

(

∇~e1 ∧ ~e2 ∧ ~H
)

∇⊥~Φ = −

(

~e1

∂x1
∧ ~e2 ∧ ~H

)

∂~Φ

∂x2
+

(

~e1

∂x2
∧ ~e2 ∧ ~H

)

∂~Φ

∂x1

= −eλ

(

∂~e1

∂x1
, ~e2

)

~e2 ∧ ~H + eλ ∂~e1

∂x1
∧ ~H

=

m−2
∑

γ=1

eλ

(

∂~e1

∂x1
, ~nγ

)

~nγ ∧ ~H ,

(II.46)
and similarly

(

~e1 ∧∇~e2 ∧ ~H
)

∇⊥~Φ = −

(

~e1 ∧
~e2

∂x1
∧ ~H

)

∂~Φ

∂x2
+

(

~e1 ∧
~e2

∂x2
∧ ~H

)

∂~Φ

∂x1

= −eλ

(

∂~e2

∂x1
, ~e1

)

~e1 ∧ ~H + eλ ∂~e2

∂x2
∧ ~H

=
m−2
∑

γ=1

eλ

(

∂~e2

∂x2
, ~nγ

)

~nγ ∧ ~H .

(II.47)
Adding (II.46) and (II.47) together, we find that

(

∇~e1 ∧ ~e2 ∧ ~H
)

∇⊥~Φ +
(

~e1 ∧∇~e2 ∧ ~H
)

∇⊥~Φ

=
m−2
∑

γ=1

eλ

[(

∂~e1

∂x1
, ~nγ

)

+

(

∂~e2

∂x2
, ~nγ

)]

~nγ ∧ ~H

= 2e2λ ~H ∧ ~H = 0 .

(II.48)

19



We may now combine (II.43), (II.45), and (II.48) to deduce the identity

(−1)m−3 ∇
[

⋆(~n ~H)
]

∇⊥~Φ = ∇~Φ ∧∇ ~H . (II.49)

Upon introducing (II.40) into the latter, we have proved that

∇~Φ ∧∇⊥~L = 2 (−1)m−2 ∇
[

⋆(~n ~H)
]

∇⊥~Φ . (II.50)

This is the desired result, thereby ending the proof of the conservation law (I.12).

In order to complete the proof of Theorem I.4, there remains to establish
identity (I.13). To this end, we first note that

⋆(~n ~H) = ⋆

(

m−2
∑

γ=1

(−1)γ−1 Hγ ∧α6=γ ~nα

)

= (−1)m−3 ~e1 ∧ ~e2 ∧ ~H . (II.51)

From this, it follows at once that

⋆(~n ~H) ∇~Φ = (−1)m−2∇⊥~Φ ∧ ~H . (II.52)

Hence, from the defining identity for R, namely

∇~R := ∇~Φ ∧ ~L + 2(−1)m
[

⋆ (~n ~H)
]

∧∇~Φ , (II.53)

we find
∇~R = ∇~Φ ∧ ~L + 2∇⊥~Φ ∧ ~H . (II.54)

Using ~n ∇~Φ = 0, we infer from (II.54) that

~n • ∇⊥ ~R = −(~n ~L) ∧∇⊥~Φ + 2(~n ~H) ∧∇~Φ . (II.55)

Let us next introduce the decomposition ~L = ~N+ ~T , where ~N = π~n(~L) is normal

to T~Φ(x)
~Φ(D2), while ~T is contained in T~Φ(x)

~Φ(D2). In particular, we thus have

~n ~L = ~n ~N . Furthermore, there holds:

⋆
[

(~n ~N) ∧∇⊥~Φ
]

= ⋆

[

m−2
∑

γ=1

(−1)γ−1 Nγ ∧α6=γ ~nα ∧∇⊥~Φ

]

= (−1)m−1∇~Φ ∧ ~N .

(II.56)

A similar computation shows that

⋆
[

(~n ~H) ∧∇~Φ
]

= (−1)m ∇⊥~Φ ∧ ~H . (II.57)

Combining (II.55), (II.56), and (II.57) produces now:

(−1)m ⋆
[

~n • ∇⊥ ~R
]

= ∇~Φ ∧ ~N + 2∇⊥~Φ ∧ ~H

= ∇~R −∇~Φ ∧ ~T .

(II.58)
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We consider next the function S on D2 defined through the identity ∇S = ~L·∇~Φ.
Since ~T = ~L · ~e1 ~e1 + ~L · ~e2 ~e2, we derive easily

eλ ~T =
∂S

∂x1
~e1 +

∂S

∂x2
~e2 . (II.59)

This implies that

∇~Φ ∧ ~T = −~e1 ∧ ~e2 ∇⊥S = − ⋆ ~n ∇⊥S . (II.60)

Finally, bringing altogether (II.58) and (II.60), we recover (I.13), thereby com-
pleting the proof of Theorem I.4. �

III The Regularity of Weak Willmore Graphs

This section is devoted to the proof of the regularity result stated in Theorem I.5.

With the help of the results derived in the previous section, we shall first
demonstrate that the second derivative of the conformal immersion ~Φ belongs
to the Lorentz space5 L2,1; namely:

∫ +∞

0

∣

∣

∣

{

x ∈ Σ : |∇2~Φ|(x) ≥ µ
}∣

∣

∣

1

2

dµ < +∞ . (III.1)

The fact that ∇2~Φ lies in L2,1 implies in particular that the gradient of the Gauss
map ~n also belongs to L2,1. A generalized version of the Sobolev Embedding
Theorem then shows that the Gauss map is continuous. The immersion thus
looks locally like a graph. Once this is established, we shall have the means to
obtain the ǫ-regularity result stated in Theorem I.5.

III.1 Proof of the fact that ∇2~Φ lies in L
2,1

We begin by observing that the gradient of ~L belongs to L1⊕H−1. From this, it
follows that ~L is in the space L2,∞ (which is the Marcinkiewicz space L2-weak,

see [Ta2]). Thus, from (II.53), we deduce that ∇~R ∈ L2,∞.

For the reader’s convenience, we recall a Wente-type estimate established
in [Hel] (cf. Theorem 3.4.5). Let a and b be two functions on D2 such that
∇a ∈ L2,∞(D2) and ∇b ∈ L2(D2). Then there is a unique solution ϕ in
W 1,2

0 (D2, R) satisfying







∆ϕ = ∇a · ∇⊥b in D2

ϕ = 0 on ∂D2 .

(III.2)

Moreover, there exists a positive constant C, independent of a and b, such that

‖∇ϕ‖L2(D2) ≤ C‖∇a‖L2,∞(D2) ‖∇b‖L2(D2) . (III.3)

5an introduction to Lorentz spaces may be found in [Ta2].
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This result may be directly applied to (I.14) so as to conclude that ∇~R ∈ L2.
With the help of (I.13), we find similarly that ∇S ∈ L2.

The celebrated compensation compactness result by Coifman, Lions, Meyer,
and Semmes [CLMS] (see also Theorems 3.2.2 and 3.2.9 in [Hel]) may also be

applied to (I.14). It shows that ∇2 ~R ∈ L1. Scalar-multiplying (I.13) throughout

by ⋆~n enables us to conclude that ∇S ∈ W 1,1, which follows from ∇2 ~R ∈ L1

and ~n ∈ W 1,2.

Let us note next that (II.54) gives:

∂ ~R

∂x1
=

∂~Φ

∂x1
∧ ~L − 2

∂~Φ

∂x2
∧ ~H . (III.4)

Applying the interior product with ~e2 to this identity yields that

−2eλ ~H =
∂ ~R

∂x1
~e2 + (~L · ~e2)

∂~Φ

∂x1
=

∂ ~R

∂x1
~e2 +

∂S

∂x2
~e1 . (III.5)

By introducing our aforementioned findings, there follows that ~H ∈ W 1,1, and
thus, in particular, that ~H ∈ L2,1. Using now (II.11) and calling upon Theorem

3.3.3 from [Hel], we conclude at once that ∇2~Φ belongs to L2,1, as desired.

III.2 Proof of Theorem I.5

Suppose that ~Φ is a conformal Willmore immersion with second derivative in
the Lorentz space L2,1. We shall establish the ǫ-regularity result stated in The-
orem I.5.

According to Definition I.2, assuming that ~Φ is a weak Willmore immersion is
tantamount to requiring that the mean curvature ~H satisfy (I.9). Let us denote
by χ a smooth cut-off function equal to 1 on D2

1/2 (the two-dimensional disk

of radius 1/2 centered on the origin) and compactly supported in D2. Since

L~n
~H = 0, we have

L~n(χ ~H) = 2div(∇χ ~H) − ~H ∆χ − 6 div(π~n( ~H)∇χ)

+3( ~H · ∇~n) · ~n · ∇χ + 3( ~H · ~n) · ∇~n · ∇χ

−3∆χπ~n( ~H) − ~H ∧∇⊥~n · ∇χ .

(III.6)

Let now

~g1 = 2div(∇χ ~H) − ~H ∆χ − 6 div(π~n( ~H)∇χ) − 3∆χπ~n( ~H) , (III.7)

and

~g2 = 3( ~H · ∇~n) · ~n∇χ + 3( ~H · ~n) · ∇~n · ∇χ − ~H ∧∇⊥~n · ∇χ . (III.8)

Observe that there holds

‖~g1‖
2
H−1(D2) ≤ C

∫

D2\D2

1/2

| ~H |2 , (III.9)
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and

‖~g2‖L1(D2) ≤ C

∫

D2\D2

1/2

| ~H | |∇~n| . (III.10)

Let ~v1 be the solution of (A.5) given by Lemma A.1 with ~g = ~g1; and let
~v2 be the solution of (A.30) given by Lemma A.3 with ~g = ~g2 (refer to the
Appendix). These solutions satisfy the estimates

‖∇~v1‖L2 ≤ C

[

∫

D2\D2

1/2

| ~H |2

]
1

2

, (III.11)

and

‖∇~v2‖L2,∞ ≤ C

∫

D2\D2

1/2

| ~H | |∇~n| ≤ Cε
1

2

[

∫

D2\D2

1/2

| ~H |2

]
1

2

. (III.12)

We note that ~v := χ ~H−~v1−~v2 belongs to L2(D2), and that it satisfies L~n~v = 0.
In addition, since χ is compactly supported in D2, it follows that ∇~v is the sum
of a compactly supported distribution in the interior of D2 and of a function in
L2,∞. The trace of ~v on ∂D2 is therefore well-defined, and it is in fact equal to
zero.

Assuming now that ∇~n lies in the Lorentz space L2,1(D2) enables us to apply
Lemma A.8. In particular, we deduce that ~v is identically 0. Therefore, we have
proved that ∇(χ ~H) ∈ L2,∞. More precisely:

‖∇(χ ~H)‖L2,∞(D2) ≤ C

[

∫

D2\D2

1/2

| ~H|2

]
1

2

. (III.13)

On D2
1/2, there holds L~n(χ ~H) = L~n( ~H) = 0. We find helpful to introduce the

following Hodge decomposition on D2
1/2 :

∇ ~H − 3π~n(∇ ~H) = ∇C + ∇⊥D + ~r , (III.14)

where ~r is harmonic, and with the boundary conditions C = 0 on ∂D2
1/2 and

∂D/∂ν = 0 on D2
1/2. It is not difficult to see that C and D satisfy the systems











∆C = div( ~H ∧∇⊥~n) in D2
1/2

C = 0 on ∂D2
1/2 ,

(III.15)

and














∆D = 3 div(π~n(∇⊥ ~H)) in D2
1/2

∂D

∂ν
= 0 on ∂D2

1/2 .

(III.16)

The right-hand sides of (III.15) and of (III.16) are Jacobians of ~H and ~n.

Since ∇~n ∈ L2(D2
1/2) and ∇ ~H ∈ L2,∞(D2

1/2), the Wente-type estimate (III.3)
yields

‖∇C‖L2(D2

1/2
) + ‖∇D‖L2(D2

1/2
) ≤ C‖∇~n‖L2(D2

1/2
) ‖∇ ~H‖L2,∞(D2

1/2
) . (III.17)
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Moreover, because ~r is harmonic, there holds the estimate

‖~r‖L2(D1/4) ≤ C‖~r‖L2,∞(D1/2) . (III.18)

Let us also note that

|∇ ~H − 3π~n(∇ ~H)| ≥ |∇ ~H | . (III.19)

Compiling now (III.17), (III.18), and (III.19) into (III.14) implies

‖∇ ~H‖L2(D2

1/4
) ≤ C‖∇~n‖L2(D2

1/2
) ‖∇ ~H‖L2,∞(D2

1/2
) + ‖∇ ~H‖L2,∞(D2

1/2
) .

(III.20)

We may consider a Hodge decomposition analogous to (III.14), but on D2
1/4

in place of D2
1/2. For this new decomposition, the Wente inequality6 (3.47)

in Theorem 3.4.1 from [Hel] may be used in place of (III.3). Arguing mutatis
mutandis as we did above then yields the estimate

‖∇ ~H‖L2,1(D2

1/8
) ≤ C‖∇~n‖L2(D2

1/4
) ‖∇ ~H‖L2(D2

1/4
) +‖∇ ~H‖L2,∞(D2

1/4
) . (III.21)

As explained in [Hel], ∇λ belongs to L2,1(D2). From (II.9), it thus follows that
∇~n is in L∞(D2

1/8). Moreover, via combining (III.13), (III.20), and (III.21), we
infer that

‖∇~n‖2
L∞(D2

1/8
) ≤ C

∫

D2

|∇~n|2 . (III.22)

This last estimate can now easily be bootstrapped within the Willmore equation
so as to obtain (I.16) for general k. This concludes the proof of Theorem I.5. �

IV Point Removability for Willmore Graphs

This section is devoted to proving the statement of Theorem I.6.

As explained in [KS3] (pp. 332-334), under the assumptions of Theorem I.6,

we may consider the Lipschitz conformal parametrization ~Φ obtained by fol-
lowing arguments based on Huber’s result on conformal parametrizations of
complete surfaces in Rm [Hub], along with the estimates given in the work by
Müller and Sverák [MS].

If our surface is Willmore outside of some point (to be removed), then the pre-

image of that point under the map ~Φ must lie inside D2. Applying, if necessary,
an appropriate Möbius transformation, we may assume without loss of generality
that the point to be removed has pre-image 0. According to Theorem I.3, we
know that ~Φ is C∞ in D2 \ {0}. Moreover, it follows from (I.16) that there
exists a positive function δ(r) such that limrց0 δ(r) = 0 and

|x| |∇~n(x)| + |x|2 |∇2~n(x)| ≤ δ(|x|) ∀ x ∈ D2 \ {0} . (IV.1)

6originally derived by Luc Tartar in [Ta1].
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The distances are understood in the flat metric on D2. Owing to some estimates
on the function λ (defined at the beginning of Subsection II.1) proved in [MS],
that distance is equivalent to the distance with respect to the induced metric.

Given ε > 0, we may restrict our attention to a smaller disk and apply an
appropriate dilation, so as to obtain from the property of δ(|x|) and from (IV.1)
the estimate

‖|x| |∇~n|(x)‖2
∞ +

∫

D2

|∇~n|2 ≤ ε . (IV.2)

Next, since ~H belongs to L2(D2), the distribution L~n
~H makes sense in D′(D2).

In addition, because ~Φ is Willmore in D2 \ {0} by hypothesis, the distribution

L~n
~H is supported on zero, and it is thus a finite linear combination of derivatives

of the Dirac mass at the origin. Yet, as L~n
~H is a sum of an H−2 distribution and

of derivatives of L1 functions, it ensues that L~n
~H must in fact be proportional

to the Dirac mass centered at the origin; namely:

L~n
~H = ~c0 δ0 . (IV.3)

In anticipation of our ultimate goal, we introduce the constant ~H0 defined via
~c0 = −4π ~H0. Per Lemma A.4 from the Appendix, let now ~L solve the problem











L~n
~L = −4π ~H0 in D2 ,

~L = 0 on ∂D2 .

(IV.4)

We know that ∇~L ∈ L2,∞. Since ~n is smooth over D2\{0}, and since it satisfies
‖|x|k∇k~n‖L∞(D2) < +∞, we can apply Lemma A.9 from the Appendix in each

annulus D2
2−i \D2

2−i−1 , for i ∈ N, to deduce that ~L is in fact smooth in D2 \ {0}
and that

supx∈D2|x| |∇~L(x)| < +∞ . (IV.5)

As in the previous section, we find helpful to introduce the cut-off function
χ compactly supported in D2 and assuming the value 1 on D2

1/2. We also

introduce the functions ~g1 and ~g2, as we did in (III.7) and (III.8). And we
consider again the functions ~v1 and ~v2 whose properties are inventoried in the
paragraph following (III.10). In particular, according to (III.11) and (III.12),

we note that ∇~v1 and ∇~v2 are in L2,∞. Furthermore, just as we did for ~L to
deduce (IV.5), because L~n~vi = 0 on D2

1/2 and because ~g1 and ~g2 are smooth,
we have for i ∈ N that

supx∈D2|x| |∇~vi(x)| < +∞ . (IV.6)

Let ~w := ~H − ~v1 − ~v2 − ~L. Clearly, ~w belongs to L2 and it solves L~n ~w = 0. It
further is smooth on D2 \ {0} and is equal to 0 on ∂D2. We claim that ~w is in
fact identically 0 on D2. We shall now verify this fact.
For r > 0, let χr(x) = χ(x/r). We consider a sequence ~φi of normalized eigen-
vectors of L~n in W 1,2

0 (D2, Rm), with corresponding eigenvalue λi, and forming
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an orthonormal Hilbert basis7 of L2(D2, Rm). Lemma A.1 from the Appendix
guarantees that λi 6= 0. Furthermore, there holds:

∫

D2

(1 − χr) ~w · ~φi =
1

λi

∫

D2

(1 − χr) ~w · L~n
~φi

=
1

λi

∫

D2

∇χr ~w ·
[

∇~φi − 3π~n(∇~φi) − ~φi ∧∇⊥~n
]

−
1

λi

∫

D2

(1 − χr) ∇~w ·
[

∇~φi − 3π~n(∇~φi) − ~φi ∧∇⊥~n
]

=
1

λi

∫

D2

(1 − χr) ~φi · L~n ~w +
1

λi

∫

D2

∇χr ~w ·
[

∇~φi − 3π~n(∇~φi)
]

−
1

λi

∫

D2

∇χr

[

∇~w − 3π~n(∇~w) − ~w ∧∇⊥~n
]

· ~φi .

(IV.7)

Since L~n ~w = 0 holds in the distributional sense, we find that

−

∫

D2

∇χr

[

∇~w − 3π~n(∇~w) − ~w ∧∇⊥~n
]

= 〈L~n ~w, χr〉D′,C∞
0

= 0 . (IV.8)

Thus, in the last term of (IV.7), we can subtract from ~φi the vector ~cr,i, which

is the average of ~φi over D2
r \ D2

r/2, without modifying the equalities. Namely:

∫

D2

(1 − χr) ~w · ~φi =
1

λi

∫

D2

∇χr ~w ·
[

∇~φi − 3π~n(∇~φi)
]

−
1

λi

∫

D2

∇χr

[

∇~w − 3π~n(∇~w) − ~w ∧∇⊥~n
]

· (~φi − ~cr,i) .

(IV.9)

Let ν(r) := supr/2<|x|<r|x|
2 |∇~w|(x) + |x| |w|(x). This quantity enables us to

control the right-hand side of (IV.9), as we shall now demonstrate. Indeed,
using the Cauchy-Schwarz inequality, we have first that

∣

∣

∣

∣

1

λi

∫

D2

∇χr ~w ·
[

∇~φi − 3π~n(∇~φi)
]

∣

∣

∣

∣

≤ Ci

∫

D2
r\D2

r/2

ν(r)

r2
|∇~φi|

≤ Ci ν(r)

[

∫

D2
r\D2

r/2

|∇~φi|
2

|x|2

]
1

2

.

(IV.10)

Using Lemma A.5 and the fact that limrց0 ν(r) = 0, which ensues from com-
bining altogether (IV.1), (IV.5), and (IV.6), we note that the left-hand side of
(IV.10) converges to 0 as r ց 0.
On the other hand, with the help of the Cauchy-Schwarz and of the Poincaré

7whose existence is inferred from Lemma A.1 and the theorem of Hilbert-Schmidt.
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inequalities, we find that

∣

∣

∣

∣

−
1

λi

∫

D2

∇χr

[

∇~w − 3π~n(∇~w) − ~w ∧∇⊥~n
]

· (~φi − ~cr,i)

∣

∣

∣

∣

≤ Ci

∫

D2
r\D2

r/2

[

ν(r)

r3
+

ν(r) δ(r)

r3

]

|~φi − ~cr,i|

≤ Ci [ν(r) + ν(r) δ(r)]
1

r2

[

∫

D2
r\D2

r/2

|~φi − ~cr,i|
2

]
1

2

≤ Ci [ν(r) + ν(r) δ(r)]

[

∫

D2
r\D2

r/2

|∇~φi|
2

|x|2

]
1

2

.

(IV.11)

Calling again upon Lemma A.5, and because ν(r) and δ(r) both tend to zero
as r ց 0, it follows likewise that the left-hand side of (IV.11) tends to 0 as
r decreases to zero. Altogether, (IV.9), (IV.10), and (IV.11) thus imply that
∫

D2(1−χr) ~w · ~φi converges to zero as r tends to zero. In turn, this yields that
∫

D2 ~w · ~φi = 0. Since this holds for every i, and since ~φi is an orthonormal basis
of L2, we conclude at once that ~w is indeed identically zero, and hence:

~H = ~L + ~v1 + ~v2 . (IV.12)

We have previously seen that L~n~vi = 0 on D2
1/2. From Lemma A.9, we

whence deduce that ~v1 and ~v2 are smooth on D2
1/2. It thus appears natural to

study next the asymptotic expansion of ~H near the origin. To this end, we first
observe that ∇ ~H ∈ L2,∞, which follows from ∇~L ∈ L2,∞. Then using (II.11),
we infer that

∆∇~Φ = 4e2λ ~H∇λ + 2e2λ∇ ~H ∈
⋂

p<2

Lp . (IV.13)

Since eλ = |∇~Φ|, we conclude from the latter that ∇eλ ∈ Lq for every q < +∞.

Bootstrapping this fact back into (IV.13) then implies that ∆∇~φ ∈ L2,∞,
thereby showing that ∇2~n ∈ L2,∞. Inspecting the proof of Theorem 5.1.1 from
[Hel], we find that the Coulomb framing {~e1, ~e2} bears the same regularity as
that of ~n. Whence ∇2~ei ∈ L2,∞. This yields in particular that ~ei ∈ C0,α for
every 0 < α < 1 and i = 1, 2.

We claim now that ei(0) · ~H0 = 0. To see why this must be true, note firstly

that ~H · ~e ≡ 0 implies:

−4π~ei(0) · ~H0δ0 = ~ei · div(∇ ~H − 3π~n(∇ ~H) − ~H ∧∇⊥~n)

= div(~ei · ∇ ~H − 3~ei · ~H ∧∇⊥~n) −∇~ei ·
[

∇ ~H − 3π~n(∇ ~H) − ~H ∧∇⊥~n
]

= div(− ~H · ∇~ei − 3~ei · ~H ∧∇⊥~n) −∇~ei ·
[

∇ ~H − 3π~n(∇ ~H) − ~H ∧∇⊥~n
]

.

(IV.14)
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Observe next that the right-hand side of (IV.14) belongs to Lp, for some p > 1,
and that it should be proportional to the Dirac mass at the origin. Hence the
coefficient 4π~ei(0) · ~H0 must be zero, which settles at once the desired claim.

Letting ~R := ~L − ~H0 log |x|, there holds:

L~n
~R = −3div(π~n( ~H0) ∇ log |x|) −∇ log |x| ~H0 ∧∇⊥~n . (IV.15)

Since π~n( ~H0) = ( ~H0 · ~e1)~e1 + ( ~H0 · ~e2)~e2 = ( ~H0 · (~e1 − ~e1(0)))~e1 + ( ~H0 · (~e2 −
~e2(0)))~e2, and since ~ei ∈ C0,α for every α < 1, as explained above, it thus

follows that r−1π~n( ~H0) ∈ Lp for every p < +∞. We have therefore proved that

L~n
~R ∈ W−1,p for every p < +∞. Arguing as is done in the proof of Lemma A.1,

we find that ~R ∈ ∩p<+∞W 1,p, so that ~H − ~H0 log |x| is in C0,α for every α < 1.
This concludes at once the proof of Theorem I.5. �

A Appendix

Lemma A.1 There exists ε0 > 0 such that for every 0 < ε < ε0 , a positive
constant C independent of ε exists, with the following property. For ~n from D2

into the space of unit (m − 2)-vectors in Rm, suppose there holds the bound:
∫

D2

|∇~n|2 dx ≤ ε . (A.1)

Let ~g be an arbitrary distribution in the Sobolev space H−1(D2, Rm), dual to
W 1,2

0 (D2, Rm). Then there exists a unique map ~v in W 1,2
0 (D2, Rm) such that







∆~v − 3 div(π~n(∇~v)) − div
(

~v ∧∇⊥~n
)

= ~g in D2

~v = 0 on ∂D2 ,

(A.2)

and
∫

D2

|∇~v|2 ≤ C ‖~g‖2
H−1 . (A.3)

Moreover, the operator L−1
~n : ~g 7→ ~v is self-adjoint and compact from L2(D2, Rm)

into itself. �

Prior to proving Lemma A.1, it is helpful to establish first the following
intermediary result.

Lemma A.2 There exists ε0 > 0 such that for every 0 < ε < ε0 , a positive
constant C independent of ε exists, with the following property. For ~n from D2

into the space of unit (m − 2)-vectors in Rm, suppose there holds the bound:
∫

D2

|∇~n|2 dx ≤ ε . (A.4)

Let ~g be an arbitrary distribution in the Sobolev space H−1(D2, Rm), dual to
W 1,2

0 (D2, Rm). Then there exists a unique map ~v in W 1,2
0 (D2, Rm) such that







∆~v − 3 div(π~n(∇~v)) = ~g in D2

~v = 0 on ∂D2 ,

(A.5)
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and
∫

D2

|∇~v|2 ≤ C ‖~g‖2
H−1 . (A.6)

�

Proof of Lemma A.2.
We first show that under the hypothesis (A.4), the following implication

holds for every ~C in W 1,2(D2, Rm) :










∆~C − 3 div(π~n(∇~C)) = 0 in D2

~C = 0 on ∂D2

=⇒ ~C ≡ 0 . (A.7)

Since
div(∇~C − 3π~n(∇~C)) = 0 ,

the Poincaré lemma guarantees that there exists ~D in W 1,2(D2, Rm) satisfying

∇⊥ ~D = ∇~C − 3π~n(∇~C) . (A.8)

This implies in particular that ~D is a W 1,2 solution of the problem



















∆ ~D = 3

m
∑

k=1

∇⊥Ck · ∇(ek
1 ~e1) + 3

m
∑

k=1

∇⊥Ck · ∇(ek
2 ~e2) in D2

∂ ~D

∂ν
= 0 on ∂D2 ,

(A.9)

where Ck are the coordinates of ~C in the canonical basis of Rm. Here {~e1, ~e2}
is an orthonormal basis of the 2-dimensional subspace defined by its normal ~n.
It is explicitly given in Lemma 5.1.4 from [Hel]. That same lemma also states
that there exists some constant C such that

∫

D2

|∇~e1|
2 + |∇~e2|

2 dx ≤ C

∫

D2

|∇~n|2 dx . (A.10)

A Wente-type W 1,2 estimate derived in Lemma 3.1.2 from [Hel] may be adapted8

to our case so as to obtain the estimate
∫

D2

|∇ ~D|2 dx ≤ C1

[∫

D2

|∇~e1|
2 + |∇~e2|

2 dx

] ∫

D2

|∇~C|2 dx

≤ C1ε

∫

D2

|∇~C|2 dx .

(A.11)

On the other hand, let us note that (A.8) implies:

|∇ ~D|2 = |πT (∇~C)|2 + 4|π~n(∇~C)|2 ≥ |∇~C|2 , (A.12)

where πT denotes the orthogonal projection on the 2-plane in Rm defined by the
normal ~n. Upon combining (A.11) and (A.12), we then deduce, for ε < 1/(2C1),

8Hélein considers a problem with Dirichlet boundary condition, whereas we are concerned
with Neumann boundary condition. However, a classical argument from elliptic theory allows
to pass from the former setting to the latter, and derive analogous estimates.
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that ~C ≡ 0, thereby establishing the implication (A.7).

Let now ~g ∈ H−1(D2, Rm) and ~B satisfy










∆ ~B = ~g in D2

~B = 0 on ∂D2 .

(A.13)

We claim that there exists ( ~A, ~F ) such that






























div ~F = div
(

πT (∇⊥ ~A) − 1
2π~n(∇⊥A)

)

in D2

curl ~F = −curl
(

πT (∇ ~B) − 1
2π~n(∇ ~B)

)

in D2

~F · ν = 0 on ∂D2 ,

(A.14)

where ~A is the curl−part in the Hodge decomposition of πT (~F )− 2π~n(~F ) given
by :











−∆ ~A = curl
(

πT (~F ) − 2π~n(~F )
)

in D2

~A = 0 on ∂D2 .

(A.15)

We attract the reader’s attention on the fact that in (A.14), ~F · ν is an element

of Rm. This is because ~F ∈ R2 ⊗Rm and ν ∈ R2 ⊗R. The dot product in ~F · ν
is understood to act as scalar multiplication on the R2 component, and as usual
multiplication on the second component.

The existence of a solution ( ~A, ~F ) to the system (A.14)-(A.15) is again a
consequence of Wente’s estimate. More precisely, we write on one hand:

div

(

πT (∇⊥ ~A) −
1

2
π~n(∇⊥A)

)

=
3

2

m
∑

k=1

∇⊥Ak·∇(ek
1 ~e1)+

3

2

m
∑

k=1

∇⊥Ak·∇(ek
2 ~e2) ;

(A.16)
and on the other hand:

curl

(

πT (∇ ~B) −
1

2
π~n(∇ ~B)

)

=
3

2

m
∑

k=1

∇Bk·∇⊥(ek
1 ~e1)+

3

2

m
∑

k=1

∇Bk·∇⊥(ek
2 ~e2) ,

(A.17)

where Ak and Bk are the coordinates of ~A and ~B. Therefore, using Wente’s
estimate, we obtain the a-priori inequalities

∫

D2

|~F |2 ≤ C2

[∫

D2

|∇~e1|
2 + |∇~e2|

2dx

] ∫

D2

|∇ ~A|2 + |∇ ~B|2dx

≤ C2 ε

∫

D2

|∇ ~A|2 + |∇ ~B|2dx .

(A.18)

From (A.15) and standard elliptic estimates, we also have that
∫

D2

|∇ ~A|2 dx ≤ C3

∫

D2

|~F |2 dx . (A.19)
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Thus, for C3 C2 ε < 1/2, a standard fixed-point argument yields the existence

and uniqueness of ( ~A, ~F ) satisfying (A.14) and (A.15).

Since

div

(

~F −

(

πT (∇⊥ ~A) −
1

2
π~n(∇⊥ ~A)

))

= 0 ,

there exists ~C in W 1,2
0 (D2, Rm) with

~F −

(

πT (∇⊥ ~A) −
1

2
π~n(∇⊥A)

)

= ∇⊥ ~C . (A.20)

Hence we deduce that

πT (~F ) − 2π~n(~F ) = ∇⊥ ~A + πT (∇⊥ ~C) − 2π~n(∇⊥ ~C) . (A.21)

Applying the curl operator throughout both sides of the latter, and calling upon
(A.15), we infer that ~C solves the problem










∆~C − 3 div(π~n(∇~C)) = −curl
(

πT (∇⊥ ~C) − 2π~n(∇⊥ ~C)
)

= 0 in D2

~C = 0 on ∂D2 .
(A.22)

Then (A.7) implies that ~C ≡ 0, and hence that

πT (~F ) − 2π~n(~F ) = ∇⊥ ~A . (A.23)

From (A.14), there exists ~v in W 1,2
0 (D2, Rm) satisfying

~F = −πT (∇ ~B) +
1

2
π~n(∇ ~B) + ∇~v . (A.24)

Upon combining (A.23) and (A.24) together, it then follows that

∇⊥ ~A = −∇ ~B + πT (∇~v) − 2π~n(∇~v) . (A.25)

Comparing this identity with (A.13), we conclude that ~v solves (A.5). From
(A.7), this is the unique solution. Finally, (A.6) follows at once from (A.18) and
(A.19). This completes the proof of Lemma A.2. �

Proof of Lemma A.1.
Let ∆−1

0 denote the continuous isomorphism from H−1(D2, Rm) into W 1,2
0 (D2, Rm),

which to some distribution ~g in H−1(D2, Rm) assigns the solution ~v of







∆~v = ~g in D2

~v = 0 on ∂D2 .

(A.26)

We have seen in Lemma A.2 that the operator A~n~v := ∆~v − 3 div(π~n(∇~n))
is a continuous isomorphism from W 1,2

0 (D2, Rm) into H−1(D2, Rm), and that
the norms of A~n and of A−1

~n are independent of ~n satisfying (A.4) for ε < ε0,
where ε0 is the universal constant given in Lemma A.2. The invertibility of the
operator

∆−1
0 A~n(~v) − ∆−1

0 div(~v ∧∇⊥~n) ,
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which maps W 1,2
0 (D2, Rm) into itself, and with norm independent of ~n satisfying

(A.4) for ε < ε0, is clear. It is indeed a direct consequence of the invertibility
of ∆−1

0 A~n mapping W 1,2
0 (D2, Rm) into itself, and of the fact that Wente-type

estimates (cf. Theorem 3.1.2 of [Hel]) guarantee that the operator ∆−1
0 div(~v ∧

∇⊥~n) satisfies

‖∆−1
0 div(~v ∧∇⊥~n)‖2

W 1,2 ≤ C

∫

D2

|∇~v|2dx

∫

D2

|∇~n|2dx ≤ C ε ‖~v‖2
W 1,2 ,

(A.27)
for every ~v in W 1,2

0 (D2, Rm).

We have thus proved the first statement of Lemma A.1, and there only remains
to establish the compactness and self-adjointness of the operator L−1

~n mapping

L2 into itself. Compactness is clear, since L−1
~n maps H−1(D2, Rm) into W 1,2

0 ,

which is a compact subspace of L2. Let ~g and ~h belong to L2(D2, Rm) (chosen

to be smooth, for the time being). Upon setting ~v := L−1
~n (~g) and ~w := L−1

~n (~h),
we find:

∫

D2

~g · L−1
~n (~h) dx

=

∫

D2

∆~v · ~w − 3 div(π~n(∇~v)) · ~w − div
(

~v ∧∇⊥~n
)

· ~w dx

=

∫

D2

~v · ∆~w + 3π~n(∇~v) · ∇~w + (~v ∧∇⊥~n) · ∇~w dx

=

∫

D2

~v · ∆~w + 3∇~v · π~n(∇~w) − ~v · (∇~w ∧∇⊥~n)

=

∫

D2

~v · ∆~w − 3~v · div (π~n(∇~w)) − ~v · div
(

~w ∧∇⊥~n
)

=

∫

D2

~v · ~h =

∫

D2

L−1
~n (~g) · ~h .

(A.28)

Via a classical density argument, the latter confirms the self-adjointness of L−1
~n ,

thereby concluding the proof of Lemma A.1. �

We now extend the previous two lemmata to data in L1. First of all, we
prove

Lemma A.3 There exists ε0 > 0 such that for every 0 < ε < ε0, a constant
C > 0 independent of ε exists, with the following property. Let ~n from D2 into
the space of unit (m − 2)-vectors in R

m satisfy
∫

D2

|∇~n|2 dx ≤ ε . (A.29)

When ~g is an arbitrary map in L1(D2, Rm), there exists a unique map ~v with
∇~v in L2,∞(D2, R2 ⊗ Rm), and satisfying:







∆~v − 3 div(π~n(∇~v)) − div
(

~v ∧∇⊥~n
)

= ~g in D2

~v = 0 on ∂D2 .

(A.30)
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Furthermore, there holds the estimate

‖∇~v‖L2,∞(D2) ≤ C ‖~g‖L1(D2) . (A.31)

�

Prior to proving Lemma A.3, we shall first establish the following result.

Lemma A.4 There exists ε0 > 0 such that for every 0 < ε < ε0 , a constant
C > 0 independent of ε exists, with the following property. Let ~n from D2 into
the space of unit (m − 2)-vectors in R

m satisfy

∫

D2

|∇~n|2 dx ≤ ε . (A.32)

When ~g is an arbitrary map in L1(D2, Rm), there exists a unique map ~v with
∇~v in L2,∞(D2, R2 ⊗ Rm), and satisfying:







∆~v − 3 div(π~n(∇~v)) = ~g in D2

~v = 0 on ∂D2 ,

(A.33)

and
‖∇~v‖L2,∞(D2) ≤ C ‖~g‖L1(D2) . (A.34)

�

Proof of Lemma A.4.
It suffices to adapt mutatis mutandis the arguments given in the proof of

Lemma A.2. One replaces the estimate (A.11) by its analogous Lorentz-space
version given in (III.3); and substitutes the L2,∞ norm in place of the L2 norm
of the various quantities involved. �

Proof of lemma A.3.
Let ~g be in L1(D2, Rm). We again set A~n~v := ∆~v − 3 div(π~n(∇~v)). Using

Lemma A.4, we first derive the existence of ~v0, with ∇~v0 ∈ L2,∞, and satisfying







A~n~v0 = ~g in D2

~v0 = 0 on ∂D2 .

(A.35)

We argue next by induction. Let ~v0 be given by (A.35), and ~vk, for k ≥ 1, is
the element of W 1,2

0 (D2, Rm) which solves

∆−1
0 A~n(~vk) = ∆−1

0 div(~vk−1 ∧∇⊥~n) , (A.36)

where ∆−1
0 is the operator introduced in (A.26). We know that this problem

does have a solution. Indeed, if ~vk−1, with ∇~vk−1 in L2,∞, is given, according
to (III.3), we find

‖∆−1
0 div(~vk−1 ∧∇⊥~n)‖W 1,2 ≤ C ‖∇~vk−1‖L2,∞‖∇~n‖L2 . (A.37)
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Moreover, we have seen in the proof of Lemma A.1 that ∆−1
0 A~n is a contin-

uous isomorphism of W 1,2
0 . Paired to (A.37), this implies the existence and

uniqueness of ~vk. In addition, there holds:

‖∇~vk‖L2,∞ ≤ ‖∇~vk‖L2 ≤ C ‖∇~vk−1‖L2,∞‖∇~n‖L2 . (A.38)

Thus, under the hypothesis that C‖∇~n‖L2 < 1/2, the series
∑n

k=0 ~vk converges
to some limit ~v =

∑∞
k=0 ~vk solving (A.30) and (A.31). The uniqueness of ~v

follows from that of the solution to A~n(~v) = ~g for arbitrary ~g ∈ L1 (established
in Lemma A.4), and from the aforementioned argument about C‖∇~n‖L2 being
bounded above by 1/2. �

Lemma A.5 There exists ε0 > 0 such that for every 0 < ε < ε0 , a constant
C > 0 independent of ε exists, with the following property. Let ~n from D2 into
the space of unit (m − 2)-vectors in Rm satisfy

‖|x| |∇~n|(x)‖L∞(D2) +

∫

D2

|∇~n|2 dx ≤ ε . (A.39)

For some arbitrary ~g ∈ L2(D2, Rm), let ~v be the unique map in W 1,2
0 (D2, Rm)

(given by Lemma A.2) such that







∆~v − 3 div(π~n(∇~v)) − div
(

~v ∧∇⊥~n
)

= ~g in D2

~v = 0 on ∂D2 .

(A.40)

We denote by ~v0 and ~v⊥ the maps from D2 into Rm which satisfy

~v0(x) =
1

2π|x|

∫

∂B|x|(0)

~v and ~v⊥ = ~v − ~v0 . (A.41)

Then there holds:

‖∇~v0‖
2
L∞(D2) +

∫

D2

|∇~v⊥|
2

|x|2
+

∫

D2

|∇2~v⊥|
2 ≤ C

∫

D2

|~g|2 . (A.42)

�

Before proving Lemma A.5, we first establish an intermediate result.

Lemma A.6 Let a and b be two functions, respectively in W 2,2(D2, R) and in
W 1,2(D2, R), such that b ∈ C1(D2 \ {0}) and

sup
x∈D2\{0}

|x| |∇b|(x) < +∞ .

Let ϕ be the solution in W 1,2 of the problem










∆ϕ =
∂a

∂x1

∂b

∂x2
−

∂a

∂x2

∂b

∂x1
in D2

ϕ = 0 on ∂D2 .

(A.43)

We denote by ϕ0 and ϕ⊥ the functions on D2 which satsify

ϕ0(x) =
1

2π|x|

∫

∂B|x|(0)

ϕ and ϕ⊥ = ϕ − ϕ0 . (A.44)
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Then there holds the inequality:

‖∇ϕ0‖
2
L∞(D2) +

∫

D2

|∇ϕ⊥|
2

|x|2
+

∫

D2

|∇2ϕ⊥|
2

≤ C

[

‖|x| |∇b|(x)‖2
∞ +

∫

D2

|∇b|2
] [∫

D2

|∇a⊥|
2

|x|2
+ ‖∇a0‖

2
∞

]

.

(A.45)

�

Proof of Lemma A.6.
Since ϕ0 is the first term in the Fourier decomposition of ϕ (relative to the

angular variable), we have

∆ϕ0 =
∂a0

∂x1

∂b0

∂x2
−

∂a0

∂x2

∂b0

∂x1
+

(

∂a⊥

∂x1

∂b⊥
∂x2

−
∂a⊥

∂x2

∂b⊥
∂x1

)

0

. (A.46)

Indeed, it is clear from the fact that a0 and b0 depend solely on |x| that

∂a⊥

∂x1

∂b0

∂x2
−

∂a⊥

∂x2

∂b0

∂x1
and

∂a0

∂x1

∂b⊥
∂x2

−
∂a0

∂x2

∂b⊥
∂x1

have null zeroth-order Fourier coefficient. This follows from the identities

∂a⊥

∂x1

∂b0

∂x2
−

∂a⊥

∂x2

∂b0

∂x1
=

1

r

∂a⊥

∂θ
ḃ0(r)

∂a0

∂x1

∂b⊥
∂x2

−
∂a0

∂x2

∂b⊥
∂x1

= ȧ0(r)
1

r

∂b⊥
∂θ

.

(A.47)

For the same reason, the first Jacobian on the right-hand side of (A.46) vanishes.
Calling again upon (A.47), we thus find:

ϕ̈0 +
ϕ̇

r
= ∆ϕ0 =

(

∂a⊥

∂x1

∂b⊥
∂x2

−
∂a⊥

∂x2

∂b⊥
∂x1

)

0

=

(

∂a⊥

∂x1

∂b

∂x2
−

∂a⊥

∂x2

∂b

∂x1

)

0

.

(A.48)

For notational convenience, let h(r) denote the right-hand side of (A.48). Then
we may write ϕ̇0 = r−1

∫ r

0
h(s) s ds. In particular, |ϕ̇0| may thus be bounded

as follows:

|ϕ̇0| ≤
1

2πr

∫

Br

|∇a⊥| |∇b|

≤ C‖|x| |∇b|(x)‖∞

[∫

Br

|∇a⊥|
2

|x|2

]
1

2

.

(A.49)

As for ϕ⊥, it satisfies the identity

∆ϕ⊥ =

(

∂a

∂x1

∂b

∂x2
−

∂a

∂x2

∂b

∂x1

)

⊥

=

(

∂a0

∂x1

∂b

∂x2
−

∂a0

∂x2

∂b

∂x1

)

⊥

+

(

∂a⊥

∂x1

∂b

∂x2
−

∂a⊥

∂x2

∂b

∂x1

)

⊥

.

(A.50)
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On one hand, we have

∫

D2

∣

∣

∣

∣

(

∂a0

∂x1

∂b

∂x2
−

∂a0

∂x2

∂b

∂x1

)

⊥

∣

∣

∣

∣

2

≤

∫

D2

∣

∣

∣

∣

∂a0

∂x1

∂b

∂x2
−

∂a0

∂x2

∂b

∂x1

∣

∣

∣

∣

2

≤ C‖∇a0‖
2
∞

∫

D2

|∇b|2 .

(A.51)

And on the other hand, there holds

∫

D2

∣

∣

∣

∣

(

∂a⊥

∂x1

∂b

∂x2
−

∂a⊥

∂x2

∂b

∂x1

)

⊥

∣

∣

∣

∣

2

≤

∫

D2

∣

∣

∣

∣

∂a⊥

∂x1

∂b

∂x2
−

∂a⊥

∂x2

∂b

∂x1

∣

∣

∣

∣

2

≤ C‖|x| |∇b|(x)‖2
∞

∫

D2

|∇a⊥|
2

|x|2
.

(A.52)

The desired inequality (A.45) ensues upon combining altogether (A.49),
(A.51), and (A.52). This concludes the proof of Lemma A.6. �

Proof of lemma A.5.
Let ~A, ~B, and ~C be the solutions of the problems











∆ ~A = ~g in D2

~A = 0 on ∂D2 ;

(A.53)











∆ ~B = div(~v ∧∇⊥~n) in D2

~B = 0 on ∂D2 ;

(A.54)

and














∆~C = 3 div(π~n(∇⊥~v)) in D2

∂ ~C

∂ν
= 0 on ∂D2 .

(A.55)

It is clear that ~v = ~A+ ~B+ ~C. Applying standard elliptic estimates to (A.53), the
result of Lemma A.6 to (A.54), and the Neumann boundary condition version
of Lemma A.6 to (A.55), we obtain successively the estimates

‖∇ ~A0‖
2
∞ +

∫

D2

|∇ ~A⊥|
2

|x|2
+

∫

D2

|∇2 ~A|2 ≤ C

∫

D2

|~g|2 ; (A.56)

‖∇ ~B0‖
2
∞ +

∫

D2

|∇ ~B⊥|
2

|x|2
+

∫

D2

|∇2 ~B⊥|
2 ≤ Cε

[∫

D2

|∇~v⊥|
2

|x|2
+ ‖∇~v0‖

2
∞

]

;

(A.57)
and

‖∇~C0‖
2
∞ +

∫

D2

|∇~C⊥|
2

|x|2
+

∫

D2

|∇2 ~C⊥|
2 ≤ Cε

[∫

D2

|∇~v⊥|
2

|x|2
+ ‖∇~v0‖

2
∞

]

.

(A.58)
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Note that, as in (A.9), we have used the fact that div(π~n(∇⊥~v)) is a Jacobian
of the form −

∑

k,i ∇
⊥~vk · ∇(ek

i ~ei), and that {~e1, ~e2} is an orthonormal frame
generating the 2-plane normal to ~n.
Upon choosing ε small enough, and bringing together (A.56), (A.57), and (A.58),
we easily obtain the desired inequality (A.45), thereby concluding the proof of
Lemma A.5 is proved. �

Lemma A.7 There exists ε0 > 0 such that for every 0 < ε < ε0 the following
holds. Let ~n be a W 1,2 map from D2 into the space of unit (m − 2)-vectors in
Rm such that

∫

D2

|∇~n|2 dx ≤ ε . (A.59)

Let ~φ be a W 1,2 eigenvector of L~n, namely, for some constant λ ∈ R:











∆~φ − 3 div(π~n(∇~φ)) − div
(

~φ ∧∇⊥~n
)

= λ ~φ in D2

~φ = 0 on ∂D2 ,

(A.60)

Assume further that the gradient of ~n lies in the Lorentz space L2,1.
Then ~φ is Lipschitz with second derivatives in L2,1. �

Proof of lemma A.7.
We first prove that ~φ belongs to W 1,p(D2) for every 1 ≤ p < +∞. For this,

let 2 < p < +∞, and let q be the constant in (1, 2) given by 1/p = 1/q− 1/2, so

that W 1,q
0 (D2) embeds in Lp. Defining ~g := λ~φ ∈ Lq(D2), we can follow step by

step the proof of Lemma A.2, starting from (A.13) and replacing the hypothesis
~g ∈ H−1 by the hypothesis ~g ∈ Lq. Doing so, we first observe, with the help of
classical elliptic estimates, that

‖∇ ~B‖Lp(D2) ≤ C ‖~g‖Lq(D2) . (A.61)

Replacing Wente’s inequalities by classical Lq bound for Calderón-Zygmund
operators, we then obtain the a-priori estimate

‖ ~F‖Lp(D2) ≤ C‖ ~F‖W 1,q ≤ C

[∫

D2

|∇ ~A|q |∇~e|q + |∇ ~B|q |∇~e|q
]

1

q

≤ C ‖∇ ~A‖p ‖∇~e‖2 + ‖∇ ~B‖ ‖∇~e‖2

≤ Cε
[

‖∇ ~A‖p + ‖∇ ~B‖p

]

.

(A.62)

From this estimate, just as in the proof of Lemma A.2, we deduce the existence
of ~v solving L~n~v = ~g. Only now, ~v lies in W 1,p

0 for every p > 2. Owing to the
uniqueness result from Lemma A.2, it follows that every such ~v (one for each

value of p > 2) coincides with ~φ. Therefore, we find that ~φ ∈ ∩p<+∞W 1,p
0 (D2).

Let now x0 be a point in the interior of D2. For any ε > 0, we can find a
radius ρ > 0 such that

‖∇~n‖L2,1(Bρ(x0)) ≤ ε . (A.63)
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Consider a smooth cut-off function χ equal to 1 on B1/2(0) and equal to 0
outside of B1(0) = D2. Let ~w be the function on the two-dimensional disk
defined by:

~w(x) := ~φ(ρx + x0) χ(x) .

Since ~φ ∈ W 1,p(D2) for every p < +∞, in view of the computations (III.6),

(III.7), (III.8), we infer the existence of ~k ∈ L2,1(D2) which satisfies:







L~n ~w = ~k in D2

~w = 0 on ∂D2 .

(A.64)

We introduce now the Hodge decomposition of ∇~w − 3π~n(∇~w) = ∇~C + ∇⊥ ~D
on D2, with the boundary conditions C = 0 on ∂D2 and ∂D/∂ν = 0 on D2.
From (A.64), it is not difficult to verify that











∆~C = div(~w ∧∇⊥~n) + ~k in D2

~C = 0 on ∂D2 ,

(A.65)

and that














∆ ~D = 3 div(π~n(∇⊥ ~w)) in D2

∂ ~D

∂ν
= 0 on ∂D2 .

(A.66)

Since the space of L2 functions on D2 with first derivatives in L2,1 embeds in
L∞, we derive the a-priori estimates

‖∇~C‖L∞(D2) + ‖∇2 ~C‖L2,1(D2) ≤ C‖∆~C‖L2,1(D2)

≤ C
[

‖k‖L2,1(D2) + ‖∇~n‖L2,1(D2) ‖∇~w‖L∞

]

,

(A.67)

and
‖∇ ~D‖L∞(D2) + ‖∇2 ~D‖L2,1(D2) ≤ C‖∆ ~D‖L2,1(D2)

≤ C ‖∇~n‖L2,1(D2) ‖∇~w‖L∞ .

(A.68)

Note that we have used the fact that |div(π~n(∇~w))| ≤ C|∇~n| |∇~w|. Thus,
choosing ε small enough in (A.63), we can repeat the construction given in the
proof of Lemma A.2 so as to infer the existence of a Lipschitz solution to (A.64)
with second derivatives in L2,1. The uniqueness result from Lemma A.1 ensures
that this solution coincides with ~w. Whence ~φ(ρx + x0) χ(x) is Lipschitz with
second derivatives in L2,1.

Taking into account the boundary condition ~φ = 0, a similar argument can
be developed for any point x0 on the boundary of D2. Doing so yields that
~φ is Lipschitz with second derivatives in L2,1, thereby completing the proof of
Lemma A.7. �
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Lemma A.8 There exists ε0 > 0 such that for every 0 < ε < ε0 the following
holds. Let ~n be a W 1,2 map from D2 into the space of unit (m − 2)-vectors in
R

m such that
∫

D2

|∇~n|2 dx ≤ ε . (A.69)

Assume further that ∇~n lies in the Lorentz space L2,1(D2).
Let ~v be a function in L2(D2) such that ∇~v is the sum of a compactly supported
distribution in the open disk and of a function in L2,∞(D2) (in such a way
that the trace of ~v on ∂D2 is well defined). Suppose that ~v satisfies in the
distributional sense the system







∆~v − 3 div(π~n(∇~v)) − div
(

~v ∧∇⊥~n
)

= 0 in D2

~v = 0 on ∂D2 .

(A.70)

Then ~v vanishes identically in D2. �

Proof of Lemma A.8.
We consider a smoothing ~vδ of ~v obtained through convolving with functions

whose supports shrink approaching the boundary of D2. As is easily seen, this
ensures that ∇~vδ ∈ L2,∞(D2), that ~vδ = ~v in a neighborhood of ∂D2, and that

~vδ → ~v in L2(D2, Rm). As in Section IV, let ~φi be a sequence of normalized
eigenvectors of L~n in W 1,2

0 (D2, Rm), with corresponding eigenvalues λi (these

eigenvalues are nonzero, according to Lemma A.1). Recall that {~φi} forms an
orthonormal Hilbert basis of L2(D2, Rm). By definition, we have

∫

D2

~vδ · ~φi = λ−1
i

∫

D2

~vδ · L~n
~φi . (A.71)

As explained in Lemma A.7, ~φi is Lipschitz with ∇2~φi ∈ L2,1. Furthermore,
∇~vδ ∈ L2,∞. And because both ~φi and ~vδ vanish on ∂D2, it follows that

∫

D2

~vδ · L~n
~φi =

〈

L~n~vδ, ~φi

〉

W−1,p′ ,W 1,p
0

, ∀ p > 2 . (A.72)

Note that ∆~vδ converges to ∆~v in H−2(D2), the dual space of W 2,2
0 (D2). In

addition, div(π~n(∇~vδ)) converges to div(π~n(∇~v)) in W−1,1 ⊕ H−2(D2), while
div(~vδ ∧ ∇⊥~n) converges to div(~v ∧ ∇⊥~n) in W−1,1(D2). Taking these facts

into account, since ~φi lies in W 1,∞ ∩ W 2,2(D2), the duality appearing on the
right-hand side of (A.72) becomes

∫

D2

~v · L~n
~φi =

〈

L~n(~v), ~φi

〉

H−2⊕W−1,1,W 2,2
0

∩W 1,∞
0

, (A.73)

as δ approaches zero.
Upon combining (A.70), (A.71), and (A.73), we deduce that

∫

D2 ~v · ~φi = 0, for

every i ≥ 1. Whence, because {~φi} is a Hilbert basis for L2, it follows that ~v
vanishes identically in L2. This concludes at once the proof of Lemma A.8. �

With little effort, the proof of the previous lemma may be repeated mutatis
mutandis so as to yield the following result.
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Lemma A.9 There exists ε0 > 0 such that for every 0 < ε < ε0, a constant
C > 0 independent of ε exists, with the following property. Let ~n be a Lipschitz
map from D2 into the space of unit (m − 2)-vectors in R

m satisfying

∫

D2

|∇~n|2 dx ≤ ε . (A.74)

Suppose that ~g is a map in Lp(D2), for some p > 1; and that ~v is an L2 solution9

of
∆~v − 3 div(π~n(∇~v)) − div

(

~v ∧∇⊥~n
)

= 0 in D2 . (A.75)

Then there holds:

‖∇2~v‖Lp(D2

1/2
) ≤ C

[

‖~g‖Lp(D2) + ‖~v‖L2(D2)

]

, (A.76)

where D2
1/2 is the disk of radius 1/2 centered on the origin. �

.

9this L2 condition is not optimal. It is however sufficient to our purpose.
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