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1 The Fourier transform of tempered distributions

1.1 The Fourier transforms of L' functions

Theorem-Definition 1.1. Let f € L*(R", C) define the Fourier transform of f as fol-
lows:

Ve R f(€) = (21)73 / e f(z) da.

n

We have that | € L>(R™) and
(1.1) 1 Fllzoeny < 2m) 72 [ fll 22 zmy.
Moreover f € CO(R™) and

(1.2) lim |f(¢)| = 0.

|§] =00
We shall also sometimes denote the Fourier transform of f by F(f).

Remark 1.2. There are several possible normalizations for defining the Fourier transform
of an L! function such as for instance

fiey= [ emmtaan

None of them give a full satisfaction. The advantages of the one we chose are the following:

i) fr— J/C\Wﬂl define an isometry of L? as we will see in Proposition 1.5.

ii) With our normalization we have the convenient formula (see Lemma 1.11)
Vi=1...n 0, f=—i& [

but the less convenient formula (see Proposition 1.32)

—

g f=0@m)™"§f.

Proof of Theorem 1.1. The first part of the theorem that is inequality (1.1) is straight-
forward. We prove now that f € C°(R"). Let f; € C5°(R") such that

fr — f strongly in L'(R").
It is clear that since fj, € C5°(R™) the functions ﬁ are also C*. Inequality (1.1) gives
If = fulle@ny < (2m)72 ||f — fallpren.-

Thus f is the uniform limit of continuous functions and, as such, it is continuous. It
remains to prove that |f|(£) uniformly converges to zero as |£| converge to infinity. In



Proposition 1.9 we shall prove that (1.2) holds if f € C°(R"). Let f € L'(R"), let € > 0
and let ¢ € Cg° such that

(1.3) I = Pl < £ (203,
There exists R > 0 such that

(1.4) €l > R = [2(§)] <

N ™

Combining (1.3) and (1.4) together with (1.1) applied to the difference f — ¢, we obtain

€] > R=> |F()| < If = Bll= + |B(&)]
<e.

This implies (1.2) and Theorem 1.1 is proved. O

Exercise 1.3. Prove that for any a € R,

e—alzl? = —— _ o7 da,

(2)7

Prove that for any a € R,

where f,(z) := f(%) for any x € R".

It is then natural to ask among the functions which are continuous, bounded in L*>
and converging uniformly to zero at infinity, which one is the Fourier transform of an L'
function. Unfortunately, there seems to be no satisfactory condition characterizing the
space of Fourier transforms of L'(R"). We have nevertheless the following theorem.

Theorem 1.4. (Inverse of the Fourier transform)

Let f € L'(R™;C) such that fe LY(R™;C) then

VoeR' )= (20 [ e Flode

n

Proof of Theorem 1.4. We can of course explicitly write

(2m)~# / e Flg) d = (2m) 7 / eEde [ e f(y)dy.

n ]Rn

The problem at this stage is that we cannot a-priori reverse the order of integrations
because the hypothesis for applying Fubini’s theorem are not fullfilled:

(& y) — eV f(y) ¢ L'R" x R")

unless f = 0.
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The idea is to insert the Gaussian function e~ =& where ¢ is a positive number that
we are going to take smaller and smaller. Introduce

Lw)i=n) " [ e

2)¢12

& y) — e~ T e’f(x’y)f(y) € L'(R" x R™)

e f(y) dy
R’ﬂ

Now we have

and we can apply Fubini’s theorem.

We have in one hand

g2 ~

L) = (2t [ e floae
We can bound the integrand uniformly as follows:

fo| <1f+ol.

By assumption, the right-hand side of the inequality is integrable and we have moreover,
for every x and &

2lel?

Ve, & e R"

22~

lim ™ e "5 f(€) = ™ (€).

e=0

Hence dominated convergence theorem implies that for any x € R

n

(1.5) lim I.(z) = (2m)"> f( ) €S de.

e=0

N

Applying Fubini gives also

@) = Ca [ gy [ e T g

—@nF [ ) Fe Ty — 2 dy

R

using Exercise 1.3, we then obtain

*Iy I\Q 22

L(x) = (2m) 2 f() — dy.

8’(1,

One proves without much difficulties that for any Lebesgue point x € R for f the following
holds

i 20 [ )" 2= s
i =1
Continuing this identity with (1.5) gives the theorem. O

The transformation

f e INRY) — (2n)°% / e f(¢) de

Vv
will be denoted f or also F~1(f).



Proposition 1.5. Let f and g € L'(R";C). When
@) gla)dz = [ Fw) g(o) e
R n

Let f € LY(R™;C) such that f € L*(R";C), then

)

[ 1) @ o= [ Fl©) Fla) ac

This last identity is called Plancherel identity.

Proof of Proposition 1.5. The proof of the first identity in Proposition 1.5 is a direct
consequence of Fubini’s theorem. The second identity can be deduced from the first one
by taking g := F(f) and by observing that

FUH =F(f). O

The second identity is an invitation to extend the Fourier transform as an isometry
of L?. The purpose of the present chapter is to extend the Fourier transform to an even
larger class of distributions. To that aim we will first concentrate on looking at the Fourier
transform in a “small” class of very smooth function with very fast decrease at infinity:
the Schwartz space.

1.2 The Schwartz Space S(R")

The Schwartz functions are C*° functions whose successive derivatives decrease faster
than any polynominal at infinity. We shall use below the following notations:

Va=(a,...,a,) € N* g% =gt . aln

Bn
VB(B,...,B.) € N OPf = 9 0

ont oxbr

(f)

and |a| =) ;.
Definition 1.6. The space of Schwartz functions is the following subspace of C*(R"™; C):
p € C°(R™C) s.t
S(R") = PEN No(@) == sup  [|z% 87| Lo (mny < 400
ol <p
Bl <p

The following obvious proposition holds

Proposition 1.7. S(R") is stable under the action of derivatives and the multiplication
by polynomials in Clzy, ..., x,].

We prove now the following proposition:



Proposition 1.8. There ezists C,, > 0 s.t. Yo € S(R")

>z llamn < Cn Nopnia ()
laf <p
1Bl <p

Proof of Proposition 1.8. We have

[ elan < [ o el 1 07l

(1.6 T fap )
<Cy N;v+n+1(90)-
This concludes the proof of the proposition. O

The following proposition is fundamental in the theory of tempered distributions we
are going to introduce later on.

Proposition 1.9. Let ¢ be a Schwartz function on R™, then it’s Fourier transform is also
a Schwartz function. Moreover for any p € N there exists C,, > 0 such that

Np(@) < Chyp Np+n+1(90>-

Hence the Fourier transform is a one to one linear transformation from S(R™) into itself.
We shall see in the next sub-chapter that it is also continuous for the topology induced by
the ad-hoc Frechet structure on S(R).

Before proving Proposition 1.9, we need to establish two intermediate elementary
lemmas whose proofs are left to the reader. (They are direct applications respectively of
the derivation with respect to a parameter in an integral as well as integration by parts.
Both operations are justified due to the smoothness of the integrands as well as the fast
decrease at infinity).

We have first
Lemma 1.10. Let ¢ € S(R"), then ¢ is a C' function and
Vi=l.n 0 B(6) = F(iz;p).
We have also the following lemma:

Lemma 1.11. Let ¢ € S(R"), then

Vi=1,...,n Oz,0 =1 & 0(8).
Observe that the two previous lemmas are illustrating the heuristic idea according to
which Fourier transform exchanges derivatives or smoothness with decrease at infinity.

Proof of Proposition 1.9. By iterating Lemma 1.10 and Lemma 1.11, we obtain that
p € C*™ and we have

62 0¢ (&) = |F(a2(2")) .
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Hence using inequality (1.1) we obtain

va(@: sup ||§aa?‘;/5”L°°(R")
la| <p

8] <p

= swp [ F (0" 0) ||
la) <p
1Bl <p

< sup (27T)_g||af(375¢)||L1(R")

la| <p
1Bl <p
< Cn,p sup ”378 (3? SOHLOO(R”) < Cn,p Np+n+l(90)a
la| <p
Bl<p+n+1
where we used (1.6). This concludes the proof of the proposition. O

We shall now use the Fourier transform on S(R™) in order to extend by duality the
Fourier transform to the “dual” space to S(R™) as the first identity of proposition 1.5 is
inviting to do. The idea behind is that S(R") is a relatively small space and we expect
the “dual” to be big and we would then extend Fourier to this larger space. Now the
question is to give a precise meaning to the dual space to S(R™). The classical framework
of Banach space is not sufficient since (S(R"),N,) is not complete. We have to build a
topology out of the countable family of norms (N,),en. This is the purpose of the next
subsection.

1.3 Frechet Spaces
Definition 1.12. Let V' be a R (or C) vector space
N:V R,
1s a pseudo-norm if
) VAER (orC),Vz eV  N(\x)=|\NN(z)
i) Ve,y e V. N(z+y) < N(z)+N(y).
In other words, a pseudo-norm is a norm without the non-degeneracy axiom.

Definition 1.13. (Frechet Space)

Let V be a R or C vector space equipped with an increasing sequence of pseudo-norms
Np S Np+1

such that the following non-degeneracy condition is satisfied

Np(:c>=0}
<z =0.
VpeN

6



Introduce on V' x V' the following distance:
+oo
Ve,y e V. d(x,y) = Z 2P min{1, N, (z — y)}.

p=0

We say that (V, (N,)pen) defines a Frechet space if (V,d) is a complete metric space.

Examples of Frechet Spaces (left as exercise)

i) A Banach space (V, || -||) for the constant sequence of norms N, (+) := || -|| is Frechet.

ii) The space of smooth functions C*°(B}(0)) over the unit ball of R" is a Frechet space
for the sequence of CP-norms

VpeN |fller:= sup  |0%f|(2).
€ BJ(0)
la] <p

iii) The space L{ (R") of measurable functions of R™ which are L7 on every compact
of R"(q € [1,0]) is Frechet for the family of pseudo-norms

(LY(B2»(0))

peEN’
iv)
(SR™), (N)pen),
where N, are the pseudo-norms defined in Definition 1.6 define a Frechet Space. [J

In practice the distance d is never really used and can also be replaced by

do(,y) ==Y a, min{1, N(z — y)},

peN

where a = (a,)pen is an arbitrary sequence of positive number such that 3y _ya, < +oo.
The following proposition happens to be very useful in the context of Frechet space.

Proposition 1.14. Let F = (V,(N,)pen) be a Frechet space, then the following three
assertions hold true:

i) Let (fn)nen be a sequence of elements from V

fo -5 fe=VpeN Ny(fu—f) — O

n=-+oo n=-+oo

i) (fn)nen is a Cauchy sequence in (F,d) if and only if (fn)nen is a Cauchy sequence
for all the pseudo-norms N,.

iii) Fach of the pseudo-norm N, is continuous in (F,d).

7



Proof of Proposition 1.14. First we prove the assertion i):

fo -5 f=VpeNmn{l,N,(f,—f)} — 0

n=--+0o00 n=--+00

<~ VpeN N,(fn—f) — 0.

n=--+0o

We now prove the reciprocal of i):

Let € > 0 and choose ) € N such that
“+oo

—p E

d 2r< -
p=Q

Since Np(f, — f) — 0 for every p there exists N € N such that

n—-+o0o

Vp< @ and n >N N,,(fn—f)gg

Thus Vn > N:

Z 2_pmin{17/\/’p(fn - f)}

p=0
Q-1 +00

<Y 2PN m Y2
p=0 p=Q
-

<S4S =

=5 + 5 = ¢

This implies that f, N f. This proves i).

n—-+0o
The same arguments imply ii).

The proof of iii) is straightforward. Indeed, let p € N
d(f,g9) <2Pe= Ny(f —g) <e.

This concludes the proof of Proposition 1.14. ([l

The following proposition extends a well-known fact in normed space topology.

Proposition 1.15. Let F' = (V,(N,)pen) and G = (w, (M,)4en) be two Frechet spaces
and let L 'V — W be a linear map. The following three assertions are equivalent:

i) L is continuous at 0,

i) L is continuous everywhere,

i) V¢geN 3C,>0and3IpeN, st VfeEF MyLf)<CyN,(f).



Proof of Proposition 1.15. The implication ii) = i) is tautological. We are now
proving i) = iii).

Since L is continuous at 0, for any neighbors G of 0 € W, there exists an open
neighborhood U of 0 € V' such that

LU) C G.

In ther words, Y C L™'(G). Let ¢ € N and choose Gy = M '([0,1)). Since M, is
continuous in (w, dg), due to Proposition 1.15, G, is an open set containing 0. Because
the topology in F' is a metric topology, there exists oy > 0 such that

Byr (0) U, © L7H(Gy),

where ij (0) denotes the ball of center 0 € V' and radius «a, for the Frechet distance dp.
In other words, we have

(1.7) > 27 min{ LN, (f)} < o = My(L(f)) < 1.

peEN

Let pp € N such that

+oo
«
1.8 2P < 1
9 > 2rs

p=po+1
Since N, is increasing with respect to p
(1.9) Nio(f) < 22 = 3" 27 N (f) < 22
Po 4 = p 2
>Po

Hence, combining (1.7), (1.8) and (1.9), we obtain for any f € V

Nin(F) < FE = M, (L)) <1

using the homogeneity of the two pseudo-norms M, and M,, we have proved

My(L(F) < TG Nou().

Hence we have proved the implication i) = iii).

In order to conclude the proof of Proposition 1.15, it suffices to establish the implica-
tion iii) = ii).

We assume iii) and we are going to prove that L is continuous. Since the topologies
of both F' and G are metric, it suffices to show that for any sequence f,, € V' converging
to f € V for dp, then

(1.10) lim de(L(f.), L(f)) = 0.

n——+oo



Because of Proposition 1.14 i) in order to establish (1.10), it suffices to prove

(1.11) VgeN  lim My(L(f. = f)) =0.

Let ¢ € N, because we are assuming iii), there exists po € N and C, > 0 such that
VgeV Mq(L(g>) < Cq ./\fpo(g).
Let € > 0. Let N be large enough such that

anN NPO(fn_f)SCiv

then we have

Vn>N M, (L(f.—[)) <e.

This implies (1.11) and L is continuous everywhere. O

The following theorem is the extension of Frechet spaces of the famous Banach-
Steinhaus theorem for normed spaces.

Theorem 1.16. (Banach-Steinhaus for Frechet Spaces)

Let F = (V,(Ny)pen and G = (W, (My)4en) be two Frechet spaces. Let L, be a sequence
of linear maps from V into W and assume that each L, is continuous from F into G.
Assume moreover that for any f € V the sequence L, f converges to a limit Lf in W.
Then L defines a linear and continuous map.

Proof of Theorem 1.16. The linearity of L is straightforward. It remains to prove that
L is continuous. For any ¢ € N and positive number A we introduce the following subset
of V:

Gi={feV st. YneN M,(L,.f) < A}

First, we observe that C% is a closed set. Indeed, it is the intersection of closed sets
Ch =) (Myo L)' ([0, A)).
neN

We now claim that

(1.12) U ci=Vv

A€RY

Indeed, by assumption, dp(L, f, Lf) — 0, this implies that

n——+o00

Vge N sup My(L,f) < +oo.

neN

Thus if one takes A > sup,,cy My(Lyf), one has that f € C% and this proves the claim
(1.12).

10



Obviously A > A’ = €, C C*. Thus

By assumption (V) dr) is a complete metric space to which we can apply Baire’s theorem
and there exists jo € N such that C’gjo has a non-empty interior:

then there exists a > 0 such that

B (fo) € CLy =[] (Mgo Ly)7'([0,27]).

neN

Let fy € Oq

2790

In other words:

(1.13) dr(f, fo) < a = sup M,(L,f) <27,
neN

Let py € N such that

(1.14) Y 2« T

Since N, is increasing with respect to p
Po
« 3 «
Noo(f = fo) <4=>_§; 279 Ny (f = fo) < 5
J:

Thus, because of (1.13) and (1.14), we deduce

Niw(f = fo) < 7= dr (f. fo) <a

= sup M,(L,f) <2,

neN

Since sup,,ey My(Ly, fo) < 270, we have

Ny (h) < % = sup M, (L,h) < 270t

neN

The homogeneity of the pseudo-norms gives then

sup My (L,h) < & 2081 N ().

neN

Since L, h — Lh by continuity of M,, we deduce

n——+oo
M (Lh) < & 2941 N (h).

This holds for arbitrary ¢ € N. Then, from the characterization of continuity given by
Proposition 1.15 iii), we deduce that L is continuous. O]

It is now time to define the dual of the Schwartz Space in the Frechet Space theory.

11



1.4 The space of tempered distributions S’'(R")

The Schwartz space S(R™) is from now on equipped with the Frechet topology issued by
the sequence of pseudo-norms N, introduced in Definition 1.6.

Definition 1.17. The space of tempered distributions denoted S'(R™) is the space of
continuous and linear maps from S(R™) into C.

We have the following important characterization of tempered distributions: The ac-
tion of a linear form 7" on ¢ € S'(R™) will be denoted either T'(¢) or (T, ¢).

Proposition 1.18. Let T be a linear map from S(R™) into C. The following equivalence
holds

TeSR") <= 3C >0 andp € N such that
Vi € S(R") [T, ¢)| < CNp(e).
The minimal p € N for which (1.15) is called the order of the tempered distribution T

(1.15)

Observe that general distributions in D'(R™) don’t always have an order. The L]

loc
function on R given by ¢t — €' is an element of D'(R) but cannot be an element of

S'(R™) for that reason: indeed, one easily proves that for any p € N

to(t) dt
p  JrePDd
0eCX(R) N;:(SO)

Consider ¢ > 0 compactly supported such that fR ¢ = 1 and take for k € N @ (t) :=
o(t — k). We have N,(px) < CkP but

li k7P e pp(t) = .
i, [ e ) = o

The proof of Proposition 1.18 follows from a direct application of the characterization of
continuity in Frechet space given by Proposition 1.15 iii). Indeed, C equipped with the
modulus norm is interpreted as a Frechet space with

Vae C M,(a) :=lal.
Example of elements in S'(R")
i) We have for any p € [1, +o0]
LP(R™) C S'(R™).
Indeed, let f € LP(R™), for any ¢ € S(R™) Holder inequality gives

f@) (@) de| < 1l ol

At oY T
< D T LN p d
<l | [ S o ) ds

’ Rn

=

< Cop 1f e Nag1().

12



ii) The space Clz; ...x,| of complex polynomials in R™ is included in S'(R™).

iii) Let a € R™, the Dirac Mass 0, : ¢ € S(R") — ¢(a) is obviously a tempered
distribution of order 0:

(80> )| < No().

Definition 1.19. A sequence of tempered distributions (Ty)ren 5 said to converge weakly
if for any o € S(R™) the sequence (Ty, p) converges in C. From Banach Steinhaus theorem
for Frechet spaces we deduce that there exists T € 8'(R™) such that

kgrfoo (Tk, p) = (T, ).

The weak convergence of a sequence (Tg)ren in S'(R™) towards an element T € S'(R™) is
denoted
T, ~ T in S'(R).

Exercise: Let ¢ € C2°(R") such that [;, ¢(z) dz =1 denote py(z) := 2" p(2%2). Prove
that
Y — (50 in S/(Rn)

Definition-Proposition 1.20. Let T' € S'(R") for any j = 1,...,n we denote by 0., T
the partial derivative of T along the direction x; which is the following element of S'(R™)

(1.16) Vo € SRY) (0,,T,¢) = ~(T.0,,).

Proof of Proposition 1.20. Let 7' € S'(R"). It is clear that the map 9,,1" defined by
(1.16) is linear. Let p € N and ¢ > 0 such that

(T, o) < cNp(e)-
By (1.16) we have
[(0u, T, )| = (T, 00, 0)| < ¢ N, (0s,)
< eNpsai(e).

Hence from the characterization of tempered distributions given by Proposition (1.9), we
deduce that d,, T € §'(R") and this concludes the proof of Proposition 1.20. O

More generally, by iterating proposition 1.20, we deduce that for any 7" € S’(R") and
any a = (a,...,a,) € N” the linear map on S(R™) given by

Vo € S(R") (9°T, ) := (=1)(T, 0 ¢)
is an element of S'(R™).

Definition 1.21. The space of slowly growing functions denoted O(R™) is the subspace
of C*° functions f in R"™ such that

VB =(f1,...,6,) dmgeN and Cz >0
such that
107 f|(z) < Ca(1+ |z])™.

13



Exercise: Let f € O(R") prove that the map

peS®Y) — [ 1) pla)da
defines a tempered distribution that we shall simply denote by f.
Observe that Clzy,...,z,] C O(R").
Proposition 1.22. Let f € O(R"™) the multiplication by f
M; S(R") — S(R")
p—Ff¢
is a continuous linear map from S(R™) into itself.

Proof of Proposition 1.22. Let f € O(R"), g € N and ¢ € S(R") we have using mostly
Leibnitz rule and triangular inequality

My(fe)= sup [|z*0°(f @)llLoqn)
la] < q

1Bl <q

< swp Y Chplla® 97 077 ey
lal < g 4<p
18] < q

< sup > Copll 2] 107l (@) (14 )™ e ey
lo] <q 4<p
18] <q

<, Z Ningta(#0) < Cf Nt max mg ()

181<q Bl <q

This implies the proposition. O]

We define now the Fourier transform of a tempered distribution. This definition is
motivated by the first identity in Proposition 1.5.

Definition-Proposition 1.23. Let T' be a tempered distribution. We define the Fourier
transform of T that we denote by T or F(T) to be the following linear map on S(R™)

p € SR (T, ¢) = (T, ),
T is a tempered distribution as well.

Proof of Proposition 1.23. Let ' € S’(R") and let p be the order of 7" and C' > 0 such
that
Vo € SR") (T, )] < cNp(p).

14



Using Proposition 1.9 we then deduce

p e SR") (T, 9)| = (T, 0)| <cNo(P)
< Np+n+1(¢)-
Using one more time the characterization of §’'(R™) given by Proposition 1.18, we deduce
that T is a tempered distribution.

Example: Let a € R" we have

w3

Vo € SBY) (ue) = (60 ) = Pla) = )¢ [ e pla)da,

Hence

~

0o = (2m)72 e7T € L®(R™).

In other words, the Fourier transform exchange the “most concentrated” measure into
the “most dispersed” wave function. This phenomenon is known as the Heisenberg Un-
certainty Principle in quantum mechanics. [l

Example: More generally, given a = (a, ..., a,) € N” we have, using Lemma 1.10,

—

(O 02 0) = (— 1)\ (3., 0,7)
= (1) (8, (~i)elzay)
= (i)(2m)"% / e g% () d.
Hence we have established
On 0y = (1)\(27) 7% 7072 € O(RM).

Exercise: Prove that R
1= (27’(’)% (50

and more generally
Va e N* 26 = (271)2 il*1 92 6.

We shall also denote by T or F~*(T) the inverse Fourier transform of T
(T, ) = (T, )
and obviously V7' € S'(R"), T € S'(R™).
We shall now prove the following proposition:

Proposition 1.24. Let T' be a tempered distribution supported at the origin that is to say
Vo € S(R™) such that ¢ = 0 in a neighborhood of 0, then (T, p) = 0. Then, there exists
p € N such that for any = (51, ..., By) satisfying |B| < p, there ezists cz € C such that

T=> Cy0,.

1BI<p
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Proof of Proposition 1.24. Let p be the order of T. Let ¢ € S(R™) we proceed to
the Taylor expansion of ¢ to the order p at the origin: for any v € N” and |y| < p there
exists a, independent of ¢ such that

p(x) =Y a;07p(0) 2" + Ry(x)

IvI<p
where R
im B@l_
2|0 |x|P
Moreover Vv, || < p
.
(1.17) m 9@,

2|—»0 |zl

Let x b a non-negative cut-off function in C2°(B;(0)) such that x is identically equal to
one on By (0). By assumption

= (T, x ).
We have, using the Taylor expansion of ¢,
(T, xp) = Y ay 07(0) (T, x(x) 27) + (T, x(x) Ry(x)).
[vI<p

Observe that the functions y(z)z? are Schwartz functions and hence (T, x(z)z") are
well-defined complex numbers. We claim that

(1.18a) (T, x(z) Ry(z)) = 0.

The proof of the claim implies obviously the proposition. Let

xT

Ne(x) :=1— X(,)

€

where 0 < ¢ < 1. By assumption we have

<T7 X RP> - <T7 X Rp Tk) + <T7 X Rp Xs>

1.18b
( ) - <T7 Rp X€>7

where x.(x) = x(z/¢). Since T is of order p, there exists C' > 0 such that

(T, Ry xe)| < CN;D(Rp Xe)-

16



We have, using Leibnitz formula and triangular inequality,

No(Rpxe) = > 12 0% (Ry xe) |l Lo ey

la| <p
18] <p
(1.19) < YD G 0" Ry el e e
la| <p 5P
1Bl <p
<Cp > Y N0 R, 0 el
18]1<p V<8
We clearly have
a7 < ¢
(1.20) 107 X |(z) < B 15.(0)()

where 1 ) (0) is the characteristic function of the ball centered at the origin and of radius
2

e. Because of (1.17) we have
10777 Ry (2) L, 0) (@) | oo gy = 0(e”177).
Combining this inequality with (1.19) and (1.20) we obtain
No(R, x.) = 0( S gp—w—w—|v|>.
IBl<p <8
Since 7 < f§, we have |5 — 4| +[y[ = 22 B =i + 32 v = [B]. Hence
lii% Np(Rpxe) =0
From (1.18b) we deduce (1.18a) and this concludes the proof of Proposition 1.24. O

We shall need the following proposition which is a direct consequence of Proposition
1.22.

Definition-Proposition 1.25. Let f € O(R") be a slowly increasing function for any
T € §'(R™), we define the multiplication of T by f as follows:

Yo e SR™) (fT,¢) = (T, fe).

This multiplication denoted fT is a tempered distribution.

Proposition 1.26. Let T € S'(R"), then for any o = (ay,...,a,) and any f =
(B, ..., Bn) we have respectively

9T = (—i)lol zoT
and
BT — §IBleh f,
where the products x*T and 5/3? have to be understood in the sense of Proposition 1.25.

17



Proposition 1.26 is a direct consequence of Lemma 1.10 and Lemma 1.11. We have
the following theorem:

Theorem 1.27. Let T be an harmonic tempered distribution that is an element of S'(R™)
satisfying
Vo € S(R") (AT, p) = (T, Ap) = 0.

Then T is a polynomaial.

This result is a bit “confusing” since we know many more harmonic functions than
polynomials. For instance in R? every holomorphic function is harmonic but is not nec-
essarily a polynomial (i.e. f(z) = e*). This illustrates the difference between S’ and D'
S’ being roughly the space of distributions for which one can define a Fourier transform.

Proof of Theorem 1.27. For any ¢ € S(R™) we have
0= (AT, o) = (T,Ap)
(1.21) = (T [aP?¢)
= —(T\|a]¢).

Let ¢ € S(R™) such that ¢ is identically 0 in a neighborhood of 0. Then ¥ (z)/|z|? = ¢(z)
is still an element of S(R™).

Then we deduce from (1.21) that for such a ¢ we have <f, 1Y) = 0. In other words,
the support of the Fourier transform of 7" is included in the origin. Applying Proposition
1.24 to T', we deduce the existence of p € N and Cj € C for any § € N* with |3| < p such

that R
T=Y cs0 .
|BI<p

Using Proposition 1.26, we deduce that

Cy(—i 18l
T = = aP
Z (2 )5
|8I<p
This implies the theorem. 0
We shall now meet our first Calderén-Zygmund Kernel in this course.

The function t — % misses by “very little” to be an L' function. This is a measurable
function which is only in the L'-weak space (see the following chapters).

Nevertheless one can construct a tempered distribution out of % that we shall denote
pv(%) where pv stands for principal value. We proceed as follows. Observe that

Vi € S(R) V5>O/ @‘dmﬁo.

[t|>e

Moreover

(1.22) lim @ dt = (pv(3),¢) €C

e Jiyse

18



exists. Indeed, we write

4» @dtzﬁm %t)dwr/_:@d“r[ @dt-

Using the fact that % is odd, we have also

wlt) w(t) p(t) — ¢(0)
Af|>s t dt_4>1 t dt+/e<t|<1 3 ‘

Since ¢ in particular is Lipschitz, we have that M is uniformly bounded in L*° which

justifies the passage to the limit (1.22). Moreover we obviously have

(p0(3), )] < et Ol + 161
< cNi(p).
This proves that pv(7) € S'(R).
One can also without too much difficulty establish that the order of pv(1) is exactly 1.

We shall now compute the Fourier transform of pv(7). First, we claim that
(1.23) tpo(3) =1 in S'(R),

where the product by ¢ has to be understood in the sense given by Proposition 1.25.
Indeed,

Vo € S(R) <tpv(%), gp> = <pv(%), tgo(t)>

= lim p(t)dt = / o(t) dt.

e—0 ‘t|>€

This proves (1.23). The computation above of the Fourier transform of 1 gives then
f(tpv(%)) = (2m)7 b,

Using now Proposition 1.26, we have

d — —

1 . 1 .
7 pv(;) = —1 tpv(;) = —@\/%50.

Let H(t) be the Heaviside function equal to the characteristic function of R.. An ele-
mentary calculus gives

d
Hence
(1.24) % [;;(5 +iv2r H(t)] = 0.

We shall now need the following lemma:

19



Lemma 1.28. Let T be an element of S'(R) such that
d

—T=0
dt ’

then T is the multiplication by a constant.

Proof of Lemma 1.28. Let ¢ € S(R). It is not difficult to prove that if fj;o o(t)dt =0,
then t — ffoo ©(s)ds is still a Schwartz function. Hence since £ ffoo o(s)ds = p(t), we
have by assumption of the lemma V¢ € S(R) such that fj:oo o(s)ds =0

(T,¢) = 0.
Let ¢ € S(R) arbitrary. We have then

<T, o(t) — e M> =0

i jozo e~ ds
This gives
too (T e_t2>
T, ) = T p(t) dt.
(T’ ¢) N jj;fe—Sst(p()
)
Hence T' is the multiplication by the constant fﬁiif% This concludes the proof of the
lemma. - ([l

Combining (1.24) and lemma 1.19, we obtain that there exists a constant A € C such
that

—

pv(%) — —i V21 H(t) + A.

Observe that for any even function ¢(t), one has

1.
<pv(;% @>==0-
It is not difficult to prove that a Schwartz function is even if and only if it’s Fourier
transform is even too. Hence for any even function we have

/+m(—i¢ﬂﬁﬂﬂ+w®¢@ﬁﬁ20

—00

this implies that —iv/27 H(t) + A is odd and we have proved that

2;(1\) — 1 Vor sign(t).

2

This function belongs to the family of Calderén-Zygmund multipliers that we are going
to study more systematically in Chapter IV. The map

f— —F! (\/% sign (1) f)

is called the Hilbert transform and is a first Calderon Zygmund convolution operator we
are considering in this course.
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1.5 Convolutions in S'(R")

Let ¢ and 9 be two Schwartz functions, we recall the classical definition of the convolution
prule) = [ oo =)o) dy
R

= bz —y) ey)ldy.

We have the following proposition

Proposition 1.29. Let ¢ and v be two Schwartz Functions, then for any p € N

./V;,(QO * ¢) S Cp,n Np(SO) '/V’P-‘rn+1 (1/})

and then ¢ * 1 s also a Schwartz function.

Proof of Proposition 1.29.We have

No(p ) = sup ||z’ /nso(x —y) 0*Y(y) dy

la] <p
1B <p

Lo (R")

— /n<x—y+y>< y) 07 (y) dy

laf < p
1Bl <p

Using the binomial formula, we obtain

Nolp*9) < sup Y Ci,

én @ =yl ez — )l [yl [0*¢(y) dy

la| <p 4<p Loo(R™)
Bl <p
<G N [ X ol dy
la| <p
1Bl <p
< Cp Np(0) Npns1 (9).
A classical computation gives for any ¢, ¥ and 7 in S(R")
/w*n dw—/wx— ()dydx—/Rn(y)w#w(y)dy
where % (2) := ¢ (—z). Inspired by this elementary computation, we introduce the

following definition.
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Definition-Proposition 1.30. Let T' be an arbitrary element in S’'(R™) and let ¢ be an
arbitrary element in S(R™). Define

Vo € S(R™) (v + T, p) := (T, 0% ),

Y« T is called the convolution between 1 and T. It defines an element of S'(R™).

Proof of Definition-Proposition 1.30. Let p be the order of 7" and ¢ > 0 such that

vne SR") [(T,m)] < cNp(n).

Y T acts obviously linearly on S(R™), moreover using Proposition 1.29, by definition we
have

(% T, )| < c N7 % 9) < ¢ Np() Ny, (),

Using the characterization of the membership to S’(R") given by Proposition 1.18, we
obtain that ¢ * T' € §'(R™) and Proposition 1.30 is proved. O
We recall from classical analysis the fact that

Vo, € S(R") VYa € N" 0% *x ) = @ * 0% = 0% x 1.
Using this fact, one easily establishes the following proposition:

Proposition 1.31. For any T in S'(R™) and any ¢ € S(R™), one has
Va e N* 0% *«T)=0% T =1 x0T

We denote
E'(R™) ={T € S'(R"); supp(T) is compact}.

In other words:
T € &'(R") <= 3 K compact such that

Vo € S(R™) with ¢ =0 on an open set U D K, then
(T, p) =0.

We shall now prove the following proposition:

Proposition 1.32. For any ¢ € S(R™) and for any T € E'(R™) the convolution ¢ x T
defines a Schwartz function.

Proof of Proposition 1.32. First we prove that the tempered distribution ¢ * T defines
an L* function. To that aim, using Riesz representation theorem, it suffices to establish
the following inequality:

(1.25a) 3C >0 such that Vo) € S(R")  |(0+ T,9)| < C 9]l 1 czn)-
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Since T is compactly supported, there exists R € R* such that for any v in S'(R")

(o= T, 0)| = (T, % xp)| < C | S|up |2 8 (0 % )| oo (B (o))
al<p

1Bl <p

< C, sup [|0° (%) * Y| L (Ba(0))
|B|<p

< CoNo(@™) 11 ey

where we have used Young inequality: L> x L' < L*. Hence (1.25) holds true and @ * T
is a measurable function. Now we write for any o € N” and g € N

||l‘04 aﬁ(g@*T)HLOO(R") = sup ’ /(9/3<1'04,¢)90>|<le'
Y € S(R")
Yl @ny <1

- sup (T, (8°p*") * 2*)]
Y e SR
Le@®R™) 9]l pr@ny < 1

IN

279’ | %oy — ) y*¢(y) dy
Rn

sup sup
|")/‘ S P ”w”Ll(Rn)Sl
o] <p

L>(Br(0))

<Cppr sup  sup "oy — x)(y — x + z)*P(y) dy

161<p ¥l 1(gny<1 Il JR™ L°°(Bg(0))
Using the binomial formula, we finally obtain
120% (0% T) || 1= (ny < Cp,p Nptipi+al (),
and this concludes the proof of Proposition 1.32. 0

We shall now extend the definition of convolution on £ x &’. We have the following
definition-proposition:

Definition-Proposition 1.33. Let T' € S'(R™) and U € E'(R"), then we define
Vo € SR") (UxT,p) :=(T,U* x ),

where
vy € S(RY) (U*,¢) = (U,97).

The convolution between U and T, U * T, defines an element of S'(R").
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The proof of Proposition 1.33 follows from the proof of Proposition 1.32, where we
have established that for any ¢ € S(R™) and any 7" € S’(R") of order p one has

VgeN M(SO *T) < Cq,prHq(@)-

The convolution operation extends in fact to a larger subspace of £ x &' in &' x §'. It
extends to the pairs of tempered distributions with convolutive supports but we shall not
explore this notion in this course.

Finally, we establish the following proposition:

Proposition 1.34. Let T' be a tempered distribution, then
(1.25b) Vo e S(RY) ¢+T =(2m): ¢ T,
For any U € & (R™) we have U € O(R") and

(1.25¢) UsxT=02mn:0T.
Proof of Proposition 1.34. We have

Vi € S(R™) (p*T,0) = (p* T, )

1.26 ~
( ) = <T’ 90# *¢>

Observe moreover that

(1.27)
= [ e [ e

_ / eEY(E) BE) = 2mE F (D).

Combining (1.26) and (1.27) gives

-

(@ T,4) = (2m)F (T,9).
This implies (1.25Db).

We claim now that for any U € &'(R™) there exists ¢ € N such that

U - € L™(R")

(1.28) (D)
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Let ¢ € S(R™), we have

(i o)~ ()

—

su 3 ©(€)
¢ ((1+|€I2)q>

L>°(Br(0))

o —

< C sup (Z-)IBI M

181<p (L4 1€ Loo gny

e + 1
<c [ s POl de

Hence by taking 2g > p, we have

sup
”‘P”Ll(Rn)

<%’9@(5)>’ < 400.

Using Riesz representation theorem, we obtain (1.28).

Obviously, U € &'(R") = 0*U € &'(R") for any a = (ay,...,a,) € N". Hence
applying (1.28) to the successive derivative of U, we obtain that U € O(R").

The inequality (1.25¢) is obtained by combining (1.25b) and the fact that U# = U.
Indeed we have

wl3

(UxT, ) = (UxT, @) = (T,U* %) = (T,U" x @) = (2m)% (T, U" p) = (2m)2 (T U, ).

This concludes the proof of Proposition 1.34.
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2 The Hardy-Littlewood Maximal Function

2.1 Definition and elementary properties.

The Lebesgue measure on R™ will be denoted by p. By measurable function or measurable
set in this book we implicitly mean measurable function with respect to j or measurable set
with respect to p unless we precise the underlying measure. Integration along a variable
x in R™ with respect to the Lebesgue measure on R™ will be simply denoted by dz.

If F is a measurable set, we denote by xg it’s characteristic function.

Definition 2.1. For a measurable function f : R"™ — R, we define its associated distri-
bution function by

df(a) = p({z € R" : [f(z)] > a}),
with o > 0.

With these notations we establish the following lemma.

Lemma 2.2. For a measurable function f and 0 < p < oo, we have

(2.1) 11, = p / o1y (0) da

Proof of lemma 2.2. From elementary calculus, we get

/()] o0
|f(56)|p=p/0 ozp‘ldazp/o "X (<) fa))y A -

By integration over R™ and Fubini’s theorem, it then follows
1 =5 [ ([ xrorards ) da=p [~ ar gy,
0 R™ 0

For every x in R™ and every r > 0 we denote by B,.(z) the euclidian ball of center x
and radius 7.

O

1
loc

Definition 2.3. For a locally integrable function f € L
Hardy-Littlewood maximal function at the point x by

(R™), we define its associated

1
(2:2) M) =0 5@

We now prove the following elementary proposition.

/ F)ldy € Ry U {+00)
By (x)

Proposition 2.4. Let f be a locally integrable function, then M f is measurable function
into [0, +oo]. Moreover, if f € L*(R™) then M f(z) is finite almost everywhere.
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Proof of Proposition 2.4. For any measurable function in L], one easily check that

the map
1

(B, (@) /Brm (@) dy

is continuous. It implies in one hand that, for a fixed r, A, f(x) is measurable and it also
implies, in the other hand, that taking the supremum at a point x among the real radii,
r € R, coincide with the supremum among rational radii, » € Q. Since the supremum
function of countably many measurable functions is measurable ( 1.1.2 in [?]), we deduce
that M f(x) is measurable. The second part of the statement in proposition 2.4 is a direct
consequence of Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]). It also follows
from Theorem 2.5 below. O

(r,x) — A f(z) =

From the Lebesgue-Besicovitch differentiation theorem (1.7.1 in [?]) we deduce the
pointwise estimate |f(x)| < |M f(x)| which holds almost everywhere for any locally inte-
grable function. Therefore, for every p € [1, +0o0], and for every function f in LP(R™), we
obtain the identity

[ fllzr@ny < 1M f||Logn)

2.2 Hardy-Littlewood LP—theorem for the Maximal Function.

The following important result gives the reverse estimate when p > 1 and ”almost” but
not quite the reverse estimate when p = 1.

Theorem 2.5 (Hardy-Littlewood Maximal Function Theorem). Let 1 < p < oo and
f € LP(R™). Then, we have

n

1/p
(2.3 16l <2 (25 ) 7l

Moreover, for f € LY(R™) and o > 0, we have

(2.4 pl{e - Mf(@) > a}) < 2 |fllo

Remark 2.1. The last identity (2.4) is saying that the maximal function of an L' function
is in the space L'—weak (denoted also L. (R™)). This space is given by the subset of
measurable functions on R"satisfying

2:5) 1l =sup{a nl{a €R" : [f(@)] > a})

L'—weak functions do not define a-priori distributions. A typical example of a function
in LY, is |z|™" in R™. |-|11 defines a quasi-norm on L, - the triangle inequality is satisfied
modulo a constant, which is 2 in the present case - and L}, is complete for this quasi-norm
which makes L} to be a quasi-Banach space by definition. However it is very important
to remember that L} cannot be made to be a Banach space with a norm equivalent to the
quasi norm giwen by |-|py . If it would be the case Calderdn-Zygmund theory, and this book
i particular, would dramatically shrink to almost nothing ! We discuss this fact later in
this chapter when we come to the Singular Integral Operators.
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The proof of the Hardy-Littlewood Maximal Function Theorem that we are giving
uses the following famous covering lemma.

Lemma 2.6 (Vitali’s Covering Lemma). Let E be measurable subset of R™ and let F =
{B;}jes be a family of euclidian balls with uniformly bounded diameter i.e., sup; diam(B;) =
R < oo, such that B C Uj B;. Then, there exists an at most countable subfamily { Bj, } ken
of disjoint balls satisfying

(2.6) WE) <5 u(By,) .

Proof of lemma 2.6. For any i € N we denote
F,={B; e F; 27"'R < diam B; <27'R}
We shall now extract our sub-covering step by step in F; by induction on %.

e Denote by Gy a maximal disjoint collection of balls in F.

e Assuming Gy, - - - , G have been selected, we choose Gy, 1 to be a maximal collection
of balls in Fj,; such that each ball in this collection is disjoint from the balls in
Ul oG-

We claim now that G = U2,G; is a suitable solution to the lemma.

It is by construction a sub-family of F made of disjoint balls. Let B; be in F. There
exists ¢ € N such that B; € F;. If B; would intersect none of the balls in G; it would
contradict the fact that §; has been chosen to be maximal. Hence, for any B; € F;
there exist B € G; such that BN B; # (). Since the ratio between the two diameters of
respectively B and B; is contained in (271, 2), the concentric ball Bto B having a radius
5 times larger than the one of B contains necessarily B;. This proves that £ C UBEQE
and this finishes the proof of the lemma. 0

Proof of theorem 2.5. We first consider the case p = 1 and prove (2.4). Let
E,={zeR"; Mf(x)>a}

By definition, for any x € E, there exists an euclidian ball B, of center x such that

2.7) / F)l dy > an(B,)

x

Since f is assumed to be in L', the size of the balls B, is controlled as follows : u(B,) <
a™ || fllz:. Hence the family {B,}.cp, realizes a covering of F, by balls of uniformly
bounded radii. We are then in the position to apply Vitali’s covering lemma 2.6. Let
(Bi)rex be an at most countable sub-family to {B,} given by this lemma 2.6. (By) are
disjoint balls satisfying

S (B > cop(EL)
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Combining this last inequality and (2.7) gives

o= [ UWldy>a >80 > Sue

Uker Br keK oo
This is proves the desired inequality (2.4).
We establish now (2.3) for 1 < p < 400 (the case p = +00 being straightforward).

Define
{ f(z) it [f(2)] = a/2
0 it |f(x)| <a/2.

This definition implies the following inequalities | f(x)| < |f1(z)|+«/2 and also | M f(x)] <
|M f1(z)| + /2 which hold for almost every z € R" . Hence we have

(2.8) E,={zeR"; Mf(z) >a} C{zeR"; Mfi(zx) > a/2}
Observe that, for any o > 0, f; € L*(R"). Indeed

|fi(y)] dy < <z> . |f(y)]? dy < +o0
Rn o R

Thus we can apply identity (2.4) to f; and this gives, using (2.8),

WE.) <p({zreR"; Mfi(z) > a/2}) < 25| fill
(2.9)
<5 S s is@izarm W) dy

Next, we deduce from Lemma 2.2 that

A = p / o u(Ey) do

(2.9) i 2.50
< a( / |f<x>|dx)da
0 O Ma|f(2)=a/2}
— = p—1 2-5" d d
= P a X{o: |f@)za/2} | f(2)| dx ) da .
0 « R™

Using Fubini’s theorem it follows

2@ op-1
sl < 25 [ 15w / o) dr

_ (p p- -
l— Rn’f(33)|2 f(@)P~tde

since p > 1 by assumption. Thus we arrive at the desired result

5np 1/p
a7l <2 (22 sl
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Remark 2.7. The best constant in the previous theorem, both in (2.3) and in (2.4), is
far from being known. For 1 < p < 0o, a remarkable result by Stein is that the optimal
constant stays bounded as n goes to infinity. Whether this holds or not for the optimal
constant in (2.4) is still an open problem. However, one can easily replace 5" with 2".
Indeed, observe that the constant 5 in Vitali’s covering theorem can be replaced with 3+ 3¢
for every € > 0 (just using (1 + €) in place of 2 when comparing the radii of the balls).
Moreover, here we are interested in a disjoint family of balls whose dilations cover just
the set of centers of the original family: this allows to replace 5" with (24 2€)" for every
€.

2.3 The limiting case p = 1.

It is important to emphasize that inequality (2.3) does not extend to the limiting case
p = 1 : the maximal operator M is not bounded from L'(R™) into L!'(R"). Assume f is
a non zero integrable function on R™ then M f is not integrable on R™. Indeed, for a non
zero f there exists an euclidian ball B,(0) such that

/ f(y)l dy=n#0
»(0)

Let x be an arbitrary point in R™ \ B,(0). For such a point = one has B, (0) C Byjy(x),
hence, it follows that

1
Mf@) = swp— s /B Ml

1
((Bayz(2)) /B2z(x) 7)1 dy
1

Cn
- dy > =M1
= 1 Bajz)(z)) /BT(O) 179}l dy 2 ||’

showing that the integrability of M f fails at infinity.

>

Even worth, the integrability of the function f does not ensure the local integrability
of M f. We illustrate this fact by the following example: For n = 1 consider the positive
function

1
)=
f( ) tOOg t)2 X(O,l) )

which is integrable on [0,1/2].For ¢t € (0,1/2), let By(t) = (0,2t) and we have

[ 1
Mft) > — ——dt
fo) = 2t/0 t(logt)?

1 1" 1
2t logt

This directly gives that M f is not integrable over the interval [0, 1/2].

o 2t(log2t)”
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If we assume "slightly” more than the integrability of f one can reach the local inte-
grability of M f. Denote by L' log L'(R") the following Orlicz space

o 1ogL1<R">={feL1<R”> [ 1) log( }{;HL)I‘) dy<+oo}

This space is of particular interest for applications due to the fact in particular that
the L'log L' control of a non-negative integrable function f can be interpreted as an
"entropy control” of the probability f - assuming it has been normalized in such a way
that fRn f =1 -. Back to real-variable function space theory per se, we shall probably
see in the next chapter that L'log L' coincide with the non-homogeneous Hardy space
for non-negative functions which makes also L'log L' particularly interesting.

Observe that a norm can be assigned to this subspace of integrable functions by taking
the Luxembourg norm :

| fllrogzr == || fllor + inf {t >0; /n If )l log™ ‘f(ty)| dy}

t

Theorem 2.8. Let f be a measurable function in L' log L*(R™), then M f € L} (R")
and for any measurable subset A of finite Lebesque measure the following inequality holds

(1)
2100 [ ar<cn [ 1) e (et B @y

where C,, > 0 only depends on n.

Proof of theorem 2.8. From lemma 2.2 we express the L' norm of M f as follows

+o0
/ MF|(y) dy < / w({x € A; IMf|(2) > a}) da
A 0

Denote p# the restriction of the Lebesgue measure to A and use again the notation
E,={z e R" |Mf|(z) > a}. Let § > 0 to be chosen later on. We write

M) dy < [P (By) da+ [ pA(E,) da
(2.11)
<6 (A +2f/2uE2a)d

Applying inequality (2.9) to (2.11) gives
fA|Mf‘(y> dy §5N<A)+2 5nf5—‘/_;>o daf{x; \>a}’f( )‘dy

<& p(A)+2-5" fo. | f(y)] logt 2Ll gy

where log* - = max{0,log-}. Choosing 6 = [5. |f(y)| dy/2u(A) gives inequality (2.10)
and theorem 2.8 is proved. 0

A converse of theorem 2.8 will be given in the section IV - see theorem 4.4 - once we
will have at our disposal the Calderén-Zygmund decomposition.

31



3 Quasi-normed vector spaces

3.1 The Metrizability of quasi-normed vector spaces

In the following, K will denote either R or C (since the theory below works equally well
for real or complex coefficients).

Definition 3.1. A topological vector space over K is a K-vector space V' with a topology
T such that

e the sum, i.e. +:V XV =V, is continuous,
e the multiplication by scalar, i.e. - : K xV — V  is continuous,

e the topology T is Hausdorff.

Example 3.2. A normed vector space (V.| ||) is a topological vector space with the
topology induced by the canonical distance, namely d(x,y) == ||z — y||.

Definition 3.3. Let V be a K-vector space. A quasi-norm on V is a function |-|:V —
[0,00) such that

o |x| =0 if and only if x =0,
o forall N € K and all x € V' we have |\z| = |||z,
e there exists a constant C > 1 such that, for all x,y € V', we have

|z +yl < C(lz] + [yl)-

The couple (V,]|) is called a quasi-normed vector space.

Remark 3.4. For C' =1 this is exactly the definition of a norm. In general, we use the
notation | - | in place of || -|| to recall that we are in presence of a quasi-norm. Notice that
the last property in the definition, which replaces the usual triangle inequality, does not
allow to say that the function d(z,y) := |z — y| is a distance any longer! Nonetheless, we
will see that a quasi-norm induces a canonical topology and that this topology is always
metrizable (by means of a highly nontrivial construction of a true distance function d).

Example 3.5. Given f : R" — K measurable, let |f|p1.0 1= sup,~q ap{|f| > a} and let
LY>°(R™) be the set of all functions f such that |f|p1. < oo. Notice that, by Chebyshev—
Markov inequality, L*(R™) C LY°(R™) and | f|pree < || fllz1. Also, | |1 is a quasi-norm
(with C' = 2): given two functions F,g: R — K, for any a > 0 we have

udlf +9l> o) < u({171>5}) +n({ls > 5}) <21l + 2lglur~

(since {|f +g| > a} C{|f]| > $U{lg] > §}). Hence, |f 4 glp100 < 2|f|pree +2|g|p100.
The second requirement in the definition is satisfied since, for X # 0, au({|\f] > a}) =
|/\||°‘7‘,u({|f| > ﬁ}), while the first one is trivial.

In terms of this quasi-norm, Hardy-Littlewood mazimal inequality (for p = 1) says
that ’f|L1,oo S 5an||L1
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Theorem 3.6. A quasi-normed vector space (V,| |) has a unique vector space topology
such that

B,(0):={z eV |z|<a}, a>0
15 a local basis of neighborhoods of 0.

The above requirement should be compared with the situation of a normed vector
space, where B, (0) is the standard ball of radius a and center 0. Notice that the theorem
is not asserting that B,(0) is an open set in this canonical topology (which could be false
in general)!

Proof of Theorem 3.6 If such a topology 7 exists, then the sets
By(y) ={z eV |ly—z|<a}, a>0

form a local basis of neighborhoods of y for any y € V: this is because the translation by
y, namely the map = — z + y, is continuous and has continuous inverse x +— = — y (with
respect to 7), hence it is a homeomorphism and carries a local basis of neighborhoods of
0 into a local basis at y. So the open sets of 7 must be the sets

(3.12) U C V such that Vy € U Ja > 0 s.t. B,(y) C U.

This shows that, if 7 exists, it is necessarily unique. To show existence, let us declare that
the open sets are the ones satisfying (3.12). They define a topology, since the axioms for
a topology are clearly satisfied. Let us check that the sets B, (0) form a local basis at 0:
since every open set contains one such set by definition, it suffices to check that B, (0)
includes an open set U containing 0. Let

U:={zxeV:35>0s.t. Bs(x) C B,(0).

Clearly, 0 € U and U C B,(0). In order to show that U satisfies 3.12, given = € U let
d > 0 such that Bs(x) C B,(0). We claim that B,(z) C U, with o := % (which will
conclude the proof that U is open in 7).

Indeed, if y € B,(x) then B,(y) C Bs(xz) C B,(x), since

|z —z| <C(lz—y|+ |y —z|) <2Co =6 forall z € B,(y).

This shows that y € U (by definition of U), i.e. that B,(z) C U, which is what we
wanted. In order to show that 7 is Hausdorff, given = # y it suffices to observe that
Bo(z) N Ba(y) = 0, where o := @ > 0: indeed, we just proved that B,(z) and B,(y)
are neighborhoods of z and y respectively (being 7 clearly translation invariant).

Finally, we have to check that the operations are continuous. If x +y = 2 and U is
an open neighborhood of z, then there exists a > 0 such that Bac,(z) € U. Hence, given
2’ € B,(z) and ' € B,(y), we have

o' +y =2 = —2)+ (W —y)| < Cl2 — 2|+ Cly —y| < 2Ca,
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so that the sum maps B, (x) x B,(y) to a subset of U. Since B,(x) and B,(y) contain
open neighborhoods of  and y respectively, this shows that the sum is continuous. The
continuity of the multiplication by scalar is similar and is left to the reader. 0

The metrizability of quasi-normed vector spaces was proved independently by Aoki
and Rolewicz.

Theorem 3.7. (Aoki-Rolewicz)

The canonical topology of a quasi-normed vector space (V,| |) is metrizable. In fact, it
is induced by a translation-invariant distance d(x,y) := ANz —y), for a suitable function
AV —[0,00) satisfying A(z) = A(—=2), Az +w) < A(z) + A(w) and vanishing only at
0.

Remark 3.8. In general, one cannot hope to have a distance induced by a norm (meaning
that A is a norm, i.e. it also satisfies ANax) = |a| A(x) for a« € K): in this case (V,T)
would be a locally convex topological vector space, but we will see in Remark 3.17 that this

fails for LY (R™).
We will deduce Aoki—Rolewicz theorem from the following lemma.

Lemma 3.9. Let 0 < p < 1 be defined by 2'/7 := 2C. Given x1,...,x, € V we have
o S A ),

Proof of Lemma 3.9. This proof illustrate the utility of decomposing dyadically a
range of values. This idea will turn out to be fruitful also later in the course. Define
H :V —[0,00) by the following formula:

He) = {o‘ itz =0

21/P if 2U=D/P < |x| < 29/7,
Notice that |z| < H(x) < 2'/?|z|. We show, by induction on n, that
(3.13) [y - | S 2YP(H (1) + - 4 H(a)?) P

By the observation just made, (3.13) clearly implies the statement. Also, (3.13) holds for
the base case n = 1. We now show that it holds for a generic n, assuming it holds for
n — 1. By symmetry, we can assume that

[z1] > || > -+ > |2,
which implies that H(x;) > H(x3) > --- > H(x,). We distinguish two cases.

i) There exists an index 1 < iy < n such that H(z;,) = H(x;41): let 29/7 be the
common value of H at z;, and x;,.1 and notice that, since

[+ Tig1] < C|ig| + |2ig1]) < 2C - 2077 = 200U/,
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we have H (x;, + z5,41) < 200t)/P This gives
H (i + jg1)! < 2% = H(wi )’ + H(j041)"

and so, grouping x1 + -+ + T, = 1 + - + Tiy—1 + (Tiy + Tig41) + Tigy2 + ... and
using induction,
o H (i, + wigan) o H(w)")'?

|y + - x| < 21/p(H(a:1)p
) o H (i) 4 H(2ig31 )P 4 - - -+ H(x,)P)'/7.

+ .-
§21/p(H( )

ii) We have a strictly decreasing sequence H(xy) > H(x3) > --- > H(x,): in this case
we must have H(x;) < 270"D/PH(x,) for all i. Also, iterating the approximate
triangle inequality we obtain

|1 + -+ x| < O[] + |z + -+ + 20])

< max{2C|z1], 2C|ze + - - - + xy|

< max{2C|z1|, (2C)?* |z2|, (2C)? |25 + - - - + 24|
e < m?X(ZC’)i|xi|

AN

IN

max 2% H (x;)
1/p H(zy)
and (3.13) trivially follows. O

IA

Proof of Theorem 3.7. For all x € V we define

Alw):=inf > |, z=> a;, n>1,
=1 =1

meaning that the infimum is taken over all possible representations of x as a finite sum of
elements of V. Since a possible choice is n = 1 and x; = x, we trivially have A(x) < |z|?.
Moreover, the previous lemma gives

2P = |21 4 -+ 2l < 4|21+ |2a]?)

for all such possible representations, so A(z) > 1|z[P. In particular, this implies that A
vanishes only at 0. From the definition it is clear that A(—x) = A(z).

Also, A(z+vy) < A(z) +A(y): givene >0, if e =21+ -+ xpandy =y 4+ +yn
are chosen so that > ", |;[P < A(x) +eand 37, |y;|P < A(y) + ¢, then (being z +y =

> wi+ Zj Yj)
AMa+y) <zl + > |yl < Alz) + Aly) + 2e.
i=1 j=1

Hence, defining d : V x V' — [0,00) by d(x,y) := A(x — y) gives a distance on V. This
induces the same topology as the quasi-metric since

Ban(z) C{y eV d(z,y) <r}C B(4r)1/p(x)
forallz € V and all r > 0. O
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Remark 3.10. The space LP(E), with 0 < p < 1, is a quasi-normed vector space, with

quasi-norm
1/p
o= ([ 1)
E

which yields a constant 2/~ in the approximate triangle inequality. The construction
Aoki-Rolewicz metric is reminiscent of the distance

A(f.g) == [E - gl

on LP(FE) (for 0 < p < 1), which induces the same topology as the quasi-norm but is built
in a nonlinear way.

We will now see important concrete examples of quasi-normed vector spaces, namely
Lorentz spaces, which refine the classical Lebesgue spaces in terms of control over the
integrability of a function. Standard estimates such as Sobolev’s embedding or Young’s
inequality can be slightly (but crucially for some applications) improved using these more
refined spaces.

3.2 The Lorentz spaces L™

Definition 3.11. Let E C R" be a set of positive measure. Given 1 < p < oo and a
measurable function f: E — K, we let

s = supap({lf] > a})!/r

and we define LP*°(E) to be the set of all functions f : E — K with |f|ire < 00. We
also let |f|pse = || f||Lee, so that L°>®°(E) = L*(FE). The space LP**> is called weak LP
(however, it is totally unrelated to the weak topology on the LP space!).

Remark 3.12. Notice that this specializes to Example 3.5 when p = 1. Again, we have
LP(E) C ||flle). For p < oo, this inclusion is strict in general: take e.g. E := R" and
f(z) = |x|7?, which lies in LP*(R™)\ LP(R") (the inclusion is actually always strict
for subsets of R, as can be seen taking |x — xo| ™" with x¢ a density point for E).

Remark 3.13. Using the inequality (o + 5)'/? < o'/P + BY? and arguing as in Ezample
3.5, we see that LP>°(E) is a quasi-normed vector space, with C' = 2.

Definition 3.14. A quasi-normed vector space is called quasi-Banach if every | |-Cauchy
sequence converges to a (necessarily unique) limit in the canonical topology, or equivalently
converges with respect to the quasi-norm.

Remark 3.15. Notice that a sequence is Cauchy with respect to the quasi-norm if and only
if it is Cauchy with respect to the Aoki-Rolewicz distance. The same holds for convergence.

Proposition 3.16. The space LP"*°(E) is a quasi-Banach space.
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Proof. Omitted. O]

Remark 3.17. The space L¥*°(R™) is not locally convex, meaning that it does not possess
a local basis of neighborhoods of 0 made of open convez sets. This rules out the possibility
of finding a norm equivalent to its quasi-norm, which is the main difficulty in Calderon—
Zygmund theory for singular convolution kernels (so that, as we will see, not all kernels in
LY (R™) but only those with enough cancellation and reqularity give rise to the important
L' — LY bound). Let us see this failure of converity when n = 1, for simplicity.

For all integers m > 2 and 1 < k <m let

1 ko
" Io e=
gm m

fm,k(x) :

Observe that fo1 € LY*°(R), with | fmx|pie < 72—, so that fur — 0 in LY°(R) as m —

— logm
oo (uniformly in the index k). On the other hand, the arithmetic mean of fum1,- .-, fm
is pointwise bounded from below on (0,1):

V

1 <1
E,, = Jmal@) + - & fnam (@) > Y —>c>0,
m logmjz1 Y

since if %0 <z < ko—ﬁjl then the left-hand side is at least

1 <m+ +m+m+ n m >
mlogm \ kg 1 1 m — ko

(the first part being not present if kg = 0). So |Fp|pe > ¢, implying that F,, cannot
converge to 0. This however should hold if LV*(R) were locally convex!

3.3 Decreasing rearrangement

In order to define all the Lorentz spaces LP*? we have to introduce the notion of decreasing
rearrangement.

Definition 3.18. Given f : E — K measurable, we define its decreasing rearrangement
fi 1[0, +00] = [0, +00] as

(3.14) fe(t) :==1nf{0 < X < +oo: p({|f] > A}) <t},
with the convention that 0-0o =00 -0 =0 (as it is customary in measure theory).

Remark 3.19. The infimum in (3.14) is actually always a minimum: if \y > Ay > ...
are values such that p({|f] > Ni}) <t and Ao := lim; o \;, then we still have p({|f| >
Ao}) < t (since the last set is the increasing union of the sets {|f| > A\;}). Hence,

p(lf1> f(0)}) <t

Remark 3.20. Define dg(N) := p({|f| > A}) (as a function from [0, +o00] to itself ), which
18 called distribution function, or tail distribution in probability theory. It is clear that
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dy and f. are decreasing and dy is right-continuous. Also f. is right-continuous: given
0 <to < +oo, setting A := lim,_,+ f«(t) we have

p{If1 > A}) = Jim p({If] > £.(0)}) < lim £ =to,

where the first equality holds since we have a decreasing union of sets with finite measure.
Hence, f.(t) < A. Since the converse inequality also holds (being f. decreasing), the claim
follows. One can show that dy and f, are “pseudo-inverses” of each other:

e as already said, dy o f.(t) <t and, assuming 0 < t, f.(t) < 400, equality holds if
and only if f.(t") > fi(t) for allt' < t;

o similarly with f. and dy interchanged.

Proposition 3.21. The functions f and f., although defined on different domains, have
the same distribution function (meaning that df = dy,) and the same decreasing rear-
rangement (meaning that f. = (f.).).

Proof. Fix 0 < A\ < 400 and notice that, given 0 <t < 400,

W({If] > AD) St A= f() & {f > A} C[0,8) & u{f. > A}) <t

The penultimate equivalence follows from the fact that f, is decreasing, while the last
one follows from the right-continuity of f, (so that one cannot have {f. > A} = [0,¢]).
Both statements now follow from this chain of equivalences (observe that f.(+o00) =

(f*>*(—|—00) = 0) ]

Corollary 3.22. For any measurable [ : E — K, we have |f|ipc = |filipo for all
1 <p < oo. Also, we have || f||re = || f«llzr since

!W&—AzﬁﬂMMM—APVWMMM—MMP

for 1 <p <00 and ||fl[ze = nf{A: dp(A) = 0} = [| /][~

The following two lemmas are very useful in practice, for instance when approximating
a function by mollification or by simple functions.

Lemma 3.23. If |fx| = |foo| pointwise a.e., or more generally if | foo| < liminfy oo | fx|
a.e., then dy <liminfy , dy, and (foo)s < Uminfy oo (fr).

Proof. Let N C E be a negligible subset such that |f| < liminfy_, |fx| everywhere on
E\N. Given 0 < XA < +o0, if ¢ € N has |foo(z)] > A then |fi(x)| > A eventually, so

X{lfsl>ANN < HMANEX g 7oA

Integrating and applying Fatou’s lemma gives the first claim. Now let 0 < ¢ < 400 and

A= (fr)«(2), A = liminf ).

k—o00
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Passing to a subsequence, we can assume that A = limg;00 Ag. Notice that the hypothesis
still holds (in both versions). Again, if |foo(z)] > A (and z € N) then |fi(x)] > Mg
eventually, so as before we obtain

p({lfool > X)) < liminf p({[fy] > M) < 1

by Remark 3.19. By definition of decreasing rearrangement, it follows that (f.).(t) <

Lemma 3.24. If |fi]| 1 |feo| pointwise a.e. (meaning that |fs| is the increasing limit of
|fil), then dy, T dy. and (fx)« T (fo)s« everywhere.

Proof. Let N C E be a negligible subset such that |fx| 1 |fs| everywhere on E'\ N. For
every 0 < X < 400, since {|fx| > A} N E is the increasing union of the sets {|f,| > A}NE,
we get

A1) = {1 el > A} = Tim ({1l > A}) = Tim d, (V).

Given 0 < t < 400, we set Ay := (fz)«(t) (for k € NU {co}) and A\ = limy_ ;o0 Ap. This
limit exists and is at most A, as

A< A< <
We also have
p({lfl > X)) = lim p({Ifil > )
= ]}i_{gloﬂ(ﬂfd > Ae})

< liminf p({[f| > Ae}) <,
k—o0

S0 Moo = (fao)«(t) < A. We conclude that Ao, = A, i.e. (f)a(t) T (foo)x(2). O

3.4 The Lorentz spaces LY

Definition 3.25. Given 1 <p < oo and 1 < q < oo, we set

= [ on0 S
0

and we call LP1(E) the set of all measurable functions f : E — K with |f|ra < 00. We
also set | flpea := ||f||z= (so that L°*(E) = L*(E)).

Remark 3.26. As we will see, even if f, is hit by the exponent q, the first exponent p is
the dominant one.

Proposition 3.27. The quantity |- |rr.a 1S a quasi-norm.
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Proof. Tt suffices to show that (f + ¢).(t) < fi(3) + g.(5). Actually, if 0 < s, ', t < 400
and s + s’ <'t, it always holds that (f + g).(t) < fi(s) + g«(s), since
u(dlf +9l > fu(s) + 9:(HH < u{If] > fu()}) + 2({lgl > g:(sH}) < s+ <t
m
Remark 3.28. [t follows that LP(E) is a quasi-normed vector space for all exponents
1<p<ooandl<qg<oo. Again, one can show that it is always a quasi-normed vector

space. For p > 1, as opposed to the case of LV, we will see that the quasi-norm admits
an equivalent norm, giving thus rise to a genuine Banach space.

Remark 3.29. The Lorentz quasi-norm | |pp.a measures the integrability of the function,
rather than the regularity. In the language of probability, it depends only on the law of
f, since it is defined in terms of f. (which in turn depends only on dy). Rearranging
the places where the values are attained, thus possibly making the function very irreqular,
does not alter the LP9-quasinorm. One can define it in the same way on general measure
spaces. What we just observed can be made precise as follows: if h : E — E' is a measure-
preserving map between two measure spaces, then |f o h|ppa = |f|rpa for any f: B — K

(since df = dgop, and thus f. = (f o h).).

The definition of the LPY-quasinorm when ¢ < oo suggests the following equivalent
definition when ¢ = oo

Proposition 3.30. For 1 < p < oo we have | f|1re = SUPycyc oo /P fu(t).

Proof. (<): given A > 0 with ds(\) > 0, set ¢ := d¢(\) — € (where € > 0 is arbitrary and
will tend to 0). Letting \' := f.(¢), being df(\) <t = ds(\) — € we must have X' > \.
Hence,

Adp(N) — )P < NP = £ ()P < sup  tYPLL(t)

0<t<+o00

and the inequality follows letting € | 0 and then taking the supremum over .
(>): analogous. O

Similarly, the LP9-quasinorm can be expressed in terms of the distribution function.

Proposition 3.31. Foralll1 <p < oo and 1 < g < oo we have

> 1/q
o =p/1( [ 3y an) ",
0

Proof. We start with the trivial observation that one has f.(¢) > X if and only if ds(\) > ¢
thanks to Remark 3.19. This, together with Fubini, gives

oo f*(t)
|flipa = / /=1 / g Tl dNdt
0 0

= / t/P=INTTY gt A\
{tA):f«(t)>A}

dy(\)
/ / ta/P=L\a=1 g g\

_ / )\>q/p)\q L. ]
0
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Proposition 3.32. If | fx| = || pointwise a.e., or more generally if | foo| < lminfy oo | fi|
a.e., then

|foo|Lp,q S lim inf |fk|Lp,q.
k—o00

[ffk — foo and |fk| T |foo|; then
|fe = foolzra — 0,

provided that fo, € LPI(E) and 1 < p,q < oo. In particular, simple functions are dense
in LPU(E) if 1 <p,qg < o0

Proof. The first part follows immediately from Lemma 3.23 and Fatou. The second part
follows from the pointwise convergence (fx)« — (fso)« given by Lemma 3.24, together
with the dominated convergence theorem. O]

Proposition 3.33. We have
(1) LPP(E) = LP(E),
(2) LP9(E) C LM (E) ifq <,
(3) LPY(E) C LY(E) if u(E) < oo and p >t (regardless of ¢ and u).

Proof. (1) From the definition of the LP?P-quasinorm and Corollary 3.22 we have |f[7,, =
1£cllze = I£11zs

(2) We assume p < oo without loss of generality. We first deal with the case r = oo:
since f, is decreasing, we deduce

£ f,(8) = (% /Ot Sq/pflf*(t)qu) Y (}% /Ot Sq/plf*(s)qu>1/q < (%)1/q|f|m

for all 0 <t < 400. Taking the supremum over ¢, we deduce that | f|pr.~ is estimated
by |f|rre and the inclusion follows. If r < oo, notice that

|f|Lp,r = (/0 T/pf ( ) )1/’"
< (/ 1P f, () ds>1/r sup s/ £ (g) =/
0

S 0<s<+00
= |1 12

< Clp, q, )| F1U0 | £ 15

/T T

by the previous case. Dividing both sides by |f ] Lp,n and raising to the power o the

claim follows.

(3) From the definition of f, it follows that f.(s) =0 for all s > u(E). In view of (2),
it suffices to deal with the case u =1, ¢ = co. If p < co we have

n(E) d H(E) d
o= [ @ T ([ sy Sp ()
0 S 0 S/ o<s<u(E)
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Since % — % > 0, the first integral is a finite constant, while the supremum equals | f|».=

by Proposition 3.30. If p = oo, it suffices to bound f.(s) by ||f||r~ right after the first
equality. O]

Remark 3.34. The inclusion LP1(E) C LP"(FE) is always strict: assuming 0 € F is a
density point without loss of generality, it is easy to check that

o [a|7"" € LP(E) \ Uyeoe LP(E),

o |z|/P log(|z|™")~*xB, ,, (%) € LPU(E) if and only if aq > 1, for all a > 0.
We now turn to the promised fact that L”? is normable for p > 1.

Theorem 3.35 (normability of LP9). For all 1 < p < oo the LP?-quasinorm has an
equivalent norm, for all 1 < q < oo.

Lemma 3.36. Define f.. : (0,+00) — [0, +00] by

/f

This modification of the decreasing rearrangement satisfies
1
(3.15) Fult) = sl [ 171 F € EulF) <1}
F

Proof. The statement holds if f is a nonnegative simple function, namely f = vazl AiX A,
with Ay > Ay > ... and 4; N A; = 0: indeed, it is easy to check that both sides of (3.15)
equal

" Z Aip(A;) + Op(Ait)

where k is such that S°F  pu(A;) <t < S u(A) (B = Nift > N, u(4;)) and
0:=1t— ZZ 1 1(4A;). In general, we approximate | f| pointwise from below with nonnegative
simple functions f;. By Lemma 3.24 and the monotone convergence theorem, both sides
of (3.15) converge from below to the desired quantities. O

Corollary 3.37. We have (f 4+ ¢)sx < fix + G-

Proof. This immediately follows from the inequality [, |f +g| < [ |f| + [ |g| and the
last lemma. O

Lemma 3.38 (Hardy’s inequality). Given 1 < p < 00, 1 < ¢ < 0o and f : (0,+00) —
[0, +-00], it holds

</Ooo (i /Ox f(t) dt>pdx>1/p Sp'(/ooo f(x)”dx)l/p

and more generally

(/OOO lﬂ/pl(i /Ox f(t) dt>qd:c)1/q < p'(/ooo 2P f () d:c) Ha
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Proof. We argue by duality. In order to show the first inequality, let g > 0 with ||g||,,» = 1.

We get
/ / F(t)dt) g / / F(se) di) g(a) da
_ /O /0 f(s:c)g(:c)dx) ds

1
= /0 1f (s)Izellgll o ds

1
= [ 51
0

=Pl fllze-

The proof of the second inequality is identical, working rather with the measure space
X :=((0,00), 277~ ! dr) and using the duality (L9(X))* = L7 (X), observing that we still
have || f(s)llzacxy = 72| fllpac)- 0

Proof of Theorem 3.35. We assume without loss of generality that 1 < p < co. We let

1l = ( /0 gt )

t

for 1 < g < oo and ||f||peee = SUPgyeno /P fux(t), i.e. we are merely replacing f, with
fux in the definitions. From Corollary 3.37 it follows that this is a norm (when ¢ < oo we
also use Minkowski’s inequality for L(X), where X is the same measure space as in the
previous proof). Finally, since f, is decreasing, we have f,. > f. and thus || f||zra > | f|zr.a-
Conversely, by Hardy’s inequality applied to fi,

1fllzea < P'[f|Lpa.

This shows that the norm || ||z».4 is equivalent to the quasi-norm | |pr.a. O

Remark 3.39. By Fatou’s lemma, the conclusions of Lemmas 3.2/ and 3.23 are still true
with fe in place of f.. Hence, Proposition 3.32 still holds with | |1e.a replaced with || || pr.a.

The dual spaces of Lorentz spaces are the expected ones, for p > 1.
Theorem 3.40 (Dual spaces). For 1 < p < oo and 1 < g < oo we have
(LM(E))* = L (E),
where duality is represented by integration.

Proof. Omitted. m
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3.5 Functional inequalities for Lorentz spaces

Theorem 3.41 (Hélder’s inequality). Assume that f € LP»"(E) and g € LP>%2(E) with

1 < p1,p2,p < 00, 1< qi,q2,q9 < 00,

1 1 1 1 1 1
—_t — = —+— 2> -
P1 D2 p q1 q2 q

Then fg € LPYUE), with ||fg| rre < C| fllzrva ||g||Lr2ee (where C depends on py, p2, g1, q2).

Proof. Thanks to Proposition 3.33, we can replace ¢; and ¢ with possibly higher expo-
nents and assume, without loss of generality, that q% + qu = %1. Given 0 < t1,ty < +00,
notice that

p(lf1> £t} <t p({lgl > g.(t2)}) < o,
so that, since |fg| > f.(t1)gs«(t2) implies either |f| > f.(t1) or |g| > g.«(t2), we infer

p({[fgl > fi(t1)ge(t2)}) < t1 + 1o

and thus

(fg)«(t1 +t2) < fi(t1)gu(ta).

This, together with the classical Holder’s inequality for Lebesgue spaces with exponents

L and £ (on the measure space (0, +00)), gives

[fgleea = [£7771/2(f9)(8) ] 1o
t t
<1 (o ()
<1071 () e (5) oo
= P ) £ g ()]
< O () | (|77 g (1) 1
= C/’f|Lp1,q1 |g|Lp2,q2. L]

Remark 3.42. Of course, Hélder’s inequality works also if (p1,q1) = (00, 00) (or similarly
if (p2,q2) = (00,00)), since in this case it reduces to the inequality

1fgllra <A fllz<liglizra < Cllfllzoeesligllzrza-

Theorem 3.43 (Young’s inequality). Assume that f € LPY9(R") and g € LP>%®(R")
with

1<plap2ap<oo> 1§q17QQ7q§OO>
1 1 1 1 1 1
—+—=1+-, —F+—>-.
P11 P2 p q 42 q

Then the convolution f * g is a.e. defined (meaning that the integral defining f * g exists
a.e.) and fxg € LPYR™), with ||fg|re < C|f|lLriar||gllzr2ee (where C depends on
b1, P2, q, Q2)
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Remark 3.44. In some cases, this improves the classical Young’s inequality for Lebesque
spaces: for instance, it gives L3? x L3> C L3 rather than just L?? x L3/? C L3,

The proof, due to O’Neil, is given below (optional: it was not covered in class).
Lemma 3.45. If f,g > 0 are measurable functions on R™ and f < axg,, then
(1) (f * g)sx < apu(E0) G,

(2) 1(f % 9)urll e < pt(Eo)gun(11(Eo)).-

Proof. Given 0 <t < 400 and F' C R" with u(F') <, then by (3.15)

tl/Ff*géoztlfF/Eog(w—y)dyda:
:a/ tl/F_ g(x)dxdy
J

; e (1) dy
(E0)gas(t),

so that taking the supremum over F' and using (3.15) the first claim follows. Similarly,

notice that
// r—y)dydr =at” 1// y) dy dz
Eo EO

< ot (F) pu(Ep) g (1( Fo))
< Oé/L(EO)g**( (EO))u

IN

«

ap

as u(x — Eo) = pu(Fp). This gives the second claim. O

Lemma 3.46. For f,g > 0 and 0 <t < 400, we have

Proof. We can assume that f is simple and finite, so we can write

N
f = Z QX E;
=1

with ; > 0and R =: Ey D F; 2 --- 2 Eyxy 2 Enyq := (). Possibly adding artificially a
set with measure t, we can assume that t = pu(F;,) (with 1 <ig < N). Using the previous
lemma we have

10—1

(3.16) (f * g)us( Z aift(Es) gos (1(E;)) + Z i tb(E;) gun (T

i=ig
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Observe that f, equals >°7_ «; on the set [u(E; 11, u(E;)). The first sum in (3.16) equals

io—1 io—1 N w(E;) N min{j,iop—1}

Sof eEX [ e [ s

=1 j=1 #(Ejt1)

and the contribution for j < 4( is precisely

ip—1 i0—1 M(El) s
J+1 14

]+1) =1 (Elo) t
On the other hand, the contribution for j > i is
N min{j,io—1} N ip—1
> Y / g = 3 3 il E3)gne (W) — u(Ey ) g ()
j=io Ejt1) j=top 1=1
i0—1 i0—1

= Z aiM(Eio)g**(p“<Eio)) = Z aiu(Ei(J)g**(t)

where (En11)gs(En+1) has to be replaced with 0. Finally, notice that

io—1

S B0+ Y 0Bt = ([ £)oult) = o))
i=1 EIN Eig

by (3.15). O

Proof of Young’s inequality. We assume g < co. The case ¢ = oo (where ¢; = ¢o = 00) is
far easier and left to the reader. It is clear that

7 (OOl r = [ L) 22 ()]
< [ O [ g )l
= I/ llzm gl

(assumlng w1th0ut loss of generality that = + < = %) Moreover, changing variables
t==+ s= ; and using Hardy’s mequahty7

(/Oootq/p1</too 1+(8)g«(s) d5>th>1/q
— </0°° u‘J/p/J(% /Our_Qf*(r_l)g*(T_l)d7”>qdu>l/q

o / 1/
< C’(/ wt/P 2 (u ) g, (u ) du) !
0

— C’( /OOO tq+q/p71f* (t)g. (1) dt) 1

— CHtl/prl/qlf*( t) t1/p2=1/a2 90| e,
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which can be estimated by |f|Lr1.01|g|Lr2.a2 as before. The inequality follows from the fact
that

1F  gllms < E/P7H £ (8)gun(2) +t1/p_1/q/ fegellLa
t

by the previous lemma. O

Let us now see an important consequence when n > 2.
Corollary 3.47 (improved Sobolev’s embedding). We have the continuous embedding
WLP(R") C LP"P(R") for all 1 < p < d, where # = %

Sketch of proof. By mollification and cut-off, it suffices to show that || f| 0x» < C||fllwre
whenever f € C2°(R") (since, by Lemma 3.23 and Fatou’s lemma, the LP?-quasinorm is
lower semicontinuous under pointwise convergence a.e.). We have

f=GxAf,

3=

where G is Green’s function for the Laplacian. Recall that, up to a multiplicative constant,
G equals log |x| if n = 2 and |z|>™™ if n > 3. In all cases, commuting a derivative with
the convolution, we get

oG Of
F= Zaxl ox;

(this is legitimate since G € W 4(R") for any ¢ < —%-) and, observing that fg—g equals

loc

= up to a multiplicative constant, we get | OG | € L7/(=D:¢(R"). The claim follows from
Young’s inequality for Lorentz spaces. O

Remark 3.48. The improved Sobolev’s embedding also holds for p = 1, although this is
not immediately clear from this proof. Instead, it can be shown using the coarea formula
and the isoperimetric inequality. Here is a sketch (optional: it was not covered in
class). Assuming without loss of generality f € C2° nonnegative,

| flpra = 1*/0 n({f > AHYY ax
o [ H1{F = A d
<c [Twar=w

—c [vsl,

where the first equality is Proposition 3.31, the inequality is the isoperimetric inequality
for the set {f > A} (which is a smooth bounded domain for a.e. X\; notice that 1/1* =
(n—1)/n) and the last equality is the coarea formula.

Proposition 3.49. (optional: it was not covered in class) In spite of the fact that
WhM(R™) € L>®(R™), a function f € L} (R™) with weak gradient in the Lorentz space
L™(R") has a continuous representative and satisfies

1f = (Nl < CIV fllpnn

for a suitable constant function c(f).
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Proof. The main point is that, if f € C°(R"™), the same proof as Corollary 3.47 gives
[fllze < ClIV fllzna.

Instead of Young’s inequality, we just use this version of Holder: L™!. [#/(n=hee C [1
(same proof as Theorem 3.41). This allows to say that

|_/‘0xz ze

for all . The rest of the work is to reduce to this situation.
Notice first that the convolution with a nonnegative function p. € C°(R"), with
support in B¢(0) and [ p. = 1, satisfies

(3.17) IVf = V(pe* f)llLra < s IVf =V I+ h)lzra

—y)du(y) < |IVG| pro-1.0 ||V f1| Lra

for all 1 < p < 00, 1 < ¢ < oo: indeed, being f € I/Vllocl(R”) pe * [ is smooth and its
gradient equals p.* V f, which can be thought as a pointwise limit of convex combinations
of functions V f(-+h), with |h| < € (e.g. approximating the convolution with a finite sum
as for a Riemann integral). The claim follows from Remark 3.39 and the fact that || ||r.c
is a norm invariant under translations in R".

As a consequence, if 1 < p,q < oo then V(p.x f) — V f: in fact, g(-+h) > gash — 0
when g = xg is a characteristic function (with p(E) < 0o) because u(EA(E — h)) — 0
and (xXg — XE—n)s = X[0,u(EA(E—h)))s S0 by Corollary 3.32 this holds also for a generic
g € LP(R™) and the claim follows from (3.17). So there exist smooth functions fj such
that fr, — f in L}, (R") and V f;, — Vf in L™ (R").

For any R > 1, the embedding W™!(R") C L?*"*(R") and Poincaré’s inequality give
I1fi = Crrll2nBon) < CRYVP(V fill o (Bany < CRYPIN fioll Lot (Bap)
with ¢, g == ©) and thus, as the proof of Proposition 3.33(3) shows, we get
) Baor

Je = cerllLri(Bor) < CR|V fil[ Lo

Finally, choosing a smooth cut-off function ¢r with ¢ = 1 on Bg, ¢r = 0 outside Bsg
and |V¢R| < %,

2
IV(@r(fe — ckr))l[na < Eka = iRl L (Bog) + IV fillna < ClIV fillpna
and thus, by the initial part of the proof,

fe — cr.rllzoBr) < |Or(fi — cr,r)llzee < OV fillLnr.

The constants c; g are obviously equibounded (in k, R), since this inequality gives in
particular

|+ fi = cerl < CV fillna
By
Hence, letting R — oo along a suitable sequence depending on k, we get || fx — cxl/r~ <

C||V fillpna (with supy, |ex| < 00). Letting k& — oo, again along a subsequence, we get the
statement. [l
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3.6 Dyadic characterization of some Lorentz spaces and another
proof of Lorentz—Sobolev embedding (optional)

In this part we show that, when ¢ < p, the LP?-norm of a function f can be measured in

terms of a dyadic decomposition of f according to its values.

In the sequel, ¢ : R — R is a smooth function supported in the annulus B(0)\ B 2(0)
and such that

(3.18) Y ety =1,  forallteR\{0}.
JEL
In order to construct ¢, take for instance any ¢ € C2°(By) such that ¢» = 1 on By, and
set @(t) :=(t) — ¢ (2t). For any t € R\ {0}, it holds
N
Y (27 = lim (@277 —(2707V8)) = lim ((27V) - (2V) = 1;

- N—oo | N—oo
JEL j=—N

the sum is well defined and the first equality holds, since at most two terms in the sum
are nonzero: if 28 <t < 281 then ¢(277t) = 0 for j # k, k + 1 since ¢(277-) is supported
in the annulus Byj+1 \ Byj1.

Given f:R"™ — R, we split it according to its values: we set

fi=fe@7If1),

so that the piece f; vanishes at z if |f|(x) is not in the range (2771, 27%1). Notice that,
thanks to (3.18),

F=> 4

jET

where the sum is actually finite at each point (since at most two terms are nonzero).
This decomposition should not be confused with the Littlewood—Paley decomposition, en-
countered later in the course, which involves the phase space rather than the values of

f!

Lemma 3.50. For1 <p<oo and 1 < q < p we have

1/q
CH N fllma < (3 NA515) T < CUSllew

jET

for some C' depending on p,q.
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Proof. Since f; < 27F1x| 051, we have

SISl <20 29 u{|f| > 27

JEZ JEZ
=87 29u({|f| > 27}
JEZ
27 +1
<8qZ/ AL u({|f] > AP dA
JEZ

Y / A ({1f] > A}) dA

Conversely, using the subadditivity of ¢ — t%/? (true as ¢ < p),

27 +1

Z/ M| f] > AN AN < 2070y 28 p({|f| > 27}
Jez JEZ
=2 Y00 (S u(fet <17 < 20
<ot gzﬁ/i({zk < |f] < 2y
< Zw({z <[f] < 2y
=

For a given x € E with f(z) # 0, if k € Z is such that 2¥ < |f(z)] < 2% then
28 < |f(@)] = [fu(@) + fisa ()], s0

({2 < |f] < 21)) < / ot foal <21 / 20 / fotlP.

Hence, raising to the power g

203 2% ({28 < |f] < 2P <40y /rfk!p /!kaI” <249 || filld

keZ kEZ kEZ

The claim now follows from Proposition 3.31.

We now present an alternative proof of the Lorentz—Sobolev embedding W?(R™) C
LP"P(R") forn > 2 and 1 < p < n.
Given f € C*(R"), we apply the classical Sobolev embedding to the pieces f; to get

LA e < CY NAIE . < CY IV EIG

JEZ JEZ

Since Vf; = o277f)Vf +277f¢ (277 f)V [ is bounded by |V fx{2-1<|fj<2i+1} up to
constants (being |27/ f| < 2 on the support of /(277 f)), we finally get

M VHIE <Y / IV fPXi-1<iicarny < C / IV£PP.

JEZ JEZL
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(as it is customary, in the above estimates the value of C' can change from line to line).
The conclusion follows as in the previous proof.
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4 The LP—theory of Calderén-Zygmund convolution
operators.

4.1 Calderén-Zygmund decompositions.

The Calderén-Zygmund decomposition of an integrable function is the key ingredient
for proving the continuity of the sub-linear Maximal Operator M in L spaces and the
continuity of Calderén-Zygmund Operators in LP Spaces as well. The later being the
starting point to the analysis of elliptic PDE in L” and more generally in non Hilbertian
Sobolev or Besov Spaces.

We adopt the following denomination : A cube of size 6 > 0 in R" is a closed set of
the form C' = [[._,[a;, a; + §] where (a;) is an arbitrary sequence of n real numbers.

Theorem 4.1 (Calderén-Zygmund Decomposition). Let f € L*(R™) with f > 0 and let
a > 0. Then there exists an at most countable family of cubes (Cy)rex having disjoint
interiors such that

(i) The average of f on all cubes is bounded from below and above by

1 n
(4.1) a<m/0kf(x)dx§2 a.

(ii) On the complement Q° of the union Q = |J,cjc Cr, we have

(4.2) flz) <« a.e..

(iii) There exists a constant C' = C(n) depending only on the dimension n such that

(43) p(@) < Sl

Remark 4.1. An alternative way to look at the result is the following. The Calderon-
Zygmund Decomposition of threshold a > 0 is a non-linear decomposition of any function
f € L' of the form f = g+ b where g and b are two functions respectively in L' N L>®°(R™)
and in L*(R™) satisfying

i) 3 (Ck)rex a family of disjoint cubes of R™ such that

b:Zbk with by = 0 in R™\ C},

keK

ii)  For all k € K hold the two following conditions

1

— b(y)| dy < 2" o
(o) Jo, "

/ be(y) dy =0 and
C
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iii) g satisfies the following pointwise inequalities
lg(@)| =[f(@)| <a  forae z€R"\UwekCr
lg(x)] < 2"« for a.e. x € UperCh
iv) The L* norm of g is controlled as follows
||9||%2(Rn) <2 o || fll 2 rny

v)  The Lebesgue measure of the so called "bad set” Q = UperCy satisfies

Q|+

Q) = u(Ci) <

keK

1l 2t ey

The link between our construction in the proof of theorem 4.1 (applied to |f|) and the
decomposition f = g+ b satisfying i) - - -v) is made by taking

b = (f—@ [ 1w dy) Yo

and i)...v) follow from simple estimates. It is worth remembering that Calderdn-Zygmund
decomposition is not unique.

Example 4.2. Consider the function f = x[o,1), the characteristic function of the segment
[0,1] in R. A Calderdn-Zygmund decomposition of f with threshold 271 is given by
g = 27"X[o2:) and the set Q is made of a unique cube : [0,2']. b = 0 outside [0,2'] and
b= X[, — 27 "X[0,21] has indeed average 0 on the unique cube of the decomposition.

Proof of theorem 4.1.
We divide R™ into a mesh of equal cubes chosen large enough such that their volume
is larger or equal than || f||z, /. Thus, for every cube Cj in this mesh, we have

1

(4.4) m/cof(x)dxga.

Every cube C° from the initial mesh is decomposed into 2" equal disjoint cubes with
half of the side-length. For the resulting cubes, there are now two possibilities: Either
(4.4) still holds or (4.4) is violated. Cubes of the first case are called the good cubes,
the set of good cubes is denoted by C{, and the set of non good cubes, the bad cubes, is
denoted by C?. In a next step, we decompose all cubes in C{ into equal disjoint cubes with
half side-length and leave the cubes in C? unchanged. The resulting cubes for which an
estimate of the form (4.4) still holds are denoted by CJ - they are called good cubes as well
- and the remaining ones by C5. Then, we proceed as before dividing the cubes in C§ and
leaving the cubes in C} unchanged. — Repeating this procedure for each cube in the initial
mesh, we can define 0 = (J,.x C, as the union of all cubes which violate in some step of
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the decomposition process an estimate of the form (4.4). (These are precisely those cubes
with an upper index b for bad.)
Note that for a cube C? in C? obtained in the i-th step, we have

1
(4.5) Mas) o (x)dx > .

Since 2"u(C?) = u(CY_,), where CY_, is any cube in C{_;, we then deduce

1 / 2"
o< ——— flx)der < ——— z)dr < 2" .
W) ST D= ey Joy T

This shows (i) of the theorem.
In order to show (ii), we note that by Lebesgue’s differentiation theorem, almost
everywhere the following holds

. 1
)=l [ @y

where C 4 denotes a cube containing x € R" with diameter d. By construction of the
decomposition, there exists for every z € Q¢ a diameter d, > 0 such that all cubes C, 4
with diameter d < dy satisfy an estimate of the form (4.4). This implies directly that
f(z) < afor ae. x e Q.

The last part (iii) of the theorem can be established as follows:

u(@) = u) € < [ pw)de < 2l

keK

4.2 An application of Calderén-Zygmund decomposition

The following theorem gives a statement which is close to a converse to theorem 2.8.
The proof of this theorem we give is an interesting application of the Calderén-Zygmund
decomposition.

Theorem 4.3. Let f be an integrable function on R™ supported on an euclidian ball B.
Then M f € LY(B) if and only if f € L'log L*(B).

The proof of theorem 4.3 is using the following lemma.

Lemma 4.4. Let f be a locally integrable function on R™. Let B be an open euclidian
ball of R™ such that M f € L*(B) then f € (L'log L'),.(B) .
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Proof of lemma 4.4. Let w be an open subset strictly included in B - ie. W C B.
Denote by f,, the restriction of f to w. It is clear that the inequality M f(z) > M f,(z)
holds for almost every z € R™. Hence, for every S > 0 the following holds

(4.6) p{zs Mf(x)>pB}) =2 p({x; Mfu(z)> B}

In order to show that f, € L'log L'(R"), we use the following “reverse” inequality to
(2.9) for the Hardy-Littlewood maximal function : there exists a constant ¢ depending
only on n such that

1

4.7 Q:Mf, > — w d
4N Mo ME@ ez [ @)

where {2 = UgecxC} is the union of bad cubes for a Calderén-Zygmund decomposition of
mesh «a applied to f, on R™ and given by the previous theorem 4.1.

Proof of inequality (4.7). For any a > 0 theorem 4.1 gives, for the function f,, a
family of cubes (Cy)rex of disjoint interiors such that (see (4.1))

2"a > @ ka |fo(x)|dz > a and
(4.8)
Ve e R"\ Q |fo(2)| <«

Thus, if x € Cy, it follows that M f,(z) > ca, where the constant ¢ > 0 is an adjustment
which permits to pass from cubes to balls in the definition of the maximal function. As
a direct consequence, we have that

p(lr €9 s MA@ > ca}) > 3 u(C) >

k=1

Since |f,(z)] < a, for x € R™\ Q, the desired inequality (4.7) is established.
Let 0 > 0 such that for every cube C'

(4.9) w(C)<é and CNw#0 = CNR"\B=10

0 has been chosen in such a way that, for any a > oy = fw f/9, the bad set Q is included
in B - this lower bound on « ensures indeed the fact that the mesh of the starting cubes in
the associated Calderéon-Zygmund decomposition is less than 6 . Hence we deduce using
(4.6), for any a > ap, that

1
B: M >— d
Ml B NI > capzg [ s
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Using the previous estimate we compute

Sl = [ Mo@de = [ut(ee B M@ > ) da

e74]

(47) o
— dz | d
= /ao (2"04 /{IEUJ f (@) >a} 7= x) “
max{ao,|f(z)[}
= / |f(x </ ldoz) dx
_ /If ot ’f )|

This proves the lemma. O

Proof of theorem 4.3.

One direction in the equivalence has been established in theorem 2.8. It suffices then
to establish that M f € L'(B) and f supported in B imply that f € L'log L'(B).

Let’s take to simplify the presentation B to be the unit ball of center the origin
B := By(0). First we show the following statement

(4.10) f=0inR"\ By(0) and Mf e L'(B(0)) = Mf e L'(By(0))

Once we will have proved this implication, using the previous lemma, we will deduce that
f € L'log L'(B) and this will finish the proof of theorem 4.3.

Proof of (4.10). Let = be a point in B3(0) \ By(0). Since every point in B;(0) is
closer to x/|z|? than to z, for |z| > 1, one obtains that Bg(x)NB1(0) C Bg(z/|z|)NB1(0).

We then deduce
[ ouwlas [ il
Br(=) Br(z/|z]?)

which implies that M f(z) < M f(z/|z|*) for |z| > 1. Thus
/ M) do <2 [ Mf(y) dy
(0\B1(0) B1(0)\By/2(0)

This last inequality implies (4.10) and theorem 4.3 is then proved. U

4.3 The Marcinkiewicz Interpolation Theorem - The [L” case

Definition 4.5. Let 1 < p,q < oo and let T' be a mapping from LP(R™) to the space of
measurable functions. For 1 < q < 0o, we say that the mapping T is of strong type (p,q)

— or simply of type (p,q) — if
T fllLe < Cflew,

where the constant C' is independent of f € LP(R™). For the case of ¢ < 0o, we say that
T is of weak type (p,q) if

o e R 5 [T@) > ah <0 (2 1flw)
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where the constant C' is independent of f and o > 0. For q = oo, we say that T 1is of
weak type (p,o0) if T is of type (p, 00).

Example 4.6. The sub-linear Maximal Operator f — M f is, according to the Hardy-
Littlewood Mazximal Function Theorem 2.5, an example of weak (1,1) operator or strong
(p,p) for 1 <p < +oo.

Remark 4.2. Observe that for g < oo, and for any measurable function g we have trivialy

(4.11) 19/L00e = sup o u({z - |g(x)| > a}) < lgllL.

a<+00
Applying this inequality to g = T'f we obtain the fact that T being of type (p,q) is also of
weak type (p,q).

We also define LP* + LP?(R™) as the space of all functions f which can be written as
f = fi+ fo with f; € LP*(R") and f, € LP2(R"). By splitting a function in its small and
large parts, one can show that LP(R™) C LP* + LP2(R™), for p; < p < py with p; < ps.

Theorem 4.7 (Marcinkiewicz Interpolation Theorem- The L? case). Let 1 < r < oo
and suppose that T is a sublinear operator from L' + L"(R™) to the space of measurable
functions, i.e., for all f,g € L' + L"(R™), the following pointwise estimate holds:

(4.12) T(f+ 9l <[Tfl+Tgl.

Moreover, assume that T' is of weak type (1,1) and also of weak type (r,r). Then, for
1 < p <r, we have that T is of type (p,p) meaning that

ITflle < ClIfllze s
for all f € LP(R™).

Remark 4.3. Because of the last theorem and the fact that the Hardy-Littlewood maximal
function is sublinear, we can directly deduce (2.3) in Theorem 2.5 from (2.4) — saying
that the operator M is of weak type (1,1) — and the obvious observation that M is of type
(00, 00).

Remark 4.4. Theorem 4.7 happens to be a special case of the more general Marcinkiewicz
interpolation theorem for Lorentz spaces.

Proof of theorem 4.7.
To simplify the presentation we restrict to the case r < +o0o. As in the proof of
theorem 2.5, for an arbitrary parameter o > 0, we introduce the following function

f(x) it [f(x)] >«

0 if [fe)l<a

fi(z) ==

and we denote fy(x) := f(x) — fi(x) in such a way that |fy(z)| < a. The sub-additivity
of T gives then |Tf(x)| < |T fi(x)| + |T f2(z)| and from this we deduce that

{5 [Tf(@)] >} C{a; [Th)|>a/2y Uz [Th)] > a/2}
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Hence, using (2.3) and (2.4), we bound dr¢(a) = p({z ; |Tf(z)| > a}) as follows
drj(a) < drp(a/2) +drp(a/2)

(4.13) < 20| fullo + ZE N ol

o’

<28 [ f W) dy + 55 fons, [fW)] dy

where E, denotes as usual the set {z ; |f(z)| > a}, Cy = sup [T'f|p1 /||| and C, =
sup |7 f|pre /|| f|lz- and where we have also applied inequality (4.11).

Expressing now the LP norm of T'f by the mean of lemma 2.2 and combining it with
(4.13) we get, using Fubini in the third line,

5 Jen [TF (@) du = & [ 0P~V dryg(a) da

<pCy f o 2da [y |f(y) dy+pCr )7 e da [ [F)]7 dy

=pC fou | F W) dy [ 072 da+pCY fo [F)I dy [ 07" da

T

<2p (& + ) fo PPy

which proves the theorem. 0]

4.4 Calderon Zygmund Convolution Operators over L”

Convolution operators operators are special cases of Calderén-Zygmund type operators.
They are the "historical” ones : the first one introduced by Calderéon and Zygmund in
the 50’s-60’s corresponding to the principal values of singular integrals. They are the key
notion giving access to the LP theory (and more generally to the non hilbertian theory) of
elliptic operators. Roughly speaking a typical question relevant to the theory of Singular
Integral Operators is the following : if the L” norm of the laplacian of a function is in L?
is it true or not that every second derivatives of this function are in LP ?

This question is answered easily in the case p = 2 by the mean of Fourier transform
but requires a more sophisticated analysis for being considered for p # 2. Of course the
interest and the use of Singular Integral Operators goes much far beyond the resolution
to this question and we will see applications of them all along this book.

A singular integral operator is formally a linear mapping of the form T : f — K % f
where K is the kernel which misses to be in L' or even L}, from "very little”. If K would
be in L! then the continuity of 7' from LP into itself would be a simple consequence of
Young’s inequality on convolutions. Usually the pointwise expression of the Kernel K is
only in L!'—weak :

sup o p{z; |K(x)] > a}) < 400

a>
A typical example of such a convolution operator is the one which to f = Aw assigns the
second derivative of u along the i and j directions : 0,,0,,u (modulo harmonic functions
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of course). This operator is given formally for i # j by

0y,00,u = Chy (i — i) (xj — y) f(y) dy

Rn |z — y|+2

It is a convolution type operator T' of kernel K(z) = C, z;x;/|x|""?. K is in L'—weak
but it is not a prior: a distribution and this makes the use of the convolution operation
and the definition of T' problematic or singular. Calderén-Zygmund operators of the first
generation share the same difficulty. The reason why the Calderén-Zygmund Kernels K
can be made to be a distribution is a cancellation property. In the previous example the
cancellation property happens to be (recall that we look at the casei # j)

XX
dy =0
/ ez Y

Because of this later fact, for a smooth given compactly supported function f, it is not
difficult to show that

: (i —wi) (z; — yj)
(4.14) lim A P T fy) dy
exists for every x. This singular integral is the convolution between f and the distribution
called Principal Value of K denoted PV (K).

One of the spectacular result of Calderén-Zygmund theory says the following : the limit
(4.14) PV (K) * f(x) exists almost everywhere whenever f is in LP(R") for p € [1, 4+00]
and is also in LP(R™) if f is in LP(R") for p € (1, +00).

Another example of Singular Integral Operator is the Hilbert Transform on R - which
corresponds in Fourier space by multiplying f(£) by the sign of £ - that is : f — f* =
. This singular integral has to be understood as being the limit of the following process
(4.15) lim — Jle=y) dy

I Jpyl>e Y

at least when f is smooth and compactly supported, since 7! is odd, one easily check that
this limit exists everywhere. It is equal to the convolution between f and the Principal
Value of x=1, PV (1/z). Here again Calderén-Zygmund theory will tell us that the limit
(4.15) PV (z7!) % f exists almost everywhere whenever f is in LP(R") for p € [1,+o00] and
is also in LP(R™) if f is in LP(R™ for p € (1,400).

In a way which is reminiscent to the LP—theory of the maximal operator in the previous
sections, the Hilbert transform and more generally Calderén-Zygmund operator won't
map L' functions into L' functions but to L'—weak functions only. In analogy with the
previous section again, Calderén-Zygmund operator will however send L' log L' functions
into L'. The parallel with the results obtained for the maximal operator in the previous
section has some limit since, as we will see, L> functions won’t be map by Calderdn-
Zygmund operators to L* functions but to Np<ioo L) (R™) functions only.

Here again the Calderén-Zygmund decomposition will be the key instrument in the
proofs. This use of Calderén-Zygmund decomposition is also known under the name of
the real variable method of Calderén and Zygmund.
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Let us finish the introduction to this very important section by making the following
amusing remark. If the L'—weak would have been a Banach space for a norm || - ||,
equivalent to the quasi-norm L! - (2.5) -, then the LP theory of Calderén-Zygmund
operator would be trivially true without any assumption on the Kernel K except that it
is in L'—weak and that T : f — K % f sends L? into L2. Indeed, for any finite set of
k points aq,--- ,a; in R™ and any family of k reals A;--- )\, one would have using the
triangular inequality

k

=1

k
<KL N
% i=1

and we would directly deduce that T sends L' into L!. The Marcinkiewicz interpolation
theorem 4.7 would then imply that 7" is continuous from L? into LP for any p € (1, 2] and
the continuity for p € [2,4+00) would be obtained by a simple duality argument.

We shall see three different formulations of the continuity of a Singular Integral Op-
erator in LP spaces, each of these formulations are based on different assumptions on the
Kernel K.

4.4.1 A “primitive” formulation

In this subsection we prove the following ”primitive” formulation of the LP—continuity of
Calderén-Zygmund convolution operator. The sense we give to the adjective ”primitive”
here should not be interpreted as something pejorative about this formulation, which has
the clear pedagogical advantage to bring us progressively to more elaborated ones in the
next subsections. In this formulation the difficulties caused by the singular nature of the
convolution does not appear since the kernel K is "artificially” assumed to be in L?.

Theorem 4.8. Let K € L*(R") and assume the following:
(i) The Fourier transform K of K is bounded in L™

(4.16) |1 K| < +00

(ii) The function K satisfies the so-called Hormander condition : there exists 0 < B <
+oo such that

(4.17) / |K(z —y) — K(z)| de < B, Yy # 0
2llyll<ll=|]

Moreover, let T be the well-defined convolution operator on L'(R™) N LP(R™), with 1 <
p < 00, giwen pointwise by

(4.18) Tf(a)= K+ f(2) = | K(z—y)f(y)dy

Rn

Then, there exists a constant C, = C(n,p, || K||oe, B) — independent of the L*-norm of K
— such that

(4.19) 1T flle < Gl fllr
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Moreover there exists a constant Cy = C(n, ||K||«, B) — independent of the L*-norm of
K — such that for any f € L*(R™)

(4.20) supa p({z €R™ 5 [Kx f(x)] > a}) < Cr [|f]u
Remark 4.5. a) Note that T is a densely defined linear operator on LP(R™). More
precisely, the operator is well-defined on the dense linear subset L' (R™)NLP(R™) of LP(R™)
and from (4.19) we can deduce that T' can be extended to all of LP(R™) by this.

b) In the previous theorem, the kernel K is assumed to be in L*(R™). This happens to
be "artificial” in the following sense : it permits to make the convolution operator T well
defined on L'(R™) N LP(R™), for 1 < p < oo indeed by Young’s inequality we have

NTfllze < 1K |2l f 1l

Howewver the final crucial estimate leading to the continuity of T from LP into LP s
independent of the L* norm of K.

c) Observe that the Hormander condition (4.17) holds, for instance, whenever K is
locally Lipschitz on R™\ {0} and there exists C' > 0 such that

vz e R\ {0} |VK|(@) < —2

= Jaf

This comes from the following estimate : Let y # 0 and denote v = y/|y|, then the
following holds

Japy<pap | K (2 = 9) = K ()| do

0 Ov

= Loy |Jo” G (@ + ) dt‘ du
(4.21)

o
< Jo" dt fopycpey IVE (@ + tv) da

<1yl iz [VEI(2) d2 < Cuflt = G

[yl

where we have proceeded to the change of variable z = x + tv.

Proof of theorem 4.8 The proof is divided in the following three steps: First, we show
that the convolution operator 7' is of strong type (2,2). In a second step, we establish
that T is of weak type (1, 1) - i.e. inequality (4.20), which is the most difficult part of the
proof. Finally we obtain the inequality (4.19) from Marcinkiewicz’s interpolation theorem

and a duality argument. .
First step: Let f € L*(R™)NL?*(R™), then for the Fourier transform T'f of T f € L*(R"™),
we have

— — "~ (416)
1T flle2 = (1K * fllzz = 1K fllze < (1Ko [[f]lz2

Since Hﬂ”HLz = |[|Tf||zz by Plancherel’s theorem, we then obtain
(4.22) ITFlle < K loo [[£1]22 -
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This shows that T is of type (2,2), which also implies that T is of weak type (2,2) as we
mentioned in remark 4.2, precisely

(4.23) Va>0  p({z: [Tf(z)]>a}) <

Second step: Let f € L'(R") and a > 0. We apply the Calderén-Zygmund Decompo-
sition 4.1 of threshold « to f. The resulting family of disjoint "bad cubes” will be denoted
by {Cj}rex and we write Q = |J; | C for their union.

Now, we define

f(z) for x € Q°
(4.24) (x) = 1
g O f(y)dy for x € C},.

Following remark 4.1 C-Z Decomposition permits to write f as sum of a "good” and a
"bad” function, namely f = g+ b - "good” and "bad” stand for the fact that there is a
better control, namely L*°, on g than on b - where

(4.25) b= b ,

keK

with
o) = (1) = [ 0] v

From the linearity of the convolution operator T and the triangular inequality we have
for all x € R

(4.26) Tf(z)] <|Tg(x)| + |Tb(z)]
Hence we deduce

p({z - [Tf(2)| >a}) < p({z: [Tg(@)] > a/2})
(4.27) tul{z : |Th(x)] > a/2))

In order to get an estimate for the first term on the right-hand side of (4.27), we first
use the fact that g is an element of L?*(R"™)- see remark 4.1 iv) - with the following control

191172y < 22" @ || f]l Lt gy

As a consequence, we can apply (4.23) to g € L*(R") in order to get the following estimate
for the first term on the right-hand side of (4.27):

4IIK||

o0

p{z = |Tg(x)| > o/2}) <

K 2
(428) S 22n+2 H || HfHL1 (&™)

lgllZ
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Next, we estimate the second term on the right hand-side of (4.27). — For this purpose,
we expand each cube Cy in the Calderén-Zygmund decomposition by the factor 2y/n
leaving its center ¢ fixed. The new bigger cubes are denoted by Cr and its union by
Q= UkeK Cy. Tt is easy to see that Q C Q, Q¢ € Q° and u(Q) < (2v/n)" u(). Moreover,

for z ¢ Cy, we have
(4.29) |z —cll > 2|y — cll, for all y € Cj
Now, let ¢, denote the center of the cube Cj. Then, we can write

= Thz) = Y [ K@—ybly)dy

keK kek Y Ck

_ Z/C(K(z—y)—K(!E—Ck))bk(y)dfya

keK

being a direct consequence of the fact that for all Cj

/Ckbk(y)dy=/0k<f(y) (ék) f()) y=0 |

- condition ii) in remark 4.1 -. This then leads to

/C|Tb(x)|dx < Z/ ( ‘K(:E—y)—K(m—ck)‘|bk(y)‘dy)dx

< ;/( 1o = 3) = K= )| o) dy )
= ;{/C ( |Kx— )—K(x—c@‘d:v) bk ()| dy -

Setting T = = — ¢x, ¥ = y — ¢ and using (4.29), the integral in parenthesis ca be bounded
this way

~‘K(x—y)—K(x—ck)|dx§/ |K(z —9) — K(z)|dz
Ci 2llgli<l=
The assumption (4.17) of the theorem hence implies that
(4.30) i@l <Y [ iy < 1l
keK

At this stage, we are ready to give the following estimate for the second term in (4.27):

Pl € B T0@) > 0)) < ulfe €O ¢ [Th@)| > a/2) + u(@)
< 2 e + vy (o)

2C C C
< = Il + ~ I fllr < = 1 fllz
(4.31)
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Where C' only depends on n, ||K||, and B. Combining (4.28) with (4.31), we end up
with the existence of a constant Cy; > 0 such that

(4.32) ulfe < IT7@)] > o) < i fl,

showing (4.20) and hence that the convolution operator 7" is of weak type (1,1).

Third step: Note that we have already shown the inequality (4.19) in the case of p = 2
in (4.22). — Putting » = 2 in Marcinkiewicz Interpolation Theorem 4.7 and using the
fact that T is of weak type (1,1), respectively (2,2), by (4.23), respectively (4.32), we
conclude that

(4.33) 1T flle <CNfllze,

for 1 < p < 2 and where C only depends on n, p, | K|l and B the constant in the
Hormander condition.

For the case 2 < p < oo, we will use a duality argument. — Consider the dual space
LY (R™) of LP(R") with 1/p + 1/p’ = 1. We easily see that 1 < ¢ < 2. Consider now
f € LY(R™) N LP(R™). Since LP is itself the dual space to LP" and since L' N L* is dense
in L”', the LP-norm of T'f is given by the following expression:
(1.34) 1751 = swp | [ Tr(a)gta)da

ger'nr?’
llgll, pr <1

We calculate

| T a

/n ( - K(z—y)f(y) d?/) g(z) dx
/n ( - K(z —y)g(z) da:) F(y) dy

where Fubini’s theorem was applied because of K € L*(R") and the assumptions on g
and f. For the first integral, we conclude from (4.33) that it is an element of L¥ (R™).
Using Holder’s inequality, we end up with

| ri@ewa| < [

Y

( K@ =yglw) dﬂf) f (y)’ dy

sup
geL'nL?’
lgll, <1
(4.33)
< Clglpw fllee < C U fllee -
This establishes the theorem. O

4.4.2 A singular integral type formulation

In the present formulation of the L? continuity for convolution type Calderén-Zygmund
Operator we will skip the too strong assumption that the kernel K is in L? and will
assume only a L!'—weak type pointwise control of K + a cancellation property together,
still with the Hormander condition. We will be then facing the heart of the matter : how
can we deal with the singular integral K x f when f is only assumed to be in LP ?
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Theorem 4.9. Let K : R" — R be a measurable function such that there exists A, B > 0
for which the following holds

A
(4.35a) K (x)| < T Va#0
(4.35b) / |K(z—y)— K(z)|de < B Vao#0
2llyll<|=]]
(4.35¢) / K(z)dr =0 fora. e.r>0
8B,(0)
Fore >0 and f € LP(R™) with 1 < p < oo, we set
(4.30) i@ = [ K G)dy
yl|>e

Then, for any 1 < p < 400 there exists a positive constant C such that for any € > 0 and
any f € LP(R"),

(4.37) |Tefllze < Cllfllzr,

where the constant C = C(p,n, A, B) is independent of € and f. Moreover, there exists
Tf e LP(R™) such that

(4.38) I.f —Tf in L (e —0)
For any f € L*(R™) there exists a measurable function T f in L*—weak such that

(4.39) T.f —Tf in L.
and there ezists a constant positive C'(n, A, B) independent of f and € such that
(4.40) supa p({z € R™ 5 [Tf(w)] > a}) < C(n, A, B) [|f]2

a>

Remark 4.6. The singular integral defined in (4.36) is, for a fized €, absolutely con-
vergent. To see this, note that due to (4.35a) we have that K € LP (R™\ B.), where

1 < p' is the Holder conjugate exponent of p. From Young’s inequality, it then follows
that [| T flloe < [[f e 1K 1o

A substantial part of the proof of theorem 4.9 will be to derive from the assump-
tions (4.35a), (4.35b) and (4.35¢) an L* bound for the Fourier transform of K.(y) :=
K(y) xrm\B.(0) independent of €. This estimate will permit us to invoke theorem 4.8 at
some point in our proof. Precisely the following lemma holds.

Lemma 4.10. Let K : R" — R be a measurable function such that

(4.41a) |K(z)] < ||;|1|n : for x #0
(4.41b) / |K(z—y)— K(z)|de < B, for y#0
2[lyli<ll=ll
/ K(x)de =0 fora. e 1r>0
0Br(0)
(4.41c)
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Moreover, for every e > 0, we define

(4.42) K.(z) = { é((x) fo Hi” ii

Then, there ezists a constant C = C(n, A, B), independent of €, such that
(1.43) IR |l < C.

Before to prove this L* bound we would like to show first how the hypothesis relative
to the cancellation property (4.35¢) is essential. How cancellation property can lead to
decisive improvements in the estimates will be a leitmotiv in this book - see in particular
the chapter on Hardy spaces and the integrability by compensation phenomenon.

Example 4.11. Consider the function on R given by K(t) = 0 | It is not difficult to check

that K satisfies hypothesis (4.41a) and (4.41b) but the cancellation assumption (4.41c) is
violated. we now prove that for this function K the conclusion of lemma 4.10 fails. We

have
K.(§) = lim, fa<|t|<r ettt % = lim;—p f6<\t|<7" cos(2mt§) % ’

— 2897?, f‘IZ:TO COSS27TS dS ’

where we have used the parity and the imparity respectively of cos(2mt &) /|t] and sin(27t &) /|t].

Now, since fo cos s/s ds = +oo we deduce that K. (&) goes to +00 as € goes to zero for
non zero .

Observe that a change of sign for K that would ensure the cancellation property (4.41c)
- by taking 1/t instead of 1/|t| - would lead to the integral f0+°° sin s/s, which converges,

instead of the previous integral f0+°° cos s/s which diverges. This illustrate the importance
of the cancellation assumption (4.41c)

Proof of lemma 4.10.
For any 0 < ¢ < R Denote K.p = K(2) Xpgo)\B.(0)- For a fixed £ such that
e < |¢]7! < R, we write

Konle) = / T K s
e<lx|<

:/ 2t K () dw +/ ™ K (z) dw
e<|z[<|¢]! g <lz|<R

=L+ 1

We bound I; first. Using the cancellation assumption (4.41c), we have
I, = / (e*m*C 1) K(z)dx
e<|e|<[€]~!

Hence we deduce the following bound, using this time assumption (4.41a)

|| < 2 €] x| [K(2)| dv < C A

e<|z|<|g] 1
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In order to bound I we introduce z = £/2|¢|?. Observe that the choice of z has been
made in such a way that exp(2miz - £) = —1, hence a change of variable x — x + z will
generate a minus sign in front of the integral and formally we would have

. 1 ;
/ 2™t K () dw = 5/ ™" K(z) — K(z — 2) d

which would put us in position to make use of the Hormander condition (4.41b). The
only difficulty is to keep track of the domains of integrations that we precise now.

21, = | e K (o) de - i K(a - 2) do
€7 <|z|<R €]~ 1<|z—z|<R
We write

/ e2miaE Kz —2) de = / o da
€] <|z—z|<R €] <|z|<R
_/ ---da:—/ e dx
|z —z| <[]~ <]z] || < R<|z—z|

+/ -~m+/ o dr
lz| <€~ <]z —2| |z—z|<R<|z|

The following elementary inclusions are longer to state than to prove...
{z; e -z <|g7 <lal} C{as |z — 2| <|€7" <]z —2[ + 2]}

{z; |z <R<|z—z}C{a; |lz—2|—|2| <R<|z—2|}
{o; |zl <|g] ' <z =z} C{z; Jo—2]—|z| < |¢]7! < |z — 2]}
{z;]jlz—z|<R<|z|}C{x; |[x—z|<R<|x—2z|+]|2|}

Using these inclusions and the fact that |z| = 1/2|¢], we can bound I in the following
way

2Mﬂ§/1 K (2) — K(z — 2)| da
[€l-1<]z|<R

+/ |K(m)|dx+/ |K(x)| dx
e~ <a|< S 1g) 1 R—3|¢|71<|z|<R+3 ¢~

Since |z| = 3]¢|™' we can invoke the Hormander condition (4.41b) and bound the first
integral in the right-hand-side of (4.44) by B. For the second integral we use (4.41a) and
bound it by a constant C,, A and the third integral is treated in the same way using the
fact that |{|~* < R which implies that the quotient of R+ £|£|7! by R— $|¢| " is bounded
by 3. Hence I, is bounded by B +4C,, A. So we have proved that |@(§ )| is uniformly
bounded by a constant depending only on n, A and B, which is the desired result. 0

Proof of theorem 4.9.

Combining lemma 4.10 and theorem 4.8 we obtain (4.37) and (4.40) where T'f is
replaced by 7. f. It remains to show the LP convergence (4.38), the L} convergence (4.39)
and inequality (4.40) for T'f itself.

(4.44)

67



We consider first a smooth function f € C§°(R") and using the cancellation property
(4.35¢) we write

T.f(x) = /lgy”f(a:—y)K(y)dw / Sz —y)K(y) dy

e<[lyll<1

= [ ek [ () - ) Ky
(4.45) o

Because of the regularity of f, using assumption (4.35a), we have the following bound
which holds for every x in R" and y # 0

A
ly[[=*

Hence, inserting the bound (4.46) in (4.45) we can define for every x the limit

(146)  |(fle—y) — F@)E@)| < IV Iyl 1K) 2 197

(4.47) Tf(a) =l Tf(r) = | Jle—y)K)dy

Observe that at this stage T'f is a distribution obtained by the convolution between a
smooth compactly supported function and the principal value of K, p.v.K, which is an
order 1 distribution. However using (4.46) again we have

Ve e R [Tf(z) - Tf(x)] < /B =) = @) K@) dy

< Col[Villeo A

(4.48)

Thus 7. f converges uniformly to 7'f and hence in L] (R™) for any p > 1. Let R > 1 such
that f =0 in R™\ Bg(0). For |z| > 4R

KW)f(x—y) — f(x)] = K(y) f(z —y)

is supported in Bg(x) and one has |K(y) f(z — y)| < 2"(|f|l«A/|z|™. Hence the bound
(4.48) can be completed by a behavior at infinity as follows :

VeeR  [Tf) - Ti@) < [ |-y 1K) dy
(4.49) o
€
|z
This later inequality implies that 7. f — T'f in LP(R") for any p > 1 and that [T, f—T'f|.1
converges to zero.

Let us take now f € LP(R™) for p > 1. Since C§°(R") is dense in LP(R"), using
inequalities (4.19) and (4.20) for K. *g - where ¢ is a difference between f and a finer and
finer approximation of it in C§° for the L” norm - a classical diagonal argument implies
that, for p > 1, T.f converges strongly in LP and that, for p = 1, T, is Cauchy for the
quasi-norm Ll . This concludes the proof of theorem 4.9. ([l
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Remark 4.7. The exact cancellation assumption (4.41c) can be relazed in the statement
of theorem 4.9 by requiring only the existence of a constant C' > 0 such that for any
0<r<R<+o0

(4.50)

/ K(x) dz| < C
Br(0)\B:(0)

Under this weakened assumption however the convergence of T.f to T f does not neces-
sarily hold in LP or even almost everywhere but in the distributional sense only (see a
counterexample in [?]). The nature of this convergence nevertheless is not a main point
in the theory the most important one being given by the inequalities (4.37) and (4.40)
which still hold under the weakest assumption (4.50).

4.4.3 The case of homogeneous kernels

It is interesting to look at the case of homogeneous kernels which correspond to operators
of special geometric interest - such as Hilbert Transform for instance. The following result
is obtained as a corollary of theorem 4.9 and has the advantage to provide a ”translation”,
in the special case of homogeneous Kernels, of general assumptions on K that imply
(4.35a), (4.35b) and (4.35¢). Precisely we consider kernels K of the form

IR

(4.51) K(x) ,
where  is an homogeneous function of degree 0, i.e., Q(éx) = Q(z), for § > 0. In
other words, the function € is radially constant and therefore completely determined

by its values on the sphere S" 1. Note also that K is homogeneous of degree —n, i.e.,
K(dx) = 0"K(x).

Proposition 4.12. Let K : R" — R be a measurable function given by K(x) =
Q(z)/||z||™ where Q is an homogeneous function of degree 0 satisfying

i)

(4.52) i Qz)do(z) =0

i) If we set
w(d) = sup [Q(z) - Qy)|

lz—yll<o
x,yesSn—1
the following integral is finite:
1
)
(4.53) / # dd < 0.
0

Then K satisfies the conditions (4.35a)-(4.35¢) and theorem 4.9 can be applied to K.
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Remark 4.8. Observe that the so called Dini condition ii) implies that € is continuous
on S"~1. Moreover observe that if Q is assumed to be Holder continuous, C%*(S™ 1), for
some exponent 1 > a > 0 then the Dini condition ii) is automatically satisfied.

Proof of proposition 4.12.

The conditions (4.35a), respectively (4.35¢), follow directly from (4.53), respectively
(4.52) and integration in polar coordinates. In order to establish (4.35b), we first observe
that

Uz —y) — Qx)
/ |K(z—y) — K(z)|dz < | |z —y||” ‘dm
2[ly[I< |zl 2[|ylI< |||
1 1
N / Qlx _ dx .
P TR
2[|lylI<]l=|l

(4.54)
Since 2 is bounded due to (4.53) and as a consequence of the mean value theorem

1 1

[z =yl™ [l

Cllyll

B Ed e

we conclude by integration in polar coordinates that the second integral on the right-hand
side of (4.54) is finite. Note also that

[z —y) - 0] = ‘Q(Hi:zu)_g(nz_u)‘
< «(Je=0-ml)

lz =yl =]
by definition of the function w. Moreover, if 2||y|| < ||z, then 1/||x — y||* < C/||z||" and
T —y T

also
‘ |z =yl |z

Inserting these estimates in the first integral on the right-hand side of (4.54), we obtain

[yl
Oz —y) - Q W { Ol
Gt U] R ( nn)dx
Iz =yl ]
2[lylI<[ll 2[lylI<[l=l
o W Cu
< C/ udr
2[lyll "

Changing coordinates 0 = C|y||/r and using (4.53), we deduce that the last integral is
finite showing that (4.35b) holds and proposition 4.12 is proved. O
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4.4.4 A multiplier type formulation

It is useful to explicit sufficient conditions on K only that implies the strong type (p,p)
(for 1 < p < +00) and the weak type (1,1) properties of the corresponding convolution
operator T. Such results are called multiplier theorems - m(€) = K () is the multiplier
associated to T. We shall give more and more sophisticated multiplier theorem in this
book that will play a crucial role in characterizing real-variable function spaces using the
Fourier transform. Multiplier theorems are moreover the basic tools in the analysis of
pseudo-differential operators. Here is maybe the most elementary one that we will deduce
from the previous sections.

Theorem 4.13. Let m be a C* function on R™ satisfying :

VieN 4C;>0 st VEeR”
(4.55)
IVim|(€) < Cy g™

Let p € [1,4+00). Define Ty, on LP N L? by

~

Ve LPNIARY)  VEER'  T.f(€):=m() ()
Then for p € (1,+00) there exists Cppm > 0 such that for any f € LP N L?

(4.56) [T fllr < Copm 1 Fllr s
and there ezists Cy ., > 0 such that for any f € L' N L?

(4.57) supa (e € R 5 [T f(2)] > a}) < Cr [ flle

a>0

Hence T, extends continuously as a linear operator of strong type (p,p) - 1 < p < 400 -
and weak type (1,1).

Remark 4.9. [t is important to compare at this stage already, before to proceed to the proof
of theorem /.13 itself, the difference between the assumption (4.55) and the assumptions
we made on K in the previous subsections. Take for instance the condition |VK|(z) <
C/|z|™*! that implies the Hormander condition (4.17) - as it is established in remark 4.5
c) - would hold if, for instance, we would assume V" ™'m to be in L*. Observe that this
later condition is just "at the border” to be implied, but is not implied, by our assumption
(4.55). As it will be seen later in the book, assumption (4.55) is however very relevant to
the theory.

Proof of theorem 4.13. Theorem 4.13 will a direct consequence of theorem 4.8 once
we will have proved that assumption (4.55) implies the Hérmander condition (4.17) for
K :=m - Observe that (4.55) contains (4.16) already.

In order to establish the Hérmander condition we cannot afford to be as little cautious
as we were in establishing the bound (4.21). We shall use a more refined argument based
on dyadic decomposition in the Fourier variable £ - the phase space. This techniques is
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making use of the Littlewood-Paley decomposition presented in chapter 5. Precisely let
1 € C§°(Bs(0)) be a smooth non negative function with compact support in the ball
Bs(0) such that ¢ equals identically 1 on B;(0) and let ¢(&) := ¥(§) — (2£). It follows
from this definition that ¢ € C3°(R™\ {0}) and that

k=+N

1= lim $(277) =) " p(27%¢) on R"
N0 k=—N keZ

For k € Z we denote
my(€) = (&) m(27%¢)
Observe that with this notation

m(€) = mi(2"¢)

keZ

Denoting Ky (x) := my(z), we have :

(4.58) K(z) :=m(&) =) 27" K27 )

kEZ

Using now the assumption (4.55) on m and the definition of my, it is not difficult to see
that

(459) Vi e N 4C;, >0 s.t. Vk € Z ||VlmkHLoo(Rn) <

Moreover, since the my, are supported in the fixed compact set By(0) \ B/2(0), we deduce
that every H® norm of my is bounded independently of k.
Take s > n, we then have the existence of C, independent of £ such that

| el do = iy < ©

Hence, using Cauchy-Schwarz, we deduce the following bound

/||>| ‘]Kk(x)\ dx

(460 = [/ﬂcl>y| W dx}é [/n(l * |$|2)8/2|Kk($)|2 o |

<
— (1_|_ |y|)fn/2+s/2

=

where C' is possibly a new constant but again independent of .
Similarly as before, £ my(§) is a function supported in the fixed compact set B2(0) \
B1/2(0) and, hence, (4.59) implies that

(4.61) VieEN 3G >0 st VEeZ  |V(EME)|r=@n < C
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Hence for the same reasons as above we obtain a uniform bound, independent of k, for
V K. Precisely there exists C' > 0 such that for every k € Z

(4.62) |VEKi(z)| de < C < 40

Rn

Let now y € R"™ and denote v = y/|y|, we have

vl 9K
/ h(av +to) dt| dx
0

| Ki(z —y) — Ky(z)| da —/ 5

n

(4.63) R
<yl | IVEK[(2) dz < C |yl
Rn

Consider again y € R" \ {0} and let kg be the largest integer less than log, |y|: ko =
[log, |y|]. Using (4.60), we obtain

/ S 0k (K27 H o+ y) — Ki(2 )] | do
1Z1>2ly| | <k,
C
<2 / [Ki()l dz < ), o
kgzko j2l>2-k1y ,cgz,m (14 27F[y[)
where o = —n/2 + s/2 > 0. Hence, we have in one hand
/ Z o—nk [Kk(sz(‘,ﬂ + y> . Kk(Zikl‘)} <C Z 2a(k7ko)
(4.64) l21>21y] | k<kq k<ko
C
<
—1-2«

In the other hand, using (4.63), we have

/x|>2|y Z

27 (K27 (o + ) — (2 a)]

k>ko
(4.65) < Z / |Ki(z 4+ 27%y) — Ki(2)] dz
k>ko ¥ 121>27 %yl
<0y 2Fyl<ac) 2t <ac
k>ko k>ko

Combining (4.64) and (4.65) gives
(4.66) / |K(z+y) — K(z)| de < B <400
|z|>2]y|

where B is independent of y € R™\ {0}. This is the Hérmander condition (4.17) and
theorem 4.13 is proved. 0
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4.4.5 Applications: The L? theory of the Riesz Transform and the Laplace
and Bessel Operators

In this subsection we apply to the Riesz Transform and the Laplace Operator the LP
continuity of the convolution type Calderén-Zygmund operators that we proved above.

For j =1,...,n, we now consider the kernels K;(x) = Q;(x)/||z||" with
'r .
(4.67) Qj(z) = ¢, —2-,
’ ]l
where "
L)
n a(n+1)/2

Observe first that Q; = ¢,x; is smooth on S™~! and moreover, since €; is an odd function
the cancellation property

. Qj(x)do(x) =0

also holds. Hence proposition 4.12 can be applied to the kernels K. For any 1 < p < oo,
any j = 1---n and any f € LP(R") the following limit exists (in L? or L} when p = 1)

(4.68) Rif(x) =lm Ry [(x) |

where

Ryof(z) = / Ty

vj
/s<||y|| lylI™*

Definition 4.14. Riesz Transform For any function f € LP(R"), 1 < p < +o0, the R"
valued measurable map given almost everywhere by

Rf(x) = (B f(x), -, Buf(2))

is called the Riesz transform of f.

Theorem 4.9 implies the following proposition
Proposition 4.15. For any 1 < p < +o0 and any f € LP(R")
(4.69) IR llr < Cop 1 fllzv

Moreover, for any f € L'(R")

(4.70) supa p({e € R"; |Rf ()] > a}) < Co [l
We now derive the multiplier m(&) = (m4(&),- -+ ,m,(&)) corresponding to the Riesz

transform. Precisely we establish the following result.
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Proposition 4.16. The following holds

(a.11) R1(6) = (70 = mile) 7o
i.e. the multiplier corresponding to R; is
mie) = i

Remark 4.10. Observe that the multipliers m;(€) of the components R; of the Riesz
transform R satisfy the main assumption (4.55) of theorem 4.13. Hence combining the pre-
vious proposition together with the theorem 4.13 provides a new proof of proposition 4.15.

Proof of proposition 4.16. For a C° function f we have that

0,
Kj*f CnPV(W)*f:—n_laxj|x| +1*f

Hence

C —_—
(4.72) m; (&) = 2im 5 ||t
n—
In order to identify m; it remains to compute the Fourier transform of |z|~"*!. Denoting
do™ ! the canonical volume form on the n — 1 sphere, one has for £ # 0:

—

6 —7 6 |z|?

+oo
:/ / €—7T6,02 627Tip(~§ dg_n—l(c) dp
0 Sn—1

Denote 5S¢~ V.= {¢ e S"1; (-¢ > 0}. Using this notation, the previous identity becomes

+oo
|$‘ n+1 / / 1 —7r6p e2mipCE Jyn— 1(0 dp
STL

+00
+/ / 6—7r5p 627rzp<-§ dO‘n_l(C) dp
Sn—l\s’ﬂfl

“+oo
—7r5p 27rzp§§ —27i p € n—1
-/ /S e ] do™1(C) dp

:/ do™ (O/ —nb? g2misléla g
sg*l R

where a := ( - £/|¢]. Using the fact that the Fourier transform of e=™°* is equal at the
point 7 to 6~Y2 ¢~ (7/V9)? e obtain

(4.73) e = [ e G g
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We interpret o = z7 as being the first coordinate of a positive orthonormal basis containing
the unit vector £/|¢| as first vector. We have

dO’nil = Z(-l)zjl Zi le cee de‘,l VAN dZZ'+1 te dZn

i=1

We decompose do™ ! is the following way : do" ! = dz; Ado™ 2 + 2 dzy - - - dz,

i -7 (%)2 d n—1 :/ d n2/1i -7 (‘5%1)2 d
/5”1 7 e a" () . o i \/ge 2
3
21 - (\EIZ1

2
+ — € \/3) dzy -+ -dz,
/sglx/g ’

1€l =1

2
Since , as d goes to zero, \Z/—lg e ( Ve ) is converging to zero uniformly on any compact

subset of 52—1 \ {¢/¢]}, we obtain that

(4.74)

€]

(4.75) /S % e " (%) do" 1 (¢) = |S"7?| |¢7t /0“3 e dt 4 05(1) |
3

where |S"2| denotes the volume of the n—2 unit sphere which is equal to 2 7(*=1/2 /T'((n—
1)/2) - I is the Euler Gamma Function. Recall that

+0oo 1
/ e dt = =
0 2

Hence, combining (4.72) and (4.75) we obtain that

n+1 n+1

T2 Cn & T2 gj 'gj
m(g)ZQZT —j: - Cp—r = 1—
’ C(g)n=tle T(5) el
where we have used that I'(z + 1) = 2 I'(z). We have proved proposition 4.16. O

Let f € C2(R™) and note that the Fourier transform of its second order partial deriva-
tives are given by

00,1 (€) = (1&)(i &) F(€) = —&&; F(€) .

In particular, we have for the Fourier transform of the Laplace operator A\f &) = —I€|1* F(9).
This enables us to write the following:

BT = —&&f(é)=%%@(é)
@70 18k 5 ey (4TD) =N

T ANE =" (BB (AN)E).
Thus, we get
(4.76) 8,0, = Ri(R;(Af)) .
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From (4.69), it then follows for 1 < p < 400 that

10:0;flle = ||R:i(R;(A))| L
< CopIR{(AN) e < CZIAS|Lr

Using the density of C5°(R™) in the Sobolev space W2P(R™), we have proved the following
result.

Proposition 4.17. Let 1 < p < +o00. There exists a positive constant C, > 0 such that,
for any function f in the Sobolev Space W2P(R™) the following identity holds

V2 flleo@ny < CplIAfl|ogeny
where V2f denotes the Hessian matriz of f.

The previous result can be improved when the operator A is made inhomogeneous
and more coercive by adding —id to it. Precisely, the following result which says that
the inverse of the Bessel Operator, given by (A — id)™!, is continuous from LP(R") into
W?2P(R™) is a direct application of theorem 4.13.

Proposition 4.18. Let 1 < p < 4+00. Let f be an LP function on R". Then there exists
a unique tempered Distribution u in S'(R™) such that (A —id)u = f moreover u belongs
to the Sobolev Space W*P(R™) and the following inequality holds

ullw2r < Cp || fllr@n

Proof of Proposition 4.18. A tempered Distribution f being given and fbeing its
Fourier transform, —(1 + |£[*)7f(€) is the Fourier transform of the only tempered Dis-
tribution solution to

Au—u=f in S'(R")
It is straightforward to check that the multipliers —(1 + |£]*)7!, —i&; (1 + [€]*)7! and
& & (1+1€)%) 7! satisfy the assumption (4.55) of theorem 4.13 and hence proposition 4.18
follows. U

4.4.6 The limiting case p =1

As for the sub-linear maximal operator, Calderén-Zygmund convolution operators are
usually not bounded from L' into L'. The following proposition illustrates this fact.

Proposition 4.19. Let R be the Riesz Transform and let f € L'(R™) such that f > 0 on
R" and f # 0 then the measurable function Rf is not in L'(R™).

~

Proof of proposition 4.19. Since f is in L'(R"), f is a continuous function and
moreover ]/C\(O) = [on f(z) dz > 0.

m;(§) = /]| is discontinuous at the origin and hence, since f is continuous at the
origin and since f(O) # 0, m;(§) f(f) is also discontinuous at the origin.

Assuming Rf € L*(R™) this implies that Rf is continuous too on R" and in particular
at 0, which contradicts the previous assertion. 0]
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Lemma 4.20. There exists f € L*(R?) such that, for any u € S'(R?) satisfying
(4.77) Au=f in S'(R?),
then V?u ¢ L1 (R?). O

Proof of Lemma 4.20. We choose

]_D2

f(x): 1

~ Ja? Log®lz|’

/2(517)

where 1 D2, (x) is the characteristic function of the disc of radius 1/2 and centered at the

origin. One easily verifies that f € L'(R?). We are now looking for an axially symmetric
solution of (4.77) in 8’'(R?). That is, we look for u(x) = v(|x|) and we use the conventional
notation r = |z|. V should then satisfy

.U L) . .
U+ —=———"=5- in R
r r2Log?r +

where 1 1/9)(-) is the characteristic function of the segment [0,1/2]. In other words,

d 1 r
o) = —1%1/2)()

ﬂ(r B rLog*r
For this to be satisfied, it suffices
1 1
_ f 0. =
rTogr or TE( ,2}
io(r) =
L for s ]
—— for r> =
rLog1/2 2
This holds in particular if
1
+ LOg[Logr—l} for r € (0,5}
v(r) =
L
1+ Lgig — Log Log 2 for r > %

Observe that u(z) := v(|z]) € §'(R?) because it can obviously be decomposed as the sum
of an element in L'(R?) and an element in O(R?). By construction, we have

Au(r) = f(z) in S'(R*\{0}).

Let x(z) be a cut-off function in C°(B1(0)) with x =1 on By/2(0). Denote x.(x) = x(%).
For any ¢ € S(R?) one has

/]1@2 o[Au — f(x)] dx + /R2 Xep|Au — f(x)] d.
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Since f € LY(R?)

(4.78) lim Xew f(z)dx = 0.
e—0 R2
We write
/ Xep(x) Au(x)de = — | Vxe Vu p(z) dx
(4.79) B .

Oberseve that for |z| < 1

0 1 0
V = J - = — .
u=10(r) or  rLogr=t Or
Since 6 p 5
r T
V 2d =2 = )
/Bs(o)l uf de 7r/0 r(Logr=1)2  Loge~!
we have

lim |Vul? dz = 0.
e—0 B.

Hence this last fact implies

3
lim / Xe Vu - Vo(z)dr| <lim ||[Vo|s ||X||oo€|:/ |Vu|2dx] = 0.
e—0 R2 e—0 BE(O)
Moreover we have also
1
3
lim Vxe - Vucp‘ < lim [/ |Vu|2dx] = 0.
e—0 R e—0 5(0)
Hence we have proved
Au=f in S'(R?).
A classical computation gives for |z| < 3
i viz;g Pu  Pu 1 N 1
r2 Qx;0r; Or?  r2Logr~!  r2(Logr)?’

Hence

2 2
rix; O0°u

d p—
Z r?  Oz; 0z; T=too

3,j=1

\/Bl/2

and we cannot have that A%u € L] _(R?). This concludes the proof of the Lemma. O

loc
This being established, if we make a slightly stronger integrability assumption on the
function f such as f € L' log L'(R"), then, in the similar way to the case of the maximal
sub-linear operator, T'f is in L},.
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Theorem 4.21. Let T be a convolution operator satisfying the assumptions of either
theorem 4.8, theorem 4.9, theorem 4.13 or proposition 4.12. Let f be a measurable function
in L' log LY(R"), then Tf € L, .(R") and for any measurable subset A of finite Lebesque

loc
measure the following inequality holds

asy [ mslay=cr [ 150 o (e ut) L) 4y

[aira
where Cr > 0 only depends on T'.

Proof of theorem 4.21. We use the notations from the proof of theorem 4.8. For any
positive number a we proceed to the Calderén-Zygmund decomposition of f: f = g, +0b,.
-we add the subscript « in order to insists on the fact that the result of the decomposition
depends on «. Let § > 0 to be fixed later and write

)
/A Tf|(x) d = / w({z e A; |Tf(@)] > a}) da
(4.81) 0

+oo
[ ulre A 125@)] > a}) da
5
We use the decomposition f = g, + b, in order to deduce :
p{z = [Tf(x)] > a}) <p({z : [Tga(z)| > a/2})
+u{z - |Tba(x)] > «/2})

We have, using the embedding L*(R") — L**(R")

“+o00 o +o0 2 dOé
(4.83) i u({x € A: |Tgo(x)| > 5}) da < ¢, i 19allz2@n) =

We decompose

(4.82)

gal(2)2dz = / 00 (2) da + / 10 () da,
Rn R7\Qq

Qa

where (), is the “bad set” away from which g, = f. Recall moreover that

sup |ga|(z) < 2"«
CEEQQ

and

|f(z)] <a in R™\Q,.

Combining these facts with (4.83) give:

[ {reasmaen<g))se [T IR

(4.84) )
2n
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Using Fubini, we have in one hand

> do toe do
[% e [ @ [0
5 A" JifI<a R™ max{3,|f|(z)} ¥

P ()
= Jen max{(s,f](@)}

In the other hand, we recall that the bad set €, is the union of disjoint cubes (Ck)ren
and on each of these cubes the average of |f| is larger than «. Hence we have

(4.85)

dlL‘ S ||f||L1(Rn)

W) =3 (0 <a 3 [ [fl(x)da

keN keN 7 Ck

— a7l /Q |f|(z) da.

We write then

u(@) <o [ |fl@dr =t [ fl(a) da
Qo Qanfz;| fl(x)>5}

tat / fl(x) da
Qan{zs| fl(z)<F}

,U(Qa) -1
+ z)dx.
: /|f M

<

Thus we just proved

N(Qa) -1
(4.86) 5 <« /|f>g |f|(z) dz.

Combining (4.84), (4.85) and (4.86), we finally obtain

/;Oou({x € A:|Tgu(z) > %}) da < Cn[llfllu + /;oo %a |f](x) dx}

lF1>5

SCn[”fHLI + / |f|(z) Log + (2’f(5(33)>}

(4.87)

Now we bound the contribution of the action of 7" on the bad part. We have seen in
the proof of the primitive formulation of LP theorem for convolution Calderén-Zygmund
kernels that the following inequality holds

[ wni=om [ i@,
R™\ Q¢ Qa

where 0, = Uren Oy and C}, are the cubes obtained from the C, by dilating by the factor
2y/n leaving the cube centers fixed.
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For any 8 > 0, we bound
p{z € At [Th|(2) > B}) < p(Qa) + p{x € R\Qo; [T ba()] > 5}

g(zﬁ)mmawﬁ/ T bo|(x) dx

B Jrm\Ga
n & €T X
< (2v/n)" 1(Qq) + 3 /ﬁalf|< ) dx.

We apply this inequality to 8 = § and we integrate between ¢ and +oo. We obtain

/+°°,,L({x € A: |Tha|(z) > 9})da <C /+OOM(Q ) da
400 d
son [ [ @) e
5 @ Ja,
We decompose again

1 1 1
L @de<t [ piwdes [ i) ds
o {z€Qas| fl(2)< 5} If1>5

<Con@+ ] [ 1@ i

Hence we have proved

/6+oou<{x €A:|Tgu(x)| > %}) da <c /+oo,u(Qa) da

P
+Ooda
+c/ / |f|(x) dz.
5 Y i

Using (4.86) again, we then have

e 2| f](x)
4.88 / sz e A: |Th,|(x 29 <c fl(x) Log + (| ———— ) dx,
ass) [ u({reasmul@=5)) <o [ i Lo+ (L)
where ¢ depends on 7. Combining (4.87) and (4.88) together with (4.88), we obtain

2If(ls(rlr)} '

‘[JTme>sa¢mA>+c [ 171w) Lo +

The inequality (4.81) follows by taking § = 2 || f{[11/,.(a)-
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5 The [P—Theorem for Littlewood Paley Decompo-
sitions

5.1 Bernstein and Nikolsky inequalities

Theorem 5.1. (Bernstein inequality)

Let p € [1,400|. There exists a constant C,, > 1 such that, for any k € N* and any
f € LP(R™) satisfying

supp f C Box (0)\Byr-1(0),
then V f € LP(R"™) and we have

(5.1) Crt | flr@ny <275 [V fllo@ey < Crp 1 f 1122 (rn)-

Proof of Theorem 5.1. Let y be a cut of function in C°(R™) such that

X=0 in B:i(0)U (R™\B4(0))
X=1 in Bl(O)\B%(O).

By assumption we have

~

&) = x(27%¢) f(©) in S'R").
Using Proposition 1.34, we deduce

fla) = (2m) 7% x(2"2) 2" % f(x).
This implies for any j = 1,...,n (using Proposition 1.32)
Op, f = (2m) 72 26D 9, x(2F2) « f in S'(R™).

Since x € C*(R™), 0,, X € S(R™) and then in particular d,, x € L'(R"). Using Young
inequality, we deduce that

IVAllze@n < Co 2511V L@y 1 f | Loeen)-

This implies the second inequality in (5.1).

We shall now present the proof of the first inequality in (5.1) in the particular case
where p € (1, 400).

For the limiting cases respectively p = 1 and p = 400, we shall need a multiplier
theorem that takes into account the support of the Fourier transform and that we shall
prove in Chapter 7 only. Recall from Chapter 1 that for any j € {1,...,n}

—

a:z:jf: _25]]?



Multiplying the identity by i§; and summing out j gives'

x(27%¢) Z % 8/%\][ = in S'(R™).
=1

Denote

X(27%¢)
NE

m]‘7k(§) = 22k

=ix(27%¢)

We have mj ) = m;(27%¢) where

() =i XU ¢ oo (g
nl
Hence, it is straightforward to prove that
n 4 Cf
Ve N" 3C; >0 s.t. sup [0"m;,(§)] < Lk
J

We can use the multiplyer Theorem 4.13 to deduce

2 ([ fllr@ey < ConlIVFllzon)-

This is the first inequality in (5.1) and this concludes the proof of Theorem 5.1 in the
case p € (1,400). The general case is postponed to Chapter 7.

While the second inequality in (5.1) looks a bit like a “reverse Poincaré inequality”,
the following theorem could be interpreted as some sort of “reverse Holder inequality”.

Theorem 5.2. There exists C,, > 0 such that for any 1 < p < q < +o00, for any k € N
and any f € LP(R™) satisfying
supp f C By (0),

then f € LY(R™) and the following inequality holds

(5-2) £ llageny < C (25)7 7 (| foee)-

Proof of Theorem 5.2. Let fi(z) := 2% f(2*x). We have then

~

fu(€) = f(27F¢)

which gives supp fi C By (0).

'We are using here the fact that fis supported away from the origin.
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Let x now be a function in C°(R™) such that

xX=1 on B(0)
X =0 on R"\B5(0).

Because of the choice of y we have

Using Proposition 1.34, we deduce
fo=(2m)72 X fi .

Since we only consider the case p < ¢ and since p > 1, we have

1 1
0<-—-<1.
p q
Hence there exists r € (1,00) such that
1 1 1
l—-=-—=
r p g

~—

Since ¥ € S(R"), we have in particular x € L'(R") and Young inequality gives then
I fillzamy < (20) 7% [1X )| 2y | fill oony-

Holder inequality gives
~ “ 11— “
10 22 ey < RISy 160 ey

where =1 — 2. Choose ¢, = max{||¥||.1, [|X||z=} and we have proved

| fellLany < Co || frll o mmy.-

(5.2) follows by substituting fi(z) = 27"* f(27%x). This concludes the proof of Theorem

5.2.

5.2 Littlewood Paley projections

In the proof of Theorem 4.13 we introduced a partition of unity over the phase space with
each function ¢, = ¢(27%¢) being supported in the dyadic annuli Bok+1(0)\Bar—1(0). We
shall consider the same partition of unity of the phase space but truncated at 0. Precisely,

let ¢» € C°(R™) such that
P(E€) =1 in By(0)
P(€) =0 in R™\By(0),
and denote p(§) 1= ¥ (§) — ¥ (2£). We have clearly

supp ¢ C By(0)\B1(0).

1
2
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For k > 0 we take ¢ (£) := p(27%¢) while for k = 0 we take ¢o(€) = 1(€). This gives

N
> enl€) = v(27Ne).
k=0
This implies that
N
Z or(§) = NETOO Z op(€) =1in R™
keN k=0

Definition 5.3. Let f € S(R") and k € N. We define the k-th Littlewood-Paley projection
of [ associated to the partition of unity (or)ren to be fr :=F onf).

Because of Bernstein theorem 5.1, we have in particular, by iterating (5.1):

Vp € [1, OO] Vke N VqgeN ‘Sl|1p H@%HLP(R”) ~ 2ka kaHLp(Rn).
Ll=q

We have for k£ > 0 (using Proposition 1.34)

(5.3) fe =2k @ (2F2) x f (27) 2.

Hence we deduce that for any p € [1, o0]

|3

(5.4) sup [ fllr@ny < Crgo | £l Lo @ny.-
€

By the triangular inequality we also have trivially

(5.5) £l zeo@ny < M fell on.-

keN

The goal of the present chapter is to prove that for any p € (1, 400)

Pl ~ | (S 15E)’
keN

To that aim we have to present briefly the LP-spaces for families.

LP(R™)

5.3 The spaces LP(R",(,)

We recall the classical notation for any sequence (ax)reny and any g € [1, 00)

1
Jaglles = (D lael?)”

keN

and

lak]l g := sup |ag] .
keN
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It is a well-known fact that RY or CN equipped with lack of these norms is complete and
then define a Banach space.
We now define

L@, 1) = { (fidken st fi€ PR (D ]fk|q>;(a:) < 400

for almost every x € R™ and H (Z |fk|q)E
keN

< +oo}.
Lp(R™)

We have the following proposition:

Proposition 5.4. For anyp € [1,00] and g € [1, 00| the space LP(R™, (9) defines a Banach
space. Moreover for p € (1,00) and q € (1,00)

(LP(R™, ¢9)) = L¥ (R", ¢7).
Proof of Proposition 5.4. We first prove that LP(R", (?) is complete. Let (f,z)keN be

a Cauchy sequence in LP(R™, (7). Then for each k € N (f{);en is a Cauchy sequence in
LP(R™). Since LP(R™) defines a Banach space, there exists (fc°)ren such that

Vk €N fl — f2° strongly in LP(R™).
This implies in particular that for any N € N

(i |f£|q); — (i |f,§°|q>q strongly in LP(R").
k=0 k=0

Let Fx(z):= (3, | fk°°|q)%. Because of the previous strong convergence we have

[ Fw [l Le ey < limsup H(Z’f] )

]—>OO

Lr(R")
< limsup [|(f)llzr@n,en) < +00.
Jj—4oo

(Fn)nen is a monotone sequence of LP functions whose LP norm is uniformly bounded. By
using Beppo Levi monotone convergence theorem, we deduce that Fly strongly converges

in L? to a limit which is obvioulsly equal to (3,_, \f,fo|q)% It implies that (f°)ren €
LP(R™, (7). It remains to prove

(f,g)keN — (f°)ken strongly in LP(R™, (7).
Let € > 0 and let respectively jo € N and Ny € N such that

) sup H(% 1~ f£|q)‘17

j,ZZJO

< .
Lp(R?) 3

.. o €

0 S <
k>No (

IS

(S ) <5
k>No )
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We then deduce that

1
- 2e
sup ‘( 11 q) < —.
§>do ,g];o’ ¢ Le®m) 3
Hence we have )
lim sup ( fl—f q) ! <e.
o400 2 i £ Lr (&™)

k>Np

Since for each k € N fé — f2° strongly in LP(R™), we have

No ' 1
i (8 71,
JJTOO Z |fi = 1) Lo(R") 0
k=0
Hence for j large enough, we have
+oo ‘ 1
(1= 1) || <=
k=0

which implies the convergence of (f})ren towards (f2°)ren in LP(R™, £9).

We prove now the second part of Proposition 5.4. Let p and ¢ in (1,400]. Let
T € (LP(R", £7))". Let ko € N and denote Ly (R",£7) the subspace of (fi)r € LP(R",£9)
such that f, = 0 for k # ko = 0. L} (R™, (7) is obviously isomorphic to LP(R™) and, using
Riesz representation theorem, we define the existence of gz, € L” (R") such that

ﬂLzO(Rn,gq) ((fk)) = o fko(x) gk()(l‘) dx.

Let
L’;ko(Rn,éq) = {(fk)keN € LP(R",¢?) such that f;, =0 for k > ko}.

By linearity we have
ﬂLQk (Rn,gq)((fk)) = Z / fk’(x) gk(‘r) dx
<kg ko YR"

Let
Iy, : LP(R™ 1) — Lgko(R”,éq)

(fi)ken —  (fr)r<ko-

It is not difficult to prove that for any (fx)kren

lm T, ((fi)ken) = (fi)ren in LP(R™, £7).

ko——+o00

Hence, by continuity of T', we deduce that

Y(fi)ren € LP(R™, 1) T((fr)ren) = Z /n fr(z) gr(x) de.

keN YR
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It remains to prove that (g)ren € L¥' (R™, £7).
Let ko € N and denote fr° € LZ, (R", (7), the element defined by

Yk

N /1
VE<ky f°:= - T

(% lowle)

k=0
We have that Vk < kg
|gk|q/71 v n
fil(z) < TRT7 |ge| 7 € LP(R™).

Because of the continuity of 7" we have in one hand

/

<,§% |gk|q,> ' } %-

.

7(( lfo))‘ < Or ()| o (g oy = CT|:/

R

In the other hand, a direct computation gives

(1) - |

R

p_
/

(Z 90/ () " i

Since p > 1, we have proved

ko pij
[ (X )" ar < .

The constant in the right-hand side of the inequality is independent of ky. Hence (gx) €
LP(R™, ¢9') and this concludes the proof of Proposition 5.4. O

5.4 The LP-theorem for Littlewood-Paley decompositions

The goal of the present subsection is to give a proof of the following theorem which is the
main achievement of the course.

Theorem 5.5. Let (pr)ken be a dyadic partition of unity of the phase space and let
p € (1,00), there exists 1 < C' such that for any f € LP(R"):

(5.6) CM N fllr@ny < 1(fe)nenlo@n ey < C | fllre,

where (fr)ren is the Littlewood-Paley decomposition of f relative to the partition of unity
(¢r)ken- O
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Proof of Theorem 5.5. For any f € S(R"), we denote Vo € R"

S = (X hE) .

keN

By Minkowski inequality, we deduce that S is a sub-additive map.
We first prove that S is strong (2,2). Indeed, using Plancherel theorem, we have

SOF@ =Y [ 15

R™ keN

Since supp ¢ C Bar+1(0)\Bar-1, each £ € R™ is contained in the support of at most 3
different ¢. Hence we have the bound

(5.8) VEER™ ) (&) < 31ellF o mn)-
keN

Combining (5.7) and (5.8), we obtain that S is indeed strong (2, 2).
We claim now that S is weak (1,1). Let Ki(z) := @(x). In particular for & > 1, we
have K, (z) = 2 ¢(2Fz) and

fo = (2m)72 28" p(2F2) « f.

In order to prove the claim, we shall be using the following lemma which is the Hérmander
condition for families:

Lemma 5.6. (Hormander condition for families)

Under the notations above, we have the existence of B > 0 such that

(5.9) vy € R / |Ki(x —y) — Kp(2)||2 dz < B < +oc.
|lz[>2]y]

Proof of Lemma 5.6. Let y # 0 and denote v := ‘—z| For any x € R", one has

Y]
Kl — y) — (o)) < / Ry

Using Minkowski integral inequality, one has

vl oK, 2\ 3
[ ie-n-rleds [ (S ][5 w-wa] ) e
|z|>2]y| |lz[>2ly| \ jeny | /O v

|yl
< / / IV Kgl|p2(x — tv) dt dx.
lz|>2[y| 40
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We interchange the order of integration and we proceed to the change of variable z :=
x — tv. This gives

(5.10a) /| e =) = Kelalede <ol | 19Ka() dz
z|>2|y

121>yl

We have for each k € N*
IVK|(2) = 260D | wg| (2*2).

Since ¢ € C°(R"), we have that ¢ € S(R™) and hence, obviously, we have in particular
[V@|(z) < C min{l; || 7%}

This implies then
DRI £ C min(H0274 20

For each z we denote by k., the integer part of

log, [2|71 (Le. k. = [log, |2|71]).

We write
(Zvmke) < (T Ivake) + (3 vaEe):
keN k<k. k=k,+1
k(n+1) % —n— = —2k %
gc(kgzkzz? D)4l 2(sz+122)

C
S \/§ C 2kz(n+1) 4+ = ’Z|7n72 27]62'
V2

Using the fact that 2% ~ ﬁ, we deduce

(S wake) < o

keN

Inserting this last inequality in (5.10) gives then

dz
[ G- - K@lede <l [
jal>21y] el>lyl 171
+o00 d
0
< B |y| -
|yl P
< B < +o0.
This concludes the proof of Lemma 5.6. U

Continuation of the proof of Theorem 5.5. Let o« > 0, we proceed to a Calderén-
Zygmund decomposition of f for the threshold a. We write f = g, + b, where g, and b,

91



are respectively the good and bad parts of the decomposition. Using the subadditivity of
S, we have

(5.100)  pu({ws S(N(@) > a}) < p({z: S @) > S}) +u({z: @)@ > 5 }).

Using the fact that S is strong (2,2), we deduce

.11 T({remisue> 5 < [ e

< 02" | f|(x) dz
Rn

We recall the notations from Chapter 4:

The bad part of R" for the decomposition is a union of disjoint cubes with faces parallel
to the canonical hyperplanes: Q = | J,.y C; and C; are the dilations of these cubes by the
factor 24/n leaving each center ¢, fixed. This dilation factor is chosen in such a way that

Vo € R”\ég Yye Cy |z —co| > 2|y — ¢

Denote as usual (2 = Uren Cy.
We estimate
SEl@dz = [ |3 Kb
/Rn\ﬁ R7\Q kezl;]

We write b, = ven be where by = b1,, and we use Minkowski inequality to obtain
(5.12) [ iseiwa sy [ iKsnda i

R\Q en JRMQ
Using the fact that fc be(y) dy = 0, we write

Ki(r —y) be(y) dy

yeCy

1Ky * bl () = '

:

Using again Minkowski integral inequality and continuing (5.12) and (5.13), we obtain by
the mean of Lemma 5.6

/ 15( dx<Z/ ~d“’/ be@)] [[ K (z = 0 = (y = e0) = Kl = i) || o dy
R\ "\ C

LeN

62

(5.13)
/ [Ki(z —co— (y — c0)) — Ki(z — co)] be(y) dy

£2

<> [ i |dy/ K — ce— (y — c0)—
f lz—ce|>2ly—cql

fenN k(x — Cg)HZQ dx

<BY [ Iuldy<B | |baly)ldz<2B [ [f(y)ldy.
¢eN Cg R” R”
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This implies that

sup Bu({zr € R\ S(ba)(z) > B}) < 2B / £ ()| dy.

n

Applying this inequality to 8 := ¢ and recalling that || < C,a™" [, |f(z)|dz, we
deduce

an({zer Sa)@) > T}) <C MGIEE

Combining this inequality with (5.10b) and (5.11) gives that S is weak (1,1) and the
claim is proved. Using now Marcinkiewicz interpolation theorem 4.7, we deduce that S is
strong (p, p) for p € (1,2].
We claim now that S is strong (p, p) for p € (2,4+00). We shall use a duality argument.
Thanks to Proposition 5.4, using Hahn Banach theorem, we have
/ fi(x) by (

|:/ |S(f)|p («T) dl’:| ’ - H(fk)”Lp(Rn’gz) —
0y i 1

_ /Kk*f ) () da

H(hk)”Lp @®n,2)S1 keN

= sup ZK#*hk

H(hk)”Lp/(Rn’gQ)Sl keN

Therefore, in order to prove that S is strong (p,p) for p > 2, it suffices to prove that the
operator S* defined by

S*(hk)keN = Z K]?E * hk

keN
maps continuously L¥ (R”, £2) into L*' (R"). Precisely, we are proving the following lemma:

Lemma 5.7. Under the above notations, for any p' € (1,2], there exists C' > 0 such that
V(hy) € LY (R™, £2), we have

(5.14) HZ K#*th <CH hi)ll v @ )

Proof of Lemma 5.7. We use a natural extension of Marcinkiewicz interpolation the-
orem 4.7 to the framework of mappings from L” (R”,¢?) into L (R") whose proof is left
to the reader in order to infer that the lemma is proved if it holds for p’ = 2 and if there
exists C' > 0 such that

(5.15) |S” (hi ) ken|proo ey < C || (ha) | 1. 2) -

We then first consider the case p’ = 2.

To justify all steps in the computations below, we can of course restrict to elements
(hi)ken € L*(R™, (?) such that hy € S(R") and hy = 0 for k large enough. It is not
difficult to prove that this class is dense in L*(R™, ¢?).
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We have by using Plancherel theorem:

keN LeN
— @) /R S () oF (©) Tle) hule) de

Recall that supp ¢ (€) C Bar+1(0)\Bge-1(0), hence
OO F0= k-1 <3.
This implies that

[t top@ e =@n [ 57 of© et @R e ds

|[k—£|<4

C (2m)” 4n72\¢k (©)F il (€) e

keN

7@ ol 3 / ol
keN
< O hi) | g 2.

Hence we have proved (5.14) for p’ = 2.
We establish now (5.15). Let

H(z) = (Z |hk|2<x>)5.

keN

We fix a > 0 and we proceed to a Calderén-Zygmund decomposiiton for H. As usual, we
denote by ©Q = [J,cy Cr the union of the bad cubes relative to this decomposition. For
each k € N, we write hy = gr + by, where

hy,(z) for z € R"\Q
€Tr) =
9:() ][ hi(y)dy for x € Cy (¢ € N).
Cy
Since H(x) < o on R™\ and :,CC y) dy < 2"« for any ¢, we deduce, using Minkowski
inequality, that
(516) H(gk)”LOO(R",ZZ) S 2"

For any k € N and ¢ € N, we denote

bee = by 1¢,,
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where 1., denotes the characteristic function of the bad cube Cy. Observe that we have
fixed

Cy

Moreover, using Minkowski inequality, we have also for any ¢ € N

1

[ (S mrw) as f (S f miw) a

keN keN

el () dy + H][ e
Cg CZ

Using Minkowski integral inequality, we then deduce

gQ

(5.18) Ve N 1beelle2(y) dy < 2 | Puclle2 () dy
Cy Cy

Finally, recall that from the fundamental properties of the Calderén-Zygmund decompo-
sition one has

1kl e2(y) dy

«

(5.19) u(@) = 3 u() < =

£eN

Using the strong (2,2) property, we have

a?u({z e R 15°(90)l(@) > 1) < Cll@) Facar oy

Combining this inequality with (5.16) gives then

an({ee®s 5@l > 5}) <O [ llgllaly)dy
(5.20) -

<C | (P2 () dy

R"

where we used again Minkowski integral inequality.
Denote as usual C; the dilated cubes by the factor 24/n and Q= Uren C, with respect
to the center ¢; of C;. We estimate now

R™\Q pen keN

As usual we write

K # bl (@) =

/cg K (w = e = (y = ) bre(y) dy‘

/C (K (= co— (y = c0) = K (z = )] bialy) dy‘ :
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We then bound using Cauchy-Schwarz inequality

> K x bl (z / S B (@ —co— (y— o) — Ki(x — )| [bre()| dy

keEN ¢ keN

< / 1K (2= co = (y = c2) = K (2 = o) les 1bre(v) 2 dy.
ce

This gives
[ 18 bleydo <
R\
> [ ey [ 5 (2 — o~ (5 — ) — Ko — o)l do.
teN Y Cr |z—cg|>2]y—cy]

Using Lemma 5.6 (i.e. Hormander property for families), we then deduce

S*(bp)|(x) dz < C / |6k o] 2
ARl > [ Iellety

£eN

(5.21) e / el (y) dy
<20 / Ihale () dy
Rn

Combining (5.19), (5.20) and (5.21) gives

oul{r € R IS )l(@) > a}) < [ iulleto) dy

which is the weak (1,1) property for S* (5.15). We then deduce Lemma 5.7. O
End of the proof of Theorem 5.5. We recall the identity

{ - [S(f)P () dx} g _ sup F(z) S*(he) () dx.

”(hk)HLp (R, 22>§1 Rn
Since by Lemma 5.7 S* is continuously mapping L¥ (R™, £?) into L* (R™) for any p' € (1, 2],
we deduce then Vp € [2,00) 3C, > 0 such that

[ 1sr@ i) <6 e

Hence we have proved the second inequality in (5.6). It remains to prove the first one in
order to conclude the proof of the theorem.
We use the following duality argument

[ fllr@ny = sup f(z) g(x) dx
9l 17 gy <1 R
- [X e
”g”LP’(Rn)— " kleN

96



Since supp fAk Nsupp ge = O for |k — €] > 4, we deduce

| fllze@mny = / Z Je(x) ge(x

191l 7 gy < |k—£|<4

< swp 7 / il (@) llgele (@) de
9l gt oy <1 R

< s T ool 9] e
191z <1

< O |[(fe)llze@n 2y,

where we used
(gl o2y < C gl 1 meny-

This concludes the proof of the Theorem 5.5. [J
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