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1 Differential Calculus in Normed Vector
Spaces

1.1 Differentiability and Tangent Map

Definition 1.1. Let (E, |- |g) and (F,| - ||r) be two normed vector spaces.
Let U C E be open and let f be a map from U into F. Then f is called
differentiable at a € U if there exists a linear and continuous map df, €
L(E,F) such that

. -1 _
T [ (a+h) = (@) = dfa B o0l 5* = 0.
The map df, is then called the differential or the tangent map of [ at a.

Remarks. 1. Compared to the usual definition in the finite dimensional
normed vector space R™ we require the differential to be also continu-
ous.

2. Note that the space of linear and continuous maps from E into F', denoted
by L(E, F'), is a normed vector space for the norm

glllze,r) = e lg(@)llF

z||p<
with z € F and g € L(E, F).
With the same notations as in the previous definition we have the following

Definition 1.2. The map f: U — F is said to be continuously differ-
entiable on U if for every a € U the differential df, exists and the map

df : U — (L(E,F), |- 11D,
a — df,
is continuous. We write C1(U, F) for the vector space of continously differ-
entiable maps.

Next, we consider the case of finite dimensional normed vector spaces.

Proposition 1.3. Let E =R"™ and U C R" open. Then f € CY(U, F) if and
only if for everya € U and i =1,...,n, we have that
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of v _ 1. flathe)— f(a)
8zi (a) o }EEI}O h

exist, and the partial derivatives

0
/ U — F,
8xi
are continuous.
When we also assume that FF = R"™ is finite dimensional, then f =

(fi,--+, fm) € CYHU,R™) if and only if f; € CY(U,R) for every j =1,...,m.
Then we also have for h € R™ that

dfs-h=Juf -1, (1.1)

where J, f denotes the Jacobian matrix of f at the point a given by the
following (m x n)-matrix:

0 0
B—Q(a) 63{; (a)

Jfa:

Ofom Ofum
61;1 (a) ... (,;;n (a)

Note that in the case m = 1 the differential of f is simply given by

df, - h = “hg, 1.2
forh=3 52 ) (1.2
where again h = (hq,...,h,) € R". — Now, we quote a useful result:

Proposition 1.4 (Chain Rule). Let f : U C E — F, U open, and let
g : F — G with a third normed vector space G. Let a € U and assume
that f and g are differentiable at a, respectively at f(a) (or f € CY(U,F)
and g € CY(F,G)). Then the composition g o f is differentiable at a (or
go f € (U,G)). Moreover, we have the formula

d(go fla=dgsa) - dfa- (1.3)

If g= f~': F — E = G in the previous proposition, we obtain imme-
diately

Corollary 1.5. Let U C E and V C F two open subsets and f : U — V.
Assume that f is differentiable at a € U, f~' : V. — U exists and is
differentiable at f(a) € V.. Then

A(f ) ) = (dfa)".

From Definition 1.2 we arrive at a next step.
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Definition 1.6. Let f € C*(U, F). We say that f is twice continuously
differentiable, f € C*(U,F), if the map df : U — (L(E,F),|| - |l is
continuously differentiable. Similarly, we define CP(U, F), p-times contin-
uously differentiable functions, and

C*(U,F):= () C*(U.F).

1<p
Note that d?f is symmetric, i.e., for f € C%(U, F), we have that
d(dfs, - h)k = d(df, - k)h, Vk,h € E.

Example 1.7. The cut-off functions on R™ are an important example for C'*°-
maps (see []).

Now, we generalize a well-known result for functions on R.

Lemma 1.8 (Control Growth Lemma). Let f : E — F be differentiable
i U C E convex and open. Moreover, we assume that

sup |[|dfell| = M < +o0.
celU

Then for every a, b € U the following inequality holds:
[f(b) = fla)|r < MIb—allp. (1.4)

Proof. Let a, b€ U and x4 :=tb+ (1 —t)a, for t € [0,1]. By the convexity of
U C E, it follows that x; € U. We then define

o(t):[0,1] — F,
t— o(t) = f(ze) = F(tb+ (1 —t)a).
This map is differentiable for every ¢ € [0, 1] with ¢'(¢) = dfs, - (b — a).
Next, let € > 0 and for 0 < s < 1, we define

A= {s R« Jlot) — p(0)|p < HM[b—allp+¢) Ve 0,5)}.

We want to show that A, = [0,1]. — It is clear from the definition that A.
is a closed interval containing s = 0. Concerning the upper bound of A.,
denoted by u, we assume for a contradiction that 0 < u < 1. Since ¢(t) is
differentiable at u, we deduce from Definition 1.1 that

o (u+(t—u) —pu) =" (W)t —u)||, <e(t—u),

where u < t <1 and close enough to u. The last inequality then gives

u€(

[e(u+ (=) = el < ( sup |||w’(U)||I+€> (t —u)

< (M|lb—allg+¢e)(t—u).
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On the other hand, from the fact that A. is a closed interval and that w is
by assumption the upper bound, we have

le(u) = e0)|r <u(M|b—alle+e).
Thus putting the results together
o) =)l < llo(t) — e(u)llr + [le(u) = e(0)]r

< (Mlb—alle+e)(t—u) +u(M|b-alg+e)
SHM|b—allg+e),

we obtain that u is not the upper bound of A., since ¢ > u is also contained
in A.. In other words, we get the openness in [0, 1] of the set A..
Hence, the above shows that A, = [0, 1]. Moreover, we have

1£(0) = f(@)llr = lle(1) = @(O)l[F < M [|b—allp + ¢
for all € > 0, showing (1.4). O

Under the stronger assumption that f € C'(U, F), the control growth
lemma can be established in a straightforward manner. — Using the definition
of ¢ and since f € C1(U, F), we can write

1
150~ @l = llo(t) - ol = [ wt0at].
A short calculation, using Proposition 1.4, gives
le' Ol = [ld(f @) ||z = [[d(f(Eb+ (1 = )a)) || . = lldfa, (b — @),
and the fact that z; € U implies by assumption
ldfo,(b—a)llp < M|b—alk.
Hence, we have directly established (1.4).

Definition 1.9. Let (E, | - ||g) be a normed vector space. Then E is a Ba-
nach space whenever E is complete for || - || g, i.e., every Cauchy sequence
in E converges to a limit for || - |g. An isomorphism of Banach spaces is
a linear, continuous and bijective map.

Using the Control Growth Lemma 1.8, we prove the following important
theorem.

Theorem 1.10 (Local Inversion Theorem). Let (E, |- ||g), (F,]| - ||r) be
two Banach spaces, U C E open, and let f € C*(U, F) with k > 1. Assume
that there exists a € U such that df, is an isomorphism between E and F.
Then there exists an open neighborhood V' of a and an open neighborhood W
of f(a) such that
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(i) the map f|,: V — W is invertible;
(i) for the inverse, we have f’;lé CK(W, E).

Remark. Since the differential df, is by assumption invertible the open map-
ping theorem implies directly that (df,)~! is continuous.

Proof. Tt suffices to proof the result for E = F;a = 0, f(0) = 0 and dfy = idg.
Indeed, we can renormalize f by (note that (df,)~! exists)

fr(@) = (dfa)™" - (fla+2) = f(a)),

verifying the conditions above, and it is easily shown that if the local inversion
theorem is proved for fr then it is also proved for f. So we will prove the
theorem for the renormalized map, also denoted by f.

First, note that since by assumption f € CY(U, F), there exists 7 > 0
such that for all Z € B,(0), we have (see Definition 1.2)

(1.5)

N =

ldfz — dfoll = Illdfz — idgll| <

We show that f is locally invertible at a = 0, i.e., for all y € B, /5(0)
(recall that f(0) = 0 € E), we want to find a unique z € B,(0) such that
f(x) = y. For this purpose, we define

hy(x) = —f(z) + = +y

and show that h, is a contraction from B,(0) into B, (0), i.e., there exists a
constant o < 1 such that for all  and 2’ in B,(0) the following inequality
holds:

1y () = hy ()] < [l — 2]

By assumption h, is a C*-map and for all & € B,.(0), we have

Using (1.5), it follows

sup ||[d(hy)zl| <
F€B,(0)

N | —

Applying the Control Growth Lemma 1.8, this implies (note that B, (0) is
convex)

o) = By < 5l =2/ (16)

showing that the map h, is a contraction from B,(0) into B,(0). From the
Banach fixed-point theorem, we deduce the existence of a unique = € B,.(0)
such that hy(x) = 2. In other words, we proved that for all y € B, /5(0) there
exists a unique z € B,(0) such that f(z) = y. Moreover, we define a new

map f~1(y) = .
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In the next step, we show that the map f~! is continuous in B, /2(0) using
(1.6). In fact, for all y, § € B,./5(0), we have

1= ) = 7@ = Il — 2
= f(x) =&+ f(@)]| + | f(z) = f(@)]]

e — &) + 1y — 3

IN

IN

S ) — @+ g — 3l

This implies
1F = ) = £ @) < 2lly = 3]l -

Hence the map f~! is Lipschitz in B, 5(0) and in particular continuous.

Considering only the case k = 1, it remains to show that f~! is a Cl-map
in B, /5(0). For this purpose, we first have to show that for arbitrary y €
B, 5(0) the differential d( f —1), exists. As expected, we will actually see that
d(f=1), equals (df;)~!, for x = f~1(y), whose existence follows from (1.5)
and the so-called Neumann-serie, and its continuity from the open mapping
theorem. Then we are done, since Exercise 1.16 implies the continuity of the
map x — Invodf, = (df,)~! as composition of continuous maps (recall that
f € CL(U, F) by assumption and see also Definition 1.2).

Denoting small perturbations of f~!(y) = 2 by f~1(y + w) =  + v, we
see that

FHy +w) = 7 y) = (dfe) ™ -
(z+0) — o — (df) " w
(dfx)™' - (dfp - v —w)
:_(dfz)il' [f(x—i—v)—f(x)—dfm-v} . (1'7)
Since f is a Cl-map by assumption, the expression in brackets is of order

o(|lv]|). Moreover, the map (df,)~! is uniformly bounded on B,.(0). Indeed,
we can write

1(df=) M I = [lI(dfe) ™" = id + id]|
< I[(dfz) =" —idll| + [[lid]]]
< NI(dfz) " (id — df)] + [lad]]] -

Using a result of functional analysis and again Equation (1.5), we obtain

)~ 1< NG ™ G — )+ )
< 1) Ml 5 + il

Hence,
I1(df) I < 2||Jid]] < o0
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and the right-hand side of (1.7) is thus of order o(||v]|) .
We have also that

[l = llz +v =z = IF 7y +w) = f7 W) < 2[|wll,
implying that o(]|v]|) = o(]|w]||). Recalling (1.7), we arrive at

1=y +w) = f7H(y) = (dfe) ™" - wll = ofJw]]) -

By Definition 1.1 this implies that f~! is differentiable at y, for all y €
B,./5(0), and
-1

d(fY)y = (dfazs-1())

Application

We go further with a list of important definitions:

Definition 1.11. Let E, F be two Banach spaces, U C E open and let
f:U—F aCF-map with k > 1.

(i) Assume there exists V =C F open such that f=' : V — U exists and
[~ e C¥(V,U). Then f is called a C*-diffeomorphism between U and
V. Note that in the case of k = 0 the map f is called a homeomorphism.

(i) Assume that for a € U the differential df, is invertible. Then f is called
a local C*-diffeomorphism about a.

(iii) Assume that for a € U the differential df, is injective. Then f is called a
local C*-immersion about a.

(iv) Assume that for a € U the differential df, is surjective. Then f is called
a local C*-submersion about a.

(v) Assume now that E = R™ and F =R™. Let y € R™ and assume that for
every a € f~Y(y) the differential df, has mazimal rank, i.e., for n > m
rank df, = m and for n < m rankdf, = n. Then y € R™ is called a
regular point for f.

Ezample 1.12 (Polar coordinates). Consider the following map:
FiR {0} xR — R?\ {0,0}
(p,0) — [f(p,0) := (p cosb, p sinf).
It is a local diffeomorphism, since the differential

_ [ cost) —psinf
U p.0) = (sin@ p cos@)

with det(df,6)) = p > 0, is invertible. On the other hand, f(p,0) =
f(p,0 + 27) implies that the map f is not injective; therefore not a global
diffeomorphism.
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Without proof we state the following

Theorem 1.13. Two open sets U C R™ and V' C R™ are locally diffeomor-
phic only if m = n. The same holds for homeomorphic.

The next theorem due to Cauchy (1839) is an important consequence of
the Local Inversion Theorem 1.10.

Theorem 1.14 (Implicit Function Theorem). Let E, F', G be three Ba-
nach spaces and ¢ € C*¥(U x V,G), where U C E open and V C F open.
Assume that there exists (a,b) € U x V such that the differential (de®)p of
©%(y) = p(a,y) at b is an isomorphism between F and G. Similarly, we
define ©°(z) := p(x,b). Then there exist U' C U open with a € U', W C G
open with (a,b) € W and a unique map ¢ € C*¥(U' x W, V) such that

z=p(z,¥(x,2)). (1.8)

for all (x,z) € U x W. Moreover, the following holds for the differential of
(CH

d7/1(g;,z) h= (dwm);(lz,z) ’ ((dww(m72)>m ’ h)
Aoy L= =(do") 50, L (1.9)

where (h,1) € U x W.

E
_\____[}/_ ____(_
@
(a,b) F
i (e
12

® G

W ©(a,b)

Fig. 1.1. For all z € W the map ¢~ '(2) = (x,v,/;(:v,z)) is a C*-graph over U’.
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Proof. For all (x,y) € U x V, we define the C*-map

f:UxV —UxG,
(xay) — f(a?,y) = (:I:,(p(ac,y)),

and show that for (a,b) € U x V the differential df 4 is an isomorphism. —
For arbitrary (h,k) € U x V, we have!

_ (. 9 9
df(a,b) : (hvk) - <ha O (a’a b) h+ ay (avb) k> )

where we write (dp®), = %‘5(@, b) and (d¢®), = %f(a, b). In the following, we

write the last equation as
df(a,b) ' (h7 k) = (ha 3150(0‘7 b) ~h+ ayQO(aa b) : k) :

Now, we assume that df(, ;) - (h,k) = (0,0). This clearly implies that
h = 0 and 9yp - kK = 0. Since by assumption 9y¢ is invertible, we get that
k also vanishes. Hence df(,p) is injective. In order to show that df(, s is
surjective, we want to find for all (v,w) € U x G, pairs (h,k) € U x V such
that df(ap) - (h, k) = (v,w). It is easy to see that this implies that A = v and
w = Oz - h+ Oy - k. By assumption the last equation has a solution for &,
namely k = (9,¢) ™" (w—0,¢-h). Hence df 4 p) is also surjective. In summary,
the differential df(, ) is an isomorphism.

Next, we can apply the Local Inversion Theorem 1.10 showing that there
exist U’ C U open with a € U" and W C G open with ¢(a,b) € W such that
the map f has locally a C*-inverse:

LU KW — UxV,
(z,2) — fl(z,2) = (m,w(m,z)) .

Thus v : U’ x W — V is a C*-map, and moreover

(x,2) = f(f_l(:n,z)) = f(x,w(m,z)) = (w,tp(x,w(m,z))) ,

showing (1.8).
With the notations introduced in the proof, we deduce by taking the
differential of (1.8) that

id, = ay(p('raw(ma Z)) ) azl/i(% Z) )

and
which is just (1.9). O

! We calculate exactly like in the case of Euclidean space (see (1.1)).
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Application

In the local inversion theorem, the linear tangent map was assumed to be
an isomorphism in one point. The next theorem treats the case of a tangent
map being only surjective.

Theorem 1.15 (Submersion Theorem). Let E, F' Banach spaces, U C E
open, and let ¢ € C*(U, F) with k > 1. Assume that there exist a € U and
a closed subvector space E1 of E such that dp, is an isomorphism between
FEy and F. Moreover, assume also that E = Ei ® kerdyp,. Then there exist
U’ C U open containing a, W C F open containing p(a) and UcC kerdy,
open containing 0 such that the map

g: U — W x kerdp, ,
z— (p(x),7(z - a)),

is a C*-diffeomorphism from U’ onto g(U'), where 7 := Ey @ kerdp, —
kerdy, denotes the projection.

Remark. From Definition 1.11, we see that ¢ is a local C*-submersion about
a. Moreover, note that in the finite dimensional case (or in the case of an
Hilbert space), it is not anymore necessary to assume that F = Eq @ ker dyp,,
since the subvector space E; always exists as orthogonal complement of
ker dp, (with respect to an arbitrary scalar product).

Proof. We want to apply the Local Inversion Theorem 1.10. — For this pur-
pose, we introduce the auxiliary map

g:U — F xkerdyp,,
z— g(a) == (p(2), (e — a)) .
The differential of g at a € U is then given by
dga - h =dps -h+m(h) € F x kerdyp, , heFE,

which is an isomorphism by assumption. Hence, we can apply the local in-
version theorem to get the existence of U’ C U open containing a, W C F
open containing ¢(a) and U C kerdy, open containing 0 such that g is a
C*-diffeomorphism between U’ and W x U. O

Remark. Although the three important theorems in this section are formu-
lated in the most general case, they will often only be used in finite dimen-
sional Euclidean space R™ in the next sections. Moreover, we emphasize that
the three theorems are obtained from assumptions on the differential in only
one point.
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ker dy,

° F
w ¢(a)

Fig. 1.2. Submersion theorem.

Exercises.

Exercise 1.16. Let Aut(E) denote the set of automorphisms of a Banach
space F, i.e., the set of linear, continuous and bijective maps from E into E
(see Definition 1.9). Show that the map

Inv: (L(E, E), ||| -) — (L&, E) (-1,
fr—Inv(f):= ft,

is continuous for f € Aut(E).

1.2 The Flow of a Vector Field on R™

Definition 1.17. Let U be an open subset of R™. Then the map X : U —
R” is called a vector field on U. If, in addition, the map X is C*, then X
is called a C*-vector field.

Definition 1.18. Let X be a C'-vector field on U C R™ open. A C*-curve
v: 1 CR — U, solving for all t € I the equation

(1) =X (v(1)) .
is called an integral curve of the vector field X .
Definition 1.19. Let X be a C'-vector field on U C R™ open. A map
I':IxU—R",

solving for all (t,z) € I x U the equations
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or
(L) =X(T(t2),  I02)=q,

is called the (local) flow of X.

Note that by % we mean usual partial derivative with respect to . — The
last definition can be reformulated in the following way: For all x € U fixed,
the map t € I — I'(t,z) is an integral curve of X with initial condition
x. — Using the Implicit Function Theorem 1.14, we now want to prove an
important local existence result.

Theorem 1.20 (Local Existence of a Flow). Let X be a C*-vector field
on U C R™ and let a € U. Then there exist U' C U open with a € U’ and
a CF-map I' : [-T,T] x U' — R™ for some T > 0 such that for every
(t,x) € [-T,T) x U’, we have

or

E(t,x) =X(I'(t,z)), I'o,z)==x. (1.10)

Integrating (1.10) gives

F(t,m):a:+/()tX(F(s,x))ds, (1.11)

where z is a point in the neighborhood of a and ¢ a time in the neighborhood of
0. We wish to apply the Implicit Function Theorem 1.14, and define therefore
the map

@(t,z, I'(t,z)) = —I'(t,x) +x+/0 X(I(s,z))ds.

Then (1.11) translates to
@(t,z, I'(t,x)) =0. (1.12)

Since I" depends also on (z,t), it is not possible to apply directly the implicit
function theorem. However, this idea will lead to the correct proof. But, in
addition, we have to introduce a parameter u € [0, 1].

Proof. First we introduce the space F = C9(]0,1],R") together with the
L>®-norm, i.e., [|allec = sup,ejoqyla(u)| for a € F. It is not difficult to

see that (F,| - [le) is a Banach space?. Moreover, we define the map ¢ :
(-1,1) x U x F — F by

2 Indeed, let (an)nen be a Cauchy sequence in F, meaning that for all & > 0
there exists N € N such that ||an — @ml|lec < &, Vn,m > N. This implies that
(an(u))nen is a Cauchy sequence in R for all u € [0, 1], since

|an (1) — am (u)] < ||lan — am|le <€, Vn,m > N . (1.13)
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o(t, z,a)(u) = —a(u) + t/ X(afo) + ) do, (1.14)
0

where o,u € [0,1]. Note that (—1,1) x U is an open set of R"*! which is
Banach, and therefore (—1,1) x U x F is also an open subset of a Banach
space since F' was shown to be a Banach space.

Let a € U and, using the same notations as in the previous section, we
compute Ju¥(0,q,0)- (As an exercise, one shows that ¢ € C’k((fl, 1) x U x
F F ) and hence the differential exists.) For h € F, we have by definition
¢(0,a,h)(u) = —h(u) + 0 = —h(u) and hence 9np(0,a,0) = —idr, showing
that it is an isomorphism.

We can then apply the Implicit Function Theorem 1.14 to the map ¢ at
the point (0,a,0) € (=1,1) x U x F to get the existence of (=T,T) x U’ C
(—=1,1) x U and W C F open containing (0, a,0); moreover, the existence
of a C*-map

(=T, T)xU xW — F,

such that for all (¢t,z) € (=T, T)x U’ and for all z € W the following equation
holds:

QO(t, 1'5 w(ta £L’, Z)) =Zz.
Taking z = 0, we thus get

o(t, z,¥(t,x,0) =0, (1.15)

equivalently, using (1.14),

—(t,x,0)(u) +t /OUX(’L/}(t, z,0)(0) + x)do =0,

for every u € [0,1].
In a next step, we want to establish a relation between v and I" such that
(1.15) implies that (1.12) holds. We claim that

Lt,z) =¢(t,z,0)(1) + (1.16)

is the desired relation.

By the completeness of R, we deduce that the Cauchy sequence (an(u))nen
converges to a limit, which we denote by «(u). It remains to show the continuity
of the resulting function «(u). For this purpose, we take the limit m — oo in
(1.13) to obtain

lan(u) — a(u)] < e, vn > N,

where N depends only on £ > 0 and not on u € [0, 1]. Hence, it follows
lim |jan — aljc =0.
n—>o0

Since « is the limit of a uniformly convergent sequence (aun)nen, it is indeed
continuous and therefore F' is Banach.
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We first introduce the map
™w:F—F,

a(u) — mya(u) == a(Au) .

For \ € [0,1] this map is well-defined. We calculate, for Ao = s,
(A, z, aa) (u) = —a(Au) + Xt / X (a(Xo) + z)do
0

= —a()\u) +t /0 uX(a(S) + .%‘)dS

= ga(t, x, a) (Au) = T)\gﬁ(t, x, a) (u).

Applying this formula to the continuous map « = ¥ (t,z,0) leads to
SD(Atv Zz, T)\w(ta xz, 0)) = T)\QO(t, €T, w(ta xz, 0)) = 7_)\0 =0 ) (117)

where we used (1.15). Using again (1.15), the last equation can also be written
as

o(At, z, (A, z,0)) =0. (1.18)

Putting the results (1.17) and (1.18) together and because of the local unique-
ness of the implicit function theorem, we arrive at the formula

(t,x,0) = P(At, x,0) . (1.19)

Now, we are ready to show that (1.16) is the correct relation between I’
and 1. Equation (1.19) implies

0= T)\(p(t, x, (L, z, O)) (u)

Au
= —(t,x,0)(Au) + t/o X (¢(t,2,0)(s) + x)ds

Au
= —tp(At,z,0)(u) + t/o X (¢(t,z,0)(s) + x)ds.

For v =1 and ts = o, we finally obtain

A
0 = —¢(At,x,o)(1)+t/0 X (4(t, 2, 0)(s) + ) ds
(1.19)

A
—I(t\z) +x+ t/o X (¥(ts,,0)(1) + z)ds

A
= 7F(t/\7l’)+$+t/ X (I'(ts,z)ds
0

£
—I(th\z)+ = Jr/ X(I(o,z)do,
0

which is precisely (1.12). This proves the existence of a local flow. O
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Theorem 1.21 (Uniqueness of the (Local) Flow). Let X be a C'*-vector
field on U C R™ open and let v1 and y2 denote two integral curves of X on
[0, T4], respectively [0, Ts], with 0 < Ty, Ts € R. If the integral curves have the
same initial conditions, i.e., y1(0) = v2(0), then they agree:

Y1 (t) = Y2 (t) R Vt € [0, Tl] M [O,Tg] .
Proof. We take T > 0 such that [0,77] N [0,73] = [0,T] and define

C:={tel0,T] : n(t) =)}

By assumption 0 € C' and hence C' C [0,7] is non empty. Using a standard
topological argument?, it suffices to prove that C is both open and closed in
[0,T] to establish the uniqueness of the flow, i.e., C = [0,T].

The set C' is closed: Since the integral curves v, and 72 are continuous,
it is clear that C' is closed.

The set C' is open: Let to € C with g = 71(tg) = 72(to) C U and let
r > 0 such that B,(x9) C U. (The new initial time ¢y € C' can be obtained
by translation of [0,7T].) Since by assumption X is a C'-vector field, all the
partial derivatives of X are bounded on the compact set B,.(xg). Thus, by
the Control Growth Lemma 1.8, the vector field X is also Lipschitz on this
compact set, i.e., there exists £ > 0 such that

[X(2) = X (@) < kllz— 2],

for all ,Z € By(zp). On the other hand, since both integral curves are
continuous, there exists § > 0 such that

Wi((to—(s,to-i-é)) CBT(.Z‘o), 1=1,2.
Next, we want to show that (to — d,t0 + ) C C. —For t € (to — d,to + 9)
the following estimate holds
d 2 . .
@& =2®]" < 2@ =L@l [11:¢) = 4@l

< 21X (11(8) = X (2 () I 1va.(t) = 2]
< 2k |11 (t) — 2017, (1.20)

where we also used the Definition 1.18 of an integral curve.
Now, we introduce the real valued function f(t) = ||v1(t) — y2(t)[|> > 0;
then (1.20) translates to

SHOS2IW,  f(t0) =0,

3 If B is connected and A C B open and closed, then A is empty or A = B. The
same argument was already used in the proof of Control Growth Lemma 1.8.
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implying that

d

(7M@) <0, Vet +).
Thus f = 0 and ~1(t) = 72(t) on [top + J). Reversing time, we arrive at
(to—(s,to-i-é)CC. O

In words, this theorem shows that certainly no bifurcation of the integral
curves will appear. — The next proposition indicates that passing along an
integral to a time ¢ and then to a time T — t gives exactly the same than
passing directly to a time T'.

Proposition 1.22. Let I' : [0,7] x U — R" be a flow of a C'-vector field
X. Then for allt € (0,T) the following holds:

I(T,z)=[(T —t,I(t,x)), VeeU. (1.21)

Note that, writing I';(-) for the map I'(¢,-) : U — R™, (1.21) can be
written as
I'r=Iir_yy1e =Lir_pyolt.
Especially, we have that idyy = I'_; o I, and hence we get (I3)~! = I'_; for

the inverse flow. Combining this observation with the fact the I is Ct, we
get the following

Corollary 1.23. Let I' : [0,T] x U — R" be a flow of a C*-vector field X .
Then for all t € (0,T) the map

I;:U— R",
x— L(x) =Tt x)

is a (local) C*-diffeomorphism onto I'(U).

We now introduce a very important concept in differential geometry,
which will be used in the following at various places in a more general context.

Definition 1.24. Let U C R" open and ¢ : U — V C R" a C'-
diffeomorphism. If the diffeomorphism ¢ is written as o(z) = (y1(z), ..., yn(2))
for @ € U, then the coordinates of (yi(x),...,yn(x)) with respect to the
canonical basis {e;}1<i<n of R™ are called the coordinates on U for x.
Moreover, the functions (y1,...,yn) are called the coordinate functions
of ¢ for U and such a diffeomorphism ¢ is called a chart or coordinate
system on U. And we define

0
0y;

(2) ==de™ V@) €, Vi=1,...,n. (1.22)

Remark. In the following, the same notation is often used for coordinate
functions and coordinates.
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U Y2 = const

Fig. 1.3. Chart on Euclidean space.

Theorem 1.25 (Straightening Theorem). Let X be a C'-vector field on
a € U C R"™ open such that X(a) # 0. Then there exist W C U open
containing a and a chart ¢ = (y1,y2,...,Yyn) on W such that

0

(x), Ve e W. (1.23)

In other words, there exists a C'-diffeomorphism © = (y1,Y2,---,Yn) :
W — V C R" such that

dpy - X(x) =eq, VeeW. (1.24)

Proof. Let {e;}1<i<n be the canonical basis of R™ with coordinate functions
(1,...,2n). We may assume that a = 0. After a linear transformation if
necessary, we may also assume that X (0) = ej.

By Theorem 1.20, there exists a neighborhood U cUof0and T > 0 such
that the (local) flow I} of the vector field X exists in (=7, T) x U. Consider
now the map

o(x1,2") = I, ((0,2)), (1.25)

where we write z = (21,2) = (21, %2, ...,2,) € U such that |z;| < T.
Using Corollary 1.23 and again Theorem 1.20, we deduce that all partial
derivatives of ¢ exist and are continuous. Hence, we conclude by Proposition
1.3 that ¢ € C*(R™,R").
In a next step, we compute the differential of ¢ at (0,0). By Definition
1.19 of the flow, it follows

06 d
d¢(0,0) te1 = 8—1'1(070) = % Fh((oa O)) = X((0,0)) =é€1,
h=0
and, for i = 2,...,n,
d d
d¢(0,0) cep = % o I’O((O,hel)) = % hiohei =e€;
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Hence, the differential d¢(g )y is the identity and we can apply the Local
Inversion Theorem 1.10, implying the existence of

Vi={(z1,2)) €R™ : (21,2/) €U’ CU and |z| < T < T},

and W C R™ neighborhood of ¢((0, 0)) such that ¢ is a local C'*-diffeomorphism
from V into W.

Then, we define ¢ = ¢~1. It remains to show that, for all y € W (this
notation for the points in W is motivated by the fact that ¢ = (y1,...,yn)
denote the coordinate functions on W),

dpy - X(y) = e1,
being equivalent to (see Corollary 1.5)
dby(y) - e1 = X (¢(x)) -

Using Proposition 1.22 and again the definition of the flow, we compute,
for z = (xz1,2') € V,

d

d n-ey = — I, 0,7')) = — Iy, (L, ((0,2
¢($1a$) €1 dh heo 1+h(( z )) dh he0 h( 1(( z )))
d
= —|  In(o(x1,2") = X((x)) .
dh|,_,
This completes the proof of the straightening theorem. ad
A ¢ A
/\ W c R”

coordinates ® coordinates
(T1,...,Zn) (Y1, -, Yn)

Fig. 1.4. Setting for the proof of the straightening theorem.



2 Differentiable Manifolds

2.1 Submanifolds of RP

Motivation

Definition 2.1. A n-dimensional C*-submanifold of R?, n < p, is a subset
N™ of RP such that for every x € N™ there exists U C RP open containing x
and a map f: U — RP with the following properties:

(i) f € C*(U,R?),
(ii) the map f is a C*-diffeomorphism from U into f(U);
(i11) and f(N"NU)=R"N f(U).

The map f is called a straightening map for N about x.
Remark. We understand R"™ as subset of R? via the canonical inclusion
L:R" — RP,
(1,...,2n) — (1,...,2,,0,...,0). (2.1)

Thus, we can also write R” x RP~" = RP. — Note also that, in the following,
the upper indices for (sub)manifolds, subsets, etc. will always refer to their
dimensions.

FU)NR?

Fig. 2.1. Submanifold.
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Proposition 2.2. Let N™ be a subset of RP. Then the following assertions
are equivalent:

(i) The subset N™ is a n-dimensional C*-submanifold of RP.

(ii) For all z € N™, there exists U C RP open containing x and C*-functions
fho. P U — R such that {df;}izl,___7(p_n) is a free (linearly
independent) family and

p—n
n iy—1
N" AU = () () (0). (2.2)
i=1
The functions f*, i =1,...,p —n, are called a family of constraints

to N™ about x.
(i4i) For all x € N™, there exists U C RP open containing x and a C*-
submersion g : U — RP™™ such that N* NU = g—1(0).

Remark. Let p = 3 and n = 1. Using (ii) we recover the well-known fact
that locally a curve can be described as intersection of two surfaces in R3
given by f! and f2. This is the local version of the characterization of a
one-dimensional vector subspace in R3.

Proof. The equivalence of (ii) and (iii) is straightforward. — Let
(ff'y. . ff)=g:U —RPF ™,

By assumption, {dfi};—1 .. (p—n) 18 a free family meaning that for every x € U
the differential dg,. is surjective. Hence by Definition 1.11 the map g is a local
submersion. Furthermore, we have

p—n
n iy —1 _
N"AU = () ()" (0)=g7"(0).
i=1
Now, we show that (iii) implies (i). — Let g € N™ with U C R" containing
zo and g : U — RP~™ the C*-submersion. Moreover, let 7 : R? — RP—"
denote the canonical projection. Then by the Submersion Theorem 1.15 there
exist U’ C U and a local C*-diffeomorphism f : U’ — RP such that

g(x) = (mo f)(x), zelU'.
The last equation gives, using (iii),
N'NU' =g 0) = (fror )(0)= TR NT,
showing that f is the straightening map for the submanifold N™ of RP.

It remains to show that (i) implies (iii). — Let g € N™ and f: U — RP
the straightening map for N™ about xy € U. By Definition 2.1, we have that
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N"nU = f~HR™)NU. Writing f(z) = (fX(z),..., f*(z), ["T(2),..., [P(z)),
we define
g: U — R"P
T — (f"'H(x), cel fp(:r)) .

As a direct consequence, we note that N* N U = ¢g~!(0). Since f is a C*-
diffeomorphism, the matrix formed by the differentials (df?),, is of maximal
rank p —n for all i = n+ 1,...,p. Thus the map g gives the submersion of
(iii). O
Ezxample 2.3 (The Sphere SP~1). We consider the sphere

Sp—t = {z:(zl,...,zp) : x§+...+z§:1} CRP,

and the constraint

fl :RPF — R,
T ai 4.tz 1. (2.3)
Clearly (f1)~1(0) = SP~! and f! € C*(RP,R). Moreover, for x € SP~!
the expression df! - X = 237 x; X; with X = (X1,...,X,) € RP\ {0}
does not vanish and the differential of the constraint f! is therefore free. By
Proposition 2.2 the sphere SP~1 is thus a (p—1)-dimensional C'*°-submanifold
of RP.

Ezample 2.4 (The Orthogonal Group O(k)). Let GLi(R) denote the space

of invertible k x k matrices identified with R¥”. The orthogonal group is
defined by
O(k) ={A € GLx(R) : ATA=AAT =1},

where AT denotes the transpose of the matrix A. We show that O(k) is a

C>-submanifold of R¥* of dimension @ — First, we define the C*°-map
g sz k(k+1)
: — 2,
Ar— AT A1,

where the space of symmetric matrices Si(R) is identified with R*“™ . For

A € O(k) and B € GL,(R) we have

dga-B=BT A+ AT B.

For S € Sk(R), i.e., ST = S, we want to find B € GLg(R) such that dga-B =
S. A short calculation gives B = A S/2. This shows that g is a submersion.
Since
B2 k(k—1) _ k(k+1)
2 2 ’

and also O(k) = g~1(0), Proposition 2.2 gives the result.
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Ezample 2.5 (The Special Linear Group SL(k,R)). The special linear
group is defined by

SL(k,R) = {A € GLy(R) : detA=1}.

It follows directly from Exercise 2.7 that the determinant map is a submer-
sion. Moreover, we have that SL(k,R) = g=1(0), where g is the map given
by A — det A — 1. From Proposition 2.2 we then conclude that SL(k,R)
is a C°°-submanifold of R** of dimension k2 — 1. — Note that the special
orthogonal group

SO(k)={Ae€O(k) : detA=1} =0(k)NSL(k,R)
is also a C*°-submanifold of R** with dim SO(k) = dim O(k).

Proposition 2.6. Let N" be a n-dimensional C*-submanifold of RP.

(i) If ¢ : RP — RP is a CF-diffeomorphism, then (N") is again a n-
dimensional C*-submanifold of RP.
(i) If for ¢ > p the canonical inclusion is denoted by

t:RP — RY,

(1,...,2p) — (21,...,2p,0,...,0),

then «(N™) is a C*-submanifold of RY of dimension n.
(iii) If M™ is a m-dimensional C*-submanifold of RY then N™ x M™ is a
C*-submanifold of RP x R? of dimension n + m.

Proof. The proof of (i) is straightforward. — Let f be the straightening map
for N™ about z. Since 1 is by assumption a C*-diffeomorphism it is clear
that f o' gives a C*-straightening map for ¢)(N™) about ().

Since N is by assumption a submanifold of RP, there exists by Propo-

sition 2.2 a family of constraints f1,..., fP~" about ¥ € RP verifying (2.2).
For z = (x1,...,24) € U x R17P with U C RP containing &, we then define
the C*-maps

Fi@1, e Ty Tprts ooy 2g) 2= fi(T1, e, 1), 1<i<p-—n,

and moreover
i .
F1, o Ty Tp1y - - -5 Tg) = Tign s p—n+1<i<qg—n.

These two definitions obviously show that

q—n

UN™) N (U xRIP) = () (£1)(0).

=1

At the point xp = 1(Z) = (Z1,...,%p,0,...,0) the differential of the function
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F .= (fl’_._’fp’fp'i'l,.“,fq—n):Rq — RI™P

A0
ir. - (49,

Since {df} }i=1, . (p—n) is free by assumption the matrix A has maximal rank
p — n. We deduce that dF,, has also maximal rank. In summary, the family
{dfi }i=1,.. (q—n) is a free family of constraints for .(N™) about xo and (ii)
follows from Proposition 2.2.

For (iii), we note that the constraints for N™ and M™ can be combined to
g+p—(n+m) independent constraints for N x M™. Then again Proposition
2.2 gives the result. ]

reads as

From the last proposition we get many submanifolds from the one we
already now. — For example, we showed that the “circle” S' is a submanifold
of R? and as an application of the second part of the proposition it is also a
submanifold of R3. Moreover, the torus S* x S* C R?xR? is a two dimensional
submanifold by the third part of the proposition.

Exercises.

Exercise 2.7. Let GLi(R) denote the space of invertible k x k matrices and
consider the map

det : GLE(R) — R\ {0},
Ar—detA.

Show that its differential, for A, B € GLi(R), is given by

d(det) 4 - B = (det A) Tr(A™'B).

2.2 Differentiability on Submanifolds of RP

We want to give a meaning to a C*-map, k > 1, from a C*-submanifold N™
of R? into R or into another C'*-submanifold M™. This will be essentially
done by the notion of a chart for a submanifold. — The following definition
can be seen as generalization of Definition 1.24.

Definition 2.8. Let N be a n-dimensional C*-submanifold of RP with C*-
straightening map f and U C R? open containing x € N™. Moreover, let

m:RP — R"

(@1, Ty B 1y -5 Tp) — (T1,- -+, Tn)
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denote the canonical projection and V. C R™ open. A chart or coordinate
system for N" about x is a homeomorphism

e:N"NU —V

such that the composition wo f o™t is a C*- diffeomorphism from o(N™ N
U) C R"™ into an open subset of R™. — If the chart ¢ is written as
o(x) = (y1(®),...,yn(x)) for & € N™, then the canonical coordinates of
(y1(),...,yn(x)) in R™ are called the coordinates on the submanifold N™
for x; moreover (y1,...,yn) are called the coordinate functions of the chart
w for U.

Remark. In the following, there will often be no difference in the notations
for coordinates and coordinate functions.

F(U)NR"

VCcR”

Fig. 2.2. A chart for a submanifold.

In order to show that this definition makes sense, we have to prove that it
is independent of the straightening map f. — Let f and f be two straightening
maps for N™ about x. Let ¢ be a chart for N about x and assume that
7o fop!is a CF-diffeomorphism. We write 7o fo o l=mo fof~ltofopl
and note that by Definition 2.1 the map fo f~* : RP — RP is a local
C*-diffeomorphism sending R x {0} into itself. Hence, m o f o ™! is also a
C*-diffeomorphism showing that the definition of a chart for a submanifold
is independent of the straightening map.
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Proposition 2.9. Let N™ be a C*-submanifold of RP with two different
charts ¢ and ¢ about x € N™. Then for U C RP containing x the tran-
sition function

oot p(N"NU) — @(N"NU)

is a C*-diffeomorphism.

\/

e(N"NU) CR" G(N"NU) C R™

Fig. 2.3. Transition functions for submanifolds.

Proof. Let f be a straightening map for N™ about z. Let ¢ : R" — RP and
m : RP — R"™ denote the canonical inclusion, respectively, projection. On
o(N™"NU) C R”, we can then write

1 1

popl=Ggoflofop i =goforomoforTl,  (24)

since ¢ o ﬂ'}Rn = id}Rn. The last three maps in (2.4) compose to a C*-
diffeomorphism by Definition 2.8 and the same argument holds for the other

three maps writing go f~tosas (mo fog™!) - Hence, the transition function
p ot is indeed a C*-diffeomorphism. O

Now, we are ready to define C*-functions on submanifolds using charts.

Definition 2.10. Let N™ be a C'-submanifold of RP and let k < 1. A func-
tion h : N™ — R is called a C*-function on N™ if for all x € N™ there
exists a local chart ¢ about x such that

hop ™ :R®" — R

is a C*-function.
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It is important to note that this definition is independent of the choice of
the chart ¢. Indeed, let ¢ and @ be two charts about z. Assume that ho ™!
is a C*-function. From Proposition 2.9 it follows directly that

1 1 1

hog ' =hop  opog

is also a C*-function.

Ezample 2.11. Consider the sphere S™ C R™t!. We want to show that the
canonical coordinate functions on R®*! restricted to S™ are C*°-functions on
S™. — The canonical coordinate functions®, for i = 1,...,n + 1, are given by

PEED o g—

T — x;.

Note that in the notation there is no difference between coordinates and
coordinate functions.

Let 2o = (0,...,0,1) € R™™! denote the north pole of the sphere and
consider the C*°-map

f:U — R,
n+1
2
T — zl,...,:cn,g z; —1],
i=1

where U C R"*! open containing . It is clear that
f_l((l‘l,. ..,.’L'n,O)) = Sn ﬂU.

Moreover, a straightforward computation shows that df,, = diag(1,...,1,2);
hence df,, is invertible and the Local Inversion Theorem 1.10 shows that f
is a local C'*°-diffeomorphism in a neighborhood of zy. This implies that f
is a straightening map for S™ about zy. — We already showed in Example
2.3 that the sphere is a C'°°-submanifold constructing a constraint. (Note
that the straightening map is compatible with the constraint (2.3), in the
sense that the last coordinate function of the straightening map equals the
constraint. )
Consider now the C'*°-map

0:8"NUCR"™ — VCR",
(T1ye oy Ty Tppg1) — (1,00 T0)

where V = ¢(S™ N U) is an open neighborhood of ¢(z¢) = (0,...,0) € R™.
One easily sees that

! The corresponding chart is given by the identity map of R™"™! ie., p(z) =
(1, oy Tny Tng1)-
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wil(zla"'azn): L1y

Next, we compute, for z € V,

(rofop™)(x)= (nof) |m,...

=7(x1,...,2p,0)
= (‘Tla"'v:rn)'

Thus (mro fo cp*l) is the identity on V' C R™ and therefore we have a chart
@ for S™ about the north pole xy.

In a next step, we note that the expressions for the canonical coordinate
functions (z1,...,Zn, Tp+1) in the chart ¢ read as

-1 ;
o (L1, .., Tn) = T4, 1<i<n,

Tn+1 O@_l(xla-' 'a$7l) =

showing by Definition 2.10 that all functions are in C°°(U N S™,R). This was
the claim at the beginning of the example.

We extend the last definition for C*-functions on submanifolds to maps
between two submanifolds.

Definition 2.12. Let N™ and M™ be two C'-submanifolds of RP, respec-
tively RY and let k < 1. A map h : N* — M™ s called a C*-map if h is
continuous and if for all x € N™ there exist a chart ¢ for N™ about x and a
chart @ of M™ about h(x) such that

pohogp l:R" — R™
is a C*-map.
Remark. By a continuous map between submanifolds we mean the continuity

of the map with respect to the topologies induced by the ambient Euclidean
space on the submanifolds (restriction of open sets).

As a direct consequence of Proposition 2.9, we get that the definition is
independent of the choice of the charts for N™ and M™.

Definition 2.13. Let N™ and M™ be two C'-submanifolds of R?, respec-
tively RZ. A map h: N* — M™ is called a C*-diffeomorphism if h is an
homeomorphism, a C*-map and if for all x € N™ and all charts ¢ about x,
@ about h(x), we have that the linear map

d(@ oho @71)(/)(1)

is invertible.
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2.3 Abstract Manifolds

In this section, we introduce a large class of topological spaces, called man-
ifolds, which are locally homeomorphic to open subsets of Euclidean spaces.
However, these spaces don’t require anymore the concept of “ambient space”
which plays a crucial role in the definition of submanifolds.

Though they have no global vector space structure, there will be a no-
tion of differentiability. In the next Section 2.4, we will then study in great
detail the differentiability on manifolds. — Remember that the notion of dif-
ferentiability was first defined on normed vector spaces in Section 1.1 and
then extended to submanifolds of Euclidean spaces in the last section. — In
the following, we give some motivations for the need of topological spaces
generalizing submanifolds.

We introduce the set of straight lines in R"*! passing through the origin
and denote this set by RP™. In other words, we consider in R"1\ {0} the
equivalence relation © = (x1,...,2Zn4+1) ~ ¥ = (Y1,.-.,Ynt+1) if and only if
there exists A\ € R such that z = Ay. Alternatively, the set RP™ can be
considered as the quotient S™/ ~, where the equivalence relation is defined
by:

u~wv iff u==v for u,v e ™.

Thus the equivalence classes [u] = {u, —u} € S™/ ~ define the set RP™.

Let m : S — RP™ be the canonical projection which gives RP™ the
quotient topology, i.e., U open in RP™ if and only if 7=1(U) is open in S™.
For this topology RP™ is called the real projective space of dimension n.

Note that locally the real projective space looks identical to S™. More
precisely, this identification can be made as long as the antipodal points
are not considered simultaneously. Nevertheless, RP™ cannot be seen as a
submanifold of R"*1,

We have seen in Example 2.3 that S! is a submanifold of R2. By Propo-
sition 2.6 the torus T2 = S x 8! is thus a submanifold of R*. — Next, we
consider the map

Z:R? —R?
(0,9) — (cosf(2 + cos)),sin b, sin ) .

One can check that N? := Z(R?) is a two-dimensional submanifold of R3.
Moreover,

(1)

. St x 8T — Z(R?),
(e, e™) — (cosf(2 + cosy)),sin 0, sin 1)) ,

is a C°°-diffeomorphism between the two submanifolds 72 and N2. — We
want to construct a topological space without using the notion of “ambient
space”, whose embedding (realization) in R* and R? is given by T2 and N2,
respectively.
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Consider R?/ ~ with the equivalence relation:
(a’a b) ~ (a/, bl) iff (a/, bl) = (a’a b) + (kv l) )
where (k,l) € Z2. We denote this set by R?/Z2. The canonical projection
7 : R? — R2?/Z? defines the quotient topology, i.e., U open in R?/Z? if
and only if 771(U) open in R2. Geometrically, this quotient space leads to a

certain identification of the edges of a square with unit length as described
in Figure 2.4. Hence, the quotient space R?/Z? is homeomorphic to 72 and

N2,
+
E— )—@ E—
+

Fig. 2.4. Torus.

+

+
R/ ~

Next, we mention the example of the Klein bottle being not a submanifold.
Starting from R?/Z? with the quotient topology, we introduce an additional
equivalence relation ~' on [0,1] x [0,1] C R?/Z?. Namely, for a,b,a’,b’ €
[0, 2] x [0,1], we have

(a,b) ~' (@, V) iff (a,b') = (a—i— %,—b) .

As described in Fig. 2.5, this equivalence relation leads again to identifications
of the edges in the square [0, 1] x [0,1] C R?/Z>.

+ + 4 -
I
A —_ I
0 0 ' 0 O -
- PR + +
___
+ + _ A

Fig. 2.5. Klein bottle.

Now, we give a precise definition of a manifold being an important math-
ematical object.
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Definition 2.14. Let X be a topological space. Then X is called separated
or Hausdorff if for all z, & € X there exist open neighborhoods U, and Uz
with U, NUz = 0.

Definition 2.15. A n-dimensional topological manifold or C°-manifold
18 a topological separated space X such that for all x € X there exist an open
neighborhood U,, and an homeomorphism ¢ : U, — @(U,) C R™.

¥

/\

Us o(U,) C R
X

Fig. 2.6. Topological manifold.

Remark. A topological manifold is thus by definition locally homeomorphic
to R™ which does not imply that the space is separated (see Exercise 2.31).

Next, we define C''-manifolds. Naively, one would simply replace the defin-
ing homeomorphism by a diffeomorphism. But, we have to be more careful.

Definition 2.16. Let X be a topological separated space and k > 1. A C*-
atlas or C*-system of charts of dimension n is a family (U;, p;)ic1, where
the (U;)ier are open subsets of X and the (@;)icr are homeomorphisms from
U; into R™, with the following properties:

(i) The (Ui)icr cover the topological space X, i.e., J;c; Us = X.
(ii) For every i,j € I such that U; NU; # 0, the transition functions

w0t piU;NT;) — ¢;(U;NT;)
are C*-diffeomorphisms.

The previous definition shows that we can only understand the topological
space X from a differential point of view via a system of charts. Moreover, if X
admits a C*-system of charts of dimension n then it cannot admit a system
of charts of dimension p for n # p. Indeed, let (U;,¢;)icr and (Vj,v;) e
denote the two systems of charts with different dimensions. Fori € I, j € J
such that U; NV} # 0 we have that ¢;(U; N'V;) C R™ and ¢;(U; N'V;) C RP
are both open. By Definition 2.16 (ii) we obtain a homeomorphism between
two open sets of Euclidean spaces with different dimensions. This contradicts
Corollary 1.13.
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X

/ ~

©i(Us) ©;(Uj)

Fig. 2.7. System of charts and transition functions.

Definition 2.17. Let X be a topological separated space admitting two C*-
systems of charts (U, pi)ier and (V;,1;)jes of same dimension. These two
systems of charts are called equivalent if the union of them is still a C*-
system of charts, i.e., if for every i € I, j € J such that U; N'V; # 0 the
transition functions

biow;tiUiNV;) — ¢ (U; N V)
are C*-diffeomorphisms.

It is clear that the union of two charts still covers the topological space X
as required in the Definition 2.16. Moreover, the relation “being equivalent” of
the previous definition defines an equivalence relation on the systems of charts
and we arrive at the important definition of n-dimensional C'*-manifolds:

Definition 2.18. Let X be a topological separated space. An equivalence
class of C*-systems of charts is called a C*-differentiable structure on
X. Assume, in addition, that the systems of charts are n-dimensional. Then
X together with a differentiable structure is called a n-dimensional C*-
manifold.

Examples of Manifolds

Ezample 2.19 (The Euclidean Space). The separated topological space R™
becomes a manifold for the single chart (U, ¢), where U = R™ and ¢ = idgn.

Ezample 2.20 (A Submanifold as Manifold). Let N™ be a n-dimensional C*-
submanifold of RP. We consider the coordinate system ¢, : N* N U, — R"
of Definition 2.8 where U, C RP is an open neighborhood of z. By Definition
2.1 such coordinate systems exist for every x € N™. Indeed, we set p, =
mo fZ|Nnngr with f, the straightening map about x and 7 : RP — R" the
canonical projection. Using Proposition 2.9 the family (Usz, ¢z )zenn defines
a CF-system of charts for the submanifold N™. Thus N™ becomes a Ck-
manifold of dimension n.
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Ezample 2.21 (The Real Projective Space). The real projective space RP™ =
(R™*1\{0})/ ~ was already defined at the beginning of this section. In order
to show that this space is a C'°°-manifold of dimension n, we have to find an
atlas for it.

Let
7 R"\ {0} — RP",
= (T1,..., Tpg1) — [2] = [21,. .., Tnt1]
denote the canonical projection. For ¢ = 1,...,n + 1, we then define U; :=

{[z] : z; # 0} and

x Tio1 T x
@Z([z]) = <—1 R 1, l+1,..., n+1>CR”.

z;’ x| oy x;

It is easy to check that ¢; : U; — R™ is an homeomorphism for all i =
1,...,n+1 and that U?Ill U; = RP". By Definition 2.16, it remains to show
that for all 4, j with U; N U; # () the transition functions

®; © (,0;1 : gﬁl(Uz n Uj) — gﬁj(Ui N Uj)

are C'*°-diffeomorphisms.
We have, for z = (21,...,2n) € ¢:i(U; NU;) C R™ assuming that i > j,

-1 _
(pj o (pi (21, . ,Zn) = (pj ([21, ey Ri—1, 1,Zi+1, e ,Zn])
21 Zj—1 Zj41 zic1 1 zipr Zn
= <_, ey ] ] 3 ‘7 ; ge ey ] 7_‘, ] PICICIEEY _ G Rn .
Zj Zj Zj Zj  Zj % Zj

Since by assumption z; # 0, we deduce that ¢; o ¢;* € C*®(p;(U; N
Uj),¢;(U; NUj)). One can check that this implies that (U, ¢;)i=1,...nt1 18
an atlas for the real projective space RP™.

Example 2.22 (The Torus). We consider again the example of the torus T2 =
R?/7Z2%. Let x € R? and a € R with 0 < a < 1/4. We define U, := 7(B,(z)) C
R2 /72, where 7 is the canonical projection. Since

)= U Balzt kD),

(k,1)€z?

we deduce that U, is open and (U, ),cgr2 is thus an open covering of T2. Let
[y] € U, and let y denote the unique representant in By, (z) of the equivalence
class [y|. Then, we define

gaz:Uz—>R2,
[yl — y € Ba(2).

It is easy to show that ¢, : Uy — B, (z) is an homeomorphism.



2.3 Abstract Manifolds 33

In a next step, we show that (U, ¢ ).cr? is an atlas for T2, — Let z #

% € R? such that U, N U; # 0. By definition of U, this means that there

exists (k,1) € Z? such that B, (z) N By (Z+ (k,1)) # and because a € R small

enough the pair (k,1) € Z? is unique. Take 2z € B, ()N By (Z+ (k,1)), then an

easy computation shows that (note that (k,[) € R? is independent of z € R?)
Pz O‘P;l('z) =z—(k1),

hence a C*®-diffeomorphism and T2 is a C'°°-manifold of dimension 2 for the
atlas (U, ¥z)zecre-

B (i + (1)) Ba(7)
Boz(x)

Fig. 2.8. Atlas for the torus.

The following proposition allows us to construct further examples of man-
ifolds.

Proposition 2.23. Let M™ and N™ be two C*-manifolds for the atlas
(Ui, i)ier and (Vj,1;)jes, respectively. Then the product M™ x N™ is a
C*-manifold of dimension m + n for the atlas

(Us x Vi, 05 X b5) i jyerxJ »
where we define p; X Vj(z,y) = (¢i(x),¥;(y)) for all (z,y) € M™ x N™.

Proof. The proof is a straightforward application of the definitions. a

2.3.1 Some Topological Properties of Differentiable Manifolds

Proposition 2.24. A topological manifold M™ is a locally compact topolog-
ical space.

Proof. We have to show that for all + € M™ there exist a compact set
K, containing x and a open neighborhood UI such that UI C K,. — Let
x € M™ and (U,,¢,) a chart about . By Definition 2.15, the map ¢, is
an homeomorphism from U, into ¢, (U,) C R™. Hence ¢, (U,) is open and
there exists p > 0 such that B, (¢, (z)) C ¢z(Uz). The set
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05 (Bp(p(2))) = K,

is then compact. Moreover, for ¢ * (B, (¢())) := U, open, we have U, C K,.

a

~—

Proposition 2.25. A topological manifold M™ is a locally connected space,
i.e., every point has a connected open neighborhood.

Proof. Again, we use a chart (U, ¢,) about x € M™. Clearly, ¢, (U,) is an
open neighborhood of ¢, () € R™ and it contains a connected neighborhood
C C 2 (Uy) CR™ of g, (x). Since ¢, is an homeomorphism into ¢, (U, ), the
set ¢ 1(C) C M™ is also connected. O

Proposition 2.26. A topological manifold M™ is connected if and only if it
s path connected.

Proof. Tt is a well-known fact that a path connected topological space is also
connected. — Conversely, let x € M™ and set

Cy = {yEMm : 37600([0, 1, M™) with v(0) =z, (1) :y}.

Clearly, C, # 0 since x € C. We will show that C, is both open and closed in
M™. Then, since by assumption M™ is connected, we deduce that C,, = M™
indicating that the topological manifold M™ is path connected.

The set C is open: Let y € C, and (U, ¢) a chart about y. Since p(U)
is open there exists p > 0 such that B,(¢(y)) C ¢(U). Consider for z €

Bp(p(y)) the map
F2(t) =7tz + (1= t)e(y)) € C°([0,1],U).

Clearly, we have 7,(0) = y and 7,(1) = ¢~1(2), thus a path joining y and
¢~ 1(z). Since by assumption there is a path between x and y, we can also
join z and ¢~!(z) by a path for arbitrary z € B,(¢(y)). Thus y € C,, implies
that ¢~ (B,(¢(y))) C C,, which is also open, since ¢ a homeomorphism.
Hence, C; is open.

The set C, is closed: Let (U,y) be a chart about y and let y € C,. We
show that y € C,.. — Since ¢(y) € ¢(U) which is open, we deduce the existence
of p > 0 such that B,(¢(y)) C ¢(U). Thus ¢~ (B,(¢(y))) C U; moreover,
it is open and contains y. Therefore, there exists z € C, N~ (B,(¢(y))).
Since ¢(z) € B,(¢(y)) there is a path in R™ joining ¢(y) and ¢(z). By ¢~*
also a path joining y and z. From the fact that z € C,, we obtain that y and
x are also path connected showing that y € C,. a

As an application of the previous proposition, we consider the topological
space

E{(m,sini) : xeR+\{0}}u{(o,y) ye[L} R,

which is connected but not path connected. Hence, by Proposition 2.26 the
topological space F is not a topological manifold.
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2.4 Differentiability on a Manifolds

As announced before, we now want to give a meaning to a C k-map between
two manifolds. As in the case of submanifolds, this can be done using charts.

Definition 2.27. Let M™ and N™ be two C*-manifolds with k > 1. A map
f:M™ — N"™ is a Ck-map if f is continuous and if for all (i,5) € I x J
the map

Yiofop ! ipi(Usn f1 (V) — v (V5)

is a C*-map, where (Uy, p;)icr and (V;, 1) e are systems of charts for M™
and N™, respectively. If f is a C*-map, we write f € C*(M™, N™). The map
pjofo ga{l is often called the coordinate expression for f.

¢ Qred T
¢ o

bjo foprt
- »

(TN f71(V))) ¥;(Vj)

Fig. 2.9. A C*-map between manifolds.

This definition is independent of the choice of (U;, ¢i)ier and (V},¢;) e
representing the fixed differentiable structure of the manifold. To see this,
let (Ui, i);c; and (Vj,1;),c 7 be two other charts of the fixed differentiable
structures on M and N™, respectively. (In other words, we choose two charts
equivalent to the initial ones.) Assume that the map f : M™ — N"isa
C*-map for the charts (U;, ¢;)icr and (Vj,10;)jes. Writing, for all i € I and
jeJd, 5 5

djofogt=dsoprtogiofop;topiopt,
we deduce, using Definition 2.17, that the map f is again a C*-map.

Definition 2.28. A map f : M™ — N" is called a C*-diffeomorphism
if f is an homeomorphism and if f and f=1 are both C*-maps. If such a map
exists then M™ and N™ are called diffeomorphic.

Ezample 2.29. Consider the topological space R with the single chart (U, ¢),
where U = R and ¢ = idr. This gives the canonical differentiable structure
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on R and denote the resulting manifold by M. On the other hand, consider
again R with the single chart (V1) where V = R and ¢(z) = z'/? and
denote the resulting manifold by V. It is clear that the two charts are not
equivalent. Indeed, the map

pop l:R—R,

T 1,1/3

is not continuously differentiable.
Nevertheless, the manifolds M and N are diffeomorphic. In fact, the map

f:M— N,

ZL"—>I'3

is a C*°-diffeomorphism, since 1 o f o o' = idg. Thus, the two charts define
two different differentiable structures but the corresponding two different
manifolds are diffeomorphic to each other.

We end up with the interesting question if there exists on R™, considered
as topological space, a differentiable structure which is not diffeomorphic to
the canonical one? (Note that “diffeomorphic” refers to the corresponding
manifold.) We mention that only for n = 4 such a differentiable structure
exists (see []).

Definition 2.30. Let M™ and N™ be two C*-manifolds with k > 1. More-
over, let f € CK(M™,N™). Then f is called immersion, respectively, sub-
mersion if for all (i,7) € I x J the differential

d(v; ofo<p;1) R — R"

18 injective, respectively, surjective, where the usual notation is used for the
systems of charts for M™ and N™.

This definition is again independent of the choice of (U;,;)icr and
(Vj,%;)jes representing the fixed differentiable structure of the manifold.

* * *
Exercises.

Exercise 2.31.

2.5 The Tangent Manifold to a Differentiable Manifold

2.5.1 The Tangent Space to a Submanifold of RP

Let N™ be a n-dimensional C'*-submanifold of RP. We first consider the case
n=1.
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to

R

Fig. 2.10. Tangent space to a 1-dimensional submanifold.

Let zp € N' and U C RP open neighborhood of zg. Consider a chart
¢ : N'NU — V about xg, where V C R open (see Definition 2.8), and
define

(t) == o (), teR. (2.5)
For v(t) € U we clearly have that |§(¢)| # 0. Hence, the map + is a regular
parameterization of a curve lying in the 1-dimensional C'-submanifold N' N

U C RP. The tangent space at y(tg) = xo is the space generated by the
velocity vectors of the curve « at tg:

d

F(to) = al v(t) - (2.6)

Let 0 : R — N1 N U be another C!-curve such that

o(s) =y ou(s),

where ¢ € C1(R,R) verifying 1(sg) = to; hence o(sg) = zo. The velocity
vector of the curve o at sq is given by
. d . d
(s0) = & _ a(s) = (¢(s0)) s

So S$=S80

¥(s) -

Showing that 4(¢o) is only multiplied by a real number. — Therefore, we can

interpret the tangent space to a 1-dimensional submanifold N! at a point as

the velocity vectors of arbitrary curves in N' passing through this point.
This motivates the following definition for arbitrary dimensions.

Definition 2.32. Let N be a n-dimensional C'-submanifold of R? and xo €
N™. The tangent space to N™ at zq is defined as the set of velocity vectors
of arbitrary curves C1([0,1], N™) passing through xo. The space is denoted by
T, N™.

Proposition 2.33. Let N™ be a n-dimensional C'-submanifold of RP and
xg € N™. Then the tangent space Ty, N™ is a n-dimensional vector subspace
of RP. Moreover, if U denote an open neighborhood of o and f,..., fP~":
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U — R denote a free family of constraints for N™ about xy (see Proposition
2.2), then

p—n
T, N™ = (") kerdf'(x) . (2.7)

=1

Proof. Since the differential is a linear map, the expression ker df*(zo), i =
1,...,p — n, characterizes (p — n) hyperplanes in R?. By assumption, they
are all free, hence

p—n
dim ﬂ kerdf'(xzg) =p— (p—n) =n.

=1

Therefore, if we prove the second assertion the first follows.

Let v € C'([0,1], N") with y(t9) = @ and let U C RP be an open
neighborhood of zy € N™. Fix a > 0 such that v(t) € N*NU for t € [tg —
a,to+a]. Using (2.2), we see that f#(y(t)) =0, fori=1,...,p—n and for all
t € [to — a, o +a]. Differentiating this identity at to gives (df*) ) ¥ (to) =0,
hence

p—n
A(to) € () kerdf'(zo) ,
=1

and so
p—n

Ty, N™ C () ker df* (o) -
i=1
Conversely, let f be a straightening map for N™ about xg compatible with
the constraints, i.e., if we write f = (fY,..., fP), then f/ = fi=" for j =
n+1,...,p. For X € /_["kerdf*(zo) C RP, we thus have that Y := dfy, - X
lies in R™. Note that, using Definition 2.1 (iii), we have that f(xg) +tY €
R™N f(U) for ¢ small enough, say [t| < o, @ > 0. Consider now the curve

() = f7H(f (o) +tY).

We see that v € Cl((—a, a), N" N U). Also, we have
Y(0) = df 7y Y = X,

showing that
p—n
() kerdf'(zo) C Tuy N™.
i=1
O

This proposition shows that once we have the constraints the equation
for the tangent plane is easy to find.
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Example 2.34. Consider again the sphere S™ € R"*! with the constraint (see

(2:3)) 1 2 2
file)=a14+.. . +a,,, —1.
Let 2o = (29,...,2%,,) € S™; then (df')s, - X =2 Z?:Jrll z9 X; for the vector
X = (X1,...,Xny1) € R*L Thus for the tangent space of the sphere, we
get
TypoS™ = ker (df ')z, = {X € R™™ : (X, 20) =0},

where (-,-) means the usual scalar product in R"**.

2.5.2 The Tangent Space to a Manifold

Let M™ be a m-dimensional C'*-manifold with a system of charts (U;, ¢;)icr
and xg € M™. Still in this more general case there exists the notion of
a smooth path in M™ passing through zo. Indeed, we have that v €
C1([0,1], M™) passing through = if, for every i € I,

Pioy: 771(Ui) - [0, 1] — R" € Cl([07 1]7Rn)7

and there exists ¢ty € [0, 1] such that y(tg) = xo (see Definition 2.27). The
velocity vector 4 of the smooth curve, however, has a priori no meaning
anymore, since there is not an “ambient Euclidean space” as in the case of
submanifolds. Using the concept of charts, we can only look at the expressions

d

pn (cpi o *y) (t). (2.8)

t=to

Unfortunately, these velocity vectors depend on the system of charts (U, ¢;)ier
and not only on the differentiable structure. More precisely, the velocities of
two different charts are related as (we need that zg € U; N U;)

% (¢j 0 7)(t) i

t=to

(w500t opion)(t)

t=to

= s oo o) | (2i07)®).
dt|,_y,
Obviously, there is no reason for the differential of the transition function to
be idrm. Therefore, we cannot define the tangent space T,,M™ of a man-
ifold as being the velocities of curves passing through xy as in the case of
submanifolds.

We now try to define a tangent space as a vector space which is indepen-
dent of the choice of the representant of the differentiable structure. — Let
1, 72 € C1([0,1], M™) be two paths with v;(to) = Y2(to) = wo. We observe
that if there exists a chart (U;, ;) such that
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d

dat (i 02) (1), (2.9)

t=to

(piom)(t) = %

t=to

then for another chart (Uj, ¢;), we have (note that zo € U; N Uj)

d
dt

(¢jowitopiom)(t)

t=to

(pjom)(t) = %

t=to

_ d
- d(‘»pj 0¥, 1>‘Pi(lo) dt (501' °© 71) (t)

t=to
_ d
- d(‘»pj °¥; 1>‘Pi(lo) E (501' °© 72) (t)

‘t—to

(g5 072)(t).

t=to

Thus (2.9) holds also for the second chart.
We denote the set of smooth paths passing through xo € M™ by

Py (M™) = {7 € CM([=6,8),M™) : §>0 and 7(0) = xo}. (2.10)

On P, (M™) we introduce the following equivalence relation: v; ~ 72 if and
only if there exists ¢ € I such that

d

dt (prom) = S| (piom)t). (2.11)

dt|,_o

t=0

The calculation before shows that if (2.11) holds for one chart (U;, ¢;) about
xo it holds for every chart about xzg.
Next, we define on the set Pp,(M™)/ ~ a scalar multiplication by

aly] = [val, (2.12)

where o € R and 7, (t) := y(at) € Py, (M™). If v ~ 7, we obtain that

d d
%t ) (%O’ya)(t) = %t t ((pio'y)(ozt)
—to —to
(2.11) d - d .
= — ©; 0y at) = — ©Yi © Yo t7
@i, Pee) =g (eieda)®)

showing that the definition (2.12) is independent of the representant of the
equivalence class [v].
Moreover, on P,,(M™)/ ~ we define an addition by

]+ [v2] == [1142], (2.13)

where
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(i 0 72)(@) :

Note that y142 € Pyo(M™). We claim that this operation is moreover well-
defined, i.e.,

a) independent of the chart ¢;;
b) independent of the representants of the classes [vy1] and [72].

d
0(901'071)( ) dt

_ d
Yi42(t) == ¢; ! (%’(iﬂo) 7 B

The second claim follows from an analogous computation as for the scalar
multiplication. For the first claim, we have to show that the path ;412 ex-
pressed in two different charts lies in the same equivalence class, i.e.,

d d

T o (i 0 Y142) (t) = 7

(i 0 F142) (1),
t=0

where 7142 means the path expressed in another chart ¢; about zg. Hence,
we have to compare the following two expressions

% . (i 0 1142) (1)
= % . {‘Pi (%1 (soi(:vo) +i % » (wiom)(t) +1t % » (%072)(t))>} :
-G eemw+ g ewo.
and

% ~ (901 °F142)(t)
= % ~ O{ < (gaj )+t — t:o(% mn)(t) +t %t 0(%‘072)@)))}
= d(0i © 07 ") w0) (% prom) )+ = - (5 072)(15))
_ jt O( )(t)+ 0(<p 72) ().

Thus, the two expressions are equal. — Note that the constant path v = z¢
gives the neutral element for the addition defined in (2.13).

So far we have shown that P,,(M™)/ ~ with the scalar multiplication
(2.12) and the addition (2.13) is a vector space. Now, we will see that its
dimension is m. — Let (U, ¢;) be a chart about z¢ and define the map?

dpi : Py (M™)) ~ — R™,

bl dei- ] = 2 . (¢iov)(t). (2.14)

2 The notation used for this map will become clear in Section 2.6.
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In order to show that dip; is an isomorphism, we first observe that if dy; - [y] =
0, then ¢; o v has vanishing velocity at ¢ = 0, which is also the velocity of
the constant path at ¢ = 0. Therefore, [y] = 0 and dy; is injective. It is also
surjective, since for every X € R™, we have

dpi[p™ (p(x0) +1 X)) = X .

This implies that P,,(M™)/ ~ has dimension m.
Putting all these results together, we end up with the definition for the
tangent space to a manifold M™.

Definition 2.35. The tangent space T,,,M™ to a C'-manifold M™ at the
point xg is defined by

TIUMm = Paz, (Mm)/ ~y
which is an m-dimensional vector space. And the tangent vectors are equiv-
alence classes of paths [y] € Py, (M™)/ ~.

Concerning the basis of the tangent space, we introduce the following
useful notations®: Consider a chart (U,z) with  : U — R™. Then, for all

p € M™, we denote by
9] 0
— ey — 2.1
() 5= t0)) 2.15)

0T,
the basis of T,M™, given by

0
63%

where {ei}i:L,,,,M is the canonical basis of R™ and

vi=a " (z(p) +te;).

The following proposition can be interpreted as motivation for the previ-
ous notations.

Proposition 2.36. Let M™ be a C*-manifold of dimension m and U C M™
open. Moreover, let (U,x) and (U,y) be two charts about p € U. Then the
following formula holds for allp e U :

(p) := [, i=1,...,m, (2.16)

9 “~ O(yioax") )
— = _— — k=1,... 2.17
90 ) ; g (@) o, P)- N Y (2.17)
where the notation y = (y1,...,ym) : U —> R™ for the coordinate functions
is used. The formula can also be written as
0 _ 0y 0
oxp  Oxp Oy;

3 At this stage, we change slightly the notations: The charts are now often denoted
by (U, ), instead of (U, ¢), and points of a manifold by p, instead of .
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Proof. We can write

() = [ (alp) + )]

= |:y71 (y o xfl(x(p) + tek))}

We calculate for the path y o z™!(z(p) + tex) in R™, using (1.1),

d
| o (zlp) +ter) =dlyor )ag - ek
t=0
_ " O(y;ox!
= L (yoz™) e ZZ(TIC)@@)M’
=1

where Jg(p) (y o x_l) denotes the Jacobian of the map yoz~! : R™ — R™
at the point z(p). From this, we deduce that

2 )= v (v +t i a(yi;ig;l) (z(p))e:)] -

83%

By definition, this implies (2.17). O

2.5.3 The Tangent Bundle to a Manifold

Let M™ be a m-dimensional C*-manifold with k > 2. From a “set” point of
view the tangent bundle to M™ is defined by

™™™ = | T,M™,
peEM™

i.e., by the collection of all tangent vectors at all points of M. Moreover,
we introduce the following projection map

T TM™ — M,
V] (7)) :==p, if ] € T,M. (2.18)

The point p € M™ is called the base point for [7].

In what follows, we prove that the tangent bundle can be made to a
2m-dimensional C*~!-manifold. — Let (U;, ¢;)icr be an atlas for M™, and
define

TU; := U T,M™ = 7= Y(U;).
peU;

Obviously, we have that | J,.; TU; = TM™. On TU; C TM™, we consider
the map
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®; : TU; — R™ x R™ = R>™
V] — (i o m([7]), depi - []) - (2.19)

Recall that (see (2.14))

dp; - [7] = % (wio)(®).
t=0
It is clear that the map @; is a bijection from TU; into ¢;(U;) x R™. We
then say that 2 C TM™ is open in TM™ if and only if for all ¢ € I the set
@;(2NTU;) is open in R?™.
In order to establish that this defines a topology on the tangent bundle
TM™, we take, in a first step, (£2x)rex all open and show that (J, o 2 is

also open and, in a second step, {21,..., {25 open and show that ﬂf\il (2 is
open. — For all ¢ € I, we have

@, <U o mTUi> = U D;(2 NTU,).

keK keK

Since the right-hand side is open in R2™, it follows by definition of openness
for TM™ that |,k 2% is indeed open. Consider now (21, ..., 2y open and
since the @; are bijections, we can write, for all ¢ € I,

N N
@; (ﬂ [0 ﬁTUi> = ®:(2NTU).

=1 =1

Therefore, we have a topology on T'M™. In addition, this topology is sepa-
rated (the proof is straightforward).

Proposition 2.37. This topology on the tangent bundle TM™ is indepen-
dent of the atlas (U, @;)ic1 representing the fized differentiable structure on
M™. Moreover, the maps ®;, i € I, defined in (2.19) are homeomorphisms
for this topology and the projection T is continuous.

Proof. Let (V},1;);es be another equivalent atlas for M™ and (T'V;,¥;);es
as defined before (see (2.19)). Assume that 2 C TM™ is open for this atlas,
i.e., ¥;(2NTV;) is open in R*™ for all j € J. We then have to prove that
@;(2NTU;) is open in R?™ for all i € 1.

We first write

o,(2NTU) = | @ (wj—l (#;(2NTU; N TVj))) .
jeJ

Take j € J such that TU; N T'V; # (. Since ¥; is a bijection, we get

W (2NTU;NTV;) =W, (2NTV;) N;(TU; N TV;).
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The first term on the right-hand side is open by assumption. The second
equals 1;(U; N V;) x R™ being thus also open in R?™. Using the fact that
the charts (U, ¢;)ier and (Vj,;) es are equivalent, we will show that the
transition functions

®; 0 W (TU; NTV;) — &:(TU; N TVj)

are C*~l-maps with k > 2 (this will be done in the next Proposition 2.38).
We then deduce that

b, (gﬁl (Z;(2NTU; N TVj))) ,

J

and hence
U (97 (#(2n 10N TV)))
jedJ
are open in R?™. This result holds for all 7 € I, and the topology on TM™

thus only depends on the differentiable structure on M™. — The remaining
assertions are left as an exercise. a

We end up with the following proposition summarizing the results for the
tangent bundle.

Proposition 2.38. Let M™ be a m-dimensional C*-manifold with k > 2,
and let (Ui, ¢i)icr be an atlas for M™. Then (TU;, ®;)icr defines a CF1-
differentiable structure for the tangent bundle TM™ depending only on the
differentiable structure on M™. And TM™ is a C*~'-manifold of dimension
2m. for this differentiable structure. Moreover, the projection m is a C*~'-
submersion for this differentiable structure.

Proof. Let (U;, p;)ier be an atlas for M™ and (T'U;, ;);ec; defined as before.
For i, j € I such that TU; N TU; # 0 (note that this also implies that
U;NU; # 0), we consider the transition functions

D, O@i_l : (pi(UiﬂUj) x R™ c R*™ —, (pj(UiﬂUj) x R™ C R2m,
(2,€) — & 0 &7 (x,€). (2.20)

Using (2.19), we get the following explicit expression for the transition
functions (see Fig. 2.11):

@joéi_l(x,f) 4%([ ©; (x+t§)D

L2

d —1
il (g5 0 ¥; )(x+t§)>

pjo@; (x),d(pj o0 e €). (2:21)

By assumption (U;,@;)icr defines a Ck-differential structure on M™,
hence the transition functions ¢; o ¢; ' @ @,;(U; NU;) — ¢i(U; N U;) are
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C*-maps and moreover the differentials d(p; o <p;1) are C*~'-maps. There-
fore using (2.21), we have that

D;o @;1 S Ck_l((pi(Ui N UJ) x R™, (pj(Ui N UJ) X Rm) .
Similarly, we show that @ioéj_l = (@;0P; 1)1 is a C*-map, and thus ;o0d; !
is a C*~!-diffeomorphism. Hence, by Definition 2.16 the family (TU;, ®;):cr
defines a C*~!-atlas on the tangent bundle. — Note that we loose one degree
of regularity.

Now, let (1, V;)jes be another atlas equivalent to (U;, ;i)ier. From the
explicit expression (2.21) for the transition functions @; o Wj_l, we get that
they are C*~!-diffeomorphisms. By Definition 2.17 the systems of charts
(TU;, ®;)icr and (T'V;,¥;) e are equivalent, showing that the differentiable
structure on the tangent bundle T'M™ does not depend on the representant
of the fixed differentiable structure on the manifold M™.

TM™

d(e; ) de;

Fig. 2.11. Transition functions for the tangent bundle.

Next, we show that 7 : TM™ — M defined in (2.18) is a CF1-
submersion. — Clearly, the coordinate expression for 7 is given by
pjomo b (x,6) =pjo0p; (),

where (x,&) € ;(U;) xR™. Since 7 is already continuous by Proposition 2.37,
we deduce from the last equation that the projection 7 is also a C*~!-map
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(see Definition 2.27). Moreover, we have
rank d(p; o mo ®; 1) = rankd(p; o p; ) =m,

implying that the differential has maximal rank, since we deal with a m-
dimensional target manifold. Hence, the projection is a C*~!-submersion
(see Definition 2.30). O

We close this section with a definition which will be useful in the following.

Definition 2.39. Let M™ be a C*-manifold with k > 2 and s : M™ —
TM™ a C'-map, | < k — 1. Then the map s is called a C'-section of the
tangent bundle TM™ if it satisfies w o s = idpm, where 7 is the projection
defined in (2.18).

2.6 The Tangent Map Between two Manifolds

Now, we come to an important definition, which was already used in a spe-
cial case in order to show that the tangent bundle TM™ is a differentiable
manifold (see (2.14)).

Definition 2.40. Let M™ and N™ be two C*-manifolds and let f : M™ —
N™ be a C*-map with k > 2. The tangent map to f is the C*~'-map
df : TM™ — TN™,
W — dfp -] = [f o],
where v € C1([0,1], M™) with v(0) = p.
Remark. The tangent map therefore acts on equivalence classes of curves
by transporting then with the map itself to the target tangent bundle. In

addition, the map df}, : T,M™ — T, N"™ is linear. — Note that if N* = R",
then the tangent map reduces to

d

dfp - 7] = it

(fom)(®).

t=0
This is exactly what we already introduced in (2.14).
The definition clearly makes sense. — Indeed, if (U;, ¢;)icr and (Vj,v;) e

are two systems of charts for M™ and N", respectively, and if v ~ 7, where
5 € C1([0,1], M™) with 5(0) = p, we obtain (see (2.11))

d d _
il (o for)(t) = . (iofopilopjoq)(t)
_ d
=d(Wiofoe;'), 4 = _ wiem®
_ d -
=dWio o9 )0 gl (50N
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Hence, the desired result foy~ fo#7.

In a next step, we prove that the tangent map df : TM™ — TN"
is indeed a C*~'-map. — Let (U;, p;)ier and (Vj,1;)jes be two systems of
charts for M™ and N7, respectively, and (TU;, ;)ier and (T'V},¥;);es the
corresponding systems of charts for TM™ and T N™, respectively. First, we
show that df is continuous.

For £2 C TN™ open, we can write, since @;, i € I, is a bijection?,

(df)~ = Jo; ' ®l(df) ()N TUY, (2.22)
i€l
and, since ¥;, j € J, is also a bijection,

@;[(df) "1 () NTU;] = & WUy (w@enTvy)) | nTU;
jed

= o | U (@ o) (@2n1v)) nTU;
Li€J

= [w odf) " ( j(QﬁTVj))ﬁTUZ} . (2.23)
jeJ

This is equivalent to

U ((WJ odf o 45;1)—1(%(!2 ﬁTV]))) _

jeJ

By definition, the map ¥; odfo(ﬁfl is defined on the set ; (f_1 (Vj)ﬂUi) X R™
which is open in R?™. The coordinate expression for the tangent map (see
(2.25) below) reads, for (z,€) € ¢;(f~1(V;) NU;) x R™ C R*™ open,

(@5 0df 0 @7 )(2,6) = (¥ 0 f o0y (), d(wj 0 fo i )s - €) ER®™, (2.24)

The fact that f is by assumption a C¥-map translates to 1, o f o goi_l €
C*(R™,R™). Thus, we deduce that the expression (2.24) is at least continuous
since k > 2.

Moreover, by definition of the topology on TN", we deduce that by as-
sumption ¥;(2NTV;) is open in R?". From this and using (2.23), we then get
the openness of @; [(df )~ (£2)NTU;]. With (2.22), we deduce that (df) =" (£2)
is open in T'M™ and the continuity of the tangent map.

In order to show that df is a C*~!-map, it suffices to prove that the coor-
dinate expression of the tangent map df is a C*~*-map (see Definition 2.27).

4 Note that the brackets always indicate that we are dealing with elements of the
tangent bundle. Moreover, by (df)™*(£2) we mean the inverse image from a set
point of view, i.e., the set {[y] € TM™ : df - ([]) € 2 CTN"}
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— Let (2,€) € ¢i(f*(V;) NU;) x R™. Then, we claim that the coordinate
expression for df reads as

(@5 0df o @7 )(2,6) = (¥ 0 f o0y (), d(wj 0 f o i )s - €) €R*™, (2.25)

The claim then immediately implies the result.
To show the coordinate expression (2.25) we compute, using the Definition
2.40 of the tangent map,

df 0 @7 (2,6) "2 df ([T (@ + 1£))) = [F o 07w + 1))
This gives, using again (2.19),
(Zjodf o ®77Y)(2,€) = ¥;([f o oy 'z + 1))
= (450 fopi (@) dus[f o 97 (@ +16)])

=(wjofo<,o;1<w>,5 (wjofoso?)(xm))
t=0
= (jo fop; (x),dthjo fop; s €).

In summary, the tangent map df is indeed a C*¥~1-map.

We go a step further and introduce some useful notations for the tangent
map acting on the basis (2.15) of the tangent space T, M™ of M™ at the
point p. Let (U, z) a local chart and f : U — N". Then, for all p € U, the
expression (see (2.16))

By 2 = [ ) +1e)] . =L,

is denoted by

TryN™. 2.26
oz, ) € Trw) (2.26)
Let (U, y) be another chart, and we set y = (y1,...,ym) with y; : U — R,
fori=1,...,m. Then we have, for k=1,...,m,
Jy; (2.26) 0
29 = (dy;),y - ——

= [yi(@7 (@) +ter))]

=l (60 + 1)
— dlyioa gy - e =~ (g oz ) (@(p)).

6mk

This shows that we recover the notation introduced in Proposition 2.36. —
With these notations objects on manifolds look locally like in flat space (see
also Exercise 2.42).
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Proposition 2.41. Let f € C¥(M™,N") and g € C¥(N™,L'). Then go f €
Ck(M™, L") and for the tangent map of the composition the following formula
holds:

d(go f)=dg-df.

Proof. For [y] € TM™ we compute, using Definition 2.40,

d(go f)lv] = lgo f()] = [9(f ov)]
= dg[f o~] = dg(df[r]) .

The fact that go f € CF(M™, L) is left as an exercise. ]

Exercises.

Exercise 2.42. Let f : M™ — R". Using charts and the lemma of
Schwartz, show that for all 4,5 = 1,...,m we have

0 (05\_ 0 (0f
63% ij N 6xj 63:1 ’
Exercise 2.43. Let (U, z) be a local chart of M™. Show that for p € U, we
have 9

dzy, - %(P) =e;,

where {e;};=1,... m denotes the canonical basis of R™.

.....

2.7 Vector Fields on a Manifold

We already studied vector fields on Euclidean spaces in Section 1.2. Now, we
want to study the more general case of vector fields on manifolds . Apart
from some additional results, we will recover those of Euclidean spaces. We
start with the following basic definition.

Definition 2.44. Let M™ be a C*-differentiable manifold of dimension m,
k>2. A C'- vector field on M™ with | <k — 1 is a C'-map

X M"—TM™,

such that mo X = idpm, where m : TM™ — M™ 1is the canonical projection
of (2.18). Equivalently, a C'-vector field can be defined as C'-section of the
tangent bundle (see Definition 2.39). Moreover, we denote C*-vector fields
on M™ by X(M).
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Remark. At each point of the manifold we thus assign a tangent vector in
such a way that the dependence on the base point is C'-smooth. The basis
of the tangent spaces introduced in (2.15) gives the standard example for a
C'-vector field.

Let (U,x) be a chart about p € M™. Then a vector field can be written
locally, i.e., in terms of the chart (U, z), as

X() =Y. X)), (227)

i=1

where the X; : U — R are functions and {%(p)}izl m denotes the basis

.....

of T, M™. Note that the functions X; are uniquely defined by the chart (U, z).
The regularity of the functions X;, ¢ = 1,...,m, can be deduced from the
following

Proposition 2.45. Let M™ be a C*-manifold and let X : M™ — TM™
such that o X = idym. Then the map X is a C*-vector field with | < k — 1
if and only if, for all charts (U, z), we have that X; € C{(U,R),i=1,...,m,
where the functions X; are given by (2.27).

Proof. Consider the map
droXox ':2(U) CR™ — R?™.

Hence, the map X is a C'-vector field, [ < k — 1, if and only if, for all charts
(U, ), we have that dz - X € C'(U,R®™). From Exercise 2.43 and the local
expression (2.27), we then deduce by linearity

dxy - X (p) = dx, <Z Xi(p) %(M) = ZXi(p) €.

Therefore, X is a C'-vector field if and only if X; € C/(U,R), i = 1,...,m,
for all charts (U, z). O

We come to two other important definitions.

Definition 2.46. Let M™ be a C*-manifold, U C M™ open and let X be a
C'-vector field on M™ with 1 <k —1. A map

. IxU—M™, ICR,
solving for all (t,p) € I x U the equations

orx

is called the (local) flow of the vector field X.
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Remark. Note that (2.28) can be written precisely as, using the notation
introduced in (2.26),

orx 0

Moreover, we will often write I'X for I'(¢,-) with t € I.

Definition 2.47. Let f : M™ — N be a C*-diffeomorphism and let X be
a Ck-vector field on M™. We define the push-forward of X by f to be the
following C*~-vector field on N™:

£ X)) = df X (F7'(B), pEN". (2.29)

Remark. Note that the definition requires the map f : M™ — N" to be a
diffeomorphism, since otherwise the right-hand side of (2.29) is not necessarily
a vector field. Again we loose one degree of regularity because of the defining
tangent map.

The next proposition gives an explicit expression for the flow of the push-
forward in terms of the flow of the vector field itself.

Proposition 2.48. Let f : M™ — N7" be a diffeomorphism and X a vector
field on M™ with corresponding flow I'X. Then, the map

i .=forXof':N*— N" (2.30)
is a flow for the push-forward f.X.

Proof. For p € N™ we compute, using Proposition 2.41 and the fact that X
is a flow for X,

orf~ d
S (0) =5 (fo i o f7) (D)
0

= d(forX (@) 5 (7))
= dfFf,X(f*I(ﬁ))(d(FtX)f*I(ﬁ) : %(f”(ﬁ)))
= dfr g1 - X (LX)
The right-hand side can be written differently
dfp=1(forXor1(p)) 'X(f_l(f oI} o f_l(ﬁ))) :

By Definition 2.47, we just obtain

orj-*
ot

(p) = dfffl(foFthffl(;ﬁ))X(fil(f oI o fﬁl(ﬁ)))
= [X(fo I o f71(P)),
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showing that I} tf ** is the flow for f,X (since I Of “X(p) = p is obviously veri-
fied). O

This result allows us to generalize Theorem 1.20 for R™.

Theorem 2.49 (Local Existence of a Flow). Let M™ be a CF+l-
manifold and let X be a C*-vector field on M™ with k > 1. Then there exist
an open neighborhood U of p € M™ and a C*-map I'* : (=T, T)xU — M™
for some 0 < T € R such that, for every (t,p) € (=T,T) x U, we have

orx ¥ ¥

< (Lp) =X (tp),  IF0,p) =p.
Proof. Let p € M™ and (U, z) a chart about p. We define Y := z, X, which
is a C*-vector field on x(U) C R™. (Here, we assume that M™ is a CFT1-
manifold in order for the push-forward to be a C*-vector field.) By Theorem
1.20 there exists a C*-map Y : U’ — R™, U’ C x(U), being the local flow
for Y. Using the previous Proposition 2.48 and since X = (z71),Y, we have
that the C*-map

FtX =z7! oFtY ox

is the local flow for X. O

Remark 2.50. Using Proposition 2.48 in the same way as in the proof of
Theorem 2.49, we can extend the following results for R™ to manifolds:

a) the Uniqueness Theorem for local flows of C''-vector fields (see Theorem
1.21);

b) the Proposition 1.22 concerning the composition of flows and

¢) the Straightening Map Theorem 1.25.

For compact manifolds, we have also global existence.

Theorem 2.51 (Global Existence of a Flow). Let M™ be a compact
C* 1 _manifold with k > 1 and let X be a C*-vector field. Then there exists
a global flow for X, i.e., a C*-map I'Y : R x M™ — M™ such that, for
every (t,p) € R x M™, we have

orx x x

W(tp):X(F (t.p)) . r*0,p)=p.
Moreover, the map X is a C*-diffeomorphism from M™ into M™, for all
teR.
Proof. a
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2.7.1 The Bracket of two Vector Fields on Manifolds

Definition 2.52. Let X and Y be two C*-vector fields on a C**t'-manifold
M™ with k > 1. We define the bracket of X and Y to be the following
C*= 1 vector field:

X YIp) = —|  (7)X)p), peM™. (2.31)
t=0
Remark. Again we loose one degree of regularity (see Definition 2.47).

Recall that we already know that for small enough “time” ¢ the flow I”
locally exists and is unique. Moreover, observe that

d y _ o (@)X () - () X) (p)
gl (T X)(p) = fim, ——
iy (X)) — X(p)
t—0 t ’

and using the Definition 2.47 of the push-forward, we arrive at

1
P Y]) = lim 3 (@) s ) - X (25 0) = X)) - (2:32)
With these equivalent expressions for the bracket, it is clear that its definition
makes sense, since we compare vectors in the same tangent plane, i.e., with
the same base point. When this is not the case anymore, we need the theory
of connections which we will treat later. — Note that the bracket [X,Y] is
often also denoted by Ly X being the Lie derivative of X in the direction
Y (see Section 9.92 for more details).

Fig. 2.12. The bracket of two vector fields.

The following proposition gives an explicit formula for the bracket in a
local chart.
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Proposition 2.53. Let M™ be a C**-manifold and (U, z) be a local chart.
Moreover, let X and Y be two C*-vector fields on U, written for p € U as

X0)= Y Xge ). V)= Y Vil ().

Then, we have for the bracket

XY =3 Y (X050 - 0 G w) ) 23
Proof. For all f € C*1(M™ R), we have

=d(fo FtY)Fl,t(p) X (IY(p)) - (2.34)

Now, we expand f o I'Y (p) : R — R with respect to the “time” t:

Fort )=o)+ [ L(rork)mds
= f(p)+tH(tp),

where
ory

1
1) = [ iy - G0 ds,

and H(0,p) = df, - Y (p). Inserting this expansion in (2.34), we get

dfp - ((Fty)*X) (p) = dfrft(p) ) X(Fft(p)) + td(H(t, '))pgt(p) ) X(Fft(p)) :
From this we obtain, with the definition of the bracket,

(- (7). X))

t=0

(dfl“ft(p) : X(Fft(P)))

t=0
L d
dt

&y (X Y)0) = &

d

dt

. (t A(H(L)) v X(Fft(p))) . (2.35)

The first term equals (chain rule)

—d(df - X),- Y (p), (2.36)

where the definition of the flow is used. The second term becomes (product

rule)
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d(H(0, -))Fg(p) X (I (p) = d(df - V), - X(®). (2.37)

Inserting (2.36) and (2.37) into (2.35), it follows that
dfy - [X.Y)(p) = —d(df - X) - Y(p) +d(df-Y), - X(p).  (238)

Let (U,z) be a local chart about p € M™ and write © = (21,...,Tpn) :
U— R™ Weset f =x; € C-*1(U,R), and deduce from (2.38) that

(dzi)p - [X, Y](p) = (dYi)p - X(p) = (dXi), - Y (p),

where we used that (dz;), - X(p) = X;(p) and (dx;), - Y(p) = Yi(p) since
(dx;)p- Bz (p) = di; (see Exercise 2.43). Using again the local representations

for X, Y and the notation introduced in (2.26), we end up with (remember
also the remark after Definition 2.40)

(o) X.Y)(0) = (@YD)~ | S X, (0)-0) | = Z V)5
=Z( Do >—Y<>Zii<>) (2.39)
This implies the desired formula (2.33). O

As a direct consequence of the last proposition, we get the

Corollary 2.54. With the usual notations the bracket of two vector fields is
anti-symmetric, i.e.,

[X,Y] = —[Y, X].

Proposition 2.55. Let ¢ : M™ — N" be a diffeomorphism and let X, Y
be two vector fields on the manifold M™. Then we have

P [X, Y] = [0 X, Y] (2.40)
Proof. For the proof it is useful to have the following composition in mind:
—1 FY

N™£s M™ ~55 M™ 5 N™.

We then compute, for p € N™,
e ((T)X) (D) = e (1Y) 1 (- X (120)) ) ()
Y Y, —1

= d‘PLpfl(p) © (dFt )pi’t(tpfl(p))'X(F—t(cp (p)))

X (I o™ (p) -

= d((P [e] FtY)Fftotpfl(p)
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This right-hand side can also be written as
Y - Y -
(ol 09™) ory ouiy ©dPrY 0o X([To9™ (p) . (241)

We remember that I'7*Y = poI'Y 0 p~! (see Proposition 2.48). Thus (2.41)
reads as

P ((Fty)*X)(p) = (dFt¢*Y) °© d‘PFf,,Osfl(p) ’ X(Fft °© Wﬁl(p)) )

¥ (p)
or equivalently, for the right-hand side,

oxY . -1 Y -1
(ar )Ff;‘y(p) ° s ((gor¥, 01 0) X(e ool ow ).
Using again Proposition 2.48, we arrive at
SO*((FtY)*X)(p) = (dFtLp*Y)Ff:Y Odwkpfl((lﬂf:y)(p)) X(sail(l_’f;y(p)))
= (arg™) e X (1% () . (2.42)

For later use, we use again Definition (2.47) of the push-forward to obtain

P ((Fty)*X) (p) = (Ftsa*Y)* (@*X) (p) . (2-43)

Taking the derivative with respect to the “time” ¢ in (2.42), leads to

(p)

*Y
ey (p)

d d

Tt * ry «X = = are=Y .4 oY

G| e DX = G (e L e X (05 )
where the Definition 2.52 for the bracket is used. 0

Remark. Concerning the regularity of the vector field in (2.40), the bracket
and the push-forward both reduce the degree of regularity by one. And this
obviously holds for both sides of the equality (2.40).

Proposition 2.56 (Jacobi Identity). Let M™ be a C**1-manifold and let
X, Y, Z be three C*-vector fields on M™ with k > 2. Then we have

(X, [V, Z]| + [Z,[X,Y]] + [V,[Z,X]] = 0. (2.44)

Proof. First, we define the C*~1-vector field W on M™ to be the bracket
[X,Y] of X and Y. By Definition 2.52, we then have

d
dt
d
dt

(W, Z](p) =

o ((th)*W) (p)

(X)), (2.45)
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On the other hand, Proposition 2.55 implies that
(L)X, Y] = [(I7). X, (I7).Y] ().

Inserting this into (2.45) leads to

d

[[X,Y],Z](p) = E o

[(th)*X, (FtZ)*Y} (p)- (2.46)
Differentiating the right-hand side like a product and using again the defini-
tion of the bracket, we end up with

X, Y], Z](p) = [[X, 2], Y](p) + [X, [V, Z]] (D) -
Due to the anti-symmetry of the bracket, this is equivalent to (2.44). O

The bracket of two vector fields measures the extent to which their flows
fail to commute.

Proposition 2.57. Let M™ be a manifold and let X, Y be two vector fields
on M™ with corresponding flows I'X and I'Y . Then we have that [X,Y](p) =
0, for allp € M™, if and only if the corresponding flows commute, i.e.,

rXorY=rY¥orX, (2.47)
for all times for which the flows exist.

Proof. From Theorem 2.49 the flows of the two vector fields X, Y exist and
are (local) diffeomorphisms (see Corollary 1.23 which can be extended to
manifolds). — First, we show that

()X, Y] = (1) (2.48)

Indeed, since I'X, = I7* o I';* (see Proposition 1.22), we deduce from the

chain rule that
(IF)-Y = (I7)u(I).Y .

Then, it follows

d d
_(th)*y = E (Ft)is)*y = (th)
s=0

d
FX
dt

=
ds|,_o °
Using Definition 2.52 of the bracket, we obtain

d
%(th)*y - (FtX)*[Xa Y] )

as claimed.
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Now, we assume that [X,Y] = 0. Then from (2.48) and Proposition 2.48,
we deduce that <
[‘SY :[‘S(Ff )Y :FthFsYo]—’i(t,

so that (2.47) follows.
Conversely, assume that the flows commute, i.e., I;X o I'Y = I'Y o I'X, or
equivalently,
IXorYorX=rr.

Applying again Proposition 2.48 to I'/X, we deduce that (I7X).Y =Y. Hence,
by (2.48) the bracket of X and Y vanishes. a

The next theorem gives a geometric interpretation of the bracket.

Theorem 2.58 (“Double” Straightening Theorem). Let M™ be a man-
ifold and let X, Y be two C'-vector fields on M™. Moreover, assume that
there exists p € M™ such that X (p) and Y (p) are linearly independent. Then
the following assertions are equivalent:

(i) There exists a local chart (U,y) about p such that, for all p € U, we have

B B
- = dY(p) = —
o (p) and Y(p) 9

(i) For all p € U the bracket vanishes, i.e., [X,Y](p) =0.

X(p) (p) -

Proof. For (i) implies (ii): We apply the local coordinate expression (2.33) for
the bracket to X (p) = é,%l(p) and Y(p) = 6%2(])), p € U. A straightforward
computation then shows that [X,Y](p) =0, for all p € U.

For (ii) implies (i): Let (U’,z) be a local chart about p € M™ such
that p = 0. (Note that by a slight abuse of notation we identify points
(1,...,2m) € R™ with points p € U’ via the chart.) After applying a linear
transformation, we may assume that

9_(0) and Y(0) = -2~ (0).

X = — -
(0) 6.1‘1 6.1‘2

This is possible since X (0) and Y'(0) are linearly independent by assumption.
By Theorem 2.49, there exist local flows I'X and I'Y" for the C'-vector
fields X, respectively, Y. Consider now the map

¢:UCR™ — M™,
(1,79, 7") — @(x1,22,2") 1= F;ff;; ((0,0,x’)) ,
where we write z = (1,22, 2') = (21, %2, 23, ..., &) € U and U is prescribed
by the local flows I';X and I'Y. From Theorem 2.49 and Corollary 1.23, which
can be extended to manifolds, we deduce that ¢ € C*(R™, M).
In a next step, we calculate the differential of ¢ at (0,0,0) € R™. Using
Definition 2.46 of the local flow, it follows
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d

0
d¢(0,0,0) t€1 = ah

F}f(FOY((()vO’O)) :X(O) = 8—1'1(0)

h=0

It is important to note at this stage that since [X,Y] = 0, the corresponding
flows X and I'Y' commute by Proposition 2.57. Hence, we get

d

d
dppooyes= —| I5IY((0,0,0) = —| I} I;((0,0,0)) =Y (0) = =—(0
( ) dh ho 0 ( ) dh b0 0 ( ) 81.2
Moreover, for i = 3,...,m, we have
d d 0
ddo00)-€i= = I5 Iy ((0,0,he;)) = —|  hei=5—(0).
(0.0.0) dh|,_, ( )= o oz,

(Note again that we write h e; for the point in M corresponding to he; € R™
via the chart.) In summary, we see that d¢ g 0,0y is an isomorphism and thus,
by the Local Inversion Theorem 1.10, the map ¢ is a local C!-diffeomorphism,
say, onto U C M™ open.

Then, we define ¢ = ¢~. For z = (x1,22,2') € ¢~1(U), we compute,
using Proposition 1.22 extended to manifolds,

d d
d¢(m1,z2,m’) ‘€1 = % o Fx)iJthz); ((05 07 1‘/)) = % o Fff([‘ifpmyz ((07 0? II))
d
= R o) = X (o).
h=0

and similarly, because the flows I';X and I'Y commute by assumption,

d d
AB (s im0 €2 = - rxXry .,((0,0,2)) = - rxryry ((0,0,2)
h=0 h=0
d
= = LYrXry ((0,0,2") =Y (é(x)).

h=0

This completes the proof, since ¢ = (y1,...,Ym) : U C M™ — R™ gives
rise to local coordinates on U satisfying, for all p € U,

0

0 (p) and Y(p) = =—(p).

X = — = —
(p) oy 0y

a

Remark. Note the similarity in the proofs of the two “Straightening Theo-
rems” 1.25 and 2.58.



3 Differential Calculus on Manifolds

3.1 Differential Calculus on R™

3.1.1 Skew-symmetric Forms on R™

Definition 3.1. A skew-symmetric or alternating p-form o« on R" is a
map
a:R"x...xR" —R
S ——
p — times

such that

(i) it is linear in each factor, i.e., with A\, p € R we have, for allk =1,...,p,

a(vr, ..., Avg+ pwe, ..., vp) = AV, ..., Uk, ..., Vp)

tualvr, .., Wey..o,vp),  (3.1)

where vy, ...,v, € R" and w, € R";
(i1) it is skew-symmetric, i.e., for all permutations o € S, of {1,...,p}, we
have
(Vg (1) -1 Vo(py) = (D)7 alvr, ... 0y, (3.2)

where (—1)I°1 denotes the signature of the permutation with |o| = p — k,
k being the number of orbits.

Moreover, we denote the set of skew-symmetric p-forms on R™ by A\’ R™.

We use the following conventions:

0
/\ R" =R,
1
A\ R = R")".
Lemma 3.2. The set A" R™ has the following properties:

(1) If there exist i # j such that v; = v; € R™, then a(v1,...,v,) = 0.
(ii) For p > n, we have \"R"™ = {0}.
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(iii) The set AP R™ is an R-vector space.

Proof. For (i): Let ¢ € S, such that (i) = j, o(j) = ¢ and o(k) = k for
k #,j. From (3.2) and the fact that v; = v; by assumption, we deduce

a(vi, ..V, Vg, Up) = — (U1, o, Uy, Uiy, Up)
=—a(V1,..., V.., V5, ..., Up).

This clearly implies a(v1,...,v,) = 0.

For (i): Let v1,...,vp, € R™ with p > n. Then there exists v; such that
v = Z#i Ajv; for some A; € R. Assuming, for instance, ¢ = p we compute,
using (i),

a(vr,...,vp) =« vl,...,vp,l,g Ajv;

J#
= Z)\] Oé(’Ul,...,’Up_l,’Uj) =0.
J#i
For (iii): The vector space structure for A" R™ is straightforward. O

Ezample 3.3. The map o : R — R, v = (v}, v?,03) — o' is a skew-

symmetric 1-form on R3, and the map a : R x R® — R, (v, w) — v?w? —

v3w? is a skew-symmetric 2-form on R3. — Note that the determinant is the

standard example for an alternating n-form on R”.

With the following operation we can pass from one “degree” of a skew-
symmetric form to another.

Definition 3.4. Let a € A\PR"™ and 8 € N\"R". We define the wedge or
exterior product of a and (3, denoted by a N[ € /\p+q R™, in the following
way:

(=1l
plg!

Oé/\ﬁ(’t)17...,’()p+q): Z

0E€Spiq

O‘(UU(l)v T 7vtf(p)) 6(Ua(p+1)7 T ’UU(P+Q)> :
(3.3)

Remark. Tt is easy to check that a A § is indeed a skew-symmetric (p + ¢)-
form. Note also that for o € /\0 R™ the exterior product reduces to usual
scalar multiplication.

Ezample 3.5. Let « € \' R™ and 8 € A' R™, then we have

a A B, w) = a()B(w) — a(w)B(v). (3.4)
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In particular, let {ei}izl,___m denote the canonical basis of R™. Then we
denote by {ef}i=1,. n the dual basis of /\1 R"™ defined, for i = 1,...,n, by

er(v) :=v", v:ZUJej.
j=1

From this and (3.4), we see that

e; Nes(v,w) = ef(v)e] (w) — ef (w)ef (v) = v’ w —w' v’ (3.5)
Proposition 3.6. Let « € A\’ R" and 8 € \?R™. Then the exterior product
a) is “anti-commutative”, i.e.,

aNpB=(-1)PIBAa;
b) is associative, i.e., if v € N"R", then
(@nB)Ay=aA(BA7);

c) is distributive, i.e., if v € NYR"™, then

alN(B+y)=aAnB+aAnp.
Proof. O

As an application of the previous proposition, (3.5) extends to

Z (=1)lolyim@ @ (3.6)

0ES,

e N Nep (V1. ,0p) =

This result has an important consequence.

Proposition 3.7. Letp < n and {e;}i=1,....n the canonical basis of R"™. Then
the set

* *
{ei, Ao e hi<ii<<ip<n

form a basis of N\" R™. And AP R™ is thus of dimension C? = ——

p!(n—p)!”
Proof. Let ey, ..., ex, € R™ be p basis vectors. Using (3.6), we then obtain

* * _ o] sl o (p)
eil/\.../\eip(ekl,...,ekp)— E (—1)‘ ‘6161 "‘5kp .
oES),

This expression is different from zero if and only if {41, ...,ip} = {k1,..., kp}s
showing that {e, A...Ae] }ii<..<i, is a free (linearly independent) family.
Moreover, for a € A" R", we compute
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(31) . .
alvr, ... vp) = Z vt o ey, eiy,)

W1 5eenrip

— to(1) io(p) , ,
= E E o) oy €y gy s s Cig ) s

i1 <...<ip 0ES)
where we used Lemma 3.2 (i). Using again (3.6), we obtain

3.2 o o
a(vi,...,vp) 2 Z Z o7 oy (=D lader . e)

11<...<ip 0ES)

= Z aliys ..o eq,) e Ao Aep (Vi)
11 <...<ip

Thus {ej A... A e;‘p }ii<...<i, is also a generating family and we have

a= Z alei, - nep)e; Ao Aejp (3.7)

i1 <...<lp
O
Next, we define an important natural operation on alternating forms.

Definition 3.8. Let ¢ : R® — R™ be a linear map and let « € A\ R™. We
define the pull-back ¢*a € N\ R"™ of a by ¢ by

(e*a)(vi,...,vp) = a(p(v),..., o)),
where vy, ...,v, € R,

Remark. The map ¢* : APR™ — AP R" is linear and satisfies also, for «,
6 c /\P Rm,
P (anB)=p ane'B. (3.8)

3.1.2 Differential Forms on R™

The notion of alternating p-forms on R™ enables us to introduce another
important object in differential geometry.

Definition 3.9. A C*-differential p-form on an open set U C R" is a
C*-map from U into A" R"™. We denote this space by 28 (U) = C*(U, A\’ R"™)
or simply 2P (U) in the case of C*-differential p-forms.

Example 3.10. Let f € C*1 (U, R) with its differential defined in Section 1.1.
The differential can be seen as the map

df € C* (U, (R™)*) = C*(U, \ R™) = 2L(U).

In particular, the differential of the k-th coordinate function zj : U —
R (k = 1,...,n) of R™ reads as (dxy), - e; = &, * € U; hence, dxy €
C>=(U, \' R") is the constant map z — e}, on U.
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Definition 3.11. Let o € 27(U) and 8 € 2}(U). We define the wedge or
exterior product a A (3 € .Qerq(U) of the differential forms « and (8 by the
map = — o(z) A B(x) € CF(U, \PTIR™).

Remark. Clearly, Proposition 3.6 extends to differential forms on R™.

Since {ej A... A e }ir<...<i, is a basis of AP R"™ by Proposition 3.7, we
deduce that « is a C*-differential p-form on U C R™ if and only if there exist
CP C*-functions

ag U— R,

x+— ar(z) = a(z) (eil, . -,eip) )

where I = {(i1,...,4p)|i1 < ... <ip}, such that (see (3.7))

az) = Z ar(z)de;, () A... Ndz;, (x), (3.9)
I

for all x € U. — Note that in the following the argument of a differential form
will often be dropped.
In particular, (3.9) implies for Example 3.10 that

df = Z o dxy, € QL(U), (3.10)
k=1
of

where z- means the usual partial derivative of f € Ck(U,R) at x in the
k

direction ey, i.e., ;—;;(:E) =df, - es.

Now, we introduce an important operation on differential forms which can
be interpreted as extension to the usual differentiation of real valued functions
on R™. — We denote by d the map assigning to a function f € C**1(U,R) its
differential df, i.e.,

d: 20,,(U) = CH(UR) — 0}(U).

This can be generalized to a mapping, also denoted by d, from 27, +1(U) into

Qg“(U), where 0 < p < n — 1. The explicit expression of d is given in the
following definition.

Definition 3.12. Let
a= Za;dmil A.ooNdag, € 20 (U).
I

Then, we define da € Qerl(U) by

da =

- 0
Zﬂdml/\dmil/\.../\dm . (3.11)
= T O ’

The operation d is called the exterior derivative.
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Remark. Note that d is a linear operation, i.e., for a, 8 € 2P(U) we have
that
dla+ ) =da+dg. (3.12)

And comparing the defining equation (3.11) with (3.10), we see that the
exterior derivative coincides also on £2°(U) with the usual differentiation.

Moreover, we observe that

n

0
d(agdx;, N... Ndx;,) = E %dzl/\dzil Ao Ndxg,
l
=1

even if {i1,...,4,} are not ordered in a increasing way. Indeed, if o € S, such
that iy(1) < ... < iy and a = ar (—1)lel dTi,qy A ... ANdzi,, . then with
(3.11) we get

d(agdzg, A...Nd;,) = d(og (-1)17Vdw, AL N dw,)

—~
—

ar

(Oq (—1)“7‘) dzy N dxi, ) N Ndx,,

I
M=
QJ‘Qj

Z

N
Il
N

Dday Ndwiy AN d

I
Ms
Qv‘%

T

N
Il
N

Relation to Vector Analysis in R3

Now, we want to study the relation between exterior derivative and well-
know operations of vector analysis in R?. — Let n = 3. We already know that
the exterior derivative of a function corresponds to the gradient (see (3.10)).
Moreover, let a = a1 dzy + az drg + ag drs € 2H(R3?). We compute

6041

Oa
da—a—deg/\dxl—l—a de3/\da:1

Oag Oag
+a—1 dri N\ dxy + — 92 dl‘g A dxo
das

+a—1 dx1 A dxsg + 2—2 dxo A dxs

_ (daz  day Oa;  Oas
= (81'1 (91’2) dzq1 N dxg + (81‘3 (91'1> drs A dxq

6043 6042
+(8—x2_8—x3) dro N dxs .

If we identify the exterior product dz;y1 A dx;—1, where the indices are in
7./37, with the basis vectors e; (i=1,...,3) on R?, we observe that the exterior
derivative da of a 1-form corresponds to rot e, with a = (a1, g, aeg) vector
field on R3.
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Let now 3 € 22(R3) with
B = B1dxs N\ dxs + Podrs A\ dxy + B3 dry N dxs .

A simple calculation shows that

dpg = %+%+% dx1 N dxo Ndzs .
81‘1 81‘2 (9353

Hence, if we identify dx; A dxo A dxs with the scalar 1, we observe that dg
corresponds to div 3, with B = (31, B2, 33) vector field on R3. — In summary,
in the three-dimensional case the exterior derivative translates to well-known
operations of vector analysis.

The “Leibniz-rule” in the following proposition shows that the exterior
derivative is a derivation.

Proposition 3.13. Let a € 2P(U) and 5 € 29(U). Then we have
dlanp)=danp+(—1)Pands. (3.13)
Proof. We first prove (3.13) for
a=ardry N...Ndxg,, B=Bsdxj A...Ndx;,,

where ay, 35 € C®(U,R) for some choice of indices i1 < ... < i, and
J1 < ... < Jg- The exterior product reads as

alNB=arBjdry N...Ndx;, Ndxj, A... Ndzxj, .

We compute the exterior derivative of the wedge product, using several prop-
erties of the wedge product (see Proposition 3.6) and the definition of the
exterior derivative:

)
daAB) = =—(as Bs)dz; Adzi, A... Ndxi, Adaj, A... A daj,

= 6:51
i 6041
= Z—dwl/\da:il/\.../\da:ip ABydzj A...Adzj,
z
=1
-l—zn:(a]dxl/\da:i /\.../\dazi)A%dm A Adx;
1 P 81‘[ J1 Jq

=doAB+ Y (ardi A...Adzi,) A (71)1)6_3;;

=1
=da AN+ (-1)PandB.

dxy N\ dxj, /\.../\da:jq

By linearity of the exterior derivative, we easily establish the proof for general
«a and f. O
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Proposition 3.14. The map

dod: QP(U) — QPT2(U),
where 0 < p <n — 2, is equal to zero.

Proof. Again it suffices to prove the proposition for a = ay dx;, A... Adx;, €
27 (U) and to conclude by linearity. We know that

n

Oa
dazza—mjdazl/\dazil/\.../\dxip.
=1

Then we compute

"0
d(da) = Z ail'll dx; N\ d.’L‘il VAN d:];ip>
=1
- ZZ L day, Aday Adai, A A da,
P — al’kaml P

Since by the Lemma of Schwartz

62041 62(1[

(933]491‘1 B amlal’k ’

and clearly dzy A dx; = —dx; A dxy, we obtain (the case k = [ is trivial)

0

82
d(da) = 3"+ day Aday A dai, A A dag
v 0k0m, ’

aQOq
+ kz>l B0, dxy Ndxy ANdxg, A ... Ndwg,

(9204[
:Z drg Ndxy Ndxi, A ... ANdx;
el 63%6;51 P

82
= U g Aday Adi, A Adzi, =0.

We denote by
U) =g W) (3.14)

the associative, graded and “anti-commutative algebra of differential forms.
This algebra is often called Grassman algebra or exterior algebra of differen-
tial forms on U.
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Theorem 3.15. There exists a unique linear map d : 2(U) — 2(U) such
that

(i) d: QP(U) — QPTHU);
(ii) on Q°(U) the map d coincides with the differential of functions;
(i) for all a € 2P(U) and § € 29(U), we have
dlaNB)=danp+ (-1)PaNdf;

(iv) and dod = 0.
Proof. O

Next, we want to answer the question how to transport differential forms.

Definition 3.16. Let ¢ € C”“/(U7 V), with k' > k + 1, where U and V open
sets of R™ and R™, respectively. Moreover, let o € 20(V'). We define the
pull-back o*a € 27 (U) of a by ¢ in the following way:

0y = (dpe)" dp(a) zeU. (3.15)
Remark. By Definition 3.8, we get, for vq,...,v, € R?,
O g (V1, .y Up) = Q) (dps -1, .. dps - vp) zelU. (3.16)
If o € 2°(V), then obviously p*a = a o .

We prove that ¢*« is indeed a C*-differential p-form on U. — Clearly, we
have that ¢*a, € AP R" for all z € U. Since {ef A ./\e;‘p }ii<...<i, is a basis
for A" R", we can write

Qo = (paz(eil,...,eip)eil/\.../\eip.
I

And the definition of the pull-back gives
. dp dp . "
= 2 | = N B A AN S
e = B (G0 ) 6406
Since by assumption o € 2F(V) and ¢ € C¥ (U, V), we get that

dp
T Qp(a) (ﬁ(x), e (:I:)) e C*(U,R),

implying ¢*a € 22 (U). — Note that the regularity of the map ¢ determines
the regularity of the pull-back.

The properties of the pull-back are summarized in the following proposi-
tion.
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Proposition 3.17. Let ¢ € C®°(U,V) with U C R™ open, V. C R™ open,
and let oo € 2P(V).

(i) For all B € £2°(V'), we have

prlatf)=¢ratep. (3.17)
(i) For all B € 29(V), we have

e (aAB)=p"aN¢™B. (3.18)
(iii) For ¢ € C(V,W) with W C R open, we have

(Y o)y =¢"(¥"y), (3.19)
where v € (2P(W).
(iv) The exterior derivative and the pull-back commute, i.e.,
d(p*a) = ¢ (da) . (3.20)

Proof. Let x € U C R™ and v1,...,v, € R". For (i): We compute, using the
vector space structure on /\p R™,

e (a+ B)a(vr,. .., vp) = (@ + B)p(a) (dps V1, .. dipy - vp)
= Q) (g - v1,. .. dps - vp)
FBp(a) (dpz - V1, . .., dog - vp)
=@ oz (vi,...,0p) + "Bz (vi,. .., 0p) .

For (ii): With Definition 3.4 of the exterior product, we obtain

o~ (a A ﬁ)z(vl, e Upig) = (a A ﬁ)¢(z)(dg0$ U1y AP Uptg)
—1)lel
= Z W Ayp(x) (d@x “Vo(1)y - - 5d§0x ' Ua(p))
0ESp1q

5«/)(1) (d@x Vo (p+1)s-- > dwz : va(p-i—q))
(71)‘0‘ *
= Z ' am(va(l)a cee 5”0(1)))

Ig!
0E€Spiq P

'(p*ﬂx(va(p-‘rl)? e ,Ug(p+q))
= a; A 50*51(1)1, s ’UPJrq) :

For (iii): Recall that for all v € R™ the following formula for the compo-
sition holds (see Proposition 1.4):

d(p o)y -v= Aoy - dps - v
This implies, for v € 2P (W),
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(1/1 © (P)*'Yz(vla S aUp) = Ypop(x) (d(’l/} © 90)95 *ULy - ,d(’lﬁ o (P)z : Up)
= V(o) (MWp(a) - (dpa V1), -, d(e) - (dpa - vp))
= 1/} Yo (x d(Pz U1, - - d(pﬂc U;D)

)(
& (%) (01,

For (iv): First, we prove the statement for functions f € £2°(V). For
v € R™, we deduce, using Definition 3.16,

(‘P*df)x(v) = df&p(m) (d(PI “v)
=d(fop)s-v=(dl¢"f)),(v).
Hence, for functions we have that
@ (df) = d(¢" f). (3.21)

For the general case, let

a:Zadejl/\.../\dyjp e NP(V),
7

where (y1,...,ym) denote the canonical coordinate functions on R™. Using
(3.17) and (3.18), it follows

w*a:ZaJogo O dyj, N N dy;,
J

Writing y;, o = ¢4, : R" — R, for k = 1,...,p, it follows from (3.21) that

Lp*a:ZaJogp dej, N...Np"dp;, .
J

Applying the exterior derivative, we get (recall that d o d = 0)
dlp*a) = Zd (ago@)Ndpj, A...Ndpj,
(1 Z Z aJ 2 dzp Ndpj, N... Ndp;j,
J k=1

By Proposition 1.4, we obtain

= 33 G0N 52 dendes i

J k=11=1

(3.10) Zi day
0

Q
owpdpy Ndpj, A...Ndpj,
7 =1 7

* - an
© (ZZa—yldyl/\dyjl/\"‘/\dij>

J =1
= ¢*(da),
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where the definition for the exterior derivative was used in the last line. O

As an application of the proposition, we can compute the pull-back ex-
plicitly. — Let
azZadejl Ao Ndy;, € 2P(V),
J

where (y1,...,ym) denote the canonical coordinate functions on R”. Then
the pull-back becomes, using (3.17) and (3.18),

Yra= Z " (04'] dyj, N.. . A\ dyjp)
J

= Z Y ag o dy; N N dy;,
J

Writing again y;, o o = ¢;, : R" — R, for £ =1,...,p, we obtain
pra = asop dy,op)A... Ndly;, o p)
J

:ZO[JO(P doj, N...Ndpj, . (3.22)
J

With (3.10), we arrive at

Dy, Op;
gp*a:ZaJogﬁ Z 8571 aij.p dziy A...Ndxg, . (3.23)

3.2 Differential Forms on Manifolds

3.2.1 The Cotangent Bundle

In the last section, we have seen skew-symmetric (alternated) p-forms on
R™. Similarly, for an arbitrary finite dimensional vector space E, we define
AP E* to be the alternated p-forms on E. Note that all the results obtained
in Section 3.1.1 remain true for this more general setting.

Alternated p-forms on a vector space play an important role in the context
of manifolds. — Let M be a m-dimensional C*-differentiable manifold, & >
1, and p € M. We already know that the tangent space T,M at p is a
m-dimensional vector space (see Definition 2.35). Denoting its dual space
(T, M)* by Ty M, we denote by

p *
N T;M
the alternated p-forms on T,M. From a “set” point of view the cotangent
bundle of M is then defined by
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P, P
N1TM= )N\ 1M
peM
For oo € A\ Ty M, the projection map to the base point reads as
m: N T°M — M,
ar—p. (3.24)

Let (U, z) be a local chart on M. The basis for T,M , p € U, is then given
by {%}i:17,,,,m (see (2.15)). Moreover, let x; € C*(U,R), fori = 1,...,m,
denote the coordinate functions associated to the chart (U, z). As shown in
Exercise 2.43 the following formula holds, for all p € U,

dz;(p) - %(P) = dy5 - (3.25)
Hence
{deip)} iy (3.26)

is a basis of Ty M dual to {%}izl,___m basis of T), M. Using Proposition 3.7,
we deduce that

{dzi,(p) A ... N das, (p)}i1<...<ip (3.27)
is a basis of \” T M.
Definition 3.18. Let M be a C*-differentiable manifold of dimension m. A
C*k=1_differential p-form on M is a map
w:M— N'T°M
such that mow = idys, and for all local charts (U,x) on M™ there exist C?,

functions wy € C*=Y(U,R) with I = {(i1,...,ip)|i1 < ... <i,} satisfying

w(p) =Y _wr(p)dzi,(p) A ... Adus, (p), (3.28)

for all p € U. — We denote the vector space of C*-differential p-forms on M
by 27 (M).

Next, we want to construct a differentiable structure on the cotangent
bundle AP T*M in such a way that C*-differentiable p-forms on M are just
Ck-sections, i.e.,w € C¥(M, NP T*M) and mow = idy;. — The method will be
very similar to the one used for the construction of the differentiable structure
on the tangent bundle TM in Section 2.5.3.

Let (U;, pi)ier be an atlas for M. We set

N 1= N M=),

peU;
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and define
o N\ 17U — R™ x \'R™,
W —> ((pi om(w), cpf(w)) , (3.29)
with
o (w) = ((dg@{l)%(p)) w, (3.30)
where m(w) = p € U;. More precisely, for vy, ...,v, € R™, we have that

50?(”)(”17 ey Up) = Wp(d(Wi_l)w(p) "V, d(%_l)cpi(p) : UP) eR.

It is clear that @Y is a bijection from AP T*U; into ¢;(U;) x A" R™. We
then say that 2 C APT*M is open if and only if for all i € I the set
Y2 N AP T*U;) is open in R™ x APR™.

Proposition 3.19. These open sets define a (separated) topology on NP T* M
which depends only on the differentiable structure of M, and not on the atlas
(U;, vi)ier representing the fixed differentiable structure on M. Moreover, the
maps O, i € I, defined in (3.29) are homeomorphisms for this topology and
the projection m is continuous.

Proposition 3.20. Let M be a m-dimensional C*-manifold with k > 2 and
let (Ui, ¢i)ier be an atlas for M™. Then (NP T*U;,®%)icr defines a Ck-1.
differentiable structure on the cotangent bundle NP T*M, depending only on
the differentiable structure on M™. And NP T*M is a C*~'-differentiable
manifold of dimension m + CP, for this differentiable structure. Moreover,
the projection 7 is a C*~1-submersion for this differentiable structure.

The two last propositions can be proved exactly in the same way as the
corresponding Propositions 2.37 and 2.38 for the tangent bundle, once we
have identified the transition functions. Therefore, we first prove the following

Lemma 3.21. Let (U, pi)icr and (Vj,1;)es be two equivalent systems of
charts for M. Moreover, let i € I and j € J such that U; N V; # 0. Then on
V(AP T*(U; NnV;)) C R™ x A\PR™ the following formula for the transition
functions on \* T*M holds:

P o (B7) " (, B) = (¥ 0 97 (@), (pio vy 1) 6). (3.31)
where p; ' (x) =p € U;NV; and § € \PR™.
Proof. The defining equation (3.29) gives
Q/jp(w) (V1,...,0p) = (wj o w(w),wp(d(¢;1)¢(p) VL, ,d(¢;1)¢(p) . vp)) ,

where w € A" T*V; and vy,...,v, € R™. Moreover, let [y1],...,
be tangent vectors at p, ie., vy € CY([0,1],M), for | = 1,...,p, are
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N T*M

-1
©; (7/’] )"
Fig. 3.1. Transition functions for the cotangent bundle.

smooth paths in M with v,(0) = ¢; '(z) = p. Then the alternating p-form
((@7)"'(z,8)) on T, M, acting on [y1], ..., [yp)], equals

(@)@, 8)) (1) [)) = Bldegi - [ dipi - []) € N\ Ty
where 8 € AP R™. Hence, for the transition functions we deduce
WP (@) (2, 8)) (01, - vp)
= (0 (@) M@, 8), (@) (@, B) (@] w1, duy - y))
= (Y500 (@) B(dgi - vy - or, s dpi iy ) )
With Definition 3.16 of the pull-back, we then arrive at
w7 (@)~ (@, 8)) (v, -, vp)
= (wyowi @), 8(dws 0w ) vn,. . dlgi o) )
= (45067 (@), (@i 0 07 Blons- 1))
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As mentioned before we can prove Propositions 3.19 and 3.20 with this
lemma exactly as in the case of the tangent bundle. We only note that from
the explicit expression (3.31) for the transition functions, we deduce that
they are C*~!-diffeomorphisms (direct consequence of the Definition 3.16 for
the pull-back for differential forms on R™). — These results allow us to see
differential forms on a manifold from a different point of view, namely as
sections of the cotangent bundle.

Proposition 3.22. Let M be a C’kl—diﬁerentiable manifold of dimension m,
with k' > k + 1. Then a C*-differential p-form is a C*-section of \' T*M
for the above defined differential structure.

Proof. Let w € 27 (M) and (U;, ¢;)ier an atlas for M. In order to show that
w € CF(M, \? T*M), it suffices by Definition 2.27 to prove that

a) the map w: M — AP T*M is continuous,
b) and for all i,j € I with U; NU; # 0 the coordinate expression for w

@owo% 901( 71/\T* ﬁU)CRm—»RmX/\ R™

is a C*-map.

For a): We assume that 2 C A" T*M is open and show that w™'(£2) is
open in M. Since g;, © € I, is a bijection, we can write

wH2) = U(%‘)_l% (W ()N, (3.32)

and, since ¥4, j € I, is also a bijection,

pi(w () NU) =i [0 [ @) 2 (2n N T7U)) | U
jeJ

=i | U@ ow) (e2(2n N\ TUy) N,
jeJ

-U @i((@? ow) (@@ N T7U;) n Ui) . (3.33)
jed
This is equivalent to

U (@ owoer) (@@ \'T1)).

jeJ
By definition, the map @? owo (pi_l is defined on the set ¢; (wil (/\p T*Uj) N
Uz-) C R™ which is open.
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We postpone the proof of a) and look first at b). By Definition 3.18, we
mean by w € 27(M) that there exist for each local chart (U;, ;) functions
wr € C*(U;,R) such that

w=> wrdpi, A...Ndgi, (3.34)
I

on U;. Moreover, for x € ¢; (w’l(/\p T*U;) N UZ-) and v1,...,v, € R™ the

coordinate expression for w reads as, using (3.29),

(@’; owo gai_l)l(vl, CeUp) = (gaj o w; (x), o5 (w)(v1, ..., vp)) ,  (3.35)
where
@?(w)(vl, Ce,Up) = W1 () (d(Sﬁjl)z UL, d(<p;1)x “vp) .

The first factor of (3.35) is clearly a C* -map, since M is by assumption a
C* _differential manifold. Using the representation (3.34), the second factor
becomes

S wrowi (@) (dei, Ao A dpi,) 1 () (d(e;")e - v1,- o d(; e vp) -
I

Since for the differentials of the coordinate functions we have dy;(p) = e for
arbitrary p € M (see Section 3.1.2), the last expression equals

Zw; o p;(x) e N Nep (deps ~d(<pj_1)m V1, dY; ~d(<pj_1)m - vp)
I
*Zwo_l( AL A€ (dpiopr e d(iop; Y, -
= 10w, (x)ej N... ezp( (gazogoj Yot ULy e ey ((pzogaj ) vp)

= Zwlo% L) (¢ 030;1)*(6;‘1 /\.../\e;‘p)(vl,...,vp),

which is clearly a C*-map.

Coming back to a), we first note that by definition of the topology on
A’ T*M the set @7(2 N A\PT*Uj) is by assumption open in R™ x APR™.
From this and using (3.33), we then get the openness of ¢;(w™(2) N Uj;).
With (3.32), we deduce that w='(£2) is open in M and the continuity of the
map w. O

Remark. The last proposition can be interpreted as alternative definition for
differential forms on manifolds. Note also that the proof of it is completely
analogous to the one showing the regularity of the tangent map in Section
2.6.
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3.2.2 Operations on Differential Forms on Manifolds

At this place, the operations of pull-back and exterior derivative, already
defined for differential forms on R™ in Section 3.1.2, will be extended to
differential forms on manifolds.

Definition 3.23. Let M™ and N" be two C*-differentiable manifolds.
Moreover, let o : M™ — N™ be a C*¥ -map, k' > k+1 and let w € 2F(N).
The pull-back of w by ¢ is the following element of 27 (M) denoted by ¢*w:

(ga*w)p(Xl, oy Xp) = Wy (dop - X,y dop - Xp) (3.36)
where p € M and Xq,...,X, € T,M.

Remark. As in the case of differential forms on Euclidean space (see Defini-
tion 3.16) the previous definition can be reformulated as

(P*w)p = (depp) We(p) - (3.37)

From the definition, it is clear that the pull-back is in A" TyM for all
p € M. However, it remains to show that p*w € 27 (M). — Let (U,z) be a
local chart on M. Due to (3.28), we can expand the pull-back on U as

Prw = Z(@*w)j dry, A...ANdx;,
T

where

(¢p*w),(p) = (¥*w)yp (ai (P)s -+ %(p)) € CHU,R),

showing that ¢*w € 27(M). More precisely, this is a direct consequence of
(3.23) which generalizes easily to differential forms on manifolds.

The properties of the pull-back for differential forms on R”, summarized
in Proposition 3.17, remain true for differential forms on manifolds.

Proposition 3.24. Let ¢ € C*°(M,N) and let w € 2P(N).
(i) For all ® € 2P(N), we have

(W + )= w+p*o. (3.38)
(i) For all © € 21(N), we have
P (wAD) =P wAP*o. (3.39)
(iii) For ¢ € C°°(N, W) with W another differentiable manifold, we have
(o) y=¢"(¥"), (3.40)

where vy € 2P (W).
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Definition 3.25. Letw € 27 (M) and (U, ) local chart of a C*°-differentiable
manifold M. We define on U the following element in ngi(M) denoted by
dw:

dw, = (x* d((:z:_l)*w)) ) pelU. (3.41)

P
The form dw € QPT1(M) is called the exterior derivative of w € QF(M).

We want to show that this definition is independent of the chart (U, x). —
Let (U,y) be another chart, i.e., that y : U — R™ is a C*°-diffeomorphism
from U into y(U). Then (3.40) implies

y d((y ) w) =y d((y ")z (a7 w)
=y d((woy ) (™) 'w),

where z oy~ : y(U) C R™ — R™ is a C-diffeomorphism. Note that
o = (z71)*w € 27(y(U)). Using that the operations d and the pull-back
commute for a C*°-map on Euclidean spaces (see Proposition 3.17), we obtain

yrd((y™)w) =y oy ) d((@7) w)
= (zoy~toy) d((z™!)w)
=2*d((z7")w).

This shows that the previous definition is independent of the chart. Moreover,
the fact that dw € Qii(M ) becomes clear due to the following proposition.

Proposition 3.26. Let w € 27 (M) and let (U,z) be a local chart for the
C°-differentiable manifold M. Assume that w has the local form

w=2w1dxil AN T
I
Then for the exterior derivative of w, we have the following local expression:

i &u]
dw = Z o0 doy Ndxi, Ao Adwg, (3.42)
I =1

Proof. We compute, using the local representation for w,

dw =z*d((z7")*w)
=z*d ((x_l)* (ZWI dl‘il AN A d:l?ip)>
I
From the linearity of the pull-back and (3.39), we then deduce

dw = z*d <Z wroz ' (a7 !)*dzy ) AL A ((l‘_l)*dl‘ip)> . (3.43)

I
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On the other hand, we claim that, for all x € (U) C R™,
((:c_l)*dmk)z =ej. (3.44)

Writing v = Y7 =1 vl e; € R™, the linearity of the differential implies

(dx™ 1)y v = Zvj (dz™1), - e 228) Zvj —a(;mj )(z) .

This leads to

((afl)*dzk)z(v) = (dxk)zfl(x)((dzfl)m ~v)

The linearity of the differential one-form dzj, € 2'(M) then gives, for the
right-hand side,

S oo () <%(>> — o= e1(0),

j=1

showing the claim (3.44).
Inserting this in (3.43), we deduce

—1
dw:yﬁd(Zonx efl/\.../\e;-;> .
1

Using the expression (3.11) for the exterior derivative acting on differential
forms on R™, we obtain (denoting by (y1,...,¥ym) the coordinates on R™)

dw = z* (Zia— wrox~ )efl/\.../\efp> .

The properties of the pull-back and (3.44), then imply

dwfzz w[oz )ox(:z:*efl)/\.../\(z*e;‘p)

m w
:226— doy Adziy Ao Nday
I I=1

as claimed in (3.42). O

The properties of the exterior derivative d for differential forms on man-
ifolds coincide with those of the exterior derivative for differential forms on
Euclidean space. More precisely, we have the following
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Proposition 3.27. Let w € 2P(M) and d the exterior derivative.

(i) The map d : 2°(M) — QY(M) assigns to a function f € 2°(M) its
tangent map df : TM — R.
(i) For all & € 29(M) the following “Leibniz-rule” holds:

dwA®)=dwNw+ (-1)PwAdo. (3.45)

(iii) We have that dod = 0.
() For all o € C°(M,N) and all v € 2P°(N) the exterior derivative and the
pull-back commute:

@ (dv) = d(¢™y). (3.46)

Proof. The proof is strongly based on the analogous results for R™ in Section
3.1.2. — Let (U, ) be a local chart for M. For (i): Let f € 2°(M) and its
tangent map df defined by (see Definition (2.40) and the following remark)

af, ) = &

7 (fon(t),

t=0

where [y] € T,M. In the other hand, the one-form df acts on the tangent
vector [y] by

ar () = (" a(@)" 1)) (b1) = d(@™)*£) (do - 1) -
Since (x71)*f = f ox™!, we then obtain

df (W]) = d(f oa™") (dz - [4]) .

Because the exterior derivative of differential one-forms on R™ coincides with
the tangent map, the last expression equals

d(foa™) (dz-[1]),

and by definition of the tangent map, we get the result:

Y(bl) = dlfoa™) | (@or(t)
d -1
= Etzo(fog: ozo*y(t))
d
=7 - (for(®) =df -[4].

For (i): Let w € £2P(M) and @ € £29(M). Then (3.39) gives

dw A @) P2 2 (@) WA D) = 2" d((@" ) w A (271 D).
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From the “Leibniz-rule” (3.13) for differential forms on R™, we obtain
dw A D) = 2* (d((afl)*w) A @) @ + (=1)P(z ) w A d((fl)*@)) .

Using the properties of the pull-back summarized in Proposition 3.24 and
(3.20), we arrive at

dwAd)=a"d((z7")'w) AD+ (-1)Pw Az*d((z7)*D)
=dw A0+ (—1)PwAdo.
For (iii): Proposition 3.14 shows that
d(dw) = d(z* d((zfl)*w))
= 2" d((@ ™) (o (=) w)))
=z*dod((z7")*w) =0.

For (iv): For ¢ € C>*°(M,N) and all v € 2P(N), we have, by definition
of the exterior derivative,

d(p*y) =" d((z71)" ¢").
The right-hand side can be written as
SC* d((1'71>* @*x*(afl)*'y) .
From (3.40), we then deduce
dlp*y) =" d(zopo (@) (@7)7).

Since the pull-back and the exterior derivative commute for forms on R™ (see
(3.20)), we get

d(g™y) =" ((zopo (@) d((z7")").
Using again (3.40), we obtain easily the result
(™) = 2" (a7 " 2" d((z71) ")
=27 d((z71)"y) = ¢"(dy) -

O

The next operation on differential forms will be very useful in Section 3.4.

Definition 3.28. Let M™ be a C*-differentiable manifold, p € M™, and
w € 28 | (M). Moreover, let X be a C*~'-vector field on M™. The interior

product of w and X, denoted by intxw, is the following element of Qﬁ:}(M):
(intxw)p(Xl, e ;Xp—l) = Wp (X(p), Xl, ey Xp—l) , (347)
where X1, ..., X,_1 € T,M™.
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Remark. 1t is left as an exercise to check that the definition is well-posed (see
Exercise 3.30).

Ezxample 3.29. In the case of p = m, we compute the interior product ex-
plicitly. — Let (U,z) be a local chart for the C°°-manifold M and let (see
(3.28))

w=dry A...Ndxy € 2T(M).

Moreover, let the C°°-vector field X for p € U be given in the local represen-
tation (see (2.27))

X(p)=>_ Xi(p) 8(11- (),

i=1

where X; € C*°(U,R). Using (3.47), we then arrive at

= 0
intXw(Xl,...,Xm_l) = da:l /\.../\da:m < E Xi —a ,Xl,...,Xm_1>
T
=1

I
NE

X1, o, X
al‘i, 1, ) 1>

1

.
Il

(71)i71Xid1'1/\.../\d/l‘\i/\.../\dl‘m(Xl,...,mel) 5

M-

.
Il
—

(3.48)

where the “hat” over dx; means removing it. Thus, for the interior product
of a m-form the following formula holds:

intxw = (-1 Xy day AL Adzi A Aday, (3.49)
=1

Exercise 3.30. Let M™ be a C*-differentiable manifold. Prove that if w €
Q2 (M) and if X a C*'-vector field on M™, then intyw € 2071 (M).
Prove it first for M™ being a subset of R™.

3.3 Restriction of Differential Forms to Submanifolds

Let N™ be a CF-submanifold of R™. We already know that (Us,¢s)zenn
defined in Example 2.20 is an atlas for N™. Moreover, denote the canonical
inclusion map by

tyn s N R™, (3.50)

Proposition 3.31. Let N" be a n-dimensional C*-submanifold of R™. Then
the inclusion map vy is a C*-map from the manifold N™ into R™.
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Proof. First, we show that ¢y~ is continuous. — Let {2 by open in R™. Then
[,;[11, (2) = 2N N™ is clearly open in N™ by definition of the restricted topol-
ogy.

Let (U, o) be a (canonical) local chart on N™ with U C R™ open. In order
to show that tx» € C*(N™,R™), we have to show that

idgm 0 txn 0t i (U NN™) C R" — R™

is a CF-map. It is evident that idgmotynop~t(z) = ¢! (x) for z € P(UNN™)
which is an open set in R™. Tt follows from ¢ = 7 o f|ynny, where f is a
straightening map about U and 7 : R™ — R” the canonical projection, that

= (mo f|Nner)_1 = e

Since by assumption N™ is a C*-submanifold the straightening map f is a
C*-diffeomorphism and f~!|g~ is a C*-map. O

With the help of this proposition the following definition makes sense.

Definition 3.32. Let N™ be a C* -submanifold of R™ and let w € 28 (R™)
with k' > k+1. The restriction of w to N™, denoted by w|n,, , is the following
element of (27 (N™):

(Wln )p (X1, Xp) = (hnw)p (X1, .00, Xp)
:wLNn(p)(de X1, ..., dy ~Xp) , (3.51)

where p € N™ and Xq,...,X, € T,N".

Remark. The inclusion map ¢y~ enables us to pass from “paths” Xi,..., X,
(see Definition 2.35) to vectors dip - X1, ..., di, - Xp in R™.

Ezample 5.33. Let f € Q°(R™). Then by definition ti.f = foiyn = f|yn,
which is the usual restriction operation for functions. Moreover, using (3.20),
the restriction to N of the tangent map is the tangent map of the restriction:
e (df) = d(thn f) = d(f ouyn). — Consider, for example, on R3 the function
fiz=(z,y,2) — (224+y*+22)/2 and the sphere S? = {z € R3 : |z]? = 1}.
For the restriction on S2, it then follows

2 2 2 1
Vi (df) =d MOLSQ =d(z)=0.
2 2
Restriction of one-forms to Curves in R™

In the following, we want to study the restriction of 1-forms to C''-submanifolds
with dimension n = 1. — Recall that a 1-dimensional C'-submanifold of R™
can be seen as regular C'-curve in R™.
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Definition 3.34. Let I' € C1([0,1],R™) be a regular curve in R™. An ori-
entation for I' is a continuous map t : I' — R™ such that ||t]] = 1 and
t(p) € T,I, for all p € I'. Moreover, a chart (U, @) on I is said to be pos-
itively oriented with respect to the orientation t if 0 < dyp, - t(p) € R, for
allpeU.

Definition 3.35. Let I' be a regular C*-curve on R™ with an orientation t
and (U, ) a positively oriented chart on I'. The length form dlp on U with
respect to t is defined by

dir = ||de™" - e1||dp € 25(I'NT), (3.52)
where || - || denotes the usual norm on R™ and ey the canonical basis of R.
For (U, ) another positively oriented chart, we compute
ldy™" - erlldyp = ||ldp™" e[ d(w oo™ o) = [ldy ™" - ealld(v o ™) - dip.

Let v = Ae; € R with A € R. Since the charts ¥ and ¢ are both positively
oriented with respect to ¢, it follows that

dpop™)-v=AdWop N -e1=AdWopt) ei]es.
Setting dp(-) = A(+) e1, we arrive at
ldy™" - exll dp = [|dy™" - el |d(s 0 ™) - ex| di

= [ldy™t - d(op™h) el dp
= |ldp™" - exl dp,

proving that the definition of the length form makes sense.

Proposition 3.36. Let I' be a reqular C'-curve in R™ with an orientation
t=(t1,....tm) and let w =>1" | w; dx; € 2§(R3). Then the restriction of w
to I' equals

wlF:L;MZZwiﬁileEQé(F), (353)

i=1

where v : I' — R™ 4s the canonical inclusion.

Proof. Let (U,p), U C R™ open, be a positively oriented chart for I". We
first prove the proposition for w = dxg, with k = 1,...,m. Since z o tp =
(0 Hrop: 'NU — R and using Example 3.33, it follows that

Uhw = pdey, = d(zp o) =d(e g - dp.
With v = Ae; € R, we obtain that

(™) v =Ad(p™") - er) = Ad(e™) - enllt,
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and hence that d(o = )i -v = A|d(¢™ 1Y) - e1]| tr- If dp(-) = A(-) e1, we thus
arrive at

Ghw=d(e Vg -do = ||d(e™") - e1|| te dp = tr dip,
where we used Definition 3.35 of the length form. — We conclude using the

linearity of the exterior derivative. a

Restriction of two-forms to Surfaces in R3

In a next step, we want to study the restriction of 2-forms to a surface in R3.
Recall that by definition a surface in R? is a 2-dimensional C''-submanifold
of R3.

Definition 3.37. Let X be a surface in R3. An orientation for X is a
continuous map n : ¥ — R3 such that |n| = 1 and n(p) L T,X, for all
p e X. We also call the map n a unit normal vector field to X.

Definition 3.38. Let X be a surface in R® with an orientation n. The area
form dAyx with respect to n on U is defined by

d o
dAs, = ( — x — doy Ad Z2(xnU 3.54
5= (50 X ) dor Ader € BREND), (354)

where (U, @) is a local chart for X, (-, -) denotes the scalar product in R3
and x denotes the usual vector product in R3.

-1

Fig. 3.2. Surface in R3.

In order to show that this definition is well-posed, it is necessary to check
that it is independent of the local chart (U, ¢). — Let (V%) be another chart
about p € X. It follows from (3.42) that, for i = 1,2,

dipa, (3.55)
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and hence

_ (9¢1002 _ 09102
dpi N\ dps = ((91/)1 9 D Oy diyr N dips . (356)

Moreover, let (e, e2) denote the canonical basis on R?, and we write ¢! =
p topoy! to get
0

O;

The term in parenthesis reduces to

=dp ' e;=dp M (d(popTh) €). (3.57)

0 Oy

d(‘:"ol/’_l)'eisto-dw‘l-ei:dso'a_w:81/;..

The last expression can then be written as

dy _ 01 o+ 0o
i o T

Inserting this result into (3.57) leads to

0 8901 -1 8902
= = d .
T G

- 8(,01 0 8(,02 0

0P Op1 - O Oy

From this computation we also obtain
0 0 3501 o (9(,02 0 >
—x—,ny={= =+ =
<5¢1 s > <<51/11 o1 OY1 Op2
dp1 0 Opa 0O ) >
X (o —+ 2= — |, n
(al/fz i1 by Dpa
_ (%%_%%) <ixi n>
Oy 0o O1ha Oy dp1 o ’ '
Combining this result with (3.56), we arrive at

0 0 0 0
— X =— dp1 Ndps = ( — X — di1 Nd
<3301X3302’n> 1 A dps <81/)1X81/12’n> Y1 Adipa
showing that the definition of the area form for a surface is independent of
the local chart.

€9 .

dy €9

Remark. For explicit calculations (see below), it is useful to rewrite (3.54) in
the following way:

dp~t  Op7! 2
dAy = P der Nd 5ENU 3.58
= (S G n) dp N e GEOD), (59)
where (71, x2) denote the canonical coordinates on R?. Recall that we have

do™" e =22~ fori=1,2.
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Ezxample 3.39. In the case of X being the graph of a function, we define
e LU CcR?—UNXCR3,
(z1,22) — (@1, 32, h(z1, 32)) | (3.59)

where h: U’ — R is a C'-function with U’ C R? open. Inserting (3.59) into
(3.58), the area form dAx with respect to the orientation

Op~1  Op~1
X

n — 61‘1 61‘2
0ot " O’

61‘1 61‘2

then reads as
on\> [ on\?
dAZ] = \/1 + (6—3:1> + (a—l‘g> d(pl A dgﬁg . (360)

Area Form for the Sphere S2

We calculate explicitly the area form for the two-sphere S2. For this purpose,
we choose spherical coordinates. — Let the inverse of ¢ be given by

e 1:U cR? — S? CR3,

(¥,0) — (cos¢cos€,sin¢cost9,sin9) . (3.61)
where U’ = (—m,m) X (=%, %). In other words, we want to calculate the area
form dAg- in the local chart (U, ¢) with the inverse of ¢ defined in (3.61) and
S2NU = =1 (U’). Note that ¢! is often called a (local) parameterization
(see the remark at the end of this section).

By a straightforward computation, it is then easy to check that

Op~ 1 y O~ 1
oY 00

, n> =|cosf| = cosf, (3.62)

where the usual orientation for S2, given by

0o~ 0ot
oy~ "oe
0o~ Op~!
H ov o0

n =

, (3.63)

is used. Denoting the coordinate functions of ¢ also by (¥, 0) and inserting
(3.62) into (3.58), we arrive at

dAg: = cosO@dip Adf € 2%(S*NU). (3.64)
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Remark. The notation for the spherical coordinate functions (¢,6) of ¢ is
also used for the coordinates on U’ C R2. The reason for the choice of this
notation will become clear later when we consider the integral of the area
form dAg> (see Example 4.10).

Now, we consider only the northern half-sphere, denoted by Si, which
can be interpreted as graph of a function (see Example 3.39). More precisely,
we can write

Si = {(zl,xg,h(xl,xg)) Cat4ad < 1},
where the function h reads as
h(z1,22) = /1 — 22 — 3. (3.65)

Inserting (3.65) into (3.60), we obtain for the area form
1

Ve Rt

Next, we prove an analogous result to Proposition 3.36 for area forms.

dAg; = (3.66)

Proposition 3.40. Let X be a surface in R3 with an orientation n and let
w = wy dre Ndrs + wsdrs A dry +wsdxy Adxs € QS(R3) .
Then the restriction of w to X equals
3
Wy =1hw = Zwmi dAx € 23(X), (3.67)
i=1

where n = (n1,na,n3) is the unit normal vector field defining the orientation
and vx : X — R3 the canonical inclusion.

Proof. By linearity of the pull-back ¢5%,, it suffices to prove the formula for,
say, w = dx1 N dxs. — From Proposition 3.17, it follows

U5 (dxy A dxg) = 15dxy A Lsdas
d(t5me) A d(522)
=d(z1otg)ANd(z20Ly).

If (U, ) is a local chart on X, we also get
rioty=xlx=(p N1op: XNU — R,
and hence

(dey Adao) = d((p™ )10o@) Ad((p7)209) . (3.68)
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Clearly, from

e~ i e d

d(p™),; = 1 =1,2
(™) o1 1 + s z2, 4 12,
we obtain that
d((p™Niop) =d(e™")i - dp
1y, 1y,
= 78“0 )i dxy - dp + 78(90 )i dxy - dp
0z O0xa

A e
- 61‘1 dwl + 61‘2 dw?

Inserting this result in (3.68), leads to

d(((ﬁil)losﬁ’)/\d((@il)gow) _ (a(gxl)l 8(2;2 )2 _ a(g;Q)l a(g;l )2> dp1Ndps .

Moreover, we easily see that

il t U Coa ) s S i

- 61‘1 x 61‘2

61‘1 61‘2 61‘2 61‘1

Hence, so far we have shown that

85071 y 85071
61‘1 61‘2

U5 (dxy Ndzg) = < , €3> dp1 A dps . (3.69)

" x 652;1 is parallel to n and doesn’t vanish. Hence, it follows

We see that 65{1
that Dol -l
L*E(dilfl/\dl‘g):< 5’;1 xa(p—b,n> (es, nydpr ANdps .

Since by assumption w; = 0, wy = 0 and w3 = 1, this becomes

3
U5 (dxy Adas) = Zwmi dAsx .
i=1

a

Remark. Recall that by a chart (U, ) for a surface X we mean a Cl-map
v : X NU — R?, where U is an open subset of R3. Hence, for the inverse
we have o1 : (X' NU) C R? — X N U. Moreover, it follows that

Dot
do~™l e = ,
¥ i o
for i = 1,2, are not vectors in R3. However, considering the map (local

parameterization)
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tzop tip(ZNU)CR? — XNU CR3,

instead of ¢!, we obtain
Otz o (P_l) _ -1 B 1 . 01
de(Lgoga Yoe;=diy-dp™ ce; =diy - Er

which are indeed vectors in R3. In this section, there is no difference in the

notation for ¢! and its composition with ¢y, called later =1 (see Section
5.2).

3.4 Orientation of Manifolds

First, we need the concept of orientation on R™. — Let {ei}i:17,,,,n and
{e;}i=1,...n denote two bases of R™. Then they are said to have the same

orientation if det P:f > (0, where P represents the transformation matrix for
passing from one basis to the other. One easily checks that this is an equiv-
alence relation on the set of all bases of R"™ and that there are exactly two
equivalence classes. These two equivalence classes represent the two orienta-
tions of R™.

Definition 3.41. An orientation of R™ is given by the choice of one equiv-
alence class. And the bases being in this equivalence class are called positively
oriented.

In the following, we will see that the notion of orientation is strongly
related to the choice of a basis for A" (R™). Recall that this vector space with
basis e A...Ae} has dimension 1 (see Proposition 3.7). — Let {e;}i=1,...» be
a basis of R™ and vy, ..., v, € R" such that v; = Z? 1vgej, fori=1,...,n.

We then compute, using (3.6) and the definition of the determinant,

to(1) to(n
eYN. Aer (v, up) = E (71)|"|vl" A
oceS,,

=det (v,...,v)). (3.70)

This computation obviously generalizes to an arbitrary basis of A" (R™), i.e.,
a non-vanishing element of A" (R™). We denote them by agn.

Proposition 3.42. A non-vanishing ag. € N\"(R") has the same sign on
two bases of R™ if and only if they have the same orientation.

Proof. This proposition is a direct consequence of (3.70). a

Now, we can reformulate Definition 3.41 in terms of a basis of A" (R").

Definition 3.43. A choice of a basis agn € \"(R™) gives an orientation of
R™.
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Remark. Two bases ag» and agn of /\" (R™) determine the same orientation
if and only if agr = Aagn for 0 < X € R.

For later use, we consider now the linear map

p:R* — R",
ei — p(ei) = Z o (ei)ej
j=1
and deduce from (3.70) that
e A ner(pler),. .., plen)) =det(¢?(e1),..., ¢ (en)) -

Moreover, from Definition 3.8 of the pull-back, it follows

ef A nes(p(er), ... p(en))
= det(cpj(el), .. .,(Pj(en>) )

(el A nen)(er,. .. en)

showing that
(eI A ANer)=detpel AL Aer (3.71)

n

Remark 3.44. From (3.71) and Definition 3.16 for the pull-back of differential
forms on R"™, it can be seen that the pull-back of a “maximal” differential
form by a map is just multiplication by the determinant of the Jacobian of
the map. This important observation will be used at various places in the
following and generalizes naturally to differential forms on manifolds.

We come back to the notion of orientation. — Note that the orientation
of an arbitrary vector space, in particular of a tangent space of a manifold,
can be defined in a completely analogous manner. This enables us to extend
the concept of orientation of R” to manifolds. — In this section, we assume
for simplicity the manifolds to be C'*°.

Definition 3.45. Let M™ be a m-dimensional manifold. A volume form
wym on M™ is an element of 2™ (M) which never vanishes.

Definition 3.46. A manifold is said to be orientable if it posseses a volume
form. The choice of wym determines the orientation of M™.

Remark. Translating the results for the orientation of R™ to the tangent
spaces of a manifold, any such wys= thus orients each tangent space T, M in
such a way that the orientations of nearby tangent spaces are compatible.

The following proposition, together with Proposition 3.52 below, can be
interpreted as second definition of orientability for a manifold.
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Proposition 3.47. Let M™ be a manifold. If M™ is orientable, then there
exists an atlas (U;, p;)icr whose transition functions have positive Jacobian,
i.e., for all p € v;(U; NU;), we have that

det J,(p; 0 p;71) > 0. (3.72)
Such an atlas is called positively oriented.

Proof. Let wprm be the volume form on M™ and let (U, ¢;)icr be an atlas.
Then, we write

((pi_l)*me = fl dl‘l VANPIRAN da:m c Qm((pz(Uz)) , (373)

where f; : v;(U;) — R. Since wysm is a volume form on M™, it follows by
definition that f; is a non-vanishing function on ¢;(U;). If f; is positive, we
are done. If f; is negative, however, we have to modify the diffeomorphism
©; by a negative isometry o : R™ — R™, ie., detc = —1, to obtain (see
Remark 3.44)
((0 o (pi)_l)*me = (p; oo ) wam
= (™) (fidzy A ... Adyy,)
= —fioa_ldml/\.../\dxm.

Thus, we can construct an atlas (U;, ¢;)ier such that f; > 0, for all i € I.
Considering transition functions on ¢;(U; N U;), we now write

(7 ) warm = (67 5 (07 1) wnrm
= (pjop ) (95 1) warm) .
Using (3.73), it then follows

(¢ ) warm = (pj 007 )" (fiduy A Ada) .

From the explicit expression for the pull-back given in (3.23) and standard
properties of differential forms on R™, we deduce!

(@Zl)*me = fj((cpj o @?1))(9%- o @?1)* dri A ... Ndzy,

_ 0 i O -_1 0 i O -_lm
:fj((@jo%l)) Z (s © )1 (500 ) dzi, N...Ndx;,,

iy Oiy Ozi,,
_ oo (w00 m
= fj((%‘ °¥; 1)) Z 8jz (;z dxia(l) /\.../\dxia(m)
0ESm o(1) Lo (m)
- ANpjop, )1 9pjop; Im
1 7 7 o
=fillgjoer") > -~ o (1)l dzy A ... A dw
TESH o(1) o(m)
= fi((pjop;")) det J(pj 007 ") dzy A Adap, (3.74)

! 'We give an explicite calculation for a direct consequence of Remark 3.44.
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where the definition of the determinant is used in the last line. Inserting
(3.73) with f; > 0, for all ¢ € I, in the left-hand side of the last equation,
then shows by comparison that det J(¢; o ¢; ') > 0 on ¢;(U; NU;), for every
i,jel 0

Remark. Note that being positively oriented as defined in (3.72) gives an
equivalence relation on the set of all systems of charts on M™ with exactly
two equivalence classes. And the choice of one of these two equivalence classes
determines the orientation of the manifold.

In the following, some more definitions and results will be given in order
to show the converse of the last proposition.

Definition 3.48. Let X be a topological space for the topology 7. We say
that T is separable if there exvists B C T such that B is countable and every
element of the topology T can be written as an union of elements of B.

This naturally leads to the definition of topological separable manifolds
which will be always considered from now on.

Definition 3.49. Let X be a topological space. A locally finite covering
for X consists of a family of open sets (U;)ier such that

a) it covers the topological space, i.e., X C U;c; Us;
b) for all x € X, there exists U, open containing x such that it intersects
only finitely many U;, i € I.

Definition 3.50. A partition of unity on a manifold M™ is a family
(U;,0:)icr, where (U;)ier 18 a locally finite covering for M™ and the functions
0; € C*(M™,R) for alli € I are chosen such that

a) they are non-negative, i.e., 0;(p) >0 for allp € M™;
b) their support is contained in U;, i.e., supp8; C U;;
¢) and for all p € M™ the following equation holds:

1= 0i(p). (3.75)

el

Remark. Note that from b) and the fact that the covering is locally finite,
we obtain that for every p € M™ only a finite number of functions 6; are
non-zero in p. This implies that (3.75) is well-defined.

Now, we are ready to state an important result for separable manifolds
which will be essential in the proof of the converse of Proposition 3.52.

Proposition 3.51. Let M™ be a separable manifold. Then there exists a
partition of unity on M™. Moreover, let (U;)jcs be a covering of M™. Then
there exist I C J and a family (0;);er of C°-functions on M™ such that
(U;,0:)icr is a partition of unity for M™. Such a partition of unity is called
subordinated to (Uj);ec.
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Proof. For the proof we refer to []. O

Remark. It is important to note that the initial covering (U;);es is not as-
sumed to be locally finite.

We now arrive at the converse of Proposition 3.47 holding only for sepa-
rable manifolds.

Proposition 3.52. Let M™ be a separable manifold and assume that there
exists a positively oriented atlas on M™. Then the manifold M™ is orientable.

Proof. Let (Uj, pj)jes be a positively oriented atlas. Proposition 3.51 then
shows that there exist I C J and 0; € C*°(M,R) such that (U;,6;);cr is a
subordinated partition of unity for M™. It is easy to see that (U;, v;)icr is
still a positively oriented atlas.

Next, we define

Wypm = Zﬁicp:-‘ dzy A ... ANdxy, € 2™(M) .
il

Note that because of Definition 3.50 this sum makes sense. Moreover, we
obtain, using Proposition 3.24, for the pull-back of wy;m by another diffeo-
morphism ¢; (see also (3.74)),

(@;1)*me = Z@Z @] QOJ_l (QOZ @] gO]_l)* dl’l VAR dll?m
i€l

= ZGiocpj_ldetJ(cpiOgoj_l)darl Ao ANda, .
iel

From a) in Definition 3.75 and the fact that (U;, ¢;)icr is positively oriented,
we then deduce that wpm € £2™(M) does not vanish, implying that it is a
volume form for M™. Hence, by Definition (3.46) the orientability of M™
follows. O

Ezxample 3.53. The constant m-form
wrm :=dxi A ... NdTpy,
gives a volume form for R™.

Ezxample 3.5/. We want to show that the sphere S™ is orientable. — Let

n+1
0= (-1)"widry A Adzi A Adzggy € QTR (3.76)
=1

and let
wegn = LgnQ .
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We want to show that wgn is a volume form on S™.
Let p € S™ and let X;,..., X, be a basis for 7,,5". In order to prove that
wgn is a volume form, it suffices to show that

wsn (p) (X1, Xn) = 2(p) (dep - X1,...,dep - Xp) #0. (3.77)

. 1
For the function r = /377" |22 on R"*!, we compute

n+1 n+1 .
rdr A2 = Z zE dre A (Z(—l)i_lxi dei AN ... Ndzi Ao A dxn_H)
k=1 i=1
n+1
= Zz?dzl/\.../\do:wrl
i=1

=r2dey AL ANdxpy . (3.78)
Moreover, we observe that if X, = dign - Xi € ]R”_“, for k =1,...,n,
and if n denote the unit normal to S™ at p, then (n, X;,...,X,,) is a basis

for R"*1. From (3.78), we then get that

rdrA2(mn, Xq,...,X,) =72 dx, Ao ANdzppi(n, Xy, .., X,) #0.
On the other hand, since r|g» = 1 = counst,
rdr- X, =rdr-(dige - Xg)=rd(roign) X =0.
Therefore, for p € S™ we arrive at, using the definition of the wedge product,

0 # r(p)drp A R(p)(n, X1,..., Xy) =7(p)dry - n 2(p)(X1, ..., Xn)
=7r(p) 2(p) (X1,..., Xn) =wsn(p)(X1,..., Xn).

This shows that wgn is indeed a volume form on S™.

Remark. For later use, we note that the volume form wgn = 5.2 for S™
equals
Un (intxdml A A dxn+1) , (3.79)

where X now denotes the vector field (x1,...,2,) on R*""\ {0}. This is
direct consequence of the formula (3.49) for the interior product.

Remark. We have shown in the previous example that the restriction (2|g2
of
2 =x1dro Ndxs + xodrs Ndri + x3dry ANdag € QQ(RB)

to S? gives a volume form wg-. Passing to spherical coordinates on R? and
restricting them to the two-sphere S%, we get, by a straightforward compu-
tation,

wgz = cosOdyp Ndf € 2*(S*NU). (3.80)

As expected, we see that this equals (3.64).
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Consider now codimension one submanifolds N, i.e., n-dimensional sub-
manifolds of R"*!. Generalizing Definition 3.37, we say that N" is oriented
if there exists n € C*°(N™,R"*!) such that ||n| = 1 and n(p) L T,N"™ for
all p € N™. One can easily check that this is equivalent to the existence of
n € C°°(N™,R""1) such that n(z) € T, N™. On the other hand, we already
know from Example 2.20 that a submanifold can also be interpreted as an
abstract manifold. Hence, there is a second notion of orientation for N™ given
by Definition 3.46. The following proposition, however, shows that the two
notions of orientation for a codimension one submanifold agree.

Proposition 3.55. Let N™ be a codimension one submanifold of R"t1. Then
N™ is orientable (in the sense of an abstract manifold) if and only if there
ezists m € C®°(N™ R" ) such that n(z) € T,N™.

For the proof of this proposition, we will need the following lemma which
is motivated by (3.79).

Lemma 3.56. Let N™ be a codimension one submanifold of R™t! and as-
sume that there exists m € C°°(N™, R" 1) such that n(z) &€ T,N™. Moreover,
let uyn 2 N™ < R denote the canonical inclusion. Then

wnn = Uy (intn dzy A ... Adapgr) € 2(NT), (3.81)
gives a volume form for N™.

Proof. Let p € N™ and let X;,..., X, be a basis of T, N". Moreover, for
k=1,...,n, we define? )
Xk = dLNn . Xk . (382)

By assumption, it is then clear that (n, X1, ..., X,,) forms a basis of R"*1.
Using Definition 3.23 of the pull-back, we deduce

U (it dzy A AT 11) (X1, X)) = intp dzy AL AdTn g1 (X1, X)) -
And by Definition 3.28 of the interior product, it follows

intndml N /\d.’L‘n+1(X1,.. 7Xn) = d.’L‘1 VAN Admn+1(n,X1,. .. ;Xn)
(3

= det(n, X1,...,X,). .83)
Since (n, X1,...,X,,) forms a basis of R"*!, it is clear that wy~ never van-
ishes and is thus a volume form for N™. O

Now, we are ready to give a proof of Proposition 3.55.

2 Note that only due to the inclusion map ¢x» the manifold N™ can be interpreted
as submanifold. Hence, starting with “paths” Xi,..., Xn (see Definition 2.35),
we obtain vectors X1, ..., X, in R**1,
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Proof. Assume that there exists n € C°°(N",R""1) such that n(z) ¢ T,N™.
Because of Lemma 3.56, the n-form wy~ defines a volume form for N", and
hence N™ is orientable.

Conversely, assume that N™ is orientable for the volume form wy» €
Q"(N™). —Let p€ N" and X1,..., X, € R"! be a basis of the hyperplane
tangent to N™ at p. Moreover, let X1,..., X, denote the corresponding ele-
ments of T,N™ (see (3.82)). Then we define @, € A" (R"!) by

(:Jp(Xl,. .. ;Xn) = (wNn)p(Xl,. . ;Xn) 5

and

w,(V1,...,Y,) =

0,
if there exists 1 < j < n such that Y; € (T, N™)*. This defines @, in a unique
way. As a direct consequence, since

{dzl(p) A d/z\k(p) Ao A dxn+1(p)}k:17m’n+1

is basis of A"(R""!), there exist unique numbers ai(p),...,a,4+1(p) € R
such that
n+1 .
wp = Z ar(p)dzi(p) A ... Adzk(p) Ao Adang1(p) . (3.84)
k=1

Repeating this procedure for all p € N, we get the existence of C*°-functions
a1,...,0pt1 ¢ N — R such that (the fact that ay,..., a1 are C°-
functions comes from the assumption wy» € 2"(N"))

n+1
=Y ardry A Adzg AL Adzng € QMR (3.85)
k=1
Next, we define
n+1
n=> (-1)""Fage, € C*(N",R"), (3.86)
k=1

where {6k}k:1,...,n+1 denotes the canonical basis of R?*!. If we can show
that n(p) € T,N"™ for all p € N™, we are done.
First, (3.85) and (3.86) show that

intpdry A Adepgr (X, .., X)) = @p( X1, .0, Xp)
= (wnn)p(X1s--., Xn)
Since wyn~ never vanishes by assumption, we deduce, using (3.83),
det(n, Xq,...,X,) #0.

Thus (71,_)7(17 ..., X,) is a basis of R"*!. Moreover, since by assumption
Xi,..., X, € R forms a basis of the hyperplane tangent to N™ at p,
it follows that n(p) ¢ T, N™. This completes the proof. a
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4.1 Integration of n-forms in R™

First, we recall an important result for the integration of functions on R™.

Theorem 4.1 (Change of Variable Formula). Let U C R"™ open and
¢ a CF-diffeomorphism, k > 1, from U into ¢(U). Then if f € L*(¢p(U))
it follows that (f o ¢)|det J¢| € L*(U) and moreover the following formula
holds:

/Z(f<>¢)(rﬂd6th¢\dﬁ(r) e, (4.1)

o(U

We define now the integral of differential n-forms on R™. As shown in
Proposition 3.7, we have that dim A" R" = 1.

Definition 4.2. Let o« = fdxiA...Ndx, be a differential n-form on U C R™
open. Moreover, assume that f € LY(U). Then the integral of o on U is
defined to be the number

Laﬂj@mmum (4.2)

where dL™ is the Lebesgue measure on R™. We write o € 27, (U).

Proposition 4.3. Let ¢ : R" — R™ be a C*-map, k > 1, and U C R™ open
such that ¢ is a diffeomorphism from U into ¢(U). Moreover, assume that
¢ is positive, i.e., detJy¢ > 0, for all x € U. Then for o € £27,(¢(U)) the

following formula holds:
/ a :/ . (4.3)
d(U) U

Proof. Let a = fdyi A...Ndy, € 2},(¢(U)). Since the pull-back of o by ¢
is just multiplication by the determinant of the Jacobian of ¢ (see Remark
3.44), we obtain

P*a=fopdetJpdry A... Ndx,. (4.4)

By the definition of the integral, this gives
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/Uqb*oz:/U(foqb)(:v)dethqb AL ().

Since det J¢ > 0 by assumption, we can apply the change of variable formula
(4.1):

/U(foqs)(:c)detc]z(b dL (x)=/¢(U) Fy) L™ (y) :/¢<u>a'

O

Remark. If the diffeomorphism ¢ is assumed to be negative, i.e., det Jop < 0,

then we see that
/ o= —/ P .
»(U) U

Instead of saying that diffeomorphisms are positive or negative, they are
often called orientation preserving, respectively, orientation reversing diffeo-
morphisms. Assuming that the n-form « in (4.4) is replaced by a volume
form for R™, this terminology can be easily understood (see also the remark
after Definition 3.43).

4.2 Integration of n-forms on a n-dimensional Manifold

In the whole chapter, we always assume that M™ denotes a m-dimensional
C*°-differentiable (separable) manifold.

Definition 4.4. Let M™ be an oriented manifold and let w = fdxy N ... A
dx,, be a compactly supported m-form on M™. Moreover, let (U, @;)icr be
a positively oriented atlas and (U;,0;)ic1 a partition of unity subordinated to
it. Assume also that 0; f o ot € L' (gpi(Ui)), for all i € I. Then, we define

3
the integral of w on M™ by the number

| o=

el

[ ey 6. (4.5)
»i(Us)
And we write w € 274 (M).

Remark. From the definition, it is easy to see that the map

W w
Mm™

is linear. Note also that (p; ')* (6; w) € Q7 (i (Uy)).
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—

Fig. 4.1. Integration on manifolds.

In order to show that the last definition makes sense, we claim in a first
step that for only finitely many ¢ € I the expression

/ (71" (6; )
wi(Us)

is non-zero. — Let K C M™ denote the compact support of w € 27, (M).
Since (U;);er is assumed to be a locally finite covering, there exists by Defini-
tion 3.49 for every p € M an open subset U, of M containing p such that it
intersects only finitely many U;, ¢ € I. On the other hand, since K C Upe x Up
compact, we can extract a finite covering Uy, ..., U, . Clearly, each of these
open sets then intersects only finitely many U;, i € I. Hence, the support K
of w is covered by only finitely many of the U,. Recalling that supp6; C U;,
for all i € I (see Definition 3.50), the claim follows.

In a second step, we show that the definition of the integral of w on M™
is independent of the choice of the positively oriented atlas and the choice of
the partition of unity subordinated to the atlas. — Let (V},%;);es be another
positively oriented atlas with the same orientation given by (U, ¢;)icr, i-e.,
on ¢;(U; NV;), we have that det J(1; o ;') > 0. Moreover, let (V},1;);es
be a partition of unity subordinated to (V;);cs. Then, we can write

/<Pi(Ui)((pi_ )*(Giw) N Z /<Pi(UiﬂVj)((pi_ )*(eian) '

jed
since 1 =3, ;m; on M™ by definition. Next, we apply the formula (4.3) to
the differential m-form (p; ')*(#;in;w) on R™ and the diffeomorphism
i ° wj_l 2 (U;NV;) CR™ — ;) (U; NV;) CR™

to get
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[ @y = | (0 05" (7))
%z(UwﬂVj)

¢j°¢fl(<ﬂi(UmVj))
::/ (61" (Bimy) (4.6)
P; (UiNVy)

And for the integral of w on M™ we thus have, using again (3.75),

Z/I(UZ W) =) / ) (0imw)

il jeJ i€l J(UmVa

ZLM%WW”

jeJ

In summary, we have shown that the integral on a manifold is well-defined.
— Note that without fixing an orientation for M, the definition of the integral
of w is not well-posed. More precisely, looking at (4.6) the sign of the integral
changes with the change of orientation.

Remark. Let M™ be an oriented manifold and K C M™ compact. Then for
w € 274 (M) not necessarily compactly supported, we write

léw=/mmw7 (4.7)

where y g is the characteristic function of K. Clearly, yxw is compactly
supported and we can use Definition 4.4 for the right-hand side of the last
equation.

Next, we show that Proposition 4.3 holds also for integration on manifolds.

Proposition 4.5. Let M™ and N™ be two oriented manifolds of same di-
mension m. Moreover, let ¢ : M™ — N™ be a positive C-diffeomorphism,
i.e., the image by ¢ of a positive oriented atlas on M™ is a positive oriented
atlas on N™. Then for w € 271 (M) the following formula holds:

/ w= P'w. (4.8)

Proof. Let (U;, p;)icr be a positively oriented atlas of M™ and let (U;, 0;)ier
be a partition of unity subordinated to it. Then we have

o= [ @),

Mm™ iel

Using the properties of the pull-back summarized in Proposition 3.24, the
right-hand side of the last equation can also be written as
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S [ e @es ™)

el
— ° '71* 91'0 _10.)
EZI/%(U”w o) (00671 w)
= 0 ™) (U500 Hw) .
;/iw»((@ o)) (0671 w)

Hence, we arrive at

>

el

/ (prod™) ™) (B0 ) w).
piop~1 (¢(Ui))

It is to check that (qﬁ(Ui), ©; 0 qﬁ_l)iel is an atlas for N™. It is also positively
oriented, since by assumption ¢ is a positive diffeomorphism. Moreover, the
family (gb(Ui), m)ieI with n; := ;067! € C°°(N™,R) defines a subordinated
partition of unity. Using Definition 4.4, we then conclude that

foe o

We generalize the last proposition in the sense that ¢ : M™ — N™
needs not necessarily to be a diffeomorphism. — Let M™ and N™ be two
compact oriented manifolds of same dimension m and let w be a m-form on
N™. Moreover, let ¢ be an arbitrary C'-map from M™ to N™. The next
theorem, however, then shows that f Nmw and f ym @Fw are related.

a

Theorem 4.6 (Topological degree). Let M™ and N™ be two compact
oriented manifolds of same dimension m and let ¢ € C(M™, N™). Then,
there exists an integer deg@, called topological degree of ¢, such that for
any w € 274 (N), we have

/ *w = deg o w. (4.9)
m N’V‘VL

Remark. Roughly speaking the topological degree of a map ¢ can be inter-
preted as the number of times ¢(M™) covers the manifold N™.

Ezample 4.7. Consider the case M™ = N™ = S (see Fig. 4.2).

Definition 4.8. Let ¢ and ¢ € CH(M™,N™). We say that ¢ is homotopi-
cally equivalent to ¢, if there exists

H e C%J0,1] x M™ N™)

such that ¢(-) = H(0,-) and é(-) = H(1,-).
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degop =1 degq;:()

Fig. 4.2. Topological degree of two different maps ¢ and <z~5

It is easy to check that homotopically equivalent is an equivalence relation.
Moreover, one can show that the topological degree of a map only depends
on its homotopy class (see []). In other words, the topological degree depends
only on the CP%-structure of the map. Thus differential forms, being more
than only C?-objects, are used to determine C%-objects.

Conversely, assume that deg ¢ = deggg How are the maps ¢ and (;3 related?

Theorem 4.9. Let ¢ and ¢ € CY(M™,N™), where N™ = S™ and M™ ori-
ented and compact. Then degp = deg ¢ implies that ¢ and qb are homotopically
equivalent.

4.2.1 Integration and Volume of a Surface in R3

Let ¥ be a surface in R2, ie., a 2-dimensional C'-submanifold of R3.
Moreover, let (U, ) denote a local chart for X'. Then, we consider a cube
C' C o(UNY) C R? and divide it in little pieces of side length 1/n, where
n € N. More precisely, assuming that C’ = [0, 1] x [0, 1], we write

n—1 n—1
k k+1 I 1+1
C = - —
> n i ] = X e
k,1=0 k,1=0
The preimages of the little cubes C} ; are denoted by Uy := @’1(C;7l), and

the equation ¢ (pr;) = ( n) defines the points py; € Uy .

We want study how to define the volume (area) of the surface X with
the help of this grid. This is best done by some elementary geometric consid-
erations. - The inverse map of the C!-diffeomorphism ¢ : UN X C R? —
©(UNXY) CR2 U open in R3, is denoted by

e lipUNY)—UNX.
Recall that the two tangent vectors'

! In a different notation the generating tangent vectors for Ty, ;X can also be
written as a_(pk 1) and a@ (Pr,1)-
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1
1/n
- 1/n
1/n
0 1/n 1

Fig. 4.3. Putting a grid on a surface.

{8521 (@(pk,z))} ;

i=1,2

where (1, 2) denote the canonical coordinates on R?, generate the tangent
space Tj, 2 of X at py ;. Then, for all 0 < k,I < n — 1, the parallelograms
given by the vectors

1 0p~t

n o0xy

1 0p~t

(e(pry))  and " Ot

(e(pr))

can be interpreted as linear approximation of the little pieces Uy of the
surface. These parallelograms, denoted by CY;, have the well-known volume

1 ||0p! dp~t
1 = — || = . 4.1
Vol Gy = — ‘ o5, (e(pra)) x 02g (e(pra)) (4.10)
Hence, the volume of S := ijlo Uk, € UN X can be approximatively
defined by
n—1 n—1 1 agﬁ_l agﬁ_l
Vol Cy; = — ||=— X . 4.11
k;_:o el kgo = ‘ o (e(pr,)) o5 (@(pk,z))H (4.11)

Intuitively, it is clear that the approximation becomes better for large n, and
we thus define

n—1
Vol S := lim_ g:o Vol O, . (4.12)

Here we write C}; for the little parallelograms to emphasize that they depend
on n.
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With the area form dAy; defined in (3.54), the volume of S can be written
differently. — First, note that the unit normal vector field to X' at the point
pr,i (see Definition 3.37), reads as

%% (e(pry)) x %«;_2 (e(pry))

%wz_l(@(pk,z)) X %Q;—Q(@(pk,z))u .

This implies for the area form, expressed in the local chart (U, ¢),

_ dp~t  Op~t
dAs = H D, X 92 dgﬁl A\ d<p2 S 'QO (U n E) (413)
It follows that
1 0 1 0 1 [[op~t Op~1
dA - -
( Z)pw( 9or a3 Pt — 90s (Pk,l)) 2 | om (e(pryi)) % e (e(pr,))

= Vol CkJ .

Hence, the volume of the parallelogram Cj; can also be expressed in terms
of the area form (dAx)p, ,. Thus for the approximation (4.11) of the volume
of S, we get

n—1 n—1 1 a a

or equivalently

ZVOICM_ Z/,

k,l=0 k,1=0

—1

¢
8931 (¢(pra)) x 025 (@(Pk,z))H dridrs .

(4.14)

In a next step, we show that integration of the area form (4.13) over S

indeed leads to the volume of S defined in (4.12). By definition of the integral,
we have that

/ dAs = /
Uk,i 0 (Uk,1)

From the continuity of the area form, it then follows

()| drrdxs .

85071 2 8(,071
6.1‘1 6.1‘2

/ dAE — Vol Ck,l
Uk 1

Op~ ! dp1 H
dAs — / .
[ | (etoa) % S (ot
S E’Z,l . VO] C]lv,l s (415)
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(x) x

€k = Sup
zeCy,

%=

8(,071(1' B 8(,071 o -1
6.1‘1

s Do (PPED) X 5(22 (sa(pk,z))H ' :

Taking the sum over k and [ in (4.15) and using (4.14), we arrive at

n—1 _
dAE — Vol Ok,l < max &7, . Vol C! 1. 116
/S k;o 0<kd<n—1 k;@ k,l (4.16)

Since €7 ; goes to zero for n — oo, taking the limit in (4.16) implies
/ dAsy, =Vol S, (4.17)
s
where we used (4.12). So integration of the area form indeed gives the volume

(area) of the surface.

Example 4.10 (Volume of S?). We want to calculate the integral of the area
form dAg: expressed in spherical coordinates (see (3.64)). Since the spherical
coordinates cover up to a set of measure zero the whole two-sphere S2, it is
possible to use only a single chart for the integration. Hence, we have

/ dAg :/ / cos 6 duyde
S2 -7 z

=27 / cos@df = 4r. (4.18)

s
2

el

Considering only the northern half-sphere SJQr and the corresponding volume
form dAg> (see (3.66)), the same result for the volume of the sphere can be

obtained (by a more precise calculation).

4.3 Stokes’ Theorem

Let f € C'(]0,1],R). Then, from the well-known “Fundamental Theorem of
Calculus” or integration by parts formula for functions, it follows that

/0 () dt = (1) — £(0). (4.19)

More generally, let df € £21([0,1]). Then by Definition 4.2, we have

/ df = f(@t)de.
[0,1] [0,1]
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With (9.92) and Example 3.33, this can also be written as

/[071] df = f(1) = f(0) = /6[071] EIIE /6[0 ; oS

)

where 0[0,1] = {0_} U {14} denotes the boundary of [0,1] C R. It will turn
out that the last equation is a special case of Stokes’ theorem. Hence, this
important theorem can be interpreted as an integration by parts formula for
forms on manifolds.

Before stating Stokes’ theorem, we have to study the boundary 042 = 2\ (2
of an open subset of a manifold in a detailed manner.

Definition 4.11. An oriented domain 2 of an oriented manifold M™ is
an open subset of M™ such that, for every p € 02 = 2\ (2, there exists a
local chart (U, ) of M™, p € U open, with

(i) ¢(p) =0, i.e., the chart is centered at p;
(i) §(20U) = (R; \ {0}) x ™1 N (V)
(iii) the map ¢ is a positive diffeomorphism from U into o(U).

Rm—l

e(2)NU

Fig. 4.4. Domain of a manifold.

Proposition 4.12. Let 2 be an oriented domain of an orientable manifold
M™. Then 012 is an oriented (m — 1)-dimensional submanifold of M™.

Proof. Let p € 002 = 2\ 2 and let (U, ¢) denote the local chart given by
Definition 4.11. Since ¢ is a bijection, we get

e((2\2)NU) =p(2nU)\ p(2nV),
and since ¢ is a homeomorphism,
e(2NU) =p(R2NnU)Ne).

These two observations then imply that
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P(00200) = (@ NT) N e(0)) \ p(2N0 D)
= Ry x R™016(0)\ (R \ {0}) x R 1o(0)
= {0} x R™" "1 Ngp(U),
showing that 92 is a (m — 1)-dimensional submanifold of M™. — Note that
submanifolds of manifolds are also manifolds as in the case of submanifolds
of Euclidean space.
In order to show the orientability of the manifold 0f2, it suffices by Propo-
sition 3.52 to construct a positively oriented atlas on 9f2. Then we are done.

Let (¢, U) and (¢, V) be two local charts about p € 942 given by Definition
4.11. We then denote the transition function by

o = (f1, 057 1) : p(UNV) C Ry xR™ — (UNV) € Ry x R™1,
where @ := ¢|go and 1) := 1|s0. Since
e(UNVNIN)Cc{0}xR™ 1 npUnV),

and
PUNVNIN) C {0} xR nyp(UNV),
we have for all z € {0} x R™"1 N (U NV) that fi(x) = 0. This implies that

of1
63%

(z) =0, i=2,...,m.

Moreover, one easily checks that Ay := g—Q(O) > 0 at the point p(p) = ¢ (p) =
0. Thus we can write for the Jacobian at the point 0 € R™ of the transition

function
JO(wOQD_l) = (tl Jo(wgso_l)) .

det Jo(1p o o™1) = Ay det Jo(h o g 1).

By assumption det Jo (1) o ¢™1) > 0 showing that det Jo(x) o 1) > 0. This
proves the proposition. 0

It follows that

At this stage, we are ready to formulate Stokes’ theorem.

Theorem 4.13 (Stokes’ Theorem). Let M™ be an oriented manifold and
let £2 be an oriented domain of M™ such that §2 is compact. Then for every
w € N7HM) the following formula holds:

/dw:/ LHow , (4.20)
[0} a1

where ¢ : 2 — M™ denotes the canonical inclusion.
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Proof. To every p € {2 we assign a local chart (Up, ¢p) such that ¢, is a
positive diffeomorphism and such that (see also Fig. 4.4)

a) if p € 2, then U, C 2 and ¢,(U,) C B1(0) C R™;
b) if p € 812, then ¢, (Up,NN2) = (R4 \{0}) xR™'NB1(0) and ¢, (U,NIN) =
{0} x R™*T1 1 B4(0).

Obviously, we have that 2 C Upe o Up and let Uy be a subset of the

complement of (2 such that Uy U (Upefz Up) covers M™. Due to the com-
pactness of {2, we can extract a finite covering, i.e., the open sets Uy, Uy :=
Up,s...,Un :=U,, cover M™. Moreover, let 0,01, ...,0y denote a partition
of unity subordinated to this covering.

By linearity of the exterior derivative d and the integral, we then have

(see also (3.75))
N N
/de:/nd (; m) ;/ﬂd(@iw). (4.21)

The sum is finite and note that d(f;w) € 25"~ (M) is compactly supported
in U;. Using Definition 4.4 for the integration on manifolds, it follows for
t=1,...,N that

[ d0w)= [ xodo
- / (pi") (xed(¥:w))
wi(Us)
:/_(Uv)(XQ0@;1)(90i_1)*(d(9iw))’

where x is the characteristic function of £2 and the ; := ¢, verify a) and
b). Clearly, xq o 30;1 = Xy, (U:n2), We can thus write

/ d(biw) = / Xos (:n2)d((07 )" (Biw)) (4.22)
(9] wi(Us)

where we also used that d and the pull-back commute. .
If we denote by Ug41,...,Un the open sets of M™ which intersect 912,
(4.21) can be rewritten as

[ o z [ o+

Fori=1,...,Q, (4.22) then implies

faoer= [ aeryow) = [ aerrew). @

N
> /Q d(Ow) . (4.23)

i=Q+1
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Note that (p; ')*(fiw) € 271 (R™) is compactly supported in ¢;(U;) C
B1(0). From Lemma 4.14 below, we then deduce that the right-hand side of
(4.24) vanishes.

Fori=Q+1,..., N, we have

w (4£2) 1% (0.0 |
/nd(ez ) /(R+\{O})X]Rm1d((% ) (0w)

From Lemma 4.15 below, we then obtain
/ (i) = / Vg (971 (00))
Q {0} xRm—1

:/ LgQHiw:/ thobiw . (4.25)
00nU; Yo,

Combining (4.23) with (4.24) and (4.25), we arrive at
N
dw = / Ls 9iw:/ LHow .

i=Q+1
Lemma 4.14. Let 3 € 271 (R™) compactly supported. Then, we have that

[ =0

Proof. Let 3 € 27"*(R™) be given in the following representation

O

B=3 (-1 Bpdy A... Adap A Adiy,. (4.26)
k=1

Then, using (3.42), it is easy to check that
df =divXgdxy A... ANdzp,, (4.27)

where Xg = (81, ..., 8m) is a Cl-vector field on R™. From Definition 4.2, we
then deduce that

/m g = - div Xg(x)dL™(x) .

Since (3 is compactly supported, we can assume that supp 8 C Br(0) C R™
for some R > 0. Hence, we get (note that div Xg € L!(R™))

/m div Xg(z)dL™(z) = /B o div Xg(z) dL™ (z) = /[R - div Xg(z) dL™ (x)
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From (4.27) and since integration is a linear operation, it follows

IRCE Z/ @)L (o),

For every 1 < k < m, the theorem of Fubini implies that

O mi 05, ,
/[RRm o (a) L™ (o )_/[_mml </[_R7R] axk(x)dxk> doy . du. ..z,

where a different notation is used for the Lebesgue measure on the right-hand
side. Because supp 8 C Bg(0), we have

/[ 0% (1) diy, = Bu(R) — Br(~R) = 0.

R,R] 9%k
This gives the result. ]

Lemma 4.15. Let 3 € 27" (R™) compactly supported. Then, we have that

/ dp = / L?o}meflﬂ-
R4 xRm—1 {0} xRm~—1

Proof. With the same notations as in the proof of the previous lemma, we
can write

R
/ g = / / div Xg(x) dL™ (x)
Ry xRm=1 21=0 J[-R,R]™m~!

R
= / / div X(x) dzidxs . . . dzy,
x1=0 [*R,R]m71

Using the theorem of Fubini, the right-hand side of the last equation becomes

R
/ / %(x) dxo . ..dz,y, | dry
21=0 [-R,R]m—1 6.1‘1

+ i/R [/[ LY dzg...dxm] dz, . (4.28)

2 21=0 ,R’R]mﬂ &ck

The integrals in brackets vanish by an analogous argument as in the proof of
the previous lemma.

For the first term of (4.28) we obtain, from the fact that supp 8 C Bgr(0)
by assumption,

" 061
/ / a—(m)dmg...dxm dmlz/ B1(0, 22, ..., &) des .. .dey, .
21=0 \J[-R,R]m—1 011 [—R,R]m—1
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In summary, we have shown that

/ g = / 51(0,29, ..., &m)dxy ... dey,
]R+><]Rm’1 [_R,R]m—l

“‘3/ B0, @2,y ) dwy A Adg, . (4.29)
Rm—1

On the other hand, it is straightforward to observe that, for k = 2,...,m,
Uioysrmard1 Ao Adag A d, = 0.
This implies, recalling (4.26),
L?O}X]Rm,lﬁ = 061(0,z2,...,xm)dxa A ... dxp, .

Inserting the last expression in (4.29), then gives the result. O

Application of Stokes’ Theorem

B3 52

Fig. 4.5. Map from B? to S% = 9B3.

We want to answer the question if there exists a smooth map ¢ : B® —
5?2 such that ¢(z) = 2 on S? = 9B3. Roughly speaking, we ask if it is possible
to compress in a smooth way B3 to its boundary leaving the boundary itself
unchanged. — Obviously, this can be done by the map x +—— I;_I’ r € B3,
without considering the origin.

The answer to the question before is given by the following theorem.

Theorem 4.16 (Brouwer). Let
¢:B™ — SmTL=9B™

be a C'-map. Then the restriction of ¢ to OB™ can not be the identity on
oB™.
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Proof. We prove the theorem by contradiction. — First note that
detJ,¢ =0, for all x € B™, (4.30)

being a direct consequence of the Local Inversion Theorem 1.10. More pre-
cisely, without (4.30), this theorem would give the existence of a diffeomor-
phism from U open containing € B? into V open containing ¢(x) € S2.

Let doy A ... Adx,, € 2™(S™1). Since the pull-back of this differential
form equals multiplication by det J¢, it follows (see also (3.74))

0=¢"dei A... Ndx,, € Q™(B™),
and also that

o*dri N...Ndzx,y, =0.
BWL

Denoting by (¢1,...,¢m) the coordinate functions of ¢, we obtain, with
Proposition 3.24 and (3.46),

/ dér A ... Nddm = 0.

From do1 A ... ANdy, = d(¢p1dda A ... Addy,) and Stokes’ Theorem 4.13, we
deduce that

0:/ d(py dpg A ... A dpy,)
= / LBBT"' (¢1 doa N ... Ndom,) - (431)
oB™

Moreover, using again Proposition 3.24 and (3.46), we get

Lopm (Prdda A ... Nddm) = d10Lapm d(thpmP2) A ... Ad(Lypmdm) -
Since by assumption ¢|lgpm = id|spm, it follows that
pm(@rdde A ... Ndpm) =x1dos Ao AdTyy, .

Inserting this result in (4.31), leads to

0:/ ridro A... NdTy, .
6B77L
Using again Stokes’ theorem, we obtain the contradiction:

OZ/ da:l/\.../\dxm:/ 1dL™ =Vol(B™).
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Particular Cases of Stokes’ Theorem

1. Let £2 C R™ = M™ be an oriented domain of R™ such that {2 is compact.
Moreover, let o € 2™71(£2) be given by the representation

m
o= Z(—l)kflakdm Ao ANdx AL N ATy,
k=1

Then, we obtain (see the proof of Lemma 4.14)
do=divXedzi Ao  ANdxy,, (4.32)

where X, = (a1,..., ) is a C*®-vector field on 2 C R™.
On the other hand, extending Proposition 3.40 to m dimensions, we get

thoa = (Xa,n) dAsn, (4.33)

where (-,-) denotes the usual scalar product on R™ and the map n €
C*(£2,R™) denotes the orientation for the (m — 1)-dimensional submani-
fold 012 of R™ (see Proposition 4.12 and Proposition 3.55).

Inserting (4.32) and (4.33) into Stokes’ Theorem 4.13, we end up with
Gauf} formula:

/ divX,dri A ... ANdxy, = / (Xa,m)dAsg (4.34)
12 20

2. We consider a surface X in R3 and let £2 C X be a oriented domain of
Y. Moreover, let 3 = 31 dz1 + B2 dzs + f3drs € 21 (R?) and o = f|x = 153
be the restriction of the one-form § to 2. In Section 3.1.2, we have shown that
the exterior derivative d3 corresponds to rot Xz, where Xg = (01, B2, 83) is
a C*®-vector field on R3. From Proposition 3.40, we then obtain

/Q da = /Q AU B) = /Q VedB = /Q (rot X5, n) dAs . (4.35)

On the other hand, denoting the one-dimensional boundary 9{2 of {2 by I',

we have
/ L;ggaz/u;ﬁ:/o(g,t) dip | (4.36)
o0 r r

where we used Proposition 3.36. Recall that dir denotes the length form on
I' with respect to the orientation ¢ (see Definition 3.35). Putting (4.35) and
(4.36) together, Stokes’ theorem has the well-known form:

/ (rot X5,n) dAs = / (Xg,t)dlr . (4.37)
2 r






5 Riemannian Geometry of Curves and
Surfaces in R3

5.1 Local and Global Geometry of Curves in R3

Definition 5.1. Let k > 1. A parameterized C*-curve in R3 is a C*-map
~ from an interval I C R into R3.

Remark. If the interval I is not open the map 7y can be seen as restriction of
a C*-map defined on an open interval containing 1.

Ezample 5.2. For simplicity, we take examples of curves with images lying
in R, — The map v : R — R?, t —— (¢, [t|) is not a parameterized C'-
curve, since |t| is not differentiable at ¢t = 0. However, the map v : R — R2,
t — (t3,1%) defines a parameterized C'-curve. Note that 4(0) = (0,0),
showing that 7 is not regular in the sense of the following definition.

Definition 5.3. A regular curve is a parameterized C'-curve v such that
A(t) #0, for all t € I. We call t(t) := %(t) € R3 the tangent vector of v at
t. Moreover, the arc length of the curve v from a fized point v(to), to € I,
is defined by

s(t) = / 1)l dr (5.1)

Note that s : I C R — Ry is a strictly increasing function. — If ||4(¢)|| =
1, for all ¢ € I, then clearly s(t) =t — ¢ for the arc length, and we say that
v is parameterized by arc length.

Lemma 5.4. Let v be a reqular parameterized curve in R3. Then v can be
parameterized by arc length.

Proof. Let [a,b] = I C R and let L denote the total length of the regular

parameterized curve v, i.e., L := s(b) = f; [I%(7)|| dr. From (5.1), we deduce

that, for all ¢ € [a, b],

ds

— = ||y 0.

% ) £
Hence by the Local Inversion Theorem 1.10, the Cl-inverse s~! : [0, L] —
[a,b] exists. Defining §(c) := v(s7(0)), for o € [0, L], we obtain a curve
parameterized by arc length. Indeed, we see that
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il
do

=1.

= Hv(sl(o))df,—gl

O

In the following, we denote by 7(s) curves being parameterized by arc
length.

Definition 5.5. Let v be a C?-curve parameterized by arc length. We define
the curvature of v at s € I by the number k(s) := ||5(s)]|.

We easily see that if k(s) = 0, then the curve v is a straight line. Moreover,
it is intuitively clear, that the curvature at point measures the deviation of
the curve from the tangent vector at this point, also called bending of the
curve.

Assuming that 4(s) # 0, for a point s € I, we introduce

n(s) = 25 (5.2)

the unit normal vector to 7 at s. We call the plane in R? generated by the
vectors t(s) and n(s) the osculating plane to v at s. Moreover, we define

b(s) :=t(s) x n(s), (5.3)

where x denotes the usual vector product in R3.

osculating plane

Fig. 5.1. Curve in R3.

Next, we would like to measure the tendency of a curve to escape from
the osculating plane, also called twisting of the curve. For this purpose, we
consider the derivative of b(s) and compute

. . L (5.2) )

b(s) =t(s) x n(s) +t(s) x n(s) =" t(s) x n(s).
Thus, we deduce that b(s) is parallel to n and the following definition makes
sense.
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Definition 5.6. Let v be a C3-curve parameterized by arc length. We define
the torsion of v at s € I by the number 7(s) such that b(s) = 7(s) n(s).

Note that the torsion indeed measures the twisting of the curve and we
state without proof the following

Proposition 5.7. Let v be a C3-curve parameterized by arc length. Then ~y
lies in a plane of R3, i.e., is a planar curve, if and only if 7(s) = 0.

Remark. Obviously, planar curves can be interpreted as maps from an inter-
val of R into R? (see also Example 5.2).

Definition 5.8. Let v be a C3-curve parameterized by arc length. If 5(s) #
0, for all s € I, then we call v a Frenet curve. Moreover, the Frenet
trihedron is formed by the orthonormal frame {t(s),n(s),b(s)}.

For a Frenet curve, we have by definition b s) = 7(s) n(s) and we deduce
directly from (5.2) and Definition 5.5 that £(s) = k(s ) (s). Then, it follows
(

o(s) = b(s) x t(s) + b(s) x i(s)
= 7(s)n(s) x t(s) + k(s) b(s) x n(s)
= —7(s) b(s) — k(s)¢(s) -

In summary, we end up with the following system of ordinary differential
equations called Frenet equations:

t(s) = k(s)n(s)
n(s) = —7(s) b(s) — k(s) t(s) (5.4)
b(s) = 7(s)n(s).

Theorem 5.9 (Fundamental Theorem of the Local Theory of Curves).
Let I be an interval of R and let k: I — R\ {0}, 7: I — R be two given
C>®°-functions. Moreover, assume that for a fized so € I a point x € R® and
an orthonormal frame {9, €9, €3} of R® are given. Then there exists a unique
C>-Frenet curve v : I — R3 solution of the Frenet equations (5.4) such
that

(Z) 7(80) =y
(ii) the Frenet trihedron of v at so is {€9,€3,e3};
(iii) the curvature and torsion of v are, respectively, k and T.

This important theorem closes the part concerning the local theory of
curves in R3. — Now, we come to the global theory of curves in R? dealing
with closed and simple (planar) curves in the sense of the following

Definition 5.10. A regular parameterized C*-curve ~y : [a,b] C R — R,
n = 2,3, is called closed if v and all its derivatives agree at a and b, i.e.,
'y(l)(a) = v(l)(b), for alll =1,.... k. Moreover, a regular parameterized C*-
curve vy is said to be simple if y|[qp) s injective.



120 5 Riemannian Geometry of Curves and Surfaces in R?

Theorem 5.11 (Jordan). Let : [a,b] — R? be a closed and simple planar
curve. Then there exists a bounded domain 2 of R? such that

002 =02\ 2 =~([a,b]).
Proof. O

Jordan’s Theorem then motivates the following two (equivalent) ques-
tions:

a) What shape does the domain {2 with given area A must have, in order
to minimize the length L of its boundary ~?

b) What shape does the curve v with given length L must have, in order to
maximize the area A of the enclosed domain 27

As expected, it turns out that the optimal shape is given by the circle in R2.
More precisely, we have the following important global theorem.

Theorem 5.12 (Isoperimetric Inequality). Let v be a closed and sim-
ple planar C-curve with total length L. Moreover, let A be the area of the
enclosed domain (2. Then, we have that

L*>4r A, (5.5)
with equality if and only if v is a circle in R2.

Proof. Let 7 : [0,L] — R? be a closed and simple planar curve parame-
terized by arc length such that v([0,L]) = 02 for a domain £2 of R? (see
Lemma 5.4 and Jordan’s Theorem 5.11).

We denote by £2 the convex hull of £2, i.e, the intersection of all convex
subsets of R? containing £2. Then, we see that A(£2) > A(2) and L(7) <
L(v), where 4 denotes the closed and simple planar curve enclosing the convex
hull 2. Hence, if (5.5) holds for 2, we get

AD) S AD) < - LG) < - L),

showing that it suffices to prove the isoperimetric inequality for the case when
2 is a conver domain of R%. — Moreover, because of the invariance of (5.5)
under dilations, we can assume that L = 2.
Next, we denote by AT and A~ the two half-planes of R? such that
ATUA™ =R? and
LONAT)=LONNAT) =T,
ARNAT) > AR2NAT).

Then, we choose coordinates (z,y) on R? in such a way that

A+:{(z,y)€R2 : yZO}.
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Fig. 5.2. Setting for the proof of the isoperimetric inequality.

For the area A of the convex domain {2, we have

A(2) < 2A(2 0 A%) = 202020 AH) = 2/ dondy,  (56)
nNNA+

where we used Definition 4.2 for the integration of differential forms on Eu-

clidean space. Writing dx A dy = d(—ydx), Stokes’ Theorem 4.13 implies

that
2 / dz Ndy =2 / Lyana+(—ydz).
onA+ a(enAat)

Since (2N AT) = (2NIAT)U (82N AT), the last integral becomes (note
that y = 0 on A™T)

2/ Lyanan(—ydz) = —2/ ydz,
a(nA+) a0nA+

where y dz now denotes the restricted one-form to 2NA™ i.e., 1}, A+ (ydz) =
ydz|pona+

By convexity of the domain §2 it is now possible to parameterize 92N AT
by the curve 7|jg ], i.e., ¥([0,7]) = 02N A*. Note that in the case of 2
being not convex, the length of the curve parameterizing 02 N AT would
by larger than 7, because the different components of 82 N A" need to be
connected. — So writing y(7y(s)) = y(s) and z(v(s)) = x(s) for s € [0, 7], we
obtain from Proposition 4.3 that

-2 /29!2ﬁA+ ydr = -2 /[0,7r] y(s)x(s) ds. (5.7)

Since 7 is parameterized by arc length, i.e., 1 = [|¥(s)||? = #%(s) + §2(s), we
see that
—2y(s)i(s) < y*(s) +i%(s) = y*(s) + 1 = 4%(s).

Inserting this into (5.7) and recalling (5.6), we arrive at
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A(R) < /OTr Y2 (s) + 1 —9%(s) ds. (5.8)

Since v is a C'l-curve by assumption, we can apply Poincaré’s Lemma
5.13 (see below) to deduce that

2

™ ™ L
A(Q)g/ y'2(3)+1—y2(s)ds§/ lds=m=—.
0 0 47

As a direct consequence of (5.6) and Poincaré’s Lemma 5.13, equality holds
if and only if A(2N AT) = A(2N A7) and d2 N AT is a half-circle. This
concludes the proof of the isoperimetric inequality. a

Lemma 5.13 (Poincaré’s Lemma). Let y € C'([0, 7], R) such that y(0) =
y(m) = 0. Then, we have

/ " () ds < / " (s) ds, (5.9)

with equality if and only if v(s) = ¢ sin(s) for a constant ¢ € R.
Proof. a

In the case of planar regular curves  parameterized by arc length, it
is possible to assign a sign to its curvature (compare with Definition 5.5).
For this purpose, let n(s) denote the unit (normal) vector in R? such that
{4(s),n(s)} is a positive oriented basis of R%. Then, we get the following

Definition 5.14. Let v be a planar reqular C?-curve parameterized by arc
length. We define the signed curvature k(s) of v at s by 5(s) = k(s) n(s).

\*ﬁ(s)
k(s) <0 k(s) >0

Fig. 5.3. Signed curvature of a planar curve.

Introducing polar coordinates in R?, the unit tangent vector of v at s
can be written as §(s) = (cosf(s),sinf(s)). Hence, it follows that §(s) =

0(s) (—sinf(s),cos0(s)). Since
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{(cos(s),sinf(s)), (—sinb(s),cosb(s)) }

is a positive oriented basis of R?, we can take n(s) = (—sinf(s),cos(s))
and obtain k(s) = (s) for the signed curvature. If in addition the curve ~ is
closed with length L (see Definition 5.10), it follows that

6(0) =60(L) mod 27 .
Thus, we can define the rotation index of ~y, denoted by Ind -y, as being the
number in 7Z satisfying
L
/ k(s)ds =6(L) — 0(0) = 2w Ind ~y. (5.10)
0
Remark. The rotation index can be interpreted as topological degree of
seen as map from S! into St (see Section 4.2).

Theorem 5.15. Let v : [0, L] — R? be a closed and simple planar curve
parameterized by arc length. Then, we have Indy = £1, i.e.,

L
/ k(s)ds = £27.
0

Proof. We can also always assume that ([0, L]) C RxRy and v(0) = (L) =
0, moreover that 4(0) = 4(L) = e; (see Fig. 5.4).

Fig. 5.4. Coordinates for the proof of Theorem 5.15.

Then we define
A:{(S,U)ER2 : OgsgogL}.
and the map e: A — S!' C R? by

M or s# o0 and (S,0
o) ) o 570 and (s,0) #(0,1)
ele:0) = ¥(o) for s=o0

—%(0) = —ey for (s,0)=(0,L).
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By assumption the planar curve v is simple, i.e., for all s, € [0,L) with
s # o, it follows that v(s) # (o). Hence, the map e is well-defined and its
continuity can also easily be checked. Moreover, one sees that e(o, o) gives
the unit tangent vector of v at o.

It is left as an exercise to show the existence of a continuous function
6 : A — R such that e(s, o) = (cos(s,),sinf(s,o)) and (0,0) = 0. In a
next step, we define the function (o) := (o, ). The tangent vector of v at
o then reads as ¥(0) = e(0,0) = (cosf(c),sind(c)).

For the signed curvature we then obtain (see (5.10))

/ da—/ 0o (L) - 0(0)

=6(L,L) —6(0,0).
On the other hand, we have

6(0,L)—6(0,0) =7 —0=m,
O(L,L)—60(0,L)=2r—7=m.

Thus, we can write

/L k(o)do = (6(L,L)—6(0,L)) + (6(0,L) — 6(0,0)) =
0

Note that we obtain the opposite sign in the last equation if we assume
that 4(0) = (L) = —ey. O

As a direct consequence of the previous theorem, we have that

L
/ |k(s)|ds > 2m, (5.11)
0

with equality if and only if the signed curvature of the closed and simple
planar curve v does not change the sign. This condition is equivalent for the
curve to be conver. — In addition to the derived results for closed and simple
planar curves, the next theorem says that a certain amount of curvature is
needed to close simple (space) curves in R3.

Theorem 5.16 (Fenchel’s Theorem). For every closed and simple curve
v :10,L] — R? parameterized by arc length, the following inequality for the
so-called total curvature holds:

L
/ k(s)ds > 2w, (5.12)
0

with equality if and only if v is a planar convexr curve.
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Introducing the concept of knotted curves in R?, we obtain a sharpening
of Fenchel’s Theorem.

Definition 5.17. A closed and simple C°-curve v : St — R3 is called
un-knotted if there exists a homotopy H : S' x [0,1] — R3 such that
H(S' x {0}) = S*,
H(S' x {1}) =,
and H(S' x {t}) = v C R? is homeomorphic to S'.

Intuitively, this means that an un-knotted space curve can be deformed
continuously into the circle S* with all intermediate positions homeomorphic
to S'. For the total curvature of knotted curves, i.e., curves which do not
satisfy Definition 5.17, we then have the following result.

Theorem 5.18 (Fary-Milnor). For every knotted (space) curvey : [0, L] —
R3 parameterized by arc length, the following inequality for the total curvature
holds:

L
/ k(s)ds > 4. (5.13)
0

Fig. 5.5. Knotted and un-knotted space curves.

5.2 Local and Global Geometry of Surfaces in R3

Definition 5.19. We define a C*-surface of R to be a two-dimensional
C*-submanifold of R3.

Remark. In the following, we will only consider C'*°-surfaces.

Let X be a surface in R? and p € . The canonical scalar product of R?
induces on each tangent space T, X a scalar product, denoted by (-, -),. More
precisely, if X1, Xs € T,X C R?, then (X1, X2), equals the scalar product
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(X1, Xo) of X7 and X5 in R®. Note that we make no difference in the notation
for an element of the tangent space 1), X and its image by the map dvx;, where
s> denotes as usual the canonical inclusion of X in R3. — Recall also that a
scalar product is a symmetric bilinear form.

Definition 5.20. Let X be a surface in R and p € X. The restriction of
the canonical scalar product in R3 to T,X, denoted by (-,-), or also I,(-,-),
defines the first fundamental form of X at p.

Let (U, o) be a local chart for the surface X about p € U C X' in the sense
of Example 2.20. In this chart, we can write X,Y € T,,X as

2 2

0 0
X = X, — Y = Y, —(p).
The first fundamental form I, then reads as
I,(X,)Y)=(X,Y), (5.14)
o0 0 0 0
=X1Y1 ( —(p), — + X1 { —(p), —
i (505 0) + X% (52052 00)
o 0 0 0
+ XoY: ( —(p), — + XoYs ( —(p), — .
i (5500 5 0) + X% (5100 55 0))

(5.15)

Introducing for the coefficients of the first fundamental form in the chart
(U, ¢) the notations

E(p) = <ai<pl(p)7a%1(p)>p . Fp) = <a%l(p)7a%2(p)>p ;

G(p) = <8%2(p% 8%2(19)>p ; (5.16)

Equation (5.14) reduces to

Next, let 7 € C’l([O, 1, x ﬂ U) be a regular parameterized curve in X. If
we write (¢ @~ (c1(t), c2(t)) for the curve in the chart (U, ), then it
follows

3 = 0 8(;0 ($(0) +2(0) S (1)

By Definition 5.3 the arc length of «y is given by

= [,
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and using the notations introduced in (5.16), it follows

/ \/c1 + 2¢1(7)é Q(T)F('Y(T)) + é%(T)G(’}/(T)) . (5.18)

Hence, the importance of the first fundamental form comes from the fact
that if it is given, then metric questions on a surface can be treated without
further references to the ambient space R3.

Ezxample 5.21 (First Fundamental Form for the Sphere S?).

We have already seen in Section 3.3, that Y is orientable if there exists
a C®-map n : ¥ — R3 such that |n(p)|| = 1 and n(p) L T, X, for all
p € X, and an orientation for X is given by the choice of such a map n.
An orientation m can be constructed in the following way: Let ¢ : X «— R3
denote the canonical inclusion and let (U, ) be a local chart about p. Then
we consider the C'*°-map, called local parameterization of X,

g li=igoplip(ZNU)CR? — XNU CR?. (5.19)

e(p)

%‘%1 (gp(p)), for ¢ = 1,2, are two linearly independent vectors of T,,X C R3.

Moreover, the map

Since ¢ is a local diffeomorphism about p, we deduce that dg !

o1 y o1

) )

a;jl agfl (5.20)
H 81'1 (91'2

gives an orientation for X'. (At this place, the remark at the end of Section
3.3 can be useful, see also (3.63).)

Remark. At this place, it is important to note that in terms of a local pa-
rameterization the first fundamental form reads as

(5500 550) = (S S eo)) . G

dpi dp;
For later use, we note that, for X,Y € T,,X, this can also be written as
(X,Y)p, =(dex-X,des - Y). (5.22)

Definition 5.22. Let X be a surface in R3 with orientation m. We define
the Gaufl map n of X' by

n:Y — S,
pr—n(p), (5.23)
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Since T, X and Ty, (p) S? are parallel to each other, the tangent map dn,,
to the Gaufl map can be seen as linear map on 7, X. Moreover, it has an
important property.

Proposition 5.23. For any point p € X, the tangent map dn : TY — T S?
of the Gaufs map is self-adjoint with respect to the first fundamental form,
i.e, for all X,Y € T,X, we have

(dn, X,Y), = (X,dn, -Y),. (5.24)

Proof. Let (U, ) be a chart about p € X and let $~! = 150! be the local
parameterization defined in (5.19). Moreover, let v,5 € C1([-1,1], X NU) be
two curves in X (seen as curves in R3) such that v(0) = 5(0) = p and (see
Definition 2.32)

d

d
= 2| WenE, Y=_| ey, (5.25)

dt |,—o

t=0

From Definition 2.40, we see that the tangent map dn, of the Gaul map

acts on X like p
dn, - X = —

pn (nov)(t). (5.26)

t=0

Writing (¢ o) (t) = c1(t) ex + c2(t) e2 € R?, t € [—1,1], for the coordinate
expression of v, we then obtain

d ) )
E(@O’y)(t) =c¢1(t)er +éa(t) ea.
Thus for the map

noy=no@ lo(poy)="no(poy):[-1,1]CR— S?CR?, (5.27)

it follows, using the chain rule,

%(” ) (1) = ditp(yw)) - (E1(t) €1 + é2(1) €2)
= 80) 5 ($0(0) + e2(t) e (07 (0).

Inserting this result in (5.26), we arrive at
on on
dn, - X =¢1(0) =— 9(0) =— . 5.28
ny ¢1(0) 5o (¢0) + 2(0) 7= (v(p) (5.28)
In an analogous manner, we also get

dn, Y = &(0) S—Z(cp(p)) + ¢2(0) on (¢(p)) . (5.29)
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Moreover, we deduce similarly from (5.25) that

= %t_o (@ opon)(t) = (0) 852_1 (2(p)) + é2(0) aa‘;; ((p)) -
= %t_o (™ opo)(t) = (0) 55‘; (¢(p)) +&(0) ag; (o(p)).

(5.30)

From (5.28), respectively (5.29), and (5.30), we then get for the scalar prod-
ucts:

(g X,¥) = (¢ <>§;‘ (#0) +220) 5 (o(7).

(Kodny - ¥) = (81(0) = (000) + 200) S (ol0).

A(0) g (o(9) + 2(0) 5 (o(9) )

For the difference of the last two expressions, it follows

(dny - X,Y)

10)2a0) ({52 (619): S (o) ) — ( Z(6l). S o) ) )

on

Ox
#0022 600, 2 00 )~ (2 00). 2200
(5.31)

X,dn,-Y)

Since the unit normal vector is perpendicular to the tangent space of the
surface (see (5.20)), i.e

951

(ot0). G (ot0) ) =0.

we obtain by differentiating with respect to xo that
on op~t . 0?1 _
<a_x2(“0(p))’ o (w(p))> + <n(<p(p)), g (w(p))> =0. (532)
Similarly, we also get
on op~t _ 0?1 _
<a—xl(sﬁ(p)), s (@(p))> + <n(¢(p)), - (sa(p))> =0. (5.33)

And (5.32)—(5.33), then implies
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on op~! on op~1 B
<a—m(sﬁ(p)), Do (sa(p))> - <a—xl(sﬁ(p)), s (@(p))> =0.
After inserting this in (5.31), we get the result (5.24). O

Definition 5.24. Let X be a surface in R with Gauf map n. The second
Sfundamental form I, of X at p € X is the symmetric bilinear form on
1,2 defined by

IT,(X,Y)=—({dn, - X,Y),, X, YeT,X. (5.34)
Remark. From Proposition 5.23, we deduce
II(X,)Y)=—({dn,- X,Y), = —(X,dn,-Y), = —(dn, Y, X), = II,(Y, X),
showing the the second fundamental form 17, is indeed symmetric.

Definition 5.25. Let X be a surface in R3 with orientation n and let
v € C*([-1,1],X) be a regular curve such that v(0) = p € X. Assume
also that 5(0) # 0 and write cos§ = (n(p),n,(0)), where n(0) denotes the
normal vector of v at 0, i.e., 3(0) = k(0) n(0). Then we define the normal
curvature k,(p) of v in X at p by

kn(p) := k(0) cos 0 = k(0) (n(p), ny(0)). (5.35)

In other words, the normal curvature k,, is the length of the projection
of the vector kn. on the normal n of the surface (see Fig. 5.6).

Fig. 5.6. Normal curvature of a curve in a surface.

To give an interpretation of the second fundamental form I1,, we consider
a regular curve v € C?([—1,1],X) parameterized by arc length (seen as a
curve in R3) such that y(0) = p € X. Denoting by m(s) the restriction of n
to the curve «y(s), we deduce that (n(s),¥(s)) = 0. Hence, it follows
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(n(s),7(s)) + (n(s),4(s)) = 0. (5.36)

Note also that dn, - ¥(s) = 1(s). Then we obtain for the second fundamental
form

I, (5(0),%(0)) = —

Thus the value of the second fundamental form I, for a unit vector 4(0) €
T2 equals the normal curvature of the regular curve v parameterized by arc
length passing through p with tangent vector 4(0) at p. Moreover, we have

Proposition 5.26 (Meusnier). The value of the second fundamental form
11, for a unit vector X € T,X equals the normal curvature of any regular
curve in X passing through p with tangent vector X at p.

We come back to the linear map dn,. — Due to Proposition 5.23, the map
dn,, is self-adjoint with respect to the first fundamental form (-, -),. Hence,
from a well-known result of linear algebra, there exists for all p € T),X an
orthonormal basis {e1,e2} of T,,X such that

dnp~61:fk161, dnp'€2:7k262.

Assuming that ko > kp for the eigenvalues, we have also that I Ip(X ,X) =
—(dn, - X, X)) € [k1, ko], for all X € T,X with | X|| = 1.

Definition 5.27. The mazimum normal curvature ks and the minimum nor-
mal curvature ki are called the principal curvatures at p € X'. Moreover,
the corresponding eigenvectors e1 and es are called the principal directions
at p.

Erample 5.28.

Definition 5.29. If for p € X', we have that k1 = ks, then p is called an
umbilical point of 3.

We prove now the interesting fact that the only surfaces made up entirely
of umbilical points are essentially spheres and planes.

Theorem 5.30. Let X be a connected surface in R3. Assume also that all
points of X are umbilical points. Then the surface X is either contained in a
sphere or in a plane.

Proof. Let (U, ) be a chart about p € X. We first prove the theorem for
Ylu.

Since each p € U is an umbilical point by assumption, we have that, for
all X € T, %,
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dn, - X = \p) X, (5.37)

where A : U — R is a real function.
We show that A is constant on U. — For this purpose, we write

0 0
X=X —+Xo—€T,X,
! 8(,01 tAe a(pg P
or, seeing X as a vector in R?,
op~t op~1

X = X175 — () + Xo g —((0)

where the map ¢~ ! = 150~ ! was defined in (5.19). (Recall that dt; - ai% =
~—1

%‘”m—i, for i = 1,2.) By linearity, Equation (5.37) then becomes

% (o) + Xadmy - S (o)

= Ap) (X1 ag; (p(p) + Xo ag; (w(p))) :

X1 d’l’Lp .

Defining n:=no@~!: (X NU) CR*? — 5% C R3? (see also (5.27)), we get

X, S—Z(w(p)) + X, S—Z(s&(p)) = \(p) (X1 5892; () + X2 352;—2 (@(p))) _

Hence, since X is arbitrary, it follows that

S—Z(w(p)) = A(p) a(ill ()
22 (o0) = A (50) (539

Differentiating the first equation with respect to 2, the second one with

respect to z' and subtracting the resulting equations, we obtain (check that
A € CYU,R))

oA dp~t o\ dp~t
— - =0.
6.1‘2 4 61‘1 (80 4 ) 6.1‘1 p 61‘2 (Sﬁ(p))
Since 8551*11 and 65%; are linearly independent vectors in T,% C R3, we

conclude that, for all p € U,

oA oA

1 p) = 8—z2(p) =0. (5.39)

Since U is connected, it follows that A = Ay a constant in U, as we claimed.
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If we assume that Ao = 0, Equation (5.38) shows that

S—Z(w(p)) = S—Z(s@(p)) =0,

and therefore ﬁ(gp(p)) = ngy € R? in U; on the other hand, for i = 1,2, we
have

5 (77 () mo) = (G (o) ma ) =0,

Thus, we deduce

<<,5*1 (gp(p)) , n0> = const, (5.40)

showing that ¢~ (¢(p)) belongs to a plane for all p € U.
Assuming that Ao # 0, we obtain from (5.38) that

8%1 (@‘1(<p(p)) N ﬁ(@(m)) =0,

5%2 (@‘1(<P(p)) - )\—O’fl(gp(p))> _o.

Hence there exists Z, € R3 such that, for all p € U,

1

¢ (e(p)) — " n(e(p) = Zo,

implying also that
— 1
167" (¢(p)) = Zoll* = v (5.41)

In other words, all points of U are contained in a sphere of center Zy and
radius 1/A3.

So far we have shown that for every p € X there exists an open neigh-
borhood U of p such that U is either included in a sphere or in a plane.
— To complete the proof we observe that, since X' is connected, given any
points p1,pa € X, there exists a curve v € C°([0,1], X)) with v(0) = p; and
(1) = pa. For each point p € +([0,1]) of this curve the above implies the
existence of open neighborhoods U,, C X' such that each one is contained in
a sphere or a plane. By continuity, y~!(U,) is open in R and the union

U 771(Up)

te(0,1]

covers the closed and bounded interval [0, 1]. Due to the Heine-Borel theorem,
we can extract a finite covering; hence,

Q

7([0,1)) € U Up, -

j=1
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If the points of one of these neighborhoods are on a plane (sphere), all the
others will be on the same plane (sphere). Since p; and py have been chosen
arbitrarily, all the points of X belong to this plane (sphere), completing the
proof of the theorem. O

Fig. 5.7. .

Definition 5.31. Letp € X and let dn,, : T, — T, X be the differential of
the Gaufy map. The determinant of the linear map dn,, denoted by K(p), is
the Gaussian curvature of X at p, i.e., in terms of the principal directions

K(p) = det(dn,) = ky ks . (5.42)

Moreover, the negative of half of the trace of dn,, denoted by H(p), is the
mean curvature of X at p, i.e., in terms of the principal directions

H(p) = % Tr(dn,) = ko ks (5.43)

2
Definition 5.32. We characterize points p € X in the following way:

1. A point p € X is called elliptic if K(p) > 0.

2. A point p € X is called hyperbolic if K(p) < 0.

3. A point p € X is called parabolic if K(p) =0 and dn, # 0.
4. A point p € X is called planar if dn, = 0.

Let (U,¢) be a local chart about p € X. As in the case of the first
fundamental form I,,, we introduce some useful notations for the coefficients
of the second fundamental form IT, in the local chart (U, ¢). More precisely,
for X,Y € T,,2) and with the notations

c(p) = - {any - 5-(0) %@)k |

1) = (dny - 5= %@)Z — (an, 5 (0), i(p>>p |

o(p) = <dnp ), %@)Z , (5.44)
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the second fundamental form reads as

I(X,Y) = —(dn,-X,Y), = X1Yi e(p)+X1Y2 f(p)+X2Y1 f(p)+X2Y2 9(p) -
(5.45)
Next, we introduce some notations for the differential of the Gaufl map
dn,, in the local chart (U, ¢) about p. Since dn,, - a%)i(p) belongs to T, X for
1 =1,2, we may write
9 : )
dn,, - B (p) = Z aij 5~ (p). (5.46)

=1 9%

Inserting this into (5.44), we get

() = - < ) + a2 50 i<p>>p
= —a11 E(p) — a12 F(p),

where we used the notations (5.16) for the first fundamental form. Similarly,
we obtain (note that the matrix (a;;) is not necessarily symmetric)

f(p) = —a11 F(p) — a12G(p),
f(p) = —a21 E(p) — az F(p),
9(p) = —az1 F(p) — a2 G(p).

In summary, we then arrive at
e f o a1 a2 EF
(2)- (i) (Fa). 047
ayl ai2 _ (& f EF -1
az az) [y FG .

It is well-known from linear algebra that the inverse in the last equation reads
as

EF\' (G -F

FG) “Y\-F E)"
where a := 1/(E G—F?) for the determinant of the matrix formed by the local

coefficients of the first fundamental form. By a straightforward computation,
we then obtain the equations of Weingarten:

and hence

a1 =a(f F—e@), az2=a(gF — fQG),
as1 = aleF — fE), asy =a(fF—gE). (5.48)

For the Gaussian curvature K (p) of a surface at a point p, we then easily
get
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K (p) = det(ai;(p)) = a(p)(e(p) 9(p) — f*(p)) , (5.49)

and for the mean curvature H(p), one checks that

1) = "2 () G) 2/ () Fo) + 960) ER) . (5:50)
Ezample 5.33 (Gaussian Curvature of the Torus).

The following proposition gives information about the position of a sur-
face in the neighborhood of an elliptic or an hyperbolic point relative to the
tangent space at this point.

Proposition 5.34. Let p € X be an elliptic point of the surface . Then
there exists a neighborhood U of p in X such that all points in U belong to
the same side of the tangent space T,,X'. Moreover, let p € X be an hyperbolic
point of X. Then in each neighborhood U of p there are points of U lying in
both sides of T),2..

Proof. Let (U, ¢) be alocal chart about p € X' and the local parameterization
¢! = 1x0p! as defined in (5.19). Moreover, for (0,0) € R? we assume that
927_1(05 0) =

The distance d from a point ¢ = @~ 1(x1,22) € U to the tangent space
T,X is given by (see Fig. 5.8)

d = (ny, ¢ (x1,72) = ¢7(0,0)). (5.51)

P2

.-7 p=9¢71(0,0)
T,%

p

Fig. 5.8. Tangent space of an elliptic point.

Since the local parameterization ¢~!: (X NU) CR? — X NU C R3 is
differentiable, we can apply Taylor’s formula to obtain (up to terms of higher
order)
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- s—1

- 9% o
& (a1, 2) = ¢1(0,0) + a1 X (o 0) + 22 (;02

- (0.0)

1 5 828571 829571 9 829571
+§ (:L'l 07 (0,0) + 2z1 2 92072 (0,0) + 25 . (0,0) | .

Inserting this into (5.51) implies that

1 9251 ot
d= 5 (1‘% <np,a—m%(0,0)> + 2z122 <npam«)’0)>
828571
+a3 <np, 6—x§(0’0)>) : (5.52)

On the other hand, we compute, for the map nn :=no@=!: p(XNU) —
52 C R3,

- op~!
0= Bz, <n($175€2), %($17$2)>

- on 8¢71 5 828571
= <8_xi(z1’z2)7 —axj (:E1,:E2)> + <n(z1,z2), M(zl,z2)> ,

-1

where i, 7 = 1,2. Using Definition 5.24 and recalling that dn - é%_ = 652 ,
for ¢ = 1,2, we deduce (note that 72(0,0) = n,)

(o 0.0)) = = (i, -0 a%<p>>p ~ 11, (5 0)) -

(5.53)
Inserting (5.53) into (5.52) leads to
1
d= 5H,D(X,X) ,

where X = X; & Frn (0 0)+X2 s (0 0).

Since p is elhptlc by assumption, the second fundamental form /I, has
a fixed sign. Therefore, the same holds for the distance d, showing that all
points ¢ € U belong to the same side of T}, .

The second assertion of the proposition is left as an exercise. a

Now, we give a geometric interpretation of the Gaussian curvature (see

Fig. 5.9).

Proposition 5.35. Let p be a point of a surface X with K(p) # 0. Denote
by (Un)nen a sequence of neighborhoods of p converging to the point p for n
sufficiently large, i.e., U, C By, (p) such that the radii r,, of B, (p) converge
to zero for n — oo. Moreover, we denote by A, = A(n(Un)) the area of the
image of U, by the Gaufi map n : ¥ — S? and by A,, := A(U,,) the area of
U, C X. Then, we have for the Gaussian curvature at p
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K(p) = fim 2n — ppy ACUU)

n49M>An n—oo <A(Uﬁ)

(5.54)
Proof. Let (U, ) be a local chart for X' about p such that U, C U, for all
n € N. From the discussion in Section 4.2.1, we deduce that

0p~1! 0p~1!
A, =AU, = , ,
(Un) [D(U ) H 071 (w1, x2) X D2 (x1,22)

d$1d$2,

where ¢! := 15 0 ™! denotes again the local parameterization of X.
On the other hand, since K (p) = det(dn,) # 0 by assumption (implying
the invertibility of the linear map dn,), we deduce that the map

ni=nop l:ip(XNU)— S?CR?

gives a local parameterization of n(U). Hence, it follows

o B
A, = A(n(U,)) :/ H—n(xl,xg) x a—"(xl,u)
©(Uy) Z2

dxldxg.

For i = 1,2 and ¢(p) = (x1,z2), we now compute (see (5.46))

1

on o1 2 -
(x1,22) = dny - 5 (z1,22) Za” oz, (z1,22) .

ami

We then see that

on on dp~1 g1
P — (1, 22) X o 2(:1:1,302) = det(ai;) a—zl(xl,xg) X R

Since K (p) = det(a;;), the result (5.54) can be deduced. O

(x1,22) .
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n

——

52

52

S

n
X

Fig. 5.9. Geometric interpretation of the Gaussian curvature. The first figure il-
lustrates the case of small Gaussian curvature, whereas the second the case of big
Gaussian curvature.






6.1 Tensor algebra

We consider finite dimensional vector spaces over F. In this section, the
ground field F will be the real number field R or the complex number field
C. Let E and F be two such vector spaces and let M(E,F) be the vector
space having the set £ X F' as a basis, i.e., the free vector space generated by
the pairs (e, f) with e € E and f € F. Moreover, let N(E, F) be the vector
subspace of M(E, F) spanned by the elements of the form

(6+6/5f)7(67f) - (elvf)5 (67f+f/>7(67f)7(6af/>
()‘evf) - )‘(e7f>7 (e,)\f)—)\(e,f), (61)

where e,e’ € E, f,f' € F and X € F.

Definition 6.1. Let E and F be two finite dimensional F-vector spaces.
Moreover, let M(E,F) and N(E,F) be as above. We define the tensor
product of E and F, denoted by E ® F, to be the quotient vector space
M(E,F)/N(E,F).

The image by the natural projection M(E,F) — E ® F of every pair
(e, f) — considered as element of M (E, F) — will be denoted by e ® f. Then,
we define the canonical map

P.:ExF —FEQF
(e,f) —e® f. (6.2)

It can easily be checked that this map is bilinear, since the first relation in
(6.1), for example, implies that (e +e' )@ f=e® f+e R f.

Definition 6.2. Let G be a vector space and v : EXF — G a bilinear map.
We say that the couple (G,) has the universal factorization property
for E X F if for every vector space H and every bilinear map ¢ : EXF — H,
there exists a unique linear map v : G — H such that ¢ = uo 1.

There is a first important result.
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ExF >

H

Fig. 6.1. Universal factorization property.

Proposition 6.3. The couple (E ® F,P) has the universal factorization
property for E x F. Moreover, if another couple (G,v) has the universal
factorization property for E X F, then (E® F, P) and (G,v) are isomorphic
in the sense that there exists a unique isomorphism g : E @ F — G such
that ¥ = go P.

Proof. Let H be any vector space and ¢ : E X F — H any bilinear map.
Since E x F'is a basis for M (E, F'), we can extend ¢ to a unique linear map ¢ :
M(E,F) — H. More precisely, writing m € M(E, F) as m = ). \; (e;, fi),
with (e;, fi) € E x F and \; € F, we define

¢(m) = (Z Ai (€4, fz)) = Z/\i p(ei, fi) -
Using the bilinearity of the map ¢, we observe that

()5((€+€/,f)—(€,f)—(€/,f)) :90(6+e/af)_(p(evf)_Lp(elaf)zo'

The same holds for the other relations in (6.1). Hence, we deduce that ¢
vanishes on N(E, F). Therefore, the map ¢ induces a linear map!

u:EFF — H.

Clearly, we have that ¢ = u o P. The uniqueness of such a map u follows
from the fact that P(E x F) spans E ® F (see (6.2)). — This shows that the
couple (E ® F, P) has the universal factorization property for E x F.

Let (G, ) be another couple having the universal factorization property
for E'x F. By the universal factorization property of (E ® F, P), respectively
of (G,1), there exists a unique linear map g : £ ® F — G, respectively
J: G — E® F such that ) = g o P, respectively P = g o (see Fig. 6.3).
Hence, we obtain that v = gogovy and P = gogo P. Using the uniqueness of
the linear map w in the definition of the universal factorization property, we

1
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conclude that gog and go g are the identity transformations of F® F' and G,
respectively. — This shows that g : E ® F' — G is the desired isomorphism.

O
P
ExF » FQF
u
¥
H
Fig. 6.2. Universal factorization property of (E ® F, P) for E X F.
ExF Y » G
g
P
\J
EQF < r ExF
g
(G
\
G

Fig. 6.3. Two couples (F ® F, P) and (G,) having the universal factorization
property for E x F.

Remark. It is important to note that this proposition will be the main ingre-
dient for the following results concerning the properties of the tensor product.
The proofs of Proposition 6.4 to 6.11 will be strongly based on the fact that
(E ® F, P) has the universal factorization property for E x F.
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We have commutativity for the tensor product.

Proposition 6.4. There exists a unique isomorphism between E @ F and
F ® E which sends e ® f onto f®e., foralle € E and f € F.

Proof. Let ¢ be the bilinear map defined by

p:ExF—FQF,
(e,f)— fwe.

From Proposition 6.3 we deduce the existence of a unique linear map u :
E® F — F ® E such that ¢ = u o P. More precisely, we have that

foe=ple f)=u(Ple.f)) =u(e®f).
On the other hand, note that the couple (F ® E, P), where (see (6.2))

P:FxE—FQ®E,
(fie)— f®e,

has the universal factorization property for F' x E. So, for the bilinear map

p:FxE—EQF,
(fre)—exf,

we obtain the existence of a unique linear map @ : F® F — E® F such that
u(f ® e) = e® f. This is again a consequence of the universal factorization
property.

Obviously, we see that tou: FQF — FQ Fanduow: FQF —
F®FE are the identity transformations. Hence, the linear map w is the desired
isomorphism. O

We also have associativity for the tensor product.

Proposition 6.5. There exists a unique isomorphism between (E @ F) ® G
and E ® (F ® G) which sends (e® ) ® g onto e® (f ® g), for all e € E,
feF andged.

Proof. The proof is similar to the one of Proposition 6.4 and hence left as an
exercise. a

Remark. Because of the last proposition, we identify (F® F) ® G with E ®
(F ® G) and it makes sense to write F ® F ® G.

Now, let E1,..., B be k vector spaces. Then we can define inductively the
tensor product F1®...® Ey. More precisely, motivated by Proposition 6.3, the
tensor product E1®...®Ej is characterized by the fact that (E1®...® Ey, P),
where P now denotes the multilinear map
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P:E1><...><Ek—>E1®...®Ek,
(e1,...,e) —e1® ... e,

has the universal factorization property for Fq x ... x Ej. — We mention that
Proposition 6.4 can also be generalized to k vector spaces.

Proposition 6.6. For any permutation o € Sg of {1,...,k}, there exists a
unique 1somorphism between E1 @ ... ® Ey and Ey1) @ ... ® Eyx) which
sends e1 ® ... Qe onto ey(1) @ ... @ ek, for all ey € E1, ..., ey € Ek.

Next, we study the compatibility of the tensor product with linear maps.

Proposition 6.7. Let u; : E; — F;, i = 1,2, be two linear maps. Then
there exists a unique linear map u : E1 ® F5 — F} ® F such that

u(er ® ez) = ui(er1) ®uz(e2) € F1 ® Fy,

for all e; € E1 and eq € E5. — In the following, the map u will be denoted by
U1 Q@ us.

Proof. We consider the bilinear map

p: By x By — F1 ® Fy,

(e1,e2) — ug(er) ® uz(ez).

From the universal factorization property in Proposition 6.3, we know that
there exists a unique linear map u : 1 ® Ko — F} ® F5 such that ¢ = uo P.
Hence, we have that

ui(er) @ ua(es) = p(er,ea) =uo Pler,ex) = ule; @ es).
This shows the result. O

Remark. The generalization of this proposition to the case with more than
two mappings is obvious.

The next result is a consequence of the last proposition.

Proposition 6.8. Let Fy & FEy denote the direct sum between Eq, and FEs.
Then there exists a unique isomorphism between (E1 @ E2) ® F and (E1 ®
F)® (B2 ® F) which sends (e1+e2)® f ontoe1 @ f+ea® f, for all ey € Fy,
es € FEs and f € F. Similarly, there exists a unique isomorphism between
E@Q(FLeF) and EQ Fi ® E® F.

Proof. Fori=1,2,let ¢; : E; — E; ® Es denote the injections with ¢1(e1) =
e1 + 0 and t2(e2) = 0 + eq, respectively. Let also m; : By @& Ey — E; denote
the projections with 71(e; + e3) = e; and ma(e; + ea) = ea, respectively.
(These maps are well-defined since we consider the direct sum of Fq and Es.)
Then, we see that w1 o ¢1 and 73 o 1o are the identity transformations of F;
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and Fs, respectively. Moreover, both 75 011 and 7 o t9 are the zero maps on
F1 and FEs, respectively.

Due to Proposition 6.7 the injection ¢1 and the identity transformation
idp on F induce a unique linear map ¢; ® idp : E1 @ F — (E1 ® E3) @ F
such that 11 ®idp(e1 ® f) = t1(e1) ® f. Similarly, a map 1o ®idp : Ea @ F —
(E1 ® E3) ® F is obtained. — In order to simplify the notations we write ;
instead of ¢; ® idp, for i =1, 2.

In the same manner, applying Proposition 6.7 to the projection 71 and the
identity transformation on F' it follows that there exists a unique linear map
7~T1 : (El @EQ)@F h— El ®F such that 77'1((61 +€2)®f) = 7T1(€1 +€2)®f
Similarly, the map 75 is defined.

As a consequence, 71 o 77 and 79 o Io are the identity transformations on
F1 ® F and Fy ® F, respectively. For example, we have

mon(e1®f)=m(u(e) @ f)=m(ul)@f=ea®f.
On the other hand, it follows from
Troii(e1® f) =m2(ule) ® f) =m(u(e)) @ f=0® f

that 79 o 77 is the zero map on Fy ® F'; and similarly that 71 o i is the zero
map on Fy ® F.
These results imply that the linear map

(B1®E)®F — (B1QF)® (B, ® F),
(e1+e2) ® fr— Ti((e1 +e2) @ f) +Ta(e1 +e2) @ f),

with inverse

(E1@F)® (B2 ®F) — (E1 ® Ey) ® F,
(1@ f)+(e2® f) —i1(e1 ® f) +i2(e2 ® f),

gives the first isomorphism. — The proof for the second one is similar. a
Remark. Now, we can write
(1@ E)@F=(E1QF)® (B2 ®F).
By induction, moreover, we obtain for k vector spaces that
(B10..0FE)@F=E,QF9®.. 0E,QF.
In a next step, we give a basis for the tensor product of two vector spaces.

Proposition 6.9. Let {e;};=1,..n be a basis for E and {f;}j=1,...m be a
basis for F. Then

s a basis for E® F. In particular, we have that dimE ® F = dim E dim F'.



6.1 Tensor algebra 147

Proof. Fori=1,...,n,let E; denote the one-dimensional vector subspace of
E spanned by e; and Fj the one-dimensional vector subspace of F' spanned
by f;, j =1,...,m. Thus, we can write
n m
E=@E ad F=@F.
i=1 j=1

By the remark after Proposition 6.8, it then follows that

EQF = <Q?E> ® G}le =PPEeF.
1= Jj=

i=1 j=1

It is left as an exercise to show that each F; ® Fj is a one-dimensional vector
space spanned by e; ® f;. Hence, the proposition follows. O

Tensor Product and Dual Vector Space

For a vector space F, we denote by E* the dual vector space of F, i.e., the
vector space of linear functionals on F. If e € F and e* € E*, then the value
of e* on e is denoted by (e*,e) g~ g € F. — We will simply write (e*, e) when
the dual pairing needs no further specifications.

Proposition 6.10. Let L(E*, F) denote the vector space of linear maps from
E* into F. Then there is a unique isomorphism u between EQF and L(E*, F)
such that

(ule® f))(e") ={e"e) [ (6.3)
foralle e E, f € F and e* € E*.

Proof. We consider the bilinear map

p:ExF — L(E",F),
(e7f) }—)¢(67f)7

where (gp(e, f))(e*) = (e*,e) f. By the universal factorization property in
Proposition 6.3, there exists a unique u : E® F — L(E*,F) such that
@ = u o P. More precisely, we have that

(" e) f = (ple. ) (") = (uo Ple, f))(e") = (u(e @ f))(e").

Next, we observe that dim(F ® F') = dim L(E*, F) (see Proposition 6.9).
Therefore, in order to show that u is an isomorphism, it suffices to establish
that u is injective. — Let {e;}i=1....n» {fi}j=1.....m and {€'};=1,.. , denote the
basis for E, F and E*, respectively?. Moreover, for some e ® f € E® F,

2 From now on, we will always use this notation: Lower indices for the basis vectors
of the vector space itself and upper indices for the dual basis.
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assume that u(e ® f) = 0. From Proposition 6.9, we deduce the existence of
coefficients a;; € F such that

ule® f) = ZZaiju(ei(X)fj) =0.
i=1j=1
In other words, for all k =1,...,n, we have that
ZZ@U (u(el ®f]))(€ ) = ZZaij (6 ,€i> fj =0.
i=1j=1 i=1j=1

Since {f;};=1,...,m is a basis for F', we obain that, for all j =1,...,m,

n

Z(ek,€i> = Qkj = Oa

i=1
implying that e ® f = 0 and the injectivity of u is shown. a

Proposition 6.11. Let E and F' be two vector spaces. Then there exists a
unique isomorphism u between E* @ F* and (E ® F)* such that

(u(e* @ ) (e® f) = (e*,e)pe &([*, [)rF,
forallec E, fe F,e* € E* and f* € F*.

Proof. We apply the universal factorization property of Proposition 6.3 to
the bilinear map ¢ : E* X F* — (E ® F)* defined by

(ple* @ f)(e® f) = (", e)p (f*, [)rF.

It remains to show that the resulting map v : E* @ F* — (E ® F)* is an
isomorphism. This is done by choosing a basis for the vector spaces F, E*,
F and F* and proceeding as in the proof of Proposition 6.10. a

Covariant and Contravariant Tensors

We recall that we consider finite dimensional vector spaces over a ground
field F being the real number field R or the complex number field C. Let E
denote such a vector space.

Definition 6.12. For all r € N, the space of contravariant tensors of
degree r on E is defined by

T(E) =F®...QF .

r — times
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E* x F* > [ ® F*

(FE® F)*

Fig. 6.4. Universal factorization property for E* x F™.

Similarly, for all s € N, the space of covariant tensors of degree s on E is
defined by

T(F)=E"®...Q E* .
Sy ——
s — times
Note that for r = 1, respectively s = 1, we see that T*(E) = E and
T1(E) = E*, respectively. And, by convention, we set T(E) = To(E) = F.
Now, we give an explicit expression for these tensors in terms of a basis

of E. — Let {e;}i=1,....n denote a basis for E and {ej}jzlw,n a basis for E*,
the dual of E. From Proposition 6.9, it follows that

{ei ®...@ei i<, in<n
is a basis for T"(E). Hence, every contravariant tensor K of degree r can be
expressed uniquely as linear combination

K = Z Kivire, @...Qe , (6.4)

i1,enyip=1

where K% € F are the components of K with respect to the basis
{ei}i=1,..n of E. Similarly, for every covariant tensor L of degree s, there
exist unique components Lj, . ;. € F such that

L= Z le»»»js ejl X...Q ejs . (65)

Jiseejs=1

In a next step, we want to study how the components of tensors transform
under a change of basis of E. — Let {é;};=1,...n denote another basis of FE,
which is related to the basis {e;}i=1,...» by the linear transformation

ei=>» Afér, i=1,...,n. (6.6)
k=1
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We write the corresponding change of the two dual bases in E* as

n
e=>"Blé, j=1,...,n. (6.7)
It is easy to see that, for 4,7 =1,...,n, we have
. n n n .
(S'Z € , €4 —<ZB] ZAfék>:ZBiAf’
1=1 k=1 k=1

implying that B = (Bg) is the inverse matrix of A = (Af)

Then, for a contravariant tensor K of degree r, the components K% i
and K1 with respect to the basis {e;};=1,...n and {é; }i=1,... n, respectively,
are related by the following formula:

Kivin = Z Al Al KRk (6.8)

Similarly, the components of a covariant tensor L of degree s are related by

the formula

Lj j.= Y. B} .BiL,.,. (6.9)

Remark. These last two formulas follow directly from the representations
(6.4) and (6.5) together with Proposition 6.9.
Tensor Algebra

Definition 6.13. For all r € N, s € N, the space of contravariant degree r
and covariant degree s (mized) tensors on E, or simply the space of tensors
of type (r,s) on E, is defined by the following tensor product:

TH(E) =T (E)®T(E)=E®..  EQ E*®...® E* .

r — times s — times

Note that, in particular, we have that T¢(E) = T"(E), T2(E) = Ts(E)
and TQ(FE) = F. — In terms of a basis {e;}i=1,.., of E and its dual basis
{e7};j=1....n of E*, every tensor K of type (r,s) can be uniquely written as

n

K= E Kivire, .06, 0" ®... .0, (6.10)
01y yir=1
Jis--ds=1

where K]“ JT are the components of K with respect to the basis {e;}i=1,...,
For a change of basis as in (6.6) and (6.7), we then have the following trans—
formation of components formula for a tensor of type (r, s):
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n
iy 11 i U ls ki...kr
K= E Ay AL B ...B; K (6.11)
Eiyekp=1
I,als=1

Next, we group all the tensor spaces into one. More precisely, we set

= é T (E). (6.12)

r,5=0

This vector space can be made to an associative algebra over F, called the
tensor algebra of F, by defining the product of two tensors in T(E) as
follows. — As usual, let {e;};=1,..., denote a basis for E with corresponding
dual basis {€/};—1.._,. Then, a tensor K € T7(E) can be written as in (6.10).
Similarly, a tensor L € TP (E) can be expressed as

L= Z L ek1®...®ekp®ell®...®elq.

E1yekp=1
I, lg=1

Then, we define the product of K and L, denoted by K® L, to be the following

element of T;j:tf (E):

n

KoL= Y (K@L)} e, .. @, 0@, @+, (6.13)

Js+q
W15yl gp=1
J1seensdstq=1

where the components are precisely

(K@ L) o Kt [t

Js+q J1--Js " Js+1---Js+q
Remark. The product is a bilinear map from 77 (F) x TP(E) into T;f;f (E).

The definition of the product only makes sense if it is independent of the
basis. — Let {é;}i=1,....n denote another basis of E and let K“ “ and L
be the components of K € TT(FE), respectively L € T;(E) w1th respect to
this new basis. Moreover, the components of the product of K and L with

—— 1.0
respect to the new basis are denoted by (K ® L) ; j::' For the definition of
the product to be independent of the basis, these components must satisfy

the following equation:

—

(K @ L) irte = Rieir flrtirie (6.14)

J1---Js+q J1-+-Js T Js+1---Js+q

We apply three times the change of components formula (6.11) for (r, s)-
tensors to obtain



n
(K@L)te = 30 Al Al gl Bl (K @ L)l
J1---Js+q ki T keyp Js+q dsgq 7
k17~~~;kT+p:1
I1,0ls4q=1
(6.15a)
n
PR T i1 i 1l ls 17k1.. .k
K_h = E Akl "'Akr le "'Bjs Kh...ls , (6.15b)
ki,..,kr=1
Lo l=1
n
S g 1eirgp it irip plest [ Y
Ljs+1~~~js+q - : : AkT+1 e Ak rtp BJs+1 t Bjs+q Lls+1---ls+q '
krg1,..okryp=1
log1selspq=1
(6.15¢)

Then we observe that (6.15b) multiplied with (6.15¢), combined with (6.15a)
implies that (6.14) holds, as a consequence of (6.13). Hence, we have shown
that the definition of the product is independent of the chosen basis.

Contraction of Tensors

We now define the notion of contraction. — Considering T (E) together with
a basis {e;}i=1,... . for E and two integers p, g verifying 1 <p <r, 1 < g <s,
we define the ( P, q)-contraction of K € TT(E), denoted by CK, to be the
following element of T;:ll(E):

CK= Y (CE)}" e, ®..®e_, 06 @... @, (6.16)
i1yeeyipo1=1
jla---vjs—lzl
with components

(CKM Zr1, Zthhl

Js—1 Jik.gp—1’

where the subscript k appears at the q—th position and the superscript k at the
p-th position of the components of K with respect to the basis {ei}izl,___m

Remark. The (p, q)-contraction is a linear map from 77 (E) into T/~ }(E).

Again, we have to show that the definition is independent of the chosen
basis for E. —Let {é;}i=1,....n denote another basis of E and let K“ “ " be the
components of K € T7(FE) w1th respect to this basis. Moreover, the compo-

clp—1

nents of the (p, ¢)-contraction in the new basis are denoted by (CK ) i

From the change of components formula (6.11), we deduce that
n
AT 2 i Gr—1 l ls—1 ki...kr_1
(CK) cJs—1 Z Akll t Akrfl Bji e -Bjsfl (CK)llwvlsfl
kiyeonkro1=1
Lyeonyls—1=1
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By definition of the (p, g)-contraction, it then follows

n n
z T - 1 P 1 ls ki...k...k,
(CK N Js— 11 Z Z Azll T Akr—ll Bji Bjs 1 Kl1l~~.k---ls 11 ’
E=1Fk1, k1=
11, Sls—1=
(6.17)
where again the subscript k appears at the ¢-th position and the superscript
k at the p-th position.
On the other hand, by the change of components formula (6.11), we have
that

n

SN 1T A R i1 m Tpr—1 11 1 s—1 ki...k...kr_1
Kjl...m...js,l = E Ak1 LAY "‘Aqule ...B,, ... BJS iy K, Lododo
sk k=1
ly,lnls—1=1
. n m l _ l .
Since Y, | A*By, = 0, we obtain
n n
(AT N PR 1 A1 ir—1 plp s—1 kl---k»»»kr 1
ZK MmeJs—1 Z 5kAk1"'Akr71Bj1" Bjs 1K s
Eiyoroskyeokr1=1
Lol le1=1

n n
. 11 Tpr—1 11 ls_1 ki...k...kr_1
=3 S Al Ay BE BRSO
k=1ki,....kr_1=1
l1,0ls—1=1

This agrees with (6.17) showing that

(CKzl ZTI—ZK“ Ml

Js—1 M fs—1?

and hence the definition of the contraction does not depend on the choice of
the basis for E.

Example 6.14. If e € E and e* € E*, then e ® e* € T{(E) is a (mixed)
tensor of type (1,1). The contraction, or more precisely (1, 1)-contraction,
maps e ® e* into (e*,e) € F = T (E) (see also Example 6.19).

Tensors and Multilinear Maps

We give an important interpretation of covariant and contravariant tensors
as multilinear maps.

Proposition 6.15. The vector space Ts(E) of covariant tensors of degree s
s isomorphic to the vector space of s-multilinear maps from E x ... x E into
F. More precisely, there is an isomorphism, denoted by X, between Ty(E)
and s-multilinear maps from E x ... x E into F given by
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Zs(ef®...®e:)(el,...,es):H(ef,ei), (6.18)

where e ® ... ek € T4(E) and ey, ...,es € E.

Proof. By generalizing Proposition 6.11, we deduce that T4(F) = E* ®...®
E* can be seen as the dual space of T*(E) = E®...® E. On the other hand,
it follows from the universal factorization property of the tensor product (see
Proposition 6.3) that the space of linear maps from T°(E) = F® ...Q E
into F is isomorphic to the space of s-linear maps from E X ... x F into F.
— For more details in the case of covariant tensors of degree 2 we refer to the
example below. O

Remark. Following the last proposition, we consider e} ® ... ® ef € Ts(F)
as s-multilinear map F x ... x £ — F and use the notation e} ® ... ®
ef(er,...,es) € F,forey,...,es € E.

Ezample 6.16 (Covariant Tensors of degree 2). The universal factorization
property in Proposition 6.3 implies that for every bilinear map ¢ : EX E —
F, there exists a unique linear map u : E® E = T?(E) — F such that
@ =uo P (see Fig. 6.5). In other words, there is a one-to-one correspondence
between bilinear maps from F x E into F and (E ® E)*, i.e., linear maps
from F® E into F. On the other hand, from Proposition 6.11, we know that
(E®FE)* = E*® E*. Hence, there is an isomorphism, denoted by X, between
E* @ E* = T5(FE) and the vector space of bilinear maps from E x E into F
given by
Yo(e* ®e)(e,€) = (e, e) (€%, ¢),

for all e,€ € E and e*, e*.

ExE E®FE

\/

f’

Fig. 6.5. Universal factorization property for £ x E.

Similarly, for contravariant tensors there is the following
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Proposition 6.17. The vector space T"(E) of contravariant tensors of de-
gree r is isomorphic to the vector space of r-multilinear maps from E* X ... X
E* into F.

Proposition 6.18. Let V be a vector space. Then the vector space Ts(E)@V
18 isomorphic to the vector space of s-multilinear maps from E x ... x E
into V. More precisely, there is an isomorphism, denoted by XY, between
Ts(E) ®V and s-multilinear maps from E x ... x E into the vector space V
given by

Z;/(e{®...®e:®v)(el,...,es):H<ef,ei>v, (6.19)

where e ® ... @ ek € T4(E), e1,...,es € E andv € V.

Proof. By Proposition 6.10, we know that Tx(E) ® V is isomorphic to
L(T,(E)*,V). Since T*(E) is the dual space of T (E) (see Proposition
6.11), we obtain the existence of an isomorphism between T5(E) ® V' and
C(TS(E), V). Again, by the universal factorization property of the tensor
product, we get that £(T*(E),V) can be identified with s-multilinear maps
from FE X ... x F into the vector space V. a

Example 6.19. Consider K € Tj(F) having components K} € F with respect

to a basis {e;}i=1,..n of E. The endomorphism X¥ corresponding to K sends
ej € Eto ) i K}e;. This is a direct consequence of (6.19). Moreover, the
contraction CK of K equals > .| K.

Skew-Symmetric Forms as Covariant Tensors

We want to show that due to Proposition 6.15 we have A\*(E) C T*(E)3. —
Let a € A°(E) and let {€’};—1 .., denote a basis of E*. Then, we can write

.....

o= E onejl/\.../\ejS,
J

where J = {(j1,...,4s) : 1 <j1 <...<js <n}. Using formula (3.6) for
the wedge product, it follows, for eq,...,es € E,

AL N (e, e8) = Z (=)l (770 er) .. (el e)

gES;
S
= Z (,1)\6\ H<6Ja(k)7ek> )
oES; k=1

3 At this stage, the reader should be familiar with Section 3.1.1. In particular, it is
not difficult to generalize Definition 3.1 to alternating p-multilinear maps from
E x...x E into F.
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On the other hand, Proposition 6.15 implies that

S

H<ej“<’€>,ek> =W @... e (e1,...,e5).
k=1

Thus we arrive at the following representation for a € A\*(E):

o= Z Z (—1)‘0‘04J eJo() ®-.-®ejcr(s)

J o€Ss
Y Lol o :
= > Y S(=)rlay o . e, (6.20)
dtede=l0€S, O
This shows that indeed A\*(E) C T*(E).

Ezxample 6.20. Let E = R3 with canonical basis {e1,e2,e3} and let a €
A’ (R3) be given by
oz:ozlgel /\e2+a1361/\63+a2362/\e3.
For v,w € R3, it then follows
1,2 1,2 2.

a(v,w) = ap(v'w? —w'v?) + az(v'w® — w'v?) + sz (v — wv

On the other hand, using (6.20), we obtain

az%( 1®€2—€2®€1)+%(62®61—€1®€2)
+%(61®63763®61)+ _(;13(63@)61—@1@63)
a -
+$(2®63763®62)+ 223(63@)62762@63).

Applying this to v, w € R? we find indeed the above result for a(v,w).

Transporting Tensors

Let £ and F' be two finite dimensional F-vector spaces. Moreover, let A :
FE — F be an isomorphism . Then we define the map

A" F* — E* |
f* — A*f* ,
where A* f* € E* satisfies, for all e € F,
(A5 e)p e =(f" Ae)r- . (6.21)

The map A* is clearly an isomorphism between F* and E* with inverse
(A=1)* : E* — F* defined in the same way.
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Using Proposition 6.7, we then deduce the existence of a unique linear
map

AR (A :FEQE* — F®F*

e@e — Ae® (A7 H)*e*, (6.22)
where e € E and e* € E*. It is straightforward to check that the map
A® (A™H* is an isomorphism.

Next, we show that the map A ® (A~1)* commutes with contractions on
THE) = E® E*. — Recall that (1, 1)-contractions on T} (E) are given by (see
Example 6.14)

Cle®@e™)=(e",e)p k-

Then, we compute
CA® (A H)*(e®e*) = C(Adex® (A7')%eY)

= <(A_1)*e*,Ae>F*

(6.21) <
(

F
e*,A71A6>E* 5
e*a€>E*,E = C(e ® 6*)7

showing that A ® (A~1)* indeed respects the contraction operation.
For (mixed) tensors of arbitrary type, we have the following generalization
of the previous results:

Proposition 6.21. Let E, F be two finite dimensional F-vector spaces and
A: E — F an isomorphism. Then there exists a unique isomorphism from

TI'(E) to TT(F), denoted by A®" @ ((A’l)"‘)(gS such that

7

A5 @ (A (e ®... 060 ®...0¢)
=Ade1®..0Ae, @ (A ) ei®...@ (A7),

for all er,...,er € E and all e7,...,e% € E*. Moreover, the tensor algebra
isomorphism
A= P A% @ (A7) T(E) — T(F),
7r,5=0

called the extension of A, preserves the type of the tensors and commutes
with all contractions.
Proof. O

Now, we want to check the consistency of the extension A with previously
defined operations, namely with the pull-back of skew-symmetric s-forms on
E.
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For f1,...,fs € F, we deduce from Definition 3.8 that the pull-back
(A=YH*a € N*(F) of a by A™1 is given by
((A_l)*a)(fl""’fs) CY( 1f13"'aA_1fs)
=S ase A A (AT AT
J

Then, using formula (3.6) for the wedge product, we obtain

(A™D*a)(fr,.. - fs) = Z Z Dlolay efom (A1) L ede (A7)

J o€eS;

BN |o|aJH (900, A7 fi) . o (6.23)

J o€eS;

On the other hand, using (6.20), we obtain

Aa - Z Z |U| 630(1) R...0 e.jcr(s)) .

J o€eS;
It follows, using Proposition 6.21 for the extension A,
zzl(ej“(l) Q... ej"<5>) = (Afl)*ej“(l) R...Q (Ail)*ej"“) .

For f1,..., fs € F', we then deduce that

S

(A7 e oL (AT e (f ) = TLATY O f)p
k=1

S

(6.21) ]._.[ <€ja<k> , Ailfk>E* E-

k=1

This agrees with the expression (6.23) for the pull-back.

6.2 Tensor Fields on Manifolds

We can now do with tensors what we did with alternating forms when defining
differential forms on a manifold: To each point of a manifold a tensor on the
tangent space of this point is assigned in a smooth way. The utilized concepts
will be exactly the same as for the tangent bundle and the cotangent bundle.

6.2.1 The Tensor Bundle

Let M be a n-dimensional C*-differentiable manifold and p € M. We already
know that the tangent space T, M at p is a n-dimensional vector space over
the ground field F = R (see Definition 2.35). We denote by
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Ty (T, M)

the tensors of type (r,s) on T, M. From a “set” point of view the tensor
bundle of type (r,s) on M is then defined by

TI(M) = | TI(T,M).
peEM

For K € TI(T,M), the projection map to the base point reads as
m:Te (M) — M,
K+——np. (6.24)

Let (U, z) be a local chart on M. A basis for T,M , p € U, is then given
by {%(p)}izl,___m (see (2.15)) and the corresponding dual basis for T,y M is

{dxj (p)}j:1 777 ,, (see (3.26)). Using Proposition 6.9, we deduce that
0 (p)®@...® 0 (p) ® da’* (p) @ ... ® da’= (p) (6.25)
8xil axir ’

with all indices running from 1 to n, is a basis of T7 (T,M). — At this stage,
it is important to note that we have slightly changed the notation for the
dual basis {dzj (p)}j.:1 _, of Ty M. More precisely, in order to be consistent
with the previous section we write the elements of the basis of T M with an
upper index, whereas in Chapter 3.2 a lower index is used, in order to empha-
size that the elements are one-forms on U corresponding to the coordinate
functions z; : U — R, 1 =1,...,n.

Definition 6.22. Let M be a C*-differentiable manifold of dimension n. A
Ck=1_tensor field of type (r,s) on M is a map

T:M — TT(M)

such that w o T = idyr, and for all local charts (U, x) on M™ there exist
functions T} 2" € C*=Y(U,R) satisfying

S iy O 9 ‘ ‘
T(p) = | Z ;i (p) . P)®...® oz, (p) @de’ (p) ® ... dx’* (p),

(6.26)
for allp € U. — We denote the vector space of C*®-tensor fields of type (r,s)
on M by T](M).

Next, we want to construct a differentiable structure on the tensor bundle
Tr(M) of type (r,s) in such a way that C*-tensor fields on M are just C*-
sections of TT(M), i.e., T € C*¥(M,T"(M)) and 7 o T = idy;. The method
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will be very similar to the one used for the construction of the differentiable
structure on the tangent bundle T'M in Section 2.5.3 and on the cotangent
bundle AP’ T*M of degree p in Section 3.2.1. Recall that in the case of r = 1,
s = 0 we are dealing with the tangent bundle and in the case of r =0, s =1
with the cotangent bundle. — For the sake of simplicity, we assume r = s =1
for the construction of the differential structure on the tensor bundle.

Let {(U;, ¢:)}icr be an atlas for M. We set

TI(U) = | TUHT,M) = a1 (Uy),
peU;

and define, combining (2.19) with (3.29),
;' T (U;) — R x (R @ (R™)"),
T — (piom(T), 0, (T)), (6.27)

with
i (1) 1= (di)p ® (o)) (1), (6.28)

where 7(T') = p € U;. More precisely, writing T' = [y] ® w, € T,M @ T, M,
it follows from Proposition 6.21 that

eit (M @wp) = (de)p - [1] @ ((de; i) wp € R” @ (R)*

It is clear that @, is a bijection from T7(U;) into ¢; (U;) x (R"® (R™)*).
We then say that 2 C T2 (M) is open if and only if for all ¢ € I the set
@, (2N T (U;) is open in R x (R™ ® (R™)*).

Proposition 6.23. These open sets define a (separated) topology on T (M)
which depends only on the differentiable structure of M, and not on the atlas
{(Ui, i) }ier representing the fized differentiable structure on M. Moreover,
the maps @3’1, 1 € I, defined in (6.27) are homeomorphisms for this topology
and the projection T is continuous.

Proposition 6.24. Let M be a n-dimensional C*-manifold with k > 2 and
let {(Us, ) Yier be an atlas for M™. Then {(T}(U;),®,") }ier defines a CF~!-
differentiable structure on the tensor bundle T{ (M) of type (1,1), depending
only on the differential structure on M™. And T (M) is a C*~1-differentiable
manifold of dimension n +n? for this differentiable structure. Moreover, the

projection m is a C*~-submersion for this differentiable structure.

The proofs of the last two propositions are essentially based on the explicit
expression for the transition functions (this was already the case for the
tangent bundle and the cotangent bundle of degree p, see Section 2.5.3 and
3.2.1). Therefore, we first state the following
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Lemma 6.25. Let {(U;, pi) }ier and {(Vj,4;)}jes be two equivalent systems
of charts for M. Moreover, let i € I and j € J such that U; NV, # 0. Then
on @2’1(T11(Ui NV;) € R* x (R™ @ (R™)*) the following formula for the

transition functions on T (M) holds:
Ll'/jl’1 o (@;’1)71(%5 ®B) =
(05007 @) AWy 0 07 e €& (A o5 )y eprr) B)
(6.29)
where o7 (x) =p € U;NVj, £ €R™ and § € (R™)*.
Proof. The result is a straightforward consequence of (2.21) and (3.31). O

As mentioned before, the previous results, generalized to arbitrary » € N
and s € N, allow us to interpret tensor fields as sections of the tensor bundle.

Proposition 6.26. Let M be a C’kl—diﬁerentiable manifold of dimension n,
with k' > k + 1. Then a C*-tensor field of type (r,s) on M is a C*-section
of T3(M) for the above defined differential structure.

Proof. Tt is not necessary to give a proof because similar results have already
been shown in great detail at several places in previous chapters (see espe-
cially Proposition 3.22). O

Remark. The last proposition can be interpreted as alternative definition for
tensor fields on manifolds.

Examples of Tensor Fields

Ezample 6.27 (Vector Fields and One-Forms). Let X be a C*-vector field
on M". By Definition 2.44, we then have that X(p) € T,M = Ty (T,M),
for all p € M™. Moreover, in a local chart (U, ) the C*-vector field can be

represented as
n

Z 3%

where X? € C¥(U,R) and p € U. Note again that, compared to (2.27),
the components of the vector field have now an upper index in order to be
consistent with (6.26). Hence, a C*-vector field can be seen as C*-tensor field
of type (1,0).

Let w € 2}(M) be a C*-differential one-form on M. We then have that
w(p) € NN(T,M) = TyM = TP(T; M), for all p € M. Moreover, in a local
chart (U, z) the C*-differential one-form can be represented as

Z wj(p) dz? (p
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where w; € C*(U,R) and p € U. Hence, a C*-differential one-form can be
seen as C*-tensor field of type (0,1).

Ezample 6.28 (Riemannian Metric). There is a very important example for
a tensor field given by the following

Definition 6.29. Let M™ be a C°°-manifold of dimension n. A Rieman-
nian metric g on M is a tensor field of type (0,2) (or a covariant tensor
field of degree 2) such that, for allp € M,

(1) it is non-negative, i.e., g,(X,X) >0, for all X € T,M;
(i1) it is non-degenerate, i.e., gp(X,X) = 0 if and only if X = 0, for X €
T,M;
(ii1) it is symmetric, i.e., gp(X,Y) = gp(Y, X), for all X, Y € T,M.

In terms of a local chart (U, z), the Riemannian metric reads as

9= gijda' @ da’ (6.30)

4,J=1

where obviously for the components
0 0
9ii(p) = g (—(p),—(p)) ,  peU.
J P 81'1 al‘j

Note that by Proposition 6.15, for all p € U, the covariant tensor g, of
type (0,2) is now interpreted as bilinear map 7),M x T, M — R. Moreover,
(gij (p)) is a symmetric, positive definite n X n-matrix.

* * *

Next, we give an important characterization of covariant tensor fields.
— We denote C°°-functions on M by F(M). Note that for f € F(M) and
X € X(M) the assignment p — f(p)X (p) defines a new C'*°-vector field on
M denoted by f X.

Proposition 6.30. Let T € T2(M) be a covariant tensor field of degree s
on M. Then, it can be considered as s-multilinear map, also denoted by T,
from X(M) x ... x X(M) into F(M) such that

T(fi X1, fs X)) =fi- [ T(Xq,..., Xs), (6.31)

for all f1,...,fs € F(M) and X;,...,Xs € X(M). Conversely, any s-
multilinear map satisfying (6.31) can be considered as covariant tensor field
of degree s on M.
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Proof. Let T € T2(M). Then Proposition 6.15 implies that, for all p € M,
the covariant tensor T, € T2(T,M) = TyM ® ... ® Ty M identifies to an
s-multilinear map, also denoted by T}, from T,M x ... x T,M into R. More
precisely, for X1,..., X, € X(M) and all p € M, the map

T,:T,M x ... x T,M — R,
(Xl(p)v' e 7X5(p)) — TP(Xl(p)v' e ,Xs(p))

is s-multilinear.
Next, we consider the s-multilinear map defined by

T:X(M)x...x X(M) — F(M),
(Xl,...,XS)P—>T(X1,...,XS),

where

T(X1,...,Xs): M — R,
p— T(X1,...,Xs)(p) :==Tp(X1(p), ..., X:s(p)) -

Obviously, we see that the map T satisfies (6.31). However, it remains to
show that indeed T'(X1,...,X,) € F(M). — For this purpose, let (U, z) be a
local chart for M implying that T' € 7°(M) can be written as

Denoting by (-, ~>T; M, 1, M the dual pairing of Ty M and T, M, we deduce from
Proposition 6.15 that

T (Xa(p) o Xo@) = D0 Tinoo(®) [T () XeP)) 2 a1 00 € R

J1sees Js=1 k=1
and moreover that
n n
_ o Jk
T(Xy,...,Xs) = E Tj,..5, H<d$ ’Xk>T*M,TM ’
J1seends=1 k=1

implying that T'(X;, ..., X) is indeed a real-valued C'*°-function on M.

Conversely, let T : X(M) x ... x X(M) — F(M) be a s-multilinear map
satisfying (6.31). — The essential point of the proof is to show that the value
of the C°°-function T(X1,...,Xs) at a point p € M depends only on the
values of the vector fields X1,...,Xs € X(M) at the same point p. So this
will be done first.

By the s-multilinearity of the map 7', this translates to the assertion that
if X4 (p) =0, for some p € M, then for all X»,..., X, € X(M) the following
holds:
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T(X1,...,Xs)(p) = 0.

In order to show this, we choose a local chart (U, z) about p so that we can

write N
X=Y 1
b i—1 Oz

Next, we extend f* € C°(U,R) to ¢g* € F(M) such that f* = g* on some
neighborhood U’ C U of p. Similarly, we take vector fields Z; € X (M) such
that 6% = Z; on U’. Hence, we have that

on U.

X1=> 9% onlU.
1=1

By the localization property of the map 7" in the Lemma 6.31 below, we then
deduce that

n

T(X1, X, Xy) =T (Zgi Zi X, .. X) C2N G (2 X, X
=1

i=1

Since fi(p) = g'(p) = 0, fori = 1,...,n, it follows that the map T'(X1, ..., Xs)
vanishes at p € M.

Now, we are ready to establish the fact that T is a covariant C°°-tensor
field of degree s on M. — Since, as shown before, the value of T(X7, ..., X;) at
p € M depends only on the values of X1,..., X, € X(M) at p, we get that T
induces for each p an assignment of a s-multilinear map of T, M x ... x T, M
into R. This is by Proposition 6.15 equivalent to an assignment for each
p € M of an element in TyM @ ... ® T;M. In terms of a local chart (U, z),
there exist thus components T}, ;. (p) € R such that, for all p € U,

T(p)= Y. Ty .(p)da"(p)®...@dz"(p).

Jiyeenjs=1

In order to show that T' € 72(M), we still have to check that the functions
p+— Tj, ;. (p) are C*°-functions on U. — For this purpose, we construct as
before extensions Z1, ..., Z, in X(M) of aimi, i =1,...,n, such that aimi =7
on U’, where U’ C U. Since by assumption T'(Zj,,...,Z;,) € F(M), we
obtain that

T(Zj,,....2Z5,) =T}, ;, € C>*(U",R).
Moreover, assuming that we start with an atlas {(U;, z;) }ier on M such that

{(U!,z;)}ier is still an atlas on M, it follows* that T € 7°(M). — This
completes the proof of the proposition. a

4 If T has C°°-components with respect to one particular atlas, it also has C'*°-
components with respect to every other atlas representing the differentiable
structure on M.



6.2 Tensor Fields on Manifolds 165

Lemma 6.31 (Localization Property). Let T : X(M) x ... x X(M) —
F(M) be a s-multilinear map satisfying (6.31). Moreover, let U be an open
subset of M, X1,...,Xs € X(M) and Y1,...,Ys € X(M). Then, if there
existst =1,...,s such that X; =Y; on U, we have that

T(X1,...,X,)=T(V,....Y,) onU.

Proof. Because of the s-multilinearity of the map T, it suffices to show that
if X; =0 on U, then for all X»,..., X, € X(M), we have that

T(X1,...,Xs)=0 onU.

For any y € U, let f; € F(M) such that fi1(y) = 0 and f; = 1 outside of
U. It is clear that f; X1 = X;. Moreover, using (6.31), it follows that

T(le"'va) :T(lelv-"va) :flT(le"'va)'

This implies that T'(X1, ..., Xs) vanishes at y, showing the lemma. a

Differential Forms as Covariant Tensor Fields

We want to establish that C'*°-differential s-forms on M identify to covariant
C*°-tensor fields of degree s on M which are skew-symmetric. Note that the
case s = 1 is clear, as described in Example 6.27.

Recall that in terms of a local chart (U, z) a C*°-differential s-form w on
M can be written as (note again the change in the indexation compared to
(3.28))

w:Zdele/\.../\dij,
J

where J = {(j1,...,Js) : 1 <j1 <...<js <n} For Xi,...,X, € T,M,
we deduce, using formula (3.6) for the wedge product,

o’ (p)A. . Ada? (p) (X1, Xo) = > (=17 T[(da?® (p), Xk ) nt,
0€ES; k=1

On the other hand, Proposition 6.15 implies that

S

H<dxj"<’€> (p), Xk>Tp*]M,Tp]M =dzle 0 (p) @ ... ®dax?" (p) (X1, ..., Xs).
k=1

Thus we arrive at the following representation for w € 2°(M):

w = Z Z (_1)“7“0‘] dl‘j"(l) R...Q dxjd(s)

J o€Ss

= Y D S)llydio @ @ded e, (6.32)
) s!

J1y-js=10€Ss
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showing that w € 72(M).
Starting with a covariant tensor field one can also ask if it is nothing else
than a differential form. This motivates the following

Definition 6.32. Let T € T(M) be a covariant tensor field of type (0,s).
We define the alternation AT of T by

AT, (X1, ..., X,) 'Z D T (X 1ys s X)) »
g€S;

where X1,...,Xs € T, M. Moreover, we define the symmetrization ST of
T by

1
STy(X1,...,Xs) = 4 > T(Xeq)s - Xogs) -

" oeS,

The following proposition, which can be easily verified, gives an interpre-
tation of skew-symmetric covariant tensor fields as differential forms.

Proposition 6.33. Let T € T2(M) be a covariant tensor field of type (0, s).
Then, we have that AT € Q*(M) and T € 2°(M) if and only if AT =T.
Moreover, for w € 2°(M) and & € 25(M), we have that w @ @ € T2 (M)
and Alw @) =w A .

Example 6.34. Consider T € T,)(M) given by
T = Z T;; dv' @ da? .
ij=1

We want to determine the alternation A(dz® ® dx?). — Let X1, Xo € T, M.
From Definition 6.32, we then deduce

A(dz' (p) ® da? (p)) (X1, X2) = Z 1)l7lda’ (p) ® da? (p) (Xo(1): Xo(2)
0682

1 . . . .
=3 (dmz(p) ® da’ (p) (X1, X2) — da* (p) ® da’ (p) (XQ,Xl)) .
In terms of the wedge product the right-hand side becomes
1., ,
§dm (p) A da’ (p) (X1, Xa2) -

Thus, we end up with

"1 . . n . )
= Z §Tijdzz/\dasj: Z Tij dz* A da? |

i,j=1 i<j=1

showing that indeed AT € £22(M).
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Vector-Valued Differential Forms

At this stage, we want to introduce differential forms on a manifold which
are vector-valued. More precisely, let V' be a vector space. Then we consider
s-linear and alternating maps E x ... x E — V. Generalizing the results of
Chapter 3 to these maps, we can define V-valued C*-differential s-forms on
a manifold, denoted by 27 (M, V).

Recall that by Proposition 6.18, a s-linear map £ X ... x E — V can
be seen as an element of T5(E) ® V. Because of the interpretation of (real-
valued) differential forms as skew-symmetric covariant tensor fields, we then
deduce the identification of £2§(M, V) with C*-sections of A\* T*M ®@ V.

6.2.2 Transporting Tensor Fields

The results of Section 6.1 concerning the transport of tensors are now gener-
alized to tensor fields. — For this purpose, we first set

T(M) = @ T (M).

7r,5=0

Note that 7 (M) is an associative algebra over R, the product ® being defined
pointwise, i.e., if Th, Ty € 7 (M), then (T1®T3), = Th(p)@T2(p), for all p € M
(see (6.13) for the definition of the product). We call 7 (M) the tensor field
algebra.

Now, let ¢ : M — N be a C*-diffeomorphism between two C°°-
differentiable manifolds M and N. Then, for all p € M, the tangent map dyp,
of ¢ at p is an isomorphism between the tangent spaces T, M and T, N.
By Proposition 6.21 this isomorphism can be extended to an isomorphism
@p between the tensor algebras T'(T,, M) and T'(T,,)N). Moreover, given a
C*>-tensor field T' € 77 (M), we define a tensor field ¢ T on N by

(@T)q = (,59071(,])(11971(,])), qgeEN. (6'33)

More precisely, we have with Proposition 6.21 that

($T)g = (doy-1() " @ ((dpg ")) (Ty-1q)).- (6.34)

In this way, every diffeomorphism ¢ : M — N induces an algebra isomor-
phism between 7 (M) and 7 (N) which preserves the type and commutes
with all contractions.

It is clear that (pT)q € T7(TyN), for all ¢ € N. Next, we show that
@T € TI(N). — Let (V,y) be a chart about ¢g. Moreover, let p = ¢ ~1(q) € M
and set U = ¢~ }(V), x = y o ¢. Then, we see that (U, ) is a chart about
p. In terms of this chart, the tensor field T € 7 (M) can be written as (see
Definition 6.22)



- iv.ip O 9 3 j
T= ) Ty Ga @O gy O AN @ @ da.

B1peenyip=1 v

J1sejs=1

From (6.34), we deduce

P 5. 82
P\ oz, ¥ b

® da?t ®...®dxjs)

®..0dp- =
oz, 0 by,

Well-known results for the tangent map and the pull-back then give the
existence of components 77!~ € C°°(V,R) such that

r

® (p Hda @...® (¢ ) dais .

. i, O 9 i j
¢T = > Tk 8yi1®“'®8yi @dy’" ® ... dy’,

i1yenyip=1 r

J1seeds=1

showing that indeed ¢ T € 7] (N).

6.3 Lie Derivative of Tensor Fields

Let M be a differentiable manifold and let ¥ € X (M). From Section 2.7,
we know that for all p € M the local flow I'Y : U — M of Y, where U is
an open neighborhood of p and t € I C R a time for which the local flow
exists, defines a C°°-diffeomorphism between U and I'Y (U). For the sake
of simplicity, we assume that Y is complete, i.e., we can take U = M and
I = R; in other words, the flow I'Y exists globally. Applying the results of
the previous Section 6.2.2 to the diffeomorphism 'Y : M — M, we can
construct for each t € R an algebra automorphism I} of 7 (M), called the
extension of I} .

Definition 6.35. Let T € 77 (M) and Y € X(M). We define the Lie
derivative of T with respect to Y to be the following element of T (M):

(IyT)y = Jim + (T() - Y T()),  pe M. (6.35)

Remark. a) In the particular case of a vector field X € X (M) = T} (M),
we deduce from (6.34) that the defining equation (6.35) reduces to

(Ly X)p = lim % (X(p) — (dFtY)F:/t - -X(I’Xt(p))) :

This agrees up to a sign with (2.32), being the defining equation for the
bracket [X,Y] of the vector fields X and Y (see Section 2.7.1). Hence,
for the Lie derivative of vector fields, we have

LyX =[Y, X]. (6.36)
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b) In the case of a function f € F(M) = 7,)(M), we observe that (recall
the defining equation for the flow of a vector field)

(Ly Py 2 i = ()~ 1))

t—0 ¢

= im < (F(T0) ~ F0)) = ~df - (V)= df Y

t—0 ¢

Hence, for the Lie derivative of a function, we have
Lyf=df-Y. (6.37)

Proposition 6.36. Let Ly be the Lie derivative with respect to' Y € X(M).
Then

(i) it is linear, i.e., for all Ty, To € T (M), we have
Ly (Th + T2) = Ly (Ty) + Ly (T2) ;
(i) it satisfies a Leibniz rule, i.e., for all Ty, To € T (M), we have
Ly(Th @To) = LyTh QTo + T1 @ Ly Ts;

(i) it preserves the type, i.e., Ly (T (M)) C T (M);
(iv) and it commutes with every contraction of a tensor field.
Proof. a

By a derivation of T(M), we mean a map of 7 (M) into itself satisfying
the conditions of the previous proposition. Hence, we have shown that the
Lie derivative Ly with respect to the vector field Y € X' (M) is a derivation of
7 (M) which satisfies also Ly f = df -Y and Ly X = [Y, X], for all f € F(M)
and X € X(M).

Next, we note that the set of all derivations of 7 (M) forms a Lie algebra
over R with respect to the canonical addition and multiplication and the
bracket operation for two derivations Dy, Dy defined by

[Dy, Do]T = Dy(DoT) — Do(DyT), T € T(M).

The following proposition then shows that the map associating to a vector
field its corresponding Lie derivative is a homomorphism of Lie algebras (see
Example 9.92 below).

Proposition 6.37. Let X and Y € X(M). For their corresponding Lie
derivatives, we then have

Lixy) = [Lx,Ly].
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Proof. By virtue of the Lemma 6.38 below, it is sufficient to show that the
derivations Ljx yj and [Lx, Ly] agree on F(M) and X (M). - For f € F(M),
we observe that (see the proof of Proposition 2.53)

Lixyyf 20 dp (X, Y] =d(df V) X —d(df - X)X .

It is easy to check that the right-hand side equals [Lx, Ly]f. Moreover, for
Z € X(M), we have
[Lx,Ly|Z = Lx(LyZ)— Ly(LxZ)
Xy, 2] - [, (X, 2)] = [[X, Y], 7]

where we used the Jacobi identity in Proposition 2.56 for the last equality.
Again by (6.36), we have that [[X, Y],Z} = Lix,y)Z. This completes the
proof of the proposition. ]

Lemma 6.38. Two derivations of the algebra of tensor fields T (M) are equal
if they agree on F(M) and X (M).
Proof. O

Proposition 6.39. Let T € T2(M) be a covariant tensor field of degree s
and X1,...,Xs € X(M). Then, for the Lie derivative LyT € T2(M) with
respect to any Y € X(M), we have

LyT( Xy ,...,X,)
= d(T(X1,...,X,)) Y = > T(X1,..., Ly Xi,..., X,)
; (6.38)

where Ly X; = [Y, X;] is the i-th argument of the covariant tensor field T in
the sum of the right-hand side.

Proof. As a consequence of Proposition 6.30, we observe that
T(X1,.... X)) =C1..C(TR®X,1®...0X,),
where C, ..., Cs are obvious contractions (see Section 6.1). Thus, it follows
Ly(T(X1,...,Xs) = Ly (C1...Cs(T® X1 ® ... ® Xy)). (6.39)

On the other hand, it follows from the Leibniz rule (ii) in Proposition 6.36
that

Ly(T® X1 ®..90X,) =IyT® X, ®...0 X,
+ TRLyX1®..0Xs+...+T®X1...® Ly X
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Since by (iv) in the same Proposition 6.36 the Lie derivative Ly commutes
with contractions, we then obtain, using (6.39),

Ly(T(Xy,...,Xs)) =C1...Cs(LyT® X1 ® ... ® Xy)

+ZCl...CS(T®X1®...®LYXZ-®...XS).
=1

Using (6.37) for the left-hand side, this becomes

d(T(X1,...,X,)) Y = LyT(X1, ..., X,)

+Y T(Xy,. . Ly X, .., X)),
=1

showing the result. O

Example 6.40. Let w € T2(M) = QY(M) and X € X(M). Then (6.38)
reduces to
Lyw(X) =d(w(X)) Y —w([Y,X]). (6.40)

In particular, for w = df with f € F(M), we obtain
Lydf (X) = d(df (X)) - Y — df([Y, X])
=d(df(X)) Y —d(df (X)) - Y +d(df(YV)) - X
= d(df(V)) - X =d(Lyf)- X .
Thus, on F(M) it follows

Lyod=doLy. (6.41)

6.4 Relation Among the Operations d, Lx and intx

In this section, we consider w € £2°(M). The exterior derivative dw €
25F71(M) of w as well as the interior product intxw € 2°71(M) of w and
X € X(M) are defined in Section 3.2.2. Now we want to establish a rela-
tion between these two operations and the previously defined Lie derivative®
Lxw € 2°(M) of w with respect to X.

Proposition 6.41 (Cartan’s Formula). Let w € 2°(M) and X € X(M).
Then, we have
Lxw = d(intxw) + intx (dw) . (6.42)

® Recall that Lxw is well-defined because 2°(M) C T.°(M).
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Proof. Let ¢ € M and assume first that the vector field X € X(M) does not
vanish at ¢, i.e., X(q) # 0. From the Straightening Theorem 1.25 generalized
to vector fields on manifolds, we then deduce that there exists a local chart
(U, z) about ¢ such that

0

X = —
61‘1

on U.

a) In a first step, we have to compute Lxw, for w € £2°(M). — By Defini-
tion 6.35, we have

(Lxw)y = Jim < (w(p) ~ [Fwlp),  peU. (6.43)

Recall that I7X denotes the extension of the flow I'X of X, where the time
t € R is sufficiently small. Moreover, from (6.34) we deduce (see also the
Definition 3.23 of the pull-back)

ftXW(p) = (d(FtX);l)*w((FtX)_l(P))
= (d(I2)p) w(I%(p) = (FX)*w)(p) -

From the particular choice of the chart, we deduce that the coordinate ex-
pression for the inverse flow of X is given by

Fi(t(:rlv"'v:rn>:(zlital‘?v'"v:rn)? (644)
if the manifold M is assumed to be n-dimensional. Assuming that w has the

local form _ _
w:ZwIdz“/\.../\dz“ on U,
I

we conclude, using well-known properties of the pull-back,
(%) *w)(p) = Zw; (I ) d(zi, o TX) Ao Ad(zi, o TX)
I

6.44 . _
(6:44) Zw;(ml —t, %, Tp)dTE AL A de
I

Inserting this result into (6.43), we obtain that the Lie derivative (L xw), at
p € U equals

lim wr(zy, Ty xy) —wr(z1 —t, @2, ..., 2y) de AL A d
t—0 t
I
and thus 9
(Lxw)p =Y S (p)dz™ A... Ada'. (6.45)
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b) In a second step, we compute d(int xw). — For this purpose, we first note
that in the local chart (U, z) the interior product is given by (see Definition
3.28)

intxdr™ A...Ade'(Xo, ..., X,) = int'idzi1 A Nde = (Xg, .., XS)

dxq

:dxil/\.../\dxis( 9

S o
81'1, 2, ) )

where X, ..., X € X(M). By a well-known formula for the wedge product,
the right-hand side of the last equation equals

o i 0 - Qo (i
> (=l <de o, 8—z1> H(dm "0, Xo(j))
oES; j=2

Clearly, the expression <dziﬂ<1), 6%1> vanishes if i5(1) # 1 and otherwise

equals 1. Thus, it follows

int%ldxl ANdx AL AN dat(Xy, ..., X)) = Z (—1)lel H<dzi0(j),Xa(j)>

0cESs_1 j=2
=dx A, Ade' (X, .., Xs) .
(6.46)

This result® together with the local expression of w in the chart (U,x), then
implies
3 J— ~ 7:2 7:5
mtaalewaIdz Ao Ndx'e
T

where I = {(i1,...,is) : 1 =14 < iy < ... < i, <n} C I. Taking the
exterior derivative of the last equation, we get

. a(Ui 1 i is
d(mt%w)zza—zldm ANdz? A .. Ndx
T
= ow; i i
+Zza—x£dxk/\dm2/\.../\da:5. (6.47)
k=2 |

¢) In a third step, we compute int x (dw). — We write the exterior derivative
of we 2°(M) in the form

Ows. ) )
dw:ZaLledxl/\dx“/\.../\dx“
Jc
- awldk dil dis
+Zza—zk 28 Adet AL A dat
k=2

5 Compare with 3.49.
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where ¢ = {(i1,...,is) : 1 <iy <iy <...<is<n}C I Using (6.46) for
both terms, we obtain”

Ows. . .
mta Zaj‘dx“/\.../\dx“’
T

I 7,2 ip
—ZZ . da® Ada AL A datr (6.48)
I
d) Now, we put the results togther. —~Adding (6.47) and (6.48), we obtain

Ow fe .
d(int xw)+int x (dw) = Z 3 2T det Adai A /\da:zPJrZ dz" A. . .Adx'
— 011

and conclude that this agrees with (6.45). Hence, the formula (6.42) holds
locally under the assumption that X (p) # 0. a

As an application of Cartan’s formula (6.42), we prove the following
coordinate-free characterization for the exterior derivative.

Proposition 6.42. Let w € 2°(M) and let Xo € X(M). For the exterior
derivative of w, we then have

S

dw(Xo, X1,..., X)) =Y (-1 d(w(Xo,..., Xi,.... X)) - X;
=0
+ Y ()P (X X)L X, X X X
0<i<j<s

(6.49)

where the “hat” over a wvector field means that the latter is omitted and
Xi,...,Xs € X(M). In particular, for w € 2*(M), we have

dw(Xo,Xl) = d(w(Xl)) 'XO — d(w(Xo)) -X1 — w([Xo,Xl]) . (650)

Proof. The proof is by induction on s. — First note that if w is an element
of F(M), i.e., if s = 0, then (6.49) states that dw(Xy) = dw - X, which is
obviously correct.

For s = 1, we have w € 21 (M) and from Cartan’s formula (6.42) it follows

LXO ( ) d(lIlth ) X1 + (intXU (dw))(Xl)
:d( ( )) 'X1+dW(X0,X1).
Using Proposition 6.39 for L x,w, we conclude

" The minus sign in the last line comes from the permutation of dz* and dz' before
applying formula (6.46) for the interior product.
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dCU(XQ,Xl) = onw(Xl) — d(w(XQ)) -X1

== d(w(Xl)) . XO — w(LXUXl) — d(w(Xo)) . Xl

= d(w(Xl)) . XO — d(w(Xo)) . X1 — w([Xo,Xl]) s

Hence, formula (6.50) is established.

We now complete the proof by induction. — Assume that the formula
(6.49) is correct for all differential forms of degree s—1. If w € 2°(M) we start
as before with Cartan’s formula (6.42). Then we use the induction assumption
for the term intx,w € 2571(M), the Definition 3.28 of the interior product
for the term intx, (dw) and for Lx,w the explicit expression (6.38). (This is
the same strategy we used before for one-forms.) After a short calculation,
we observe that (6.49) remains true for differential forms of degree s. O

* * *
Exercises.
Exercise 6.43. Show that the bilinear map T on X (M) x X (M), given by
T(X,Y) = d(w(Y)) - X —d(w(X))-Y - w([X.Y]),
defines a covariant tensor field of type (0,2) on M.
Hint. In a first step, show that the map
TX,Y): M — R.
p— T(X,Y)(p) = (T(X,Y)),
is an element of F(M). Hence, it follows
T: X(M) x X(M) — F(M).

In a second step, show that the value of T(X,Y) € F(M) at some point
p € M depends only on the values of the vector fields X, Y at the same point
p. Then, as in the proof of Proposition 6.30, we obtain the result.






7 An Introduction to Lie Groups

In this chapter, we give the basic definitions and properties of Lie groups.
We develop here enough tools concerning Lie groups in order to be able to
study fiber bundle in Chapter 9.

7.1 Lie Groups

Definition 7.1. A Lie group G is a differentiable manifold which is en-
dowed with a group structure such that the group operations

GxG—G, (g1,92) — 9192

and
GHGa g'—>9717

are differentiable maps between G x G and G, respectively, G and G.

Remark. In other words, for a Lie group the group structure is consistent
with the differentiable structure.

Definition 7.2. We define the left translation by gy € G to be the follow-
mg map:
Ly : G — G,
g +— gog - (7.1)

We show that the left translation is a diffeomorphism between G and G.
— By Definition 7.1, we see that Ly, € C*°(G, G). Moreover, we observe that

Ly 0Lg(9) =Ly 1(909) = 95 '(909) =9,  g€G.

Hence, the map Lg, is invertible with inverse L oL The inverse being also
differentiable by definition, we conclude that the left translation is a diffeo-
morphism.
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Remark. a) The differentiability of the inversion map follows from the dif-
ferentiability of the multiplication map. Hence, it would be sufficient to
require the differentiability of the multiplication in the Definition 7.1 of
Lie groups. — Indeed, denoting the neutral element by e € G, we want to
find a solution h(g) € G of gh(g) = e, for g € G. Since the partial deriva-
tive of the multiplication map with respect to the second argument is just
the differential of the left translation L, being an isomorphism, we de-
duce by the Implicit Function Theorem 1.14 that the solution h(g) = ¢g~*
is a smooth function on G.

b) Similarly, it is possible to define the right translation R, : G — G,
g — ggo- But we prefer the left translation, since Ly, o Ly = Lg, 4, in
opposite to the more “complicated” formula Ry, o Ry, = Rgyg, -

The next definition combines the concepts of subgroup and submanifold.

Definition 7.3. A (regular) Lie subgroup H of a Lie group G is a sub-
group of G that is also a submanifold of G. A Lie subgroup H of G is itself
a Lie group.

Theorem 7.4. Let H be a closed subgroup of a Lie group G. Then H is a
Lie subgroup.

Remark. The previous theorem gives a powerful tool in order to find examples
for Lie subgroups (see Example 7.7 below).

Examples of Lie Groups

Ezample 7.5. The simplest example for a Lie group is R™ with the usual
vector addition. Left translation by v € R" is just L,w = v + w, for all
w e R™

Ezample 7.6 (The General Linear Group GL,(R)). The general linear
group is defined by

GLn(R) = {A € M,(R) : det A#0}, (7.2)

where M, (R) denotes the space of real square matrices of order n which
can be identified with R"". The general linear group is a differentiable man-
ifold of dimension n?, since it is an open subset of R, Indeed, consider the
continuous map

det : R" — R,
Ar—detA.

Then, we observe that GL,(R) is the inverse image of the open set R\ {0}
under this map. Moreover, for the usual matrix multiplication and matrix in-
version, with identity element 1 € GL,,(R) given by the identity n x n matrix,
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the general linear group can be made to a Lie group. Note that the smooth-
ness of the group operations is obvious, since the formulas for the product
and inverse of matrices are smooth functions of the matrix components. —
Note also that GL,(R) is obviously non-compact, since it is open.

Ezample 7.7 (The Lie Subgroups of GL,(R)).

a) As a direct consequence of Example 2.4, we get that the orthogonal group
O(n) is a Lie subgroup of GL,(R) with dimension n(n — 1)/2. Note that,
it is also compact. Indeed, from the determinant map we see that O(n)
is closed and the boundedness follows directly from the definition of the
orthogonal group.

b) In an analogous manner, we deduce from Example 2.5 that the special
orthogonal group SO(n) is also a compact Lie subgroup of GL,(R).

Remark. Considering the case of complex matrices, we recover the same type
of matrix Lie groups as for real matrices. — More precisely, the (complex)
general linear group GL,(C) defined by

GL,(C)={A e M,(C) : det A+#0} (7.3)
is a Lie group of (real) dimension 2n? with the unitary group
Un)={A€GL,(C) : ATA=AAT =1}, (7.4)

where AT denotes the hermitian conjugate AT of A € GL,(C), and the
special unitary group

SUn)={AecU(n) : detA=1}=U(n)NSL(n,C) (7.5)

as Lie subgroups. Note also that U(n) and SU(n) are both compact. We will
come back later to these matrix Lie groups. — For more details, we refer to [|.

In the following, the tangent space T.G of G at the neutral element e will
play an important role for the study of geometrical aspects of Lie groups.
This becomes already clear in the next definition.

Definition 7.8. Let G be a Lie group with neutral element e. We then define
0 c QY G, T.G) by
0y(X) = (dLy-1)g- X, (7.6)

where X € TyG. The T.G-valued differential one-form 0 is called the canon-
ical one-form or Maurer-Cartan form.

Remark. Note that the Maurer-Cartan form acting on vectors in T.G coin-
cides with the identity of T.G. More precisely, for A € T.G, we have!

0o(A) = (dLc). - A= A. (7.7)

! The particular choice of notation for elements in T.G will become clear later.
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Next, we want to show that the Maurer-Cartan form is left invariant, i.e.,
it satisfies
(Ly)0=0, (7.8)

for all g € G. — Let X € Ty;G and g9 € G. By definition of the pull-back, we
have

((Lgo)*e)g(X) = 0Lgo(g> ((dLgo)g ’ X) = 9909((dLgo)g ’ X) :
Using 7.6, it follows

((Lgo)*o) (X) = (dL(gog)’l)gog ’ ((dLgo)g 'X) :

From the chain rule, we then conclude

g

((Lgo)*ﬁ)g(X) =d(L(gyg)-1 0 Lgy)g - X = (dLg-1)g- X
= 99 (X) )
showing that 6 is indeed left invariant.

Proposition 7.9. Let G be a Lie group and V a vector space. Then w €
2YG,V) s left invariant if and only if there ewists a linear map f €
C>(T.G,V) such that

w=fob.
Proof. a

In opposite to usual manifolds, there exists a special class of vector fields
on Lie groups characterized by an invariance under left translations.

Definition 7.10. Let X € X(G) be a vector field on a Lie group G. Then
X is said to be left invariant if (Ly).X = X, that is, if

(dLgy)g - X(g9) = X(g09) , (7.9)

for all left translations Lg,, go € G and all g € G. We denote the vector space
of left invariant vector fields by Xr(G).

Proposition 7.11. Let G be a Lie group and A € T.G. Then we have that
X € XL(G) if and only if Hg(X(g)) =A, forallge@G.

Proof. Let X € X,(M) be a left invariant vector field on G. Using the defin-
ing equation 7.6 for the Maurer-Cartan form, we observe that

04(X(9)) = (dLg-1)g - X(9) = X (97 'g) = X(e).

Setting X (e) = A, this shows that for all g € G, it follows 6,(X(g)) = A.

Conversely, let X € X (M) satisfying 6, (X(g)) = A, for all g € G, with
A € T.G. First note that because of (7.7), we must have A = X(e). By
definition of the pull-back, we get
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((Ly-1)"0) ,(X(9)) = b ((dLy-1)g - X (9)) "= (dLy-1)y - X(9).

Since the Maurer-Cartan form 6 is left invariant, we then deduce

99 (X(g)) = (dLgfl)g : X(g) .
Using the assumption on X € X(M), it follows (dL,-1)4 - X(g) = X (e), for
all g € G, being equivalent to
X(g) = (dLg)e - X (€).

It is easy to check that this implies (dLg,)q - X(9) = X (gog), showing that
X is a left invariant vector field. O

The next proposition shows that every left invariant vector field corre-
sponds to an unique element of T.G.

Proposition 7.12. Let G be a Lie group and let X, (M) be the vector space
of left invariant vector fields on G. Then the map

X, (M) — T.G, X — X(e)
is an isomorphism of vector spaces. In particular, dimG = dim Xr,(M).

Proof. Let X € X1 (M) such that X(e) = 0. Since X is left invariant, we
have X (g) = dLy - X (e), for all g € G. This implies that X(g) = 0, for all
g € G, and hence the map in the proposition is injective.

For the surjectivity, let A € T.G and define, for all g € G,

Xalg) == (dLy). - A. (7.10)

Clearly, X 4(e) = A. It remains to show that X4 € X, (M). For this purpose,
we compute

99 (XA(Q)) = eg((dLg)e : A)
= ((Lg)*0) (A) = 6.(A) = A,

where we used (7.7) and (7.8) for the Maurer-Cartan form. From Proposition
7.11, we then deduce that X4 € X (M). O

The flow of a left invariant vector field has some interesting properties.
More precisely, we have

Proposition 7.13. Let G be a Lie group and let X € X, (M) be a left in-
variant vector field. Then the flow I'X of X is defined on R x G. Moreover,
the flow of X commutes with left translations, i.e., for all g € G and all
t € R, we have

LyolX=IXoL,. (7.11)

In particular, we have

gl (e) = I (9)- (7.12)
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Proof. We first establish (7.11) locally. — Let § € G. From Section 2.7 it is
well-known that there exist an open neighborhood U of g and 0 < T € R
such that the existence of the flow I'X on [~T,T] x U can be deduced. Then
for gg € G consider the map

Lgo(U) cG— G, g Lg, (th(go_lg)) .

Note that the map is well-defined since g, lg € U. We compute, using the
chain rule and the defining equation for the flow,

O(Lg, o I, _ ory , _
%(90 19) =dLyg, - ( 8:5 (90 19))

=dLg, - X (I} (95 '9)) -

Since X € XL(M), we deduce

a(Lgo o FtX)

5t (90'9) = X (Lg, 0 IT*(95'9)) -

Moreover, it is easy to see that

Lgy 0I5 (95 "9) = 9015 (90 '9) = 9095 '9) = g,

showing that the flow I';X of X exists also on [~T,T] x Ly, (U). Note that
Ly, (U) is open.
As a consequence, we get on [T, T] x Lg, (U) that
FtX =Ly, o['tX OLgo—l,
implying that (7.11) holds locally on U, for all ¢t € [T, T].

Next, we show that IX is defined on R x G. — From the first part of
the proof, we know that if the flow IX of X exists on [-T,7] x U, where
U C G open neighborhood of g, then the flow also exists on [-T,7T] x U’,
where U’ = Ly, (U) open neighborhood of ¢’ with go = ¢’g~!. This holds
for all ¢’ € G. Hence, the flow /X is defined on [~T,7] x G. This implies
that it is also defined on R x G. Indeed, for ¢ € [T, T] such that 2|¢| > |T7|,
we deduce from F{X o fo = FQ){( that F;g is also defined. — This proves the
proposition. a

Definition 7.14. We define the exponential map by
exp: T.G — G,
A 1% (e)

)

where X 4, defined in (7.10), is the unique left invariant vector field generated
by AeT.G and FtX“ its flow.
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Proposition 7.15. Let A € T,G and t, t € R. Then the exponential map
satisfies
exp(tA) = I (e), (7.13)
and
exp((t +t)A) = exp(tA) exp(tA). (7.14)

Remark. Equation (7.14) can be seen as a reason for calling the map of
Definition 7.14 “exponential” map. Moreover, we will show in Example 7.20
below that the exponential map for matrix Lie groups is simply given by the
exponential of matrices.

Proof. First, we fix t and introduce a new “time” variable 7 € R. Then, we

have <

ory” b's

— T =t XAl

(97' (g) A( tT (g))’
and clearly [ OX 4(g) = g. We deduce that T, t)T(A is the flow of the left invariant
vector field tX 4 satisfying X 4(e) = tA. On the other hand, let I'X*4 be the
flow of the left invariant vector field X4 € X1 (M) generated by tA € T.G.
From the uniqueness of the flow, we deduce that I'Xt4(g) = Ix4(g), for all
g € G. In particular, for 7 = 1 we get, using Definition 7.14,
IXA(e) = I (e) = exp(tA) .

This shows (7.13).
By definition of the exponential map, Equation (7.14) translates to

Iy 04 (e) = ¥ (e) Iy (e) . (7.15)
In order to show this equality, note that we have, using (7.13),
Xz
I (e) IT 4 (e) = I ()7 (e)

Since by Proposition 7.13 the flow commutes with the left translation by
T4 (e), we obtain

(7.12)

I (e) I74 (e) I (I (e) = I} 4 (e),

t+1

where we also used a standard formula for the composition of flows. Using
again (7.13) for the right-hand side, Equation (7.15) follows. O

7.2 Lie Algebras

Definition 7.16. Let E be a R-vector space. We call E a Lie algebra if

there exists a bilinear map [-,-] : E X E — E which is anti-symmetric, i.e.,
le, f1 = —[f, e], and which satisfies
[le, 1. 9] + [lg.e], f] + [[f.9)¢] = 0. (7.16)

for alle, f,g € E. The last condition is often called Jacobi identity.
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Example 7.17. Let M be a differentiable manifold. Then the vector space
X (M) of C*-vector fields on M is a Lie algebra for the usual bracket oper-
ation on vector fields defined in Section 2.7.1.

Coming back to Lie groups we note the following important fact. — For
the left translation L, : G — G being a diffeomorphism, we know from
(2.40) that

(Lg)*[Xa Y] = [(Lg)*X’ (Lg)*y] )

for all X,Y € X(G). In particular, for left invariant vector fields X,Y €
X1 (G), we have

(Lg)*[X7 Y] = [(Lg)*X’ (Lg)*Y] = [Xa Y],

showing that the vector field [X, Y] remains invariant under left translations,
ie, [X,Y] € XL(G). — As a consequence, the following definition is well-
posed.

Definition 7.18. Let G be a Lie group. The vector space X (M) of left
invariant vector fields on G together with the bracket operation on wvector
fields is called the Lie algebra of the Lie group G. We denote this Lie algebra

by g.

Remark. Recalling Proposition 7.12 we see that the Lie algebra g of a Lie
group G can be identified with the tangent space T.G of G at the identity.
Thus, the previous definition can be reformulated in the following way: Let
A, B eT.G and X4, Xp € X,(M) be the unique left invariant vector fields
generated by A, respectively B. Then the vector space T.G can be made into
a Lie algebra for the bracket operation defined by

[A, B] = [X4, XB](e) - (7.17)

Examples of Lie Algebras

Ezample 7.19 (Lie algebra of R™). Obviously, the Lie algebra of R™ can be
identified with R™ itself. The constant vector field X 4(v) = A, for all v € R™,
generated by A € R" is left invariant. Indeed, we have

Xa(Lyov) = Xa(vg+v) = A= (dLyy)v - Xa(v).

Therefore, the Lie algebra of R™ is R™ itself together with the trivial bracket
[v,w] = 0, for all v, w € R™. Moreover, the exponential map exp : R — R”
is the identity map.

Ezample 7.20 (Lie algebra of GL,(R)). We show that the Lie algebra of
GL,(R), denoted by gl,,(R), is M, (R). Moreover, for all A, B € M, (R), we
have

[A,B]= AB — BA.
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To see this, we recall that GL,(R) is open in M, (R). Thus, its Lie algebra
gl,,(R) can be identified with M, (R). To compute the bracket, note that for
every A € M, (R) the vector field X 4(P) := PA on GL,(R) is left invariant.
Indeed, for Py € GL,(R), we have

Xa(Lp,P)=Xa(PoP) = PhPA = (dLp,))p - Xa(P).
Note also that the Maurer-Cartan form reads as
0p(Xa(P)) = (dLp-1)p - Xa(P) = P7'X4(P) =P 'PA.

Using the local formula (2.33) — written in terms of Jacobian matrices — for
the bracket of vector fields, we then obtain
(7.17)
[A,B] " =" [Xa, Xp](1) = (JXB)1 - Xa(1) = (JXa)1- Xp(1).
By linearity of the map X 4, it follows that (JX 4)1-P = PA. Hence, we have
(JX4)1 - Xp(1) = BA. For the bracket, we then conclude

[A,B] = AB — BA.

Next, we want to give an explicit expression for the exponential map
exp : gl,(R) — GL,(R). — Let X4(P) = PA, for P € GL,(R), denote the
left invariant vector field generated by A € M, (R). Its corresponding flow
I must satisfy, for all P € GL,(R) and t € R,

a[‘tXA Xa Xa Xa
S (P) = Xa(I(P) = IXA(P)A,  LF*(P)=P.  (T.18)

We fix Py € GL,(R) and claim that

Xa = (tA)k
I (Ry) = PyexptA= PRy o (7.19)
k=1
solves (7.18). Indeed, we have Pyexp0 = Py and
d 2. (tA)F N
— | P =P — A" =P, tA)A.
dt(oz k! Oz(k—l)! bexp(t4)
k=1 k=1
Moreover, for the exponential map, we conclude
X o A
exp(A) = I (1) =) S (7.20)
k=1

showing that for matrix Lie groups the exponential map equals the usual
exponential of matrices.



186 7 An Introduction to Lie Groups

Now, we compute again the bracket of A, B € gl,(R) using the explicit
expression for its flows. — From the expression (2.32) for the bracket of vector
fields, we get

14, B] = [Xa, X5](1) = Jim = ((17%) v ) - Xa (T30 (1) = Xa (D))

The linearity of the flow I3 (see (7.19)) implies

[A, B] = lim 1(XA (12 (1)) exptB — XA(]L)) .

t—0 ¢

By definition of the left invariant vector field X 4, it follows
_ 1 XB
(4B = lim - (F,t (1)A exptB — A) .

Using the explicit expression for the flow, we arrive at the same result as
before:

1 (& (—tB) X (tB):
[A’B]tlg%)?(z( k!) Az(u) A)

k=1 =1

= lim l((A—i—(—tBA)—i—AtB—i—...) ~A) = AB - BA.

t—0 t

Example 7.21 (Lie algebra of O(n)). Recall that O(n) = g~1(0), where the
map g is explicitly given in Example 2.4. Using Proposition 2.33, it follows

T10(n) = kerdgy = {A € M,(R) : A"+ A=0}.

As a direct consequence, the Lie algebra o(n) of O(n) is the space of skew-
symmetric n X n matrices together with the bracket as in Example 7.20.

Ezample 7.22 (Lie algebra of SL(n,R) ). Recall from Exercise 2.5 that SL(n,R) =
g~ 1(0), where g : GL,(R) — R is given by A — det A — 1. For the tangent
space of SL(n,R) at 1, we have, using Proposition 2.33,

T1SL(n,R) = kerdgy .

Exercise 2.7 then implies that Ty SL(n,R) consists of all n x n matrices with
trace zero. As a direct consequence, the Lie algebra sl(n,R) is given by the
space of all n x n matrices with trace zero together with the bracket as in
Example 7.20. — Note that we also have o(n) = so(n), where so(n) denotes
the Lie algebra of SO(n).

* * *

Next, we introduce some definitions choosing a more general setting which
will be also useful in the next chapters. — Let M be a differentiable manifold
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and let w € 2Y(M,g) be a Lie algebra-valued one-form on M. Then, in a
basis E1,..., E, of g, we write w as

where w € 21(M), for i = 1,...,n, are real-valued one-forms on M such
that {w’(p)}i=1,....n form a basis of T;* M, for each p € M. We call {w'}i=1,...n
a coframe of M. Moreover, we define

wAw= > w AW [E;, Ej, (7.21)
ij=1

being an element of 22(M, g). — It is easy to check that w Aw is independent
of the choice of the basis for g.

* * *

Coming back to Lie groups, there is the following important

Definition 7.23. Let G be a Lie group with finite dimensional Lie algebra
g. Moreover, let Fn, ..., E, denote a basis of g. We define the structure
coefficients cfj € R of g with respect to the basis E1,...,E, by

[Ei, Ej] =Y ck B (7.22)
k=1

Proposition 7.24. Let G be a Lie group and g its Lie algebra. Then for the
Maurer-Cartan form 6 € 2(G,g) the following equation holds on G:

1
d9+§9/\9:0. (7.23)

This equation is called Maurer-Cartan’s structure equation.

Proof. Recall that the Maurer-Cartan form 6 is left invariant, i.e., Ly 6 =0,
for all go € G. Since the pull-back and the exterior differentiation commute,
it follows that L} (df) = d(L} 0) = df, showing that df is also left invariant.
Obviously, the same holds for 8 A 6. Thus, it suffices to show the Maurer-
Cartan equation at e € G, i.e.,

A0(e) + 50 A 6(e) = 0.

Let A and B € g with corresponding left invariant vector fields X 4 and
Xp € X(M) (see Proposition 7.12). We deduce from (6.50) that

dHE(A, B) = d(G(XB))e . A — d(G(XA))e -B— 96([XA,XB](€)) .
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Since by Proposition 7.11 the functions #(X 4) and 6(X ) are constant on G,
we obtain
df.(A,B) = —0.([Xa,X5](e)) . (7.24)

Now, let F1,..., E, be a basis of the Lie algebra g. We then write the
constants (X 4) and 0(Xp) as 0(Xa) = > | A* Ej, respectively as 0(Xp) =
i B'E;, where A", B' € R. On the other hand, it is clear that §(X4) =
Xa(e) = A and 0(Xp) = Xp(e) = B. For the right-hand side of (7.24), we
get by linearity

01X, X5)(e) = [A. B = 3. (B — VBB, E)].  (7.25)

i<j=1
Next, writing 0 = Y, 0" E;, where {0'},—1 ., is the so-called Maurer-
Cartan coframe?® on G, we observe that 0°(X 4) = A, since
0(Xa) =) 0'(Xa)Ei=) A'E;.
i=1 i=1

Inserting this in (7.25), we deduce
> (A'BI - AIBY)[E;,Ejl= > 0" A07(X4, Xp)[Ei, Ej].
i<j=1 i<j=1

With (7.24) it then follows

do=— > 0'A0[E; Ej].

i<j=1
From (7.21), we then deduce Maurer-Cartan’s structure equation. O
Remark. In a basis {E1,...,FE,} of g Maurer-Cartan’s structure equation
becomes .
k k i A i
b =— " 0N (7.26)
i<j=1

Using (7.22) and writing df = Y"'_, d0* E, this follows directly from (7.23).
* * *
Exercises.

Exercise 7.25. Show that the structure coefficients are skew-symmetric, i.e.,

cfj = —cfj, and satisfy the Jacobi identity, i.e., for all i,5,l,m € {1,...,n},

n

kE m k m k my __
E (cij cri + ¢ chs +¢jycpi) = 0.
k=1

2 Obviously, 6° € 2'(G) are left invariant, for i = 1,...,n.
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Exercise 7.26 (Lie algebra of SU(n)). With the help of Example 7.21
and 7.22 show that the Lie algebra su(n) of the special unitary group SU(2)
defined in (7.5) is given by

su(n) = {A € M,(C) : AT+ A=0 and Tr(4) =0},

with bracket [A, B] = AB — BA, for A, B € su(n).

7.3 Lie Groups Acting on Manifolds

Definition 7.27. Let G be a Lie group and M a differentiable manifold. We
say that G is a Lie transformation group on M or that G is a (right)
action on M if there exists a differentiable map

A:Gx M — M

such that A(g,-) : M — M is a diffeomorphism, for all g € G, and such
that A(gg,p) = A(g, Ag,p)), for all g,g € G, p € M. Moreover, a (left)

action must satisfy A(gg,p) = A(g, A(g,p)).

Remark. For a right action, we will often write pg instead of A(g, p) and Ry :
M — M for the map A(g, -). Note also that R, is the identity transformation
on M, i.e., R, = idys. In fact, since by definition we have R.p = pe = p(ee) =
(pe)e = Re(Rep), it follows that

b= (Re)_lRe(Rep) =Rep.

Definition 7.28. Let G be a right action on a manifold M. We say that G
acts freely on M if Rgp = p, for some p € M, implies that g = e. In other
words, the action G is free if e € G is the only element in G having o fized
point in M. Moreover, we say that G' acts effectively on M if Ryp = p, for
all p € M, implies that g = e.

Next, we introduce a particular vector field on M which will be important
for Section 9.92. — Let G act on M on the right. Then we assign to each A € g
the vector field A* € X(M) defined by

. d d
A'(p) = 2| Beprap= | pexpid, (7.27)
t=0 t=0

for all p € M and t € R. — Recall Definition 7.14 for the exponential map.
The vector field A* € X (M) can also be defined in the following manner:
For every p € M consider the map
op:G— M,
g+ pg. (7.28)
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Obviously, we have o, = A(,p). The differential of o, at e — which we will
simply denote by do, — applied to the left invariant vector field X4 € X(G)
generated by A € g reads as

d d
dt FtXA(e) = -

di PFtXA (e)

t=0

dop - Xa(e) = doy, -

t=0

d d
—— tA) = 2| R — A*(p). (7.29
pn t:Opexp( ) i, ptAD (p). (7.29)

Next, we define a map from g into X'(M), also denoted by o, as follows:

o:9g— X(M),
Ar— A*. (7.30)

Proposition 7.29. Let a Lie group G act on M on the right. Then, the map
o:g— X(M) is a Lie algebra homomorphism. Moreover, if G acts freely
on M, then o(A) never vanishes on M, whenever A € g is non-zero.

Proof. In this proof, we will use the notation a; = exptA € G and note that
the linearity is clear since o(A), = A*(p) = do, - A by (7.29). — First, we
determine the flow corresponding to A* € X (M). We observe that

d

d
E Ratp = 77 Rat+t0p .

dt|,_q

t=to

As a consequence of Definition 7.27 and (7.14), we also have that

R, yp = pexp((t + tO)A) = p(exp(tOA) exp(tA)) = Rq,(pat,) -
This gives, using (7.27),

4
dt

Ry,p=
e dt

R, (p ato) = A" (p ato) = A" (Ratop) :
t=0

It follows that R,, : M — M is the flow of A* (note also that R, p = p).

Now, we show that the map ¢ commutes with the brackets of the Lie
algebras g and X (M) (see (7.17) and Example 7.17). — Let A, B € g and
A* = 0(A), B* = 0(B). Using formula (2.32) for the bracket of vector fields
and the fact that Ry, is the flow of B*, we obtain that

(A% B(p) = lim < ((dRs,) , A" (Rop) = A*()) . (7.3D)
Using (7.29), we observe that

det . A* (Rb,tp) = det A* (pb,t)
= der, -dO’pb% -XA(e) = d(Rbt o Upb,t)e -XA(e) .
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Note that in terms of conjugation ¢, , : G — G defined in Example 7.30
below, we can write

Ry, oopp_, (g) =pb_tgbs =0p00c_, (g) :
With the adjoint action defined in (7.37) below, we then arrive at

det AT (Rb—tp) = d(()'p o Cb—t)e ’ XA(G)
=do, - (dey_,)e - Xale) = doy - Ady_, (X a(e)) -
(7.32)

Inserting this into (7.31), we deduce

[A*, B*](p) = lim l(dop : (Adbft (Xa(e)) — XA(e))) :

t—0 t

Next, we compute the following limit:

lim % (Adbft (Xale)) — XA(e)) = lim % (det “dLy_, - Xa(e) — XA(e))

lim l(det Xa(boy) — XA(e))

t—0 ¢

= [Xa, X5l(e),

where we used that X 4 is left invariant and that Xp has the flow Rp,. (The
last statement is a direct consequence of (7.34) below.) From this we finally
deduce that

[0(A),0(B)](p) = [A*, B*](p)
— do, - (tlgx}) % (Adbf,, (Xa(e)) — XA(e)))
= doy - [X4. Xp(e) "2 0 (|4, B]) (p).

Hence, we have shown that o : g — X' (M) is a Lie algebra homomorphism.
To prove the last assertion of the proposition, we assume that o(A) van-
ishes at some point pp € M and claim that this implies

Ra,po = po,

forallt € R.—Since R,, : M — M is the flow of the vector field A* € X (M),
we have

d

71| Bapo = A"(Ragpo) = A*(po) = 0.

t=0

Solving the resulting ordinary differential equation with this initial data in a
chart the claim follows directly. Thus, if G acts freely on M, we conclude that
a; = e, for all t € R, and moreover A* vanishes on M as direct consequence
of (7.27). O
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* * *

We consider the particular case of a Lie group acting on itself. So, let G act
on G on the right. Then for each A € g the vector field A* € X(G) is given
by

d
A*(g) = — Rex = — tA. 7.33
(9)= = _ Jowrag =25 gexp (7.33)
Now, we claim that
Xalg) = A%(9), (7.34)

where X4 € X(G) defined in (7.10) is the unique left invariant vector field
generated by A. In order to prove the claim, we compute

d

XA(g) = (dLg)e A= (dLg)e 'XA(e) = (dLg)e Ut FtXA (e)
t=0
_4d Xagy_ 4 (7.33)
= 9lit(e)= o gexp(td) =" A(g).

t=0 t=0

Remark. Note that this calculation is completely similar to the one in (7.29),
which comes from the fact that the map defined in (7.28) translates to left
translation on G in the particular case of G acting on itself. We also emphasize
that we need a right action of G on itself in order to obtain a left invariant
vector field.

Ezample 7.30. There is a particular (left) action of a Lie group G on itself.
— Let go € G and define the conjugation c4, by go to be the map
cgo G — G,
gr— Lg, o Rgal(g) = goggy " (7.35)

Clearly, the conjugation is a homomorphism. Next, we consider the map

c:GxG— @G,
(90:9) — cq0(9) (7.36)

being a left action of G on itself in the sense of Definition 7.27. Noting that
g, () = e and restricting the tangent map dcg, to T.G — which we identify
with the Lie algebra g — we obtain the following (left) action of G on the Lie
algebra g:

Ad:Gxg—g,
(90, A) — (degy)e - A (7.37)

This is the so-called adjoint action and we will also write Ady, : g — ¢
for the diffeomorphism (dcg, )e.
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* * *
Exercises.

Exercise 7.31. Show that in the case of a matrix Lie group the diffeomor-
phism Adp, : g — g is simply given by

Adp,(A) = PyAP;*. (7.38)
0 0






8 Distributions and Frobenius’ Theorem

Consider a vector field X on a manifold M and assume that X vanishes
nowhere. The map

p— span{X(p)}

assigns to each point p € M a one-dimensional subspace of T, M. Then the
integral curves of X — which always exist (locally) — are one-dimensional
submanifolds of M being everywhere tangent to these given subspaces of
T,M.

Instead of an one-dimensional subspace we now assign a k-dimensional
subspace of T, M to each point p € M. The following question arises: Is it
possible to find k-dimensional submanifolds of M being everywhere tangent
to these subspaces? Note that, in general, such submanifolds do not exist,
even locally. In Section 8.2 we will give necessary and sufficient criteria guar-
anteeing the existence of such submanifolds. — We begin with precisions in
the following section.

8.1 Distributions on Manifolds

Let M™ be an n-dimensional differentiable manifold. From a “set” point of
view, we define

Gr(TM) = | ] Gu(T,M), (8.1)

peEM

where Gy (T, M) denotes the set of k-dimensional subspaces of T, M. In Ap-
pendix 9.92 we show that G (T M) can be made to a differentiable manifold,
called the Grassmannian bundle. For D(p) € Gi(T,M), the projection
map to the base point reads as

e Gk(M) — ]\47
D(p) —p. (8.2)

Note that the following concept appears at various places in previous chap-
ters: Starting with some bundle, we construct a natural object corresponding
to the bundle — called section — which is equivalently characterized by some
particular local representation. For example, take the cotangent bundle and
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the differential one-forms. This concept also applies to the Grassmannian
bundle. More precisely, we have

Definition 8.1. Let M™ be a differentiable manifold of dimension n and
k <n. A k-dimensional distribution on M is a map

D: M — Gp(M)

such that oD = idyr, and for all local charts (U,x) on M™ there exists a
function D € C(U, G, (R™)) satisfying

@k (D(p)) = D(p) (8.3)

Jor allp € U, where @F : G1,(T,M) — Gy(R™) is defined by
- 0 - 0
k
Py (5100”{; a1 a—mi(p), . -7;%% oz, (p)}>
= span{Zaﬂ €iyenny Zaik ez}
i=1 i=1

with {€;}i=1,..n the canonical basis of R™ and a;; € R, for j=1... k.

Lemma 8.2. Let D be a k-dimensional distribution on M. Then, for all
p € M, there exists U C M open containing p, and

(i) smooth, linearly independent one-forms wk*+1 ... w™ on U such that

D(q) = ﬂ ker w(q), (8.4)

j=k+1
forqeU.
(i) smooth, linearly independent vector fields X1, ..., Xy on U such that
span{X1(q), ..., Xr(q)} = D(q), (85)
forqeU.

Proof. Let p € M™. We choose a chart (U,z) about p such that the k-
dimensional distribution at p can be written as

0

or1

Do) = span { 5= (p) s e 4) } € T

and thus by definition

D(p) = span{ey, ..., e} CR™.
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Let 15, D(p) < R" denote the canonical inclusion and observe that
L%(p)el A...Ae* # 0. By continuity of D : U — Gj(R"), we deduce that
there exists a neighborhood V' C U of p such that L%(q)el, ceey L%(q)ek are
linearly independent in V, i.e.,

A ANeF =%

* 1 1 * k
LR B(a)® /\.../\Lﬁ(q)e #0,

for all ¢ € V. Since dim ﬁ(q) = k, it follows that {L%(q)ei}i:17,,,,k forms a basis
for the dual (ﬁ(q))* of D(g) C R™. Hence, we can write, for j = k+1,...,n,

k
V)€ = Z X (q) (g€ - (8.6)
i=1

Note that since D € C(V,G1(R")), we clearly have that X} € C™(V,R).
By linearity of the pull-back, (8.6) can be written as

k
Y(a) <ej — Z)\f (q) ei> =0.
i=1

Recalling that the last expression is an element of (ﬁ(q))*, we obtain that

n k
ﬂ ker <ej - Z M (q) ei> c D(q). (8.7)
j=k+1 i=1

Moreover, it is not difficult to check that

n k
dim ﬂ ker (ej—Z)\g(q)eZ):n—(n—kz):
j=k+1 i=1

Hence, we deduce from (8.7) that

n k
D(q) = ﬂ ker (ej 72)\{((1) ei> ,

j=k+1

for all ¢ € V. As a direct consequence, it then follows that

n k
D(g)= [ ker (dxj (@) —>_ X9 CM(Q)) , (8.8)
j=k+1 i1

for all ¢ € V. Defining smooth, linearly independent one-forms w?, for j =
k+1,...,n,onV by
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k .
w! = dz? — Z N dz" (8.9)
i=1
we see that the first part of the proposition is proved.

For the second part, we define smooth vector fields X;, ¢ =1,... . k,on V
by

X; =

0 "N, 0
ot D M (8.10)
b j=ktl J

Note that since X} € C(V,R) (see (8.6)) these vector fields are linearly
independent. Moreover, we have, using (8.9), for j =k + 1,...,n, that

k n
) ) A o
W (X)) = da? = > N da’ <_aml+ > Ao — )

i=1 m=k+1
= i A dapd 9 —i)\jdxi K
7m:k+1 : Oz i=1 ' Iz
=X - XN =0.

This implies that, for g € V andi=1,...,k,

Xi(@) € () kerw’(q) =Dlq),
j=k+1

showing the second part of the proposition. a

Remark. Since D must be a solution of the system of partial differential
equations defined in (8.4) by the vanishing of a collection of differential forms,
it is also often called differential system.

In the next section, it will be useful to work not only with the one-forms
Wkt w" of the previous lemma but with all differential forms having a
vanishing restriction to D. More precisely, we associate to each k-dimensional
distribution D the set Z(D) C (M) defined by

I(D) = {w e 2(M) : tppw(p) =0,¥pe M}, (8.11)

i.e., all differential forms in the exterior algebra £2(M) whose restriction to D
vanishes for all p € M. The set Z(D) is called the annihilator® of the distri-
bution D. It is easy to verify that Z(D) is locally generated by w**t ... w™.
This means that every w € Z(D) can be expressed on U as

! Note that Z(D) is an ideal of the exterior algebra 2(M), i.e., if w1, ws € Z(D),
then w1 + w2 € Z(D); and if w € Z(D), @ € 2(M), then w A& € Z(D).
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w= Y 0 AL, (8.12)

i=k+1

for some smooth differential forms §? on U. Moreover, we say that the an-
nihilator is a differential ideal if whenever w € Z(D), then also dw € Z(D).
This will be often written as dZ(D) C Z(D) C.

8.2 Frobenius’ Theorem

In this section, we will give an answer to the question at the beginning of
this chapter. This will be first done in the language of vector fields.

Vector Field Version of Frobenius’ Theorem

Definition 8.3. Let D be a k-dimensional distribution on a n-dimensional
manifold M™. A k-dimensional submanifold N* of M™ is called an integral
manifold of D if for every p € N*, we have

(dew)p(T,N*) = D(p) (8.13)

where vy : N¥ < M™ is the inclusion map. Moreover, we say that the dis-
tribution D on M is integrable if an integral manifold passes through each
point p € M. These integral manifolds will be denoted by N(p), p € M.

We want to find out when a distribution is integrable. — For this purpose,
we consider vector fields which belong to a distribution D. More precisely, we
say that a vector field X € X (M) belongs to D if X (p) € D(p), for allp € M.
We then write X € D.

In a first step, we suppose that the distribution D is integrable with
integral manifolds N(p), p € M. Let X, Y € D be two vector fields belonging
to D. Since (dinp)q : TyN(p) — D(g) is an isomorphism for every ¢ €
N(p) by assumption, there exist smooth unique vector fields X and Y on
N(p) such that X(q) = (din(p))q - X(q) and Y(q) = (dinp))q - Y (q), for all
q € N(p). (Note that the smoothness of X and Y is not difficult to show.)
From Proposition 2.55, we deduce that

(denpy)q + [1X,Y1(g) = [X,Y](a)

Since [X,Y](q) € T,N(p), we conclude that [X,Y](q) € D(gq), for all ¢ €
N(p). — This suggests to introduce the following concept:

Definition 8.4. Let X, Y € D. The k-dimensional distribution D on M is
then said to be involutive if the bracket of X and'Y also belongs to D, i.e.,
if [X,Y] eD.
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Using this terminology, we have previously shown that if a distribution
D is integrable then it is involutive. — It turns out that the converse is also
true.

Theorem 8.5 (Frobenius’ Theorem (Vector Field Version)). Let D be
a k-dimensional distribution on a manifold M. Assume that D is involutive.
Then the distribution D is integrable.

More precisely, the following holds: For every point p € M, there exists
a chart (U,x) about p, an interval I C R around 0, such that x(p) = 0,
z(U) =I", and for any agt1,-..,an € I, the slice

Najirooan (D) = {q eU : zp11(qQ) = akt1, .- 2n(q) = an} (8.14)

is an integral manifold of D. Moreover, any connected integral manifold of D
contained in U is of this form.

Proof. The statement being a local one, we can work in R™ and choose p =
0 € R™. Moreover, we can assume that D(0) C ToR" is spanned by

{30 5}

where (z1,...,z,) denote the standard coordinate functions on R™.
Let 7 : R* — R* be the canonical projection. Then, we see that

dr|p(y : D(0) — R”

is an isomorphism. By continuity, the tangent map dm remains an isomor-
phism on D(g), for all ¢ € R™ in some neighborhood U of the point 0 € R".
It follows that there are unique vector fields X1, ..., X on U belonging to
D such that, fori=1,...,k,

(d7), - Xila) = 5 (x(a)).

Using Proposition 2.55, we then obtain

(dm)q - [Xs, X;](q) = [(’%z’ %] (m(q)) - (8.15)

The right-hand side vanishes as a consequence of the “Double” Straightening
Theorem 2.58 applied to W(U) C RF. Since D was assumed to be involutive,
we have [X;, X;] € D, thus [X;, X;](¢) = 0, for all ¢ € U, using (8.15).
According to a slight generalization of the “double” straightening theorem |,
there exists a chart (U, y) about 0 € R™ with y(U) = I"™ and

0

Xi(q) = o

(9, q€U, (8.16)
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for some interval I C R around 0 and ¢ = 1,...,k. — Now, it is not difficult
to see that the slices

{q€U : yoy1(q) = argr,- - yn(q) = an}

are integral manifolds of D, since their tangent spaces are spanned by (8.16).
Next, we show that any connected integral manifold contained in U is of

the form (8.14). For this purpose, suppose N(p) is an integral manifold of D

contained in U. For X(q) € T;N(p) and i =k +1,...,n, we then have

d(w; 0 tnp))g - X (@) = dzi((denp))q - X(q)) =0,

using the fact that by assumption (diy(p))e - X(g) is an element of D(q),
which is spanned by the vectors in (8.16). Thus d(x; o tx(y))q = 0 for every
q € N(p), implying that x; oty is constant on the connected manifold N (p).

In other words, we have N(p) = Ng,,,....a, (p), for some apy1,...,an € I. —
This completes the proof of Frobenius’ theorem in the vector field version.
O

Differential Form Version of Frobenius’ Theorem

Next, we reformulate Frobenius’ theorem in terms of differential forms. — For
this purpose, we first translate Definition 8.3 in the language of differential
forms.

Proposition 8.6. Let D be a k-dimensional distribution on a manifold M.
Then D is involutive if and only if the annihilator (D) is a differential ideal.

Proof. From the proof of Lemma 8.2, we know that the smooth, linearly
independent one-forms w**! ... w" on U defined in (8.9) belong to Z(D). We
complete w**1 ... w" by adding w',...,w" in such a way that {Witizi, m
form a coframe on U, i.e., {w'(p),...,w"(p)} is a basis for TyM,forallp e U.
Moreover, we denote by {X1(p),..., X,(p)} the dual of {w!(p),...,w"(p)}.
It is easy to check that Xi,..., X, are smooth, linearly independent vector
fields on U. Note that w’(p)(X;(p)) = 67, for all p € U. In particular, this
implies that

W (p) (Xa(p)) = 0, (8.17)

forallj=k+1,...,nandi=1,...,k. From the second part of Lemma 8.2,
we then deduce that

span{ X1(p),..., Xx(p)} = D(p), (8.18)

forallpe U.

Next, we observe that because of (8.12) it is sufficient to check the
condition dZ(D) C Z(D) on w**l, ... w", since dw’ € Z(D) implies that
0" A dw? € (D), for all differential forms 6% on U.
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The exterior derivative of the one-forms w®*!, ... w™ on U can be com-

puted using the formula (6.50). More precisely, for j = k + 1,...,n and
I,m=1,...,n we have

dw’ (X1, Xom) = d(w (X)) - X; — d(w/ (X0)) - X — w7 ([X0, Xin]) -

If 1 <l,m <k, it follows from (8.17) that the first two terms on the right-
hand side vanish, hence

dw! (Xy, Xm) = —w? ([X1, X)) - (8.19)

The assertion then follows from the last equation. In fact, assuming that
D is involutive, i.e., [X, X,,] € D, the right-hand side of (8.19) vanishes. This
shows that dw’(X;, X,,) =0, for [,m = 1,...,k, and therefore dw’ € Z(D).

Conversely, assume that dw’ € Z(D), for j = k+1,...,n. Then the left-
hand side of (8.19) vanishes, showing that w/ ([X;, X;,]) = 0, for 1 < I,m < k.
This implies that (see (8.18))

(X1, Xon](p) € span{X1(p),..., Xx(p)}

for all p € U, which is equivalent to
k
(X1, Xm] =Y Ch, X,
i=1

for some CF € C°°(U,R), implying that the distribution D is involutive. O

Next, we establish that the condition dZ(D) C Z(D) can be expressed
differently.

Proposition 8.7. Let Z(D) be the annihilator of a distribution D on M be-
ing locally generated by the smooth, linearly independent one-forms wk+1, ... w"
on U. Moreover, let w be the smooth differential (n — k)-form on U defined
by w=wFtT A AwW™. Then the following statements are equivalent:

(i) the annihilator Z(D) is a differential ideal, i.e., dZ(D) C Z(D);

(ii) the exterior derivative of the generating one-forms w*+1 ... w" equals
n .
dw’ = Z Wl AW,
i=k+1
for some differential one-form wJ% onU,j=k+1....n;

(iii)) w Adw? =0, for j=k+1...,n;
(iv) and dw = 0 A w, for some differential one-form 6 on U.
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Proof. For (i) implies (ii): By assumption, we have that dw’ € Z(D), for
j =k+1...,n. Thus the representation (8.12) holds for dw’. Setting 0° = w?
we obtain (ii).

For (i) implies (iii): Obviously, it follows from (i) that w A dw’ = 0.

For (i) implies (iv): This implication can easily be checked.

For (ii) implies (iii): We simply insert (ii) in w A dw® obtaining that the
last expression vanishes.

For (iv) implies (iii): Note that (iv) means that

n
do= > (~1)idw' NP A AW AL AW =0 AT AL AW
i=k+1

Multiplying with w? both sides of the last equation, we obtain (iii).
For (iii) implies (ii): As in the proof of Proposition 8.6, let {w?!,...,w"}

be a coframe on U such that w**! ... w" locally generate the annihilator
Z(D). Thus, for dw", h = 1,...,n, we have the following representation in
the above coframe: .
dwh = Z oWt Aw™, (8.20)
l<m=1

where f" € C°°(U,R). This implies, for j =k +1,...,n, using (iii),

n k
dw? N 2 W AW™ A W AW AW AL AW =0
l<m=1 I<m=1

Hence, the functions in (8.20) satisfy f% = 0, for j = k+1,...,n and
1 <I,m <k, showing that (8.20) can be written as in (ii).
For (iii) implies (i): This implication is straightforward. O

We collect the previous results concerning the annihilator of a distribution
in the following version of Frobenius’ theorem.

Theorem 8.8 (Frobenius’ Theorem (Differential Form Version)).
Let D be a k-dimensional distribution on a manifold M with annihilator
Z(D). Then D is integrable if and only if one of the following equivalent
statements hold:

(i) We have dZ(D) C (D).

(i) For every point p € M, there exists a neighborhood U of p and smooth,
linearly independent one-forms w*+1, ... w™ on U which generate locally
Z(D) and such that

n
do’ = Y WA, (8.21)
i=k+1

for some smooth one-forms w’; on U.
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(iii) Let w = Wkt A AW™ be a smooth (n — k)-form on U. Then, we have
dw’ Nw =0, (8.22)

forj=k+1,...,n.
(iv) Let w = w1 A ... Aw™ be a smooth (n — k)-form on U. Then we have

dw=0Aw, (8.23)
for some smooth one-form 6 on U.

Ezample 8.9. We consider the case of a 2-dimensional distribution D on R3.
— Assume that the annihilator Z(D) is locally generated by the smooth one-
form w = 1 dx? + d2® on U C R3 open. It follows that

D(p) = ker (x1 do? + dz?),,,
for all p € U. Since dw = dx' A dz?, we deduce that
dw Aw = (dz* A dx?) A (21 de® + da?) = da' A da® Ada®.
The last expression being different from zero, condition (iii) of Frobenius’
Theorem 8.8 implies that D is not integrable.
Application of Frobenius’ Theorem

As an application of Frobenius’ theorem, we discuss the so-called coframe
equivalence problem: Given a Lie group and a manifold of same dimension we
want to determine when their coframes can be mapped to each other. For a
more general setting of the equivalence problem of coframes we refer to [].

Theorem 8.10. Let G be an n-dimensional Lie group whose Lie algebra g
has structure coefficients cfj € R with respect to a basis {F1,...,E,} of g,
and let {0',...,0™} denote the Maurer-Cartan coframe. On the other hand,

let {01,...,0™} be a coframe on an n-dimensional manifold M satisfying, for
k=1,...,n,
n
. R —
doF =— > Ko ne,
i<j=1
where cfj are the above structure coefficients. Then, for every p € M, there

exists an open neighborhood U C M of p and a local diffeomorphism ¢ : U —
G with ¢(p) = e such that the coframe on M is mapped to the Maurer-Cartan
coframe on G, i.e.,

00 =0, (8.24)

fori=1,...,n.
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Remark. Suppose that there exist two such diffeomorphisms ¢; and @2 sat-
isfying (8.24). Then, we observe that (p5 *)*0% = 6%, for i = 1,...,n. Thus,
inserting (8.24) for 1, it follows

0" = (p3")*0" = (p31)* (£56") = (1093 ")*0".

Since §° € 21(G) are left invariant, we then deduce that o1 0 ;' = L, for
some g € G, showing that the two local diffeomorphisms ¢; and ¢4 differ by
a left translation on the Lie group on G.

Proof. Let p € M with open neighborhood U C M. Consider the canonical
projections

m:UxG—U and m:UXxG— G,

where U x G is an 2n-dimensional manifold and introduce ¥/ = 7767, ¥ =
736" being one-forms on UxG, fori,j=1,...,n
Next, we claim that {J',..., 9" 9% ... 9"} is a coframe on U x G. — In
order to show the claim, let (po, go) € U x G and consider the maps
o1:U—UXxG, o0:G—UXG,
q— (4, 90) ; g+— (po,9)-

We then see that
Mmooy =1tdy, W O003=Dpy, TW2003 =1dg, T2001=4gq-
This implies that
otV = o (n107) = (1 0 00)* 0 =67
and _ _ _
o1 = o] (m30") = (ma001)*0" =0.

Similarly, we compute o397 and o359
Now, assume that there exist A1,..., A\, € R and p1,...,u, € R such
that

D N (posg90) + Y i (po, 90) = 0. (8.25)
j=1 i=1

Taking the pull-back by o1 of the left-hand side, leads to

n

Z )‘j (Ufgj)(Po) + Z joz (0’;191)(]70) = Z )\j éj (po) =0.

Jj=1 i=1

Since {6'(po),...,0"(po)} are linearly independent by assumption, we con-
clude that A; =0, for j =1,...,n. On the other-hand, taking the pull-back
by o9 of the left-hand side of (8.25), we deduce that
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n _ n n
> N (0597) (go) + > i (0397) (g0) = > i 0(g0) = 0.
j=1 i=1 i=1

Hence, it follows by assumption that u; = 0, for ¢ = 1,...,n. In summary,
we get that

{ﬁl(po,go), s aﬁn(p()ago)a ﬂl(p()vgo)v s 719n(p07go)}

is a basis of T )U x G. Since, this holds for every (po,go) € U x G the

. (po,g0
claim follows. ~ ~

In order to apply Frobenius’ theorem, we first observe that 9! —91, ... 97—
Y™ are smooth, linearly independent one-forms on U x G and consider the

n-dimensional distribution D on U x G defined by (see Lemma 8.2)
D(q,9) = [\ ker(9'(q.9) — (0. 9)), (8.26)
i=1

where (¢,9) € U x G. We want to show that D is integrable. Applying
Frobenius’ Theorem 8.8 this can be done by establishing that the annihi-
lator Z(D) of D generated by ¥ — 91, ... 9" — 9" is a differential ideal, i.e.,
dZ(D) C Z(D). — For this purpose, note that by assumption we have, for
k=1,...,n,

n

do* = d(ﬂ‘ék) = (dék) =7 Z cfj N

i<j=1
= Z cfjﬂ‘éi AT = Z cszgi A
i<j=1 i<j=1
(8.27)
Similarly, we have that
Ak = N et A (8.28)
i<j=1

From (8.27) and (8.28), it then follows that

d(F —0%) = > (0 A — 9 AD).

i<j=1
The right-hand side can be written differently and we obtain

(9% — %) = znj (08— 9 AT 49 A (T — 7).

ij
i<j=1
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Since Z(D) is generated by 9! —9!, ... 9" —9" we conclude that d(9* —9*) €
I(D), for k =1,...,n. Hence, the n-dimensional distribution D on U x G is
integrable. Considering (p,e) € U x G, this means by definition that there
exists a n-dimensional submanifold N™ of U x G passing through (p, e) such
that

(den)(g.9)(Tia.)N™) = D(q,9) , (8.29)

for all (q,g) € N™. Note that in order to simplify the notation we write N™
instead of N"(p,e).
Next, let w1 and 72 be the restrictions of 1 and w5 to N™, i.e.,

m=motn:N"—U and g =m0ty : N — G.
It is left as an exercise to show that
(dﬁl)(pﬂe) : T(pﬁe)Nn — TpU and (dﬁ-Q)(p,e) : T(pﬁe)Nn — T.G

are isomorphisms. Note that the statement is a direct consequence of the
fact that O := (9" = 730; respectively, @' := (59" = 710; are coframes
on the integral manifold N”, for ¢ = 1,...,n. In other words, the statement
says that at the point (p,e) € N™ the tangent space T{;, )N contains no
horizontal or vertical tangent vectors (see Fig. 8.1).

We deduce from the Local Inversion Theorem 1.10 the existence of an
open neighborhood U’ of (p,e) € N™ and an open neighborhood W C M of
71(p,e) = p such that 71|y : U' — W is invertible. We denote the inverse
by 61 : W — U’. Similarly, we deduce by the local inversion theorem for
79. Then, we define

p=m900 :WCM—G.

It is clear that ¢ is a diffeomorphism between W and (W) with ¢(p) = e.
It remains to check that (8.24) holds for ¢. For this purpose, we compute,
fori=1,...,n,

p*0' = (72 061)"0" = 57 (750")
=510" =510’
=67 (770") = (R1061)"0" = 0".
This completes the proof of the theorem. a

Fig. 8.1. Setting for the proof of the theorem concerning the equivalence problem
of coframes.






9 Fiber Bundles

In the previous chapters, we encountered the tangent bundle, cotangent bun-
dle and the tensor bundle. These are examples of manifolds that possess
some additional structure. Namely, taking the tangent bundle T'M of an n-
dimensional manifold M, we know that each point of 7'M has a neighborhood
diffeomorphic to U x R™, where U is an open subset of M. Of course, the tan-
gent bundle itself need not to be diffeomorphic to M x R™. — In the following,
we will give a detailed definition for such manifolds, that is, manifolds which
look locally like a product.

9.1 Basic Definitions and Examples

Definition 9.1. Let F, M, B denote manifolds and G a Lie group acting
effectively on F. A coordinate bundle over the base space B with total
space M, fiber F' and structure group G is a submersion

m: M — B,

called the bundle projection, together with a bundle atlas { (71 (U;), (7, ¢:)) }

iel
on M. This means the following:

(i) The family {U,;}icr is an open covering of B.
(i) The map
(m,0:) : N (U;) — Uy x F

is a diffeomorphism. For b € U;, note that
ilr-1py 171 (0) — F

is also a diffeomorphism. If b belongs also to Uj, then @;|—1 () : 7 (b)) —
F do not necessarily coincide with p;. However, they must differ by the
action of some element in G. More precisely, we have

(iii) Fori,j € I with U; NU; # 0, there is a smooth map

fiyj : UiﬂUj —>G,
called the transition function from p; to ¢;, given by

fii(0) = @j 0 (@ilx—1)) " : F — F. (9.1)
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Remark. a) Roughly speaking, the total space M consists of an union of
products U; x F', where the open sets U;, @ € I, cover the base space B
and the copies of F' belonging to intersecting U; and U; are identified by
means of elements of G.

b) The set 7=1(b) is called the fiber over b. Note also that the bundle at-
las will be often called a trivialization, in order to emphasize the local
triviality property of the coordinate bundle.

c¢) For the transition functions the following holds for b € U; N U; # 0 and
m e I

(7, 05) © (m,05) " (bm) = (b, fi;(b)m) . (9.2)

Note also that (iii) implies that f;;(b) = e, (fi.; (b))_1 = f;.:(b) and the
transition functions satisfy the cocycle condition

fin®) = fiu®) o fij(b),  beUinU;NUx#0. (9-3)

Fig. 9.1. Fiber bundle.

There is an important particular class of coordinate bundles.

Definition 9.2. A (real) coordinate vector bundle of rank n is a coor-
dinate bundle m : M — B with fiber R™ and structure group GL,(R) (or
a subgroup of GL,(R)). A (complex) coordinate vector bundle of rank
n s defined analogously. — In the following, we will always denote the total
space of a vector bundle by E.

Now, we define in a detailed manner the notion of differentiable maps be-
tween coordinate fiber bundles which will allow us to introduce in Definition
9.4 below equivalence classes of coordinate fiber bundles, simply called fiber
bundles.

Definition 9.3. Let w; : M; — B;, for i = 1,2, be two coordinate bundles
with fiber F' and structure group G. A differentiable map

h:M1—>M2

is said to be a bundle map if it maps each fiber W;l(blz diffeomorphically
onto a fiber W;l(bg), thereby inducing a differentiable map h : By — By such

that mo o h = h o wy. Moreover, for every bundle charts (7r1 1(Ui), (1, gol))

and (F;l(‘/})L(FQ,Q/Jj)) of w1, respectively ma, the local representation of
h atb e U;Nh=1(V}) given by

Yjoho (901'|7rf1(b))_1 :F— F,
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coincides with the action of an element of G, and the resulting map

h@j :U; N hil(‘/}) — G,
bty 0ho (@il 1) (9.4)

is smooth.

Fig. 9.2. Bundle map.

Definition 9.4. Let h : My — M5 be a bundle map between two coordinate
bundles w; : M; — B with the same structure group, fiber and base space B.
Then, if the induced map h : B — B is the identity map on B, the coordinate
bundles w1 and wo are called equivalent and h a bundle isomorphism. A
fiber bundle is then defined to be an equivalence class of coordinate bundles.
Moreover, a fiber bundle is called trivial if the product bundle is an element
of its equivalence class.

Remark. Note that, alternatively, a fiber bundle can be defined in terms of
equivalent system of bundle charts as in the case of manifolds (see Definition
2.17).

Next, we define a special type of fiber bundles whose fiber and structure
group coincide and whose total space will be denoted by P.

Definition 9.5. A fiber bundle 7 : P — B with fiber and structure group
G is a called a principal G-bundle if there exists a free right action on P
and a bundle atlas such that for each bundle chart (ﬂfl(U), (m, <p)), the map
o :m Y U) — G is G-equivariant, i.e.,

(m,¢)(pg) = (x(p), ¥ (p)9) , (9.5)
forpe nY(U) and all g € G.

We claim that for a principal G-bundle the base space B is the quotient
space P/G. — Since from (9.5) we have that 7(pg) = w(p), the orbit G, =
{pg : g € G} C P of p € P is contained in ﬂ’l(ﬂ(p)). Conversely, if
(771 (U), (m,¢)) is a bundle chart about p, then it follows, for ¢ € 7= (7 (p)),

q=(m,0) " (7(q),0(q)) = (m,0) " (7(q), o(p)p(p) " ¢(q))

= (m ) (), o (0)g) "= pg,

where g = ¢(p) ¢(q) € G. This shows the claim.
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Moreover, note that for a principal G-bundle the Lie group G acts on
itself by left translations. Indeed, the transition functions for p € P read as!

fii(m(0)) = i (P)pilp) " : G — G, (9.6)

being independent of the choice of ¢ € 7! (ﬁ(p)), since for ¢ = pg we have

0i(p9)ei(pg) ™ = i(P)g(Li(p)g) = ;P)gg " vilp) ™" = w;(P)pilp) "

In the following theorem, we characterize bundle isomorphisms between
principal bundles.

Theorem 9.6. Let m; : P, — B be two principal G-bundles over B and
assume that h : P — P5 is a G-equivariant smooth map inducing the
identity on B. Then, we have that h is a bundle isomorphism implying that
the two bundles are equivalent.

Proof. Let (77" (U;), (m1,¢;)) and (w5 " (V;), (m1,%;)) be bundle charts of
and 7, respectively. Then the maps
7T1_1(Ui) — G, 771_1(‘/3) — G,
p— ¢i(p), p— (¥j o h)(p)

are smooth and well-defined since h induces the identity map on B by as-
sumption. Thus the assignment

fij :UiNV; — G,
b— (10 h)(p)ei(p) ",

where p € 77 (D), is also smooth.
Now, we show that f; ;(b) equals the local representation h; ;(b) of h at
b given by ¢ o ho (‘Pi|7r;1(b))_1' — Let g € G and let a := ¢;(p) € G. Then,

we have 05)
_ _ 9.5 _
g=aa"'g=vilp)a~ g = i(pa'g).

For p € n; *(b), this implies that

Yjoho (%Lr;l(b))_l(g) =)0 h(pa~'g) = Y (h(p))a_lg

= (j 0 h)(P)pilp) g, (9.7)
where we used that the map h is G-equivariant by assumption. Thus the
theorem follows using Definition 9.4. ad

! Let g € G and let a := ;(p) € G. Then, we can write g = aa™'g = pi(p)a™'g =

@i(pa~tg), implying for p € 7~!(b) that (see (9.1))

@i 0 (@il-10) " (9) = @i(pa”'g) = @i (p)ei(p) g
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Fig. 9.3. Equivalent G-principal bundles.

Examples of Fiber Bundles

Ezxample 9.7. The trivial fiber bundle with base space B and fiber F' is the
projection m : B x FF' — B onto the first factor. The structure group of
the trivial bundle is simply the identity transformation on F. — Note that in
general the size of the structure group measures how twisted the bundle is.

Ezample 9.8. The trivial principal G-bundle over B is the projection 7 :
B x G — B onto the first factor. The free action of G on P = B x G is
defined by right multiplication on G, i.e., (b,g0)g = (b, gog) € P.

Ezxample 9.9. The tangent bundle TM of an n-dimensional manifold M is
the total space of a rank n vector bundle over M with bundle projection
m:TM — M (see Section 2.5.3). Recall that if {(U;, ¢;)}icr is an atlas on
M, then {(W_l(Ui), @i) }ieI, where @; = (m,dyp;), is an bundle atlas on TM.

Moreover, the transition functions are given by (see (2.21))
fig=d(@jop; ) o : UinU; — GL,(R).

Note that similar arguments hold for the exterior bundle A" T*M and the
tensor bundle T7 (M).

Ezample 9.10 (Canonical Line Bundle over CP™). There is a canonical or
"tautological” (complex) vector bundle of rank 1 over CP™, where the com-
plex projective space CP™ is defined similarly to RP™ (see Example 2.21). —
The total space Er, of this bundle is given by

Ep ={([z],€) e CP" x C"*" : ¢ €[]},
with bundle projection
m1: By, —s CP™,
([1,€) — [].

In other words, the fiber 7, '([2]) over [z] € CP™ is simply [z] itself. For the
open covering

Ui:{[Z]E(CPn : 21750}7

of the complex projective space, with ¢ = 1,...,n + 1, we take the bundle
charts

(L, i) : ng(Ui) — U; x C,
([z],€) — ([}, A) (9.8)
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where \; € C is such that (€1, ...,&n1) = A (—1—+) e Crtl,

Moreover, the transition functions on U; N U; # () are given by
5
Fii(l2) = = (9.9)
Since z; # 0 and z; # 0 on U; N U;, we deduce that the transition functions
are elements of GL1(C) as required by Definition 9.2.

Sections of Bundles

It is clear that the trivial bundle B x F' — B has the property that through
any point (b,m) € B x F there is a copy B x {m} of B. This fact can be
reformulated in the following way: For a trivial bundle, there exists a map
s : B — B x F defined by s(b) = (b,m) such that it is a lift of idp, i.e.,
mos = idpg, through (b, m). However, such maps do not exist for all fiber
bundles.

Definition 9.11. Let 7 : M — B be a fiber bundle. A differentiable map
s: B — M is called a section if mos =1idp.

Note that we already encountered the concept of sections in the case of
vector bundles. For example, we know that vector fields are sections of the
tangent bundle and that differential one-forms are sections of the cotangent
bundle. More generally, every vector bundle admits a section, namely the
zero section given by s(b) = 0 € E},, where Ej, denotes the fiber 771(b) over
b € B which is a vector space. Note that from Exercise 9.13 we know that
0 € e is independent of the trivialization. — For principal bundles, however,
we have

Theorem 9.12. Let m: P — M be a principal G-bundle. Then it admits a
section if and only if it is the trivial principal G-bundle.

Remark. It is important to note that we mean the existence of a section
defined on B and not a (local) section s : U — P defined only on U C B
open, since — by local triviality — the map

s(b) = (m,9) " (b,9),

where g € G is fixed and b € U, defines automatically a (local) section for
every principal bundle. If a (local) section s : U — P satisfies

s(b) = (m.9) " (b,e), (9.10)

then it will be called the (local) section associated to the bundle chart (7, ).
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Proof. Assume that h : P — B x G is the bundle map making 7 to a trivial
bundle. Then, for any g € G, the map s(b) := h=1(b, g) defines a section of
the trivial principal G-bundle.

Conversely, assume that there exists a section s : B — P. Then consider
the map ¢ : P — G such that

p=s(m(p))e(p). (9.11)

Since p € P and S(?T(p)) belong by definition to the same fiber, this map is
well-defined. Moreover, it is equivariant. Indeed, observe that (9.11) can be

written as
i(s(m(p)))

1
ei(p) = ¢(p),
implying that

o(pg) = ¢i(3(m(pg)) " ilpg)
= 0i(s(r(p)) " wilp)g = ¢(p)g .

Note that the smoothness of ¢ : P — G is clear.
Next, we define the bundle map

h:=(myp): P— BxG,

which obviously induces the identity map on B. Then we conclude using
Theorem 9.6. g

Exercises.

Exercise 9.13. Show that for a coordinate vector bundle ng : £ — B the
fiber m=1(b) over each point b of the base space B is a vector space with
vector space structure independent of the chosen bundle atlas.

9.2 The Tangent Bundle of a Sphere as Principal Bundle

In this section, as detailed illustration of some concepts in the previous sec-
tion, we consider the tangent bundle T'S? of the two-sphere S? which can be
made to a principal U(1)-bundle. — It is left as an exercise to translate the
results of this section to the case of the n-dimensional sphere.

From Example 2.34, we know that the tangent bundle 7°'S? of the two-
dimensional unit sphere can be written as

178 = | 1,5 = {(p.v) € S* xR® : (p,v) =0},
peS?
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where (-,-) means the usual scalar product in R?. Considering only tangent
vectors with unit length we define the set

P={(p,v) € S*x 8% : (p,v) =0}. (9.12)

a) In a first step, we show that P is an one-dimensional submanifold of
52 x 82. For this purpose, let
f:R¥xR® —R,
(p,v) — (p,v)
be a smooth map, whose restriction to S? x S? — also denoted by f — remains
smooth. Obviously, we have that P = f~1(0). Next, we claim that f : S? x
S? — R is a submersion. — Let (p,v) € P be given by p = (0,0,1) € R?
and v = (v1,v2,0) € R® with v? + v3 = 1. Note that the tangent space
Tip,0)S? X 52 CR? x R? is then generated by
é1 =(1,0,0,0,0,0), é2 =(0,1,0,0,0,0),
é3 = (070507 71}2;”170)5 é4 = (0707070a071)'

From this we easily deduce that

- 0 . 0
v &1 = a—xf;(p’v) =, df (p,v) - €2 = 8—52(177“) = V2,
df(p,v)'é?) :07 df(p,v)'é4:a—%(pav):1~

Thus it follows that the differential df(, . is of maximal rank 1. Using Propo-
sition 2.2, we conclude that P is a submanifold of 52 x S2.
b) In a second step, we note that the map

7P — 5%,
(p,v) —p (9.13)

defines a submersion from P into S2.

¢) Next, we want to introduce a free right action of U(1) on P. Recall
that the abelian Lie group U(1) = {e? € C : 6 € R} is the unit circle in the
complex plane. — We define the map

Ul)xP— P,
(e, (p,v)) — (p,v)e” = (p,cosfv+sinfp x v), (9.14)

which describes in fact a rotation of v by the angle 6. It is left as an exercise
to check that this map defines a right action of U(1) on P in the sense
of Definition 7.27. Moreover, this action is free: Let (p,v) € P such that
(p,v)e?® = (p,v). This implies that v = cos@v + sin p x v. Since {v,p x v}
is a basis of 7,52, we deduce that cosf = 1 and sin = 0, i.e., ¥ = 1.
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d) In a next step, we construct a bundle atlas for 7 : P — S2. — Let
UF={pes® : (pe)>0} U ={pesS®: (pe;)<0},

with {e;}1<i<3 the canonical basis of R3, denote an open covering of S2. For
U;‘ , for example, we then consider the smooth map

V3 U;_ — RB,
e1 — (e1, p)p

Ter —{en,p)pll” (9-15)

pi—)

Obviously, we have [|vz(p)|| = 1 and (p,v3(p)) = 0, i.e., (p,v3(p)) € P. Since
p # e, for p € U;, the map vs is also well-defined. Now, we are ready to
define the following smooth map, which will turn out to be a bundle chart:

(m, gagr) : 7T_1(U3+) — U;r x U(1),
(p,v) —> (p, <v,vg(p)> 41 <v,p X vg(p)>) . (9.16)

Since {1}3 (p),pxvs (p)} is a basis of T},5%, we observe that indeed <v, U3 (p)> +
i{v,p x v3(p)) € U(1) and (7, ¢3) is a smooth diffeomorphism. Moreover,
we have that

(m,03) ((p, v)ew) = (m,¢3)(p,cosfv +sinfp x v)
= (p, {(cosOv +sinfp x v),vs(p))

+i ((cosfv +sinfp x v),p x vg(p)>) .

A straightforward calculation then gives that o3 : 71 (U;) — U(1) is
U(1)-equivariant, i.e.,

(m,03) ((p,v)e”) = ( , ((v,v3(p)) +i (v, p x vs(p)>)ei9) : (9.17)

e) We now determine the transition functions. — First, we observe that
the map

sy U — N U c P,
p— (p, vg(p)) , (9.18)

gives the (local) section associated to the bundle chart (7, 3 ), i.e., it satisfies

stp) = (m¢3) (0, 1) (9.19)

Using formula (9.6) for the transition functions of a principal bundle and
(9.16), we obtain for p € U N U™ # 0 that

F3.2(p) = &3 (0, vs(0) 3 (203 ()~ = 05 (0, vs(p)) -
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Remark. Summarizing the previous results, we have shown that 7 : P — 52
is a principal U(1)-bundle in the sense of Definition 9.5.

Using Theorem 9.12, we now want to decide if this principal bundle is
trivial or not. — Assume that there exists a smooth section s : $2 — P
with m o s = idg2. One can check that this is equivalent to the existence of a
smooth map § : S — S? such that (5(p),p) = 0, for all p € 52. Moreover,
we consider the flow of a vector field X € X(S?) given by

rx.s? — s,
p — cos(mt)p + sin(7t)$(p) . (9.20)
Note that [|cos(mt)p + sin(mt)3(p)|| = 1, since (5(p),p) = 0. We also observe

that ;X = idg> and IX = —idg2. For the volume form wge> = 15242 of 52
(see Example 3.54), we claim that

4
dt

/32(th)%52 =0. (9.21)
t=s

For a fixed s € R, we compute, using Definition 6.35 for the Lie derivative,

L ((TX)wse) = Jim & (1) wge — (TX)* (1) ws2) )

Since (I')*(I'X)*wgz = (I'X o I'X)*wg2 = (I'X,)*wgz, we obtain that

Lx (1Y) wse) = lim = (1Y) we = (0X,)"ws2)
d

-2 s

t=s

On the other hand, using Cartan’s formula (6.42), the left-hand side of the
last equation can be written as

Ly ((I7)*ws2) = d(intx (I)*ws2) + intx (d(I5°) ws2) .

The second term on the right-hand side vanishes, since the pull-back and the
exterior differential commute. Thus, we deduce that

d

- E (th)*w52 = d(intx([‘s‘x)*wsz) .

t=s

Integrating the last equation over S2, it follows

/SZ(FtX)*UJSQ = /S2 d(intX(FsX)*wSz) .
t=s

Stokes’ theorem implies that the right-hand side vanishes and we arrive at
the claim (9.21).

4
dt
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A straightforward calculation shows that

/ (FOX)*wszz/ wsz:/ LBBSQ:/ ds?
S2 52 S2 B3

= 3/ dz' A dx® A dx® = 3Vol(B?). (9.22)
B3
On the hand hand, a similar calculation gives

/ (I ) wge = —/ wg2 = —3Vol(B?).
S2 S2

However, the last result must be equal to (9.22), as a direct consequence
of (9.21). Thus, we end up with a contradiction to the assumption of the
existence of a section s : §? — P. Finally, we conclude with Theorem 9.12
that the principal U(1)-bundle 7 : P — S? is not trivial.

9.3 Associated and Reducible Principal Bundles

In this section, we analyze the structure of fiber bundles in more detail.

Associated Principal Bundles

We have seen that a bundle atlas {(7=(U;), (W,(pi))}iel of a given fiber
bundle 7 : M — B with structure group G induces transition functions
fi,j : UiNU; — G which satisfy the cocycle condition (9.3). We will see that
these transition functions are the main ingredients for the reconstruction of
the given fiber bundle. More generally, we have

Proposition 9.14. Let {U,}icr be an open covering of a manifold B and G
a Lie group acting effectively on a manifold F. Moreover, assume that there
exists for all ©,5 € I maps f; ; : U;NU; — G such that

fix() = fik(p) o fij(p), peUnU;NU,#0. (9.23)

Then there exists a fiber bundle m: M — B with fiber F', structure group G
and a bundle atlas whose transition functions are given by f; ;. In the case of
F =G and if G acts on itself by left translations, then the atlas determines
a principal G-bundle.

Proof. Consider the disjoint union
X=JwixF),
iel

and define on this union the following equivalence relation: For (p;, q1) € U; x
F, (pj,qQ) S Uj x I, we set (Pi,(h) ~ (pj,qQ) if and only ifpi =pj € UiﬂUj
and g2 = fi j(pi)q1, for some 4, j € I.
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We check that ~ is an equivalence relation on X. — Since ¢ = eq =
fi.:(pi)q, we have that (p;,q) ~ (pi,q). Now, assume that (p;, q1) ~ (p;,¢2),
ie., that p; = p; and ¢o = f; j(pi)g1. Hence, we get q1 = fij(pi) 'q2 =
fj.i(p;j)g2 showing that (pj,g2) ~ (pi,q1). The transitivity is also a direct
consequence of the cocycle condition (9.23). This shows that ~ defines indeed
an equivalence relation.

From a set point of view, we now define

M = X/ ~= Wi x F)/ ~,

iel
and consider the projection

n:M — B,
[(p. )] — p, (9.24)

where [(p, )] denotes the equivalence class of (p,q) € U; x F, for some i € I.
Note that 7 is clearly well-defined meaning that it is independent of the choice
of representative. If p : X — M denotes the projection on the quotient
space, we claim that each restriction

piZUiXF—>pi(UiXF)CM7
(Pi,q) — [(pi @), (9.25)

defines a bijection. Each equivalence class in p;(U; x F') possesses a repre-
sentant in U; x F. But by definition of the equivalence relation on X this
representant is unique and the claim follows. — We will take the inverse of
(9.25) as a bundle chart (7, ¢;), i.e.,

(m,05) : 7 Y U;) — Uy x F,
[(p, )] — (p,9) - (9.26)

By construction the transition functions of the corresponding atlas are just
the given f; ;.

In order to make M to a differentiable manifold, we first introduce the
following topology on M: We say that {2 C M is open in M if and only if the
set (, ;) (2N7~1(U;)) is open in U; x F, for all i € I. Verify that this indeed
defines a topology on M. Next, let {(U;, ;) }ier and {(Va, £a) taca be an atlas
for B, respectively F. On the open sets W; o, = (7, ;)" (U; x V,,) C M we
then consider the map @;  ([(p,q)]) = (¥i(p),&a(q)). It is left as an exercise
to show that {(Wi o, Pia)}icr,aca defines a differentiable structure on M.
Moreover, one can show that for this differentiable structure on M the bundle
projection 7 : M — B and the bundle charts (7, ;) are smooth maps. — In
summary, 7 : M — B is the desired fiber bundle.

In the case of F' = G, we define a right action of G on M by [(p, g)]go =
[(p,g90)], for all go € G. It is easy to see that this definition is independent
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of the choice of representative in the class [(p, g)] and that the action is free.
Moreover, the G-equivariance of ; follows from

(m ) ([(p,9)lg0) = (m,:)([(p, 990)])

2 (p, 990) = (b0 ([P, 9)) 90) -

We then conclude the existence of a principal G-bundle 7 : P — B with the
desired properties. 0O

This result leads to the following definition:

Definition 9.15. Let 7 : M — B be a fiber bundle with structure group G.
The principal G-bundle constructed from the transition functions of m as in
the previous proposition is called the principal G-bundle associated to the
given fiber bundle m : M — B.

There is also a canonical way of associating a fiber bundle to a given
principal bundle. — Let mp : P — B be a principal G-bundle and let F' be
a manifold on which the Lie group G acts effectively on the left. On P x F,
we then define the equivalence relation (p,m) ~ (p’,m’) if and only if there
exists g € G such that (p’,m’) = (pg, g~'m). The quotient space (P x F)/ ~
is denoted by P x¢ F' and there is a well-defined map

#:PxgF — B,
[p,m] — mp(p). (9.27)

Theorem 9.16. Let mp : P — B be a principal G-bundle and let F be
a manifold on which the Lie group G acts effectively on the left. Then 7 :
P xg F — B defined in (9.27) is a fiber bundle over B with fiber F and
structure group G. Moreover, the principal G-bundle wp is associated to T in
the sense of Definition 9.15.

Proof. Let (7rl§1(U), (mp, ga)) be a chart for the given principal bundle. We
then define

(7,@) : 7 (U) — U x F,
[b,m] — (7p(p), p(p)m) . (9.28)

This map is a diffeomorphism. Indeed, let s : U — 75" (U) be the (local)
section associated to the above bundle chart of the principal bundle and let

f:UxF— 7 Y(U),
(p,m) — [s(b),m] . (9.29)

In order to show that f is the inverse of (7, %) defined in (9.28), we observe
that
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(7,2 0 S (b,m) = (7,8) ([s(0),m]) = (7 (s(0)). o () m) = (b.m).

On the other hand, given p € 75" (U) and noting that the (local) section can
be written as s(mp(p)) = pe(p) !, we have

fo(®@)([p,ml) = f(rr(p), (p)m) = [s(7r(p)), (p)m]
= [pp(p) "', p(p)m] = [p,m] .

Next, let (W;l(V), (7p, 1/1)) be another chart of the principal bundle with
UNV #0 and let b € B be an element of this intersection. Defining (7, 1)) :
77 1(V) — V x F as in (9.28), we obtain

" (9.29)

o (7,@) 7" (b,m) U (Is(b),m]) = &([(wp, )" (b,€),m])

(9.28) (1/1 o (mp, @)~ (b, 6)) m= (ﬁmb(b)e) m = fou(b)m,

where (9.2) for the transition function f, , of mp is also used. In summary,
we have constructed a bundle atlas for the fiber bundle 7 : P xq F — B
with fiber F' and structure group G. — The fact that the transition functions
of the fiber bundle 7@ : P xg F — B coincide with those of 71p : P — B
implies directly that 7p is associated to 7. 0O

Remark. a) Note that the fiber bundle 7 : P x¢ F' — B is also often said
to be associated to the principal bundle 7p : P — B.

b) In the case of F' = g with left action of G on g given by the adjoint action
Ad : G x g — g defined in (7.37), we obtain the so-called adjoint bundle
P X 44 g. This vector bundle will be important in the following.

Reducible Principal Bundles

Definition 9.17. Let H be a Lie subgroup of G and Py, Pg two manifolds
with Pg C Pg. Moreover, let mg : Po — B and 7 : Pg — B be a
principal G-bundle, respectively, a principal H-bundle over B such that the
injection f : Py — Pg is a fiber preserving map and induces the identity
transformation on B (see Fig. ?7). We then say that the structure group G
of ma is reducible to H and we call mg the reduced subbundle of n¢.

Fig. 9.4. Reduction of the structure group. The map f satisfies rgo f = 7g.

Proposition 9.18. The structure group G of a principal bundle g : Po —
B is reducible to e — neutral element of G — if and only if wg is trivial.
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Proof. First, we assume that g : P — B is trivial. By definition this
means that there exists a bundle isomorphism h : B x G — Pg. Considering
the map

(idp,te) : Bx {e} — B x G,

we conclude that f = ho (idg, t) reduces G to e.
Conversely, assume that f : B x {e} — P is a fiber preserving map such
that mg o f = idp. Then it follows that the map

s:B— P,
br— f(b,e)

is a section of P. Indeed, we have ¢ (s(b)) = na(f(b,e)) = b. Theorem 9.12
then implies that P is trivial. O

Proposition 9.19. The structure group G of a principal bundle ng : Pg —
B is reducible to a Lie subgroup H if and only if there exists a bundle at-
las {(ﬂ'&l(Ui), (ra, goi))}ieI of g with transition functions f; ; taking their
values in H.

Proof. Suppose first that the structure group G is reducible to H and denote
by mg : Pg — B the reduced subbundle, where Py is considered as sub-
manifold of Pg. Moreover, let { (75" (V;), (7w, ;) }iel be a bundle atlas for
mr whose corresponding transition functions clearly take their values in H. —
We now look for a bundle atlas of g : P — B whose transition functions
take their values only in H.

Take again {V; = U, }ier as open covering for B. By assumption every
p € 75" (U;) may be represented in the form p = gg, for some ¢ € 75 (U;)
and g € G. Then, we set

vi(p) = i(@)g.-

Note that the map ¢ : 75" (U;) — G is well-defined meaning that it is
independent of the representation for p € ﬂél(Ui). Indeed, let p = Gg be
another representation, then we have

o(p) = ¥i(9)g = ¥i(pg")g = vi(p) = ¥(q9) = ¥(q)g .
It is also clear that
(ﬂg,(pi) : W&l(Ui) — Ui x G (930)

defines a diffeomorphism. Using (9.6), we find for the corresponding transition
functions

fii(ma(p)) = 0i(P)ei(p) ™" = vi(@vi(e) ™",

taking their values in H. Thus (9.30) is the desired bundle atlas for 7q.

For the converse, we only give a sketch of the proof. — Assume that there
exists a bundle atlas {(ﬂél(Ui), (ra, @i))}iel of mq : Po — B with corre-
sponding transition functions f;; taking their values in H. By Proposition
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9.14, we can construct a principal H-bundle from the covering {U;};c; and
the transition functions f; ; which we will denote by mp : Pg — B. Next,
we define the map f; : 7' (U;) — 75" (U;) to be the composition of the
following three maps:

-1
T (U3) — U x H— U; x G ") n=lw;).

Obviously, we have f; = f; on U; NU; # 0. It is left as an exercise to check
that f : Pg — Pg given by { fi}icr reduces G to H in the sense of Definition
9.17. 0

9.4 Connections in a Principal Fiber Bundle

Let m: P — B be a principal G-bundle over B. For each p € P, we denote
by V, the subspace of the tangent space T,,P of P at p consisting of vectors
tangent to the fiber over m(p). To be more precise, elements in V,, are those
being tangent to the orbit G, = {pg : g € G} of p — recall that for a
principal G-bundle we have B = P/G. In other words, we have V), = ker drm,.
We will call V, the vertical subspace of T}, P.

The right action on P induces a homomorphism o of the Lie algebra g of G
into the Lie algebra X'(P) of vector fields on P by Proposition 7.29. For every
A € g,wecall 6(A) = A* the fundamental vector field corresponding to A.
Then we make the following important observation: As a direct consequence
of (7.27) the fundamental vector field A*(p) is an element of V, C T, P, for
all p € P. We also know from Proposition 7.29 that ¢ : g — X(P) is an
injective map because the action of G is free. Since the dimension of each
vertical subspace equals that of the Lie algebra g, we then conclude that the
linear map

dop:g — Vp,
A+— A*(p) (9.31)

is an isomorphism. — Recall the computation in (7.29), where we showed that
the fundamental vector field can also be expressed in terms of the differential
do,, of op.

Proposition 9.20. Let A* be the fundamental vector field corresponding to
A € g. Then, for each g € G, we have that (Ry)«A* is the fundamental vector
field for Adg,-1(A) € g.

Proof. By Definition 2.47 of the push-forward we have ((Ry).A*)(p) =
(dRg)pg—1 - A*(pg™') and (7.32) then shows that ((Ry).A*)(p) = dop -
Ady-1(Xa(e)) = doy, - Ad,—1(A). We conclude the proposition using (9.31).

O
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Definition 9.21. Let M™ denote an n-dimensional manifold. A connection
on a principal G-bundle m : P — M is an n-dimensional differentiable
distribution H on P satisfying the following conditions:

(i) mH=TM ;
(i) (Rg)«H ="H, for all g € G.

Remark. The following remarks concerning the previous proposition are im-
portant:

a) By (i) there is a splitting T}, P = H, @ ker dmp, = H, V), for every p € P.
In particular, every vector field X € X (P) can be written as

X, =X!+X),

where Xf € H, and Xz‘)/ € V, are called the horizontal, respectively, the
vertical component of X at p. Since H is an n-dimensional differentiable
distribution on P, we obviously have that Xf induces a differentiable
horizontal vector field X on P.

b) Note also that condition (ii) means that H is invariant by the action of
G on P.

¢) We emphasize that there is no canonical differential distribution H. In
other words, by a connection we mean the choice of a differential distri-
bution such that (i) and (ii) hold.

Given a connection H on P, it is possible to define an one-form on P —
which we will denote by w — with values in the Lie algebra g as follows:

Definition 9.22. The connection form w of a connection H on a principal
G-bundle w: P — M 1is the g-valued one-form on P given by

wp(Xp) = (dop) ™! 'X;Y, (9.32)

where X, € T,P. In other words, for each X,, € T,P, we define w,(X,) to be
the unique A € g such that A*(p) = X/ .

Note that because do, defined in (9.31) is an isomorphism, for every

p € P, the definition makes sense. In the following, we will often write w €
2(Pg).

Proposition 9.23. The connection form w € 2(P,g) of a connection H on
a principal G-bundle m: P — M satisfies the following:

(i) w(A*) = A, for all A € g;
(i1) wly = 0;
(iii) (Rg)*w = Ady-1 ow, for all g € G.

Conversely, if w € 2Y(P,g) satisfies (i) and (iii), then kerw is a connection
onm: P — M.
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Proof. The conditions (i) and (ii) follow immediately from Definition 9.22.
Since every X € X(P) can be decomposed into a horizontal and vertical
vector field X7 and XV, respectively, it suffices to show (iii) in the following
two particular cases:

a) If X is horizontal, then the right-hand side of (iii) vanishes because of (ii).
On the other hand, since (R,).X is also horizontal by (ii) of Definition
9.21, the left-hand side of (iii) also vanishes. This establishes (iii) in the
case of X being horizontal.

b) If X is vertical, we can further assume that X is a fundamental vector
field A*. Then Proposition 9.20 implies that (Rg4).A* is the fundamental
vector field of Ad,-1(A) € g. Thus by definition of the connection form
w, it follows

((Rg)*w),(A) = wpg(dRy - A7)

= Ady-1(A) = Ady-1 owp(Ay).

p

Thus (iii) is proved.
For the converse, we define
Hy =kerw, = {X, € T,P : wy(X,)=0}. (9.33)

It is left as an exercise to check that the differential distribution H thus
defined gives a connection for 7 : P — M with connection form w. O

Connection Form in Local Coordinates

To a given connection form w € (P, g), we now associate a family of
g-valued one-forms defined on open subsets of the base space M. — Let
{(W_l(Ui), (ﬂ',cpi))}iel be an atlas for a principal G-bundle 7 : P — M
with corresponding transition functions f; ; : U; N U; — G. Moreover, for
all i € I, let s; : U; — n~1(U;) be the (local) section on U; associated to
the chart (7=1(U;), (m, ¢5)), i.e.,

s:(b) = (7T, %)71(1)7 e),

and let § € 2(G, g) be the Maurer-Cartan form of Definition 7.8. We then
define a g-valued one-form A; on U; by

A; = sjw, (9.34)
and a g-valued one-form 6; ; on U; NU; # 0 by
0i = fi;0- (9.35)

Note that in the physics literature the (local) section s; : U; — 7 (U;) and
the g-valued one-form A; are often called local gauge, respectively, (local)
gauge potential in the local gauge s;.
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Proposition 9.24. Let {(7=(U;), (7, ¢:)) }iel be an atlas and w a con-
nection form for a principal G-bundle wm : P — M. Then the one-forms
A; € QY (U, 9) satisfy the following compatibility condition on U; N Uj:

Aj (b) = Adfj,i(b)*l 9] Az(b) + Gw(b) . (936)
Proof. First, for b € U; NU; # (), we note that

5;(b) = si(b)f;,i (D). (9.37)
Indeed, we have
-1
(7T7 SDZ)(S] (b)) = (7Ta (107,) o (7Ta (10]) (ba 6)
(9-5)

(5, £5.0)) “Z (m00) (s:0) £14(0)) -

Consider now the right action A : G x P — P of the Lie group G on
P. By Leibniz’s formula (see []) the image of its differential d.A4 at the point
(9,p) € G x P applied to Z € T(,,)G x P equals

dA(g,p) - Z = (dop)g - Xg + (dRg)p - Y/p ) (9.38)

where 0, : G — P, R, : P — P are defined as usual and (X,,Y,) €
T,G ® T, P correspond to Z. In the particular case of (df; )y - Xp € T}, )G
and (ds;)p - Xy € T, 5) P, where Xy, € T, M, the differential in (9.38) reads as

d.A( A ddsi(b) . (dfj,i)b - Xp + dej,i(b) . (dsi)b - Xp.

£5,6(b),5:(b))
Taking the differential of (9.37), we thus arrive at
(de)b - Xp = dO‘Si(b) . (dfjﬂ')b - Xp + dej,i(b) . (dSi)b - Xp. (9.39)

In a next step, we apply the given connection one-form w on both sides
of (9.39). — Since

wsj(b) ((dsj)b . Xb) = (S;w)b(Xb) = Aj(Xb) (940)
by (9.34), we get A;(X}) for the left-hand side of (9.39). For the second term
on the right-hand side of (9.39), we have

Ws,0)£,.50) (AR, ) - (dsi)y - Xo) = (B} yw),, o, ((dsi)y - Xb)
= Ad‘fj,i(b)—l o wsi(b) ((dsi)b . Xb)

(géo) Adfj,i(b)*l o Az(Xb) 5

where we used (iii) of Proposition 9.23. Now, we apply w on the first term of
the right-hand side of (9.39). For this purpose, we first consider X 4 € X1(G)
generated by A € g such that X (f;,:(b)) = (df;,i)s - Xp. Hence by definition



228 9 Fiber Bundles

of the Maurer-Cartan form we have 0y, ;) ((df;.i)s - X3) = A. Using (7.29),
we deduce that

dog,m) - Xa(fi4(0) = A (5:(0) f5.4(0)) - (9.41)

We then conclude that

ws, ()10 (A" (5 (D) f5.4(0))) = A
=05, . ((dfja)s - Xp)
X (9.35)
= (f5:0),(Xp) =" (05.),(Xs).
Finally, putting the previous results together we arrive at the compatibility
condition (9.36). O

Remark. a) Considering the case of a matrix Lie group G the compatibility
condition (9.36) takes the simple form

Aj(b) = f,:(b) T Ai () £5,:(0) + £5.:(0) " (dfs) - (9.42)

b) A change in the choice of the local gauge will be called a local gauge
transformation. The compatibility condition (9.36) then describes the
effect of a local gauge transformation on the gauge potentials representing
a fixed connection on P.

The converse of the previous proposition also holds:

Proposition 9.25. Let m# : P — M be a principal G-bundle and {U,;}icr
an open covering of M. Moreover, assume that there exist g-valued one-forms
A; on U; satisfying (9.36) for every i € I. Then there is a unique connection
form w on P which gives rise to the family {A;}icr in the above described
manner.

Gauge transformations

Bundle maps from a principal bundle into itself inducing the identity on the
base space play an important role. For the next definition we recall Theorem
9.6.

Definition 9.26. Let m : P — M be a principal G-bundle. Denote by h :
P — P a bundle automorphism, i.e., a G-equivariant smooth map inducing
the identity on M. The set of all bundle automorphisms form a group G under
composition called the group of gauge transformations for m: P — M.

We observe that every bundle automorphism h : P — P can be repre-
sented for all p € P as

h(p) = pu(p), (9.43)
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where v : P — G is a smooth map that must satisfy

u(pg) = g~ ulp)g, (9.44)

since h is assumed to be G-equivariant. In the chart (7=(U;), (,¢;)) the
local representation of h at b € U; is given by

(¢ioh)()ei(p) ™" = i(pup))pilp) " = vilp)ulp)pi(p) ",

where p € 771(b) and (9.7) is used. On U;, we then define the map
ui(b) = i (771 (0))u (™ (0) i (77 (b))

Note that right-hand side is independent of ¢ € 7~1(b), since for ¢ = pg we
have

-1

(9.45)

i (pg)u(pg)ei(pg) ™" = wi(P)g u(pg)g i (p) ™" =Y G (Pup)ei(p) "

Note also that if u; : U; — G is defined as in (9.45) by another chart
(7=1(U;), (7, ¢;)), then the following equation holds for b € U; N U; # 0:

w;(b) = fij(b)ui(b) fii(b) " (9.46)
Next, we give two other interpretations of the map u: P — G.

a) Let s; : U; — 7 }(U;) denote the (local) section associated the the
bundle chart (7~ (U;), (m, ¢;)) of the principal G-bundle 7. Noting that
si(m(p)) = ppi(p)~", we obtain for p € 7~ 1(U;) that

(siu)(m(p) = wosi(m(p)) = u(ppi(p)™)
(9.44) —1 (9-45)
=" pilp)ulp)pi(p) ™ =" wib). (9.47)
b) The map u : P — G can also be seen as section of the associated
bundle 7 : P x. G — M, where ¢ denotes the action by conjugation on
G defined in (7.36). — We consider the (local) section of the associated
bundle 7 given by

§i : Uz — P Xe G,
7(p) — [p u(p)] . (9.48)

Note that he right-hand side is independent of p € P by definition of
the associated bundle in Section 9.3. Moreover, using the bundle chart
(7=1(U;), (7, ¢i)) for 7 constructed in the proof of Theorem 9.16, we see
that the map @; o §; : U; — G agrees with (9.45).

Now, we want to determine how a connection form transforms under
a bundle automorphism. — Let w € 2'(P,g) be a connection form on the
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principal G-bundle 7 : P — M. Clearly, the pull-back h*w by the bundle
automorphism h : P — P is again a connection form on P. For X, € T,,P,
we have

(h*w)p(Xp) = wh(p) (dhp . Xp) .
In order to compute the right-hand side, we use (9.43) for the differential dh
and then proceed as in the proof of Proposition 9.24 to obtain?

(h*w)p(Xp> = u(p)_lwp(Xp)u(p) + u(b)_ldup “Xp- (9.49)

With the (local) section s; : U; — 7 1(U;) associated the bundle chart, we
obtain using (9.47) that

(sf(uilwu))w(p)(Xb) =ulos; (ﬁ(p)) (siw ),r(p)(Xb) U0 S; (ﬁ(p))
= ui ()" (5] W)r(p) (Xb) us(b)
where b = w(p) € U;. Applying the pull-back of s; on both sides of (9.49), we

thus arrive at
7 (h*w)(b) = ui(b) " A4; (0)us (b) + ui(b) ™ (duy)y (9.50)
where A; = sfw denote the gauge potentials introduced in (9.34).

Remark. Comparing with (9.42), we conclude that the above transformation
formula can be interpreted equivalently as the effect of a local gauge trans-
formation on the gauge potentials representing a fixed connection form, or
as effect of a gauge transformation on a connection form, viewed in a fixed
local gauge.

Horizontal Lift and Parallel Transport

Given a connection on a principal G-bundle 7 : P — M, we can now define
the concept of parallel transport of fibers along any given curve in the base
space M.

Definition 9.27. The horizontal lift of a vector ﬁeld X eX(M) on M is
a vector field X € X(P) on P such that (dn), - X, = ), for every p € P.

We observe that — as a direct consequence of Definition 9.21 — a connection
makes the linear map (dr), : Hp — Tr(p)M to an isomorphism. This leads
to the following result.

Proposition 9.28. Let X € X(M) and H be a connection on a principal
G-bundle w: P — M. Then there exists a unique horizontal lift X € X (P)
of X. Moreover, the horizontal lift X is invariant by Ry, for every g € G.
Conversely, for every horizontal vector field Y € X(P) being invariant by
R, there exists a vector field X € X(M) whose horizontal lift equals Y .

2 The computation is completely analogous to the one in the proof of Proposition
9.24 except that (9.37) is replaced by (9.43).
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Proof. The existence and uniqueness of the horizontal lift X is clear from the
above observation. It remains to show that X € X(P), i.e., that X is smooth.

For this purpose, let b € M and consider a chart (7=*(U),(m,¢)) of
7 : P — M about 7—!(b) which is by definition a diffeomorphism between
7Y (U) and U x G. Using this diffeomorphism, we deduce the existence of
a smooth vector field Z on 7= (U) such that X, = (dn)-1(c) - Zp-1(c), for
all ¢ € U. Then due to the uniqueness we have X = Z and the horizontal
vector field Z# on 7= (U) remains smooth. — The fact that X is invariant
by Ry, for every g € G, is a direct consequence of the Rg4-invariance of the
connection in (ii) of Definition 9.21.

Conversely, let Y € X(P) be a horizontal Rg-invariant vector field on P.
For every b € M we then choose a point p € 7~ 1(b) and set X, = (dr),, - Y.
Note that X, € T,M is independent of the choice of p in the fiber 771 (b)
over b. Indeed, if ¢ = pg € 7~1(b) and using the properties of Y, we have

(dm)q - Yq = (dm)pg - ((ng)p : Yp) = (dm)p - Yp.
The smoothness of the resulting vector field X on M is clear. a

The notion of horizontal lift of a vector field X on M naturally leads to
the following concept of horizontal lift of a curve in M: The integral curve
of the horizontal lift X through a point py € P will be defined to be the
horizontal lift of the integral curve of X through the point by = m(py) € M.
More precisely, we have

Definition 9.29. Let v : [0,1] — M be a C'-curve in M. A horizontal
lift of v is a horizontal curve 7 : [0,1] — P in P such that m o5 = 7.

Remark. Note that horizontal curve means that 5(t) € Hy@), for all t € [0,1],
where 4(t) denotes the tangent vector of 4 at the point ().

Theorem 9.30. Let v : [0,1] — M be a C'-curve in M and py € P with
7(po) = v(0) € M. Then there exists a unique horizontal lift 5 : [0,1] — P
of v through py meaning that ¥(0) = po.

Proof. Let to € [0,1] and choose I C [0, 1] containing to such that y(I) C
U with U open subset of M. By local triviality of the principal G-bundle
7 : P — M, we deduce the existence of a C'-curve ¢ : I — P such that
c(to) = qo with qo € P satisfying (qo) = v(to) € M and 7(c(t)) = y(t), for
all t € I. Repeating this argument for an open covering of M, there exists
a C'-curve ¢ : [0,1] — P such that ¢(0) = po and 7(c(t)) = (t), for all
te€[0,1].

Next, we observe that if the horizontal lift 4 : [0,1] — P of v exists, it
must be of the form

A(t) = e(t)a(t)  for te[0,1], (9.51)
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where @ : [0,1] — G is a curve in the structure group G with a(0) = e.

In order to determine the curve a : [0,1] — G making ¥ to a hori-
zontal one, we proceed again as in the proof of Proposition 9.24. First, we
apply Leibniz’s formula to the right action A : G x P — P and obtain by
differentiating (9.51) that

i(t) = ddc(t) . a(t) =+ dRa(t) . C(t) .
Applying the connection form w to both sides, we then deduce
w(’?(t)) = Ada(t)*1 © W(C(t)) + a(t)_la’(t) )

where a(t)~'a(t) : [0, 1] — g denotes the curve 0, (a(t)) = (dLa(t)—l)a(t) :
a(t) in the Lie algebra g. Thus we arrive at the following condition for ¥ to

be horizontal:
0= Adyy-1 ow(é(t)) +at) "a(t),

which is equivalent to
i(t)a(t) ™ = —w(é(t)) (9.52)

where a(t)a(t) ™! denotes the curve (dRa(t)fl)a(t) -a(t) in g. Lemma 9.31 below

then gives a solution « : [0,1] — G for (9.52). — Thus, we have constructed
a horizontal lift 4 of ~. O

Lemma 9.31. Let g be the Lie algebra of a Lie group G. Moreover, assume
that C : [0,1] — g is a continuous curve in g. Then, there exists a unique
Cl-curve a : [0,1] — G in G such that

a(t)a(t)™t = C(t), a(0) = e, (9.53)
for all t € [0,1].

Proof. In the particular case of a constant curve C(t) = A € g, it follows for
(9.53) that

(dRa(t)*l)a(t) ~a(t) = d(t)a(t)71 =A.

This equation is satisfied by a(t) = I (e) = Rexp(ta) €.

Returning to the general case, suppose that C(t) is defined for all ¢ € R.
We then consider a vector field X on R x G having the following value at
(t,9) e Rx Gt

0
X(t,g) = (a(t), (dRy)e - C(t)) e IR x T,G ,
where z denotes the canonical coordinate function on R. It is clear that there
exists a unique (local) integral curve starting at (0,e) which we write as
t — (t,a(t)) € R x G. Since a(t) = (dRy))e - C(t), we conclude that a(t) is
the desired C'-curve. It remains to show that a(t) is defined for all ¢ € [0, 1].
O
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With the help of the previous theorem we are now ready to define the
parallel transport of fibers as follows:

Definition 9.32. Let v:[0,1] — M be a C'-curve. We call the map
Ty 1 (1(0)) — 77 (v(D)),
pr— p(1).

where 7, denotes the horizontal lift of v through p, the parallel transport
along .

Remark. Recall that the horizontal lift depends on the connection H for
m: P — M (see (9.52)). To be more precise we should call 7, the parallel
transport of v with respect to 'H.

The next proposition shows that 7., is an isomorphism between 7! (7(0))
and 771 ((1)).

Proposition 9.33. Let v : [0,1] — M be a C'-curve. Then the parallel
transport commutes with the right action on G, i.e.,

TyoRg=Rgoty,
forall g € G.

Proof. Let p € 7= *(v(0)) and observe that Ry o 7,(1) = ,4(1) as a conse-

quence of the fact that R, maps horizontal curves in P into horizontal ones

(see (ii) of Definition (9.21)). By uniqueness of 4,4 (1) the assertion follows.
O

9.5 Curvature of a Connection

Consider again a principal G-bundle 7 : P — M. Let «a be a Lie algebra-
valued s-form on P, i.e., o € 2°(P,g). We say that « is (right) equivariant
if it satisfies

(Ry)'a=Ady-1 0, (9.54)

for all g € G, and « is said to be horizontal if
Oé(Xl,...,XS> :0,
whenever at least one of the vector fields X,..., X, € X(P) is vertical.

Example 9.34. A connection form w on 7w : P — M is an equivariant one-
form on P.
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There is an interesting interpretation of such forms: Every equivariant
and horizontal Lie algebra-valued s-form « € £2°(P, g) on P can be regarded
as smooth section of A°T*M ® P X a4 g. In other words, « is an s-form on
M with values in P x 44 g defined in Section 9.3. Indeed, let oo € 2°(P, g)
be equivariant and horizontal. Then we define, for all X,..., X, € T, P, the
following s-form & on M:

Qnpy(dmp - X1, ... dmy - X)) = [p, ap(Xa, ... ,Xs)} ) (9.55)
It is left as an exercise to check that this definition is independent of p and
X1,...,Xs. — Note that this construction is completely similar to the one in
(9.48).

Remark. Since a connection form w is only equivariant and not horizontal,
there is no interpretation as a section of /\1 T*M ® P X 4q g. However, if we
fix a connection @, then the difference o := w—& — which is horizontal — can
be regarded as section of /\1 T*M ® P x 44 g. Conversely, given a connection
w and « a section of /\1 T*M QP X 448, then © := w4+« is again a connection
form on P. In other words, the space of connections on P is an affine space.

Definition 9.35. Let w: P — M be a principal G-bundle with connection
H and o € 2°(P,g). We define the covariant derivative Da of a with
respect to H to be the following element of 2°T1(P, g):

Da(X1,..., Xsp1) = da(X{, ..., X)),

where X, ..., Xj{H € 'H are the horizontal components of the vector fields
X1,..., X511 € X(P).

Proposition 9.36. Let « € 2°(P,g) be an equivariant Lie algebra-valued
s-form on P. Then Da € Q5T1(P,g) is an equivariant and horizontal (s+1)-
form on P.

Proof. As a direct consequence of Definition 9.21, we observe that ((Rg)*Y) "

(Ry)«YH, for every Y € X(P). This implies that
(Rg)*DOé(Xl, SN ,XS+1) = Da((Rg)*Xl, ey (Rg)*XSJrl)

= da(((Rg)*Xl)H, ceey ((Rg)*Xerl)H)
= da((Rg)*XlHa e (Rg)*Xg'l)
= (Ry)*de(X{",.... X2 )).

Since pull-back and exterior derivative commute, it follows that
(Rg)*Da(X1, ..., Xop1) = d((Ry)*a)(X{,..., X ).

By assumption « is an equivariant s-form. Hence, we obtain
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(Rg)*Da(X1,..., Xs41) = Ady—1 o da( X", ..., X))
= Adg—l (e} DOL(Xl, ceey XS+1) 5

showing that Da € 2°%1(P, g) is also equivariant. — The fact that Da is
horizontal is obvious. O

Definition 9.37. Let H be a connection for a principal G-bundle 7w : P —
M with connection form w. We define the curvature form 2 to be the
covariant derivative Dw € $2?(P,g) of w with respect to 'H.

Remark. Note that because of the previous proposition the curvature form
is an equivariant and horizontal two-form on P. Explicitly, we have

(Rg)*2 = Ady-10 1. (9.56)

Moreover, the curvature form 2 € £22(P,g) can be interpreted as smooth
section of /\2 T*M ® P X a4 g as mentioned before.

Theorem 9.38 (Cartan’s Structure Equation). Let w be a connection
form on a principal G-bundle ™ : P — M and 2 € 2%(P,g) its connection
form. Then, we have

2y(Xp, Yyp) = (dw)p(XpaYp) + [Wp(Xp)va(Y;vﬂ ) (9.57)
for all X,),Y, € T,,P.

Proof. First note that by assumption X,,Y, € T,P can be decomposed
uniquely into their vertical and horizontal components. Moreover, since both
sides of (9.57) are bilinear and skew-symmetric in X, and Y, it is sufficient
to show Cartan’s structure equation in the following three special cases:

a) If X, and Y}, are both horizontal, then w,(X,) = w,(Y,) = 0. Thus, we
see that (9.57) reduces to the definition of the curvature form f2.

b) Let X, and Y, be both vertical. Then we consider A, B € g such that
their corresponding fundamental vector fields A* and B* satisfy A*(p) = X,,
respectively, B*(p) = Y,. Using formula (6.50) for the exterior derivative of
w, we obtain

dw(A*, B*) = d(w(B*)) - A* — d(w(A%)) - B* —w([A*, B*]).  (9.58)

Since w(A*) = A and w(B*) = B are independent of p € P, we deduce
that the first and second term on the right-hand side of (9.58) vanish. From
Proposition (7.29) we also deduce that

dw(A*,B*) = —w([A*,B*]) = —w([A,B]*) .
This can be written as

dw(A*,B*) = —[A,B] = —[w(A*),w(B*)} .
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Since A*(p) = X, and B*(p) =Y, we arrive at

(dw)p(va Yp) == [Wp(Xp)aWp(Yp)] ).

On the other hand, we see that 2,(X,,,Y,) = 0 for vertical X, and Y, by
definition of the curvature form.

c) Let X, be horizontal and Y, vertical. We extend X, to a horizontal
vector field X on P and consider a fundamental vector field B* with B*(p) =
Y, as before. Using again (6.50), we obtain

dw(X,B*) = d(w(B")) - X —d(w(X)) - B* —w([X,B"]) . (9.59)
Since w(X) = 0 and d(w(B*)) - X vanishes as before, (9.59) simplifies to
dw(X,B*) = —w([X, B"]).

From Lemma 9.39 below we conclude that the right-hand side of the last
equation vanishes. On the other hand, we clearly have 2,(X,,Y,) = 0. -
Thus we have established that Cartan’s formula also holds in the third case
and therefore (9.57) is proved. O

Lemma 9.39. Let A* € X(P) be the fundamental vector field to A € g and
X € X(P) a horizontal vector field. Then, the bracket [X, A*] is a horizontal
vector field on P.

Proof. Recall from the proof of Proposition 7.29 that R,, : P — P is the
flow of A*. Hence, by definition of the bracket of vector fields

(X, A%] = }E,%;((Rat)*X -X).
From the assumption that X is horizontal and Definition 9.21, it follows that
(Rq,)«X is also horizontal. Thus, we deduce the proposition. O

Corollary 9.40. Let ‘H be a connection on a principal G-bundle w : P —
M with connection form w and 2 € 2%(P,g) the curvature form with respect
to H. Assume also that X, Y € X(P) are horizontal vector fields. Then, we
have

2p(Xp, Yp) = _‘Up([Xa Y] (P)) . (9.60)

In particular, the differentiable distribution H on P is integrable if and only
if £2 vanishes identically on P.

Proof. Since X and Y are horizontal, Cartan’s structure equation (9.57) im-
plies
2p(Xp, Yp) = (dw)p(vaYp) .

Using (6.50) for the right-hand side, it follows
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2p(Xp, Yp) = —wp([X, Y](p)) -

Recall that due to Frobenius’ Theorem 8.5 the distribution H on P is
integrable if and only if it is involutive in the sense of Definition 8.4. By (9.60)
we deduce that the involutivity of H is equivalent to the fact of vanishing
curvature on P. g

In the following, we will often write Cartan’s structure equation differ-
ently. More precisely, in a basis {E;}i=1,.., of g with w = 31" | W' E;, we
have (see (7.21))

.....

wAWX,Y) =Y w AW/ (X,Y)[E;, B
ij=1

= Z (W' (X)W (V) = ! (X)w'(Y)) [Es, Bj] =2 [w(X),w(Y)],

ij=1

implying that Cartan’s structure equation becomes
1
Q:dw+§w/\w. (9.61)

Moreover, using the structure coefficients cfj of g defined in (7.22) and writing
=", 2" E;, Cartan’s structure equation can also be written as

2% = dw® + Z cfj wiA W (9.62)

i<j=1
fork=1,...,n

Theorem 9.41 (Bianchi’s Identity). Let H be a connection on a principal
G-bundle © : P — M with curvature form 2 € 2%(P,g). Then the covariant
derivative of £2 with respect to H vanishes identically on P, i.e., we have

DR =0. (9.63)

Proof. By Definition 9.35 of the covariant derivative D, it suffices to show
that
d(X,Y,Z) =0,

where XY, Z € X(P) are all horizontal. For this purpose, we apply the
exterior derivation d on Cartan’s structure equation in the form (9.62) and
obtain

A" (XY, Z) = Z o dw' N (XY, Z) = Y cfw' Ado! (XY, Z),

i<j=1 i<j=1

Since w(X) = Wwi(Y) = w¥(Z) = 0, for i = 1,...,n, the right-hand side of
the last equation vanishes implying the result. a
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Curvature Form in Local Coordinates

Proceeding as in the case of a connection form, we associate to the curvature
form £2 € 2%(P,g) a family of g-valued two-forms defined on open subsets of
the base space M. — Starting with the same setting as for a connection form
in Section 9.4, we define

F,=s;10. (9.64)

Note that in the physics literature F; is often called the (local) field
strength. From Cartan’s structure equation (9.61), we get
si2=sdw+ Jv Aw | =d(siw) + §(siw) A (sjw),
and in terms of the gauge potential A; = sfw defined (9.34) this becomes
1
F, =dA; + 3 A NA;. (9.65)

There is also a compatibility condition for the field strength.

Proposition 9.42. Let { (7~*(U;), (m, cpi))}iel be an atlas and w a connec-
tion form for a principal G-bundle m : P — M with curvature form §2. Then
the two-forms F; € 2%(U;, g) satisfy the following compatibility condition on
Ui N Uj ?é (Z)

Proof. Let b€ U; NU; and X3, Y, € Ty M. Then, we have
(Fy)p(Xp, Ys) = (592)5 (X0, Ys) = 2,0y ((ds;)s - Xp, (ds;)p - Y3) .

Now, we use the formula (9.39) for (ds;), - Xp and (ds;)s - Y. Note that the
first term on the right-hand side of (9.39) is vertical because of (9.41). For
the curvature being horizontal, we thus obtain

(Fj)o (X0, Ys) = 025, (dRy, vy - (dsi) - Xy, dRy, vy - (dsi)y - Y3)
= ((By,.0)"92) ) ((dsi)o - Xp, (dsi)y - V) -

Since {2 is equivariant (see (9.56)), it then follows

(F3)o (Xbs Yo) = Ady, =1 © Doy (dsa)y - X, (dsi)y - V)
= Ady; (51 © (Fi>b(Xb7 Yb) )

showing the proposition. ]

Remark. In Exercise 9.44 below, we show the compatibility condition when
interpreting the curvature form as a section of /\2 T*M QP Xaq9.
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Flat Connections

Because of their integrability proved in Corollary 9.40, connections with van-
ishing curvature are very important.

Definition 9.43. A connection w on a principal G-bundle m : P — M s
said to be flat if its corresponding curvature form {2 vanishes identically.

On trivial principal bundles such connections are easy to produce. — Con-
sider the trivial principal G-bundle 7 : M x G — G with projection on the
second factor and let 6 be the Maurer-Cartan form on G. Then we define a
g-valued one-form w on P by

w="7"0. (9.67)

We first claim that w is a connection form on P = M x G — G. — Note that
for A € T.G, we have

((Rg)*e)e(A) = 99((ng)e ) A) = (dLgfl)g ) (ng)e A
= d(Ly10Ry)e - A= Ady-1(A) = Adyr 00.(A),

showing that the Maurer-Cartan form 6 is equivariant and also the equivari-
ance of w. Moreover, using (7.34) and Proposition 7.11, we have that

Wip,g) (A" (0,9)) = (7%0) (p.g) (A% (D, 9)) = Oy (dmp g) - A" (, 9))
=0,(A%(g)) = 04(Xa(9))=A.

Proposition 9.23 then implies that w is a connection form as claimed with
connection (see (9.33))

Hipg) = kerwpg) = {Xpg) € LM © TG = wipg)(X(pg)) = 0},

being as direct consequence of (9.67) the tangent space to the submanifold
M x {g} of M x G. In order to show that w is flat, we use Maurer-Cartan’s
structure equation (7.23) for the computation of

1 1
dw = d(7*0) = 7" (dw) = 7" (—59/\9) = —§w/\w.

This gives
. 1
(0} (0.61) dw + §w/\w =0,

showing the flatness of w.

Exercises.
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Exercise 9.44. At the beginning of this section, we have seen that the cur-
vature form can be regarded as section of /\2 T*M® P x 449. Using the bundle
atlas for 7 : P X 499 — M constructed in the proof of Theorem 9.16, define
F; € 2%(U;, g) in a suitable way and show the compatibility condition (9.66)
with the help of the corresponding transition functions.

Hint. Proceed similarly to the case of local gauge transformations studied in
Section 9.4.
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The complex projective space CP™ is defined similarly to RP™ (see Example
2.21). We will study the case n = 1 in more detail. - On C?\ {0}, we consider
the equivalence relation z = (21, 22) ~ £ = (£1,&2) if and only if there exists
A € C such that z = . Let

7:C?*\ {0} — CP?!,

z = (z1,22) — [2] = [21, 22],, (9.68)

denote the canonical projection which gives the quotient CP! = C2\ {0}/ ~
the quotient topology. Next, we define the open sets

Ulz{[z]ECP1:217é0}, ng{[z]GCpl:ZQ#O},

in CP! with U; UU, = CP! and the homeomorphisms

g01:U1—>(C=R2, (pQ:U2—>(C:R2,
z9 21
[z] — —, [z] — —.
z1 22

Moreover, the transition function @ 0 @' : @1 (U N Us) — oo(Uy N Us)
given by

22007 (2) = pa([12]) = - (9.69)

is a C'*°-diffeomorphism. The same holds for the other transition function
P10 Py ! In summary, the complexe projective space CP! becomes a C°°-
differentiable manifold of (real) dimension two for this differentiable struc-
ture.

Now, we consider the two-dimensional unit sphere S? in R? for which
we construct a differentiable structure via the stereographic projection. More
precisely, let N = (0,0,1) and S = (0,0, —1) be the north and south pole of
S? and define the open sets

Us=S*\{N}, Un=5*\{S}.
The stereographic projection maps are then given by

<p5:US—>R2, @N:UNHIRQ,

1 T2 Z1 €2
. (9.70
xH(lxg,lzg), xH(HIB,HzB) (9.70)

In words, the values of g and @y correspond to the intersection with the
(21, z2)-plane of the straight line joining x and the north pole N, respectively
the south pole S. Moreover, the transition functions from R? \ {0,0} into
R%\ {0,0} read as
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_ 1 _
QOSOQONl(x) = WSCZQDNOQOSl(:L'). (9.71)
Identifying R? with C this becomes

psopN (2) == =pnops'(2).

=

Note that these transition functions coincide up to complex conjugation with
(9.69).

By composition of the transition functions (9.71) and (9.69) for S2, re-
spectively CP!, and a gluing argument, it is now possible to construct a
diffeomorphism

f:CP" — 5%,
1
[Z] >

EETRERaEEl ). )

showing that CP! and S? are diffeomorphic. — For more details, we refer to
G.L. Naber [, Section 1.2.
Next, we consider S3 C R* viewed as

S3 = {(21,22) €C? : |22+ |2 = 1},
and the map

S3xU(1) — S3,

((21,22)&%)) — (Zlvzz)eie

= (216", z€"?).

It is left as an exercise to check that this map is well-defined and gives a free
right action of U(1) = {z € C : |2| =1} ={e? € C : 0 € R} on S5
Now, consider the restriction of the projection 7 : C? \ {0} — CP! defined
in (9.68) to S® — which we will also denote by 7 — and let (z1, z2) € S% and
(€1,&) € S2 such that 7(21,22) = 7(&1,&2). This implies that there exists
A € U(1) such that (21, 22) = X (€1, &). In other words, for (21,22) € S? and
all e € U(1), we have

m((21,22)€™) = (21, 22) . (9.73)

Note that the restriction of w : C?\ {0} — CP! to S can also be written
differently in the following way: Identyfing C? with R* and using the fact
that CP! and S? are diffeomorphic, we obtain

T:8 — 5%,
(z1, 22, 3, 24) — (22123 + 22224, 2 0ow3 — 27124,

(21)? + (22)? = (23)* = (24)?) . (9.74)
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Now, we want to show that 7 : S3 — CP! is a principal U(1)-bundle,
called the Hopf bundle. For this purpose, we have to construct a bundle
atlas. — Let U; and U, be open subsets of CP! as defined before. Then, for
1 =1,2, we define the following diffeomorphisms:

(ﬂ',(pi) : W_I(Ui) — Ul X U(l),

Z;
(21,22) — ([21,22], m) . (9.75)
Moreover, for all e € U(1), we have
gai((zl,ZQ)e 0) = gai((zl e 6,2’26 9)) = P et = gai((zl,ZQ))e g,

Togther with (9.73), we have thus shown that the bundle atlas

{(ﬂ_l(U1>ﬂ (7T, 901>)a (7T_1 (U2)7 (Wa 502)) }

satisfies (9.5) implying that 7 : S3 — CP! is a principal U(1)-bundle.
Equivalently, we have constructed a principal U(1)-bundle 7 : 3 — S2. For
completeness, we note that the transition functions f1 2 : Uy N Uz — U(1)
and fo1: U NU; — U(1) are given by (see (9.6))

_ 21| z
fl’Q((Zl’ZQ)) = (102(213122)801(21,22) 1 = | 1| 2 ,
|22|Z1
respectively, by
_ 29| 2z
f2,1((2:1,z2)) = p1(z1, 22) (21, 22) L = |22 21
|Zl|Z2

Moreover, the (local) sections associated to the above bundle charts read as

s1([z1,22]) = (m,01) 7 (21, 22), 1) = (|zl|, z—j|z1|> € S3, (9.76)

respectively as

s2([z1, 22]) = (m,02) " ([21,22], 1) = (z—:|22|, |z2|) €83, (9.77)

On R%, there is an addition to the vector space structure an associative
and distributive multiplication generalizing that of complex numbers. More
precisely, we write elements in R* as x1 + i 22 + j 23 + k24 and define

i2:j2:k2:_1,

ij=—ji=k, jk=-kj=i, ki=—ik=3j.
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We end up with the so-called quaternionic numbers H. The imaginary part
of ¢ € H is given by Im(q) = i x2 + jx3 + k x4, the real part by Re(q) = 21
and the quaternionic conjugate by § = x1 — i x2 — j x3 — k x4. Moreover, the
norm |q|? = ¢ equals the usual norm on R*.

As in the case of complex numbers, we can define the quaternionic pro-
jective space HP! as the quotient H? \ {0}/ ~ with canonical projection

7 :H?\ {0} — HP?!,
(q1,62) — [q1,q2] - (9.78)

We also endow H? with the standard scalar product

<(q15q2)7((11a62)> = Q1d1 +q2§2- (979)

Note that the real part of the last expression just gives the usual standard
scalar product on R® = H?.

Now, we proceed as in the case of the Hopf bundle: Consider the restriction
of the canonical projection 7 : H? \ {0} — HP?! to S” C R® viewed as

ST={(q1,q) €H* : |@]* + |2]? = 1},
and define a free a right action
ST x SU(2) — S7,
((a1,92), 9) — (a1, 92)9 = (019, 429)

of SUR2) = {g € H : |g| = 1} on S7, in order to obtain a principal
SU(2)-bundle 7 : ST — HP!. Equivalently, since HP?! is isomorphic to
S4, we have obtained a principal SU(2)-bundle 7 : S” — 5%, the so-called
(generalized) Hopf bundle.

Connection and Curvature for the Hopf Bundle

We now construct a connection on the generalized Hopf bundle by introducing
first a Lie algebra-valued one-form on S7 having the characteristic properites
of a connection form. Then we will see that the connection corresponding to
this one-form has a precise geometrical interpretation.

Consider the following one-form & on H?:

D(g1,42) = Im(q1 dg1 + G2 dgo) -
Then, let w be the restriction of @ to S7, i.e.,
W= g (9.80)

This one-form is clearly Im H-valued. Because of Exercise 9.46, the one-form
w on S7 can also be seen as taking its values in the Lie algebra su(2) of
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SU(2). For p = (q1,¢q2) € 8" C H? and X, = (X}, X}) € T,S7 C T,H* =
T, H x Ty, H, we have

WP(XP) = ‘*NJQO(dLS7 : Xp) = W(ql,qz)(j((ql,qz))
= Im((jl dg (X(ql,qz)) + G2 dg2 (X(ql,qz)))
= Im(ql X(llh,qz) + 62 X(ch,qz)) ? (981)

where, as usual, tangent vectors to H are identified with elements of H via
the canonical isomorphism and digr - X, = X, € T,H?.
Next, we claim that

(Ry)'w=Adg-1 ow, (9.82)
for all g € SU(2). In order to show the claim, we compute for X, € 1,57

((Rg)*w) (Xp) = wpgldRy- X)) = ng(Xlga X;Q)

p p

(9.81) _ _
= ' Im(@g X9+ @9 X, 9)

= Im(30 X, 9+ §52X.9)
= Im(g '@ X,9+9 ' 2X)9)
= gfllm((jl X; + @2 Xg)g = Ady (wp(Xp)) ,

where we used that g = g1, for g € SU(2).
For all p € S7, the Im H-valued one-form w also satisfies

wp(A*(p)) = 4, (9.83)

where A* € X(S7) is the fundamental vector field generated by A € su(2) =
Im H. Indeed, we have

wp(A*(p)) = wp(q14, g2 A) =Im(G1 1A + G2 2 A)
=Im((lg1|* + lg2|*)A) = Im(A) = A,

since p € S” and A € ImH. — Note that the previous calculations are carried
out in more details in G.L. Naber [], Section 4.8.

Because of (9.82) and (9.83) we can now apply Proposition 9.23 to
conclude that w defines a connection form for the principal SU(2)-bundle
7m:S7T — S%. Moreover, a connection H on 7 : ST — S* is then given by

Hp =kerw, = {X, € T,87 : Im(q1 X, + 2X;) =0}. (9.84)

This subspace of T},S 7 has a simple geometrical interpretation. — Since the
vertical subspace V, of T,S” contains vectors being tangent to the fiber
{(qlg, G2g) : g € SU(Q)} through p, we deduce
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d
V, = {X,, €TS8+ Xp= . ((Zlaq2)g(t)}

={(14,¢2A) : AcImH},

where g(t) € C'([-6,6],5U(2)) is a curve in SU(2) with g(0) = e. The
orthogonal complement of V, in H? for the standard scalar product in R®
consists of elements (G1,q2) € H? satisfying (see (9.79))

Re({(@14,424), (@1,@))) = Re(@Ad + @A d) =0,

for all A € ImH. It is not difficult to check that the last equation is equivalent
to
Im(q1G1 + q2G2) = 0.

Comparing with (9.84) we then deduce that H, is just the subset of the real
orthogonal complement of 1, which lies in 7},S7. This is why H is often called
the natural connection on the generalized Hopf bundle (see G.L. Naber [],
Section 5.1).

In an analogous manner, we construct the natural connection on the Hopf
bundle 7 : S — S? with connection form given by

W= lgs (Im(él dz1 + 2 dzz))
=1%s (acl dxo — xodry + x3dTs — 24 dxg) , (9.85)

where z1 = 21 + 929 and 29 = x3 + ¢ 24. Since the structure group U(1) of
the Hopf bundle is abelian, we conclude using Cartan’s structure equation
(9.57) that the curvature form is simply

2 =dw=1% (Im(d21 ANdzy +dza N dZQ))
=21%s (dzl A dxo + dxs A dz4) ) (9.86)

In a next step, we express the natural connection form of the generalized
Hopf bundle in local coordinates. — Let s; : U; € §* — S7 be the (local)
section associated to a bundle chart of 7 : 7 — S* and ¢, : U; — H=R*
the usual coordinate function for S* being isomorphic to HP?!. ( At the
beginning of this section explicit expressions are given in the complex case).
In order to make sure that the map sy o gafl s o1 (Uy) € R* — S7 takes it
values in S”, the following representation for gofl will be used:

_ 1 q
VItIa? 1+ g2

For ¢ € H\ {0}, we then obtain

(9.87)

o1 '(q)

(s1001")(q) = _r (1,q) € STCH?.

V1+lgl
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It is left as an exercise (see G.L. Naber [|, Equation 4.8.14) to show that the
local coordinate expression for the connection form w is given by

((s10 (pl_l)*w)q = Im( 74 ) : (9.88)

1+ g2 ™

Moreover, as a consequence of Cartan’s structure equation (9.57), we obtain
for the local coordinate expression of the curvature form (see G.L. Naber ],
Equation 4.10.13)

((s10 (pfl)*ﬂ) dg N dq) . (9.89)

1
=Im | ————
? ((1+ lq|?)?
* * *

Exercise 9.45. Show that the Lie algebra u(1) of U(1) is isomorphic to the
pure imaginary complex numbers Im C with trivial bracket.

Exercise 9.46. Show that the Lie algebra su(2) of SU(2) is isomorphic to
the pure imaginary quaternions Im H with bracket [¢1, ¢2] = q192 — ¢2¢1.

9.7 Grassmannian Manifolds and Stiefel Bundles

We give a straightforward generalization of the projective spaces encountered
in previous chapters. — Let E denote an n-dimensional vector space over the
ground field F and k£ < n. The collection of k-dimensional subspaces or k-
planes G (F) of E can be made to a manifold, the so-called Grassmannian
manifold. Note that G;(R") = RP""1 G1(C") = CP"! and G1(H") =
HP? L

Next, we construct a canonical vector bundle over the Grassmannian man-
ifold being a generalization of Example 9.92. — The total space Ej, of this
vector bundle is given by

Ey = {(P,v) € Gy(E) x E : ve P}, (9.90)
with bundle projection

Tk - Ek — Gk(E),
(P,v) — P. (9.91)
Thus the fiber over P € G (FE) is P itself. Details are left to the reader.
There is also a principal bundle over the Grassmannian manifold. — Con-

sidering the complex case, we define the k-frames V in C™ as the set of k
orthonormal vectors (v1, ..., vy) satisfying

(vi,v5) = 0i5,
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fori,j =1,...,k, where (-, -) denotes the standard scalar product in C™. The
collection of all k-frames can be made to a manifold, which we will denote
by Vi(C™). The right action of g € U(k) on V € V;(C™) is denoted by Vg.
Then, we define the following bundle projection:

([ Vk((C") —_— Gk((C”),
Vi Py, (9.92)

where Py € G (C™) is the k-plane in C™ passing through the origin generated
by the k-frame V. For V,V € V;(C") such that (V) = #(V), there exists
g € U(k) with V = Vg. We deduce that the quotient of Vj(C™) by this
U (k)-action is just Gi(C™). Thus, we arrive at the principal U(k)-bundle
7 Vi (C") — G (C™), the so-called Stiefel bundle.

Remark. It is important to note that in the case of n = 2 and & = 1 the
Stiefel bundle 7 : V;(C?) — G1(C?) = CP! is exactly the Hopf bundle
7w 8% — §? of Section 9.92. Moreover, note also that the Stiefel bundle
71 Vi(H?) — G1(H?) = HP! gives the (generalized) Hopf bundle 7 : 7 —
S4.



