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1 Differential Calculus in Normed Vector

Spaces

1.1 Differentiability and Tangent Map

Definition 1.1. Let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be two normed vector spaces.
Let U ⊂ E be open and let f be a map from U into F . Then f is called
differentiable at a ∈ U if there exists a linear and continuous map dfa ∈
L(E,F ) such that

lim
h→0

∥∥f(a+ h) − f(a) − dfa · h
∥∥
F
‖h‖−1

E = 0 .

The map dfa is then called the differential or the tangent map of f at a.

Remarks. 1. Compared to the usual definition in the finite dimensional
normed vector space Rn we require the differential to be also continu-
ous.

2. Note that the space of linear and continuous maps from E into F , denoted
by L(E,F ), is a normed vector space for the norm

|‖g|‖L(E,F ) = sup
‖x‖E≤1

‖g(x)‖F ,

with x ∈ E and g ∈ L(E,F ).

With the same notations as in the previous definition we have the following

Definition 1.2. The map f : U −→ F is said to be continuously differ-
entiable on U if for every a ∈ U the differential dfa exists and the map

df : U −→ (L(E,F ), |‖ · |‖) ,

a 7−→ dfa

is continuous. We write C1(U, F ) for the vector space of continously differ-
entiable maps.

Next, we consider the case of finite dimensional normed vector spaces.

Proposition 1.3. Let E = Rn and U ⊂ Rn open. Then f ∈ C1(U, F ) if and
only if for every a ∈ U and i = 1, . . . , n, we have that
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∂f

∂xi
(a) := lim

h→0

f(a+ h ei) − f(a)

h

exist, and the partial derivatives

∂f

∂xi
: U −→ F ,

are continuous.

When we also assume that F = Rm is finite dimensional, then f =
(f1, . . . , fm) ∈ C1(U,Rm) if and only if fj ∈ C1(U,R) for every j = 1, . . . ,m.
Then we also have for h ∈ Rn that

dfa · h = Jaf · h , (1.1)

where Jaf denotes the Jacobian matrix of f at the point a given by the
following (m× n)-matrix:

Jfa =




∂f1
∂x1

(a) . . . ∂f1
∂xn

(a)
...

...
∂fm

∂x1
(a) . . . ∂fm

∂xn
(a)


 .

Note that in the case m = 1 the differential of f is simply given by

dfa · h =
n∑

i=1

∂f

∂xi
(a) · hi , (1.2)

where again h = (h1, . . . , hn) ∈ Rn. – Now, we quote a useful result:

Proposition 1.4 (Chain Rule). Let f : U ⊂ E −→ F , U open, and let
g : F −→ G with a third normed vector space G. Let a ∈ U and assume
that f and g are differentiable at a, respectively at f(a) (or f ∈ C1(U, F )
and g ∈ C1(F,G)). Then the composition g ◦ f is differentiable at a (or
g ◦ f ∈ (U,G)). Moreover, we have the formula

d(g ◦ f)a = dgf(a) · dfa . (1.3)

If g = f−1 : F −→ E = G in the previous proposition, we obtain imme-
diately

Corollary 1.5. Let U ⊂ E and V ⊂ F two open subsets and f : U −→ V .
Assume that f is differentiable at a ∈ U , f−1 : V −→ U exists and is
differentiable at f(a) ∈ V . Then

d(f−1)f(a) = (dfa)
−1 .

From Definition 1.2 we arrive at a next step.
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Definition 1.6. Let f ∈ C1(U, F ). We say that f is twice continuously
differentiable, f ∈ C2(U, F ), if the map df : U −→ (L(E,F ), |‖ · |‖) is
continuously differentiable. Similarly, we define Cp(U, F ), p-times contin-
uously differentiable functions, and

C∞(U, F ) :=
⋂

1≤p

Cp(U, F ) .

Note that d2f is symmetric, i.e., for f ∈ C2(U, F ), we have that

d(dfa · h)k = d(dfa · k)h , ∀k, h ∈ E .

Example 1.7. The cut-off functions on Rn are an important example for C∞-
maps (see []).

Now, we generalize a well-known result for functions on R.

Lemma 1.8 (Control Growth Lemma). Let f : E −→ F be differentiable
in U ⊂ E convex and open. Moreover, we assume that

sup
c∈U

|‖dfc|‖ = M < +∞ .

Then for every a, b ∈ U the following inequality holds:

‖f(b)− f(a)‖F ≤M ‖b− a‖E . (1.4)

Proof. Let a, b ∈ U and xt := t b+(1− t)a, for t ∈ [0, 1]. By the convexity of
U ⊂ E, it follows that xt ∈ U . We then define

ϕ(t) : [0, 1] −→ F ,

t 7−→ ϕ(t) := f(xt) = f
(
t b+ (1 − t)a

)
.

This map is differentiable for every t ∈ [0, 1] with ϕ′(t) = dfxt
· (b− a).

Next, let ε > 0 and for 0 ≤ s < 1, we define

Aε :=
{
s ∈ R : ‖ϕ(t) − ϕ(0)‖F ≤ t(M ‖b− a‖E + ε) ∀t ∈ [0, s)

}
.

We want to show that Aε = [0, 1]. – It is clear from the definition that Aε
is a closed interval containing s = 0. Concerning the upper bound of Aε,
denoted by u, we assume for a contradiction that 0 < u < 1. Since ϕ(t) is
differentiable at u, we deduce from Definition 1.1 that

∥∥ϕ
(
u+ (t− u)

)
− ϕ(u) − ϕ′(u)(t− u)

∥∥
F
≤ ε (t− u) ,

where u < t ≤ 1 and close enough to u. The last inequality then gives

∥∥ϕ
(
u+ (t− u)

)
− ϕ(u)

∥∥
F
≤

(
sup

u∈(0,1)

‖|ϕ′(u)‖| + ε

)
(t− u)

≤
(
M‖b− a‖E + ε

)
(t− u) .
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On the other hand, from the fact that Aε is a closed interval and that u is
by assumption the upper bound, we have

‖ϕ(u) − ϕ(0)‖F ≤ u(M ‖b− a‖E + ε) .

Thus putting the results together

‖ϕ(t) − ϕ(0)‖F ≤ ‖ϕ(t) − ϕ(u)‖F + ‖ϕ(u) − ϕ(0)‖F

≤
(
M‖b− a‖E + ε

)
(t− u) + u(M ‖b− a‖E + ε)

≤ t(M ‖b− a‖E + ε) ,

we obtain that u is not the upper bound of Aε, since t > u is also contained
in Aε. In other words, we get the openness in [0, 1] of the set Aε.

Hence, the above shows that Aε = [0, 1]. Moreover, we have

‖f(b) − f(a)‖F = ‖ϕ(1) − ϕ(0)‖F ≤M ‖b− a‖E + ε

for all ε > 0, showing (1.4). ut

Under the stronger assumption that f ∈ C1(U, F ), the control growth
lemma can be established in a straightforward manner. – Using the definition
of ϕ and since f ∈ C1(U, F ), we can write

‖f(b) − f(a)‖F = ‖ϕ(1) − ϕ(0)‖F =

∥∥∥∥
∫ 1

0

ϕ′(t) dt

∥∥∥∥ .

A short calculation, using Proposition 1.4, gives

‖ϕ′(t)‖F =
∥∥d
(
f(xt)

)∥∥
F

=
∥∥d
(
f(t b+ (1 − t)a)

)∥∥
F

= ‖dfxt
(b− a)‖F ,

and the fact that xt ∈ U implies by assumption

‖dfxt
(b− a)‖F ≤M ‖b− a‖E .

Hence, we have directly established (1.4).

Definition 1.9. Let (E, ‖ · ‖E) be a normed vector space. Then E is a Ba-
nach space whenever E is complete for ‖ · ‖E, i.e., every Cauchy sequence
in E converges to a limit for ‖ · ‖E. An isomorphism of Banach spaces is
a linear, continuous and bijective map.

Using the Control Growth Lemma 1.8, we prove the following important
theorem.

Theorem 1.10 (Local Inversion Theorem). Let (E, ‖ ·‖E), (F, ‖ ·‖F ) be
two Banach spaces, U ⊂ E open, and let f ∈ Ck(U, F ) with k ≥ 1. Assume
that there exists a ∈ U such that dfa is an isomorphism between E and F .
Then there exists an open neighborhood V of a and an open neighborhood W
of f(a) such that
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(i) the map f
∣∣
V

: V −→W is invertible;

(ii) for the inverse, we have f
∣∣−1

V
∈ Ck(W,E).

Remark. Since the differential dfa is by assumption invertible the open map-
ping theorem implies directly that (dfa)

−1 is continuous.

Proof. It suffices to proof the result for E = F , a = 0, f(0) = 0 and df0 = idE .
Indeed, we can renormalize f by (note that (dfa)

−1 exists)

fR(x) := (dfa)
−1 ·

(
f(a+ x) − f(a)

)
,

verifying the conditions above, and it is easily shown that if the local inversion
theorem is proved for fR then it is also proved for f . So we will prove the
theorem for the renormalized map, also denoted by f .

First, note that since by assumption f ∈ C1(U, F ), there exists r > 0
such that for all x̃ ∈ Br(0), we have (see Definition 1.2)

‖dfx̃ − df0‖ = ‖|dfx̃ − idE‖| ≤
1

2
. (1.5)

We show that f is locally invertible at a = 0, i.e., for all y ∈ Br/2(0)
(recall that f(0) = 0 ∈ E), we want to find a unique x ∈ Br(0) such that
f(x) = y. For this purpose, we define

hy(x) := −f(x) + x+ y

and show that hy is a contraction from Br(0) into Br(0), i.e., there exists a
constant α < 1 such that for all x and x′ in Br(0) the following inequality
holds:

‖hy(x) − hy(x
′)‖ ≤ α ‖x− x′‖ .

By assumption hy is a Ck-map and for all x̃ ∈ Br(0), we have

d(hy)x̃ = −dfx̃ + idE .

Using (1.5), it follows

sup
x̃∈Br(0)

‖|d(hy)x̃‖| ≤
1

2
.

Applying the Control Growth Lemma 1.8, this implies (note that Br(0) is
convex)

‖hy(x) − hy(x
′)‖ ≤

1

2
‖x− x′‖ , (1.6)

showing that the map hy is a contraction from Br(0) into Br(0). From the
Banach fixed-point theorem, we deduce the existence of a unique x ∈ Br(0)
such that hy(x) = x. In other words, we proved that for all y ∈ Br/2(0) there
exists a unique x ∈ Br(0) such that f(x) = y. Moreover, we define a new
map f−1(y) := x.
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In the next step, we show that the map f−1 is continuous in Br/2(0) using
(1.6). In fact, for all y, ỹ ∈ Br/2(0), we have

‖f−1(y) − f−1(ỹ)‖ = ‖x− x̃‖

≤ ‖x− f(x) − x̃+ f(x̃)‖ + ‖f(x) − f(x̃)‖

≤
1

2
‖x− x̃‖ + ‖y − ỹ‖

=
1

2
‖f−1(y) − f−1(ỹ)‖ + ‖y − ỹ‖ .

This implies
‖f−1(y) − f−1(ỹ)‖ ≤ 2‖y − ỹ‖ .

Hence the map f−1 is Lipschitz in Br/2(0) and in particular continuous.
Considering only the case k = 1, it remains to show that f−1 is a C1-map

in Br/2(0). For this purpose, we first have to show that for arbitrary y ∈
Br/2(0) the differential d(f−1)y exists. As expected, we will actually see that
d(f−1)y equals (dfx)

−1, for x = f−1(y), whose existence follows from (1.5)
and the so-called Neumann-serie, and its continuity from the open mapping
theorem. Then we are done, since Exercise 1.16 implies the continuity of the
map x 7−→ Inv◦dfx = (dfx)

−1 as composition of continuous maps (recall that
f ∈ C1(U, F ) by assumption and see also Definition 1.2).

Denoting small perturbations of f−1(y) = x by f−1(y + w) = x + v, we
see that

f−1(y + w) − f−1(y) − (dfx)
−1 · w

= (x+ v) − x− (dfx)
−1 · w

= (dfx)
−1 · (dfx · v − w)

= −(dfx)
−1 ·

[
f(x+ v) − f(x) − dfx · v

]
. (1.7)

Since f is a C1-map by assumption, the expression in brackets is of order
o(‖v‖). Moreover, the map (dfx)

−1 is uniformly bounded on Br(0). Indeed,
we can write

‖|(dfx)
−1‖| = ‖|(dfx)

−1 − id+ id‖|

≤ ‖|(dfx)
−1 − id‖| + ‖|id‖|

≤ ‖|(dfx)
−1(id− dfx)‖| + ‖|id‖| .

Using a result of functional analysis and again Equation (1.5), we obtain

‖|(dfx)
−1‖| ≤ ‖|(dfx)

−1‖| ‖|(id− dfx)‖| + ‖|id‖|

≤ ‖|(dfx)
−1‖|

1

2
+ ‖|id‖| .

Hence,
‖|(dfx)

−1‖| ≤ 2‖|id‖| < +∞
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and the right-hand side of (1.7) is thus of order o(‖v‖) .
We have also that

‖v‖ = ‖x+ v − x‖ = ‖f−1(y + w) − f−1(y)‖ ≤ 2‖w‖ ,

implying that o(‖v‖) = o(‖w‖). Recalling (1.7), we arrive at

‖f−1(y + w) − f−1(y) − (dfx)
−1 · w‖ = o(‖w‖) .

By Definition 1.1 this implies that f−1 is differentiable at y, for all y ∈
Br/2(0), and

d(f−1)y =
(
dfx=f−1(y)

)−1
.

ut

Application

We go further with a list of important definitions:

Definition 1.11. Let E, F be two Banach spaces, U ⊂ E open and let
f : U −→ F a Ck-map with k ≥ 1.

(i) Assume there exists V =⊂ F open such that f−1 : V −→ U exists and
f−1 ∈ Ck(V, U). Then f is called a Ck-diffeomorphism between U and
V . Note that in the case of k = 0 the map f is called a homeomorphism.

(ii) Assume that for a ∈ U the differential dfa is invertible. Then f is called
a local Ck-diffeomorphism about a.

(iii) Assume that for a ∈ U the differential dfa is injective. Then f is called a
local Ck-immersion about a.

(iv) Assume that for a ∈ U the differential dfa is surjective. Then f is called
a local Ck-submersion about a.

(v) Assume now that E = Rn and F = Rm. Let y ∈ Rm and assume that for
every a ∈ f−1(y) the differential dfa has maximal rank, i.e., for n ≥ m
rank dfa = m and for n ≤ m rank dfa = n. Then y ∈ Rm is called a
regular point for f .

Example 1.12 (Polar coordinates). Consider the following map:

f : R+ \ {0} × R −→ R2 \ {0, 0} ,

(ρ, θ) 7−→ f(ρ, θ) := (ρ cos θ, ρ sin θ) .

It is a local diffeomorphism, since the differential

df(ρ,θ) =

(
cos θ −ρ sin θ
sin θ ρ cos θ

)

with det(df(ρ,θ)) = ρ > 0, is invertible. On the other hand, f(ρ, θ) =
f(ρ, θ + 2π) implies that the map f is not injective; therefore not a global
diffeomorphism.
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Without proof we state the following

Theorem 1.13. Two open sets U ⊂ Rn and V ⊂ Rm are locally diffeomor-
phic only if m = n. The same holds for homeomorphic.

The next theorem due to Cauchy (1839) is an important consequence of
the Local Inversion Theorem 1.10.

Theorem 1.14 (Implicit Function Theorem). Let E, F , G be three Ba-
nach spaces and ϕ ∈ Ck(U × V,G), where U ⊂ E open and V ⊂ F open.
Assume that there exists (a, b) ∈ U × V such that the differential (dϕa)b of
ϕa(y) := ϕ(a, y) at b is an isomorphism between F and G. Similarly, we
define ϕb(x) := ϕ(x, b). Then there exist U ′ ⊂ U open with a ∈ U ′, W ⊂ G
open with ϕ(a, b) ∈W and a unique map ψ ∈ Ck(U ′ ×W,V ) such that

z = ϕ
(
x, ψ(x, z)

)
. (1.8)

for all (x, z) ∈ U ′ ×W . Moreover, the following holds for the differential of
ψ:

dψ(x,z) · h = (dϕx)−1
ψ(x,z) ·

(
(dϕψ(x,z))x · h

)

dψ(x,z) · l = −(dϕx)−1
ψ(x,z) · l . (1.9)

where (h, l) ∈ U ′ ×W .

F(a, b)

E

ϕ−1(z′)

ϕ

G

ϕ−1(z)

U ′

ϕ(a, b)W

Fig. 1.1. For all z ∈W the map ϕ−1(z) =
`

x, ψ(x, z)
´

is a Ck-graph over U ′.
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Proof. For all (x, y) ∈ U × V , we define the Ck-map

f : U × V −→ U ×G ,

(x, y) 7−→ f(x, y) :=
(
x, ϕ(x, y)

)
,

and show that for (a, b) ∈ U × V the differential df(a,b) is an isomorphism. –
For arbitrary (h, k) ∈ U × V , we have1

df(a,b) · (h, k) =

(
h,
∂ϕ

∂x
(a, b) · h+

∂ϕ

∂y
(a, b) · k

)
,

where we write (dϕa)b = ∂ϕ
∂y (a, b) and (dϕb)a = ∂ϕ

∂x (a, b). In the following, we
write the last equation as

df(a,b) · (h, k) = (h, ∂xϕ(a, b) · h+ ∂yϕ(a, b) · k) .

Now, we assume that df(a,b) · (h, k) = (0, 0). This clearly implies that
h = 0 and ∂yϕ · k = 0. Since by assumption ∂yϕ is invertible, we get that
k also vanishes. Hence df(a,b) is injective. In order to show that df(a,b) is
surjective, we want to find for all (v, w) ∈ U ×G, pairs (h, k) ∈ U × V such
that df(a,b) · (h, k) = (v, w). It is easy to see that this implies that h = v and
w = ∂xϕ · h+ ∂yϕ · k. By assumption the last equation has a solution for k,
namely k = (∂yϕ)−1(w−∂xϕ ·h). Hence df(a,b) is also surjective. In summary,
the differential df(a,b) is an isomorphism.

Next, we can apply the Local Inversion Theorem 1.10 showing that there
exist U ′ ⊂ U open with a ∈ U ′ and W ⊂ G open with ϕ(a, b) ∈ W such that
the map f has locally a Ck-inverse:

f−1 : U ′ ×W −→ U × V ,

(x, z) 7−→ f−1(x, z) =:
(
x, ψ(x, z)

)
.

Thus ψ : U ′ ×W −→ V is a Ck-map, and moreover

(x, z) = f
(
f−1(x, z)

)
= f

(
x, ψ(x, z)

)
=
(
x, ϕ

(
x, ψ(x, z)

))
,

showing (1.8).
With the notations introduced in the proof, we deduce by taking the

differential of (1.8) that

idz = ∂yϕ
(
x, ψ(x, z)

)
· ∂zψ(x, z) ,

and
0 = ∂xϕ

(
x, ψ(x, z)

)
+ ∂yϕ

(
x, ψ(x, z)

)
· ∂xψ(x, z) ,

which is just (1.9). ut

1 We calculate exactly like in the case of Euclidean space (see (1.1)).
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Application

In the local inversion theorem, the linear tangent map was assumed to be
an isomorphism in one point. The next theorem treats the case of a tangent
map being only surjective.

Theorem 1.15 (Submersion Theorem). Let E, F Banach spaces, U ⊂ E
open, and let ϕ ∈ Ck(U, F ) with k ≥ 1. Assume that there exist a ∈ U and
a closed subvector space E1 of E such that dϕa is an isomorphism between
E1 and F . Moreover, assume also that E = E1 ⊕ ker dϕa. Then there exist
U ′ ⊂ U open containing a, W ⊂ F open containing ϕ(a) and Ũ ⊂ ker dϕa
open containing 0 such that the map

g : U ′ −→ W × ker dϕa ,

x 7−→
(
ϕ(x), π(x − a)

)
,

is a Ck-diffeomorphism from U ′ onto g(U ′), where π := E1 ⊕ ker dϕa −→
ker dϕa denotes the projection.

Remark. From Definition 1.11, we see that ϕ is a local Ck-submersion about
a. Moreover, note that in the finite dimensional case (or in the case of an
Hilbert space), it is not anymore necessary to assume that E = E1 ⊕ker dϕa,
since the subvector space E1 always exists as orthogonal complement of
ker dϕa (with respect to an arbitrary scalar product).

Proof. We want to apply the Local Inversion Theorem 1.10. – For this pur-
pose, we introduce the auxiliary map

g : U −→ F × kerdϕa ,

x 7−→ g(x) :=
(
ϕ(x), π(x − a)

)
.

The differential of g at a ∈ U is then given by

dga · h = dϕa · h+ π(h) ∈ F × kerdϕa , h ∈ E ,

which is an isomorphism by assumption. Hence, we can apply the local in-
version theorem to get the existence of U ′ ⊂ U open containing a, W ⊂ F
open containing ϕ(a) and Ũ ⊂ ker dϕa open containing 0 such that g is a
Ck-diffeomorphism between U ′ and W × Ũ . ut

Remark. Although the three important theorems in this section are formu-
lated in the most general case, they will often only be used in finite dimen-
sional Euclidean space Rn in the next sections. Moreover, we emphasize that
the three theorems are obtained from assumptions on the differential in only
one point.

∗ ∗ ∗
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ϕ

F
ϕ(a)W

E

a

U ′

ker dϕa

E1

ker dϕa

0

Fig. 1.2. Submersion theorem.

Exercises.

Exercise 1.16. Let Aut(E) denote the set of automorphisms of a Banach
space E, i.e., the set of linear, continuous and bijective maps from E into E
(see Definition 1.9). Show that the map

Inv : (L(E,E), |‖ · |‖) −→ (L(E,E), |‖ · |‖) ,

f 7−→ Inv(f) := f−1 ,

is continuous for f ∈ Aut(E).

1.2 The Flow of a Vector Field on Rn

Definition 1.17. Let U be an open subset of Rn. Then the map X : U −→
Rn is called a vector field on U . If, in addition, the map X is Ck, then X
is called a Ck-vector field.

Definition 1.18. Let X be a C1-vector field on U ⊂ Rn open. A C1-curve
γ : I ⊂ R −→ U , solving for all t ∈ I the equation

γ̇(t) = X
(
γ(t)

)
,

is called an integral curve of the vector field X.

Definition 1.19. Let X be a C1-vector field on U ⊂ Rn open. A map

Γ : I × U −→ Rn ,

solving for all (t, x) ∈ I × U the equations
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∂Γ

∂t
(t, x) = X

(
Γ (t, x)

)
, Γ (0, x) = x ,

is called the (local) flow of X.

Note that by ∂
∂t we mean usual partial derivative with respect to t. – The

last definition can be reformulated in the following way: For all x ∈ U fixed,
the map t ∈ I 7−→ Γ (t, x) is an integral curve of X with initial condition
x. – Using the Implicit Function Theorem 1.14, we now want to prove an
important local existence result.

Theorem 1.20 (Local Existence of a Flow). Let X be a Ck-vector field
on U ⊂ Rn and let a ∈ U . Then there exist U ′ ⊂ U open with a ∈ U ′ and
a Ck-map Γ : [−T, T ] × U ′ −→ Rn for some T > 0 such that for every
(t, x) ∈ [−T, T ]× U ′, we have

∂Γ

∂t
(t, x) = X

(
Γ (t, x)

)
, Γ (0, x) = x . (1.10)

Integrating (1.10) gives

Γ (t, x) = x+

∫ t

0

X
(
Γ (s, x)

)
ds , (1.11)

where x is a point in the neighborhood of a and t a time in the neighborhood of
0. We wish to apply the Implicit Function Theorem 1.14, and define therefore
the map

ϕ̃
(
t, x, Γ (t, x)

)
= −Γ (t, x) + x+

∫ t

0

X
(
Γ (s, x)

)
ds .

Then (1.11) translates to

ϕ̃
(
t, x, Γ (t, x)

)
= 0 . (1.12)

Since Γ depends also on (x, t), it is not possible to apply directly the implicit
function theorem. However, this idea will lead to the correct proof. But, in
addition, we have to introduce a parameter u ∈ [0, 1].

Proof. First we introduce the space F = C0([0, 1],Rn) together with the
L∞-norm, i.e., ‖α‖∞ = supu∈[0,1] |α(u)| for α ∈ F . It is not difficult to

see that (F, ‖ · ‖∞) is a Banach space2. Moreover, we define the map ϕ :
(−1, 1) × U × F −→ F by

2 Indeed, let (αn)n∈N be a Cauchy sequence in F , meaning that for all ε > 0
there exists N ∈ N such that ‖αn − αm‖∞ ≤ ε, ∀n,m ≥ N . This implies that
(αn(u))n∈N is a Cauchy sequence in R for all u ∈ [0, 1], since

|αn(u) − αm(u)| ≤ ‖αn − αm‖∞ ≤ ε , ∀n,m ≥ N . (1.13)
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ϕ(t, x, α)(u) := −α(u) + t

∫ u

0

X
(
α(σ) + x

)
dσ , (1.14)

where σ, u ∈ [0, 1]. Note that (−1, 1) × U is an open set of Rn+1 which is
Banach, and therefore (−1, 1) × U × F is also an open subset of a Banach
space since F was shown to be a Banach space.

Let a ∈ U and, using the same notations as in the previous section, we
compute ∂αϕ(0,a,0). (As an exercise, one shows that ϕ ∈ Ck

(
(−1, 1) × U ×

F, F
)

and hence the differential exists.) For h ∈ F , we have by definition
ϕ(0, a, h)(u) = −h(u) + 0 = −h(u) and hence ∂αϕ(0,a,0) = −idF , showing
that it is an isomorphism.

We can then apply the Implicit Function Theorem 1.14 to the map ϕ at
the point (0, a, 0) ∈ (−1, 1) × U × F to get the existence of (−T, T ) × U ′ ⊂
(−1, 1) × U and W ⊂ F open containing ϕ(0, a, 0); moreover, the existence
of a Ck-map

ψ : (−T, T )× U ′ ×W −→ F ,

such that for all (t, x) ∈ (−T, T )×U ′ and for all z ∈ W the following equation
holds:

ϕ
(
t, x, ψ(t, x, z)

)
= z .

Taking z = 0, we thus get

ϕ
(
t, x, ψ(t, x, 0)

)
= 0 , (1.15)

equivalently, using (1.14),

−ψ(t, x, 0)(u) + t

∫ u

0

X
(
ψ(t, x, 0)(σ) + x

)
dσ = 0 ,

for every u ∈ [0, 1].
In a next step, we want to establish a relation between ψ and Γ such that

(1.15) implies that (1.12) holds. We claim that

Γ (t, x) = ψ
(
t, x, 0

)
(1) + x (1.16)

is the desired relation.

By the completeness of R, we deduce that the Cauchy sequence (αn(u))n∈N

converges to a limit, which we denote by α(u). It remains to show the continuity
of the resulting function α(u). For this purpose, we take the limit m −→ ∞ in
(1.13) to obtain

|αn(u) − α(u)| ≤ ε , ∀n ≥ N ,

where N depends only on ε > 0 and not on u ∈ [0, 1]. Hence, it follows

lim
n→∞

‖αn − α‖∞ = 0 .

Since α is the limit of a uniformly convergent sequence (αn)n∈N, it is indeed
continuous and therefore F is Banach.
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We first introduce the map

τλ : F −→ F ,

α(u) 7−→ τλα(u) := α(λu) .

For λ ∈ [0, 1] this map is well-defined. We calculate, for λσ = s,

ϕ
(
λt, x, τλα

)
(u) = −α(λu) + λt

∫ u

0

X
(
α(λσ) + x

)
dσ

= −α(λu) + t

∫ λu

0

X
(
α(s) + x

)
ds

= ϕ
(
t, x, α

)
(λu) = τλϕ

(
t, x, α

)
(u) .

Applying this formula to the continuous map α = ψ(t, x, 0) leads to

ϕ
(
λt, x, τλψ(t, x, 0)

)
= τλϕ

(
t, x, ψ(t, x, 0)

)
= τλ0 = 0 , (1.17)

where we used (1.15). Using again (1.15), the last equation can also be written
as

ϕ
(
λt, x, ψ(λt, x, 0)

)
= 0 . (1.18)

Putting the results (1.17) and (1.18) together and because of the local unique-
ness of the implicit function theorem, we arrive at the formula

τλψ(t, x, 0) = ψ(λt, x, 0) . (1.19)

Now, we are ready to show that (1.16) is the correct relation between Γ
and ψ. Equation (1.19) implies

0 = τλϕ
(
t, x, ψ(t, x, 0)

)
(u)

= −ψ(t, x, 0)(λu) + t

∫ λu

0

X
(
ψ(t, x, 0)(s) + x

)
ds

= −ψ(λt, x, 0)(u) + t

∫ λu

0

X
(
ψ(t, x, 0)(s) + x

)
ds .

For u = 1 and ts = σ, we finally obtain

0 = −ψ(λt, x, 0)(1) + t

∫ λ

0

X
(
ψ(t, x, 0)(s) + x

)
ds

(1.19)
= −Γ (tλ, x) + x+ t

∫ λ

0

X
(
ψ(ts, x, 0)(1) + x

)
ds

= −Γ (tλ, x) + x+ t

∫ λ

0

X
(
Γ (ts, x)ds

= −Γ (tλ, x) + x+

∫ tλ

0

X
(
Γ (σ, x)dσ ,

which is precisely (1.12). This proves the existence of a local flow. ut
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Theorem 1.21 (Uniqueness of the (Local) Flow). Let X be a C1-vector
field on U ⊂ Rn open and let γ1 and γ2 denote two integral curves of X on
[0, T1], respectively [0, T2], with 0 < T1, T2 ∈ R. If the integral curves have the
same initial conditions, i.e., γ1(0) = γ2(0), then they agree:

γ1(t) = γ2(t) , ∀t ∈ [0, T1] ∩ [0, T2] .

Proof. We take T > 0 such that [0, T1] ∩ [0, T2] = [0, T ] and define

C :=
{
t ∈ [0, T ] : γ1(t) = γ2(t)

}
.

By assumption 0 ∈ C and hence C ⊂ [0, T ] is non empty. Using a standard
topological argument3, it suffices to prove that C is both open and closed in
[0, T ] to establish the uniqueness of the flow, i.e., C = [0, T ].

The set C is closed : Since the integral curves γ1 and γ2 are continuous,
it is clear that C is closed.

The set C is open: Let t0 ∈ C with x0 = γ1(t0) = γ2(t0) ⊂ U and let
r > 0 such that Br(x0) ⊂ U . (The new initial time t0 ∈ C can be obtained
by translation of [0, T ].) Since by assumption X is a C1-vector field, all the
partial derivatives of X are bounded on the compact set Br(x0). Thus, by
the Control Growth Lemma 1.8, the vector field X is also Lipschitz on this
compact set, i.e., there exists k > 0 such that

‖X(x) −X(x̃)‖ ≤ k ‖x− x̃‖ ,

for all x, x̃ ∈ Br(x0). On the other hand, since both integral curves are
continuous, there exists δ > 0 such that

γi
(
(t0 − δ, t0 + δ)

)
⊂ Br(x0) , i = 1, 2 .

Next, we want to show that (t0 − δ, t0 + δ) ⊂ C. – For t ∈ (t0 − δ, t0 + δ)
the following estimate holds

d

dt

∥∥γ1(t) − γ2(t)
∥∥2

≤ 2 ‖γ1(t) − γ2(t)‖ ‖γ̇1(t) − γ̇2(t)‖

≤ 2 ‖X
(
γ1(t)

)
−X

(
γ2(t)

)
‖ ‖γ1(t) − γ2(t)‖

≤ 2k ‖γ1(t) − γ2(t)‖
2 , (1.20)

where we also used the Definition 1.18 of an integral curve.
Now, we introduce the real valued function f(t) = ‖γ1(t) − γ2(t)‖2 ≥ 0;

then (1.20) translates to

d

dt
f(t) ≤ 2k f(t) , f(t0) = 0 ,

3 If B is connected and A ⊂ B open and closed, then A is empty or A = B. The
same argument was already used in the proof of Control Growth Lemma 1.8.
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implying that
d

dt

(
e−2ktf(t)

)
≤ 0 , ∀t ∈ [t0 + δ) .

Thus f ≡ 0 and γ1(t) = γ2(t) on [t0 + δ). Reversing time, we arrive at
(t0 − δ, t0 + δ) ⊂ C. ut

In words, this theorem shows that certainly no bifurcation of the integral
curves will appear. – The next proposition indicates that passing along an
integral to a time t and then to a time T − t gives exactly the same than
passing directly to a time T .

Proposition 1.22. Let Γ : [0, T ] × U −→ Rn be a flow of a C1-vector field
X. Then for all t ∈ (0, T ) the following holds:

Γ (T, x) = Γ
(
T − t, Γ (t, x)

)
, ∀x ∈ U . (1.21)

Note that, writing Γt(·) for the map Γ (t, ·) : U −→ Rn, (1.21) can be
written as

ΓT = Γ(T−t)+t = Γ(T−t) ◦ Γt .

Especially, we have that idU = Γ−t ◦ Γt and hence we get (Γt)
−1 = Γ−t for

the inverse flow. Combining this observation with the fact the Γt is C1, we
get the following

Corollary 1.23. Let Γ : [0, T ]×U −→ Rn be a flow of a C1-vector field X.
Then for all t ∈ (0, T ) the map

Γt : U −→ Rn ,

x 7−→ Γt(x) = Γ (t, x)

is a (local) C1-diffeomorphism onto Γt(U).

We now introduce a very important concept in differential geometry,
which will be used in the following at various places in a more general context.

Definition 1.24. Let U ⊂ Rn open and ϕ : U −→ V ⊂ Rn a C1-
diffeomorphism. If the diffeomorphism ϕ is written as ϕ(x) =

(
y1(x), . . . , yn(x)

)

for x ∈ U , then the coordinates of
(
y1(x), . . . , yn(x)

)
with respect to the

canonical basis {ei}1≤i≤n of Rn are called the coordinates on U for x.
Moreover, the functions (y1, . . . , yn) are called the coordinate functions
of ϕ for U and such a diffeomorphism ϕ is called a chart or coordinate
system on U . And we define

∂

∂yi
(x) := d(ϕ−1)(ϕ(x)) · ei , ∀i = 1, . . . , n . (1.22)

Remark. In the following, the same notation is often used for coordinate
functions and coordinates.
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ϕ

ϕ(x)
e1

e2

∂
∂y2

(x)

y1 = const

y2 = constU

∂
∂y1

(x)

Fig. 1.3. Chart on Euclidean space.

Theorem 1.25 (Straightening Theorem). Let X be a C1-vector field on
a ∈ U ⊂ Rn open such that X(a) 6= 0. Then there exist W ⊂ U open
containing a and a chart ϕ = (y1, y2, . . . , yn) on W such that

X(x) =
∂

∂y1
(x) , ∀x ∈ W . (1.23)

In other words, there exists a C1-diffeomorphism ϕ = (y1, y2, . . . , yn) :
W −→ V ⊂ Rn such that

dϕx ·X(x) = e1 , ∀x ∈ W . (1.24)

Proof. Let {ei}1≤i≤n be the canonical basis of Rn with coordinate functions
(x1, . . . , xn). We may assume that a = 0. After a linear transformation if
necessary, we may also assume that X(0) = e1.

By Theorem 1.20, there exists a neighborhood Ũ ⊂ U of 0 and T > 0 such
that the (local) flow Γt of the vector field X exists in (−T, T )× Ũ . Consider
now the map

φ(x1, x
′) = Γx1

(
(0, x′)

)
, (1.25)

where we write x = (x1, x
′) = (x1, x2, . . . , xn) ∈ Ũ such that |x1| ≤ T .

Using Corollary 1.23 and again Theorem 1.20, we deduce that all partial
derivatives of φ exist and are continuous. Hence, we conclude by Proposition
1.3 that φ ∈ C1(Rn,Rn).

In a next step, we compute the differential of φ at (0, 0). By Definition
1.19 of the flow, it follows

dφ(0,0) · e1 =
∂φ

∂x1
(0, 0) =

d

dh

∣∣∣∣
h=0

Γh
(
(0, 0)

)
= X

(
(0, 0)

)
= e1 ,

and, for i = 2, . . . , n,

dφ(0,0) · ei =
d

dh

∣∣∣∣
h=0

Γ0

(
(0, h ei)

)
=

d

dh

∣∣∣∣
h=0

h ei = ei .
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Hence, the differential dφ(0,0) is the identity and we can apply the Local
Inversion Theorem 1.10, implying the existence of

V :=
{
(x1, x

′) ∈ Rn : (x1, x
′) ∈ U ′ ⊂ Ũ and |x1| ≤ T̃ ≤ T

}
,

andW ⊂ Rn neighborhood of φ
(
(0, 0)

)
such that φ is a local C1-diffeomorphism

from V into W .
Then, we define ϕ = φ−1. It remains to show that, for all y ∈ W (this

notation for the points in W is motivated by the fact that ϕ = (y1, . . . , yn)
denote the coordinate functions on W ),

dϕy ·X(y) = e1 ,

being equivalent to (see Corollary 1.5)

dφϕ(y) · e1 = X
(
φ(x)

)
.

Using Proposition 1.22 and again the definition of the flow, we compute,
for x = (x1, x

′) ∈ V ,

dφ(x1,x′) · e1 =
d

dh

∣∣∣∣
h=0

Γx1+h

(
(0, x′)

)
=

d

dh

∣∣∣∣
h=0

Γh
(
Γx1

(
(0, x′)

))

=
d

dh

∣∣∣∣
h=0

Γh
(
φ(x1, x

′)
)

= X
(
φ(x)

)
.

This completes the proof of the straightening theorem. ut

W ⊂ Rn

V ⊂ Rn

coordinates coordinates

0

(x1, . . . , xn) (y1, . . . , yn)

X(x)
X(0) = e1

e1

φ

ϕ

Fig. 1.4. Setting for the proof of the straightening theorem.



2 Differentiable Manifolds

2.1 Submanifolds of Rp

Motivation

Definition 2.1. A n-dimensional Ck-submanifold of Rp, n < p, is a subset
Nn of Rp such that for every x ∈ Nn there exists U ⊂ Rp open containing x
and a map f : U −→ Rp with the following properties:

(i) f ∈ Ck(U,Rp),
(ii) the map f is a Ck-diffeomorphism from U into f(U);
(iii) and f(Nn ∩ U) = Rn ∩ f(U).

The map f is called a straightening map for Nn about x.

Remark. We understand Rn as subset of Rp via the canonical inclusion

ι : Rn ↪→ Rp ,

(x1, . . . , xn) 7−→ (x1, . . . , xn, 0, . . . , 0) . (2.1)

Thus, we can also write Rn × Rp−n = Rp. – Note also that, in the following,
the upper indices for (sub)manifolds, subsets, etc. will always refer to their
dimensions.

f

U

Nn ∩ U f(U) ∩ Rn

Rp
Nn

x

Fig. 2.1. Submanifold.
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Proposition 2.2. Let Nn be a subset of Rp. Then the following assertions
are equivalent:

(i) The subset Nn is a n-dimensional Ck-submanifold of Rp.
(ii) For all x ∈ Nn, there exists U ⊂ Rp open containing x and Ck-functions

f1, . . . , fp−n : U −→ R such that {df ix}i=1,...,(p−n) is a free (linearly
independent) family and

Nn ∩ U =

p−n⋂

i=1

(
f i
)−1

(0) . (2.2)

The functions f i, i = 1, . . . , p − n, are called a family of constraints
to Nn about x.

(iii) For all x ∈ Nn, there exists U ⊂ Rp open containing x and a Ck-
submersion g : U −→ Rp−n such that Nn ∩ U = g−1(0).

Remark. Let p = 3 and n = 1. Using (ii) we recover the well-known fact
that locally a curve can be described as intersection of two surfaces in R3

given by f1 and f2. This is the local version of the characterization of a
one-dimensional vector subspace in R3.

Proof. The equivalence of (ii) and (iii) is straightforward. – Let

(f1, . . . , fp−n) = g : U −→ Rp−n .

By assumption, {df ix}i=1,...,(p−n) is a free family meaning that for every x ∈ U
the differential dgx is surjective. Hence by Definition 1.11 the map g is a local
submersion. Furthermore, we have

Nn ∩ U =

p−n⋂

i=1

(
f i
)−1

(0) = g−1(0) .

Now, we show that (iii) implies (i). – Let x0 ∈ Nn with U ⊂ Rn containing
x0 and g : U −→ Rp−n the Ck-submersion. Moreover, let π : Rp −→ Rp−n

denote the canonical projection. Then by the Submersion Theorem 1.15 there
exist U ′ ⊂ U and a local Ck-diffeomorphism f : U ′ −→ Rp such that

g(x) =
(
π ◦ f

)
(x) , x ∈ U ′ .

The last equation gives, using (iii),

Nn ∩ U ′ = g−1(0) =
(
f−1 ◦ π−1

)
(0) = f−1(Rn) ∩ U ′ ,

showing that f is the straightening map for the submanifold Nn of Rp.
It remains to show that (i) implies (iii). – Let x0 ∈ Nn and f : U −→ Rp

the straightening map for Nn about x0 ∈ U . By Definition 2.1, we have that
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Nn∩U = f−1(Rn)∩U . Writing f(x) =
(
f1(x), . . . , fn(x), fn+1(x), . . . , fp(x)

)
,

we define

g : U −→ Rn−p ,

x 7−→
(
fn+1(x), . . . , fp(x)

)
.

As a direct consequence, we note that Nn ∩ U = g−1(0). Since f is a Ck-
diffeomorphism, the matrix formed by the differentials (df i)x0 is of maximal
rank p − n for all i = n + 1, . . . , p. Thus the map g gives the submersion of
(iii). ut

Example 2.3 (The Sphere Sp−1). We consider the sphere

Sp−1 =
{
x = (x1, . . . , xp) : x2

1 + . . .+ x2
p = 1

}
⊂ Rp ,

and the constraint

f1 : Rp −→ R ,

x 7−→ x2
1 + . . .+ x2

p − 1 . (2.3)

Clearly (f1)−1(0) = Sp−1 and f1 ∈ C∞(Rp,R). Moreover, for x ∈ Sp−1

the expression df1
x · X = 2

∑p
i=1 xiXi with X = (X1, . . . , Xp) ∈ Rp \ {0}

does not vanish and the differential of the constraint f 1 is therefore free. By
Proposition 2.2 the sphere Sp−1 is thus a (p−1)-dimensional C∞-submanifold
of Rp.

Example 2.4 (The Orthogonal Group O(k)). Let GLk(R) denote the space

of invertible k × k matrices identified with Rk
2

. The orthogonal group is
defined by

O(k) = {A ∈ GLk(R) : AT A = AAT = 1} ,

where AT denotes the transpose of the matrix A. We show that O(k) is a

C∞-submanifold of Rk
2

of dimension k(k−1)
2 . – First, we define the C∞-map

g : Rk
2

−→ R
k(k+1)

2 ,

A 7−→ AT A− 1 ,

where the space of symmetric matrices Sk(R) is identified with R
k(k+1)

2 . For
A ∈ O(k) and B ∈ GLk(R) we have

dgA · B = BT A+AT B .

For S ∈ Sk(R), i.e., ST = S, we want to find B ∈ GLk(R) such that dgA ·B =
S . A short calculation gives B = AS/2. This shows that g is a submersion.
Since

k2 −
k(k − 1)

2
=
k(k + 1)

2
,

and also O(k) = g−1(0), Proposition 2.2 gives the result.
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Example 2.5 (The Special Linear Group SL(k,R)). The special linear
group is defined by

SL(k,R) = {A ∈ GLk(R) : detA = 1} .

It follows directly from Exercise 2.7 that the determinant map is a submer-
sion. Moreover, we have that SL(k,R) = g−1(0), where g is the map given
by A 7−→ detA − 1. From Proposition 2.2 we then conclude that SL(k,R)

is a C∞-submanifold of Rk
2

of dimension k2 − 1. – Note that the special
orthogonal group

SO(k) = {A ∈ O(k) : detA = 1} = O(k) ∩ SL(k,R)

is also a C∞-submanifold of Rk
2

with dimSO(k) = dimO(k).

Proposition 2.6. Let Nn be a n-dimensional Ck-submanifold of Rp.

(i) If ψ : Rp −→ Rp is a Ck-diffeomorphism, then ψ(Nn) is again a n-
dimensional Ck-submanifold of Rp.

(ii) If for q > p the canonical inclusion is denoted by

ι : Rp ↪→ Rq ,

(x1, . . . , xp) 7−→ (x1, . . . , xp, 0, . . . , 0) ,

then ι(Nn) is a Ck-submanifold of Rq of dimension n.
(iii) If Mm is a m-dimensional Ck-submanifold of Rq then Nn ×Mm is a

Ck-submanifold of Rp × Rq of dimension n+m.

Proof. The proof of (i) is straightforward. – Let f be the straightening map
for Nn about x. Since ψ is by assumption a Ck-diffeomorphism it is clear
that f ◦ ψ−1 gives a Ck-straightening map for ψ(Nn) about ψ(x).

Since Nn is by assumption a submanifold of Rp, there exists by Propo-
sition 2.2 a family of constraints f 1, . . . , fp−n about x̃ ∈ Rp verifying (2.2).
For x = (x1, . . . , xq) ∈ U × Rq−p with U ⊂ Rp containing x̃, we then define
the Ck-maps

f i(x1, . . . , xp, xp+1, . . . , xq) := f i(x1, . . . , xp) , 1 ≤ i ≤ p− n ,

and moreover

f i(x1, . . . , xp, xp+1, . . . , xq) := xi+n , p− n+ 1 ≤ i ≤ q − n .

These two definitions obviously show that

ι(Nn) ∩
(
U × Rq−p

)
=

q−n⋂

i=1

(
f i
)−1

(0) .

At the point x0 = ι(x̃) = (x̃1, . . . , x̃p, 0, . . . , 0) the differential of the function
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F := (f1, . . . , fp, fp+1, . . . , f q−n) : Rq −→ Rq−p

reads as

dFx0 =

(
A 0
0 1

)
.

Since {df ix0
}i=1,...,(p−n) is free by assumption the matrix A has maximal rank

p− n. We deduce that dFx0 has also maximal rank. In summary, the family
{df ix0

}i=1,...,(q−n) is a free family of constraints for ι(Nn) about x0 and (ii)
follows from Proposition 2.2.

For (iii), we note that the constraints for Nn and Mm can be combined to
q+p−(n+m) independent constraints for Nn×Mm. Then again Proposition
2.2 gives the result. ut

From the last proposition we get many submanifolds from the one we
already now. – For example, we showed that the “circle” S1 is a submanifold
of R2 and as an application of the second part of the proposition it is also a
submanifold of R3. Moreover, the torus S1×S1 ⊂ R2×R2 is a two dimensional
submanifold by the third part of the proposition.

∗ ∗ ∗

Exercises.

Exercise 2.7. Let GLk(R) denote the space of invertible k×k matrices and
consider the map

det : GLk(R) −→ R \ {0} ,

A 7−→ detA .

Show that its differential, for A,B ∈ GLk(R), is given by

d(det)A ·B = (detA) Tr(A−1B) .

2.2 Differentiability on Submanifolds of Rp

We want to give a meaning to a Ck-map, k ≥ 1, from a Ck-submanifold Nn

of Rp into R or into another Ck-submanifold Mm. This will be essentially
done by the notion of a chart for a submanifold. – The following definition
can be seen as generalization of Definition 1.24.

Definition 2.8. Let N be a n-dimensional Ck-submanifold of Rp with Ck-
straightening map f and U ⊂ Rp open containing x ∈ Nn. Moreover, let

π : Rp −→ Rn

(x1, . . . , xn, xn+1, . . . , xp) 7−→ (x1, . . . , xn)
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denote the canonical projection and V ⊂ Rn open. A chart or coordinate
system for Nn about x is a homeomorphism

ϕ : Nn ∩ U −→ V

such that the composition π ◦ f ◦ ϕ−1 is a Ck- diffeomorphism from ϕ(Nn ∩
U) ⊂ Rn into an open subset of Rn. – If the chart ϕ is written as
ϕ(x) =

(
y1(x), . . . , yn(x)

)
for x ∈ Nn, then the canonical coordinates of(

y1(x), . . . , yn(x)
)

in Rn are called the coordinates on the submanifold Nn

for x; moreover (y1, . . . , yn) are called the coordinate functions of the chart
ϕ for U .

Remark. In the following, there will often be no difference in the notations
for coordinates and coordinate functions.

f(U) ∩ Rn

Rp

U

f

Nn

Nn ∩ U

x

V ⊂ Rn

ϕ

Rn

π

Fig. 2.2. A chart for a submanifold.

In order to show that this definition makes sense, we have to prove that it
is independent of the straightening map f . – Let f and f̃ be two straightening
maps for Nn about x. Let ϕ be a chart for Nn about x and assume that
π ◦f ◦ϕ−1 is a Ck-diffeomorphism. We write π ◦ f̃ ◦ϕ−1 = π ◦ f̃ ◦f−1◦f ◦ϕ−1

and note that by Definition 2.1 the map f̃ ◦ f−1 : Rp −→ Rp is a local
Ck-diffeomorphism sending Rn × {0} into itself. Hence, π ◦ f̃ ◦ ϕ−1 is also a
Ck-diffeomorphism showing that the definition of a chart for a submanifold
is independent of the straightening map.
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Proposition 2.9. Let Nn be a Ck-submanifold of Rp with two different
charts ϕ and ϕ̃ about x ∈ Nn. Then for U ⊂ Rp containing x the tran-
sition function

ϕ̃ ◦ ϕ−1 : ϕ(Nn ∩ U) −→ ϕ̃(Nn ∩ U)

is a Ck-diffeomorphism.

U

Nn ∩ U

Nn

x

ϕ(Nn ∩ U) ⊂ Rn ϕ̃(Nn ∩ U) ⊂ Rn

ϕ̃ ◦ ϕ−1

ϕ̃
ϕ

Fig. 2.3. Transition functions for submanifolds.

Proof. Let f be a straightening map for Nn about x. Let ι : Rn ↪→ Rp and
π : Rp −→ Rn denote the canonical inclusion, respectively, projection. On
ϕ(Nn ∩ U) ⊂ Rn, we can then write

ϕ̃ ◦ ϕ−1 = ϕ̃ ◦ f−1 ◦ f ◦ ϕ−1 = ϕ̃ ◦ f−1 ◦ ι ◦ π ◦ f ◦ ϕ−1 , (2.4)

since ι ◦ π
∣∣
Rn = id

∣∣
Rn . The last three maps in (2.4) compose to a Ck-

diffeomorphism by Definition 2.8 and the same argument holds for the other

three maps writing ϕ̃◦f−1◦ι as
(
π◦f ◦ϕ̃−1

)−1
. Hence, the transition function

ϕ̃ ◦ ϕ−1 is indeed a Ck-diffeomorphism. ut

Now, we are ready to define Ck-functions on submanifolds using charts.

Definition 2.10. Let Nn be a Cl-submanifold of Rp and let k ≤ l. A func-
tion h : Nn −→ R is called a Ck-function on Nn if for all x ∈ Nn there
exists a local chart ϕ about x such that

h ◦ ϕ−1 : Rn −→ R

is a Ck-function.
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It is important to note that this definition is independent of the choice of
the chart ϕ. Indeed, let ϕ and ϕ̃ be two charts about x. Assume that h ◦ϕ−1

is a Ck-function. From Proposition 2.9 it follows directly that

h ◦ ϕ̃−1 = h ◦ ϕ−1 ◦ ϕ ◦ ϕ̃−1

is also a Ck-function.

Example 2.11. Consider the sphere Sn ⊂ Rn+1. We want to show that the
canonical coordinate functions on Rn+1 restricted to Sn are C∞-functions on
Sn. – The canonical coordinate functions1, for i = 1, . . . , n+ 1, are given by

xi : Rn+1 −→ R ,

x 7−→ xi .

Note that in the notation there is no difference between coordinates and
coordinate functions.

Let x0 = (0, . . . , 0, 1) ∈ Rn+1 denote the north pole of the sphere and
consider the C∞-map

f : U −→ Rn+1 ,

x 7−→

(
x1, . . . , xn,

n+1∑

i=1

x2
i − 1

)
,

where U ⊂ Rn+1 open containing x0. It is clear that

f−1
(
(x1, . . . , xn, 0)

)
= Sn ∩ U .

Moreover, a straightforward computation shows that dfx0 = diag(1, . . . , 1, 2);
hence dfx0 is invertible and the Local Inversion Theorem 1.10 shows that f
is a local C∞-diffeomorphism in a neighborhood of x0. This implies that f
is a straightening map for Sn about x0. – We already showed in Example
2.3 that the sphere is a C∞-submanifold constructing a constraint. (Note
that the straightening map is compatible with the constraint (2.3), in the
sense that the last coordinate function of the straightening map equals the
constraint.)

Consider now the C∞-map

ϕ : Sn ∩ U ⊂ Rn+1 −→ V ⊂ Rn ,

(x1, . . . , xn, xn+1) 7−→ (x1, . . . , xn) ,

where V = ϕ(Sn ∩ U) is an open neighborhood of ϕ(x0) = (0, . . . , 0) ∈ Rn.
One easily sees that

1 The corresponding chart is given by the identity map of Rn+1, i.e., ϕ(x) =
(x1, . . . , xn, xn+1).
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ϕ−1(x1, . . . , xn) =


x1, . . . , xn,

√√√√1 −
n∑

i=1

x2
i


 ∈ Sn ∩ U .

Next, we compute, for x ∈ V ,

(
π ◦ f ◦ ϕ−1

)
(x) =

(
π ◦ f

)

x1, . . . , xn,

√√√√1 −
n∑

i=1

x2
i




= π(x1, . . . , xn, 0)

= (x1, . . . , xn) .

Thus (π ◦ f ◦ ϕ−1
)

is the identity on V ⊂ Rn and therefore we have a chart
ϕ for Sn about the north pole x0.

In a next step, we note that the expressions for the canonical coordinate
functions (x1, . . . , xn, xn+1) in the chart ϕ read as

xi ◦ ϕ
−1(x1, . . . , xn) = xi , 1 ≤ i ≤ n ,

xn+1 ◦ ϕ
−1(x1, . . . , xn) =

√√√√1 −
n∑

i=1

x2
i

showing by Definition 2.10 that all functions are in C∞(U ∩Sn,R). This was
the claim at the beginning of the example.

We extend the last definition for Ck-functions on submanifolds to maps
between two submanifolds.

Definition 2.12. Let Nn and Mm be two C l-submanifolds of Rp, respec-
tively Rq and let k ≤ l. A map h : Nn −→ Mm is called a Ck-map if h is
continuous and if for all x ∈ Nn there exist a chart ϕ for Nn about x and a
chart ϕ̃ of Mm about h(x) such that

ϕ̃ ◦ h ◦ ϕ−1 : Rn −→ Rm

is a Ck-map.

Remark. By a continuous map between submanifolds we mean the continuity
of the map with respect to the topologies induced by the ambient Euclidean
space on the submanifolds (restriction of open sets).

As a direct consequence of Proposition 2.9, we get that the definition is
independent of the choice of the charts for Nn and Mm.

Definition 2.13. Let Nn and Mm be two C l-submanifolds of Rp, respec-
tively Rq. A map h : Nn −→Mm is called a Ck-diffeomorphism if h is an
homeomorphism, a Ck-map and if for all x ∈ Nn and all charts ϕ about x,
ϕ̃ about h(x), we have that the linear map

d
(
ϕ̃ ◦ h ◦ ϕ−1

)
ϕ(x)

is invertible.
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2.3 Abstract Manifolds

In this section, we introduce a large class of topological spaces, called man-
ifolds, which are locally homeomorphic to open subsets of Euclidean spaces.
However, these spaces don’t require anymore the concept of “ambient space”
which plays a crucial role in the definition of submanifolds.

Though they have no global vector space structure, there will be a no-
tion of differentiability. In the next Section 2.4, we will then study in great
detail the differentiability on manifolds. – Remember that the notion of dif-
ferentiability was first defined on normed vector spaces in Section 1.1 and
then extended to submanifolds of Euclidean spaces in the last section. – In
the following, we give some motivations for the need of topological spaces
generalizing submanifolds.

We introduce the set of straight lines in Rn+1 passing through the origin
and denote this set by RP n. In other words, we consider in Rn+1 \ {0} the
equivalence relation x = (x1, . . . , xn+1) ∼ y = (y1, . . . , yn+1) if and only if
there exists λ ∈ R such that x = λ y. Alternatively, the set RP n can be
considered as the quotient Sn/ ∼, where the equivalence relation is defined
by:

u ∼ v iff u = ±v for u, v ∈ Sn .

Thus the equivalence classes [u] = {u,−u} ∈ Sn/ ∼ define the set RP n.
Let π : Sn −→ RPn be the canonical projection which gives RP n the

quotient topology, i.e., U open in RP n if and only if π−1(U) is open in Sn.
For this topology RP n is called the real projective space of dimension n.

Note that locally the real projective space looks identical to Sn. More
precisely, this identification can be made as long as the antipodal points
are not considered simultaneously. Nevertheless, RP n cannot be seen as a
submanifold of Rn+1.

We have seen in Example 2.3 that S1 is a submanifold of R2. By Propo-
sition 2.6 the torus T 2 = S1 × S1 is thus a submanifold of R4. – Next, we
consider the map

Ξ : R2 −→ R3 ,

(θ, ψ) 7−→
(
cos θ(2 + cosψ), sin θ, sinψ

)
.

One can check that N2 := Ξ(R2) is a two-dimensional submanifold of R3.
Moreover,

Ξ̃ : S1 × S1 −→ Ξ(R2) ,

(eiθ, eiψ) 7−→
(
cos θ(2 + cosψ), sin θ, sinψ

)
,

is a C∞-diffeomorphism between the two submanifolds T 2 and N2. – We
want to construct a topological space without using the notion of “ambient
space”, whose embedding (realization) in R4 and R3 is given by T 2 and N2,
respectively.
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Consider R2/ ∼ with the equivalence relation:

(a, b) ∼ (a′, b′) iff (a′, b′) = (a, b) + (k, l) ,

where (k, l) ∈ Z2. We denote this set by R2/Z2. The canonical projection
π : R2 −→ R2/Z2 defines the quotient topology, i.e., U open in R2/Z2 if
and only if π−1(U) open in R2. Geometrically, this quotient space leads to a
certain identification of the edges of a square with unit length as described
in Figure 2.4. Hence, the quotient space R2/Z2 is homeomorphic to T 2 and
N2.

+

R2/ ∼

+

+

+

+

+ +

Fig. 2.4. Torus.

Next, we mention the example of the Klein bottle being not a submanifold.
Starting from R2/Z2 with the quotient topology, we introduce an additional
equivalence relation ∼′ on [0, 1

2 ] × [0, 1] ⊂ R2/Z2. Namely, for a, b, a′, b′ ∈
[0, 1

2 ] × [0, 1], we have

(a, b) ∼′ (a′, b′) iff (a′, b′) =

(
a+

1

2
,−b

)
.

As described in Fig. 2.5, this equivalence relation leads again to identifications
of the edges in the square [0, 1

2 ] × [0, 1] ⊂ R2/Z2.

+

+

+ +

+

+

(R2/Z2)/ ∼′

Fig. 2.5. Klein bottle.

Now, we give a precise definition of a manifold being an important math-
ematical object.
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Definition 2.14. Let X be a topological space. Then X is called separated
or Hausdorff if for all x, x̃ ∈ X there exist open neighborhoods Ux and Ux̃
with Ux ∩ Ux̃ = ∅.

Definition 2.15. A n-dimensional topological manifold or C0-manifold
is a topological separated space X such that for all x ∈ X there exist an open
neighborhood Ux and an homeomorphism ϕ : Ux −→ ϕ(Ux) ⊂ Rn.

x

Ux

X
ϕ(Ux) ⊂ Rn

ϕ

Fig. 2.6. Topological manifold.

Remark. A topological manifold is thus by definition locally homeomorphic
to Rn which does not imply that the space is separated (see Exercise 2.31).

Next, we define C1-manifolds. Naively, one would simply replace the defin-
ing homeomorphism by a diffeomorphism. But, we have to be more careful.

Definition 2.16. Let X be a topological separated space and k ≥ 1. A Ck-
atlas or Ck-system of charts of dimension n is a family (Ui, ϕi)i∈I , where
the (Ui)i∈I are open subsets of X and the (ϕi)i∈I are homeomorphisms from
Ui into Rn, with the following properties:

(i) The (Ui)i∈I cover the topological space X, i.e.,
⋃
i∈I Ui = X.

(ii) For every i, j ∈ I such that Ui ∩ Uj 6= ∅, the transition functions

ϕj ◦ ϕ
−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

are Ck-diffeomorphisms.

The previous definition shows that we can only understand the topological
spaceX from a differential point of view via a system of charts. Moreover, ifX
admits a Ck-system of charts of dimension n then it cannot admit a system
of charts of dimension p for n 6= p. Indeed, let (Ui, ϕi)i∈I and (Vj , ψj)j∈J
denote the two systems of charts with different dimensions. For i ∈ I , j ∈ J
such that Ui ∩ Vj 6= ∅ we have that ϕi(Ui ∩ Vj) ⊂ Rn and ψj(Ui ∩ Vj) ⊂ Rp

are both open. By Definition 2.16 (ii) we obtain a homeomorphism between
two open sets of Euclidean spaces with different dimensions. This contradicts
Corollary 1.13.
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ϕi(Ui) ϕj(Uj)

ϕj ◦ ϕ
−1
i

ϕi

Ui
Uj

X

ϕj

Fig. 2.7. System of charts and transition functions.

Definition 2.17. Let X be a topological separated space admitting two Ck-
systems of charts (Ui, ϕi)i∈I and (Vj , ψj)j∈J of same dimension. These two
systems of charts are called equivalent if the union of them is still a Ck-
system of charts, i.e., if for every i ∈ I, j ∈ J such that Ui ∩ Vj 6= ∅ the
transition functions

ψj ◦ ϕ
−1
i : ϕi(Ui ∩ Vj) −→ ψj(Ui ∩ Vj)

are Ck-diffeomorphisms.

It is clear that the union of two charts still covers the topological space X
as required in the Definition 2.16. Moreover, the relation “being equivalent” of
the previous definition defines an equivalence relation on the systems of charts
and we arrive at the important definition of n-dimensional Ck-manifolds:

Definition 2.18. Let X be a topological separated space. An equivalence
class of Ck-systems of charts is called a Ck-differentiable structure on
X. Assume, in addition, that the systems of charts are n-dimensional. Then
X together with a differentiable structure is called a n-dimensional Ck-
manifold.

Examples of Manifolds

Example 2.19 (The Euclidean Space). The separated topological space Rn

becomes a manifold for the single chart (U,ϕ), where U = Rn and ϕ = idRn .

Example 2.20 (A Submanifold as Manifold). Let Nn be a n-dimensional Ck-
submanifold of Rp. We consider the coordinate system ϕx : Nn ∩ Ux −→ Rn

of Definition 2.8 where Ux ⊂ Rp is an open neighborhood of x. By Definition
2.1 such coordinate systems exist for every x ∈ Nn. Indeed, we set ϕx :=
π ◦ fx

∣∣
Nn∩Ux

with fx the straightening map about x and π : Rp −→ Rn the

canonical projection. Using Proposition 2.9 the family (Ux, ϕx)x∈Nn defines
a Ck-system of charts for the submanifold Nn. Thus Nn becomes a Ck-
manifold of dimension n.
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Example 2.21 (The Real Projective Space). The real projective space RP n =(
Rn+1 \{0}

)
/ ∼ was already defined at the beginning of this section. In order

to show that this space is a C∞-manifold of dimension n, we have to find an
atlas for it.

Let

π : Rn+1 \ {0} −→ RP n ,

x = (x1, . . . , xn+1) 7−→ [x] = [x1, . . . , xn+1]

denote the canonical projection. For i = 1, . . . , n + 1, we then define Ui :=
{[x] : xi 6= 0} and

ϕi
(
[x]
)

:=

(
x1

xi
, . . . ,

xi−1

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)
⊂ Rn .

It is easy to check that ϕi : Ui −→ Rn is an homeomorphism for all i =
1, . . . , n+1 and that

⋃n+1
i=1 Ui = RPn. By Definition 2.16, it remains to show

that for all i, j with Ui ∩ Uj 6= ∅ the transition functions

ϕj ◦ ϕ
−1
i : ϕi(Ui ∩ Uj) −→ ϕj(Ui ∩ Uj)

are C∞-diffeomorphisms.
We have, for z = (z1, . . . , zn) ∈ ϕi(Ui ∩ Uj) ⊂ Rn assuming that i > j,

ϕj ◦ ϕ
−1
i (z1, . . . , zn) = ϕj

(
[z1, . . . , zi−1, 1, zi+1, . . . , zn]

)

=

(
z1
zj
, . . . ,

zj−1

zj
,
zj+1

zj
, . . . ,

zi−1

zj
,

1

zj
,
zi+1

zj
, . . . ,

zn
zj

)
∈ Rn .

Since by assumption zj 6= 0, we deduce that ϕj ◦ ϕ−1
i ∈ C∞(ϕi(Ui ∩

Uj), ϕj(Ui ∩ Uj)). One can check that this implies that (Ui, ϕi)i=1,...,n+1 is
an atlas for the real projective space RP n.

Example 2.22 (The Torus). We consider again the example of the torus T 2 =
R2/Z2. Let x ∈ R2 and α ∈ R with 0 < α < 1/4. We define Ux := π(Bα(x)) ⊂
R2/Z2, where π is the canonical projection. Since

π−1(Ux) =
⋃

(k,l)∈Z2

Bα
(
x+ (k, l)

)
,

we deduce that Ux is open and (Ux)x∈R2 is thus an open covering of T 2. Let
[y] ∈ Ux and let y denote the unique representant in Bα(x) of the equivalence
class [y]. Then, we define

ϕx : Ux −→ R2 ,

[y] 7−→ y ∈ Bα(x) .

It is easy to show that ϕx : Ux −→ Bα(x) is an homeomorphism.
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In a next step, we show that (Ux, ϕx)x∈R2 is an atlas for T 2. – Let x 6=
x̃ ∈ R2 such that Ux ∩ Ux̃ 6= ∅. By definition of Ux this means that there
exists (k, l) ∈ Z2 such that Bα(x)∩Bα(x̃+(k, l)) 6= and because α ∈ R small
enough the pair (k, l) ∈ Z2 is unique. Take z ∈ Bα(x)∩Bα(x̃+(k, l)), then an
easy computation shows that (note that (k, l) ∈ R2 is independent of z ∈ R2)

ϕx̃ ◦ ϕ
−1
x (z) = z − (k, l) ,

hence a C∞-diffeomorphism and T 2 is a C∞-manifold of dimension 2 for the
atlas (Ux, ϕx)x∈R2 .

x̃

x

z x̃+ (k, l)

Bα(x)

Bα
(
x̃+ (k, l)

) Bα(x̃)

R2

Fig. 2.8. Atlas for the torus.

The following proposition allows us to construct further examples of man-
ifolds.

Proposition 2.23. Let Mm and Nn be two Ck-manifolds for the atlas
(Ui, ϕi)i∈I and (Vj , ψj)j∈J , respectively. Then the product Mm × Nn is a
Ck-manifold of dimension m+ n for the atlas

(Ui × Vj , ϕi × ψj)(i,j)∈I×J ,

where we define ϕi × ψj(x, y) :=
(
ϕi(x), ψj(y)

)
for all (x, y) ∈ Mm ×Nn.

Proof. The proof is a straightforward application of the definitions. ut

2.3.1 Some Topological Properties of Differentiable Manifolds

Proposition 2.24. A topological manifold Mm is a locally compact topolog-
ical space.

Proof. We have to show that for all x ∈ Mm there exist a compact set
Kx containing x and a open neighborhood Ũx such that Ũx ⊂ Kx. – Let
x ∈ Mn and (Ux, ϕx) a chart about x. By Definition 2.15, the map ϕx is
an homeomorphism from Ux into ϕx(Ux) ⊂ Rm. Hence ϕx(Ux) is open and
there exists ρ > 0 such that Bρ(ϕx(x)) ⊂ ϕx(Ux). The set
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ϕ−1
x

(
B̄ρ(ϕ(x))

)
:= Kx

is then compact. Moreover, for ϕ−1
x

(
Bρ(ϕ(x))

)
:= Ũx open, we have Ũx ⊂ Kx.

ut

Proposition 2.25. A topological manifold Mm is a locally connected space,
i.e., every point has a connected open neighborhood.

Proof. Again, we use a chart (Ux, ϕx) about x ∈ Mm. Clearly, ϕx(Ux) is an
open neighborhood of ϕx(x) ∈ Rm and it contains a connected neighborhood
C ⊂ ϕx(Ux) ⊂ Rm of ϕx(x). Since ϕx is an homeomorphism into ϕx(Ux), the
set ϕ−1

x (C) ⊂Mm is also connected. ut

Proposition 2.26. A topological manifold Mm is connected if and only if it
is path connected.

Proof. It is a well-known fact that a path connected topological space is also
connected. – Conversely, let x ∈Mm and set

Cx =
{
y ∈ Mm : ∃γ ∈ C0

(
[0, 1],Mm

)
with γ(0) = x , γ(1) = y

}
.

Clearly, Cx 6= ∅ since x ∈ Cx. We will show that Cx is both open and closed in
Mm. Then, since by assumption Mm is connected, we deduce that Cx = Mm

indicating that the topological manifold Mm is path connected.
The set Cx is open: Let y ∈ Cx and (U,ϕ) a chart about y. Since ϕ(U)

is open there exists ρ > 0 such that Bρ(ϕ(y)) ⊂ ϕ(U). Consider for z ∈
Bρ(ϕ(y)) the map

γ̃z(t) := ϕ−1
(
t z + (1 − t)ϕ(y)

)
∈ C0([0, 1], U) .

Clearly, we have γ̃z(0) = y and γ̃z(1) = ϕ−1(z), thus a path joining y and
ϕ−1(z). Since by assumption there is a path between x and y, we can also
join x and ϕ−1(z) by a path for arbitrary z ∈ Bρ(ϕ(y)). Thus y ∈ Cx implies
that ϕ−1

(
Bρ(ϕ(y))

)
⊂ Cx, which is also open, since ϕ a homeomorphism.

Hence, Cx is open.
The set Cx is closed : Let (U, y) be a chart about y and let y ∈ C̄x. We

show that y ∈ Cx. – Since ϕ(y) ∈ ϕ(U) which is open, we deduce the existence
of ρ > 0 such that Bρ(ϕ(y)) ⊂ ϕ(U). Thus ϕ−1

(
Bρ(ϕ(y))

)
⊂ U ; moreover,

it is open and contains y. Therefore, there exists z ∈ Cx ∩ ϕ−1
(
Bρ(ϕ(y))

)
.

Since ϕ(z) ∈ Bρ(ϕ(y)) there is a path in Rm joining ϕ(y) and ϕ(z). By ϕ−1

also a path joining y and z. From the fact that z ∈ Cx, we obtain that y and
x are also path connected showing that y ∈ Cx. ut

As an application of the previous proposition, we consider the topological
space

E =

{(
x, sin

1

x

)
: x ∈ R+ \ {0}

}
∪
{
(0, y) : y ∈ [−1, 1]

}
⊂ R2 ,

which is connected but not path connected. Hence, by Proposition 2.26 the
topological space E is not a topological manifold.
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2.4 Differentiability on a Manifolds

As announced before, we now want to give a meaning to a Ck-map between
two manifolds. As in the case of submanifolds, this can be done using charts.

Definition 2.27. Let Mm and Nn be two Ck-manifolds with k ≥ 1. A map
f : Mm −→ Nn is a Ck-map if f is continuous and if for all (i, j) ∈ I × J
the map

ψj ◦ f ◦ ϕ−1
i : ϕi

(
Ui ∩ f

−1(Vj)
)
−→ ψj(Vj)

is a Ck-map, where (Ui, ϕi)i∈I and (Vj , ψj)j∈J are systems of charts for Mm

and Nn, respectively. If f is a Ck-map, we write f ∈ Ck(Mm, Nn). The map
ψj ◦ f ◦ ϕ−1

i is often called the coordinate expression for f .

ψj(Vj)

f

Vj

NnMm

ϕi ψj

ψj ◦ f ◦ ϕ−1
i

Ui f−1(Vj)

ϕi(Ui ∩ f−1(Vj))

Fig. 2.9. A Ck-map between manifolds.

This definition is independent of the choice of (Ui, ϕi)i∈I and (Vj , ψj)j∈J
representing the fixed differentiable structure of the manifold. To see this,
let (Ũi, ϕ̃i)i∈Ĩ and (Ṽj , ψ̃j)j∈J̃ be two other charts of the fixed differentiable
structures onMm andNn, respectively. (In other words, we choose two charts
equivalent to the initial ones.) Assume that the map f : Mm −→ Nn is a
Ck-map for the charts (Ui, ϕi)i∈I and (Vj , ψj)j∈J . Writing, for all ĩ ∈ Ĩ and

j̃ ∈ J̃ ,
ψ̃j̃ ◦ f ◦ ϕ̃−1

ĩ
= ψ̃j̃ ◦ ψ

−1
j ◦ ψj ◦ f ◦ ϕ−1

i ◦ ϕi ◦ ϕ̃
−1

ĩ
,

we deduce, using Definition 2.17, that the map f is again a Ck-map.

Definition 2.28. A map f : Mm −→ Nn is called a Ck-diffeomorphism
if f is an homeomorphism and if f and f−1 are both Ck-maps. If such a map
exists then Mm and Nn are called diffeomorphic.

Example 2.29. Consider the topological space R with the single chart (U,ϕ),
where U = R and ϕ = idR. This gives the canonical differentiable structure
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on R and denote the resulting manifold by M . On the other hand, consider
again R with the single chart (V, ψ) where V = R and ψ(x) = x1/3 and
denote the resulting manifold by N . It is clear that the two charts are not
equivalent. Indeed, the map

ψ ◦ ϕ−1 : R −→ R ,

x 7−→ x1/3

is not continuously differentiable.
Nevertheless, the manifolds M and N are diffeomorphic. In fact, the map

f : M −→ N ,

x 7−→ x3

is a C∞-diffeomorphism, since ψ ◦ f ◦ϕ−1 = idR. Thus, the two charts define
two different differentiable structures but the corresponding two different
manifolds are diffeomorphic to each other.

We end up with the interesting question if there exists on Rn, considered
as topological space, a differentiable structure which is not diffeomorphic to
the canonical one? (Note that “diffeomorphic” refers to the corresponding
manifold.) We mention that only for n = 4 such a differentiable structure
exists (see []).

Definition 2.30. Let Mm and Nn be two Ck-manifolds with k ≥ 1. More-
over, let f ∈ Ck(Mm, Nn). Then f is called immersion, respectively, sub-
mersion if for all (i, j) ∈ I × J the differential

d(ψj ◦ f ◦ ϕ−1
i ) : Rm −→ Rn

is injective, respectively, surjective, where the usual notation is used for the
systems of charts for Mm and Nn.

This definition is again independent of the choice of (Ui, ϕi)i∈I and
(Vj , ψj)j∈J representing the fixed differentiable structure of the manifold.

∗ ∗ ∗

Exercises.

Exercise 2.31.

2.5 The Tangent Manifold to a Differentiable Manifold

2.5.1 The Tangent Space to a Submanifold of Rp

Let Nn be a n-dimensional C1-submanifold of Rp. We first consider the case
n = 1.
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ϕ t0

R

Nn

x0

γ̇(t0)

U

Fig. 2.10. Tangent space to a 1-dimensional submanifold.

Let x0 ∈ N1 and U ⊂ Rp open neighborhood of x0. Consider a chart
ϕ : N1 ∩ U −→ V about x0, where V ⊂ R open (see Definition 2.8), and
define

γ(t) := ϕ−1(t) , t ∈ R . (2.5)

For γ(t) ∈ U we clearly have that |γ̇(t)| 6= 0. Hence, the map γ is a regular
parameterization of a curve lying in the 1-dimensional C1-submanifold N1 ∩
U ⊂ Rp. The tangent space at γ(t0) = x0 is the space generated by the
velocity vectors of the curve γ at t0:

γ̇(t0) =
d

dt

∣∣∣∣
t=t0

γ(t) . (2.6)

Let σ : R −→ N1 ∩ U be another C1-curve such that

σ(s) = γ ◦ ψ(s) ,

where ψ ∈ C1(R,R) verifying ψ(s0) = t0; hence σ(s0) = x0. The velocity
vector of the curve σ at s0 is given by

σ̇(s0) =
d

ds

∣∣∣∣
s=s0

σ(s) = γ̇
(
ψ(s0)

) d

ds

∣∣∣∣
s=s0

ψ(s) .

Showing that γ̇(t0) is only multiplied by a real number. – Therefore, we can
interpret the tangent space to a 1-dimensional submanifold N 1 at a point as
the velocity vectors of arbitrary curves in N 1 passing through this point.

This motivates the following definition for arbitrary dimensions.

Definition 2.32. Let Nn be a n-dimensional C1-submanifold of Rp and x0 ∈
Nn. The tangent space to Nn at x0 is defined as the set of velocity vectors
of arbitrary curves C1([0, 1], Nn) passing through x0. The space is denoted by
Tx0N

n.

Proposition 2.33. Let Nn be a n-dimensional C1-submanifold of Rp and
x0 ∈ Nn. Then the tangent space Tx0N

n is a n-dimensional vector subspace
of Rp. Moreover, if U denote an open neighborhood of x0 and f1, . . . , fp−n :
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U −→ R denote a free family of constraints for Nn about x0 (see Proposition
2.2), then

Tx0N
n =

p−n⋂

i=1

ker df i(x0) . (2.7)

Proof. Since the differential is a linear map, the expression kerdf i(x0), i =
1, . . . , p − n, characterizes (p − n) hyperplanes in Rp. By assumption, they
are all free, hence

dim

p−n⋂

i=1

kerdf i(x0) = p− (p− n) = n .

Therefore, if we prove the second assertion the first follows.
Let γ ∈ C1([0, 1], Nn) with γ(t0) = x0 and let U ⊂ Rp be an open

neighborhood of x0 ∈ Nn. Fix α > 0 such that γ(t) ∈ Nn ∩ U for t ∈ [t0 −
α, t0+α]. Using (2.2), we see that f i

(
γ(t)

)
= 0, for i = 1, . . . , p−n and for all

t ∈ [t0 −α, t0 +α]. Differentiating this identity at t0 gives (df i)γ(t) · γ̇(t0) = 0,
hence

γ̇(t0) ∈

p−n⋂

i=1

ker df i(x0) ,

and so

Tx0N
n ⊂

p−n⋂

i=1

ker df i(x0) .

Conversely, let f be a straightening map for Nn about x0 compatible with
the constraints, i.e., if we write f = (f̃1, . . . , f̃p), then f̃ j = f j−n for j =
n+1, . . . , p. For X ∈

⋂p−n
i=1 ker df i(x0) ⊂ Rp, we thus have that Y := dfx0 ·X

lies in Rn. Note that, using Definition 2.1 (iii), we have that f(x0) + t Y ∈
Rn ∩ f(U) for t small enough, say |t| < α, α > 0. Consider now the curve

γ(t) := f−1
(
f(x0) + t Y

)
.

We see that γ ∈ C1
(
(−α, α), Nn ∩ U

)
. Also, we have

γ̇(0) = df−1
f(x0)

· Y = X ,

showing that
p−n⋂

i=1

ker df i(x0) ⊂ Tx0N
n .

ut

This proposition shows that once we have the constraints the equation
for the tangent plane is easy to find.
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Example 2.34. Consider again the sphere Sn ∈ Rn+1 with the constraint (see
(2.3))

f1(x) = x2
1 + . . .+ x2

n+1 − 1 .

Let x0 = (x0
1, . . . , x

0
n+1) ∈ Sn; then (df1)x0 ·X = 2

∑n+1
i=1 x

0
i Xi for the vector

X = (X1, . . . , Xn+1) ∈ Rn+1. Thus for the tangent space of the sphere, we
get

Tx0S
n = ker (df1)x0 = {X ∈ Rn+1 : 〈X, x0〉 = 0} ,

where 〈·, ·〉 means the usual scalar product in Rn+1.

2.5.2 The Tangent Space to a Manifold

Let Mm be a m-dimensional C1-manifold with a system of charts (Ui, ϕi)i∈I
and x0 ∈ Mm. Still in this more general case there exists the notion of
a smooth path in Mm passing through x0. Indeed, we have that γ ∈
C1([0, 1],Mm) passing through x0 if, for every i ∈ I ,

ϕi ◦ γ : γ−1(Ui) ⊂ [0, 1] −→ Rn ∈ C1([0, 1],Rn) ,

and there exists t0 ∈ [0, 1] such that γ(t0) = x0 (see Definition 2.27). The
velocity vector γ̇ of the smooth curve, however, has a priori no meaning
anymore, since there is not an “ambient Euclidean space” as in the case of
submanifolds. Using the concept of charts, we can only look at the expressions

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ

)
(t) . (2.8)

Unfortunately, these velocity vectors depend on the system of charts (Ui, ϕi)i∈I
and not only on the differentiable structure. More precisely, the velocities of
two different charts are related as (we need that x0 ∈ Ui ∩ Uj)

d

dt

∣∣∣∣
t=t0

(
ϕj ◦ γ

)
(t) =

d

dt

∣∣∣∣
t=t0

(
ϕj ◦ ϕ

−1
i ◦ ϕi ◦ γ

)
(t)

= d(ϕj ◦ ϕ
−1
i )ϕi(x0)

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ

)
(t) .

Obviously, there is no reason for the differential of the transition function to
be idRm . Therefore, we cannot define the tangent space Tx0M

m of a man-
ifold as being the velocities of curves passing through x0 as in the case of
submanifolds.

We now try to define a tangent space as a vector space which is indepen-
dent of the choice of the representant of the differentiable structure. – Let
γ1, γ2 ∈ C1([0, 1],Mm) be two paths with γ1(t0) = γ2(t0) = x0. We observe
that if there exists a chart (Ui, ϕi) such that
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d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ1

)
(t) =

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ2

)
(t) , (2.9)

then for another chart (Uj , ϕj), we have (note that x0 ∈ Ui ∩ Uj)

d

dt

∣∣∣∣
t=t0

(
ϕj ◦ γ1

)
(t) =

d

dt

∣∣∣∣
t=t0

(
ϕj ◦ ϕ

−1
i ◦ ϕi ◦ γ1

)
(t)

= d(ϕj ◦ ϕ
−1
i )ϕi(x0)

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ1

)
(t)

= d(ϕj ◦ ϕ
−1
i )ϕi(x0)

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ2

)
(t)

=
d

dt

∣∣∣∣
t=t0

(
ϕj ◦ γ2

)
(t) .

Thus (2.9) holds also for the second chart.
We denote the set of smooth paths passing through x0 ∈ Mm by

Px0(M
m) =

{
γ ∈ C1([−δ, δ],Mm) : δ > 0 and γ(0) = x0

}
. (2.10)

On Px0(M
m) we introduce the following equivalence relation: γ1 ∼ γ2 if and

only if there exists i ∈ I such that

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1

)
(t) =

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ2

)
(t) . (2.11)

The calculation before shows that if (2.11) holds for one chart (Ui, ϕi) about
x0 it holds for every chart about x0.

Next, we define on the set Px0(M
m)/ ∼ a scalar multiplication by

α[γ] := [γα] , (2.12)

where α ∈ R and γα(t) := γ(α t) ∈ Px0(M
m). If γ ∼ γ̃, we obtain that

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γα

)
(t) =

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ

)
(α t)

(2.11)
=

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ̃

)
(α t) =

d

dt

∣∣∣∣
t=t0

(
ϕi ◦ γ̃α

)
(t) ,

showing that the definition (2.12) is independent of the representant of the
equivalence class [γ].

Moreover, on Px0(M
m)/ ∼ we define an addition by

[γ1] + [γ2] := [γ1+2] , (2.13)

where
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γ1+2(t) := ϕ−1
i

(
ϕi(x0) + t

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1

)
(t) + t

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ2

)
(t)

)
.

Note that γ1+2 ∈ Px0(M
m). We claim that this operation is moreover well-

defined, i.e.,

a) independent of the chart ϕi;
b) independent of the representants of the classes [γ1] and [γ2].

The second claim follows from an analogous computation as for the scalar
multiplication. For the first claim, we have to show that the path γ1+2 ex-
pressed in two different charts lies in the same equivalence class, i.e.,

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1+2

)
(t) =

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ̃1+2

)
(t) ,

where γ̃1+2 means the path expressed in another chart ϕj about x0. Hence,
we have to compare the following two expressions

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1+2

)
(t)

=
d

dt

∣∣∣∣
t=0

{
ϕi

(
ϕ−1
i

(
ϕi(x0) + t

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1

)
(t) + t

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ2

)
(t)

))}
,

=
d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1

)
(t) +

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ2

)
(t) ,

and

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ̃1+2

)
(t)

=
d

dt

∣∣∣∣
t=0

{
ϕi

(
ϕ−1
j

(
ϕj(x0) + t

d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ1

)
(t) + t

d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ2

)
(t)

))}

= d(ϕi ◦ ϕ
−1
j )ϕj(x0)

(
d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ1

)
(t) +

d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ2

)
(t)

)

=
d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ1

)
(t) +

d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ2

)
(t) .

Thus, the two expressions are equal. – Note that the constant path γ ≡ x0

gives the neutral element for the addition defined in (2.13).
So far we have shown that Px0(M

m)/ ∼ with the scalar multiplication
(2.12) and the addition (2.13) is a vector space. Now, we will see that its
dimension is m. – Let (Ui, ϕi) be a chart about x0 and define the map2

dϕi : Px0(M
m)/ ∼ −→ Rm ,

[γ] 7−→ dϕi · [γ] :=
d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ

)
(t) . (2.14)

2 The notation used for this map will become clear in Section 2.6.
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In order to show that dϕi is an isomorphism, we first observe that if dϕi ·[γ] =
0, then ϕi ◦ γ has vanishing velocity at t = 0, which is also the velocity of
the constant path at t = 0. Therefore, [γ] = 0 and dϕi is injective. It is also
surjective, since for every X ∈ Rn, we have

dϕi
[
ϕ−1(ϕ(x0) + tX)

]
= X .

This implies that Px0(M
m)/ ∼ has dimension m.

Putting all these results together, we end up with the definition for the
tangent space to a manifold Mm.

Definition 2.35. The tangent space Tx0M
m to a C1-manifold Mm at the

point x0 is defined by

Tx0M
m := Px0(M

m)/ ∼ ,

which is an m-dimensional vector space. And the tangent vectors are equiv-
alence classes of paths [γ] ∈ Px0(M

m)/ ∼.

Concerning the basis of the tangent space, we introduce the following
useful notations3: Consider a chart (U, x) with x : U −→ Rm. Then, for all
p ∈Mm, we denote by

(
∂

∂x1
(p), . . . ,

∂

∂xm
(p)

)
(2.15)

the basis of TpM
m, given by

∂

∂xi
(p) :=

[
γi
]
, i = 1, . . . ,m , (2.16)

where {ei}i=1,...,m is the canonical basis of Rm and

γi := x−1
(
x(p) + t ei

)
.

The following proposition can be interpreted as motivation for the previ-
ous notations.

Proposition 2.36. Let Mm be a Ck-manifold of dimension m and U ⊂Mm

open. Moreover, let (U, x) and (U, y) be two charts about p ∈ U . Then the
following formula holds for all p ∈ U :

∂

∂xk
(p) =

m∑

i=1

∂
(
yi ◦ x−1

)

∂xk

(
x(p)

) ∂
∂yi

(p) , k = 1, . . . ,m , (2.17)

where the notation y = (y1, . . . , ym) : U −→ Rm for the coordinate functions
is used. The formula can also be written as

∂

∂xk
=

∂yi
∂xk

∂

∂yi
3 At this stage, we change slightly the notations: The charts are now often denoted

by (U,x), instead of (U, ϕ), and points of a manifold by p, instead of x.



2.5 The Tangent Manifold to a Differentiable Manifold 43

Proof. We can write

∂

∂xk
(p) =

[
x−1

(
x(p) + t ek

)]

=
[
y−1

(
y ◦ x−1

(
x(p) + t ek

))]

We calculate for the path y ◦ x−1
(
x(p) + t ek

)
in Rm, using (1.1),

d

dt

∣∣∣∣
t=0

y ◦ x−1
(
x(p) + t ek

)
= d(y ◦ x−1)x(p) · ek

= Jx(p)
(
y ◦ x−1

)
· ek =

m∑

i=1

∂
(
yi ◦ x−1

)

∂xk
(x(p)) ei ,

where Jx(p)
(
y ◦ x−1

)
denotes the Jacobian of the map y ◦ x−1 : Rm −→ Rm

at the point x(p). From this, we deduce that

∂

∂xk
(p) =

[
y−1

(
y(p) + t

m∑

i=1

∂
(
yi ◦ x−1

)

∂xk
(x(p)) ei

)]
.

By definition, this implies (2.17). ut

2.5.3 The Tangent Bundle to a Manifold

Let Mm be a m-dimensional Ck-manifold with k ≥ 2. From a “set” point of
view the tangent bundle to Mm is defined by

TMm =
⋃

p∈Mm

TpM
m ,

i.e., by the collection of all tangent vectors at all points of Mm. Moreover,
we introduce the following projection map

π : TMm −→ M ,

[γ] 7−→ π([γ]) := p , if [γ] ∈ TpM . (2.18)

The point p ∈ Mm is called the base point for [γ].
In what follows, we prove that the tangent bundle can be made to a

2m-dimensional Ck−1-manifold. – Let (Ui, ϕi)i∈I be an atlas for Mm, and
define

TUi :=
⋃

p∈Ui

TpM
m = π−1(Ui) .

Obviously, we have that
⋃
i∈I TUi = TMm. On TUi ⊂ TMm, we consider

the map
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Φi : TUi −→ Rm × Rm = R2m ,

[γ] 7−→
(
ϕi ◦ π([γ]), dϕi · [γ]

)
. (2.19)

Recall that (see (2.14))

dϕi · [γ] =
d

dt

∣∣∣∣
t=0

(
ϕi ◦ γ

)
(t) .

It is clear that the map Φi is a bijection from TUi into ϕi(Ui) × Rm. We
then say that Ω ⊂ TMm is open in TMm if and only if for all i ∈ I the set
Φi(Ω ∩ TUi) is open in R2m.

In order to establish that this defines a topology on the tangent bundle
TMm, we take, in a first step, (Ωk)k∈K all open and show that

⋃
k∈K Ωk is

also open and, in a second step, Ω1, . . . , ΩN open and show that
⋂N
l=1 Ωl is

open. – For all i ∈ I , we have

Φi

( ⋃

k∈K

Ωk ∩ TUi

)
=
⋃

k∈K

Φi(Ωk ∩ TUi) .

Since the right-hand side is open in R2m, it follows by definition of openness
for TMm that

⋃
k∈K Ωk is indeed open. Consider now Ω1, . . . , ΩN open and

since the Φi are bijections, we can write, for all i ∈ I ,

Φi

(
N⋂

l=1

Ωl ∩ TUi

)
=

N⋂

l=1

Φi(Ωl ∩ TUi) .

Therefore, we have a topology on TMm. In addition, this topology is sepa-
rated (the proof is straightforward).

Proposition 2.37. This topology on the tangent bundle TMm is indepen-
dent of the atlas (Ui, ϕi)i∈I representing the fixed differentiable structure on
Mm. Moreover, the maps Φi, i ∈ I, defined in (2.19) are homeomorphisms
for this topology and the projection π is continuous.

Proof. Let (Vj , ψj)j∈J be another equivalent atlas for Mm and (TVj , Ψj)j∈J
as defined before (see (2.19)). Assume that Ω ⊂ TMm is open for this atlas,
i.e., Ψj(Ω ∩ TVj) is open in R2m for all j ∈ J . We then have to prove that
Φi(Ω ∩ TUi) is open in R2m for all i ∈ I .

We first write

Φi(Ω ∩ TUi) =
⋃

j∈J

Φi

(
Ψ−1
j

(
Ψj(Ω ∩ TUi ∩ TVj)

))
.

Take j ∈ J such that TUi ∩ TVj 6= ∅. Since Ψj is a bijection, we get

Ψj(Ω ∩ TUi ∩ TVj) = Ψj(Ω ∩ TVj) ∩ Ψj(TUi ∩ TVj) .
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The first term on the right-hand side is open by assumption. The second
equals ψj(Ui ∩ Vj) × Rm being thus also open in R2m. Using the fact that
the charts (Ui, ϕi)i∈I and (Vj , ψj)j∈J are equivalent, we will show that the
transition functions

Φi ◦ Ψ
−1
j : Ψj(TUi ∩ TVj) −→ Φi(TUi ∩ TVj)

are Ck−1-maps with k ≥ 2 (this will be done in the next Proposition 2.38).
We then deduce that

Φi

(
Ψ−1
j

(
Ψj(Ω ∩ TUi ∩ TVj)

))
,

and hence ⋃

j∈J

Φi

(
Ψ−1
j

(
Ψj(Ω ∩ TUi ∩ TVj)

))

are open in R2m. This result holds for all i ∈ I , and the topology on TMm

thus only depends on the differentiable structure on Mm. – The remaining
assertions are left as an exercise. ut

We end up with the following proposition summarizing the results for the
tangent bundle.

Proposition 2.38. Let Mm be a m-dimensional Ck-manifold with k ≥ 2,
and let (Ui, ϕi)i∈I be an atlas for Mm. Then (TUi, Φi)i∈I defines a Ck−1-
differentiable structure for the tangent bundle TMm depending only on the
differentiable structure on Mm. And TMm is a Ck−1-manifold of dimension
2m for this differentiable structure. Moreover, the projection π is a Ck−1-
submersion for this differentiable structure.

Proof. Let (Ui, ϕi)i∈I be an atlas for Mm and (TUi, Φi)i∈I defined as before.
For i, j ∈ I such that TUi ∩ TUj 6= ∅ (note that this also implies that
Ui ∩ Uj 6= ∅), we consider the transition functions

Φj ◦ Φ
−1
i : ϕi(Ui ∩ Uj) × Rm ⊂ R2m −→ ϕj(Ui ∩ Uj) × Rm ⊂ R2m ,

(x, ξ) 7−→ Φj ◦ Φ
−1
i (x, ξ) . (2.20)

Using (2.19), we get the following explicit expression for the transition
functions (see Fig. 2.11):

Φj ◦ Φ
−1
i (x, ξ) = Φj

([
ϕ−1
i (x+ t ξ)

])

=

(
ϕj ◦ ϕ

−1
i (x),

d

dt

∣∣∣∣
t=0

(
ϕj ◦ ϕ

−1
i

)
(x+ t ξ)

)

=
(
ϕj ◦ ϕ

−1
i (x), d(ϕj ◦ ϕ

−1
i )x · ξ

)
. (2.21)

By assumption (Ui, ϕi)i∈I defines a Ck-differential structure on Mm,
hence the transition functions ϕj ◦ ϕ

−1
i : ϕj(Ui ∩ Uj) −→ ϕi(Ui ∩ Uj) are
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Ck-maps and moreover the differentials d(ϕj ◦ ϕ
−1
i ) are Ck−1-maps. There-

fore using (2.21), we have that

Φj ◦ Φ
−1
i ∈ Ck−1(ϕi(Ui ∩ Uj) × Rm, ϕj(Ui ∩ Uj) × Rm) .

Similarly, we show that Φi◦Φ
−1
j = (Φj◦Φ

−1
i )−1 is a Ck-map, and thus Φj◦Φ

−1
i

is a Ck−1-diffeomorphism. Hence, by Definition 2.16 the family (TUi, Φi)i∈I
defines a Ck−1-atlas on the tangent bundle. – Note that we loose one degree
of regularity.

Now, let (ψj , Vj)j∈J be another atlas equivalent to (Ui, ϕi)i∈I . From the
explicit expression (2.21) for the transition functions Φi ◦ Ψ

−1
j , we get that

they are Ck−1-diffeomorphisms. By Definition 2.17 the systems of charts
(TUi, Φi)i∈I and (TVj , Ψj)j∈J are equivalent, showing that the differentiable
structure on the tangent bundle TMn does not depend on the representant
of the fixed differentiable structure on the manifold Mm.

TMm

Φi

π

Ui
Φj

ϕjϕi

ξ

dϕj

M

Rm Rm Rm

TUi
TUj

Uj

Rm

d(ϕ−1
i )

x

Fig. 2.11. Transition functions for the tangent bundle.

Next, we show that π : TMm −→ M defined in (2.18) is a Ck−1-
submersion. – Clearly, the coordinate expression for π is given by

ϕj ◦ π ◦ Φ−1
i (x, ξ) = ϕj ◦ ϕ

−1
i (x) ,

where (x, ξ) ∈ ϕi(Ui)×Rm. Since π is already continuous by Proposition 2.37,
we deduce from the last equation that the projection π is also a Ck−1-map
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(see Definition 2.27). Moreover, we have

rank d(ϕj ◦ π ◦ Φ−1
i ) = rank d(ϕj ◦ ϕ

−1
i ) = m,

implying that the differential has maximal rank, since we deal with a m-
dimensional target manifold. Hence, the projection is a Ck−1-submersion
(see Definition 2.30). ut

We close this section with a definition which will be useful in the following.

Definition 2.39. Let Mm be a Ck-manifold with k ≥ 2 and s : Mm −→
TMm a Cl-map, l ≤ k − 1. Then the map s is called a C l-section of the
tangent bundle TMm if it satisfies π ◦ s = idMm , where π is the projection
defined in (2.18).

2.6 The Tangent Map Between two Manifolds

Now, we come to an important definition, which was already used in a spe-
cial case in order to show that the tangent bundle TMm is a differentiable
manifold (see (2.14)).

Definition 2.40. Let Mm and Nn be two Ck-manifolds and let f : Mm −→
Nn be a Ck-map with k ≥ 2. The tangent map to f is the Ck−1-map

df : TMm −→ TNn ,

[γ] 7−→ dfp · [γ] := [f ◦ γ] ,

where γ ∈ C1([0, 1],Mm) with γ(0) = p.

Remark. The tangent map therefore acts on equivalence classes of curves
by transporting then with the map itself to the target tangent bundle. In
addition, the map dfp : TpM

m −→ Tf(p)N
n is linear. – Note that if Nn = Rn,

then the tangent map reduces to

dfp · [γ] =
d

dt

∣∣∣∣
t=0

(
f ◦ γ

)
(t) .

This is exactly what we already introduced in (2.14).

The definition clearly makes sense. – Indeed, if (Ui, ϕi)i∈I and (Vj , ψj)j∈J
are two systems of charts for Mm and Nn, respectively, and if γ ∼ γ̃, where
γ̃ ∈ C1([0, 1],Mm) with γ̃(0) = p, we obtain (see (2.11))

d

dt

∣∣∣∣
t=0

(
ψi ◦ f ◦ γ

)
(t) =

d

dt

∣∣∣∣
t=0

(
ψi ◦ f ◦ ϕ−1

j ◦ ϕj ◦ γ
)
(t)

= d
(
ψi ◦ f ◦ ϕ−1

j

)
ϕj(p)

d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ

)
(t)

= d
(
ψi ◦ f ◦ ϕ−1

j

)
ϕj(p)

d

dt

∣∣∣∣
t=0

(
ϕj ◦ γ̃

)
(t)
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Hence, the desired result f ◦ γ ∼ f ◦ γ̃.
In a next step, we prove that the tangent map df : TMm −→ TNn

is indeed a Ck−1-map. – Let (Ui, ϕi)i∈I and (Vj , ψj)j∈J be two systems of
charts for Mm and Nn, respectively, and (TUi, Φi)i∈I and (TVj , Ψj)j∈J the
corresponding systems of charts for TMm and TNn, respectively. First, we
show that df is continuous.

For Ω ⊂ TNn open, we can write, since Φi, i ∈ I , is a bijection4,

(df)−1(Ω) =
⋃

i∈I

Φ−1
i Φi[(df)−1(Ω) ∩ TUi] , (2.22)

and, since Ψj , j ∈ J , is also a bijection,

Φi[(df)−1(Ω) ∩ TUi] = Φi


(df)−1


⋃

j∈J

Ψ−1
j

(
Ψj(Ω ∩ TVj)

)

 ∩ TUi




= Φi


⋃

j∈J

((
Ψj ◦ df

)−1(
Ψj(Ω ∩ TVj)

))
∩ TUi




=
⋃

j∈J

Φi

[(
Ψj ◦ df

)−1(
Ψj(Ω ∩ TVj)

)
∩ TUi

]
. (2.23)

This is equivalent to

⋃

j∈J

((
Ψj ◦ df ◦ Φ−1

i

)−1(
Ψj(Ω ∩ TVj)

))
.

By definition, the map Ψj◦df ◦Φ
−1
i is defined on the set ϕi

(
f−1(Vj)∩Ui

)
×Rm

which is open in R2m. The coordinate expression for the tangent map (see
(2.25) below) reads, for (x, ξ) ∈ ϕi

(
f−1(Vj) ∩ Ui

)
× Rm ⊂ R2m open,

(
Ψj ◦ df ◦ Φ−1

i

)
(x, ξ) =

(
ψj ◦ f ◦ ϕ−1

i (x), d(ψj ◦ f ◦ ϕ−1
i )x · ξ

)
∈ R2n , (2.24)

The fact that f is by assumption a Ck-map translates to ψj ◦ f ◦ ϕ−1
i ∈

Ck(Rm,Rn). Thus, we deduce that the expression (2.24) is at least continuous
since k ≥ 2.

Moreover, by definition of the topology on TNn, we deduce that by as-
sumption Ψj(Ω∩TVj) is open in R2n. From this and using (2.23), we then get
the openness of Φi

[
(df)−1(Ω)∩TUi

]
. With (2.22), we deduce that (df)−1(Ω)

is open in TMm and the continuity of the tangent map.
In order to show that df is a Ck−1-map, it suffices to prove that the coor-

dinate expression of the tangent map df is a Ck−1-map (see Definition 2.27).

4 Note that the brackets always indicate that we are dealing with elements of the
tangent bundle. Moreover, by (df)−1(Ω) we mean the inverse image from a set
point of view, i.e., the set {[γ] ∈ TMm : df · ([γ]) ∈ Ω ⊂ TNn}
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– Let (x, ξ) ∈ ϕi
(
f−1(Vj) ∩ Ui

)
× Rm. Then, we claim that the coordinate

expression for df reads as

(
Ψj ◦ df ◦ Φ−1

i

)
(x, ξ) =

(
ψj ◦ f ◦ ϕ−1

i (x), d(ψj ◦ f ◦ ϕ−1
i )x · ξ

)
∈ R2n , (2.25)

The claim then immediately implies the result.
To show the coordinate expression (2.25) we compute, using the Definition

2.40 of the tangent map,

df ◦ Φ−1
i (x, ξ)

(2.19)
= df

(
[ϕ−1
i (x+ t ξ)]

)
=
[
f ◦ ϕ−1

i (x+ t ξ)
]
.

This gives, using again (2.19),

(
Ψj ◦ df ◦ Φ−1

i

)
(x, ξ) = Ψj

(
[f ◦ ϕ−1

i (x+ t ξ)]
)

=
(
ψj ◦ f ◦ ϕ−1

i (x), dψj
[
f ◦ ϕ−1

i (x + t ξ)
])

=

(
ψj ◦ f ◦ ϕ−1

i (x),
d

dt

∣∣∣∣
t=0

(
ψj ◦ f ◦ ϕ−1

i

)
(x + t ξ)

)

=
(
ψj ◦ f ◦ ϕ−1

i (x), d(ψj ◦ f ◦ ϕ−1
i )x · ξ

)
.

In summary, the tangent map df is indeed a Ck−1-map.
We go a step further and introduce some useful notations for the tangent

map acting on the basis (2.15) of the tangent space TpM
m of Mm at the

point p. Let (U, x) a local chart and f : U −→ Nn. Then, for all p ∈ U , the
expression (see (2.16))

dfp ·
∂

∂xi
(p) =

[
f
(
x−1(x(p) + t ei)

)]
, i = 1, . . . ,m ,

is denoted by
∂f

∂xi
(p) ∈ Tf(p)N

n . (2.26)

Let (U, y) be another chart, and we set y = (y1, . . . , ym) with yi : U −→ R,
for i = 1, . . . ,m. Then we have, for k = 1, . . . ,m,

∂yi
∂xk

(p)
(2.26)
= (dyi)p ·

∂

∂xk

=
[
yi
(
x−1(x(p) + t ek)

)]

=
d

dt

∣∣∣∣
t=0

(
yi
(
x−1(x(p) + t ek)

))

= d(yi ◦ x
−1)x(p) · ek =

∂

∂xk

(
yi ◦ x

−1
)
(x(p)) .

This shows that we recover the notation introduced in Proposition 2.36. –
With these notations objects on manifolds look locally like in flat space (see
also Exercise 2.42).
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Proposition 2.41. Let f ∈ Ck(Mm, Nn) and g ∈ Ck(Nn, Ll). Then g ◦f ∈
Ck(Mm, Ll) and for the tangent map of the composition the following formula
holds:

d(g ◦ f) = dg · df .

Proof. For [γ] ∈ TMm we compute, using Definition 2.40,

d(g ◦ f)[γ] = [g ◦ f(γ)] = [g(f ◦ γ)]

= dg[f ◦ γ] = dg(df [γ]) .

The fact that g ◦ f ∈ Ck(Mm, Ll) is left as an exercise. ut

∗ ∗ ∗

Exercises.

Exercise 2.42. Let f : Mm −→ Rn. Using charts and the lemma of
Schwartz, show that for all i, j = 1, . . . ,m we have

∂

∂xi

(
∂f

∂xj

)
=

∂

∂xj

(
∂f

∂xi

)
.

Exercise 2.43. Let (U, x) be a local chart of Mm. Show that for p ∈ U , we
have

dxp ·
∂

∂xi
(p) = ei ,

where {ei}i=1,...,m denotes the canonical basis of Rm.

2.7 Vector Fields on a Manifold

We already studied vector fields on Euclidean spaces in Section 1.2. Now, we
want to study the more general case of vector fields on manifolds . Apart
from some additional results, we will recover those of Euclidean spaces. We
start with the following basic definition.

Definition 2.44. Let Mm be a Ck-differentiable manifold of dimension m,
k ≥ 2. A C l- vector field on Mm with l ≤ k − 1 is a C l-map

X : Mm −→ TMm ,

such that π ◦X = idMm , where π : TMm −→ Mm is the canonical projection
of (2.18). Equivalently, a C l-vector field can be defined as C l-section of the
tangent bundle (see Definition 2.39). Moreover, we denote C∞-vector fields
on Mm by X (M).
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Remark. At each point of the manifold we thus assign a tangent vector in
such a way that the dependence on the base point is C l-smooth. The basis
of the tangent spaces introduced in (2.15) gives the standard example for a
Cl-vector field.

Let (U, x) be a chart about p ∈ Mm. Then a vector field can be written
locally, i.e., in terms of the chart (U, x), as

X(p) =

m∑

i=1

Xi(p)
∂

∂xi
(p) , (2.27)

where the Xi : U −→ R are functions and { ∂
∂xi

(p)}i=1,...,m denotes the basis
of TpM

m. Note that the functions Xi are uniquely defined by the chart (U, x).
The regularity of the functions Xi, i = 1, . . . ,m, can be deduced from the
following

Proposition 2.45. Let Mm be a Ck-manifold and let X : Mm −→ TMm

such that π ◦X = idMm . Then the map X is a C l-vector field with l ≤ k− 1
if and only if, for all charts (U, x), we have that Xi ∈ Cl(U,R), i = 1, . . . ,m,
where the functions Xi are given by (2.27).

Proof. Consider the map

dx ◦X ◦ x−1 : x(U) ⊂ Rm −→ R2m .

Hence, the map X is a C l-vector field, l ≤ k − 1, if and only if, for all charts
(U, x), we have that dx ·X ∈ C l(U,R2m). From Exercise 2.43 and the local
expression (2.27), we then deduce by linearity

dxp ·X(p) = dxp

(
m∑

i=1

Xi(p)
∂

∂xi
(p)

)
=

m∑

i=1

Xi(p) ei .

Therefore, X is a C l-vector field if and only if Xi ∈ Cl(U,R), i = 1, . . . ,m,
for all charts (U, x). ut

We come to two other important definitions.

Definition 2.46. Let Mm be a Ck-manifold, U ⊂Mm open and let X be a
Cl-vector field on Mm with l ≤ k − 1. A map

ΓX : I × U −→Mm , I ⊂ R ,

solving for all (t, p) ∈ I × U the equations

∂ΓX

∂t
(t, p) = X

(
ΓX(t, p)

)
, ΓX(0, p) = p , (2.28)

is called the (local) flow of the vector field X.
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Remark. Note that (2.28) can be written precisely as, using the notation
introduced in (2.26),

∂ΓX

∂t
(t, p) = dΓX(t,p) ·

∂

∂t
(t, p) = X

(
ΓX(t, p)

)
.

Moreover, we will often write ΓXt for ΓX(t, ·) with t ∈ I .

Definition 2.47. Let f : Mm −→ Nn be a Ck-diffeomorphism and let X be
a Ck-vector field on Mm. We define the push-forward of X by f to be the
following Ck−1-vector field on Nn:

f∗X(p̃) := dff−1(p̃)X
(
f−1(p̃)

)
, p̃ ∈ Nn . (2.29)

Remark. Note that the definition requires the map f : Mm −→ Nn to be a
diffeomorphism, since otherwise the right-hand side of (2.29) is not necessarily
a vector field. Again we loose one degree of regularity because of the defining
tangent map.

The next proposition gives an explicit expression for the flow of the push-
forward in terms of the flow of the vector field itself.

Proposition 2.48. Let f : Mm −→ Nn be a diffeomorphism and X a vector
field on Mm with corresponding flow ΓXt . Then, the map

Γ f∗Xt := f ◦ ΓXt ◦ f−1 : Nn −→ Nn (2.30)

is a flow for the push-forward f∗X.

Proof. For p̃ ∈ Nn we compute, using Proposition 2.41 and the fact that ΓXt
is a flow for X ,

∂Γ f∗Xt

∂t
(p̃) =

∂

∂t

(
f ◦ ΓXt ◦ f−1

)
(p̃)

= d
(
f ◦ ΓXt

(
f−1(p̃)

))
·
∂

∂t

(
f−1(p̃)

)

= dfΓX
t (f−1(p̃))

(
d(ΓXt )f−1(p̃) ·

∂

∂t

(
f−1(p̃)

))

= dfΓX
t (f−1(p̃)) ·X

(
ΓXt
(
f−1(p̃)

))
.

The right-hand side can be written differently

dff−1(f◦ΓX
t ◦f−1(p̃)) ·X

(
f−1

(
f ◦ ΓXt ◦ f−1(p̃)

))
.

By Definition 2.47, we just obtain

∂Γ f∗Xt

∂t
(p̃) = dff−1(f◦ΓX

t ◦f−1(p̃))X
(
f−1

(
f ◦ ΓXt ◦ f−1(p̃)

))

= f∗X
(
f ◦ ΓXt ◦ f−1(p̃)

)
,
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showing that Γ f∗Xt is the flow for f∗X (since Γ f∗X0 (p̃) = p̃ is obviously veri-
fied). ut

This result allows us to generalize Theorem 1.20 for Rm.

Theorem 2.49 (Local Existence of a Flow). Let Mm be a Ck+1-
manifold and let X be a Ck-vector field on Mm with k ≥ 1. Then there exist
an open neighborhood U of p ∈ Mm and a Ck-map ΓX : (−T, T )×U −→Mm

for some 0 < T ∈ R such that, for every (t, p) ∈ (−T, T )× U , we have

∂ΓX

∂t
(t, p) = X

(
ΓX(t, p)

)
, ΓX(0, p) = p .

Proof. Let p ∈ Mm and (U, x) a chart about p. We define Y := x∗X , which
is a Ck-vector field on x(U) ⊂ Rm. (Here, we assume that Mm is a Ck+1-
manifold in order for the push-forward to be a Ck-vector field.) By Theorem
1.20 there exists a Ck-map Γ Yt : U ′ −→ Rm, U ′ ⊂ x(U), being the local flow
for Y . Using the previous Proposition 2.48 and since X = (x−1)∗Y , we have
that the Ck-map

ΓXt := x−1 ◦ Γ Yt ◦ x

is the local flow for X . ut

Remark 2.50. Using Proposition 2.48 in the same way as in the proof of
Theorem 2.49, we can extend the following results for Rm to manifolds:

a) the Uniqueness Theorem for local flows of C1-vector fields (see Theorem
1.21);

b) the Proposition 1.22 concerning the composition of flows and
c) the Straightening Map Theorem 1.25.

For compact manifolds, we have also global existence.

Theorem 2.51 (Global Existence of a Flow). Let Mm be a compact
Ck+1-manifold with k ≥ 1 and let X be a Ck-vector field. Then there exists
a global flow for X, i.e., a Ck-map ΓX : R ×Mm −→ Mm such that, for
every (t, p) ∈ R ×Mm, we have

∂ΓX

∂t
(t, p) = X

(
ΓX(t, p)

)
, ΓX(0, p) = p .

Moreover, the map ΓXt is a Ck-diffeomorphism from Mm into Mm, for all
t ∈ R.
Proof. ut
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2.7.1 The Bracket of two Vector Fields on Manifolds

Definition 2.52. Let X and Y be two Ck-vector fields on a Ck+1-manifold
Mm with k ≥ 1. We define the bracket of X and Y to be the following
Ck−1-vector field:

[X,Y ](p) =
d

dt

∣∣∣∣
t=0

(
(Γ Yt )∗X

)
(p) , p ∈Mm . (2.31)

Remark. Again we loose one degree of regularity (see Definition 2.47).

Recall that we already know that for small enough “time” t the flow Γ Yt
locally exists and is unique. Moreover, observe that

d

dt

∣∣∣∣
t=0

(
(Γ Yt )∗X

)
(p) = lim

t→0

(
(Γ Yt )∗X

)
(p) −

(
(Γ Y0 )∗X

)
(p)

t

= lim
t→0

(
(Γ Yt )∗X

)
(p) −X(p)

t
,

and using the Definition 2.47 of the push-forward, we arrive at

[X,Y ](p) = lim
t→0

1

t

((
dΓ Yt

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

)
−X(p)

)
. (2.32)

With these equivalent expressions for the bracket, it is clear that its definition
makes sense, since we compare vectors in the same tangent plane, i.e., with
the same base point. When this is not the case anymore, we need the theory
of connections which we will treat later. – Note that the bracket [X,Y ] is
often also denoted by LYX being the Lie derivative of X in the direction
Y (see Section 9.92 for more details).

Γ Y−t(p) p
Y (p)

X
(
Γ Y−t(p)

)
(
dΓ Yt

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

)
X(p)

Fig. 2.12. The bracket of two vector fields.

The following proposition gives an explicit formula for the bracket in a
local chart.
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Proposition 2.53. Let Mm be a Ck+1-manifold and (U, x) be a local chart.
Moreover, let X and Y be two Ck-vector fields on U , written for p ∈ U as

X(p) =
m∑

i=1

Xi(p)
∂

∂xi
(p) , Y (p) =

m∑

i=1

Yi(p)
∂

∂xi
(p) .

Then, we have for the bracket

[X,Y ](p) =

m∑

i=1

m∑

j=1

(
Xj(p)

∂Yi
∂xj

(p) − Yj(p)
∂Xi

∂xj
(p)

)
∂

∂xi
(p) . (2.33)

Proof. For all f ∈ Ck+1(Mm,R), we have

dfp ·
(
(Γ Yt )∗X

)
(p) = dfp ·

((
dΓ Yt

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

))

= d
(
f ◦ Γ Yt

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

)
. (2.34)

Now, we expand f ◦ Γ Yt (p) : R −→ R with respect to the “time” t:

f ◦ Γ Yt (p) = f ◦ Γ Y0 (p) +

∫ 1

0

d

ds

(
f ◦ Γ Yts

)
(p) ds

= f(p) + tH(t, p) ,

where

H(t, p) :=

∫ 1

0

dfΓY
ts (p) ·

∂Γ Yts
∂s

(p) ds ,

and H(0, p) = dfp · Y (p). Inserting this expansion in (2.34), we get

dfp ·
(
(Γ Yt )∗X

)
(p) = dfΓY

−t(p)
·X
(
Γ Y−t(p)

)
+ t d

(
H(t, ·)

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

)
.

From this we obtain, with the definition of the bracket,

dfp · [X,Y ](p) =
d

dt

∣∣∣∣
t=0

(
dfp ·

(
(Γ Yt )∗X

)
(p)
)

=
d

dt

∣∣∣∣
t=0

(
dfΓY

−t(p)
·X
(
Γ Y−t(p)

))

+
d

dt

∣∣∣∣
t=0

(
t d
(
H(t, ·)

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

))
. (2.35)

The first term equals (chain rule)

−d
(
df ·X

)
p
· Y (p) , (2.36)

where the definition of the flow is used. The second term becomes (product
rule)
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d
(
H(0, ·)

)
ΓY

0 (p)
·X
(
Γ Y0 (p)

)
= d
(
df · Y

)
p
·X(p) . (2.37)

Inserting (2.36) and (2.37) into (2.35), it follows that

dfp · [X,Y ](p) = −d
(
df ·X

)
p
· Y (p) + d

(
df · Y

)
p
·X(p) . (2.38)

Let (U, x) be a local chart about p ∈ Mm and write x = (x1, . . . , xm) :
U −→ Rm. We set f = xi ∈ Ck+1(U,R), and deduce from (2.38) that

(dxi)p · [X,Y ](p) = (dYi)p ·X(p) − (dXi)p · Y (p) ,

where we used that (dxi)p · X(p) = Xi(p) and (dxi)p · Y (p) = Yi(p) since
(dxi)p ·

∂
∂xj

(p) = δij (see Exercise 2.43). Using again the local representations

for X , Y and the notation introduced in (2.26), we end up with (remember
also the remark after Definition 2.40)

(dxi)p · [X,Y ](p) = (dYi)p ·




m∑

j=1

Xj(p)
∂

∂xj
(p)


− (dXi)p ·




m∑

j=1

Yj(p)
∂

∂xj
(p)




=

m∑

j=1

(
Xj(p)

∂Yi
∂xj

(p) − Yj(p)
∂Xi

∂xj
(p)

)
. (2.39)

This implies the desired formula (2.33). ut

As a direct consequence of the last proposition, we get the

Corollary 2.54. With the usual notations the bracket of two vector fields is
anti-symmetric, i.e.,

[X,Y ] = −[Y,X ] .

Proposition 2.55. Let ϕ : Mm −→ Nn be a diffeomorphism and let X, Y
be two vector fields on the manifold Mm. Then we have

ϕ∗[X,Y ] = [ϕ∗X,ϕ∗Y ] . (2.40)

Proof. For the proof it is useful to have the following composition in mind:

Nn ϕ−1

−→Mm ΓY
t−→Mm ϕ

−→ Nn .

We then compute, for p ∈ Nn,

ϕ∗

(
(Γ Yt )∗X

)
(p) = ϕ∗

((
dΓ Yt

)
ΓY
−t(·)

·X
(
Γ Y−t(·)

))
(p)

= dϕϕ−1(p) ◦
(
dΓ Yt

)
ΓY
−t(ϕ

−1(p))
·X
(
Γ Y−t(ϕ

−1(p))
)

= d
(
ϕ ◦ Γ Yt

)
ΓY
−t◦ϕ

−1(p)
·X
(
Γ Y−t ◦ ϕ

−1(p)
)
.
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This right-hand side can also be written as

d
(
ϕ ◦ Γ Yt ◦ ϕ−1

)
ϕ◦ΓY

−t◦ϕ
−1(p)

◦ dϕΓY
−t◦ϕ

−1(p) ·X
(
Γ Y−t ◦ ϕ

−1(p)
)
. (2.41)

We remember that Γϕ∗Y
t = ϕ ◦Γ Yt ◦ϕ−1 (see Proposition 2.48). Thus (2.41)

reads as

ϕ∗

(
(Γ Yt )∗X

)
(p) =

(
dΓϕ∗Y

t

)
Γϕ∗Y
−t (p)

◦ dϕΓY
−t◦ϕ

−1(p) ·X
(
Γ Y−t ◦ ϕ

−1(p)
)
,

or equivalently, for the right-hand side,
(
dΓϕ∗Y

t

)
Γϕ∗Y
−t (p)

◦ dϕ
ϕ−1
(
(ϕ◦ΓY

−t◦ϕ
−1)(p)

) ·X
(
ϕ−1

(
ϕ ◦ Γ Y−t ◦ ϕ

−1(p)
))
.

Using again Proposition 2.48, we arrive at

ϕ∗

(
(Γ Yt )∗X

)
(p) =

(
dΓϕ∗Y

t

)
Γϕ∗Y
−t (p)

◦ dϕ
ϕ−1
(
(Γϕ∗Y

−t )(p)
) ·X

(
ϕ−1

(
Γϕ∗Y
−t (p)

))

=
(
dΓϕ∗Y

t

)
Γϕ∗Y
−t (p)

· ϕ∗X
(
Γϕ∗Y
−t (p)

)
. (2.42)

For later use, we use again Definition (2.47) of the push-forward to obtain

ϕ∗

(
(Γ Yt )∗X

)
(p) = (Γϕ∗Y

t )∗
(
ϕ∗X

)
(p) . (2.43)

Taking the derivative with respect to the “time” t in (2.42), leads to

d

dt

∣∣∣∣
t=0

ϕ∗

(
(Γ Yt )∗X

)
(p) =

d

dt

∣∣∣∣
t=0

(
dΓϕ∗Y

t

)
Γϕ∗Y
−t (p)

· ϕ∗X
(
Γϕ∗Y
−t (p)

)

= [ϕ∗X,ϕ∗Y ](p) ,

where the Definition 2.52 for the bracket is used. ut

Remark. Concerning the regularity of the vector field in (2.40), the bracket
and the push-forward both reduce the degree of regularity by one. And this
obviously holds for both sides of the equality (2.40).

Proposition 2.56 (Jacobi Identity). Let Mm be a Ck+1-manifold and let
X, Y , Z be three Ck-vector fields on Mm with k ≥ 2. Then we have

[
X, [Y, Z]

]
+
[
Z, [X,Y ]

]
+
[
Y, [Z,X ]

]
= 0 . (2.44)

Proof. First, we define the Ck−1-vector field W on Mm to be the bracket
[X,Y ] of X and Y . By Definition 2.52, we then have

[W,Z](p) =
d

dt

∣∣∣∣
t=0

(
(ΓZt )∗W

)
(p)

=
d

dt

∣∣∣∣
t=0

(
(ΓZt )∗[X,Y ]

)
(p) . (2.45)
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On the other hand, Proposition 2.55 implies that

(ΓZt )∗[X,Y ] =
[
(ΓZt )∗X, (Γ

Z
t )∗Y

]
(p) .

Inserting this into (2.45) leads to

[
[X,Y ], Z

]
(p) =

d

dt

∣∣∣∣
t=0

[
(ΓZt )∗X, (Γ

Z
t )∗Y

]
(p) . (2.46)

Differentiating the right-hand side like a product and using again the defini-
tion of the bracket, we end up with

[
[X,Y ], Z

]
(p) =

[
[X,Z], Y

]
(p) +

[
X, [Y, Z]

]
(p) .

Due to the anti-symmetry of the bracket, this is equivalent to (2.44). ut

The bracket of two vector fields measures the extent to which their flows
fail to commute.

Proposition 2.57. Let Mm be a manifold and let X, Y be two vector fields
on Mm with corresponding flows ΓXt and Γ Ys . Then we have that [X,Y ](p) =
0, for all p ∈Mm, if and only if the corresponding flows commute, i.e.,

ΓXt ◦ Γ Ys = Γ Ys ◦ ΓXt , (2.47)

for all times for which the flows exist.

Proof. From Theorem 2.49 the flows of the two vector fields X , Y exist and
are (local) diffeomorphisms (see Corollary 1.23 which can be extended to
manifolds). – First, we show that

(ΓXt )∗[X,Y ] =
d

dt
(ΓXt )∗Y . (2.48)

Indeed, since ΓXt+s = ΓXt ◦ ΓXs (see Proposition 1.22), we deduce from the
chain rule that

(ΓXt+s)∗Y = (ΓXt )∗(Γ
X
s )∗Y .

Then, it follows

d

dt
(ΓXt )∗Y =

d

ds

∣∣∣∣
s=0

(ΓXt+s)∗Y = (ΓXt )∗
d

ds

∣∣∣∣
s=0

(ΓXs )∗Y .

Using Definition 2.52 of the bracket, we obtain

d

dt
(ΓXt )∗Y = (ΓXt )∗[X,Y ] ,

as claimed.
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Now, we assume that [X,Y ] = 0. Then from (2.48) and Proposition 2.48,
we deduce that

Γ Ys = Γ
(ΓX

t )∗Y
s = ΓXt ◦ Γ Ys ◦ ΓX−t ,

so that (2.47) follows.
Conversely, assume that the flows commute, i.e., ΓXt ◦Γ Ys = Γ Ys ◦ΓXt , or

equivalently,
ΓXt ◦ Γ Ys ◦ ΓX−t = Γ Ys .

Applying again Proposition 2.48 to ΓXt , we deduce that (ΓXt )∗Y = Y . Hence,
by (2.48) the bracket of X and Y vanishes. ut

The next theorem gives a geometric interpretation of the bracket.

Theorem 2.58 (“Double” Straightening Theorem). Let Mm be a man-
ifold and let X, Y be two C1-vector fields on Mm. Moreover, assume that
there exists p̃ ∈Mm such that X(p̃) and Y (p̃) are linearly independent. Then
the following assertions are equivalent:

(i) There exists a local chart (U, y) about p̃ such that, for all p ∈ U , we have

X(p) =
∂

∂y1
(p) and Y (p) =

∂

∂y2
(p) .

(ii) For all p ∈ U the bracket vanishes, i.e., [X,Y ](p) = 0 .

Proof. For (i) implies (ii): We apply the local coordinate expression (2.33) for
the bracket to X(p) = ∂

∂y1
(p) and Y (p) = ∂

∂y2
(p), p ∈ U . A straightforward

computation then shows that [X,Y ](p) = 0, for all p ∈ U .
For (ii) implies (i): Let (U ′, x) be a local chart about p̃ ∈ Mm such

that p̃ = 0. (Note that by a slight abuse of notation we identify points
(x1, . . . , xm) ∈ Rm with points p ∈ U ′ via the chart.) After applying a linear
transformation, we may assume that

X(0) =
∂

∂x1
(0) and Y (0) =

∂

∂x2
(0) .

This is possible since X(0) and Y (0) are linearly independent by assumption.
By Theorem 2.49, there exist local flows ΓXt and Γ Ys for the C1-vector

fields X , respectively, Y . Consider now the map

φ : Ũ ⊂ Rm −→ Mm ,

(x1, x2, x
′) 7−→ φ(x1, x2, x

′) := ΓXx1
Γ Yx2

(
(0, 0, x′)

)
,

where we write x = (x1, x2, x
′) = (x1, x2, x3, . . . , xm) ∈ Ũ and Ũ is prescribed

by the local flows ΓXt and Γ Ys . From Theorem 2.49 and Corollary 1.23, which
can be extended to manifolds, we deduce that φ ∈ C1(Rm,M).

In a next step, we calculate the differential of φ at (0, 0, 0) ∈ Rm. Using
Definition 2.46 of the local flow, it follows
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dφ(0,0,0) · e1 =
d

dh

∣∣∣∣
h=0

ΓXh Γ
Y
0

(
(0, 0, 0)

)
= X(0) =

∂

∂x1
(0) .

It is important to note at this stage that since [X,Y ] = 0, the corresponding
flows ΓXt and Γ Ys commute by Proposition 2.57. Hence, we get

dφ(0,0,0)·e2 =
d

dh

∣∣∣∣
h=0

ΓX0 Γ Yh
(
(0, 0, 0)

)
=

d

dh

∣∣∣∣
h=0

Γ Yh Γ
X
0

(
(0, 0, 0)

)
= Y (0) =

∂

∂x2
(0) .

Moreover, for i = 3, . . . ,m, we have

dφ(0,0,0) · ei =
d

dh

∣∣∣∣
h=0

ΓX0 Γ Y0
(
(0, 0, h ei)

)
=

d

dh

∣∣∣∣
h=0

h ei =
∂

∂xi
(0) .

(Note again that we write h ei for the point inMm corresponding to h ei ∈ Rm

via the chart.) In summary, we see that dφ(0,0,0) is an isomorphism and thus,
by the Local Inversion Theorem 1.10, the map φ is a local C1-diffeomorphism,
say, onto U ⊂Mm open.

Then, we define ϕ = φ−1. For x = (x1, x2, x
′) ∈ φ−1(U), we compute,

using Proposition 1.22 extended to manifolds,

dφ(x1,x2,x′) · e1 =
d

dh

∣∣∣∣
h=0

ΓXx1+hΓ
Y
x2

(
(0, 0, x′)

)
=

d

dh

∣∣∣∣
h=0

ΓXh Γ
X
x1
Γ Yx2

(
(0, 0, x′)

)

=
d

dh

∣∣∣∣
h=0

ΓXh
(
φ(x)

)
= X

(
φ(x)

)
,

and similarly, because the flows ΓXt and Γ Ys commute by assumption,

dφ(x1,x2,x′) · e2 =
d

dh

∣∣∣∣
h=0

ΓXx1
Γ Yx2+h

(
(0, 0, x′)

)
=

d

dh

∣∣∣∣
h=0

ΓXx1
Γ Yh Γ

Y
x2

(
(0, 0, x′)

)

=
d

dh

∣∣∣∣
h=0

Γ Yh Γ
X
x1
Γ Yx2

(
(0, 0, x′)

)
= Y

(
φ(x)

)
.

This completes the proof, since ϕ = (y1, . . . , ym) : U ⊂ Mm −→ Rm gives
rise to local coordinates on U satisfying, for all p ∈ U ,

X(p) =
∂

∂y1
(p) and Y (p) =

∂

∂y2
(p) .

ut

Remark. Note the similarity in the proofs of the two “Straightening Theo-
rems” 1.25 and 2.58.



3 Differential Calculus on Manifolds

3.1 Differential Calculus on Rn

3.1.1 Skew-symmetric Forms on Rn

Definition 3.1. A skew-symmetric or alternating p-form α on Rn is a
map

α : Rn × . . .× Rn︸ ︷︷ ︸ −→ R

p− times

such that

(i) it is linear in each factor, i.e., with λ, µ ∈ R we have, for all k = 1, . . . , p,

α(v1, . . . , λ vk + µwk , . . . , vp) = λα(v1, . . . , vk, . . . , vp)

+µα(v1, . . . , wk, . . . , vp) , (3.1)

where v1, . . . , vp ∈ Rn and wk ∈ Rn;
(ii) it is skew-symmetric, i.e., for all permutations σ ∈ Sp of {1, . . . , p}, we

have
α(vσ(1), . . . , vσ(p)) = (−1)|σ| α(v1, . . . , vp) , (3.2)

where (−1)|σ| denotes the signature of the permutation with |σ| = p− k,
k being the number of orbits.

Moreover, we denote the set of skew-symmetric p-forms on Rn by
∧p

Rn.

We use the following conventions:

∧0
Rn = R ,

∧1
Rn = (Rn)∗ .

Lemma 3.2. The set
∧p

Rn has the following properties:

(i) If there exist i 6= j such that vi = vj ∈ Rn, then α(v1, . . . , vp) = 0.
(ii) For p > n, we have

∧p
Rn = {0}.
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(iii) The set
∧p

Rn is an R-vector space.

Proof. For (i): Let σ ∈ Sp such that σ(i) = j, σ(j) = i and σ(k) = k for
k 6= i, j. From (3.2) and the fact that vi = vj by assumption, we deduce

α(v1, . . . , vi, . . . , vj , . . . , vp) = −α(v1, . . . , vj , . . . , vi, . . . , vp)

= −α(v1, . . . , vi, . . . , vj , . . . , vp) .

This clearly implies α(v1, . . . , vp) = 0.
For (ii): Let v1, . . . , vp ∈ Rn with p > n. Then there exists vi such that

vi =
∑

j 6=i λjvj for some λj ∈ R. Assuming, for instance, i = p we compute,
using (i),

α(v1, . . . , vp) = α


v1, . . . , vp−1,

∑

j 6=i

λjvj




=
∑

j 6=i

λj α(v1, . . . , vp−1, vj) = 0 .

For (iii): The vector space structure for
∧p

Rn is straightforward. ut

Example 3.3. The map α : R3 −→ R, v = (v1, v2, v3) 7−→ v1 is a skew-
symmetric 1-form on R3, and the map α : R3 ×R3 −→ R, (v, w) 7−→ v2w3 −
v3w2 is a skew-symmetric 2-form on R3. – Note that the determinant is the
standard example for an alternating n-form on Rn.

With the following operation we can pass from one “degree” of a skew-
symmetric form to another.

Definition 3.4. Let α ∈
∧p

Rn and β ∈
∧q

Rn. We define the wedge or
exterior product of α and β, denoted by α∧ β ∈

∧p+q
Rn, in the following

way:

α∧β(v1, . . . , vp+q) =
∑

σ∈Sp+q

(−1)|σ|

p!q!
α(vσ(1), . . . , vσ(p))β(vσ(p+1), . . . , vσ(p+q)) .

(3.3)

Remark. It is easy to check that α ∧ β is indeed a skew-symmetric (p + q)-

form. Note also that for α ∈
∧0

Rn the exterior product reduces to usual
scalar multiplication.

Example 3.5. Let α ∈
∧1

Rn and β ∈
∧1

Rn, then we have

α ∧ β(v, w) = α(v)β(w) − α(w)β(v) . (3.4)
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In particular, let {ei}i=1,...,n denote the canonical basis of Rn. Then we

denote by {e∗i }i=1,...,n the dual basis of
∧1

Rn defined, for i = 1, . . . , n, by

e∗i (v) := vi , v =

n∑

j=1

vj ej .

From this and (3.4), we see that

e∗i ∧ e
∗
j (v, w) = e∗i (v)e

∗
j (w) − e∗i (w)e∗j (v) = vi wj − wi vj . (3.5)

Proposition 3.6. Let α ∈
∧p

Rn and β ∈
∧q

Rn. Then the exterior product

a) is “anti-commutative”, i.e.,

α ∧ β = (−1)pqβ ∧ α ;

b) is associative, i.e., if γ ∈
∧r

Rn, then

(α ∧ β) ∧ γ = α ∧ (β ∧ γ) ;

c) is distributive, i.e., if γ ∈
∧q

Rn, then

α ∧ (β + γ) = α ∧ β + α ∧ β .
Proof. ut

As an application of the previous proposition, (3.5) extends to

e∗i1 ∧ . . . ∧ e
∗
ip(v1, . . . , vp) =

∑

σ∈Sp

(−1)|σ|v
iσ(1)

1 . . . v
iσ(p)
p . (3.6)

This result has an important consequence.

Proposition 3.7. Let p ≤ n and {ei}i=1,...,n the canonical basis of Rn. Then
the set

{e∗i1 ∧ . . . ∧ e
∗
ip}1≤i1<...<ip≤n

form a basis of
∧p

Rn. And
∧p

Rn is thus of dimension Cpn = n!
p!(n−p)! .

Proof. Let ek1 , . . . , ekp
∈ Rn be p basis vectors. Using (3.6), we then obtain

e∗i1 ∧ . . . ∧ e
∗
ip(ek1 , . . . , ekp

) =
∑

σ∈Sp

(−1)|σ|δ
iσ(1)

k1
. . . δ

iσ(p)

kp
.

This expression is different from zero if and only if {i1, . . . , ip} = {k1, . . . , kp},
showing that {e∗i1 ∧ . . . ∧ e

∗
ip}i1<...<ip is a free (linearly independent) family.

Moreover, for α ∈
∧p

Rn, we compute
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α(v1, . . . , vp)
(3.1)
=

∑

i1,...,ip

vi11 . . . vipp α(ei1 , . . . , eip)

=
∑

i1<...<ip

∑

σ∈Sp

v
iσ(1)

1 . . . v
iσ(p)
p α(eiσ(1)

, . . . , eiσ(p)
) ,

where we used Lemma 3.2 (i). Using again (3.6), we obtain

α(v1, . . . , vp)
(3.2)
=

∑

i1<...<ip

∑

σ∈Sp

v
iσ(1)

1 . . . v
iσ(p)
p (−1)|σ|α(ei1 , . . . , eip)

=
∑

i1<...<ip

α(ei1 , . . . , eip) e∗i1 ∧ . . . ∧ e
∗
ip(v1, . . . , vp) .

Thus {e∗i1 ∧ . . . ∧ e
∗
ip}i1<...<ip is also a generating family and we have

α =
∑

i1<...<ip

α(ei1 , . . . , eip) e∗i1 ∧ . . . ∧ e
∗
ip . (3.7)

ut

Next, we define an important natural operation on alternating forms.

Definition 3.8. Let ϕ : Rn −→ Rm be a linear map and let α ∈
∧p

Rm. We
define the pull-back ϕ∗α ∈

∧p
Rn of α by ϕ by

(
ϕ∗α

)
(v1, . . . , vp) = α

(
ϕ(v1), . . . , ϕ(vp)

)
,

where v1, . . . , vp ∈ Rn.

Remark. The map ϕ∗ :
∧p

Rm −→
∧p

Rn is linear and satisfies also, for α,
β ∈

∧p
Rm,

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β . (3.8)

3.1.2 Differential Forms on Rn

The notion of alternating p-forms on Rn enables us to introduce another
important object in differential geometry.

Definition 3.9. A Ck-differential p-form on an open set U ⊂ Rn is a
Ck-map from U into

∧p
Rn. We denote this space by Ωp

k(U) = Ck(U,
∧p

Rn)
or simply Ωp(U) in the case of C∞-differential p-forms.

Example 3.10. Let f ∈ Ck+1(U,R) with its differential defined in Section 1.1.
The differential can be seen as the map

df ∈ Ck
(
U, (Rn)∗

)
= Ck(U,

∧1
Rn) = Ω1

k(U) .

In particular, the differential of the k-th coordinate function xk : U −→
R (k = 1, . . . , n) of Rn reads as (dxk)x · ei = δik , x ∈ U ; hence, dxk ∈

C∞(U,
∧1

Rn) is the constant map x 7−→ e∗k on U .
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Definition 3.11. Let α ∈ Ωp
k(U) and β ∈ Ωqk(U). We define the wedge or

exterior product α∧ β ∈ Ωp+q
k (U) of the differential forms α and β by the

map x 7−→ α(x) ∧ β(x) ∈ Ck(U,
∧p+q

Rn).

Remark. Clearly, Proposition 3.6 extends to differential forms on Rn.

Since {e∗i1 ∧ . . . ∧ e
∗
ip
}i1<...<ip is a basis of

∧p
Rn by Proposition 3.7, we

deduce that α is a Ck-differential p-form on U ⊂ Rn if and only if there exist
Cpn C

k-functions

αI : U −→ R ,

x 7−→ αI(x) := α(x)
(
ei1 , . . . , eip

)
,

where I = {(i1, . . . , ip)|i1 < . . . < ip}, such that (see (3.7))

α(x) =
∑

I

αI(x) dxi1 (x) ∧ . . . ∧ dxip (x) , (3.9)

for all x ∈ U . – Note that in the following the argument of a differential form
will often be dropped.

In particular, (3.9) implies for Example 3.10 that

df =
n∑

k=1

∂f

∂xk
dxk ∈ Ω1

k(U) , (3.10)

where ∂f
∂xk

means the usual partial derivative of f ∈ Ck(U,R) at x in the

direction ek, i.e., ∂f
∂xk

(x) = dfx · ek.
Now, we introduce an important operation on differential forms which can

be interpreted as extension to the usual differentiation of real valued functions
on Rn. – We denote by d the map assigning to a function f ∈ Ck+1(U,R) its
differential df , i.e.,

d : Ω0
k+1(U) = Ck+1(U,R) −→ Ω1

k(U) .

This can be generalized to a mapping, also denoted by d, from Ωp
k+1(U) into

Ωp+1
k (U), where 0 ≤ p ≤ n − 1. The explicit expression of d is given in the

following definition.

Definition 3.12. Let

α =
∑

I

αI dxi1 ∧ . . . ∧ dxip ∈ Ωpk+1(U) .

Then, we define dα ∈ Ωp+1
k (U) by

dα =

n∑

l=1

∑

I

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip . (3.11)

The operation d is called the exterior derivative.
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Remark. Note that d is a linear operation, i.e., for α, β ∈ Ωp(U) we have
that

d(α+ β) = dα+ dβ . (3.12)

And comparing the defining equation (3.11) with (3.10), we see that the
exterior derivative coincides also on Ω0(U) with the usual differentiation.

Moreover, we observe that

d(αI dxi1 ∧ . . . ∧ dxip) =

n∑

l=1

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip ,

even if {i1, . . . , ip} are not ordered in a increasing way. Indeed, if σ ∈ Sp such
that iσ(1) < . . . < iσ(p) and α = αI (−1)|σ| dxiσ(1)

∧ . . . ∧ dxiσ(p)
, then with

(3.11) we get

d(αI dxi1 ∧ . . . ∧ dxip) = d(αI (−1)|σ| dxiσ(1)
∧ . . . ∧ dxiσ(p)

)

=

n∑

l=1

∂

∂xl

(
αI (−1)|σ|

)
dxl ∧ dxiσ(1)

∧ . . . ∧ dxiσ(p)

=
n∑

l=1

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip .

Relation to Vector Analysis in R3

Now, we want to study the relation between exterior derivative and well-
know operations of vector analysis in R3. – Let n = 3. We already know that
the exterior derivative of a function corresponds to the gradient (see (3.10)).
Moreover, let α = α1 dx1 + α2 dx2 + α3 dx3 ∈ Ω1(R3). We compute

dα =
∂α1

∂x2
dx2 ∧ dx1 +

∂α1

∂x3
dx3 ∧ dx1

+
∂α2

∂x1
dx1 ∧ dx2 +

∂α2

∂x3
dx3 ∧ dx2

+
∂α3

∂x1
dx1 ∧ dx3 +

∂α3

∂x2
dx2 ∧ dx3

=

(
∂α2

∂x1
−
∂α1

∂x2

)
dx1 ∧ dx2 +

(
∂α1

∂x3
−
∂α3

∂x1

)
dx3 ∧ dx1

+

(
∂α3

∂x2
−
∂α2

∂x3

)
dx2 ∧ dx3 .

If we identify the exterior product dxi+1 ∧ dxi−1, where the indices are in
Z/3Z, with the basis vectors ei (i=1,. . . ,3) on R3, we observe that the exterior
derivative dα of a 1-form corresponds to rotα, with α = (α1, α2, α3) vector
field on R3.
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Let now β ∈ Ω2(R3) with

β = β1 dx2 ∧ dx3 + β2 dx3 ∧ dx1 + β3 dx1 ∧ dx2 .

A simple calculation shows that

dβ =

(
∂β1

∂x1
+
∂β2

∂x2
+
∂β3

∂x3

)
dx1 ∧ dx2 ∧ dx3 .

Hence, if we identify dx1 ∧ dx2 ∧ dx3 with the scalar 1, we observe that dβ
corresponds to div β, with β = (β1, β2, β3) vector field on R3. – In summary,
in the three-dimensional case the exterior derivative translates to well-known
operations of vector analysis.

The “Leibniz-rule” in the following proposition shows that the exterior
derivative is a derivation.

Proposition 3.13. Let α ∈ Ωp(U) and β ∈ Ωq(U). Then we have

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ . (3.13)

Proof. We first prove (3.13) for

α = αI dxi1 ∧ . . . ∧ dxip , β = βJ dxj1 ∧ . . . ∧ dxjq ,

where αI , βJ ∈ C∞(U,R) for some choice of indices i1 < . . . < ip and
j1 < . . . < jq . The exterior product reads as

α ∧ β = αI βJ dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq .

We compute the exterior derivative of the wedge product, using several prop-
erties of the wedge product (see Proposition 3.6) and the definition of the
exterior derivative:

d(α ∧ β) =

n∑

l=1

∂

∂xl
(αI βJ) dxl ∧ dxi1 ∧ . . . ∧ dxip ∧ dxj1 ∧ . . . ∧ dxjq

=

(
n∑

l=1

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip

)
∧ βJ dxj1 ∧ . . . ∧ dxjq

+
n∑

l=1

(
αI dxl ∧ dxi1 ∧ . . . ∧ dxip

)
∧
∂βJ
∂xl

dxj1 ∧ . . . ∧ dxjq

= dα ∧ β +

n∑

l=1

(
αI dxi1 ∧ . . . ∧ dxip

)
∧ (−1)p

∂βJ
∂xl

dxl ∧ dxj1 ∧ . . . ∧ dxjq

= dα ∧ β + (−1)pα ∧ dβ .

By linearity of the exterior derivative, we easily establish the proof for general
α and β. ut
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Proposition 3.14. The map

d ◦ d : Ωp(U) −→ Ωp+2(U) ,

where 0 ≤ p ≤ n− 2, is equal to zero.

Proof. Again it suffices to prove the proposition for α = αI dxi1 ∧ . . .∧dxip ∈
Ωp(U) and to conclude by linearity. We know that

dα =

n∑

l=1

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip .

Then we compute

d(dα) = d

(
n∑

l=1

∂αI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip

)

=
n∑

k=1

n∑

l=1

∂2αI
∂xk∂xl

dxk ∧ dxl ∧ dxi1 ∧ . . . ∧ dxip .

Since by the Lemma of Schwartz

∂2αI
∂xk∂xl

=
∂2αI
∂xl∂xk

,

and clearly dxk ∧ dxl = −dxl ∧ dxk , we obtain (the case k = l is trivial)

d(dα) =
∑

k<l

∂2αI
∂xk∂xl

dxk ∧ dxl ∧ dxi1 ∧ . . . ∧ dxip

+
∑

k>l

∂2αI
∂xk∂xl

dxk ∧ dxl ∧ dxi1 ∧ . . . ∧ dxip

=
∑

k<l

∂2αI
∂xk∂xl

dxk ∧ dxl ∧ dxi1 ∧ . . . ∧ dxip

−
∑

k<l

∂2αI
∂xk∂xl

dxk ∧ dxl ∧ dxi1 ∧ . . . ∧ dxip = 0 .

ut

We denote by

Ω(U) =

n⊕

p=0

Ωp(U) (3.14)

the associative, graded and “anti-commutative algebra of differential forms.
This algebra is often called Grassman algebra or exterior algebra of differen-
tial forms on U .
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Theorem 3.15. There exists a unique linear map d : Ω(U) −→ Ω(U) such
that

(i) d : Ωp(U) −→ Ωp+1(U);
(ii) on Ω0(U) the map d coincides with the differential of functions;
(iii) for all α ∈ Ωp(U) and β ∈ Ωq(U), we have

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ ;

(iv) and d ◦ d = 0.
Proof. ut

Next, we want to answer the question how to transport differential forms.

Definition 3.16. Let ϕ ∈ Ck
′

(U, V ), with k′ ≥ k + 1, where U and V open
sets of Rn and Rm, respectively. Moreover, let α ∈ Ωp

k(V ). We define the
pull-back ϕ∗α ∈ Ωpk(U) of α by ϕ in the following way:

ϕ∗αx = (dϕx)
∗αϕ(x) , x ∈ U . (3.15)

Remark. By Definition 3.8, we get, for v1, . . . , vp ∈ Rn,

ϕ∗αx(v1, . . . , vp) = αϕ(x)(dϕx · v1, . . . , dϕx · vp) , x ∈ U . (3.16)

If α ∈ Ω0(V ), then obviously ϕ∗α = α ◦ ϕ.

We prove that ϕ∗α is indeed a Ck-differential p-form on U . – Clearly, we
have that ϕ∗αx ∈

∧p
Rn for all x ∈ U . Since {e∗i1 ∧ . . .∧e

∗
ip
}i1<...<ip is a basis

for
∧p

Rn, we can write

ϕ∗αx =
∑

I

ϕ∗αx(ei1 , . . . , eip) e∗i1 ∧ . . . ∧ e
∗
ip .

And the definition of the pull-back gives

ϕ∗αx =
∑

I

αϕ(x)

(
∂ϕ

∂xi1
(x), . . . ,

∂ϕ

∂xip
(x)

)
e∗i1 ∧ . . . ∧ e

∗
ip .

Since by assumption α ∈ Ωp
k(V ) and ϕ ∈ Ck

′

(U, V ), we get that

x 7−→ αϕ(x)

(
∂ϕ

∂xi1
(x), . . . ,

∂ϕ

∂xip
(x)

)
∈ Ck(U,R) ,

implying ϕ∗α ∈ Ωpk(U). – Note that the regularity of the map ϕ determines
the regularity of the pull-back.

The properties of the pull-back are summarized in the following proposi-
tion.
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Proposition 3.17. Let ϕ ∈ C∞(U, V ) with U ⊂ Rn open, V ⊂ Rm open,
and let α ∈ Ωp(V ).

(i) For all β ∈ Ωp(V ), we have

ϕ∗(α+ β) = ϕ∗α+ ϕ∗β . (3.17)

(ii) For all β ∈ Ωq(V ), we have

ϕ∗(α ∧ β) = ϕ∗α ∧ ϕ∗β . (3.18)

(iii) For ψ ∈ C∞(V,W ) with W ⊂ Rl open, we have

(ψ ◦ ϕ)∗γ = ϕ∗(ψ∗γ) , (3.19)

where γ ∈ Ωp(W ).
(iv) The exterior derivative and the pull-back commute, i.e.,

d(ϕ∗α) = ϕ∗(dα) . (3.20)

Proof. Let x ∈ U ⊂ Rn and v1, . . . , vp ∈ Rn. For (i): We compute, using the
vector space structure on

∧p
Rn,

ϕ∗(α + β)x(v1, . . . , vp) = (α+ β)ϕ(x)(dϕx · v1, . . . , dϕx · vp)

= αϕ(x)(dϕx · v1, . . . , dϕx · vp)

+βϕ(x)(dϕx · v1, . . . , dϕx · vp)

= ϕ∗αx(v1, . . . , vp) + ϕ∗βx(v1, . . . , vp) .

For (ii): With Definition 3.4 of the exterior product, we obtain

ϕ∗
(
α ∧ β

)
x
(v1, . . . , vp+q) =

(
α ∧ β

)
ϕ(x)

(dϕx · v1, . . . , dϕx · vp+q)

=
∑

σ∈Sp+q

(−1)|σ|

p!q!
αϕ(x)

(
dϕx · vσ(1), . . . , dϕx · vσ(p)

)

·βϕ(x)

(
dϕx · vσ(p+1), . . . , dϕx · vσ(p+q)

)

=
∑

σ∈Sp+q

(−1)|σ|

p!q!
ϕ∗αx(vσ(1), . . . , vσ(p))

·ϕ∗βx(vσ(p+1), . . . , vσ(p+q))

= ϕ∗αx ∧ ϕ
∗βx(v1, . . . , vp+q) .

For (iii): Recall that for all v ∈ Rn the following formula for the compo-
sition holds (see Proposition 1.4):

d(ψ ◦ ϕ)x · v = dψϕ(x) · dϕx · v .

This implies, for γ ∈ Ωp(W ),
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(
ψ ◦ ϕ

)∗
γx(v1, . . . , vp) = γψ◦ϕ(x)

(
d(ψ ◦ ϕ)x · v1, . . . , d(ψ ◦ ϕ)x · vp

)

= γψ(ϕ(x))

(
dψϕ(x) · (dϕx · v1), . . . , dψϕ(x) · (dϕx · vp)

)

= ψ∗γϕ(x)(dϕx · v1, . . . , dϕx · vp)

= ϕ∗
(
ψ∗γ

)
x
(v1, . . . , vp) .

For (iv): First, we prove the statement for functions f ∈ Ω0(V ). For
v ∈ Rn, we deduce, using Definition 3.16,

(
ϕ∗df

)
x
(v) = dfϕ(x)(dϕx · v)

= d(f ◦ ϕ)x · v =
(
d(ϕ∗f)

)
x
(v) .

Hence, for functions we have that

ϕ∗(df) = d(ϕ∗f) . (3.21)

For the general case, let

α =
∑

J

αJ dyj1 ∧ . . . ∧ dyjp ∈ Ωp(V ) ,

where (y1, . . . , ym) denote the canonical coordinate functions on Rm. Using
(3.17) and (3.18), it follows

ϕ∗α =
∑

J

αJ ◦ ϕ ϕ∗dyj1 ∧ . . . ∧ ϕ
∗dyjp .

Writing yik ◦ϕ = ϕik : Rn −→ R, for k = 1, . . . , p, it follows from (3.21) that

ϕ∗α =
∑

J

αJ ◦ ϕ dϕj1 ∧ . . . ∧ ϕ
∗dϕjp .

Applying the exterior derivative, we get (recall that d ◦ d = 0)

d(ϕ∗α) =
∑

J

d(αJ ◦ ϕ) ∧ dϕj1 ∧ . . . ∧ dϕjp

(3.10)
=

∑

J

n∑

k=1

∂(αJ ◦ ϕ)

∂xk
dxk ∧ dϕj1 ∧ . . . ∧ dϕjp

By Proposition 1.4, we obtain

d(ϕ∗α) =
∑

J

n∑

k=1

m∑

l=1

∂αJ
∂yl

(
ϕ(·)

) ∂ϕl
∂xk

dxk ∧ dϕj1 ∧ . . . ∧ dϕjp

(3.10)
=

∑

J

m∑

l=1

∂αJ
∂yl

◦ ϕ dϕl ∧ dϕj1 ∧ . . . ∧ dϕjp

= ϕ∗

(∑

J

m∑

l=1

∂αJ
∂yl

dyl ∧ dyj1 ∧ . . . ∧ dyjp

)

= ϕ∗(dα) ,
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where the definition for the exterior derivative was used in the last line. ut

As an application of the proposition, we can compute the pull-back ex-
plicitly. – Let

α =
∑

J

αJ dyj1 ∧ . . . ∧ dyjp ∈ Ωp(V ) ,

where (y1, . . . , ym) denote the canonical coordinate functions on Rm. Then
the pull-back becomes, using (3.17) and (3.18),

ϕ∗α =
∑

J

ϕ∗
(
αJ dyj1 ∧ . . . ∧ dyjp

)

=
∑

J

ϕ∗αJ ϕ∗dyj1 ∧ . . . ∧ ϕ
∗dyjp

Writing again yik ◦ ϕ = ϕik : Rn −→ R, for k = 1, . . . , p, we obtain

ϕ∗α =
∑

J

αJ ◦ ϕ d(yj1 ◦ ϕ) ∧ . . . ∧ d(yjp ◦ ϕ)

=
∑

J

αJ ◦ ϕ dϕj1 ∧ . . . ∧ dϕjp . (3.22)

With (3.10), we arrive at

ϕ∗α =
∑

J

αJ ◦ ϕ
∑

i1,...,ip

∂ϕj1
∂xi1

. . .
∂ϕjp
∂xip

dxi1 ∧ . . . ∧ dxip . (3.23)

3.2 Differential Forms on Manifolds

3.2.1 The Cotangent Bundle

In the last section, we have seen skew-symmetric (alternated) p-forms on
Rn. Similarly, for an arbitrary finite dimensional vector space E, we define∧p

E∗ to be the alternated p-forms on E. Note that all the results obtained
in Section 3.1.1 remain true for this more general setting.

Alternated p-forms on a vector space play an important role in the context
of manifolds. – Let M be a m-dimensional Ck-differentiable manifold, k ≥
1, and p ∈ M . We already know that the tangent space TpM at p is a
m-dimensional vector space (see Definition 2.35). Denoting its dual space
(TpM)∗ by T ∗

pM , we denote by

∧p
T ∗
pM

the alternated p-forms on TpM . From a “set” point of view the cotangent
bundle of M is then defined by
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∧p
T ∗M =

⋃

p∈M

∧p
T ∗
pM .

For α ∈
∧p

T ∗
pM , the projection map to the base point reads as

π :
∧p

T ∗M −→ M ,

α 7−→ p . (3.24)

Let (U, x) be a local chart on M . The basis for TpM , p ∈ U , is then given
by { ∂

∂xi
}i=1,...,m (see (2.15)). Moreover, let xi ∈ Ck(U,R), for i = 1, . . . ,m,

denote the coordinate functions associated to the chart (U, x). As shown in
Exercise 2.43 the following formula holds, for all p ∈ U ,

dxi(p) ·
∂

∂xj
(p) = δij . (3.25)

Hence {
dxi(p)

}
i=1,...,m

(3.26)

is a basis of T ∗
pM dual to { ∂

∂xi
}i=1,...,m basis of TpM . Using Proposition 3.7,

we deduce that {
dxi1 (p) ∧ . . . ∧ dxip(p)

}
i1<...<ip

(3.27)

is a basis of
∧p

T ∗
pM .

Definition 3.18. Let M be a Ck-differentiable manifold of dimension m. A
Ck−1-differential p-form on M is a map

ω : M −→
∧p

T ∗M

such that π ◦ ω = idM , and for all local charts (U, x) on Mm there exist Cpm
functions ωI ∈ Ck−1(U,R) with I = {(i1, . . . , ip)|i1 < . . . < ip} satisfying

ω(p) =
∑

I

ωI(p) dxi1 (p) ∧ . . . ∧ dxip(p) , (3.28)

for all p ∈ U . – We denote the vector space of Ck-differential p-forms on M
by Ωpk(M).

Next, we want to construct a differentiable structure on the cotangent
bundle

∧p T ∗M in such a way that Ck-differentiable p-forms on M are just
Ck-sections, i.e., ω ∈ Ck(M,

∧p
T ∗M) and π◦ω = idM . – The method will be

very similar to the one used for the construction of the differentiable structure
on the tangent bundle TM in Section 2.5.3.

Let (Ui, ϕi)i∈I be an atlas for M . We set

∧p
T ∗Ui =

⋃

p∈Ui

∧p
T ∗
pM = π−1(Ui) ,
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and define

Φpi :
∧p

T ∗Ui −→ Rm ×
∧p

Rm ,

ω 7−→
(
ϕi ◦ π(ω), ϕpi (ω)

)
, (3.29)

with
ϕpi (ω) =

(
(dϕ−1

i )ϕi(p)

)∗
ω , (3.30)

where π(ω) = p ∈ Ui. More precisely, for v1, . . . , vp ∈ Rm, we have that

ϕpi (ω)(v1, . . . , vp) = ωp
(
d(ϕ−1

i )ϕi(p) · v1, . . . , d(ϕ
−1
i )ϕi(p) · vp

)
∈ R .

It is clear that Φpi is a bijection from
∧p

T ∗Ui into ϕi(Ui) ×
∧p

Rm. We
then say that Ω ⊂

∧p T ∗M is open if and only if for all i ∈ I the set
Φpi (Ω ∩

∧p
T ∗Ui) is open in Rm ×

∧p
Rm.

Proposition 3.19. These open sets define a (separated) topology on
∧p

T ∗M
which depends only on the differentiable structure of M , and not on the atlas
(Ui, ϕi)i∈I representing the fixed differentiable structure on M . Moreover, the
maps Φpi , i ∈ I, defined in (3.29) are homeomorphisms for this topology and
the projection π is continuous.

Proposition 3.20. Let M be a m-dimensional Ck-manifold with k ≥ 2 and
let (Ui, ϕi)i∈I be an atlas for Mm. Then (

∧p T ∗Ui, Φ
p
i )i∈I defines a Ck−1-

differentiable structure on the cotangent bundle
∧p

T ∗M , depending only on
the differentiable structure on Mm. And

∧p
T ∗M is a Ck−1-differentiable

manifold of dimension m + Cpm for this differentiable structure. Moreover,
the projection π is a Ck−1-submersion for this differentiable structure.

The two last propositions can be proved exactly in the same way as the
corresponding Propositions 2.37 and 2.38 for the tangent bundle, once we
have identified the transition functions. Therefore, we first prove the following

Lemma 3.21. Let (Ui, ϕi)i∈I and (Vj , ψj)j∈J be two equivalent systems of
charts for M . Moreover, let i ∈ I and j ∈ J such that Ui ∩ Vj 6= ∅. Then on
Φpi (
∧p

T ∗(Ui ∩ Vj)) ⊂ Rm ×
∧p

Rm the following formula for the transition
functions on

∧p T ∗M holds:

Ψpj ◦ (Φpi )
−1(x, β) =

(
ψj ◦ ϕ

−1
i (x), (ϕi ◦ ψ

−1
j )∗β

)
, (3.31)

where ϕ−1
i (x) = p ∈ Ui ∩ Vj and β ∈

∧p
Rm.

Proof. The defining equation (3.29) gives

Ψpj
(
ω
)
(v1, . . . , vp) =

(
ψj ◦ π(ω), ωp

(
d(ψ−1

j )ψ(p) · v1, . . . , d(ψ
−1
j )ψ(p) · vp

))
,

where ω ∈
∧p

T ∗Vj and v1, . . . , vp ∈ Rm. Moreover, let [γ1], . . . , [γp] ∈ TpM
be tangent vectors at p, i.e., γl ∈ C1([0, 1],M), for l = 1, . . . , p, are
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∧p
T ∗M

∧p
T ∗Ui

Φpi

π

Vj
Ui

Ψpj

ψjϕi

β

ϕ∗
i (ψ−1

j )∗

M

∧p T ∗Vj

Rm
∧p

Rm Rm
∧p

Rm

x

Fig. 3.1. Transition functions for the cotangent bundle.

smooth paths in M with γl(0) = ϕ−1
i (x) = p. Then the alternating p-form(

(Φpi )
−1(x, β)

)
on TpM , acting on [γ1], . . . , [γp], equals

(
(Φpi )

−1(x, β)
)
([γ1], . . . , [γp]) = β

(
dϕi · [γ1], . . . , dϕi · [γp]

)
∈
∧p

T ∗
pM ,

where β ∈
∧p

Rm. Hence, for the transition functions we deduce

Ψpj
(
(Φpi )

−1(x, β)
)
(v1, . . . , vp)

=
(
ψj ◦ π

(
(Φpi )

−1(x, β)
)
,
(
(Φpi )

−1(x, β)
)
(dψ−1

j · v1, . . . , dψ
−1
j · vp)

)

=
(
ψj ◦ ϕ

−1
i (x), β

(
dϕi · dψ

−1
j · v1, . . . , dϕi · dψ

−1
j · vp

))
.

With Definition 3.16 of the pull-back, we then arrive at

Ψpj
(
(Φpi )

−1(x, β)
)
(v1, . . . , vp)

=
(
ψj ◦ ϕ

−1
i (x), β

(
d(ϕi ◦ ψ

−1
j ) · v1, . . . , d(ϕi ◦ ψ

−1
j ) · vp

))

=
(
ψj ◦ ϕ

−1
i (x), (ϕi ◦ ψ

−1
j )∗β(v1, . . . , vp)

)
.

ut
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As mentioned before we can prove Propositions 3.19 and 3.20 with this
lemma exactly as in the case of the tangent bundle. We only note that from
the explicit expression (3.31) for the transition functions, we deduce that
they are Ck−1-diffeomorphisms (direct consequence of the Definition 3.16 for
the pull-back for differential forms on Rm). – These results allow us to see
differential forms on a manifold from a different point of view, namely as
sections of the cotangent bundle.

Proposition 3.22. Let M be a Ck
′

-differentiable manifold of dimension m,
with k′ ≥ k + 1. Then a Ck-differential p-form is a Ck-section of

∧p T ∗M
for the above defined differential structure.

Proof. Let ω ∈ Ωpk(M) and (Ui, ϕi)i∈I an atlas for M . In order to show that
ω ∈ Ck(M,

∧p
T ∗M), it suffices by Definition 2.27 to prove that

a) the map ω : M −→
∧p

T ∗M is continuous,
b) and for all i, j ∈ I with Ui ∩ Uj 6= ∅ the coordinate expression for ω

Φpj ◦ ω ◦ ϕ−1
i : ϕi

(
ω−1

(∧p
T ∗Uj

)
∩ Ui

)
⊂ Rm −→ Rm ×

∧p
Rm

is a Ck-map.

For a): We assume that Ω ⊂
∧p

T ∗M is open and show that ω−1(Ω) is
open in M . Since ϕi, i ∈ I , is a bijection, we can write

ω−1(Ω) =
⋃

i∈I

(ϕi)
−1ϕi

(
ω−1(Ω) ∩ Ui

)
, (3.32)

and, since Φpj , j ∈ I , is also a bijection,

ϕi
(
ω−1(Ω) ∩ Ui

)
= ϕi


ω−1


⋃

j∈J

(Φpj )
−1Φpj

(
Ω ∩

∧p
T ∗Uj

)

 ∩ Ui




= ϕi


⋃

j∈J

(
Φpj ◦ ω

)−1(
Φpj (Ω ∩

∧p
T ∗Uj)

)
∩ Ui




=
⋃

j∈J

ϕi

((
Φpj ◦ ω

)−1(
Φpj (Ω ∩

∧p
T ∗Uj)

)
∩ Ui

)
. (3.33)

This is equivalent to

⋃

j∈J

((
Φpj ◦ ω ◦ ϕ−1

i

)−1(
Φpj (Ω ∩

∧p
T ∗Uj)

))
.

By definition, the map Φpj ◦ω ◦ϕ−1
i is defined on the set ϕi

(
ω−1

(∧p
T ∗Uj

)
∩

Ui

)
⊂ Rm which is open.
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We postpone the proof of a) and look first at b). By Definition 3.18, we
mean by ω ∈ Ωpk(M) that there exist for each local chart (Ui, ϕi) functions
ωI ∈ Ck(Ui,R) such that

ω =
∑

I

ωI dϕi1 ∧ . . . ∧ dϕip , (3.34)

on Ui. Moreover, for x ∈ ϕi

(
ω−1

(∧p
T ∗Uj

)
∩ Ui

)
and v1, . . . , vp ∈ Rm the

coordinate expression for ω reads as, using (3.29),

(
Φpj ◦ ω ◦ ϕ−1

i

)
x
(v1, . . . , vp) =

(
ϕj ◦ ϕ

−1
i (x), ϕpj

(
ω
)
(v1, . . . , vp)

)
, (3.35)

where

ϕpj
(
ω
)
(v1, . . . , vp) = ωϕ−1

i (x)

(
d(ϕ−1

j )x · v1, . . . , d(ϕ
−1
j )x · vp

)
.

The first factor of (3.35) is clearly a Ck
′

-map, since M is by assumption a
Ck

′

-differential manifold. Using the representation (3.34), the second factor
becomes
∑

I

ωI ◦ ϕ
−1
i (x)

(
dϕi1 ∧ . . . ∧ dϕip

)
ϕ−1

i (x)

(
d(ϕ−1

j )x · v1, . . . , d(ϕ
−1
j )x · vp

)
.

Since for the differentials of the coordinate functions we have dϕi(p) = e∗i for
arbitrary p ∈ M (see Section 3.1.2), the last expression equals

∑

I

ωI ◦ ϕ
−1
i (x) e∗i1 ∧ . . . ∧ e

∗
ip

(
dϕi · d(ϕ

−1
j )x · v1, . . . , dϕi · d(ϕ

−1
j )x · vp

)

=
∑

I

ωI ◦ ϕ
−1
i (x) e∗i1 ∧ . . . ∧ e

∗
ip

(
d(ϕi ◦ ϕ

−1
j )x · v1, . . . , d(ϕi ◦ ϕ

−1
j )x · vp

)

=
∑

I

ωI ◦ ϕ
−1
i (x) (ϕi ◦ ϕ

−1
j )∗

(
e∗i1 ∧ . . . ∧ e

∗
ip

)
(v1, . . . , vp) ,

which is clearly a Ck-map.
Coming back to a), we first note that by definition of the topology on∧p
T ∗M the set Φpj (Ω ∩

∧p
T ∗Uj) is by assumption open in Rm ×

∧p
Rm.

From this and using (3.33), we then get the openness of ϕi
(
ω−1(Ω) ∩ Ui

)
.

With (3.32), we deduce that ω−1(Ω) is open in M and the continuity of the
map ω. ut

Remark. The last proposition can be interpreted as alternative definition for
differential forms on manifolds. Note also that the proof of it is completely
analogous to the one showing the regularity of the tangent map in Section
2.6.
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3.2.2 Operations on Differential Forms on Manifolds

At this place, the operations of pull-back and exterior derivative, already
defined for differential forms on Rm in Section 3.1.2, will be extended to
differential forms on manifolds.

Definition 3.23. Let Mm and Nn be two C∞-differentiable manifolds.
Moreover, let ϕ : Mm −→ Nn be a Ck

′

-map, k′ ≥ k + 1 and let ω ∈ Ωp
k(N).

The pull-back of ω by ϕ is the following element of Ωp
k(M) denoted by ϕ∗ω:

(
ϕ∗ω

)
p
(X1, . . . , Xp) = ωϕ(p)(dϕp ·X1, . . . , dϕp ·Xp) , (3.36)

where p ∈ M and X1, . . . , Xp ∈ TpM .

Remark. As in the case of differential forms on Euclidean space (see Defini-
tion 3.16) the previous definition can be reformulated as

(ϕ∗ω)p = (dϕp)
∗ωϕ(p) . (3.37)

From the definition, it is clear that the pull-back is in
∧p

T ∗
pM for all

p ∈ M . However, it remains to show that ϕ∗ω ∈ Ωpk(M). – Let (U, x) be a
local chart on M . Due to (3.28), we can expand the pull-back on U as

ϕ∗ω =
∑

I

(ϕ∗ω)I dxi1 ∧ . . . ∧ dxip ,

where

(
ϕ∗ω

)
I
(p) = (ϕ∗ω)p

(
∂

∂xi1
(p), . . . ,

∂

∂xip
(p)

)
∈ Ck(U,R) ,

showing that ϕ∗ω ∈ Ωpk(M). More precisely, this is a direct consequence of
(3.23) which generalizes easily to differential forms on manifolds.

The properties of the pull-back for differential forms on Rn, summarized
in Proposition 3.17, remain true for differential forms on manifolds.

Proposition 3.24. Let ϕ ∈ C∞(M,N) and let ω ∈ Ωp(N).

(i) For all ω̃ ∈ Ωp(N), we have

ϕ∗(ω + ω̃) = ϕ∗ω + ϕ∗ω̃ . (3.38)

(ii) For all ω̃ ∈ Ωq(N), we have

ϕ∗(ω ∧ ω̃) = ϕ∗ω ∧ ϕ∗ω̃ . (3.39)

(iii) For ψ ∈ C∞(N,W ) with W another differentiable manifold, we have

(ψ ◦ ϕ)∗γ = ϕ∗(ψ∗γ) , (3.40)

where γ ∈ Ωp(W ).
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Definition 3.25. Let ω ∈ Ωp
k(M) and (U, x) local chart of a C∞-differentiable

manifold M . We define on U the following element in Ωp+1
k−1(M) denoted by

dω:
dωp =

(
x∗ d

(
(x−1)∗ω

))
p
, p ∈ U . (3.41)

The form dω ∈ Ωp+1
k−1(M) is called the exterior derivative of ω ∈ Ωp

k(M).

We want to show that this definition is independent of the chart (U, x). –
Let (U, y) be another chart, i.e., that y : U −→ Rm is a C∞-diffeomorphism
from U into y(U). Then (3.40) implies

y∗ d
(
(y−1)∗ω

)
= y∗ d

(
(y−1)∗x∗(x−1)∗ω

)

= y∗ d
(
(x ◦ y−1)∗(x−1)∗ω

)
,

where x ◦ y−1 : y(U) ⊂ Rm −→ Rm is a C∞-diffeomorphism. Note that
α := (x−1)∗ω ∈ Ωp

(
y(U)

)
. Using that the operations d and the pull-back

commute for a C∞-map on Euclidean spaces (see Proposition 3.17), we obtain

y∗ d
(
(y−1)∗ω

)
= y∗(x ◦ y−1)∗ d

(
(x−1)∗ω

)

= (x ◦ y−1 ◦ y)∗ d
(
(x−1)∗ω

)

= x∗ d
(
(x−1)∗ω

)
.

This shows that the previous definition is independent of the chart. Moreover,
the fact that dω ∈ Ωp+1

k−1(M) becomes clear due to the following proposition.

Proposition 3.26. Let ω ∈ Ωp
k(M) and let (U, x) be a local chart for the

C∞-differentiable manifold M . Assume that ω has the local form

ω =
∑

I

ωI dxi1 ∧ . . . ∧ dxip .

Then for the exterior derivative of ω, we have the following local expression:

dω =
∑

I

m∑

l=1

∂ωI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip . (3.42)

Proof. We compute, using the local representation for ω,

dω = x∗ d
(
(x−1)∗ω

)

= x∗ d

(
(x−1)∗

(∑

I

ωI dxi1 ∧ . . . ∧ dxip

))

From the linearity of the pull-back and (3.39), we then deduce

dω = x∗d

(∑

I

ωI ◦ x
−1
(
(x−1)∗dxi1

)
∧ . . . ∧

(
(x−1)∗dxip

)
)
. (3.43)
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On the other hand, we claim that, for all x ∈ x(U) ⊂ Rm,
(
(x−1)∗dxk

)
x

= e∗k . (3.44)

Writing v =
∑m
j=1 v

j ej ∈ Rm, the linearity of the differential implies

(dx−1)x · v =

m∑

j=1

vj (dx−1)x · ej
(2.26)
=

m∑

j=1

vj
∂(x−1)

∂xj
(x) .

This leads to
(
(x−1)∗dxk

)
x
(v) = (dxk)x−1(x)

(
(dx−1)x · v

)

= (dxk)x−1(x)




m∑

j=1

vj
∂(x−1)

∂xj
(x)


 .

The linearity of the differential one-form dxk ∈ Ω1(M) then gives, for the
right-hand side,

m∑

j=1

vjdxk
(
x−1(x)

) (∂(x−1)

∂xj
(x)

)
= vk = e∗k(v) ,

showing the claim (3.44).
Inserting this in (3.43), we deduce

dω = x∗d

(∑

I

ωI ◦ x
−1 e∗i1 ∧ . . . ∧ e

∗
ip

)
.

Using the expression (3.11) for the exterior derivative acting on differential
forms on Rm, we obtain (denoting by (y1, . . . , ym) the coordinates on Rm)

dω = x∗

(∑

I

m∑

l=1

∂

∂yl
(ωI ◦ x

−1) e∗i1 ∧ . . . ∧ e
∗
ip

)
.

The properties of the pull-back and (3.44), then imply

dω =
∑

I

m∑

l=1

∂

∂yl
(ωI ◦ x

−1) ◦ x (x∗e∗i1) ∧ . . . ∧ (x∗e∗ip)

=
∑

I

m∑

l=1

∂ωI
∂xl

dxl ∧ dxi1 ∧ . . . ∧ dxip ,

as claimed in (3.42). ut

The properties of the exterior derivative d for differential forms on man-
ifolds coincide with those of the exterior derivative for differential forms on
Euclidean space. More precisely, we have the following
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Proposition 3.27. Let ω ∈ Ωp(M) and d the exterior derivative.

(i) The map d : Ω0(M) −→ Ω1(M) assigns to a function f ∈ Ω0(M) its
tangent map df : TM −→ R.

(ii) For all ω̃ ∈ Ωq(M) the following “Leibniz-rule” holds:

d(ω ∧ ω̃) = dω ∧ ω̃ + (−1)pω ∧ dω̃ . (3.45)

(iii) We have that d ◦ d = 0.
(iv) For all ϕ ∈ C∞(M,N) and all γ ∈ Ωp(N) the exterior derivative and the

pull-back commute:
ϕ∗(dγ) = d(ϕ∗γ) . (3.46)

Proof. The proof is strongly based on the analogous results for Rm in Section
3.1.2. – Let (U, x) be a local chart for M . For (i): Let f ∈ Ω0(M) and its
tangent map df defined by (see Definition (2.40) and the following remark)

dfp · [γ] =
d

dt

∣∣∣∣
t=0

(
f ◦ γ(t)

)
,

where [γ] ∈ TpM . In the other hand, the one-form df acts on the tangent
vector [γ] by

df
(
[γ]
)

=
(
x∗ d

(
(x−1)∗f

))(
[γ]
)

= d
(
(x−1)∗f

)(
dx · [γ]

)
.

Since (x−1)∗f = f ◦ x−1, we then obtain

df
(
[γ]
)

= d
(
f ◦ x−1

)(
dx · [γ]

)
.

Because the exterior derivative of differential one-forms on Rm coincides with
the tangent map, the last expression equals

d
(
f ◦ x−1

)
·
(
dx · [γ]

)
,

and by definition of the tangent map, we get the result:

df
(
[γ]
)

= d
(
f ◦ x−1

)
·
d

dt

∣∣∣∣
t=0

(
x ◦ γ(t)

)

=
d

dt

∣∣∣∣
t=0

(
f ◦ x−1 ◦ x ◦ γ(t)

)

=
d

dt

∣∣∣∣
t=0

(
f ◦ γ(t)

)
= df · [γ] .

For (ii): Let ω ∈ Ωp(M) and ω̃ ∈ Ωq(M). Then (3.39) gives

d(ω ∧ ω̃)
(3.41)
= x∗ d

(
(x−1)∗(ω ∧ ω̃)

)
= x∗ d

(
(x−1)∗ω ∧ (x−1)∗ω̃

)
.
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From the “Leibniz-rule” (3.13) for differential forms on Rm, we obtain

d(ω ∧ ω̃) = x∗
(
d
(
(x−1)∗ω

)
∧ (x−1)∗ω̃ + (−1)p(x−1)∗ω ∧ d

(
(x−1)∗ω̃

))
.

Using the properties of the pull-back summarized in Proposition 3.24 and
(3.20), we arrive at

d(ω ∧ ω̃) = x∗ d
(
(x−1)∗ω

)
∧ ω̃ + (−1)pω ∧ x∗ d

(
(x−1)∗ω̃

)

= dω ∧ ω̃ + (−1)pω ∧ dω̃ .

For (iii): Proposition 3.14 shows that

d(dω) = d
(
x∗ d

(
(x−1)∗ω

))

= x∗ d
(
(x−1)∗

(
x∗ d

(
(x−1)∗ω

)))

= x∗ d ◦ d
(
(x−1)∗ω

)
= 0 .

For (iv): For ϕ ∈ C∞(M,N) and all γ ∈ Ωp(N), we have, by definition
of the exterior derivative,

d(ϕ∗γ) = x∗ d
(
(x−1)∗ ϕ∗γ

)
.

The right-hand side can be written as

x∗ d
(
(x−1)∗ ϕ∗x∗(x−1)∗γ

)
.

From (3.40), we then deduce

d(ϕ∗γ) = x∗ d
((
x ◦ ϕ ◦ (x−1)

)∗
(x−1)∗γ

)
.

Since the pull-back and the exterior derivative commute for forms on Rn (see
(3.20)), we get

d(ϕ∗γ) = x∗ (
(
x ◦ ϕ ◦ (x−1)

)∗
d
(
(x−1)∗γ

)
.

Using again (3.40), we obtain easily the result

d(ϕ∗γ) = x∗(x−1)∗ϕ∗x∗ d
(
(x−1)∗γ

)

= ϕ∗x∗ d
(
(x−1)∗γ

)
= ϕ∗(dγ) .

ut

The next operation on differential forms will be very useful in Section 3.4.

Definition 3.28. Let Mm be a Ck-differentiable manifold, p ∈ Mm, and
ω ∈ Ωpk−1(M). Moreover, let X be a Ck−1-vector field on Mm. The interior

product of ω and X, denoted by intXω, is the following element of Ωp−1
k−1(M):

(intXω)p(X1, . . . , Xp−1) = ωp
(
X(p), X1, . . . , Xp−1

)
, (3.47)

where X1, . . . , Xp−1 ∈ TpM
m.
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Remark. It is left as an exercise to check that the definition is well-posed (see
Exercise 3.30).

Example 3.29. In the case of p = m, we compute the interior product ex-
plicitly. – Let (U, x) be a local chart for the C∞-manifold M and let (see
(3.28))

ω = dx1 ∧ . . . ∧ dxm ∈ Ωm(M) .

Moreover, let the C∞-vector field X for p ∈ U be given in the local represen-
tation (see (2.27))

X(p) =
m∑

i=1

Xi(p)
∂

∂xi
(p) ,

where Xi ∈ C∞(U,R). Using (3.47), we then arrive at

intXω(X1, . . . , Xm−1) = dx1 ∧ . . . ∧ dxm

(
m∑

i=1

Xi
∂

∂xi
, X1, . . . , Xm−1

)

=

m∑

i=1

Xi dx1 ∧ . . . ∧ dxm

(
∂

∂xi
, X1, . . . , Xm−1

)

=
m∑

i=1

(−1)i−1Xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxm (X1, . . . , Xm−1) ,

(3.48)

where the “hat” over dxi means removing it. Thus, for the interior product
of a m-form the following formula holds:

intXω =

m∑

i=1

(−1)i−1Xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxm . (3.49)

Exercise 3.30. Let Mm be a Ck-differentiable manifold. Prove that if ω ∈
Ωpk−1(M) and if X a Ck−1-vector field on Mm, then intXω ∈ Ωp−1

k−1(M).
Prove it first for Mm being a subset of Rm.

3.3 Restriction of Differential Forms to Submanifolds

Let Nn be a Ck-submanifold of Rm. We already know that (Ux, ϕx)x∈Nn

defined in Example 2.20 is an atlas for Nn. Moreover, denote the canonical
inclusion map by

ιNn : Nn ↪→ Rm , (3.50)

Proposition 3.31. Let Nn be a n-dimensional Ck-submanifold of Rm. Then
the inclusion map ιNn is a Ck-map from the manifold Nn into Rm.
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Proof. First, we show that ιNn is continuous. – Let Ω by open in Rm. Then
ι−1
Nn(Ω) = Ω ∩Nn is clearly open in Nn by definition of the restricted topol-

ogy.
Let (U,ϕ) be a (canonical) local chart on Nn with U ⊂ Rm open. In order

to show that ιNn ∈ Ck(Nn,Rm), we have to show that

idRm ◦ ιNn ◦ ϕ−1 : ϕ(U ∩Nn) ⊂ Rn −→ Rm

is a Ck-map. It is evident that idRm◦ιNn◦ϕ−1(x) = ϕ−1(x) for x ∈ ϕ(U∩Nn)
which is an open set in Rn. It follows from ϕ = π ◦ f |Nn∩U , where f is a
straightening map about U and π : Rm −→ Rn the canonical projection, that

ϕ−1 =
(
π ◦ f |Nn∩U

)−1
= f−1|Rn .

Since by assumption Nn is a Ck-submanifold the straightening map f is a
Ck-diffeomorphism and f−1|Rn is a Ck-map. ut

With the help of this proposition the following definition makes sense.

Definition 3.32. Let Nn be a Ck
′

-submanifold of Rm and let ω ∈ Ωpk(R
m)

with k′ ≥ k+1. The restriction of ω to Nn, denoted by ω|Nn
, is the following

element of Ωpk(N
n):

(ω|Nn
)p
(
X1, . . . , Xp

)
= (ι∗Nnω)p

(
X1, . . . , Xp

)

= ωιNn(p)

(
dιp ·X1, . . . , dιp ·Xp

)
, (3.51)

where p ∈ Nn and X1, . . . , Xp ∈ TpN
n.

Remark. The inclusion map ιNn enables us to pass from “paths” X1, . . . , Xp

(see Definition 2.35) to vectors dιp ·X1, . . . , dιp ·Xp in Rm.

Example 3.33. Let f ∈ Ω0(Rm). Then by definition ι∗Nnf = f ◦ ιNn = f |Nn ,
which is the usual restriction operation for functions. Moreover, using (3.20),
the restriction to Nn of the tangent map is the tangent map of the restriction:
ι∗Nn(df) = d(ι∗Nnf) = d(f ◦ ιNn). – Consider, for example, on R3 the function
f : x = (x, y, z) 7−→ (x2+y2+z2)/2 and the sphere S2 = {x ∈ R3 : |x|2 = 1}.
For the restriction on S2, it then follows

ι∗S2(df) = d

(
(x2 + y2 + z2)

2
◦ ιS2

)
= d(

1

2
) = 0 .

Restriction of one-forms to Curves in Rm

In the following, we want to study the restriction of 1-forms to C1-submanifolds
with dimension n = 1. – Recall that a 1-dimensional C1-submanifold of Rm

can be seen as regular C1-curve in Rm.
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Definition 3.34. Let Γ ∈ C1([0, 1],Rm) be a regular curve in Rm. An ori-
entation for Γ is a continuous map t : Γ −→ Rm such that ‖t‖ = 1 and
t(p) ∈ TpΓ , for all p ∈ Γ . Moreover, a chart (U,ϕ) on Γ is said to be pos-
itively oriented with respect to the orientation t if 0 < dϕp · t(p) ∈ R, for
all p ∈ U .

Definition 3.35. Let Γ be a regular C1-curve on Rm with an orientation t

and (U,ϕ) a positively oriented chart on Γ . The length form dlΓ on U with
respect to t is defined by

dlΓ = ‖dϕ−1 · e1‖ dϕ ∈ Ω1
0(Γ ∩ U) , (3.52)

where ‖ · ‖ denotes the usual norm on Rm and e1 the canonical basis of R.

For (U,ψ) another positively oriented chart, we compute

‖dψ−1 · e1‖ dψ = ‖dψ−1 · e1‖ d(ψ ◦ ϕ−1 ◦ ϕ) = ‖dψ−1 · e1‖ d(ψ ◦ ϕ−1) · dϕ .

Let v = λ e1 ∈ R with λ ∈ R. Since the charts ψ and ϕ are both positively
oriented with respect to t, it follows that

d(ψ ◦ ϕ−1) · v = λ d(ψ ◦ ϕ−1) · e1 = λ |d(ψ ◦ ϕ−1) · e1| e1.

Setting dϕ(·) = λ(·) e1, we arrive at

‖dψ−1 · e1‖ dψ = ‖dψ−1 · e1‖ |d(ψ ◦ ϕ−1) · e1| dϕ

= ‖dψ−1 · d(ψ ◦ ϕ−1) · e1‖ dϕ

= ‖dϕ−1 · e1‖ dϕ ,

proving that the definition of the length form makes sense.

Proposition 3.36. Let Γ be a regular C1-curve in Rm with an orientation
t = (t1, . . . , tm) and let ω =

∑m
i=1 ωi dxi ∈ Ω1

0(R3). Then the restriction of ω
to Γ equals

ω|Γ = ι∗Γω =

m∑

i=1

ωiti dlΓ ∈ Ω1
0(Γ ) , (3.53)

where ιΓ : Γ ↪→ Rm is the canonical inclusion.

Proof. Let (U,ϕ), U ⊂ Rm open, be a positively oriented chart for Γ . We
first prove the proposition for ω = dxk , with k = 1, . . . ,m. Since xk ◦ ιΓ =
(ϕ−1)k ◦ ϕ : Γ ∩ U −→ R and using Example 3.33, it follows that

ι∗Γω = ι∗Γ dxk = d(xk ◦ ιΓ ) = d(ϕ−1)k · dϕ .

With v = λ e1 ∈ R, we obtain that

d(ϕ−1) · v = λ
(
d(ϕ−1) · e1

)
= λ ‖d(ϕ−1) · e1‖ t ,
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and hence that d(ϕ−1)k · v = λ ‖d(ϕ−1) · e1‖ tk. If dϕ(·) = λ(·) e1, we thus
arrive at

ι∗Γω = d(ϕ−1)k · dϕ = ‖d(ϕ−1) · e1‖ tk dϕ = tk dlΓ ,

where we used Definition 3.35 of the length form. – We conclude using the
linearity of the exterior derivative. ut

Restriction of two-forms to Surfaces in R3

In a next step, we want to study the restriction of 2-forms to a surface in R3.
Recall that by definition a surface in R3 is a 2-dimensional C1-submanifold
of R3.

Definition 3.37. Let Σ be a surface in R3. An orientation for Σ is a
continuous map n : Σ −→ R3 such that ‖n‖ = 1 and n(p) ⊥ TpΣ, for all
p ∈ Σ. We also call the map n a unit normal vector field to Σ.

Definition 3.38. Let Σ be a surface in R3 with an orientation n. The area
form dAΣ with respect to n on U is defined by

dAΣ =

〈
∂

∂ϕ1
×

∂

∂ϕ2
, n

〉
dϕ1 ∧ dϕ2 ∈ Ω2

0(Σ ∩ U) , (3.54)

where (U,ϕ) is a local chart for Σ, 〈· , ·〉 denotes the scalar product in R3

and × denotes the usual vector product in R3.

e1

e2

ϕ−1

Σ

U

n

∂
∂ϕ2

∂
∂ϕ1

R2

Fig. 3.2. Surface in R3.

In order to show that this definition is well-posed, it is necessary to check
that it is independent of the local chart (U,ϕ). – Let (V, ψ) be another chart
about p ∈ Σ. It follows from (3.42) that, for i = 1, 2,

dϕi =
∂ϕi
∂ψ1

dψ1 +
∂ϕi
∂ψ2

dψ2 , (3.55)
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and hence

dϕ1 ∧ dϕ2 =

(
∂ϕ1

∂ψ1

∂ϕ2

∂ψ2
−
∂ϕ1

∂ψ2

∂ϕ2

∂ψ1

)
dψ1 ∧ dψ2 . (3.56)

Moreover, let (e1, e2) denote the canonical basis on R2, and we write ψ−1 =
ϕ−1 ◦ ϕ ◦ ψ−1 to get

∂

∂ψi
= dψ−1 · ei = dϕ−1

(
d(ϕ ◦ ψ−1) · ei

)
. (3.57)

The term in parenthesis reduces to

d(ϕ ◦ ψ−1) · ei = dϕ · dψ−1 · ei = dϕ ·
∂

∂ψi
=

∂ϕ

∂ψi
.

The last expression can then be written as

∂ϕ

∂ψi
=
∂ϕ1

∂ψi
e1 +

∂ϕ2

∂ψi
e2 .

Inserting this result into (3.57) leads to

∂

∂ψi
=
∂ϕ1

∂ψi
dϕ−1 · e1 +

∂ϕ2

∂ψi
dϕ−1 · e2

=
∂ϕ1

∂ψi

∂

∂ϕ1
+
∂ϕ2

∂ψi

∂

∂ϕ2
.

From this computation we also obtain
〈

∂

∂ψ1
×

∂

∂ψ2
, n

〉
=

〈(
∂ϕ1

∂ψ1

∂

∂ϕ1
+
∂ϕ2

∂ψ1

∂

∂ϕ2

)

×

(
∂ϕ1

∂ψ2

∂

∂ϕ1
+
∂ϕ2

∂ψ2

∂

∂ϕ2

)
, n

〉

=

(
∂ϕ1

∂ψ1

∂ϕ2

∂ψ2
−
∂ϕ1

∂ψ2

∂ϕ2

∂ψ1

) 〈
∂

∂ϕ1
×

∂

∂ϕ2
, n

〉
.

Combining this result with (3.56), we arrive at
〈

∂

∂ϕ1
×

∂

∂ϕ2
, n

〉
dϕ1 ∧ dϕ2 =

〈
∂

∂ψ1
×

∂

∂ψ2
, n

〉
dψ1 ∧ dψ2 ,

showing that the definition of the area form for a surface is independent of
the local chart.

Remark. For explicit calculations (see below), it is useful to rewrite (3.54) in
the following way:

dAΣ =

〈
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2
, n

〉
dϕ1 ∧ dϕ2 ∈ Ω2

0(Σ ∩ U) , (3.58)

where (x1, x2) denote the canonical coordinates on R2. Recall that we have

dϕ−1 · ei = ∂ϕ−1

∂xi
, for i = 1, 2.
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Example 3.39. In the case of Σ being the graph of a function, we define

ϕ−1 : U ′ ⊂ R2 −→ U ∩Σ ⊂ R3 ,

(x1, x2) 7−→
(
x1, x2, h(x1, x2)

)
, (3.59)

where h : U ′ −→ R is a C1-function with U ′ ⊂ R2 open. Inserting (3.59) into
(3.58), the area form dAΣ with respect to the orientation

n =

∂ϕ−1

∂x1
×
∂ϕ−1

∂x2∥∥∥∥
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2

∥∥∥∥
,

then reads as

dAΣ =

√
1 +

(
∂h

∂x1

)2

+

(
∂h

∂x2

)2

dϕ1 ∧ dϕ2 . (3.60)

Area Form for the Sphere S2

We calculate explicitly the area form for the two-sphere S2. For this purpose,
we choose spherical coordinates. – Let the inverse of ϕ be given by

ϕ−1 : U ′ ⊂ R2 −→ S2 ⊂ R3 ,

(ψ, θ) 7−→
(
cosψ cos θ, sinψ cos θ, sin θ

)
. (3.61)

where U ′ = (−π, π)×
(
−π

2 ,
π
2

)
. In other words, we want to calculate the area

form dAS2 in the local chart (U,ϕ) with the inverse of ϕ defined in (3.61) and
S2∩U = ϕ−1(U ′). Note that ϕ−1 is often called a (local) parameterization
(see the remark at the end of this section).

By a straightforward computation, it is then easy to check that

〈
∂ϕ−1

∂ψ
×
∂ϕ−1

∂θ
, n

〉
= | cos θ| = cos θ , (3.62)

where the usual orientation for S2, given by

n =

∂ϕ−1

∂ψ
×
∂ϕ−1

∂θ∥∥∥∥
∂ϕ−1

∂ψ
×
∂ϕ−1

∂θ

∥∥∥∥
, (3.63)

is used. Denoting the coordinate functions of ϕ also by (ψ, θ) and inserting
(3.62) into (3.58), we arrive at

dAS2 = cos θ dψ ∧ dθ ∈ Ω2(S2 ∩ U) . (3.64)
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Remark. The notation for the spherical coordinate functions (ψ, θ) of ϕ is
also used for the coordinates on U ′ ⊂ R2. The reason for the choice of this
notation will become clear later when we consider the integral of the area
form dAS2 (see Example 4.10).

Now, we consider only the northern half-sphere, denoted by S2
+, which

can be interpreted as graph of a function (see Example 3.39). More precisely,
we can write

S2
+ =

{(
x1, x2, h(x1, x2)

)
: x2

1 + x2
2 < 1

}
,

where the function h reads as

h(x1, x2) =
√

1 − x2
1 − x2

2 . (3.65)

Inserting (3.65) into (3.60), we obtain for the area form

dAS2
+

=
1√

1 − x2
1 − x2

2

dϕ1 ∧ dϕ2 . (3.66)

Next, we prove an analogous result to Proposition 3.36 for area forms.

Proposition 3.40. Let Σ be a surface in R3 with an orientation n and let

ω = ω1 dx2 ∧ dx3 + ω2 dx3 ∧ dx1 + ω3 dx1 ∧ dx2 ∈ Ω2
0(R3) .

Then the restriction of ω to Σ equals

ω|Σ = ι∗Σω =

3∑

i=1

ωini dAΣ ∈ Ω2
0(Σ) , (3.67)

where n = (n1, n2, n3) is the unit normal vector field defining the orientation
and ιΣ : Σ ↪→ R3 the canonical inclusion.

Proof. By linearity of the pull-back ι∗Σ , it suffices to prove the formula for,
say, ω = dx1 ∧ dx2. – From Proposition 3.17, it follows

ι∗Σ(dx1 ∧ dx2) = ι∗Σdx1 ∧ ι
∗
Σdx2

= d(ι∗Σx1) ∧ d(ι
∗
Σx2)

= d(x1 ◦ ιΣ) ∧ d(x2 ◦ ιΣ) .

If (U,ϕ) is a local chart on Σ, we also get

x1 ◦ ιΣ = x1|Σ = (ϕ−1)1 ◦ ϕ : Σ ∩ U −→ R ,

and hence

ι∗Σ(dx1 ∧ dx2) = d
(
(ϕ−1)1 ◦ ϕ

)
∧ d
(
(ϕ−1)2 ◦ ϕ

)
. (3.68)
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Clearly, from

d(ϕ−1)i =
∂(ϕ−1)i
∂x1

dx1 +
∂(ϕ−1)i
∂x2

dx2 , i = 1, 2 ,

we obtain that

d
(
(ϕ−1)i ◦ ϕ

)
= d(ϕ−1)i · dϕ

=
∂(ϕ−1)i
∂x1

dx1 · dϕ+
∂(ϕ−1)i
∂x2

dx2 · dϕ

=
∂(ϕ−1)i
∂x1

dϕ1 +
∂(ϕ−1)i
∂x2

dϕ2 .

Inserting this result in (3.68), leads to

d
(
(ϕ−1)1◦ϕ

)
∧d
(
(ϕ−1)2◦ϕ

)
=

(
∂(ϕ−1)1
∂x1

∂(ϕ−1)2
∂x2

−
∂(ϕ−1)1
∂x2

∂(ϕ−1)2
∂x1

)
dϕ1∧dϕ2 .

Moreover, we easily see that

∂(ϕ−1)1
∂x1

∂(ϕ−1)2
∂x2

−
∂(ϕ−1)1
∂x2

∂(ϕ−1)2
∂x1

=

〈
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2
, e3

〉
.

Hence, so far we have shown that

ι∗Σ(dx1 ∧ dx2) =

〈
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2
, e3

〉
dϕ1 ∧ dϕ2 . (3.69)

We see that ∂ϕ−1

∂x1
× ∂ϕ−1

∂x2
is parallel to n and doesn’t vanish. Hence, it follows

that

ι∗Σ(dx1 ∧ dx2) =

〈
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2
, n

〉
〈e3 , n〉 dϕ1 ∧ dϕ2 .

Since by assumption ω1 = 0, ω2 = 0 and ω3 = 1, this becomes

ι∗Σ(dx1 ∧ dx2) =

3∑

i=1

ωini dAΣ .

ut

Remark. Recall that by a chart (U,ϕ) for a surface Σ we mean a C1-map
ϕ : Σ ∩ U −→ R2, where U is an open subset of R3. Hence, for the inverse
we have ϕ−1 : ϕ(Σ ∩ U) ⊂ R2 −→ Σ ∩ U . Moreover, it follows that

dϕ−1 · ei =
∂ϕ−1

∂xi
,

for i = 1, 2, are not vectors in R3. However, considering the map (local
parameterization)
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ιΣ ◦ ϕ−1 : ϕ(Σ ∩ U) ⊂ R2 −→ Σ ∩ U ⊂ R3 ,

instead of ϕ−1, we obtain

∂(ιΣ ◦ ϕ−1)

∂xi
= d(ιΣ ◦ ϕ−1) · ei = dιΣ · dϕ−1 · ei = dιΣ ·

∂ϕ−1

∂xi
,

which are indeed vectors in R3. In this section, there is no difference in the
notation for ϕ−1 and its composition with ιΣ , called later ϕ̃−1 (see Section
5.2).

3.4 Orientation of Manifolds

First, we need the concept of orientation on Rn. – Let {ei}i=1,...,n and
{e′i}i=1,...,n denote two bases of Rn. Then they are said to have the same

orientation if detP
e′j
ei > 0, where P represents the transformation matrix for

passing from one basis to the other. One easily checks that this is an equiv-
alence relation on the set of all bases of Rn and that there are exactly two
equivalence classes. These two equivalence classes represent the two orienta-
tions of Rn.

Definition 3.41. An orientation of Rn is given by the choice of one equiv-
alence class. And the bases being in this equivalence class are called positively
oriented.

In the following, we will see that the notion of orientation is strongly
related to the choice of a basis for

∧n
(Rn). Recall that this vector space with

basis e∗1 ∧ . . .∧ e
∗
n has dimension 1 (see Proposition 3.7). – Let {ei}i=1,...,n be

a basis of Rn and v1, . . . , vn ∈ Rn such that vi =
∑n

j=1 v
j
i ej , for i = 1, . . . , n.

We then compute, using (3.6) and the definition of the determinant,

e∗1 ∧ . . . ∧ e
∗
n(v1, . . . , vn) =

∑

σ∈Sn

(−1)|σ|v
iσ(1)

1 . . . v
iσ(n)
n

= det (vj1, . . . , v
j
n) . (3.70)

This computation obviously generalizes to an arbitrary basis of
∧n(Rn), i.e.,

a non-vanishing element of
∧n

(Rn). We denote them by αRn .

Proposition 3.42. A non-vanishing αRn ∈
∧n

(Rn) has the same sign on
two bases of Rn if and only if they have the same orientation.

Proof. This proposition is a direct consequence of (3.70). ut

Now, we can reformulate Definition 3.41 in terms of a basis of
∧n(Rn).

Definition 3.43. A choice of a basis αRn ∈
∧n

(Rn) gives an orientation of
Rn.
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Remark. Two bases αRn and α̃Rn of
∧n(Rn) determine the same orientation

if and only if αRn = λ α̃Rn for 0 < λ ∈ R.

For later use, we consider now the linear map

ϕ : Rn −→ Rn ,

ei 7−→ ϕ(ei) =
n∑

j=1

ϕj(ei) ej ,

and deduce from (3.70) that

e∗1 ∧ . . . ∧ e
∗
n

(
ϕ(e1), . . . , ϕ(en)

)
= det

(
ϕj(e1), . . . , ϕ

j(en)
)
.

Moreover, from Definition 3.8 of the pull-back, it follows

(
ϕ∗ e∗1 ∧ . . . ∧ e

∗
n

)
(e1, . . . , en) = e∗1 ∧ . . . ∧ e

∗
n

(
ϕ(e1), . . . , ϕ(en)

)

= det
(
ϕj(e1), . . . , ϕ

j(en)
)
,

showing that
ϕ∗(e∗1 ∧ . . . ∧ e

∗
n) = detϕ e∗1 ∧ . . . ∧ e

∗
n (3.71)

Remark 3.44. From (3.71) and Definition 3.16 for the pull-back of differential
forms on Rn, it can be seen that the pull-back of a “maximal” differential
form by a map is just multiplication by the determinant of the Jacobian of
the map. This important observation will be used at various places in the
following and generalizes naturally to differential forms on manifolds.

We come back to the notion of orientation. – Note that the orientation
of an arbitrary vector space, in particular of a tangent space of a manifold,
can be defined in a completely analogous manner. This enables us to extend
the concept of orientation of Rn to manifolds. – In this section, we assume
for simplicity the manifolds to be C∞.

Definition 3.45. Let Mm be a m-dimensional manifold. A volume form
ωMm on Mm is an element of Ωm(M) which never vanishes.

Definition 3.46. A manifold is said to be orientable if it posseses a volume
form. The choice of ωMm determines the orientation of Mm.

Remark. Translating the results for the orientation of Rn to the tangent
spaces of a manifold, any such ωMm thus orients each tangent space TpM in
such a way that the orientations of nearby tangent spaces are compatible.

The following proposition, together with Proposition 3.52 below, can be
interpreted as second definition of orientability for a manifold.
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Proposition 3.47. Let Mm be a manifold. If Mm is orientable, then there
exists an atlas (Ui, ϕi)i∈I whose transition functions have positive Jacobian,
i.e., for all p ∈ ϕi(Ui ∩ Uj), we have that

det Jp(ϕj ◦ ϕ
−1
i ) > 0 . (3.72)

Such an atlas is called positively oriented.

Proof. Let ωMm be the volume form on Mm and let (Ui, ϕi)i∈I be an atlas.
Then, we write

(ϕ−1
i )∗ωMm = fi dx1 ∧ . . . ∧ dxm ∈ Ωm(ϕi(Ui)) , (3.73)

where fi : ϕi(Ui) −→ R. Since ωMm is a volume form on Mm, it follows by
definition that fi is a non-vanishing function on ϕi(Ui). If fi is positive, we
are done. If fi is negative, however, we have to modify the diffeomorphism
ϕi by a negative isometry σ : Rm −→ Rm, i.e., detσ = −1, to obtain (see
Remark 3.44)

(
(σ ◦ ϕi)

−1
)∗
ωMm = (ϕ−1

i ◦ σ−1)∗ωMm

= (σ−1)∗
(
fi dx1 ∧ . . . ∧ dxm

)

= −fi ◦ σ
−1 dx1 ∧ . . . ∧ dxm .

Thus, we can construct an atlas (Ui, ϕi)i∈I such that fi > 0, for all i ∈ I .
Considering transition functions on ϕi(Ui ∩ Uj), we now write

(ϕ−1
i )∗ωMm = (ϕ−1

i )∗ϕ∗
j (ϕ

−1
j )∗ωMm

= (ϕj ◦ ϕ
−1
i )∗

(
(ϕ−1
j )∗ωMm

)
.

Using (3.73), it then follows

(ϕ−1
i )∗ωMm = (ϕj ◦ ϕ

−1
i )∗

(
fj dx1 ∧ . . . ∧ dxm

)
.

From the explicit expression for the pull-back given in (3.23) and standard
properties of differential forms on Rm, we deduce1

(ϕ−1
i )∗ωMm = fj

(
(ϕj ◦ ϕ

−1
i )
)
(ϕj ◦ ϕ

−1
i )∗ dx1 ∧ . . . ∧ dxm

= fj
(
(ϕj ◦ ϕ

−1
i )
) ∑

i1,...,im

∂(ϕj ◦ ϕ
−1
i )1

∂xi1
. . .

∂(ϕj ◦ ϕ
−1
i )m

∂xim
dxi1 ∧ . . . ∧ dxim

= fj
(
(ϕj ◦ ϕ

−1
i )
) ∑

σ∈Sm

∂(ϕj ◦ ϕ
−1
i )1

∂xiσ(1)

. . .
∂(ϕj ◦ ϕ

−1
i )m

∂xiσ(m)

dxiσ(1)
∧ . . . ∧ dxiσ(m)

= fj
(
(ϕj ◦ ϕ

−1
i )
) ∑

σ∈Sm

∂(ϕj ◦ ϕ
−1
i )1

∂xiσ(1)

. . .
∂(ϕj ◦ ϕ

−1
i )m

∂xiσ(m)

(−1)|σ| dx1 ∧ . . . ∧ dxm

= fj
(
(ϕj ◦ ϕ

−1
i )
)
det J(ϕj ◦ ϕ

−1
i ) dx1 ∧ . . . ∧ dxm , (3.74)

1 We give an explicite calculation for a direct consequence of Remark 3.44.
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where the definition of the determinant is used in the last line. Inserting
(3.73) with fi > 0, for all i ∈ I , in the left-hand side of the last equation,
then shows by comparison that det J(ϕj ◦ϕ

−1
i ) > 0 on ϕi(Ui ∩Uj), for every

i, j ∈ I . ut

Remark. Note that being positively oriented as defined in (3.72) gives an
equivalence relation on the set of all systems of charts on Mm with exactly
two equivalence classes. And the choice of one of these two equivalence classes
determines the orientation of the manifold.

In the following, some more definitions and results will be given in order
to show the converse of the last proposition.

Definition 3.48. Let X be a topological space for the topology τ . We say
that τ is separable if there exists B ⊂ τ such that B is countable and every
element of the topology τ can be written as an union of elements of B.

This naturally leads to the definition of topological separable manifolds
which will be always considered from now on.

Definition 3.49. Let X be a topological space. A locally finite covering
for X consists of a family of open sets (Ui)i∈I such that

a) it covers the topological space, i.e., X ⊂
⋃
i∈I Ui;

b) for all x ∈ X, there exists Ux open containing x such that it intersects
only finitely many Ui, i ∈ I.

Definition 3.50. A partition of unity on a manifold Mm is a family
(Ui, θi)i∈I , where (Ui)i∈I is a locally finite covering for Mm and the functions
θi ∈ C∞(Mm,R) for all i ∈ I are chosen such that

a) they are non-negative, i.e., θi(p) ≥ 0 for all p ∈Mm;
b) their support is contained in Ui, i.e., supp θi ⊂ Ui;
c) and for all p ∈Mm the following equation holds:

1 ≡
∑

i∈I

θi(p) . (3.75)

Remark. Note that from b) and the fact that the covering is locally finite,
we obtain that for every p ∈ Mm only a finite number of functions θi are
non-zero in p. This implies that (3.75) is well-defined.

Now, we are ready to state an important result for separable manifolds
which will be essential in the proof of the converse of Proposition 3.52.

Proposition 3.51. Let Mm be a separable manifold. Then there exists a
partition of unity on Mm. Moreover, let (Uj)j∈J be a covering of Mm. Then
there exist I ⊂ J and a family (θi)i∈I of C∞-functions on Mm such that
(Ui, θi)i∈I is a partition of unity for Mm. Such a partition of unity is called
subordinated to (Uj)j∈J .
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Proof. For the proof we refer to []. ut

Remark. It is important to note that the initial covering (Uj)j∈J is not as-
sumed to be locally finite.

We now arrive at the converse of Proposition 3.47 holding only for sepa-
rable manifolds.

Proposition 3.52. Let Mm be a separable manifold and assume that there
exists a positively oriented atlas on Mm. Then the manifold Mm is orientable.

Proof. Let (Uj , ϕj)j∈J be a positively oriented atlas. Proposition 3.51 then
shows that there exist I ⊂ J and θi ∈ C∞(M,R) such that (Ui, θi)i∈I is a
subordinated partition of unity for Mm. It is easy to see that (Ui, ϕi)i∈I is
still a positively oriented atlas.

Next, we define

ωMm =
∑

i∈I

θiϕ
∗
i dx1 ∧ . . . ∧ dxm ∈ Ωm(M) .

Note that because of Definition 3.50 this sum makes sense. Moreover, we
obtain, using Proposition 3.24, for the pull-back of ωMm by another diffeo-
morphism ϕj (see also (3.74)),

(ϕ−1
j )∗ωMm =

∑

i∈I

θi ◦ ϕ
−1
j (ϕi ◦ ϕ

−1
j )∗ dx1 ∧ . . . ∧ dxm

=
∑

i∈I

θi ◦ ϕ
−1
j det J(ϕi ◦ ϕ

−1
j ) dx1 ∧ . . . ∧ dxm .

From a) in Definition 3.75 and the fact that (Ui, ϕi)i∈I is positively oriented,
we then deduce that ωMm ∈ Ωm(M) does not vanish, implying that it is a
volume form for Mm. Hence, by Definition (3.46) the orientability of Mm

follows. ut

Example 3.53. The constant m-form

ωRm := dx1 ∧ . . . ∧ dxm

gives a volume form for Rm.

Example 3.54. We want to show that the sphere Sn is orientable. – Let

Ω =

n+1∑

i=1

(−1)i−1xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1 ∈ Ωn(Rn+1) , (3.76)

and let
ωSn = ι∗SnΩ .
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We want to show that ωSn is a volume form on Sn.
Let p ∈ Sn and let X1, . . . , Xn be a basis for TpS

n. In order to prove that
ωSn is a volume form, it suffices to show that

ωSn(p)
(
X1, . . . , Xn

)
= Ω(p)

(
dιp ·X1, . . . , dιp ·Xn

)
6= 0 . (3.77)

For the function r =
√∑n+1

i=1 |xi|2 on Rn+1, we compute

r dr ∧Ω =

n+1∑

k=1

xk dxk ∧

(
n+1∑

i=1

(−1)i−1xi dx1 ∧ . . . ∧ d̂xi ∧ . . . ∧ dxn+1

)

=

n+1∑

i=1

x2
i dx1 ∧ . . . ∧ dxn+1

= r2 dx1 ∧ . . . ∧ dxn+1 . (3.78)

Moreover, we observe that if X̄k = dιSn · Xk ∈ Rn+1, for k = 1, . . . , n,
and if n denote the unit normal to Sn at p, then (n, X̄1, . . . , X̄n) is a basis
for Rn+1. From (3.78), we then get that

r dr ∧Ω(n, X̄1, . . . , X̄n) = r2 dx1 ∧ . . . ∧ dxn+1(n, X̄1, . . . , X̄n) 6= 0 .

On the other hand, since r|Sn = 1 = const,

r dr · X̄k = r dr · (dιSn ·Xk) = r d(r ◦ ιSn) ·Xk = 0 .

Therefore, for p ∈ Sn we arrive at, using the definition of the wedge product,

0 6= r(p) drp ∧Ω(p)
(
n, X̄1, . . . , X̄n

)
= r(p) drp · nΩ(p)

(
X̄1, . . . , X̄n

)

= r(p)Ω(p)
(
X̄1, . . . , X̄n

)
= ωSn(p)

(
X1, . . . , Xn

)
.

This shows that ωSn is indeed a volume form on Sn.

Remark. For later use, we note that the volume form ωSn = ι∗SnΩ for Sn

equals
ι∗Sn

(
intXdx1 ∧ . . . ∧ dxn+1

)
, (3.79)

where X now denotes the vector field (x1, . . . , xn) on Rn+1 \ {0}. This is
direct consequence of the formula (3.49) for the interior product.

Remark. We have shown in the previous example that the restriction Ω|S2

of
Ω = x1 dx2 ∧ dx3 + x2 dx3 ∧ dx1 + x3 dx1 ∧ dx2 ∈ Ω2(R3)

to S2 gives a volume form ωS2 . Passing to spherical coordinates on R3 and
restricting them to the two-sphere S2, we get, by a straightforward compu-
tation,

ωS2 = cos θ dψ ∧ dθ ∈ Ω2(S2 ∩ U) . (3.80)

As expected, we see that this equals (3.64).
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Consider now codimension one submanifolds Nn, i.e., n-dimensional sub-
manifolds of Rn+1. Generalizing Definition 3.37, we say that Nn is oriented
if there exists n ∈ C∞(Nn,Rn+1) such that ‖n‖ = 1 and n(p) ⊥ TpN

n for
all p ∈ Nn. One can easily check that this is equivalent to the existence of
n ∈ C∞(Nn,Rn+1) such that n(x) 6∈ TpN

n. On the other hand, we already
know from Example 2.20 that a submanifold can also be interpreted as an
abstract manifold. Hence, there is a second notion of orientation for Nn given
by Definition 3.46. The following proposition, however, shows that the two
notions of orientation for a codimension one submanifold agree.

Proposition 3.55. Let Nn be a codimension one submanifold of Rn+1. Then
Nn is orientable (in the sense of an abstract manifold) if and only if there
exists n ∈ C∞(Nn,Rn+1) such that n(x) 6∈ TpN

n.

For the proof of this proposition, we will need the following lemma which
is motivated by (3.79).

Lemma 3.56. Let Nn be a codimension one submanifold of Rn+1 and as-
sume that there exists n ∈ C∞(Nn,Rn+1) such that n(x) 6∈ TpN

n. Moreover,
let ιNn : Nn ↪→ Rn+1 denote the canonical inclusion. Then

ωNn = ι∗Nn

(
intn dx1 ∧ . . . ∧ dxn+1

)
∈ Ωn(Nn) , (3.81)

gives a volume form for Nn.

Proof. Let p ∈ Nn and let X1, . . . , Xn be a basis of TpN
n. Moreover, for

k = 1, . . . , n, we define2

X̄k := dιNn ·Xk . (3.82)

By assumption, it is then clear that (n, X̄1, . . . , X̄n) forms a basis of Rn+1.
Using Definition 3.23 of the pull-back, we deduce

ι∗Nn

(
intn dx1∧. . .∧dxn+1

)
(X1, . . . , Xn) = intn dx1∧. . .∧dxn+1(X̄1, . . . , X̄n) .

And by Definition 3.28 of the interior product, it follows

intn dx1 ∧ . . . ∧ dxn+1(X̄1, . . . , X̄n) = dx1 ∧ . . . ∧ dxn+1(n, X̄1, . . . , X̄n)

= det(n, X̄1, . . . , X̄n). (3.83)

Since (n, X̄1, . . . , X̄n) forms a basis of Rn+1, it is clear that ωNn never van-
ishes and is thus a volume form for Nn. ut

Now, we are ready to give a proof of Proposition 3.55.

2 Note that only due to the inclusion map ιNn the manifold Nn can be interpreted
as submanifold. Hence, starting with “paths” X1, . . . , Xn (see Definition 2.35),
we obtain vectors X̄1, . . . , X̄n in Rn+1.
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Proof. Assume that there exists n ∈ C∞(Nn,Rn+1) such that n(x) 6∈ TpN
n.

Because of Lemma 3.56, the n-form ωNn defines a volume form for Nn, and
hence Nn is orientable.

Conversely, assume that Nn is orientable for the volume form ωNn ∈
Ωn(Nn). – Let p ∈ Nn and X̄1, . . . , X̄n ∈ Rn+1 be a basis of the hyperplane
tangent to Nn at p. Moreover, let X1, . . . , Xn denote the corresponding ele-
ments of TpN

n (see (3.82)). Then we define ω̄p ∈
∧n

(Rn+1) by

ω̄p(X̄1, . . . , X̄n) = (ωNn)p
(
X1, . . . , Xn

)
,

and
ω̄p(Ȳ1, . . . , Ȳn) = 0 ,

if there exists 1 ≤ j ≤ n such that Ȳj ∈ (TpN
n)⊥. This defines ω̄p in a unique

way. As a direct consequence, since
{
dx1(p) ∧ . . . ∧ d̂xk(p) ∧ . . . ∧ dxn+1(p)

}
k=1,...,n+1

is basis of
∧n

(Rn+1), there exist unique numbers α1(p), . . . , αn+1(p) ∈ R

such that

ω̄p =

n+1∑

k=1

αk(p) dx1(p) ∧ . . . ∧ d̂xk(p) ∧ . . . ∧ dxn+1(p) . (3.84)

Repeating this procedure for all p ∈ Nn, we get the existence of C∞-functions
α1, . . . , αn+1 : Nn −→ R such that (the fact that α1, . . . , αn+1 are C∞-
functions comes from the assumption ωNn ∈ Ωn(Nn))

ω̄ =

n+1∑

k=1

αk dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxn+1 ∈ Ωn(Rn+1) . (3.85)

Next, we define

n =

n+1∑

k=1

(−1)1−kαk ek ∈ C∞(Nn,Rn+1) , (3.86)

where {ek}k=1,...,n+1 denotes the canonical basis of Rn+1. If we can show
that n(p) 6∈ TpN

n for all p ∈ Nn, we are done.
First, (3.85) and (3.86) show that

intndx1 ∧ . . . ∧ dxn+1(X̄1, . . . , X̄n) = ω̄p(X̄1, . . . , X̄n)

= (ωNn)p
(
X1, . . . , Xn

)
.

Since ωNn never vanishes by assumption, we deduce, using (3.83),

det(n, X̄1, . . . , X̄n) 6= 0 .

Thus (n, X̄1, . . . , X̄n) is a basis of Rn+1. Moreover, since by assumption
X̄1, . . . , X̄n ∈ Rn+1 forms a basis of the hyperplane tangent to Nn at p,
it follows that n(p) 6∈ TpN

n. This completes the proof. ut



4 Integration on Manifolds

4.1 Integration of n-forms in Rn

First, we recall an important result for the integration of functions on Rn.

Theorem 4.1 (Change of Variable Formula). Let U ⊂ Rn open and
φ a Ck-diffeomorphism, k ≥ 1, from U into φ(U). Then if f ∈ L1(φ(U))
it follows that (f ◦ φ)|det Jφ| ∈ L1(U) and moreover the following formula
holds: ∫

U

(
f ◦ φ

)
(x)
∣∣det Jxφ

∣∣ dL(x) =

∫

φ(U)

f(y) dL(y) . (4.1)

We define now the integral of differential n-forms on Rn. As shown in
Proposition 3.7, we have that dim

∧n
Rn = 1.

Definition 4.2. Let α = f dx1∧. . .∧dxn be a differential n-form on U ⊂ Rn

open. Moreover, assume that f ∈ L1(U). Then the integral of α on U is
defined to be the number

∫

U

α =

∫

U

f(x) dLn(x) , (4.2)

where dLn is the Lebesgue measure on Rn. We write α ∈ ΩnL1(U).

Proposition 4.3. Let φ : Rn −→ Rn be a Ck-map, k ≥ 1, and U ⊂ Rn open
such that φ is a diffeomorphism from U into φ(U). Moreover, assume that
φ is positive, i.e., det Jxφ > 0, for all x ∈ U . Then for α ∈ Ωn

L1(φ(U)) the
following formula holds: ∫

φ(U)

α =

∫

U

φ∗α . (4.3)

Proof. Let α = f dy1 ∧ . . . ∧ dyn ∈ ΩnL1(φ(U)). Since the pull-back of α by φ
is just multiplication by the determinant of the Jacobian of φ (see Remark
3.44), we obtain

φ∗α = f ◦ φ det Jφ dx1 ∧ . . . ∧ dxn . (4.4)

By the definition of the integral, this gives
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∫

U

φ∗α =

∫

U

(
f ◦ φ

)
(x) det Jxφ dL

n(x) .

Since det Jφ > 0 by assumption, we can apply the change of variable formula
(4.1):

∫

U

(
f ◦ φ

)
(x) det Jxφ dL

n(x) =

∫

φ(U)

f(y) dLn(y) =

∫

φ(U)

α .

ut

Remark. If the diffeomorphism φ is assumed to be negative, i.e., det Jφ < 0,
then we see that ∫

φ(U)

α = −

∫

U

φ∗α .

Instead of saying that diffeomorphisms are positive or negative, they are
often called orientation preserving, respectively, orientation reversing diffeo-
morphisms. Assuming that the n-form α in (4.4) is replaced by a volume
form for Rn, this terminology can be easily understood (see also the remark
after Definition 3.43).

4.2 Integration of n-forms on a n-dimensional Manifold

In the whole chapter, we always assume that Mm denotes a m-dimensional
C∞-differentiable (separable) manifold.

Definition 4.4. Let Mm be an oriented manifold and let ω = f dx1 ∧ . . . ∧
dxm be a compactly supported m-form on Mm. Moreover, let (Ui, ϕi)i∈I be
a positively oriented atlas and (Ui, θi)i∈I a partition of unity subordinated to
it. Assume also that θi f ◦ ϕ−1

i ∈ L1
(
ϕi(Ui)

)
, for all i ∈ I. Then, we define

the integral of ω on Mm by the number

∫

Mm

ω =
∑

i∈I

∫

ϕi(Ui)

(ϕ−1
i )∗ (θi ω) . (4.5)

And we write ω ∈ Ωm
L1(M).

Remark. From the definition, it is easy to see that the map

ω 7−→

∫

Mm

ω

is linear. Note also that (ϕ−1
i )∗ (θi ω) ∈ ΩmL1(ϕi(Ui)).
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Ui

M

suppω

supp θiω

Fig. 4.1. Integration on manifolds.

In order to show that the last definition makes sense, we claim in a first
step that for only finitely many i ∈ I the expression

∫

ϕi(Ui)

(ϕ−1
i )∗ (θi ω)

is non-zero. – Let K ⊂ Mm denote the compact support of ω ∈ Ωm
L1(M).

Since (Ui)i∈I is assumed to be a locally finite covering, there exists by Defini-
tion 3.49 for every p ∈ Mm an open subset Up ofMm containing p such that it
intersects only finitely many Ui, i ∈ I . On the other hand, sinceK ⊂

⋃
p∈K Up

compact, we can extract a finite covering Up1 , . . . , Upk
. Clearly, each of these

open sets then intersects only finitely many Ui, i ∈ I . Hence, the support K
of ω is covered by only finitely many of the Ui. Recalling that supp θi ⊂ Ui,
for all i ∈ I (see Definition 3.50), the claim follows.

In a second step, we show that the definition of the integral of ω on Mm

is independent of the choice of the positively oriented atlas and the choice of
the partition of unity subordinated to the atlas. – Let (Vj , ψj)j∈J be another
positively oriented atlas with the same orientation given by (Ui, ϕi)i∈I , i.e.,
on ϕi(Ui ∩ Vj), we have that det J(ψj ◦ ϕ

−1
i ) > 0. Moreover, let (Vj , ηj)j∈J

be a partition of unity subordinated to (Vj)j∈J . Then, we can write

∫

ϕi(Ui)

(ϕ−1
i )∗(θiω) =

∑

j∈J

∫

ϕi(Ui∩Vj)

(ϕ−1
i )∗(θiηjω) ,

since 1 =
∑

j∈J ηj on Mm by definition. Next, we apply the formula (4.3) to

the differential m-form (ϕ−1
i )∗(θiηjω) on Rm and the diffeomorphism

ϕi ◦ ψ
−1
j : ψj(Ui ∩ Vj) ⊂ Rm −→ ϕi(Ui ∩ Vj) ⊂ Rm

to get
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∫

ϕi(Ui∩Vj)

(ϕ−1
i )∗(θiηjω) =

∫

ψj◦ϕ
−1
i

(
ϕi(Ui∩Vj)

)(ϕi ◦ ψ−1
j )∗

(
(ϕ−1
i )∗(θiηjω)

)

=

∫

ψj(Ui∩Vj)

(ψ−1
j )∗(θiηjω) . (4.6)

And for the integral of ω on Mm we thus have, using again (3.75),

∑

i∈I

∫

ϕi(Ui)

(ϕ−1
i )∗ (θi ω) =

∑

j∈J

∑

i∈I

∫

ψj(Ui∩Vj)

(ψ−1
j )∗(θiηjω)

=
∑

j∈J

∫

ψj(Vj )

(ψ−1
j )∗(ηjω) .

In summary, we have shown that the integral on a manifold is well-defined.
– Note that without fixing an orientation forMm, the definition of the integral
of ω is not well-posed. More precisely, looking at (4.6) the sign of the integral
changes with the change of orientation.

Remark. Let Mm be an oriented manifold and K ⊂Mm compact. Then for
ω ∈ ΩmL1(M) not necessarily compactly supported, we write

∫

K

ω =

∫

Mm

χKω , (4.7)

where χK is the characteristic function of K. Clearly, χKω is compactly
supported and we can use Definition 4.4 for the right-hand side of the last
equation.

Next, we show that Proposition 4.3 holds also for integration on manifolds.

Proposition 4.5. Let Mm and Nm be two oriented manifolds of same di-
mension m. Moreover, let φ : Mm −→ Nm be a positive C∞-diffeomorphism,
i.e., the image by φ of a positive oriented atlas on Mm is a positive oriented
atlas on Nm. Then for ω ∈ ΩmL1(M) the following formula holds:

∫

Nm

ω =

∫

Mm

φ∗ω . (4.8)

Proof. Let (Ui, ϕi)i∈I be a positively oriented atlas of Mm and let (Ui, θi)i∈I
be a partition of unity subordinated to it. Then we have

∫

Mm

φ∗ω =
∑

i∈I

∫

ϕi(Ui)

(ϕ−1
i )∗

(
θi(φ

∗ω)
)
.

Using the properties of the pull-back summarized in Proposition 3.24, the
right-hand side of the last equation can also be written as
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∑

i∈I

∫

ϕi(Ui)

(ϕ−1
i )∗φ∗

(
(θi ◦ φ

−1)ω
)

=
∑

i∈I

∫

ϕi(Ui)

(φ ◦ ϕ−1
i )∗

(
(θi ◦ φ

−1)ω
)

=
∑

i∈I

∫

ϕi(Ui)

(
(ϕi ◦ φ

−1)−1
)∗(

(θi ◦ φ
−1)ω

)
.

Hence, we arrive at
∫

Mm

φ∗ω =
∑

i∈I

∫

ϕi◦φ−1
(
φ(Ui)

)
(
(ϕi ◦ φ

−1)−1
)∗(

(θi ◦ φ
−1)ω

)
.

It is to check that
(
φ(Ui), ϕi ◦φ−1

)
i∈I

is an atlas for Nm. It is also positively
oriented, since by assumption φ is a positive diffeomorphism. Moreover, the
family

(
φ(Ui), ηi

)
i∈I

with ηi := θi◦φ−1 ∈ C∞(Nm,R) defines a subordinated
partition of unity. Using Definition 4.4, we then conclude that

∫

Mm

φ∗ω =

∫

Nm

ω .

ut

We generalize the last proposition in the sense that φ : Mm −→ Nm

needs not necessarily to be a diffeomorphism. – Let Mm and Nm be two
compact oriented manifolds of same dimension m and let ω be a m-form on
Nm. Moreover, let φ be an arbitrary C1-map from Mm to Nm. The next
theorem, however, then shows that

∫
Nm ω and

∫
Mm φ∗ω are related.

Theorem 4.6 (Topological degree). Let Mm and Nm be two compact
oriented manifolds of same dimension m and let φ ∈ C1(Mm, Nm). Then,
there exists an integer degφ, called topological degree of φ, such that for
any ω ∈ ΩmL1(N), we have

∫

Mm

φ∗ω = deg φ

∫

Nm

ω . (4.9)

Remark. Roughly speaking the topological degree of a map φ can be inter-
preted as the number of times φ(Mm) covers the manifold Nm.

Example 4.7. Consider the case Mm = Nm = S1 (see Fig. 4.2).

Definition 4.8. Let φ and φ̃ ∈ C1(Mm, Nm). We say that φ is homotopi-
cally equivalent to φ̃, if there exists

H ∈ C0([0, 1]×Mm, Nm)

such that φ(·) = H(0, ·) and φ̃(·) = H(1, ·).
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S1S1

deg φ̃ = 0degφ = 1

Fig. 4.2. Topological degree of two different maps φ and φ̃.

It is easy to check that homotopically equivalent is an equivalence relation.
Moreover, one can show that the topological degree of a map only depends
on its homotopy class (see []). In other words, the topological degree depends
only on the C0-structure of the map. Thus differential forms, being more
than only C0-objects, are used to determine C0-objects.

Conversely, assume that degφ = deg φ̃. How are the maps φ and φ̃ related?

Theorem 4.9. Let φ and φ̃ ∈ C1(Mm, Nm), where Nm = Sm and Mm ori-
ented and compact. Then degφ = deg φ̃ implies that φ and φ̃ are homotopically
equivalent.

4.2.1 Integration and Volume of a Surface in R3

Let Σ be a surface in R3, i.e., a 2-dimensional C1-submanifold of R3.
Moreover, let (U,ϕ) denote a local chart for Σ. Then, we consider a cube
C ′ ⊂ ϕ(U ∩ Σ) ⊂ R2 and divide it in little pieces of side length 1/n, where
n ∈ N. More precisely, assuming that C ′ = [0, 1] × [0, 1], we write

C ′ =
n−1∑

k,l=0

[
k

n
,
k + 1

n

]
×

[
l

n
,
l + 1

n

]
=

n−1∑

k,l=0

C ′
k,l .

The preimages of the little cubes C ′
k,l are denoted by Uk,l := ϕ−1(C ′

k,l), and

the equation ϕ(pk,l) =
(
k
n ,

l
n

)
defines the points pk,l ∈ Uk,l.

We want study how to define the volume (area) of the surface Σ with
the help of this grid. This is best done by some elementary geometric consid-
erations. - The inverse map of the C1-diffeomorphism ϕ : U ∩ Σ ⊂ R3 −→
ϕ(U ∩Σ) ⊂ R2, U open in R3, is denoted by

ϕ−1 : ϕ(U ∩Σ) −→ U ∩Σ .

Recall that the two tangent vectors1

1 In a different notation the generating tangent vectors for Tpk,l
Σ can also be

written as ∂
∂ϕ1

(pk,l) and ∂
∂ϕ2

(pk,l).
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1/n

1/n

1/n

1/n

S ⊂ U ∩Σ

Uk,l

pk,l
ϕ C ′

k,l

1

10

Ck,l

Fig. 4.3. Putting a grid on a surface.

{
∂ϕ−1

∂xi

(
ϕ(pk,l)

)}

i=1,2

,

where (x1, x2) denote the canonical coordinates on R2, generate the tangent
space Tpk,l

Σ of Σ at pk,l. Then, for all 0 ≤ k, l ≤ n − 1, the parallelograms
given by the vectors

1

n

∂ϕ−1

∂x1

(
ϕ(pk,l)

)
and

1

n

∂ϕ−1

∂x2

(
ϕ(pk,l)

)

can be interpreted as linear approximation of the little pieces Uk,l of the
surface. These parallelograms, denoted by Ck,l, have the well-known volume

VolCk,l =
1

n2

∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥ . (4.10)

Hence, the volume of S :=
⋃n−1
k,l=0 Uk,l ⊂ U ∩ Σ can be approximatively

defined by

n−1∑

k,l=0

VolCk,l =

n−1∑

k,l=0

1

n2

∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥ . (4.11)

Intuitively, it is clear that the approximation becomes better for large n, and
we thus define

VolS := lim
n→∞

n−1∑

k,l=0

VolCnk,l . (4.12)

Here we write Cnk,l for the little parallelograms to emphasize that they depend
on n.
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With the area form dAΣ defined in (3.54), the volume of S can be written
differently. – First, note that the unit normal vector field to Σ at the point
pk,l (see Definition 3.37), reads as

n(pk,l) =

∂ϕ−1

∂x1

(
ϕ(pk,l)

)
× ∂ϕ−1

∂x2

(
ϕ(pk,l)

)
∥∥∥∂ϕ−1

∂x1

(
ϕ(pk,l)

)
× ∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥
.

This implies for the area form, expressed in the local chart (U,ϕ),

dAΣ =

∥∥∥∥
∂ϕ−1

∂x1
×
∂ϕ−1

∂x2

∥∥∥∥ dϕ1 ∧ dϕ2 ∈ Ω2
0(U ∩Σ) . (4.13)

It follows that

(dAΣ)pk,l

(
1

n

∂

∂ϕ1
(pk,l),

1

n

∂

∂ϕ2
(pk,l)

)
=

1

n2

∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥
= VolCk,l .

Hence, the volume of the parallelogram Ck,l can also be expressed in terms
of the area form (dAΣ)pk,l

. Thus for the approximation (4.11) of the volume
of S, we get

n−1∑

k,l=0

VolCk,l =

n−1∑

k,l=0

1

n2
(dAΣ)pk,l

(
∂

∂ϕ1
(pk,l),

∂

∂ϕ2
(pk,l)

)
,

or equivalently

n−1∑

k,l=0

VolCk,l =
n−1∑

k,l=0

∫

C′

k,l

∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥ dx1dx2 .

(4.14)
In a next step, we show that integration of the area form (4.13) over S

indeed leads to the volume of S defined in (4.12). By definition of the integral,
we have that

∫

Uk,l

dAΣ =

∫

ϕ(Uk,l)

∥∥∥∥
∂ϕ−1

∂x1
(x) ×

∂ϕ−1

∂x2
(x)

∥∥∥∥ dx1dx2 .

From the continuity of the area form, it then follows
∣∣∣∣∣

∫

Uk,l

dAΣ − VolCk,l

∣∣∣∣∣

=

∣∣∣∣∣

∫

Uk,l

dAΣ −

∫

C′

k,l

∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥

∣∣∣∣∣
≤ εnk,l · VolC ′

k,l , (4.15)
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where

εnk,l := sup
x∈C′

k,l

∣∣∣∣
∥∥∥∥
∂ϕ−1

∂x1
(x) ×

∂ϕ−1

∂x2
(x)

∥∥∥∥ −
∥∥∥∥
∂ϕ−1

∂x1

(
ϕ(pk,l)

)
×
∂ϕ−1

∂x2

(
ϕ(pk,l)

)∥∥∥∥
∣∣∣∣ .

Taking the sum over k and l in (4.15) and using (4.14), we arrive at

∣∣∣∣∣∣

∫

S

dAΣ −
n−1∑

k,l=0

VolCk,l

∣∣∣∣∣∣
≤ max

0≤k,l≤n−1
εnk,l ·

n−1∑

k,l=0

VolC ′
k,l . (4.16)

Since εnk,l goes to zero for n −→ ∞, taking the limit in (4.16) implies

∫

S

dAΣ = VolS , (4.17)

where we used (4.12). So integration of the area form indeed gives the volume
(area) of the surface.

Example 4.10 (Volume of S2). We want to calculate the integral of the area
form dAS2 expressed in spherical coordinates (see (3.64)). Since the spherical
coordinates cover up to a set of measure zero the whole two-sphere S2, it is
possible to use only a single chart for the integration. Hence, we have

∫

S2

dAS2 =

∫ π

−π

∫ π
2

−π
2

cos θ dψdθ

= 2π

∫ π
2

−π
2

cos θ dθ = 4π . (4.18)

Considering only the northern half-sphere S2
+ and the corresponding volume

form dAS2
+

(see (3.66)), the same result for the volume of the sphere can be

obtained (by a more precise calculation).

4.3 Stokes’ Theorem

Let f ∈ C1([0, 1],R). Then, from the well-known “Fundamental Theorem of
Calculus” or integration by parts formula for functions, it follows that

∫ 1

0

f ′(t) dt = f(1) − f(0) . (4.19)

More generally, let df ∈ Ω1
1([0, 1]). Then by Definition 4.2, we have

∫

[0,1]

df =

∫

[0,1]

f ′(t) dt .
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With (9.92) and Example 3.33, this can also be written as

∫

[0,1]

df = f(1) − f(0) =

∫

∂[0,1]

f |∂[0,1] =

∫

∂[0,1]

ι∗∂[0,1]f ,

where ∂[0, 1] = {0−} ∪ {1+} denotes the boundary of [0, 1] ⊂ R. It will turn
out that the last equation is a special case of Stokes’ theorem. Hence, this
important theorem can be interpreted as an integration by parts formula for
forms on manifolds.

Before stating Stokes’ theorem, we have to study the boundary ∂Ω = Ω̄\Ω
of an open subset of a manifold in a detailed manner.

Definition 4.11. An oriented domain Ω of an oriented manifold Mm is
an open subset of Mm such that, for every p ∈ ∂Ω = Ω̄ \ Ω, there exists a
local chart (U,ϕ) of Mm, p ∈ U open, with

(i) ϕ(p) = 0, i.e., the chart is centered at p;
(ii) ϕ(Ω ∩ U) =

(
R+ \ {0}

)
× Rm−1 ∩ ϕ(U);

(iii) the map ϕ is a positive diffeomorphism from U into ϕ(U).

ϕ

P

ϕ(Ω) ∩ U

Ω ∩ U

Ω ⊂M

R

Rm−1

Fig. 4.4. Domain of a manifold.

Proposition 4.12. Let Ω be an oriented domain of an orientable manifold
Mm. Then ∂Ω is an oriented (m− 1)-dimensional submanifold of Mm.

Proof. Let p ∈ ∂Ω = Ω̄ \ Ω and let (U,ϕ) denote the local chart given by
Definition 4.11. Since ϕ is a bijection, we get

ϕ
(
(Ω̄ \Ω) ∩ U

)
= ϕ(Ω̄ ∩ U) \ ϕ(Ω ∩ U) ,

and since ϕ is a homeomorphism,

ϕ(Ω̄ ∩ U) = ϕ(Ω ∩ U) ∩ ϕ(U) .

These two observations then imply that
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ϕ(∂Ω ∩ U) =
(
ϕ(Ω ∩ U) ∩ ϕ(U)

)
\ ϕ(Ω ∩ U)

= R+ × Rm−1 ∩ ϕ(U) \
(
R+ \ {0}

)
× Rm−1 ∩ ϕ(U)

= {0} × Rm−1 ∩ ϕ(U) ,

showing that ∂Ω is a (m − 1)-dimensional submanifold of Mm. – Note that
submanifolds of manifolds are also manifolds as in the case of submanifolds
of Euclidean space.

In order to show the orientability of the manifold ∂Ω, it suffices by Propo-
sition 3.52 to construct a positively oriented atlas on ∂Ω. Then we are done.

Let (ϕ,U) and (ψ, V ) be two local charts about p ∈ ∂Ω given by Definition
4.11. We then denote the transition function by

ψ◦ϕ−1 = (f1, ψ̄◦ϕ̄
−1) : ϕ(U∩V ) ⊂ R+×Rm−1 −→ ψ(U∩V ) ⊂ R+×Rm−1 ,

where ϕ̄ := ϕ|∂Ω and ψ̄ := ψ|∂Ω . Since

ϕ(U ∩ V ∩ ∂Ω) ⊂ {0} × Rm−1 ∩ ϕ(U ∩ V ) ,

and
ψ(U ∩ V ∩ ∂Ω) ⊂ {0} × Rm−1 ∩ ψ(U ∩ V ) ,

we have for all x ∈ {0}×Rm−1 ∩ϕ(U ∩ V ) that f1(x) = 0. This implies that

∂f1
∂xi

(x) = 0 , i = 2, . . . ,m .

Moreover, one easily checks that λ1 := ∂f1
∂x1

(0) ≥ 0 at the point ϕ(p) = ψ(p) =
0. Thus we can write for the Jacobian at the point 0 ∈ Rm of the transition
function

J0(ψ ◦ ϕ−1) =

(
λ1 0
∗ J0(ψ̄ ◦ ϕ̄−1)

)
.

It follows that
det J0(ψ ◦ ϕ−1) = λ1 det J0(ψ̄ ◦ ϕ̄−1) .

By assumption det J0(ψ ◦ ϕ−1) > 0 showing that det J0(ψ̄ ◦ ϕ̄−1) > 0. This
proves the proposition. ut

At this stage, we are ready to formulate Stokes’ theorem.

Theorem 4.13 (Stokes’ Theorem). Let Mm be an oriented manifold and
let Ω be an oriented domain of Mm such that Ω̄ is compact. Then for every
ω ∈ Ωm−1

1 (M) the following formula holds:

∫

Ω

dω =

∫

∂Ω

ι∗∂Ωω , (4.20)

where ι : ∂Ω ↪→Mm denotes the canonical inclusion.
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Proof. To every p ∈ Ω̄ we assign a local chart (Up, ϕp) such that ϕp is a
positive diffeomorphism and such that (see also Fig. 4.4)

a) if p ∈ Ω, then Up ⊂ Ω and ϕp(Up) ⊂ B1(0) ⊂ Rm;
b) if p ∈ ∂Ω, then ϕp(Up∩Ω) =

(
R+\{0}

)
×Rm+1∩B1(0) and ϕp(Up∩∂Ω) =

{0} × Rm+1 ∩ B1(0).

Obviously, we have that Ω̄ ⊂
⋃
p∈Ω̄ Up and let U0 be a subset of the

complement of Ω̄ such that U0 ∪
(⋃

p∈Ω̄ Up
)

covers Mm. Due to the com-

pactness of Ω̄, we can extract a finite covering, i.e., the open sets U0, U1 :=
Up1 , . . . , UN := UpN

coverMm. Moreover, let θ0, θ1, . . . , θN denote a partition
of unity subordinated to this covering.

By linearity of the exterior derivative d and the integral, we then have
(see also (3.75))

∫

Ω

dω =

∫

Ω

d

(
N∑

i=1

θiω

)
=

N∑

i=1

∫

Ω

d(θiω) . (4.21)

The sum is finite and note that d(θiω) ∈ Ωm−1
0 (M) is compactly supported

in Ui. Using Definition 4.4 for the integration on manifolds, it follows for
i = 1, . . . , N that

∫

Ω

d(θiω) =

∫

Mm

χΩd(θiω)

=

∫

ϕi(Ui)

(ϕ−1
i )∗

(
χΩd(θiω)

)

=

∫

ϕi(Ui)

(χΩ ◦ ϕ−1
i )(ϕ−1

i )∗
(
d(θiω)

)
,

where χΩ is the characteristic function of Ω and the ϕi := ϕpi
verify a) and

b). Clearly, χΩ ◦ ϕ−1
i = χϕi(Ui∩Ω), we can thus write

∫

Ω

d(θiω) =

∫

ϕi(Ui)

χϕi(Ui∩Ω)d
(
(ϕ−1
i )∗(θiω)

)
, (4.22)

where we also used that d and the pull-back commute. .
If we denote by UQ+1, . . . , UN the open sets of Mm which intersect ∂Ω,

(4.21) can be rewritten as

∫

Ω

dω =

Q∑

i=1

∫

Ω

d(θiω) +

N∑

i=Q+1

∫

Ω

d(θiω) . (4.23)

For i = 1, . . . , Q, (4.22) then implies
∫

Ω

d(θiω) =

∫

B1(0)

d
(
(ϕ−1
i )∗(θiω)

)
=

∫

Rm

d
(
(ϕ−1
i )∗(θiω)

)
. (4.24)
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Note that (ϕ−1
i )∗(θiω) ∈ Ωm−1

1 (Rm) is compactly supported in ϕi(Ui) ⊂
B1(0). From Lemma 4.14 below, we then deduce that the right-hand side of
(4.24) vanishes.

For i = Q+ 1, . . . , N , we have

∫

Ω

d(θiω)
(4.22)
=

∫
(

R+\{0}
)
×Rm−1

d
(
(ϕ−1
i )∗(θiω)

)
.

From Lemma 4.15 below, we then obtain

∫

Ω

d(θiω) =

∫

{0}×Rm−1

ι∗{0}×Rm−1

(
(ϕ−1
i )∗(θiω)

)

=

∫

∂Ω∩Ui

ι∗∂Ωθiω =

∫

∂Ω

ι∗∂Ωθiω . (4.25)

Combining (4.23) with (4.24) and (4.25), we arrive at

∫

Ω

dω =

N∑

i=Q+1

∫

∂Ω

ι∗∂Ωθiω =

∫

∂Ω

ι∗∂Ωω .

ut

Lemma 4.14. Let β ∈ Ωm−1
1 (Rm) compactly supported. Then, we have that

∫

Rm

dβ = 0 .

Proof. Let β ∈ Ωm−1
1 (Rm) be given in the following representation

β =

m∑

k=1

(−1)k−1βk dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxm . (4.26)

Then, using (3.42), it is easy to check that

dβ = divXβ dx1 ∧ . . . ∧ dxm , (4.27)

where Xβ = (β1, . . . , βm) is a C1-vector field on Rm. From Definition 4.2, we
then deduce that

∫

Rm

dβ =

∫

Rm

divXβ(x) dL
m(x) .

Since β is compactly supported, we can assume that suppβ ⊂ BR(0) ⊂ Rm

for some R > 0. Hence, we get (note that divXβ ∈ L1(Rm))

∫

Rm

divXβ(x) dL
m(x) =

∫

BR(0)

divXβ(x) dL
m(x) =

∫

[−R,R]m
divXβ(x) dL

m(x)
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From (4.27) and since integration is a linear operation, it follows

∫

Rm

dβ =

m∑

k=1

∫

[−R,R]m

∂βk
∂xk

(x) dLm(x) .

For every 1 ≤ k ≤ m, the theorem of Fubini implies that

∫

[−R,R]m

∂βk
∂xk

(x) dLm(x) =

∫

[−R,R]m−1

(∫

[−R,R]

∂βk
∂xk

(x) dxk

)
dx1 . . . d̂xk . . . dxm ,

where a different notation is used for the Lebesgue measure on the right-hand
side. Because suppβ ⊂ BR(0), we have

∫

[−R,R]

∂βk
∂xk

(x) dxk = βk(R) − βk(−R) = 0 .

This gives the result. ut

Lemma 4.15. Let β ∈ Ωm−1
1 (Rm) compactly supported. Then, we have that

∫

R+×Rm−1

dβ =

∫

{0}×Rm−1

ι∗{0}×Rm−1β .

Proof. With the same notations as in the proof of the previous lemma, we
can write

∫

R+×Rm−1

dβ =

∫ R

x1=0

∫

[−R,R]m−1

divXβ(x) dL
m(x)

=

∫ R

x1=0

∫

[−R,R]m−1

divXβ(x) dx1dx2 . . . dxm .

Using the theorem of Fubini, the right-hand side of the last equation becomes

∫ R

x1=0

(∫

[−R,R]m−1

∂β1

∂x1
(x) dx2 . . . dxm

)
dx1

+
m∑

k=2

∫ R

x1=0

[∫

[−R,R]m−1

∂βk
∂xk

(x) dx2 . . . dxm

]
dx1 . (4.28)

The integrals in brackets vanish by an analogous argument as in the proof of
the previous lemma.

For the first term of (4.28) we obtain, from the fact that suppβ ⊂ BR(0)
by assumption,

∫ R

x1=0

(∫

[−R,R]m−1

∂β1

∂x1
(x) dx2 . . . dxm

)
dx1 =

∫

[−R,R]m−1

β1(0, x2, . . . , xm) dx2 . . . dxm .
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In summary, we have shown that

∫

R+×Rm−1

dβ =

∫

[−R,R]m−1

β1(0, x2, . . . , xm) dx2 . . . dxm

(4.2)
=

∫

Rm−1

β1(0, x2, . . . , xm) dx2 ∧ . . . ∧ dxm . (4.29)

On the other hand, it is straightforward to observe that, for k = 2, . . . ,m,

ι∗{0}×Rm−1dx1 ∧ . . . ∧ d̂xk ∧ . . . dxm = 0 .

This implies, recalling (4.26),

ι∗{0}×Rm−1β = β1(0, x2, . . . , xm) dx2 ∧ . . . dxm .

Inserting the last expression in (4.29), then gives the result. ut

Application of Stokes’ Theorem

φ

B3 S2

Fig. 4.5. Map from B3 to S2 = ∂B3.

We want to answer the question if there exists a smooth map φ : B3 −→
S2 such that φ(x) = x on S2 = ∂B3. Roughly speaking, we ask if it is possible
to compress in a smooth way B3 to its boundary leaving the boundary itself
unchanged. – Obviously, this can be done by the map x 7−→ x

|x| , x ∈ B3,

without considering the origin.
The answer to the question before is given by the following theorem.

Theorem 4.16 (Brouwer). Let

φ : Bm −→ Sm−1 = ∂Bm

be a C1-map. Then the restriction of φ to ∂Bm can not be the identity on
∂Bm.



114 4 Integration on Manifolds

Proof. We prove the theorem by contradiction. – First note that

detJxφ = 0 , for all x ∈ Bm , (4.30)

being a direct consequence of the Local Inversion Theorem 1.10. More pre-
cisely, without (4.30), this theorem would give the existence of a diffeomor-
phism from U open containing x ∈ B3 into V open containing φ(x) ∈ S2.

Let dx1 ∧ . . . ∧ dxm ∈ Ωm(Sm−1). Since the pull-back of this differential
form equals multiplication by det Jφ, it follows (see also (3.74))

0 = φ∗dx1 ∧ . . . ∧ dxm ∈ Ωm(Bm) ,

and also that ∫

Bm

φ∗dx1 ∧ . . . ∧ dxm = 0 .

Denoting by (φ1, . . . , φm) the coordinate functions of φ, we obtain, with
Proposition 3.24 and (3.46),

∫

Bm

dφ1 ∧ . . . ∧ dφm = 0 .

From dφ1 ∧ . . . ∧ dφm = d(φ1 dφ2 ∧ . . .∧ dφm) and Stokes’ Theorem 4.13, we
deduce that

0 =

∫

Bm

d(φ1 dφ2 ∧ . . . ∧ dφm)

=

∫

∂Bm

ι∗∂Bm(φ1 dφ2 ∧ . . . ∧ dφm) . (4.31)

Moreover, using again Proposition 3.24 and (3.46), we get

ι∗∂Bm(φ1 dφ2 ∧ . . . ∧ dφm) = φ1 ◦ ι∂Bm d(ι∗∂Bmφ2) ∧ . . . ∧ d(ι
∗
∂Bmφm) .

Since by assumption φ|∂Bm = id|∂Bm , it follows that

ι∗∂Bm(φ1 dφ2 ∧ . . . ∧ dφm) = x1 dx2 ∧ . . . ∧ dxm .

Inserting this result in (4.31), leads to

0 =

∫

∂Bm

x1 dx2 ∧ . . . ∧ dxm .

Using again Stokes’ theorem, we obtain the contradiction:

0 =

∫

Bm

dx1 ∧ . . . ∧ dxm =

∫

Bm

1 dLm = Vol(Bm) .

ut
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Particular Cases of Stokes’ Theorem

1. Let Ω ⊂ Rm = Mm be an oriented domain of Rm such that Ω̄ is compact.
Moreover, let α ∈ Ωm−1(Ω) be given by the representation

α =

m∑

k=1

(−1)k−1αk dx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxm .

Then, we obtain (see the proof of Lemma 4.14)

dα = divXα dx1 ∧ . . . ∧ dxm , (4.32)

where Xα = (α1, . . . , αm) is a C∞-vector field on Ω ⊂ Rm.
On the other hand, extending Proposition 3.40 to m dimensions, we get

ι∗∂Ωα = 〈Xα,n〉 dA∂Ω , (4.33)

where 〈·, ·〉 denotes the usual scalar product on Rm and the map n ∈
C∞(Ω,Rm) denotes the orientation for the (m − 1)-dimensional submani-
fold ∂Ω of Rm (see Proposition 4.12 and Proposition 3.55).

Inserting (4.32) and (4.33) into Stokes’ Theorem 4.13, we end up with
Gauß formula:

∫

Ω

divXα dx1 ∧ . . . ∧ dxm =

∫

∂Ω

〈Xα,n〉 dA∂Ω . (4.34)

2. We consider a surface Σ in R3 and let Ω ⊂ Σ be a oriented domain of
Σ. Moreover, let β = β1 dx1 + β2 dx2 + β3 dx3 ∈ Ω1(R3) and α = β|Σ = ι∗Σβ
be the restriction of the one-form β to Σ. In Section 3.1.2, we have shown that
the exterior derivative dβ corresponds to rotXβ , where Xβ = (β1, β2, β3) is
a C∞-vector field on R3. From Proposition 3.40, we then obtain

∫

Ω

dα =

∫

Ω

d(ι∗Σβ) =

∫

Ω

ι∗Σdβ =

∫

Ω

〈rotXβ ,n〉 dAΣ . (4.35)

On the other hand, denoting the one-dimensional boundary ∂Ω of Ω by Γ ,
we have ∫

∂Ω

ι∗∂Ωα =

∫

Γ

ι∗Γβ =

∫

Γ

〈Xβ , t〉 dlΓ , (4.36)

where we used Proposition 3.36. Recall that dlΓ denotes the length form on
Γ with respect to the orientation t (see Definition 3.35). Putting (4.35) and
(4.36) together, Stokes’ theorem has the well-known form:

∫

Ω

〈rotXβ ,n〉 dAΣ =

∫

Γ

〈Xβ , t〉 dlΓ . (4.37)





5 Riemannian Geometry of Curves and

Surfaces in R3

5.1 Local and Global Geometry of Curves in R3

Definition 5.1. Let k ≥ 1. A parameterized Ck-curve in R3 is a Ck-map
γ from an interval I ⊂ R into R3.

Remark. If the interval I is not open the map γ can be seen as restriction of
a Ck-map defined on an open interval containing I .

Example 5.2. For simplicity, we take examples of curves with images lying
in R2. – The map γ : R −→ R2, t 7−→ (t, |t|) is not a parameterized C1-
curve, since |t| is not differentiable at t = 0. However, the map γ : R −→ R2,
t 7−→ (t3, t2) defines a parameterized C1-curve. Note that γ̇(0) = (0, 0),
showing that γ is not regular in the sense of the following definition.

Definition 5.3. A regular curve is a parameterized C1-curve γ such that
γ̇(t) 6= 0, for all t ∈ I. We call t(t) := γ̇(t) ∈ R3 the tangent vector of γ at
t. Moreover, the arc length of the curve γ from a fixed point γ(t0), t0 ∈ I,
is defined by

s(t) =

∫ t

t0

‖γ̇(τ)‖ dτ . (5.1)

Note that s : I ⊂ R −→ R+ is a strictly increasing function. – If ‖γ̇(t)‖ =
1, for all t ∈ I , then clearly s(t) = t− t0 for the arc length, and we say that
γ is parameterized by arc length.

Lemma 5.4. Let γ be a regular parameterized curve in R3. Then γ can be
parameterized by arc length.

Proof. Let [a, b] = I ⊂ R and let L denote the total length of the regular

parameterized curve γ, i.e., L := s(b) =
∫ b
a ‖γ̇(τ)‖ dτ . From (5.1), we deduce

that, for all t ∈ [a, b],
ds

dt
= ‖γ̇(t)‖ 6= 0 .

Hence by the Local Inversion Theorem 1.10, the C1-inverse s−1 : [0, L] −→
[a, b] exists. Defining γ̃(σ) := γ

(
s−1(σ)

)
, for σ ∈ [0, L], we obtain a curve

parameterized by arc length. Indeed, we see that
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∥∥∥∥
dγ̃

dσ

∥∥∥∥ =

∥∥∥∥γ̇
(
s−1(σ)

)ds−1

dσ

∥∥∥∥ = 1 .

ut

In the following, we denote by γ(s) curves being parameterized by arc
length.

Definition 5.5. Let γ be a C2-curve parameterized by arc length. We define
the curvature of γ at s ∈ I by the number k(s) := ‖γ̈(s)‖.

We easily see that if k(s) ≡ 0, then the curve γ is a straight line. Moreover,
it is intuitively clear, that the curvature at point measures the deviation of
the curve from the tangent vector at this point, also called bending of the
curve.

Assuming that γ̈(s) 6= 0, for a point s ∈ I , we introduce

n(s) =
γ̈(s)

‖γ̈(s)‖
, (5.2)

the unit normal vector to γ at s. We call the plane in R3 generated by the
vectors t(s) and n(s) the osculating plane to γ at s. Moreover, we define

b(s) := t(s) × n(s) , (5.3)

where × denotes the usual vector product in R3.

b(s)

γ̈(s)

osculating plane

n(s)

t(s)

γ

s

Fig. 5.1. Curve in R3.

Next, we would like to measure the tendency of a curve to escape from
the osculating plane, also called twisting of the curve. For this purpose, we
consider the derivative of b(s) and compute

ḃ(s) = ṫ(s) × n(s) + t(s) × ṅ(s)
(5.2)
= t(s) × ṅ(s) .

Thus, we deduce that ḃ(s) is parallel to n and the following definition makes
sense.
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Definition 5.6. Let γ be a C3-curve parameterized by arc length. We define
the torsion of γ at s ∈ I by the number τ(s) such that ḃ(s) = τ(s) n(s).

Note that the torsion indeed measures the twisting of the curve and we
state without proof the following

Proposition 5.7. Let γ be a C3-curve parameterized by arc length. Then γ
lies in a plane of R3, i.e., is a planar curve, if and only if τ(s) ≡ 0.

Remark. Obviously, planar curves can be interpreted as maps from an inter-
val of R into R2 (see also Example 5.2).

Definition 5.8. Let γ be a C3-curve parameterized by arc length. If γ̈(s) 6=
0, for all s ∈ I, then we call γ a Frenet curve. Moreover, the Frenet
trihedron is formed by the orthonormal frame {t(s),n(s), b(s)}.

For a Frenet curve, we have by definition ḃ(s) = τ(s) n(s) and we deduce
directly from (5.2) and Definition 5.5 that ṫ(s) = k(s) n(s). Then, it follows

ṅ(s) = ḃ(s) × t(s) + b(s) × ṫ(s)

= τ(s) n(s) × t(s) + k(s) b(s) × n(s)

= −τ(s) b(s) − k(s) t(s) .

In summary, we end up with the following system of ordinary differential
equations called Frenet equations:





ṫ(s) = k(s) n(s)
ṅ(s) = −τ(s) b(s) − k(s) t(s)

ḃ(s) = τ(s) n(s) .

(5.4)

Theorem 5.9 (Fundamental Theorem of the Local Theory of Curves).
Let I be an interval of R and let k : I −→ R+ \ {0}, τ : I −→ R be two given
C∞-functions. Moreover, assume that for a fixed s0 ∈ I a point x ∈ R3 and
an orthonormal frame {e01, e

0
2, e

0
3} of R3 are given. Then there exists a unique

C∞-Frenet curve γ : I −→ R3 solution of the Frenet equations (5.4) such
that

(i) γ(s0) = x;
(ii) the Frenet trihedron of γ at s0 is {e01, e

0
2, e

0
3};

(iii) the curvature and torsion of γ are, respectively, k and τ .

This important theorem closes the part concerning the local theory of
curves in R3. – Now, we come to the global theory of curves in R3 dealing
with closed and simple (planar) curves in the sense of the following

Definition 5.10. A regular parameterized Ck-curve γ : [a, b] ⊂ R −→ Rn,
n = 2, 3, is called closed if γ and all its derivatives agree at a and b, i.e.,
γ(l)(a) = γ(l)(b), for all l = 1, . . . , k. Moreover, a regular parameterized Ck-
curve γ is said to be simple if γ|[a,b) is injective.
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Theorem 5.11 (Jordan). Let γ : [a, b] −→ R2 be a closed and simple planar
curve. Then there exists a bounded domain Ω of R2 such that

∂Ω = Ω̄ \Ω = γ
(
[a, b]

)
.

Proof. ut

Jordan’s Theorem then motivates the following two (equivalent) ques-
tions:

a) What shape does the domain Ω with given area A must have, in order
to minimize the length L of its boundary γ?

b) What shape does the curve γ with given length L must have, in order to
maximize the area A of the enclosed domain Ω?

As expected, it turns out that the optimal shape is given by the circle in R2.
More precisely, we have the following important global theorem.

Theorem 5.12 (Isoperimetric Inequality). Let γ be a closed and sim-
ple planar C1-curve with total length L. Moreover, let A be the area of the
enclosed domain Ω. Then, we have that

L2 ≥ 4πA , (5.5)

with equality if and only if γ is a circle in R2.

Proof. Let γ : [0, L] −→ R2 be a closed and simple planar curve parame-
terized by arc length such that γ

(
[0, L]

)
= ∂Ω for a domain Ω of R2 (see

Lemma 5.4 and Jordan’s Theorem 5.11).
We denote by Ω̃ the convex hull of Ω, i.e, the intersection of all convex

subsets of R2 containing Ω. Then, we see that A(Ω̃) ≥ A(Ω) and L(γ̃) ≤
L(γ), where γ̃ denotes the closed and simple planar curve enclosing the convex
hull Ω̃. Hence, if (5.5) holds for Ω̃, we get

A(Ω) ≤ A(Ω̃) ≤
1

4π
L(γ̃) ≤

1

4π
L(γ), ,

showing that it suffices to prove the isoperimetric inequality for the case when
Ω is a convex domain of R2. – Moreover, because of the invariance of (5.5)
under dilations, we can assume that L = 2π.

Next, we denote by ∆+ and ∆− the two half-planes of R2 such that
∆+ ∪∆− = R2 and

L(∂Ω ∩∆+) = L(∂Ω ∩∆−) = π ,

A(Ω ∩∆+) ≥ A(Ω ∩∆−) .

Then, we choose coordinates (x, y) on R2 in such a way that

∆+ =
{
(x, y) ∈ R2 : y ≥ 0

}
.
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Ω ∩∆+

Ω ∩∆−

γ

x

y

Fig. 5.2. Setting for the proof of the isoperimetric inequality.

For the area A of the convex domain Ω, we have

A(Ω) ≤ 2A(Ω ∩∆+) = 2L2(Ω ∩∆+) = 2

∫

Ω∩∆+

dx ∧ dy , (5.6)

where we used Definition 4.2 for the integration of differential forms on Eu-
clidean space. Writing dx ∧ dy = d(−y dx), Stokes’ Theorem 4.13 implies
that

2

∫

Ω∩∆+

dx ∧ dy = 2

∫

∂(Ω∩∆+)

ι∗∂(Ω∩∆+)(−y dx) .

Since ∂(Ω ∩∆+) = (Ω ∩ ∂∆+) ∪ (∂Ω ∩∆+), the last integral becomes (note
that y = 0 on ∂∆+)

2

∫

∂(Ω∩∆+)

ι∗∂(Ω∩∆+)(−y dx) = −2

∫

∂Ω∩∆+

y dx ,

where y dx now denotes the restricted one-form to ∂Ω∩∆+, i.e., ι∗∂Ω∩∆+(y dx) =
y dx|∂Ω∩∆+ .

By convexity of the domain Ω it is now possible to parameterize ∂Ω∩∆+

by the curve γ|[0,π], i.e., γ
(
[0, π]

)
= ∂Ω ∩ ∆+. Note that in the case of Ω

being not convex, the length of the curve parameterizing ∂Ω ∩ ∆+ would
by larger than π, because the different components of ∂Ω ∩ ∆+ need to be
connected. – So writing y

(
γ(s)

)
= y(s) and x

(
γ(s)

)
= x(s) for s ∈ [0, π], we

obtain from Proposition 4.3 that

−2

∫

∂Ω∩∆+

y dx = −2

∫

[0,π]

y(s)ẋ(s) ds . (5.7)

Since γ is parameterized by arc length, i.e., 1 = ‖γ̇(s)‖2 = ẋ2(s) + ẏ2(s), we
see that

−2 y(s)ẋ(s) ≤ y2(s) + ẋ2(s) = y2(s) + 1 − ẏ2(s) .

Inserting this into (5.7) and recalling (5.6), we arrive at
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A(Ω) ≤

∫ π

0

y2(s) + 1 − ẏ2(s) ds . (5.8)

Since γ is a C1-curve by assumption, we can apply Poincaré’s Lemma
5.13 (see below) to deduce that

A(Ω) ≤

∫ π

0

ẏ2(s) + 1 − ẏ2(s) ds ≤

∫ π

0

1 ds = π =
L2

4π
.

As a direct consequence of (5.6) and Poincaré’s Lemma 5.13, equality holds
if and only if A(Ω ∩ ∆+) = A(Ω ∩ ∆−) and ∂Ω ∩ ∆+ is a half-circle. This
concludes the proof of the isoperimetric inequality. ut

Lemma 5.13 (Poincaré’s Lemma). Let y ∈ C1
(
[0, π],R

)
such that y(0) =

y(π) = 0. Then, we have

∫ π

0

y2(s) ds ≤

∫ π

0

ẏ2(s) ds , (5.9)

with equality if and only if γ(s) = c sin(s) for a constant c ∈ R.
Proof. ut

In the case of planar regular curves γ parameterized by arc length, it
is possible to assign a sign to its curvature (compare with Definition 5.5).
For this purpose, let n(s) denote the unit (normal) vector in R2 such that
{γ̇(s),n(s)} is a positive oriented basis of R2. Then, we get the following

Definition 5.14. Let γ be a planar regular C2-curve parameterized by arc
length. We define the signed curvature k(s) of γ at s by γ̈(s) = k(s) n(s).

γ γ̈(s)

γ̇(s)

n(s)
γ̈(s)

n(s)

γ̇(s)

k(s) < 0 k(s) > 0

Fig. 5.3. Signed curvature of a planar curve.

Introducing polar coordinates in R2, the unit tangent vector of γ at s
can be written as γ̇(s) =

(
cos θ(s), sin θ(s)

)
. Hence, it follows that γ̈(s) =

θ̇(s)
(
− sin θ(s), cos θ(s)

)
. Since
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{(
cos θ(s), sin θ(s)

)
,
(
− sin θ(s), cos θ(s)

)}

is a positive oriented basis of R2, we can take n(s) =
(
− sin θ(s), cos θ(s)

)

and obtain k(s) = θ̇(s) for the signed curvature. If in addition the curve γ is
closed with length L (see Definition 5.10), it follows that

θ(0) ≡ θ(L) mod 2π .

Thus, we can define the rotation index of γ, denoted by Ind γ, as being the
number in Z satisfying

∫ L

0

k(s) ds = θ(L) − θ(0) = 2π Ind γ . (5.10)

Remark. The rotation index can be interpreted as topological degree of γ̇
seen as map from S1 into S1 (see Section 4.2).

Theorem 5.15. Let γ : [0, L] −→ R2 be a closed and simple planar curve
parameterized by arc length. Then, we have Ind γ = ±1, i.e.,

∫ L

0

k(s) ds = ±2π .

Proof. We can also always assume that γ
(
[0, L]

)
⊂ R×R+ and γ(0) = γ(L) =

0, moreover that γ̇(0) = γ̇(L) = e1 (see Fig. 5.4).

e1

γ

θ(0, σ)

e(0, σ)

γ(0) = γ(L)

Fig. 5.4. Coordinates for the proof of Theorem 5.15.

Then we define

A =
{
(s, σ) ∈ R2 : 0 ≤ s ≤ σ ≤ L

}
.

and the map e : A −→ S1 ⊂ R2 by

e(s, σ) =





γ(σ) − γ(s)

‖γ(σ) − γ(s)‖
for s 6= σ and (s, σ) 6= (0, L)

γ̇(σ) for s = σ

−γ̇(0) = −e1 for (s, σ) = (0, L) .
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By assumption the planar curve γ is simple, i.e., for all s, σ ∈ [0, L) with
s 6= σ, it follows that γ(s) 6= γ(σ). Hence, the map e is well-defined and its
continuity can also easily be checked. Moreover, one sees that e(σ, σ) gives
the unit tangent vector of γ at σ.

It is left as an exercise to show the existence of a continuous function
θ : A −→ R such that e(s, σ) =

(
cos θ(s, σ), sin θ(s, σ)

)
and θ(0, 0) = 0. In a

next step, we define the function θ(σ) := θ(σ, σ). The tangent vector of γ at
σ then reads as γ̇(σ) = e(σ, σ) =

(
cos θ(σ), sin θ(σ)

)
.

For the signed curvature we then obtain (see (5.10))

∫ L

0

k(σ) dσ =

∫ L

0

θ̇(σ) dσ = θ(L) − θ(0)

= θ(L,L) − θ(0, 0) .

On the other hand, we have

θ(0, L) − θ(0, 0) = π − 0 = π ,

θ(L,L) − θ(0, L) = 2π − π = π .

Thus, we can write

∫ L

0

k(σ) dσ =
(
θ(L,L) − θ(0, L)

)
+
(
θ(0, L) − θ(0, 0)

)
= 2π .

Note that we obtain the opposite sign in the last equation if we assume
that γ̇(0) = γ̇(L) = −e1. ut

As a direct consequence of the previous theorem, we have that

∫ L

0

|k(s)| ds ≥ 2π , (5.11)

with equality if and only if the signed curvature of the closed and simple
planar curve γ does not change the sign. This condition is equivalent for the
curve to be convex. – In addition to the derived results for closed and simple
planar curves, the next theorem says that a certain amount of curvature is
needed to close simple (space) curves in R3.

Theorem 5.16 (Fenchel’s Theorem). For every closed and simple curve
γ : [0, L] −→ R3 parameterized by arc length, the following inequality for the
so-called total curvature holds:

∫ L

0

k(s) ds ≥ 2π , (5.12)

with equality if and only if γ is a planar convex curve.
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Introducing the concept of knotted curves in R3, we obtain a sharpening
of Fenchel’s Theorem.

Definition 5.17. A closed and simple C0-curve γ : S1 −→ R3 is called
un-knotted if there exists a homotopy H : S1 × [0, 1] −→ R3 such that

H(S1 × {0}) = S1 ,

H(S1 × {1}) = γ ,

and H(S1 × {t}) = γt ⊂ R3 is homeomorphic to S1.

Intuitively, this means that an un-knotted space curve can be deformed
continuously into the circle S1 with all intermediate positions homeomorphic
to S1. For the total curvature of knotted curves, i.e., curves which do not
satisfy Definition 5.17, we then have the following result.

Theorem 5.18 (Fary-Milnor). For every knotted (space) curve γ : [0, L] −→
R3 parameterized by arc length, the following inequality for the total curvature
holds: ∫ L

0

k(s) ds ≥ 4π . (5.13)

Fig. 5.5. Knotted and un-knotted space curves.

5.2 Local and Global Geometry of Surfaces in R3

Definition 5.19. We define a Ck-surface of R3 to be a two-dimensional
Ck-submanifold of R3.

Remark. In the following, we will only consider C∞-surfaces.

Let Σ be a surface in R3 and p ∈ Σ. The canonical scalar product of R3

induces on each tangent space TpΣ a scalar product, denoted by 〈·, ·〉p. More
precisely, if X1, X2 ∈ TpΣ ⊂ R3, then 〈X1, X2〉p equals the scalar product
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〈X1, X2〉 of X1 and X2 in R3. Note that we make no difference in the notation
for an element of the tangent space TpΣ and its image by the map dιΣ , where
ιΣ denotes as usual the canonical inclusion of Σ in R3. – Recall also that a
scalar product is a symmetric bilinear form.

Definition 5.20. Let Σ be a surface in R3 and p ∈ Σ. The restriction of
the canonical scalar product in R3 to TpΣ, denoted by 〈·, ·〉p or also Ip(·, ·),
defines the first fundamental form of Σ at p.

Let (U,ϕ) be a local chart for the surface Σ about p ∈ U ⊂ Σ in the sense
of Example 2.20. In this chart, we can write X,Y ∈ TpΣ as

X =

2∑

i=1

Xi
∂

∂ϕi
(p) , Y =

2∑

i=1

Yi
∂

∂ϕi
(p) .

The first fundamental form Ip then reads as

Ip(X,Y ) = 〈X,Y 〉p (5.14)

= X1Y1

〈
∂

∂ϕ1
(p),

∂

∂ϕ1
(p)

〉

p

+X1Y2

〈
∂

∂ϕ1
(p),

∂

∂ϕ2
(p)

〉

p

+ X2Y1

〈
∂

∂ϕ2
(p),

∂

∂ϕ1
(p)

〉

p

+X2Y2

〈
∂

∂ϕ2
(p),

∂

∂ϕ2
(p)

〉

p

.

(5.15)

Introducing for the coefficients of the first fundamental form in the chart
(U,ϕ) the notations

E(p) =

〈
∂

∂ϕ1
(p),

∂

∂ϕ1
(p)

〉

p

, F (p) =

〈
∂

∂ϕ1
(p),

∂

∂ϕ2
(p)

〉

p

,

G(p) =

〈
∂

∂ϕ2
(p),

∂

∂ϕ2
(p)

〉

p

, (5.16)

Equation (5.14) reduces to

Ip(X,Y ) = X1Y1E(p) +X1Y2 F (p) +X2Y1 F (p) +X2Y2G(p) . (5.17)

Next, let γ ∈ C1([0, 1], Σ ∩ U) be a regular parameterized curve in Σ. If
we write γ(t) = ϕ−1

(
c1(t), c2(t)

)
for the curve in the chart (U,ϕ), then it

follows

γ̇(t) = ċ1(t)
∂ϕ−1

∂x1

(
ϕ(γ(t))

)
+ ċ2(t)

∂ϕ−1

∂x2

(
ϕ(γ(t))

)
.

By Definition 5.3 the arc length of γ is given by

s(t) =

∫ t

0

‖γ̇(τ)‖ dτ ,
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and using the notations introduced in (5.16), it follows

s(t) =

∫ t

0

√
ċ21(τ)E

(
γ(τ)

)
+ 2 ċ1(τ)ċ2(τ)F

(
γ(τ)

)
+ ċ22(τ)G

(
γ(τ)

)
. (5.18)

Hence, the importance of the first fundamental form comes from the fact
that if it is given, then metric questions on a surface can be treated without
further references to the ambient space R3.

Example 5.21 (First Fundamental Form for the Sphere S2).

We have already seen in Section 3.3, that Σ is orientable if there exists
a C∞-map n : Σ −→ R3 such that ‖n(p)‖ = 1 and n(p) ⊥ TpΣ, for all
p ∈ Σ, and an orientation for Σ is given by the choice of such a map n.
An orientation n can be constructed in the following way: Let ιΣ : Σ ↪→ R3

denote the canonical inclusion and let (U,ϕ) be a local chart about p. Then
we consider the C∞-map, called local parameterization of Σ,

ϕ̃−1 := ιΣ ◦ ϕ−1 : ϕ(Σ ∩ U) ⊂ R2 −→ Σ ∩ U ⊂ R3 . (5.19)

Since ϕ is a local diffeomorphism about p, we deduce that dϕ̃−1
ϕ(p) · ei =

∂ϕ̃−1

∂xi

(
ϕ(p)

)
, for i = 1, 2, are two linearly independent vectors of TpΣ ⊂ R3.

Moreover, the map

n =

∂ϕ̃−1

∂x1
×
∂ϕ̃−1

∂x2∥∥∥∥
∂ϕ̃−1

∂x1
×
∂ϕ̃−1

∂x2

∥∥∥∥
(5.20)

gives an orientation for Σ. (At this place, the remark at the end of Section
3.3 can be useful, see also (3.63).)

Remark. At this place, it is important to note that in terms of a local pa-
rameterization the first fundamental form reads as

〈
∂

∂ϕi
(p),

∂

∂ϕj
(p)

〉

p

=

〈
∂ϕ̃−1

∂xi

(
ϕ(p)

)
,
∂ϕ̃−1

∂xj

(
ϕ(p)

)〉
. (5.21)

For later use, we note that, for X,Y ∈ TpΣ, this can also be written as

〈X,Y 〉p = 〈dιΣ ·X, dιΣ · Y 〉. (5.22)

Definition 5.22. Let Σ be a surface in R3 with orientation n. We define
the Gauß map n of Σ by

n : Σ −→ S2 ,

p 7−→ n(p) , (5.23)
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Since TpΣ and Tn(p)S
2 are parallel to each other, the tangent map dnp

to the Gauß map can be seen as linear map on TpΣ. Moreover, it has an
important property.

Proposition 5.23. For any point p ∈ Σ, the tangent map dn : TΣ −→ TS2

of the Gauß map is self-adjoint with respect to the first fundamental form,
i.e, for all X,Y ∈ TpΣ, we have

〈dnp ·X,Y 〉p = 〈X, dnp · Y 〉p . (5.24)

Proof. Let (U,ϕ) be a chart about p ∈ Σ and let ϕ̃−1 = ιΣ ◦ϕ−1 be the local
parameterization defined in (5.19). Moreover, let γ, γ̄ ∈ C1([−1, 1], Σ∩U) be
two curves in Σ (seen as curves in R3) such that γ(0) = γ̄(0) = p and (see
Definition 2.32)

X =
d

dt

∣∣∣∣
t=0

γ(t) ∈ TpΣ , Y =
d

dt

∣∣∣∣
t=0

γ̄(t) ∈ TpΣ . (5.25)

From Definition 2.40, we see that the tangent map dnp of the Gauß map
acts on X like

dnp ·X =
d

dt

∣∣∣∣
t=0

(
n ◦ γ

)
(t) . (5.26)

Writing
(
ϕ ◦ γ

)
(t) = c1(t) e1 + c2(t) e2 ∈ R2, t ∈ [−1, 1], for the coordinate

expression of γ, we then obtain

d

dt

(
ϕ ◦ γ

)
(t) = ċ1(t) e1 + ċ2(t) e2 .

Thus for the map

n ◦ γ = n ◦ ϕ̃−1 ◦ (ϕ ◦ γ) =: ñ ◦ (ϕ ◦ γ) : [−1, 1] ⊂ R −→ S2 ⊂ R3 , (5.27)

it follows, using the chain rule,

d

dt

(
n ◦ γ

)
(t) = dñϕ(γ(t)) ·

(
ċ1(t) e1 + ċ2(t) e2

)

= ċ1(t)
∂ñ

∂x1

(
ϕ(γ(t))

)
+ ċ2(t)

∂ñ

∂x2

(
ϕ(γ(t))

)
.

Inserting this result in (5.26), we arrive at

dnp ·X = ċ1(0)
∂ñ

∂x1

(
ϕ(p)

)
+ ċ2(0)

∂ñ

∂x2

(
ϕ(p)

)
. (5.28)

In an analogous manner, we also get

dnp · Y = ˙̄c1(0)
∂ñ

∂x1

(
ϕ(p)

)
+ ˙̄c2(0)

∂ñ

∂x2

(
ϕ(p)

)
. (5.29)
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Moreover, we deduce similarly from (5.25) that

X =
d

dt

∣∣∣∣
t=0

(
ϕ̃−1 ◦ ϕ ◦ γ

)
(t) = ċ1(0)

∂ϕ̃−1

∂x1

(
ϕ(p)

)
+ ċ2(0)

∂ϕ̃−1

∂x2

(
ϕ(p)

)
.

Y =
d

dt

∣∣∣∣
t=0

(
ϕ̃−1 ◦ ϕ ◦ γ̄

)
(t) = ˙̄c1(0)

∂ϕ̃−1

∂x1

(
ϕ(p)

)
+ ˙̄c2(0)

∂ϕ̃−1

∂x2

(
ϕ(p)

)
.

(5.30)

From (5.28), respectively (5.29), and (5.30), we then get for the scalar prod-
ucts:

〈dnp ·X,Y 〉 =

〈
ċ1(0)

∂ñ

∂x1

(
ϕ(p)

)
+ ċ2(0)

∂ñ

∂x2

(
ϕ(p)

)
,

˙̄c1(0)
∂ϕ̃−1

∂x1

(
ϕ(p)

)
+ ˙̄c2(0)

∂ϕ̃−1

∂x2

(
ϕ(p)

)〉
.

〈X, dnp · Y 〉 =

〈
ċ1(0)

∂ϕ̃−1

∂x1

(
ϕ(p)

)
+ ċ2(0)

∂ϕ̃−1

∂x2

(
ϕ(p)

)
,

˙̄c1(0)
∂ñ

∂x1

(
ϕ(p)

)
+ ˙̄c2(0)

∂ñ

∂x2

(
ϕ(p)

)〉
.

For the difference of the last two expressions, it follows

〈dnp ·X,Y 〉 − 〈X, dnp · Y 〉

= ċ1(0) ˙̄c2(0)

(〈
∂ñ

∂x1

(
ϕ(p)

)
,
∂ϕ̃−1

∂x2

(
ϕ(p)

)〉
−

〈
∂ϕ̃−1

∂x1

(
ϕ(p)

)
,
∂ñ

∂x2

(
ϕ(p)

)〉)

+ċ2(0) ˙̄c1(0)

(〈
∂ñ

∂x2

(
ϕ(p)

)
,
∂ϕ̃−1

∂x1

(
ϕ(p)

)〉
−

〈
∂ϕ̃−1

∂x2

(
ϕ(p)

)
,
∂ñ

∂x1

(
ϕ(p)

)〉)
.

(5.31)

Since the unit normal vector is perpendicular to the tangent space of the
surface (see (5.20)), i.e.,

〈
ñ
(
ϕ(p)

)
,
∂ϕ̃−1

∂x1

(
ϕ(p)

)〉
= 0 ,

we obtain by differentiating with respect to x2 that
〈
∂ñ

∂x2

(
ϕ(p)

)
,
∂ϕ̃−1

∂x1

(
ϕ(p)

)〉
+

〈
ñ
(
ϕ(p)

)
,
∂2ϕ̃−1

∂x2∂x1

(
ϕ(p)

)〉
= 0 . (5.32)

Similarly, we also get
〈
∂ñ

∂x1

(
ϕ(p)

)
,
∂ϕ̃−1

∂x2

(
ϕ(p)

)〉
+

〈
ñ
(
ϕ(p)

)
,
∂2ϕ̃−1

∂x1∂x2

(
ϕ(p)

)〉
= 0 . (5.33)

And (5.32)−(5.33), then implies
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〈
∂ñ

∂x2

(
ϕ(p)

)
,
∂ϕ̃−1

∂x1

(
ϕ(p)

)〉
−

〈
∂ñ

∂x1

(
ϕ(p)

)
,
∂ϕ̃−1

∂x2

(
ϕ(p)

)〉
= 0 .

After inserting this in (5.31), we get the result (5.24). ut

Definition 5.24. Let Σ be a surface in R3 with Gauß map n. The second
fundamental form IIp of Σ at p ∈ Σ is the symmetric bilinear form on
TpΣ defined by

IIp(X,Y ) = −〈dnp ·X,Y 〉p , X, Y ∈ TpΣ . (5.34)

Remark. From Proposition 5.23, we deduce

IIp(X,Y ) = −〈dnp ·X,Y 〉p = −〈X, dnp ·Y 〉p = −〈dnp ·Y,X〉p = IIp(Y,X) ,

showing the the second fundamental form IIp is indeed symmetric.

Definition 5.25. Let Σ be a surface in R3 with orientation n and let
γ ∈ C2([−1, 1], Σ) be a regular curve such that γ(0) = p ∈ Σ. Assume
also that γ̈(0) 6= 0 and write cos θ = 〈n(p),nγ(0)〉, where nγ(0) denotes the
normal vector of γ at 0, i.e., γ̈(0) = k(0) nγ(0). Then we define the normal
curvature kn(p) of γ in Σ at p by

kn(p) := k(0) cos θ = k(0) 〈n(p),nγ(0)〉 . (5.35)

In other words, the normal curvature kn is the length of the projection
of the vector knγ on the normal n of the surface (see Fig. 5.6).

Σ

k(0) nγ(0)

γ

n(p)

nγ(0)
p

kn(p)

Fig. 5.6. Normal curvature of a curve in a surface.

To give an interpretation of the second fundamental form IIp, we consider
a regular curve γ ∈ C2([−1, 1], Σ) parameterized by arc length (seen as a
curve in R3) such that γ(0) = p ∈ Σ. Denoting by n(s) the restriction of n

to the curve γ(s), we deduce that 〈n(s), γ̇(s)〉 = 0. Hence, it follows
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〈ṅ(s), γ̇(s)〉 + 〈n(s), γ̈(s)〉 = 0 . (5.36)

Note also that dnp · γ̇(s) = ṅ(s). Then we obtain for the second fundamental
form

IIp
(
γ̇(0), γ̇(0)

)
= −〈dnp · γ̇(0), γ̇(0)〉

= −〈ṅ(0), γ̇(0)〉
(5.36)
= 〈n(0), γ̈(0)〉

= 〈n(p), k(0) nγ(0)〉 = kn(p) .

Thus the value of the second fundamental form IIp for a unit vector γ̇(0) ∈
TpΣ equals the normal curvature of the regular curve γ parameterized by arc
length passing through p with tangent vector γ̇(0) at p. Moreover, we have

Proposition 5.26 (Meusnier). The value of the second fundamental form
IIp for a unit vector X ∈ TpΣ equals the normal curvature of any regular
curve in Σ passing through p with tangent vector X at p.

We come back to the linear map dnp. – Due to Proposition 5.23, the map
dnp is self-adjoint with respect to the first fundamental form 〈·, ·〉p. Hence,
from a well-known result of linear algebra, there exists for all p ∈ TpΣ an
orthonormal basis {e1, e2} of TpΣ such that

dnp · e1 = −k1 e1 , dnp · e2 = −k2 e2 .

Assuming that k2 ≥ k1 for the eigenvalues, we have also that IIp(X,X) =
−〈dnp ·X,X〉 ∈ [k1, k2], for all X ∈ TpΣ with ‖X‖ = 1.

Definition 5.27. The maximum normal curvature k2 and the minimum nor-
mal curvature k1 are called the principal curvatures at p ∈ Σ. Moreover,
the corresponding eigenvectors e1 and e2 are called the principal directions
at p.

Example 5.28.

Definition 5.29. If for p ∈ Σ, we have that k1 = k2, then p is called an
umbilical point of Σ.

We prove now the interesting fact that the only surfaces made up entirely
of umbilical points are essentially spheres and planes.

Theorem 5.30. Let Σ be a connected surface in R3. Assume also that all
points of Σ are umbilical points. Then the surface Σ is either contained in a
sphere or in a plane.

Proof. Let (U,ϕ) be a chart about p ∈ Σ. We first prove the theorem for
Σ|U .

Since each p ∈ U is an umbilical point by assumption, we have that, for
all X ∈ TpΣ,
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dnp ·X = λ(p)X , (5.37)

where λ : U −→ R is a real function.
We show that λ is constant on U . – For this purpose, we write

X = X1
∂

∂ϕ1
+X2

∂

∂ϕ2
∈ TpΣ ,

or, seeing X as a vector in R3,

X = X1
∂ϕ̃−1

∂x1

(
ϕ(p)

)
+X2

∂ϕ̃−1

∂x2

(
ϕ(p)

)
,

where the map ϕ̃−1 = ιΣ ◦ϕ−1 was defined in (5.19). (Recall that dιΣ · ∂
∂ϕi

=
∂ϕ̃−1

∂xi
, for i = 1, 2.) By linearity, Equation (5.37) then becomes

X1 dnp ·
∂ϕ̃−1

∂x1

(
ϕ(p)

)
+X2 dnp ·

∂ϕ̃−1

∂x2

(
ϕ(p)

)

= λ(p)

(
X1

∂ϕ̃−1

∂x1

(
ϕ(p)

)
+X2

∂ϕ̃−1

∂x2

(
ϕ(p)

))
.

Defining ñ := n ◦ ϕ̃−1 : ϕ(Σ ∩U) ⊂ R2 −→ S2 ⊂ R3 (see also (5.27)), we get

X1
∂ñ

∂x1

(
ϕ(p)

)
+X2

∂ñ

∂x2

(
ϕ(p)

)
= λ(p)

(
X1

∂ϕ̃−1

∂x1

(
ϕ(p)

)
+X2

∂ϕ̃−1

∂x2

(
ϕ(p)

))
.

Hence, since X is arbitrary, it follows that

∂ñ

∂x1

(
ϕ(p)

)
= λ(p)

∂ϕ̃−1

∂x1

(
ϕ(p)

)

∂ñ

∂x2

(
ϕ(p)

)
= λ(p)

∂ϕ̃−1

∂x2

(
ϕ(p)

)
. (5.38)

Differentiating the first equation with respect to x2, the second one with
respect to x1 and subtracting the resulting equations, we obtain (check that
λ ∈ C1(U,R))

∂λ

∂x2
(p)

∂ϕ̃−1

∂x1

(
ϕ(p)

)
−

∂λ

∂x1
(p)

∂ϕ̃−1

∂x2

(
ϕ(p)

)
= 0 .

Since ∂ϕ̃−1

∂x1
and ∂ϕ̃−1

∂x2
are linearly independent vectors in TpΣ ⊂ R3, we

conclude that, for all p ∈ U ,

∂λ

∂x1
(p) =

∂λ

∂x2
(p) = 0 . (5.39)

Since U is connected, it follows that λ ≡ λ0 a constant in U , as we claimed.
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If we assume that λ0 = 0, Equation (5.38) shows that

∂ñ

∂x1

(
ϕ(p)

)
=

∂ñ

∂x2

(
ϕ(p)

)
= 0 ,

and therefore ñ
(
ϕ(p)

)
= n0 ∈ R3 in U ; on the other hand, for i = 1, 2, we

have
∂

∂xi

〈
ϕ̃−1

(
ϕ(p)

)
,n0

〉
=

〈
∂ϕ̃−1

∂xi
(ϕ(p)

)
,n0

〉
= 0 .

Thus, we deduce 〈
ϕ̃−1

(
ϕ(p)

)
,n0

〉
= const , (5.40)

showing that ϕ̃−1
(
ϕ(p)

)
belongs to a plane for all p ∈ U .

Assuming that λ0 6= 0, we obtain from (5.38) that

∂

∂x1

(
ϕ̃−1

(
ϕ(p)

)
−

1

λ0
ñ
(
ϕ(p)

))
= 0 ,

∂

∂x2

(
ϕ̃−1

(
ϕ(p)

)
−

1

λ0
ñ
(
ϕ(p)

))
= 0 .

Hence there exists Z0 ∈ R3 such that, for all p ∈ U ,

ϕ̃−1
(
ϕ(p)

)
−

1

λ0
ñ
(
ϕ(p)

)
= Z0 ,

implying also that

‖ϕ̃−1
(
ϕ(p)

)
− Z0‖

2 =
1

λ2
0

. (5.41)

In other words, all points of U are contained in a sphere of center Z0 and
radius 1/λ2

0.
So far we have shown that for every p ∈ Σ there exists an open neigh-

borhood U of p such that U is either included in a sphere or in a plane.
– To complete the proof we observe that, since Σ is connected, given any
points p1, p2 ∈ Σ, there exists a curve γ ∈ C0([0, 1], Σ) with γ(0) = p1 and
γ(1) = p2. For each point p ∈ γ([0, 1]) of this curve the above implies the
existence of open neighborhoods Up ⊂ Σ such that each one is contained in
a sphere or a plane. By continuity, γ−1(Up) is open in R and the union

⋃

t∈[0,1]

γ−1(Up)

covers the closed and bounded interval [0, 1]. Due to the Heine-Borel theorem,
we can extract a finite covering; hence,

γ([0, 1]) ⊂

Q⋃

j=1

Upj
.
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If the points of one of these neighborhoods are on a plane (sphere), all the
others will be on the same plane (sphere). Since p1 and p2 have been chosen
arbitrarily, all the points of Σ belong to this plane (sphere), completing the
proof of the theorem. ut

p1

γ
pj p2

Σ

Fig. 5.7. .

Definition 5.31. Let p ∈ Σ and let dnp : TpΣ −→ TpΣ be the differential of
the Gauß map. The determinant of the linear map dnp, denoted by K(p), is
the Gaussian curvature of Σ at p, i.e., in terms of the principal directions

K(p) = det(dnp) = k1 k2 . (5.42)

Moreover, the negative of half of the trace of dnp, denoted by H(p), is the
mean curvature of Σ at p, i.e., in terms of the principal directions

H(p) =
1

2
Tr(dnp) =

k1 + k2

2
. (5.43)

Definition 5.32. We characterize points p ∈ Σ in the following way:

1. A point p ∈ Σ is called elliptic if K(p) > 0.
2. A point p ∈ Σ is called hyperbolic if K(p) < 0.
3. A point p ∈ Σ is called parabolic if K(p) = 0 and dnp 6= 0.
4. A point p ∈ Σ is called planar if dnp = 0.

Let (U,ϕ) be a local chart about p ∈ Σ. As in the case of the first
fundamental form Ip, we introduce some useful notations for the coefficients
of the second fundamental form IIp in the local chart (U,ϕ). More precisely,
for X,Y ∈ TpΣ and with the notations

e(p) = −

〈
dnp ·

∂

∂ϕ1
(p),

∂

∂ϕ1
(p)

〉

p

,

f(p) = −

〈
dnp ·

∂

∂ϕ1
(p),

∂

∂ϕ2
(p)

〉

p

=

〈
dnp ·

∂

∂ϕ2
(p),

∂

∂ϕ1
(p)

〉

p

,

g(p) = −

〈
dnp ·

∂

∂ϕ2
(p),

∂

∂ϕ2
(p)

〉

p

, (5.44)
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the second fundamental form reads as

IIp(X,Y ) = −〈dnp ·X,Y 〉p = X1Y1 e(p)+X1Y2 f(p)+X2Y1 f(p)+X2Y2 g(p) .
(5.45)

Next, we introduce some notations for the differential of the Gauß map
dnp in the local chart (U,ϕ) about p. Since dnp ·

∂
∂ϕi

(p) belongs to TpΣ for
i = 1, 2, we may write

dnp ·
∂

∂ϕi
(p) =

2∑

j=1

aij
∂

∂ϕj
(p) . (5.46)

Inserting this into (5.44), we get

e(p) = −

〈
a11

∂

∂ϕ1
(p) + a12

∂

∂ϕ2
(p),

∂

∂ϕ1
(p)

〉

p

= −a11E(p) − a12 F (p) ,

where we used the notations (5.16) for the first fundamental form. Similarly,
we obtain (note that the matrix (aij) is not necessarily symmetric)

f(p) = −a11 F (p) − a12G(p) ,

f(p) = −a21E(p) − a22 F (p) ,

g(p) = −a21 F (p) − a22G(p) .

In summary, we then arrive at

−

(
e f
f g

)
=

(
a11 a12

a21 a22

)(
E F
F G

)
, (5.47)

and hence (
a11 a12

a21 a22

)
= −

(
e f
f g

)(
E F
F G

)−1

.

It is well-known from linear algebra that the inverse in the last equation reads
as (

E F
F G

)−1

= a

(
G −F
−F E

)
,

where a := 1/(EG−F 2) for the determinant of the matrix formed by the local
coefficients of the first fundamental form. By a straightforward computation,
we then obtain the equations of Weingarten:

a11 = a(f F − eG) , a12 = a(g F − f G) ,

a21 = a(e F − f E) , a22 = a(f F − g E) . (5.48)

For the Gaussian curvature K(p) of a surface at a point p, we then easily
get
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K(p) = det
(
aij(p)

)
= a(p)

(
e(p) g(p) − f2(p)

)
, (5.49)

and for the mean curvature H(p), one checks that

H(p) =
a(p)

2

(
e(p)G(p) − 2f(p)F (p) + g(p)E(p)

)
. (5.50)

Example 5.33 (Gaussian Curvature of the Torus).

The following proposition gives information about the position of a sur-
face in the neighborhood of an elliptic or an hyperbolic point relative to the
tangent space at this point.

Proposition 5.34. Let p ∈ Σ be an elliptic point of the surface Σ. Then
there exists a neighborhood U of p in Σ such that all points in U belong to
the same side of the tangent space TpΣ. Moreover, let p ∈ Σ be an hyperbolic
point of Σ. Then in each neighborhood U of p there are points of U lying in
both sides of TpΣ.

Proof. Let (U,ϕ) be a local chart about p ∈ Σ and the local parameterization
ϕ̃−1 = ιΣ ◦ϕ−1 as defined in (5.19). Moreover, for (0, 0) ∈ R2 we assume that
ϕ̃−1(0, 0) = p.

The distance d from a point q = ϕ̃−1(x1, x2) ∈ U to the tangent space
TpΣ is given by (see Fig. 5.8)

d = 〈np, ϕ̃
−1(x1, x2) − ϕ̃−1(0, 0)〉 . (5.51)

TpΣ

Σ

n(p)

q

p = ϕ̃−1(0, 0)

Fig. 5.8. Tangent space of an elliptic point.

Since the local parameterization ϕ̃−1 : ϕ(Σ ∩U) ⊂ R2 −→ Σ ∩U ⊂ R3 is
differentiable, we can apply Taylor’s formula to obtain (up to terms of higher
order)
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ϕ̃−1(x1, x2) = ϕ̃−1(0, 0) + x1
∂ϕ̃−1

∂x1
(0, 0) + x2

∂ϕ̃−1

∂x2
(0, 0)

+
1

2

(
x2

1

∂2ϕ̃−1

∂x2
1

(0, 0) + 2x1x2
∂2ϕ̃−1

∂x1∂x2
(0, 0) + x2

2

∂2ϕ̃−1

∂x2
2

(0, 0)

)
.

Inserting this into (5.51) implies that

d =
1

2

(
x2

1

〈
np,

∂2ϕ̃−1

∂x2
1

(0, 0)

〉
+ 2x1x2

〈
np,

∂2ϕ̃−1

∂x1∂x2
(0, 0)

〉

+x2
2

〈
np,

∂2ϕ̃−1

∂x2
2

(0, 0)

〉)
. (5.52)

On the other hand, we compute, for the map ñ := n◦ ϕ̃−1 : ϕ(Σ∩U) −→
S2 ⊂ R3,

0 =
∂

∂xi

〈
ñ(x1, x2),

∂ϕ̃−1

∂xj
(x1, x2)

〉

=

〈
∂ñ

∂xi
(x1, x2),

∂ϕ̃−1

∂xj
(x1, x2)

〉
+

〈
ñ(x1, x2),

∂2ϕ̃−1

∂xi∂xj
(x1, x2)

〉
,

where i, j = 1, 2. Using Definition 5.24 and recalling that dn · ∂
∂ϕi

= ∂ϕ̃−1

∂xi
,

for i = 1, 2, we deduce (note that ñ(0, 0) = np)

〈
np,

∂2ϕ̃−1

∂xi∂xj
(0, 0)

〉
= −

〈
dnp ·

∂

∂ϕi
(p),

∂

∂ϕj
(p)

〉

p

= IIp

(
∂

∂ϕi
(p),

∂

∂ϕj
(p)

)
.

(5.53)
Inserting (5.53) into (5.52) leads to

d =
1

2
IIp (X,X) ,

where X = X1
∂ϕ̃−1

∂x1
(0, 0) +X2

∂ϕ̃−1

∂x2
(0, 0).

Since p is elliptic by assumption, the second fundamental form IIp has
a fixed sign. Therefore, the same holds for the distance d, showing that all
points q ∈ U belong to the same side of TpΣ.

The second assertion of the proposition is left as an exercise. ut

Now, we give a geometric interpretation of the Gaussian curvature (see
Fig. 5.9).

Proposition 5.35. Let p be a point of a surface Σ with K(p) 6= 0. Denote
by (Un)n∈N a sequence of neighborhoods of p converging to the point p for n
sufficiently large, i.e., Un ⊂ Brn

(p) such that the radii rn of Brn
(p) converge

to zero for n→ ∞. Moreover, we denote by Ān := A
(
n(Un)

)
the area of the

image of Un by the Gauß map n : Σ −→ S2 and by An := A(Un) the area of
Un ⊂ Σ. Then, we have for the Gaussian curvature at p
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K(p) = lim
n→∞

Ān
An

= lim
n→∞

A
(
n(Un)

)

A(Un)
. (5.54)

Proof. Let (U,ϕ) be a local chart for Σ about p such that Un ⊂ U , for all
n ∈ N. From the discussion in Section 4.2.1, we deduce that

An = A(Un) =

∫

ϕ(Un)

∥∥∥∥
∂ϕ̃−1

∂x1
(x1, x2) ×

∂ϕ̃−1

∂x2
(x1, x2)

∥∥∥∥ dx1dx2 ,

where ϕ̃−1 := ιΣ ◦ ϕ−1 denotes again the local parameterization of Σ.
On the other hand, since K(p) = det(dnp) 6= 0 by assumption (implying

the invertibility of the linear map dnp), we deduce that the map

ñ := n ◦ ϕ̃−1 : ϕ(Σ ∩ U) −→ S2 ⊂ R3

gives a local parameterization of n(U). Hence, it follows

Ān = A
(
n(Un)

)
=

∫

ϕ(Un)

∥∥∥∥
∂ñ

∂x1
(x1, x2) ×

∂ñ

∂x2
(x1, x2)

∥∥∥∥ dx1dx2 .

For i = 1, 2 and ϕ(p) = (x1, x2), we now compute (see (5.46))

∂ñ

∂xi
(x1, x2) = dnp ·

∂ϕ̃−1

∂xi
(x1, x2) =

2∑

j=1

aij
∂ϕ̃−1

∂xj
(x1, x2) .

We then see that

∂ñ

∂x1
(x1, x2) ×

∂ñ

∂x2
(x1, x2) = det(aij)

∂ϕ̃−1

∂x1
(x1, x2) ×

∂ϕ̃−1

∂x2
(x1, x2) .

Since K(p) = det(aij), the result (5.54) can be deduced. ut
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An

Ān

Ān

An

Σ

p

n

S2

S2

p

Σ

n

Fig. 5.9. Geometric interpretation of the Gaussian curvature. The first figure il-
lustrates the case of small Gaussian curvature, whereas the second the case of big
Gaussian curvature.
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6.1 Tensor algebra

We consider finite dimensional vector spaces over F . In this section, the
ground field F will be the real number field R or the complex number field
C. Let E and F be two such vector spaces and let M(E,F ) be the vector
space having the set E×F as a basis, i.e., the free vector space generated by
the pairs (e, f) with e ∈ E and f ∈ F . Moreover, let N(E,F ) be the vector
subspace of M(E,F ) spanned by the elements of the form

(e+ e′, f) − (e, f) − (e′, f) , (e, f + f ′) − (e, f) − (e, f ′)

(λ e, f) − λ(e, f) , (e, λ f) − λ(e, f) , (6.1)

where e, e′ ∈ E, f, f ′ ∈ F and λ ∈ F .

Definition 6.1. Let E and F be two finite dimensional F-vector spaces.
Moreover, let M(E,F ) and N(E,F ) be as above. We define the tensor
product of E and F , denoted by E ⊗ F , to be the quotient vector space
M(E,F )/N(E,F ).

The image by the natural projection M(E,F ) −→ E ⊗ F of every pair
(e, f) – considered as element of M(E,F ) – will be denoted by e⊗ f . Then,
we define the canonical map

P : E × F −→ E ⊗ F

(e, f) 7−→ e⊗ f . (6.2)

It can easily be checked that this map is bilinear, since the first relation in
(6.1), for example, implies that (e+ e′) ⊗ f = e⊗ f + e′ ⊗ f .

Definition 6.2. Let G be a vector space and ψ : E×F −→ G a bilinear map.
We say that the couple (G,ψ) has the universal factorization property
for E×F if for every vector space H and every bilinear map ϕ : E×F −→ H,
there exists a unique linear map u : G −→ H such that ϕ = u ◦ ψ.

There is a first important result.



142 6

H

E × F G
ψ

u

ϕ

Fig. 6.1. Universal factorization property.

Proposition 6.3. The couple (E ⊗ F, P ) has the universal factorization
property for E × F . Moreover, if another couple (G,ψ) has the universal
factorization property for E × F , then (E ⊗ F, P ) and (G,ψ) are isomorphic
in the sense that there exists a unique isomorphism g : E ⊗ F −→ G such
that ψ = g ◦ P .

Proof. Let H be any vector space and ϕ : E × F −→ H any bilinear map.
Since E×F is a basis forM(E,F ), we can extend ϕ to a unique linear map ϕ̃ :
M(E,F ) −→ H . More precisely, writing m ∈M(E,F ) as m =

∑
i λi (ei, fi),

with (ei, fi) ∈ E × F and λi ∈ F , we define

ϕ̃(m) = ϕ̃

(∑

i

λi (ei, fi)

)
=
∑

i

λi ϕ(ei, fi) .

Using the bilinearity of the map ϕ, we observe that

ϕ̃
(
(e+ e′, f) − (e, f) − (e′, f)

)
= ϕ(e+ e′, f) − ϕ(e, f) − ϕ(e′, f) = 0 .

The same holds for the other relations in (6.1). Hence, we deduce that ϕ̃
vanishes on N(E,F ). Therefore, the map ϕ̃ induces a linear map1

u : E ⊗ F −→ H .

Clearly, we have that ϕ = u ◦ P . The uniqueness of such a map u follows
from the fact that P (E × F ) spans E ⊗ F (see (6.2)). – This shows that the
couple (E ⊗ F, P ) has the universal factorization property for E × F .

Let (G,ψ) be another couple having the universal factorization property
for E×F . By the universal factorization property of (E⊗F, P ), respectively
of (G,ψ), there exists a unique linear map g : E ⊗ F −→ G, respectively
g̃ : G −→ E ⊗ F such that ψ = g ◦ P , respectively P = g̃ ◦ ψ (see Fig. 6.3).
Hence, we obtain that ψ = g◦ g̃◦ψ and P = g̃◦g◦P . Using the uniqueness of
the linear map u in the definition of the universal factorization property, we

1
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conclude that g̃ ◦g and g ◦ g̃ are the identity transformations of E⊗F and G,
respectively. – This shows that g : E ⊗ F −→ G is the desired isomorphism.

ut

H

u

ϕ

E × F
P

E ⊗ F

Fig. 6.2. Universal factorization property of (E ⊗ F, P ) for E × F .

E × F G
ψ

g̃

E ⊗ F

P

G

E × F

g

ψ

P

Fig. 6.3. Two couples (E ⊗ F, P ) and (G,ψ) having the universal factorization
property for E × F .

Remark. It is important to note that this proposition will be the main ingre-
dient for the following results concerning the properties of the tensor product.
The proofs of Proposition 6.4 to 6.11 will be strongly based on the fact that
(E ⊗ F, P ) has the universal factorization property for E × F .
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We have commutativity for the tensor product.

Proposition 6.4. There exists a unique isomorphism between E ⊗ F and
F ⊗E which sends e⊗ f onto f ⊗ e., for all e ∈ E and f ∈ F .

Proof. Let ϕ be the bilinear map defined by

ϕ : E × F −→ F ⊗E ,

(e, f) 7−→ f ⊗ e .

From Proposition 6.3 we deduce the existence of a unique linear map u :
E ⊗ F −→ F ⊗E such that ϕ = u ◦ P . More precisely, we have that

f ⊗ e = ϕ(e, f) = u
(
P (e, f)

)
= u(e⊗ f) .

On the other hand, note that the couple (F ⊗E, P̃ ), where (see (6.2))

P̃ : F ×E −→ F ⊗E ,

(f, e) 7−→ f ⊗ e ,

has the universal factorization property for F ×E. So, for the bilinear map

ϕ̃ : F ×E −→ E ⊗ F ,

(f, e) 7−→ e⊗ f ,

we obtain the existence of a unique linear map ũ : F ⊗E −→ E⊗F such that
ũ(f ⊗ e) = e⊗ f . This is again a consequence of the universal factorization
property.

Obviously, we see that ũ ◦ u : E ⊗ F −→ E ⊗ F and u ◦ ũ : F ⊗ E −→
F⊗E are the identity transformations. Hence, the linear map u is the desired
isomorphism. ut

We also have associativity for the tensor product.

Proposition 6.5. There exists a unique isomorphism between (E ⊗ F ) ⊗G
and E ⊗ (F ⊗ G) which sends (e ⊗ f) ⊗ g onto e ⊗ (f ⊗ g), for all e ∈ E,
f ∈ F and g ∈ G.

Proof. The proof is similar to the one of Proposition 6.4 and hence left as an
exercise. ut

Remark. Because of the last proposition, we identify (E ⊗ F ) ⊗G with E ⊗
(F ⊗G) and it makes sense to write E ⊗ F ⊗G.

Now, let E1, . . . , Ek be k vector spaces. Then we can define inductively the
tensor product E1⊗. . .⊗Ek. More precisely, motivated by Proposition 6.3, the
tensor product E1⊗. . .⊗Ek is characterized by the fact that (E1⊗. . .⊗Ek, P ),
where P now denotes the multilinear map
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P : E1 × . . .×Ek −→ E1 ⊗ . . .⊗Ek ,

(e1, . . . , ek) 7−→ e1 ⊗ . . .⊗ ek ,

has the universal factorization property for E1 × . . .×Ek. – We mention that
Proposition 6.4 can also be generalized to k vector spaces.

Proposition 6.6. For any permutation σ ∈ Sk of {1, . . . , k}, there exists a
unique isomorphism between E1 ⊗ . . . ⊗ Ek and Eσ(1) ⊗ . . . ⊗ Eσ(k) which
sends e1 ⊗ . . .⊗ ek onto eσ(1) ⊗ . . .⊗ eσ(k), for all e1 ∈ E1, . . ., ek ∈ Ek.

Next, we study the compatibility of the tensor product with linear maps.

Proposition 6.7. Let ui : Ei −→ Fi, i = 1, 2, be two linear maps. Then
there exists a unique linear map u : E1 ⊗E2 −→ F1 ⊗ F2 such that

u(e1 ⊗ e2) = u1(e1) ⊗ u2(e2) ∈ F1 ⊗ F2 ,

for all e1 ∈ E1 and e2 ∈ E2. – In the following, the map u will be denoted by
u1 ⊗ u2.

Proof. We consider the bilinear map

ϕ : E1 ×E2 −→ F1 ⊗ F2 ,

(e1, e2) 7−→ u1(e1) ⊗ u2(e2) .

From the universal factorization property in Proposition 6.3, we know that
there exists a unique linear map u : E1⊗E2 −→ F1⊗F2 such that ϕ = u◦P .
Hence, we have that

u1(e1) ⊗ u2(e2) = ϕ(e1, e2) = u ◦ P (e1, e2) = u(e1 ⊗ e2) .

This shows the result. ut

Remark. The generalization of this proposition to the case with more than
two mappings is obvious.

The next result is a consequence of the last proposition.

Proposition 6.8. Let E1 ⊕ E2 denote the direct sum between E1 and E2.
Then there exists a unique isomorphism between (E1 ⊕ E2) ⊗ F and (E1 ⊗
F )⊕ (E2 ⊗F ) which sends (e1 + e2)⊗ f onto e1 ⊗ f + e2 ⊗ f , for all e1 ∈ E1,
e2 ∈ E2 and f ∈ F . Similarly, there exists a unique isomorphism between
E ⊗ (F1 ⊕ F2) and E ⊗ F1 ⊕E ⊗ F2.

Proof. For i = 1, 2, let ιi : Ei ↪→ E1 ⊕E2 denote the injections with ι1(e1) =
e1 + 0 and ι2(e2) = 0 + e2, respectively. Let also πi : E1 ⊕E2 −→ Ei denote
the projections with π1(e1 + e2) = e1 and π2(e1 + e2) = e2, respectively.
(These maps are well-defined since we consider the direct sum of E1 and E2.)
Then, we see that π1 ◦ ι1 and π2 ◦ ι2 are the identity transformations of E1
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and E2, respectively. Moreover, both π2 ◦ ι1 and π1 ◦ ι2 are the zero maps on
E1 and E2, respectively.

Due to Proposition 6.7 the injection ι1 and the identity transformation
idF on F induce a unique linear map ι1 ⊗ idF : E1 ⊗ F −→ (E1 ⊕ E2) ⊗ F
such that ι1⊗ idF (e1⊗f) = ι1(e1)⊗f . Similarly, a map ι2⊗ idF : E2⊗F −→
(E1 ⊕ E2) ⊗ F is obtained. – In order to simplify the notations we write ι̃i
instead of ιi ⊗ idF , for i = 1, 2.

In the same manner, applying Proposition 6.7 to the projection π1 and the
identity transformation on F it follows that there exists a unique linear map
π̃1 : (E1 ⊕E2)⊗F −→ E1 ⊗F such that π̃1

(
(e1 + e2)⊗ f

)
= π1(e1 + e2)⊗ f .

Similarly, the map π̃2 is defined.
As a consequence, π̃1 ◦ ι̃1 and π̃2 ◦ ι̃2 are the identity transformations on

E1 ⊗ F and E2 ⊗ F , respectively. For example, we have

π̃1 ◦ ι̃1(e1 ⊗ f) = π̃1

(
ι1(e1) ⊗ f

)
= π1

(
ι1(e1)

)
⊗ f = e1 ⊗ f .

On the other hand, it follows from

π̃2 ◦ ι̃1(e1 ⊗ f) = π̃2

(
ι1(e1) ⊗ f

)
= π2

(
ι1(e1)

)
⊗ f = 0 ⊗ f

that π̃2 ◦ ι̃1 is the zero map on E1 ⊗ F ; and similarly that π̃1 ◦ ι̃2 is the zero
map on E2 ⊗ F .

These results imply that the linear map

(E1 ⊕E2) ⊗ F −→ (E1 ⊗ F ) ⊕ (E2 ⊗ F ) ,

(e1 + e2) ⊗ f 7−→ π̃1

(
(e1 + e2) ⊗ f

)
+ π̃2

(
(e1 + e2) ⊗ f

)
,

with inverse

(E1 ⊗ F ) ⊕ (E2 ⊗ F ) −→ (E1 ⊕E2) ⊗ F ,

(e1 ⊗ f) + (e2 ⊗ f) 7−→ ι̃1(e1 ⊗ f) + ι̃2(e2 ⊗ f) ,

gives the first isomorphism. – The proof for the second one is similar. ut

Remark. Now, we can write

(E1 ⊕E2) ⊗ F = (E1 ⊗ F ) ⊕ (E2 ⊗ F ) .

By induction, moreover, we obtain for k vector spaces that

(E1 ⊕ . . .⊕Ek) ⊗ F = E1 ⊗ F ⊕ . . .⊕Ek ⊗ F .

In a next step, we give a basis for the tensor product of two vector spaces.

Proposition 6.9. Let {ei}i=1,...,n be a basis for E and {fj}j=1,...,m be a
basis for F . Then

{ei ⊗ fj} i=1,...,n
j=1,...,m

is a basis for E ⊗ F . In particular, we have that dimE ⊗ F = dimE dimF .
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Proof. For i = 1, . . . , n, let Ei denote the one-dimensional vector subspace of
E spanned by ei and Fj the one-dimensional vector subspace of F spanned
by fj , j = 1, . . . ,m. Thus, we can write

E =

n⊕

i=1

Ei and F =

m⊕

j=1

Fj .

By the remark after Proposition 6.8, it then follows that

E ⊗ F =

(
n⊕

i=1

Ei

)
⊗




m⊕

j=1

Fj


 =

n⊕

i=1

m⊕

j=1

Ei ⊗ Fj .

It is left as an exercise to show that each Ei⊗Fj is a one-dimensional vector
space spanned by ei ⊗ fj . Hence, the proposition follows. ut

Tensor Product and Dual Vector Space

For a vector space E, we denote by E∗ the dual vector space of E, i.e., the
vector space of linear functionals on E. If e ∈ E and e∗ ∈ E∗, then the value
of e∗ on e is denoted by 〈e∗, e〉E∗,E ∈ F . – We will simply write 〈e∗, e〉 when
the dual pairing needs no further specifications.

Proposition 6.10. Let L(E∗, F ) denote the vector space of linear maps from
E∗ into F . Then there is a unique isomorphism u between E⊗F and L(E∗, F )
such that (

u(e⊗ f)
)
(e∗) = 〈e∗, e〉 f , (6.3)

for all e ∈ E, f ∈ F and e∗ ∈ E∗.

Proof. We consider the bilinear map

ϕ : E × F −→ L(E∗, F ) ,

(e, f) 7−→ ϕ(e, f) ,

where
(
ϕ(e, f)

)
(e∗) = 〈e∗, e〉 f . By the universal factorization property in

Proposition 6.3, there exists a unique u : E ⊗ F −→ L(E∗, F ) such that
ϕ = u ◦ P . More precisely, we have that

〈e∗, e〉 f =
(
ϕ(e, f)

)
(e∗) =

(
u ◦ P (e, f)

)
(e∗) =

(
u(e⊗ f)

)
(e∗) .

Next, we observe that dim(E ⊗ F ) = dimL(E∗, F ) (see Proposition 6.9).
Therefore, in order to show that u is an isomorphism, it suffices to establish
that u is injective. – Let {ei}i=1,...,n, {fj}j=1,...,m and {ei}i=1,...,n denote the
basis for E, F and E∗, respectively2. Moreover, for some e ⊗ f ∈ E ⊗ F ,

2 From now on, we will always use this notation: Lower indices for the basis vectors
of the vector space itself and upper indices for the dual basis.
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assume that u(e⊗ f) = 0. From Proposition 6.9, we deduce the existence of
coefficients aij ∈ F such that

u(e⊗ f) =
n∑

i=1

m∑

j=1

aij u(ei ⊗ fj) = 0 .

In other words, for all k = 1, . . . , n, we have that

n∑

i=1

m∑

j=1

aij
(
u(ei ⊗ fj)

)
(ek)

(6.3)
=

n∑

i=1

m∑

j=1

aij 〈e
k, ei〉 fj = 0 .

Since {fj}j=1,...,m is a basis for F , we obain that, for all j = 1, . . . ,m,

n∑

i=1

〈ek, ei〉 = akj = 0 ,

implying that e⊗ f = 0 and the injectivity of u is shown. ut

Proposition 6.11. Let E and F be two vector spaces. Then there exists a
unique isomorphism u between E∗ ⊗ F ∗ and (E ⊗ F )∗ such that

(
u(e∗ ⊗ f∗)

)
(e⊗ f) = 〈e∗, e〉E∗,E〈f

∗, f〉F∗,F ,

for all e ∈ E, f ∈ F , e∗ ∈ E∗ and f∗ ∈ F ∗.

Proof. We apply the universal factorization property of Proposition 6.3 to
the bilinear map ϕ : E∗ × F ∗ −→ (E ⊗ F )∗ defined by

(
ϕ(e∗ ⊗ f∗)

)
(e⊗ f) = 〈e∗, e〉E∗,E〈f

∗, f〉F∗,F .

It remains to show that the resulting map u : E∗ ⊗ F ∗ −→ (E ⊗ F )∗ is an
isomorphism. This is done by choosing a basis for the vector spaces E, E∗,
F and F ∗ and proceeding as in the proof of Proposition 6.10. ut

Covariant and Contravariant Tensors

We recall that we consider finite dimensional vector spaces over a ground
field F being the real number field R or the complex number field C. Let E
denote such a vector space.

Definition 6.12. For all r ∈ N, the space of contravariant tensors of
degree r on E is defined by

T r(E) := E ⊗ . . .⊗E︸ ︷︷ ︸ .
r − times
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u

ϕ

P
E∗ × F ∗

(E ⊗ F )∗

E∗ ⊗ F ∗

Fig. 6.4. Universal factorization property for E∗ × F ∗.

Similarly, for all s ∈ N, the space of covariant tensors of degree s on E is
defined by

Ts(E) := E∗ ⊗ . . .⊗E∗

︸ ︷︷ ︸ .
s− times

Note that for r = 1, respectively s = 1, we see that T 1(E) = E and
T1(E) = E∗, respectively. And, by convention, we set T 0(E) = T0(E) = F .

Now, we give an explicit expression for these tensors in terms of a basis
of E. – Let {ei}i=1,...,n denote a basis for E and {ej}j=1,...,n a basis for E∗,
the dual of E. From Proposition 6.9, it follows that

{ei1 ⊗ . . .⊗ eir}1≤i1,...,ir≤n

is a basis for T r(E). Hence, every contravariant tensor K of degree r can be
expressed uniquely as linear combination

K =

n∑

i1,...,ir=1

Ki1...ir ei1 ⊗ . . .⊗ eir , (6.4)

where Ki1...ir ∈ F are the components of K with respect to the basis
{ei}i=1,...,n of E. Similarly, for every covariant tensor L of degree s, there
exist unique components Lj1...js ∈ F such that

L =

n∑

j1,...,js=1

Lj1...js e
j1 ⊗ . . .⊗ ejs . (6.5)

In a next step, we want to study how the components of tensors transform
under a change of basis of E. – Let {êi}i=1,...,n denote another basis of E,
which is related to the basis {ei}i=1,...,n by the linear transformation

ei =

n∑

k=1

Aki êk , i = 1, . . . , n . (6.6)
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We write the corresponding change of the two dual bases in E∗ as

ej =

n∑

l=1

Bjl ê
l , j = 1, . . . , n . (6.7)

It is easy to see that, for i, j = 1, . . . , n, we have

δji = 〈ej , ei〉 =

〈
n∑

l=1

Bjl ê
l,

n∑

k=1

Aki êk

〉
=

n∑

k=1

BjkA
k
i ,

implying that B = (Bji ) is the inverse matrix of A = (Aji ).
Then, for a contravariant tensor K of degree r, the components K i1...ir

and K̂i1...ir with respect to the basis {ei}i=1,...,n and {êi}i=1,...,n, respectively,
are related by the following formula:

K̂i1...ir =

n∑

k1,...,kr=1

Ai1k1 . . . A
ir
kr
Kk1...kr . (6.8)

Similarly, the components of a covariant tensor L of degree s are related by
the formula

L̂j1...js =
n∑

l1,...,ls=1

Bl1j1 . . . B
ls
js
Ll1...ls . (6.9)

Remark. These last two formulas follow directly from the representations
(6.4) and (6.5) together with Proposition 6.9.

Tensor Algebra

Definition 6.13. For all r ∈ N, s ∈ N, the space of contravariant degree r
and covariant degree s (mixed) tensors on E, or simply the space of tensors
of type (r, s) on E, is defined by the following tensor product:

T rs (E) := T r(E) ⊗ Ts(E) = E ⊗ . . .⊗E︸ ︷︷ ︸⊗ E∗ ⊗ . . .⊗E∗

︸ ︷︷ ︸ .
r − times s− times

Note that, in particular, we have that T r0 (E) = T r(E), T 0
s (E) = Ts(E)

and T 0
0 (E) = F . – In terms of a basis {ei}i=1,...,n of E and its dual basis

{ej}j=1,...,n of E∗, every tensor K of type (r, s) can be uniquely written as

K =

n∑

i1,...,ir=1
j1,...,js=1

Ki1...ir
j1...js

ei1 ⊗ . . .⊗ eir ⊗ ej1 ⊗ . . .⊗ ejs , (6.10)

where Ki1...ir
j1...js

are the components of K with respect to the basis {ei}i=1,...,n.
For a change of basis as in (6.6) and (6.7), we then have the following trans-
formation of components formula for a tensor of type (r, s):
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K̂i1...ir
j1...js

=
n∑

k1,...,kr=1
l1,...,ls=1

Ai1k1 . . . A
ir
kr
Bl1j1 . . . B

ls
js
Kk1...kr

l1...ls
. (6.11)

Next, we group all the tensor spaces into one. More precisely, we set

T (E) :=
∞⊕

r,s=0

T rs (E) . (6.12)

This vector space can be made to an associative algebra over F , called the
tensor algebra of E, by defining the product of two tensors in T (E) as
follows. – As usual, let {ei}i=1,...,n denote a basis for E with corresponding
dual basis {ej}j=1,...,n. Then, a tensor K ∈ T rs (E) can be written as in (6.10).
Similarly, a tensor L ∈ T pq (E) can be expressed as

L =

n∑

k1,...,kp=1
l1,...,lq=1

L
k1...kp

l1...lq
ek1 ⊗ . . .⊗ ekp

⊗ el1 ⊗ . . .⊗ elq .

Then, we define the product ofK and L, denoted byK⊗L, to be the following
element of T r+ps+q (E):

K⊗L =

n∑

i1,...,ir+p=1
j1,...,js+q=1

(K⊗L)
i1...ir+p

j1...js+q
ei1 ⊗ . . .⊗eir+p

⊗ej1 ⊗ . . .⊗ejs+q , (6.13)

where the components are precisely

(K ⊗ L)
i1...ir+p

j1...js+q
:= Ki1...ir

j1...js
L
ir+1...ir+p

js+1...js+q
.

Remark. The product is a bilinear map from T rs (E) × T pq (E) into T r+ps+q (E).

The definition of the product only makes sense if it is independent of the

basis. – Let {êi}i=1,...,n denote another basis of E and let K̂i1...ir
j1...js

and L̂
k1...kp

l1...lq

be the components of K ∈ T rs (E), respectively L ∈ T pq (E) with respect to
this new basis. Moreover, the components of the product of K and L with

respect to the new basis are denoted by (K̂ ⊗ L)
i1...ir+p

j1...js+q
. For the definition of

the product to be independent of the basis, these components must satisfy
the following equation:

(K̂ ⊗ L)
i1...ir+p

j1...js+q
= K̂i1...ir

j1...js
L̂
ir+1...ir+p

js+1...js+q
. (6.14)

We apply three times the change of components formula (6.11) for (r, s)-
tensors to obtain
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(K̂ ⊗ L)
i1 ...ir+p

j1 ...js+q
=

n∑

k1,...,kr+p=1
l1,...,ls+q=1

Ai1k1 . . . A
ir+p

kr+p
Bl1j1 . . . B

ls+q

js+q
(K ⊗ L)

k1...kr+p

l1...ls+q
,

(6.15a)

K̂i1...ir
j1...js

=

n∑

k1,...,kr=1
l1,...,ls=1

Ai1k1 . . . A
ir
kr
Bl1j1 . . . B

ls
js
Kk1...kr

l1...ls
, (6.15b)

L̂
ir+1...ir+p

js+1...js+q
=

n∑

kr+1,...,kr+p=1
ls+1,...,ls+q=1

A
ir+1

kr+1
. . . A

ir+p

kr+p
B
ls+1

js+1
. . . B

ls+q

js+q
L
kr+1...kr+p

ls+1...ls+q
.

(6.15c)

Then we observe that (6.15b) multiplied with (6.15c), combined with (6.15a)
implies that (6.14) holds, as a consequence of (6.13). Hence, we have shown
that the definition of the product is independent of the chosen basis.

Contraction of Tensors

We now define the notion of contraction. – Considering T rs (E) together with
a basis {ei}i=1,...,n for E and two integers p, q verifying 1 ≤ p ≤ r, 1 ≤ q ≤ s,
we define the (p, q)-contraction of K ∈ T rs (E), denoted by CK, to be the
following element of T r−1

s−1 (E):

CK =

n∑

i1,...,ir−1=1
j1,...,js−1=1

(CK)
i1...ir−1

j1...js−1
ei1 ⊗ . . .⊗ eir−1 ⊗ ej1 ⊗ . . .⊗ ejs−1 , (6.16)

with components

(CK)
i1...ir−1

j1...js−1
:=

n∑

k=1

K
i1...k...ir−1

j1...k...jp−1
,

where the subscript k appears at the q-th position and the superscript k at the
p-th position of the components of K with respect to the basis {ei}i=1,...,n.

Remark. The (p, q)-contraction is a linear map from T rs (E) into T r−1
s−1 (E).

Again, we have to show that the definition is independent of the chosen
basis for E. – Let {êi}i=1,...,n denote another basis of E and let K̂i1...ir

j1...js
be the

components of K ∈ T rs (E) with respect to this basis. Moreover, the compo-

nents of the (p, q)-contraction in the new basis are denoted by (ĈK)
i1...ir−1

j1...js−1
.

From the change of components formula (6.11), we deduce that

(ĈK)
i1...ir−1

j1...js−1
=

n∑

k1,...,kr−1=1
l1,...,ls−1=1

Ai1k1 . . . A
ir−1

kr−1
Bl1j1 . . . B

ls−1

js−1
(CK)

k1...kr−1

l1...ls−1
.
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By definition of the (p, q)-contraction, it then follows

(ĈK)
i1 ...ir−1

j1 ...js−1
=

n∑

k=1

n∑

k1,...,kr−1=1
l1,...,ls−1=1

Ai1k1 . . . A
ir−1

kr−1
Bl1j1 . . . B

ls−1

js−1
K
k1...k...kr−1

l1...k...ls−1
,

(6.17)
where again the subscript k appears at the q-th position and the superscript
k at the p-th position.

On the other hand, by the change of components formula (6.11), we have
that

K̂
i1...m...ir−1

j1...m...js−1
=

n∑

k1,...,k,...,kr−1=1
l1,...,l,...,ls−1=1

Ai1k1 . . . A
m
k . . . A

ir−1

kr−1
Bl1j1 . . . B

l
m . . . B

ls−1

js−1
K
k1...k...kr−1

l1...l...ls−1
.

Since
∑n
m=1A

m
k B

l
m = δlk, we obtain

n∑

m=1

K̂
i1...m...ir−1

j1...m...js−1
=

n∑

k1,...,k,...,kr−1=1
l1,...,l,...,ls−1=1

δlk A
i1
k1
. . . A

ir−1

kr−1
Bl1j1 . . . B

ls−1

js−1
K
k1...k...kr−1

l1...l...ls−1

=

n∑

k=1

n∑

k1,...,kr−1=1
l1,...,ls−1=1

Ai1k1 . . . A
ir−1

kr−1
Bl1j1 . . . B

ls−1

js−1
K
k1...k...kr−1

l1...k...ls−1
.

This agrees with (6.17) showing that

(ĈK)
i1 ...ir−1

j1 ...js−1
=

n∑

m=1

K̂
i1...m...ir−1

j1...m...js−1
,

and hence the definition of the contraction does not depend on the choice of
the basis for E.

Example 6.14. If e ∈ E and e∗ ∈ E∗, then e ⊗ e∗ ∈ T 1
1 (E) is a (mixed)

tensor of type (1, 1). The contraction, or more precisely (1, 1)-contraction,
maps e⊗ e∗ into 〈e∗, e〉 ∈ F = T 0

0 (E) (see also Example 6.19).

Tensors and Multilinear Maps

We give an important interpretation of covariant and contravariant tensors
as multilinear maps.

Proposition 6.15. The vector space Ts(E) of covariant tensors of degree s
is isomorphic to the vector space of s-multilinear maps from E× . . .×E into
F . More precisely, there is an isomorphism, denoted by Σs, between Ts(E)
and s-multilinear maps from E × . . .×E into F given by
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Σs
(
e∗1 ⊗ . . .⊗ e∗s

)
(e1, . . . , es) =

s∏

i=1

〈e∗i , ei〉 , (6.18)

where e∗1 ⊗ . . .⊗ e∗s ∈ Ts(E) and e1, . . . , es ∈ E.

Proof. By generalizing Proposition 6.11, we deduce that Ts(E) = E∗ ⊗ . . .⊗
E∗ can be seen as the dual space of T s(E) = E⊗ . . .⊗E. On the other hand,
it follows from the universal factorization property of the tensor product (see
Proposition 6.3) that the space of linear maps from T s(E) = E ⊗ . . . ⊗ E
into F is isomorphic to the space of s-linear maps from E × . . .×E into F .
– For more details in the case of covariant tensors of degree 2 we refer to the
example below. ut

Remark. Following the last proposition, we consider e∗1 ⊗ . . . ⊗ e∗s ∈ Ts(E)
as s-multilinear map E × . . . × E −→ F and use the notation e∗1 ⊗ . . . ⊗
e∗s(e1, . . . , es) ∈ F , for e1, . . . , es ∈ E.

Example 6.16 (Covariant Tensors of degree 2). The universal factorization
property in Proposition 6.3 implies that for every bilinear map ϕ : E×E −→
F , there exists a unique linear map u : E ⊗ E = T 2(E) −→ F such that
ϕ = u◦P (see Fig. 6.5). In other words, there is a one-to-one correspondence
between bilinear maps from E × E into F and (E ⊗ E)∗, i.e., linear maps
from E⊗E into F . On the other hand, from Proposition 6.11, we know that
(E⊗E)∗ = E∗⊗E∗. Hence, there is an isomorphism, denoted by Σ2, between
E∗ ⊗ E∗ = T2(E) and the vector space of bilinear maps from E × E into F
given by

Σ2

(
e∗ ⊗ ẽ∗

)
(e, ẽ) = 〈e∗, e〉 〈ẽ∗, ẽ〉 ,

for all e, ẽ ∈ E and e∗, ẽ∗.

u

ϕ

P
E × E E ⊗ E

F

Fig. 6.5. Universal factorization property for E ×E.

Similarly, for contravariant tensors there is the following
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Proposition 6.17. The vector space T r(E) of contravariant tensors of de-
gree r is isomorphic to the vector space of r-multilinear maps from E∗× . . .×
E∗ into F .

Proposition 6.18. Let V be a vector space. Then the vector space Ts(E)⊗V
is isomorphic to the vector space of s-multilinear maps from E × . . . × E
into V . More precisely, there is an isomorphism, denoted by ΣV

s , between
Ts(E) ⊗ V and s-multilinear maps from E × . . .×E into the vector space V
given by

ΣV
s

(
e∗1 ⊗ . . .⊗ e∗s ⊗ v

)
(e1, . . . , es) =

n∏

i=1

〈e∗i , ei〉 v , (6.19)

where e∗1 ⊗ . . .⊗ e∗s ∈ Ts(E), e1, . . . , es ∈ E and v ∈ V .

Proof. By Proposition 6.10, we know that Ts(E) ⊗ V is isomorphic to
L
(
Ts(E)∗, V

)
. Since T s(E) is the dual space of Ts(E) (see Proposition

6.11), we obtain the existence of an isomorphism between Ts(E) ⊗ V and
L
(
T s(E), V

)
. Again, by the universal factorization property of the tensor

product, we get that L
(
T s(E), V

)
can be identified with s-multilinear maps

from E × . . .×E into the vector space V . ut

Example 6.19. ConsiderK ∈ T 1
1 (E) having componentsKi

j ∈ F with respect

to a basis {ei}i=1,...,n of E. The endomorphism ΣE
1 corresponding to K sends

ej ∈ E to
∑n

i=1K
i
j ei. This is a direct consequence of (6.19). Moreover, the

contraction CK of K equals
∑n

i=1K
i
i .

Skew-Symmetric Forms as Covariant Tensors

We want to show that due to Proposition 6.15 we have
∧s

(E) ⊂ T s(E)3. –
Let α ∈

∧s
(E) and let {ej}j=1,...,n denote a basis of E∗. Then, we can write

α =
∑

J

αJ e
j1 ∧ . . . ∧ ejs ,

where J = {(j1, . . . , js) : 1 ≤ j1 < . . . < js ≤ n}. Using formula (3.6) for
the wedge product, it follows, for e1, . . . , es ∈ E,

ej1 ∧ . . . ∧ ejs(e1, . . . , es) =
∑

σ∈Ss

(−1)|σ|
〈
ejσ(1) , e1

〉
. . .
〈
ejσ(s) , es

〉

=
∑

σ∈Ss

(−1)|σ|
s∏

k=1

〈
ejσ(k) , ek

〉
.

3 At this stage, the reader should be familiar with Section 3.1.1. In particular, it is
not difficult to generalize Definition 3.1 to alternating p-multilinear maps from
E × . . .×E into F .
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On the other hand, Proposition 6.15 implies that

s∏

k=1

〈
ejσ(k) , ek

〉
= ejσ(1) ⊗ . . .⊗ ejσ(s)(e1, . . . , es) .

Thus we arrive at the following representation for α ∈
∧s(E):

α =
∑

J

∑

σ∈Ss

(−1)|σ|αJ e
jσ(1) ⊗ . . .⊗ ejσ(s)

=
n∑

j1,...,js=1

∑

σ∈Ss

1

s!
(−1)|σ|αJ e

jσ(1) ⊗ . . .⊗ ejσ(s) . (6.20)

This shows that indeed
∧s

(E) ⊂ T s(E).

Example 6.20. Let E = R3 with canonical basis {e1, e2, e3} and let α ∈∧2(R3) be given by

α = α12 e
1 ∧ e2 + α13 e

1 ∧ e3 + α23 e
2 ∧ e3 .

For v, w ∈ R3, it then follows

α(v, w) = α12(v
1w2 − w1v2) + α13(v

1w3 − w1v3) + α23(v
2w3 − w2v3) .

On the other hand, using (6.20), we obtain

α =
α12

2
(e1 ⊗ e2 − e2 ⊗ e1) +

−α12

2
(e2 ⊗ e1 − e1 ⊗ e2)

+
α13

2
(e1 ⊗ e3 − e3 ⊗ e1) +

−α13

2
(e3 ⊗ e1 − e1 ⊗ e3)

+
α23

2
(e2 ⊗ e3 − e3 ⊗ e2) +

−α23

2
(e3 ⊗ e2 − e2 ⊗ e3) .

Applying this to v, w ∈ R3 we find indeed the above result for α(v, w).

Transporting Tensors

Let E and F be two finite dimensional F-vector spaces. Moreover, let A :
E −→ F be an isomorphism . Then we define the map

A∗ : F ∗ −→ E∗ ,

f∗ 7−→ A∗f∗ ,

where A∗f∗ ∈ E∗ satisfies, for all e ∈ E,

〈A∗f∗, e〉E∗,E = 〈f∗, A e〉F∗,F . (6.21)

The map A∗ is clearly an isomorphism between F ∗ and E∗ with inverse
(A−1)∗ : E∗ −→ F ∗ defined in the same way.
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Using Proposition 6.7, we then deduce the existence of a unique linear
map

A⊗ (A−1)∗ : E ⊗E∗ −→ F ⊗ F ∗

e⊗ e∗ 7−→ Ae⊗ (A−1)∗e∗ , (6.22)

where e ∈ E and e∗ ∈ E∗. It is straightforward to check that the map
A⊗ (A−1)∗ is an isomorphism.

Next, we show that the map A⊗ (A−1)∗ commutes with contractions on
T 1

1 (E) = E⊗E∗. – Recall that (1, 1)-contractions on T 1
1 (E) are given by (see

Example 6.14)
C(e⊗ e∗) = 〈e∗, e〉E∗,E .

Then, we compute

C
(
A⊗ (A−1)∗(e⊗ e∗)

)
= C

(
Ae⊗ (A−1)∗e∗

)

=
〈
(A−1)∗e∗, A e

〉
F∗,F

(6.21)
=

〈
e∗, A−1Ae

〉
E∗,E

= 〈e∗, e〉E∗,E = C(e⊗ e∗) ,

showing that A⊗ (A−1)∗ indeed respects the contraction operation.
For (mixed) tensors of arbitrary type, we have the following generalization

of the previous results:

Proposition 6.21. Let E, F be two finite dimensional F-vector spaces and
A : E −→ F an isomorphism. Then there exists a unique isomorphism from

T rs (E) to T rs (F ), denoted by A⊗r ⊗
(
(A−1)∗

)⊗s
, such that

A⊗r ⊗
(
(A−1)∗

)⊗s
(e1 ⊗ . . .⊗ er ⊗ e∗1 ⊗ . . .⊗ e∗s)

= Ae1 ⊗ . . .⊗Aer ⊗ (A−1)∗e∗1 ⊗ . . .⊗ (A−1)∗e∗s ,

for all e1, . . . , er ∈ E and all e∗1, . . . , e
∗
s ∈ E∗. Moreover, the tensor algebra

isomorphism

Ã :=

∞⊕

r,s=0

A⊗r ⊗
(
(A−1)∗

)⊗s
: T (E) −→ T (F ) ,

called the extension of A, preserves the type of the tensors and commutes
with all contractions.
Proof. ut

Now, we want to check the consistency of the extension Ã with previously
defined operations, namely with the pull-back of skew-symmetric s-forms on
E.



158 6

For f1, . . . , fs ∈ F , we deduce from Definition 3.8 that the pull-back
(A−1)∗α ∈

∧s
(F ) of α by A−1 is given by

(
(A−1)∗α

)
(f1, . . . , fs) = α(A−1f1, . . . , A

−1fs)

=
∑

J

αJ e
j1 ∧ . . . ∧ ejs(A−1f1, . . . , A

−1fs)

Then, using formula (3.6) for the wedge product, we obtain

(
(A−1)∗α

)
(f1, . . . , fs) =

∑

J

∑

σ∈Ss

(−1)|σ|αJ e
jσ(1) (A−1f1) . . . e

jσ(s) (A−1fs)

=
∑

J

∑

σ∈Ss

(−1)|σ|αJ

s∏

k=1

〈
ejσ(k) , A−1fk

〉
E∗,E

. (6.23)

On the other hand, using (6.20), we obtain

Ãα =
∑

J

∑

σ∈Ss

(−1)|σ|αJ Ã(ejσ(1) ⊗ . . .⊗ ejσ(s)) .

It follows, using Proposition 6.21 for the extension Ã,

Ã(ejσ(1) ⊗ . . .⊗ ejσ(s)) = (A−1)∗ejσ(1) ⊗ . . .⊗ (A−1)∗ejσ(s) .

For f1, . . . , fs ∈ F , we then deduce that

(A−1)∗ejσ(1) ⊗ . . .⊗ (A−1)∗ejσ(s)(f1, . . . , fs) =
s∏

k=1

〈
(A−1)∗ejσ(k) , fk

〉
F∗,F

(6.21)
=

s∏

k=1

〈
ejσ(k) , A−1fk

〉
E∗,E

.

This agrees with the expression (6.23) for the pull-back.

6.2 Tensor Fields on Manifolds

We can now do with tensors what we did with alternating forms when defining
differential forms on a manifold: To each point of a manifold a tensor on the
tangent space of this point is assigned in a smooth way. The utilized concepts
will be exactly the same as for the tangent bundle and the cotangent bundle.

6.2.1 The Tensor Bundle

Let M be a n-dimensional Ck-differentiable manifold and p ∈ M . We already
know that the tangent space TpM at p is a n-dimensional vector space over
the ground field F = R (see Definition 2.35). We denote by
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T rs (TpM)

the tensors of type (r, s) on TpM . From a “set” point of view the tensor
bundle of type (r, s) on M is then defined by

T rs (M) =
⋃

p∈M

T rs (TpM) .

For K ∈ T rs (TpM), the projection map to the base point reads as

π : T rs (M) −→ M ,

K 7−→ p . (6.24)

Let (U, x) be a local chart on M . A basis for TpM , p ∈ U , is then given
by { ∂

∂xi
(p)}i=1,...,n (see (2.15)) and the corresponding dual basis for T ∗

pM is{
dxj(p)

}
j=1,...,n

(see (3.26)). Using Proposition 6.9, we deduce that

{
∂

∂xi1
(p) ⊗ . . .⊗

∂

∂xir
(p) ⊗ dxj1 (p) ⊗ . . .⊗ dxjs(p)

}
, (6.25)

with all indices running from 1 to n, is a basis of T rs (TpM). – At this stage,
it is important to note that we have slightly changed the notation for the
dual basis

{
dxj(p)

}
j=1,...,n

of T ∗
pM . More precisely, in order to be consistent

with the previous section we write the elements of the basis of T ∗
pM with an

upper index, whereas in Chapter 3.2 a lower index is used, in order to empha-
size that the elements are one-forms on U corresponding to the coordinate
functions xi : U −→ R, i = 1, . . . , n.

Definition 6.22. Let M be a Ck-differentiable manifold of dimension n. A
Ck−1-tensor field of type (r, s) on M is a map

T : M −→ T rs (M)

such that π ◦ T = idM , and for all local charts (U, x) on Mn there exist
functions T i1...irj1...js

∈ Ck−1(U,R) satisfying

T (p) =

n∑

i1,...,ir=1
j1,...,js=1

T i1...irj1...js
(p)

∂

∂xi1
(p) ⊗ . . .⊗

∂

∂xir
(p) ⊗ dxj1 (p)⊗ . . .⊗ dxjs (p) ,

(6.26)
for all p ∈ U . – We denote the vector space of C∞-tensor fields of type (r, s)
on M by T r

s (M).

Next, we want to construct a differentiable structure on the tensor bundle
T rs (M) of type (r, s) in such a way that Ck-tensor fields on M are just Ck-
sections of T rs (M), i.e., T ∈ Ck(M,T rs (M)) and π ◦ T = idM . The method
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will be very similar to the one used for the construction of the differentiable
structure on the tangent bundle TM in Section 2.5.3 and on the cotangent
bundle

∧p
T ∗M of degree p in Section 3.2.1. Recall that in the case of r = 1,

s = 0 we are dealing with the tangent bundle and in the case of r = 0, s = 1
with the cotangent bundle. – For the sake of simplicity, we assume r = s = 1
for the construction of the differential structure on the tensor bundle.

Let {(Ui, ϕi)}i∈I be an atlas for M . We set

T rs (Ui) =
⋃

p∈Ui

T rs (TpM) = π−1(Ui) ,

and define, combining (2.19) with (3.29),

Φ1,1
i : T rs (Ui) −→ Rn ×

(
Rn ⊗ (Rn)∗

)
,

T 7−→
(
ϕi ◦ π(T ), ϕ1,1

i (T )
)
, (6.27)

with
ϕ1,1
i (T ) := (dϕi)p ⊗

(
(dϕ−1

i )ϕi(p)

)∗
(T ) , (6.28)

where π(T ) = p ∈ Ui. More precisely, writing T = [γ] ⊗ wp ∈ TpM ⊗ T ∗
pM ,

it follows from Proposition 6.21 that

ϕ1,1
i ([γ] ⊗ wp) = (dϕi)p · [γ] ⊗

(
(dϕ−1

i )ϕi(p)

)∗
wp ∈ Rn ⊗ (Rn)∗ .

It is clear that Φ1,1
i is a bijection from T rs (Ui) into ϕi(Ui)×

(
Rn⊗ (Rn)∗

)
.

We then say that Ω ⊂ T rs (M) is open if and only if for all i ∈ I the set
Φ1,1
i (Ω ∩ T rs (Ui) is open in Rn ×

(
Rn ⊗ (Rn)∗

)
.

Proposition 6.23. These open sets define a (separated) topology on T rs (M)
which depends only on the differentiable structure of M , and not on the atlas
{(Ui, ϕi)}i∈I representing the fixed differentiable structure on M . Moreover,
the maps Φ1,1

i , i ∈ I, defined in (6.27) are homeomorphisms for this topology
and the projection π is continuous.

Proposition 6.24. Let M be a n-dimensional Ck-manifold with k ≥ 2 and
let {(Ui, ϕi)}i∈I be an atlas for Mn. Then {(T 1

1 (Ui), Φ
1,1
i )}i∈I defines a Ck−1-

differentiable structure on the tensor bundle T 1
1 (M) of type (1, 1), depending

only on the differential structure on Mn. And T 1
1 (M) is a Ck−1-differentiable

manifold of dimension n+ n2 for this differentiable structure. Moreover, the
projection π is a Ck−1-submersion for this differentiable structure.

The proofs of the last two propositions are essentially based on the explicit
expression for the transition functions (this was already the case for the
tangent bundle and the cotangent bundle of degree p, see Section 2.5.3 and
3.2.1). Therefore, we first state the following
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Lemma 6.25. Let {(Ui, ϕi)}i∈I and {(Vj , ψj)}j∈J be two equivalent systems
of charts for M . Moreover, let i ∈ I and j ∈ J such that Ui ∩ Vj 6= ∅. Then

on Φ1,1
i (T 1

1 (Ui ∩ Vj)) ⊂ Rn ×
(
Rn ⊗ (Rn)∗

)
the following formula for the

transition functions on T 1
1 (M) holds:

Ψ1,1
j ◦

(
Φ1,1
i

)−1
(x, ξ ⊗ β) =

(
ψj ◦ ϕ

−1
i (x) , d(ψj ◦ ϕ

−1
i )x · ξ ⊗

(
d(ϕi ◦ ψ

−1
j )ψj◦ϕ

−1
i (x)

)∗
β
)
,

(6.29)

where ϕ−1
i (x) = p ∈ Ui ∩ Vj , ξ ∈ Rn and β ∈ (Rn)∗.

Proof. The result is a straightforward consequence of (2.21) and (3.31). ut

As mentioned before, the previous results, generalized to arbitrary r ∈ N

and s ∈ N, allow us to interpret tensor fields as sections of the tensor bundle.

Proposition 6.26. Let M be a Ck
′

-differentiable manifold of dimension n,
with k′ ≥ k + 1. Then a Ck-tensor field of type (r, s) on M is a Ck-section
of T sr (M) for the above defined differential structure.

Proof. It is not necessary to give a proof because similar results have already
been shown in great detail at several places in previous chapters (see espe-
cially Proposition 3.22). ut

Remark. The last proposition can be interpreted as alternative definition for
tensor fields on manifolds.

Examples of Tensor Fields

Example 6.27 (Vector Fields and One-Forms). Let X be a Ck-vector field
on Mn. By Definition 2.44, we then have that X(p) ∈ TpM = T 1

0 (TpM),
for all p ∈ Mn. Moreover, in a local chart (U, x) the Ck-vector field can be
represented as

X(p) =

n∑

i=1

X i(p)
∂

∂xi
(p) ,

where X i ∈ Ck(U,R) and p ∈ U . Note again that, compared to (2.27),
the components of the vector field have now an upper index in order to be
consistent with (6.26). Hence, a Ck-vector field can be seen as Ck-tensor field
of type (1, 0).

Let ω ∈ Ω1
k(M) be a Ck-differential one-form on M . We then have that

ω(p) ∈
∧1

(TpM) = T ∗
pM = T 0

1 (T ∗
pM), for all p ∈ M . Moreover, in a local

chart (U, x) the Ck-differential one-form can be represented as

ω(p) =

n∑

j=1

ωj(p) dx
j(p) ,
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where ωj ∈ Ck(U,R) and p ∈ U . Hence, a Ck-differential one-form can be
seen as Ck-tensor field of type (0, 1).

Example 6.28 (Riemannian Metric). There is a very important example for
a tensor field given by the following

Definition 6.29. Let Mn be a C∞-manifold of dimension n. A Rieman-
nian metric g on M is a tensor field of type (0, 2) (or a covariant tensor
field of degree 2) such that, for all p ∈ M ,

(i) it is non-negative, i.e., gp(X,X) ≥ 0, for all X ∈ TpM ;
(ii) it is non-degenerate, i.e., gp(X,X) = 0 if and only if X = 0, for X ∈

TpM ;
(iii) it is symmetric, i.e., gp(X,Y ) = gp(Y,X), for all X,Y ∈ TpM .

In terms of a local chart (U, x), the Riemannian metric reads as

g =

n∑

i,j=1

gij dx
i ⊗ dxj , (6.30)

where obviously for the components

gij(p) = gp

(
∂

∂xi
(p),

∂

∂xj
(p)

)
, p ∈ U .

Note that by Proposition 6.15, for all p ∈ U , the covariant tensor gp of
type (0, 2) is now interpreted as bilinear map TpM × TpM −→ R. Moreover,(
gij(p)

)
is a symmetric, positive definite n× n-matrix.

∗ ∗ ∗

Next, we give an important characterization of covariant tensor fields.
– We denote C∞-functions on M by F(M). Note that for f ∈ F(M) and
X ∈ X (M) the assignment p 7−→ f(p)X(p) defines a new C∞-vector field on
M denoted by f X .

Proposition 6.30. Let T ∈ T 0
s (M) be a covariant tensor field of degree s

on M . Then, it can be considered as s-multilinear map, also denoted by T ,
from X (M) × . . .×X (M) into F(M) such that

T (f1X1, . . . , fsXs) = f1 · · · fs T (X1, . . . , Xs) , (6.31)

for all f1, . . . , fs ∈ F(M) and X1, . . . , Xs ∈ X (M). Conversely, any s-
multilinear map satisfying (6.31) can be considered as covariant tensor field
of degree s on M .
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Proof. Let T ∈ T 0
s (M). Then Proposition 6.15 implies that, for all p ∈ M ,

the covariant tensor Tp ∈ T 0
s (TpM) = T ∗

pM ⊗ . . . ⊗ T ∗
pM identifies to an

s-multilinear map, also denoted by Tp, from TpM × . . .× TpM into R. More
precisely, for X1, . . . , Xs ∈ X (M) and all p ∈M , the map

Tp : TpM × . . .× TpM −→ R ,(
X1(p), . . . , Xs(p)

)
7−→ Tp

(
X1(p), . . . , Xs(p)

)

is s-multilinear.
Next, we consider the s-multilinear map defined by

T : X (M) × . . .× X (M) −→ F(M) ,

(X1, . . . , Xs) 7−→ T (X1, . . . , Xs) ,

where

T (X1, . . . , Xs) : M −→ R ,

p 7−→ T
(
X1, . . . , Xs

)
(p) := Tp

(
X1(p), . . . , Xs(p)

)
.

Obviously, we see that the map T satisfies (6.31). However, it remains to
show that indeed T (X1, . . . , Xs) ∈ F(M). – For this purpose, let (U, x) be a
local chart for M implying that T ∈ T 0

s (M) can be written as

T =

n∑

j1,...,js=1

Tj1...js dx
j1 ⊗ . . .⊗ dxjs .

Denoting by 〈·, ·〉T∗

pM,TpM the dual pairing of T ∗
pM and TpM , we deduce from

Proposition 6.15 that

Tp
(
X1(p), . . . , Xs(p)

)
=

n∑

j1,...,js=1

Tj1...js(p)

n∏

k=1

〈
dxjk (p), Xk(p)

〉
T∗

pM,TpM
∈ R ,

and moreover that

T (X1, . . . , Xs) =

n∑

j1,...,js=1

Tj1...js

n∏

k=1

〈
dxjk , Xk

〉
T∗M,TM

,

implying that T (X1, . . . , Xs) is indeed a real-valued C∞-function on M .
Conversely, let T : X (M)× . . .×X (M) −→ F(M) be a s-multilinear map

satisfying (6.31). – The essential point of the proof is to show that the value
of the C∞-function T (X1, . . . , Xs) at a point p ∈ M depends only on the
values of the vector fields X1, . . . , Xs ∈ X (M) at the same point p. So this
will be done first.

By the s-multilinearity of the map T , this translates to the assertion that
if X1(p) = 0, for some p ∈ M , then for all X2, . . . , Xs ∈ X (M) the following
holds:
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T
(
X1, . . . , Xs

)
(p) = 0 .

In order to show this, we choose a local chart (U, x) about p so that we can
write

X1 =

n∑

i=1

f i
∂

∂xi
on U .

Next, we extend f i ∈ C∞(U,R) to gi ∈ F(M) such that f i = gi on some
neighborhood U ′ ⊂ U of p. Similarly, we take vector fields Zi ∈ X (M) such
that ∂

∂xi
= Zi on U ′. Hence, we have that

X1 =
n∑

i=1

gi Zi on U ′ .

By the localization property of the map T in the Lemma 6.31 below, we then
deduce that

T (X1, X2, . . . , Xs) = T

(
n∑

i=1

gi Zi, X2, . . . , Xs

)
(6.31)
=

n∑

i=1

gi T (Zi, X2, . . . , Xs) .

Since f i(p) = gi(p) = 0, for i = 1, . . . , n, it follows that the map T (X1, . . . , Xs)
vanishes at p ∈ M .

Now, we are ready to establish the fact that T is a covariant C∞-tensor
field of degree s on M . – Since, as shown before, the value of T (X1, . . . , Xs) at
p ∈M depends only on the values of X1, . . . , Xs ∈ X (M) at p, we get that T
induces for each p an assignment of a s-multilinear map of TpM × . . .×TpM
into R. This is by Proposition 6.15 equivalent to an assignment for each
p ∈ M of an element in T ∗

pM ⊗ . . .⊗ T ∗
pM . In terms of a local chart (U, x),

there exist thus components Tj1...js(p) ∈ R such that, for all p ∈ U ,

T (p) =

n∑

j1,...,js=1

Tj1...js(p) dx
j1 (p) ⊗ . . .⊗ dxjs(p) .

In order to show that T ∈ T 0
s (M), we still have to check that the functions

p 7−→ Tj1...js(p) are C∞-functions on U . – For this purpose, we construct as
before extensions Z1, . . . , Zn in X (M) of ∂

∂xi
, i = 1, . . . , n, such that ∂

∂xi
= Zi

on U ′, where U ′ ⊂ U . Since by assumption T (Zj1 , . . . , Zjs) ∈ F(M), we
obtain that

T (Zj1 , . . . , Zjs) = Tj1...js ∈ C∞(U ′,R) .

Moreover, assuming that we start with an atlas {(Ui, xi)}i∈I on M such that
{(U ′

i , xi)}i∈I is still an atlas on M , it follows4 that T ∈ T 0
s (M). – This

completes the proof of the proposition. ut

4 If T has C∞-components with respect to one particular atlas, it also has C∞-
components with respect to every other atlas representing the differentiable
structure on M .
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Lemma 6.31 (Localization Property). Let T : X (M)× . . .×X (M) −→
F(M) be a s-multilinear map satisfying (6.31). Moreover, let U be an open
subset of M , X1, . . . , Xs ∈ X (M) and Y1, . . . , Ys ∈ X (M). Then, if there
exists i = 1, . . . , s such that Xi = Yi on U , we have that

T (X1, . . . , Xs) = T (Y1, . . . , Ys) on U .

Proof. Because of the s-multilinearity of the map T , it suffices to show that
if X1 = 0 on U , then for all X2, . . . , Xs ∈ X (M), we have that

T (X1, . . . , Xs) = 0 on U .

For any y ∈ U , let f1 ∈ F(M) such that f1(y) = 0 and f1 ≡ 1 outside of
U . It is clear that f1X1 = X1. Moreover, using (6.31), it follows that

T (X1, . . . , Xs) = T (f1X1, . . . , Xs) = f1 T (X1, . . . , Xs) .

This implies that T (X1, . . . , Xs) vanishes at y, showing the lemma. ut

Differential Forms as Covariant Tensor Fields

We want to establish that C∞-differential s-forms on M identify to covariant
C∞-tensor fields of degree s on M which are skew-symmetric. Note that the
case s = 1 is clear, as described in Example 6.27.

Recall that in terms of a local chart (U, x) a C∞-differential s-form ω on
M can be written as (note again the change in the indexation compared to
(3.28))

ω =
∑

J

ωJ dx
j1 ∧ . . . ∧ dxjs ,

where J = {(j1, . . . , js) : 1 ≤ j1 < . . . < js ≤ n}. For X1, . . . , Xs ∈ TpM ,
we deduce, using formula (3.6) for the wedge product,

dxj1 (p)∧. . .∧dxjs (p)
(
X1, . . . , Xs

)
=
∑

σ∈Ss

(−1)|σ|
s∏

k=1

〈
dxjσ(k) (p), Xk

〉
T∗

pM,TpM
.

On the other hand, Proposition 6.15 implies that

s∏

k=1

〈
dxjσ(k) (p), Xk

〉
T∗

pM,TpM
= dxjσ(1) (p) ⊗ . . .⊗ dxjσ(s) (p)

(
X1, . . . , Xs

)
.

Thus we arrive at the following representation for ω ∈ Ωs(M):

ω =
∑

J

∑

σ∈Ss

(−1)|σ|ωJ dx
jσ(1) ⊗ . . .⊗ dxjσ(s)

=

n∑

j1,...,js=1

∑

σ∈Ss

1

s!
(−1)|σ|ωJ dx

jσ(1) ⊗ . . .⊗ dxjσ(s) , (6.32)
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showing that ω ∈ T 0
s (M).

Starting with a covariant tensor field one can also ask if it is nothing else
than a differential form. This motivates the following

Definition 6.32. Let T ∈ T 0
s (M) be a covariant tensor field of type (0, s).

We define the alternation AT of T by

ATp(X1, . . . , Xs) =
1

s!

∑

σ∈Ss

(−1)|σ| Tp(Xσ(1), . . . , Xσ(s)) ,

where X1, . . . , Xs ∈ TpM . Moreover, we define the symmetrization ST of
T by

STp(X1, . . . , Xs) =
1

s!

∑

σ∈Ss

Tp(Xσ(1), . . . , Xσ(s)) .

The following proposition, which can be easily verified, gives an interpre-
tation of skew-symmetric covariant tensor fields as differential forms.

Proposition 6.33. Let T ∈ T 0
s (M) be a covariant tensor field of type (0, s).

Then, we have that AT ∈ Ωs(M) and T ∈ Ωs(M) if and only if AT = T .
Moreover, for ω ∈ Ωs(M) and ω̃ ∈ Ωs̃(M), we have that ω ⊗ ω̃ ∈ T 0

s+s̃(M)
and A(ω ⊗ ω̃) = ω ∧ ω̃.

Example 6.34. Consider T ∈ T 0
2 (M) given by

T =

n∑

i,j=1

Tij dx
i ⊗ dxj .

We want to determine the alternation A(dxi ⊗ dxj). – Let X1, X2 ∈ TpM .
From Definition 6.32, we then deduce

A
(
dxi(p) ⊗ dxj(p)

)
(X1, X2) =

1

2

∑

σ∈S2

(−1)|σ|dxi(p) ⊗ dxj(p)
(
Xσ(1), Xσ(2)

)

=
1

2

(
dxi(p) ⊗ dxj(p)

(
X1, X2

)
− dxi(p) ⊗ dxj(p)

(
X2, X1

))
.

In terms of the wedge product the right-hand side becomes

1

2
dxi(p) ∧ dxj(p)

(
X1, X2

)
.

Thus, we end up with

AT =

n∑

i,j=1

1

2
Tij dx

i ∧ dxj =

n∑

i<j=1

Tij dx
i ∧ dxj ,

showing that indeed AT ∈ Ω2(M).
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Vector-Valued Differential Forms

At this stage, we want to introduce differential forms on a manifold which
are vector-valued. More precisely, let V be a vector space. Then we consider
s-linear and alternating maps E × . . .×E −→ V . Generalizing the results of
Chapter 3 to these maps, we can define V -valued Ck-differential s-forms on
a manifold, denoted by Ωs

k(M,V ).
Recall that by Proposition 6.18, a s-linear map E × . . . × E −→ V can

be seen as an element of Ts(E) ⊗ V . Because of the interpretation of (real-
valued) differential forms as skew-symmetric covariant tensor fields, we then
deduce the identification of Ωs

k(M,V ) with Ck-sections of
∧s

T ∗M ⊗ V .

6.2.2 Transporting Tensor Fields

The results of Section 6.1 concerning the transport of tensors are now gener-
alized to tensor fields. – For this purpose, we first set

T (M) =

n⊕

r,s=0

T r
s (M) .

Note that T (M) is an associative algebra over R, the product ⊗ being defined
pointwise, i.e., if T1, T2 ∈ T (M), then (T1⊗T2)p = T1(p)⊗T2(p), for all p ∈M
(see (6.13) for the definition of the product). We call T (M) the tensor field
algebra.

Now, let ϕ : M −→ N be a C∞-diffeomorphism between two C∞-
differentiable manifolds M and N . Then, for all p ∈ M , the tangent map dϕp
of ϕ at p is an isomorphism between the tangent spaces TpM and Tϕ(p)N .
By Proposition 6.21 this isomorphism can be extended to an isomorphism
ϕ̃p between the tensor algebras T (TpM) and T (Tϕ(p)N). Moreover, given a
C∞-tensor field T ∈ T r

s (M), we define a tensor field ϕ̃ T on N by

(ϕ̃ T )q = ϕ̃ϕ−1(q)(Tϕ−1(q)) , q ∈ N . (6.33)

More precisely, we have with Proposition 6.21 that

(ϕ̃ T )q =
(
dϕϕ−1(q)

)⊗r
⊗
(
(dϕ−1

q )∗
)⊗s

(Tϕ−1(q)) . (6.34)

In this way, every diffeomorphism ϕ : M −→ N induces an algebra isomor-
phism between T (M) and T (N) which preserves the type and commutes
with all contractions.

It is clear that (ϕ̃ T )q ∈ T rs (TqN), for all q ∈ N . Next, we show that
ϕ̃T ∈ T r

s (N). – Let (V, y) be a chart about q. Moreover, let p = ϕ−1(q) ∈M
and set U = ϕ−1(V ), x = y ◦ ϕ. Then, we see that (U, x) is a chart about
p. In terms of this chart, the tensor field T ∈ T r

s (M) can be written as (see
Definition 6.22)
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T =
n∑

i1,...,ir=1
j1,...,js=1

T i1...irj1...js

∂

∂xi1
⊗ . . .⊗

∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs .

From (6.34), we deduce

ϕ̃

(
∂

∂xi1
⊗ . . .⊗

∂

∂xir
⊗ dxj1 ⊗ . . .⊗ dxjs

)

= dϕ ·
∂

∂xi1
⊗ . . .⊗ dϕ ·

∂

∂xir
⊗ (ϕ−1)∗dxj1 ⊗ . . .⊗ (ϕ−1)∗dxjs .

Well-known results for the tangent map and the pull-back then give the
existence of components T̃ i1...irj1...js

∈ C∞(V,R) such that

ϕ̃ T =
n∑

i1,...,ir=1
j1,...,js=1

T̃ i1...irj1...js

∂

∂yi1
⊗ . . .⊗

∂

∂yir
⊗ dyj1 ⊗ . . .⊗ dyjs ,

showing that indeed ϕ̃ T ∈ T r
s (N).

6.3 Lie Derivative of Tensor Fields

Let M be a differentiable manifold and let Y ∈ X (M). From Section 2.7,
we know that for all p ∈ M the local flow Γ Yt : U −→ M of Y , where U is
an open neighborhood of p and t ∈ I ⊂ R a time for which the local flow
exists, defines a C∞-diffeomorphism between U and Γ Yt (U). For the sake
of simplicity, we assume that Y is complete, i.e., we can take U = M and
I = R; in other words, the flow Γ Yt exists globally. Applying the results of
the previous Section 6.2.2 to the diffeomorphism Γ Yt : M −→ M , we can
construct for each t ∈ R an algebra automorphism Γ̃ Yt of T (M), called the
extension of Γ Yt .

Definition 6.35. Let T ∈ T r
s (M) and Y ∈ X (M). We define the Lie

derivative of T with respect to Y to be the following element of T r
s (M):

(LY T )p = lim
t→0

1

t

(
T (p) − Γ̃ Yt T (p)

)
, p ∈ M . (6.35)

Remark. a) In the particular case of a vector field X ∈ X (M) = T 1
0 (M),

we deduce from (6.34) that the defining equation (6.35) reduces to

(LYX)p = lim
t→0

1

t

(
X(p) −

(
dΓ Yt

)
ΓY
−t(p)

·X
(
Γ Y−t(p)

))
.

This agrees up to a sign with (2.32), being the defining equation for the
bracket [X,Y ] of the vector fields X and Y (see Section 2.7.1). Hence,
for the Lie derivative of vector fields, we have

LYX = [Y,X ] . (6.36)
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b) In the case of a function f ∈ F(M) = T 0
0 (M), we observe that (recall

the defining equation for the flow of a vector field)

(LY f)p
(6.35)
= lim

t→0

1

t

(
f(p) − f

(
Γ Y−t(p)

))

= − lim
t→0

1

t

(
f
(
Γ Y−t(p)

)
− f(p)

)
= −df · (−Y ) = df · Y .

Hence, for the Lie derivative of a function, we have

LY f = df · Y . (6.37)

Proposition 6.36. Let LY be the Lie derivative with respect to Y ∈ X (M).
Then

(i) it is linear, i.e., for all T1, T2 ∈ T (M), we have

LY (T1 + T2) = LY (T1) + LY (T2) ;

(ii) it satisfies a Leibniz rule, i.e., for all T1, T2 ∈ T (M), we have

LY (T1 ⊗ T2) = LY T1 ⊗ T2 + T1 ⊗ LY T2 ;

(iii) it preserves the type, i.e., LY (T r
s (M)) ⊂ T r

s (M);
(iv) and it commutes with every contraction of a tensor field.
Proof. ut

By a derivation of T (M), we mean a map of T (M) into itself satisfying
the conditions of the previous proposition. Hence, we have shown that the
Lie derivative LY with respect to the vector field Y ∈ X (M) is a derivation of
T (M) which satisfies also LY f = df ·Y and LYX = [Y,X ], for all f ∈ F(M)
and X ∈ X (M).

Next, we note that the set of all derivations of T (M) forms a Lie algebra
over R with respect to the canonical addition and multiplication and the
bracket operation for two derivations D1, D2 defined by

[D1, D2]T = D1(D2T ) −D2(D1T ) , T ∈ T (M) .

The following proposition then shows that the map associating to a vector
field its corresponding Lie derivative is a homomorphism of Lie algebras (see
Example 9.92 below).

Proposition 6.37. Let X and Y ∈ X (M). For their corresponding Lie
derivatives, we then have

L[X,Y ] = [LX , LY ] .
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Proof. By virtue of the Lemma 6.38 below, it is sufficient to show that the
derivations L[X,Y ] and [LX , LY ] agree on F(M) and X (M). – For f ∈ F(M),
we observe that (see the proof of Proposition 2.53)

L[X,Y ]f
(6.37)
= df · [X,Y ] = d(df · Y ) ·X − d(df ·X) ·X .

It is easy to check that the right-hand side equals [LX , LY ]f . Moreover, for
Z ∈ X (M), we have

[LX , LY ]Z = LX(LY Z) − LY (LXZ)

(6.36)
=

[
X, [Y, Z]

]
−
[
Y, [X,Z]

]
=
[
[X,Y ], Z

]

where we used the Jacobi identity in Proposition 2.56 for the last equality.
Again by (6.36), we have that

[
[X,Y ], Z

]
= L[X,Y ]Z. This completes the

proof of the proposition. ut

Lemma 6.38. Two derivations of the algebra of tensor fields T (M) are equal
if they agree on F(M) and X (M).
Proof. ut

Proposition 6.39. Let T ∈ T 0
s (M) be a covariant tensor field of degree s

and X1, . . . , Xs ∈ X (M). Then, for the Lie derivative LY T ∈ T 0
s (M) with

respect to any Y ∈ X (M), we have

LY T ( X1 , . . . , Xs)

= d
(
T (X1, . . . , Xs)

)
· Y −

s∑

i=1

T
(
X1, . . . , LYXi, . . . , Xs

)

, (6.38)

where LYXi = [Y,Xi] is the i-th argument of the covariant tensor field T in
the sum of the right-hand side.

Proof. As a consequence of Proposition 6.30, we observe that

T (X1, . . . , Xs) = C1 . . . Cs(T ⊗X1 ⊗ . . .⊗Xs) ,

where C1, . . . , Cs are obvious contractions (see Section 6.1). Thus, it follows

LY
(
T (X1, . . . , Xs)

)
= LY

(
C1 . . . Cs(T ⊗X1 ⊗ . . .⊗Xs)

)
. (6.39)

On the other hand, it follows from the Leibniz rule (ii) in Proposition 6.36
that

LY (T⊗ X1 ⊗ . . .⊗Xs) = LY T ⊗X1 ⊗ . . .⊗Xs

+ T ⊗ LYX1 ⊗ . . .⊗Xs + . . .+ T ⊗X1 . . .⊗ LYXs .
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Since by (iv) in the same Proposition 6.36 the Lie derivative LY commutes
with contractions, we then obtain, using (6.39),

LY
(
T (X1, . . . , Xs)

)
= C1 . . . Cs(LY T ⊗X1 ⊗ . . .⊗Xs)

+

s∑

i=1

C1 . . . Cs(T ⊗X1 ⊗ . . .⊗ LYXi ⊗ . . .Xs) .

Using (6.37) for the left-hand side, this becomes

d
(
T (X1, . . . , Xs)

)
· Y = LY T (X1, . . . , Xs)

+

s∑

i=1

T
(
X1, . . . , LYXi, . . . , Xs

)
,

showing the result. ut

Example 6.40. Let ω ∈ T 0
1 (M) = Ω1(M) and X ∈ X (M). Then (6.38)

reduces to
LY ω(X) = d

(
ω(X)

)
· Y − ω([Y,X ]) . (6.40)

In particular, for ω = df with f ∈ F(M), we obtain

LY df(X) = d
(
df(X)

)
· Y − df([Y,X ])

= d
(
df(X)

)
· Y − d

(
df(X)

)
· Y + d

(
df(Y )

)
·X

= d
(
df(Y )

)
·X = d(LY f) ·X .

Thus, on F(M) it follows

LY ◦ d = d ◦ LY . (6.41)

6.4 Relation Among the Operations d, LX and intX

In this section, we consider ω ∈ Ωs(M). The exterior derivative dω ∈
Ωs+1(M) of ω as well as the interior product intXω ∈ Ωs−1(M) of ω and
X ∈ X (M) are defined in Section 3.2.2. Now we want to establish a rela-
tion between these two operations and the previously defined Lie derivative5

LXω ∈ Ωs(M) of ω with respect to X .

Proposition 6.41 (Cartan’s Formula). Let ω ∈ Ωs(M) and X ∈ X (M).
Then, we have

LXω = d(intXω) + intX (dω) . (6.42)

5 Recall that LXω is well-defined because Ωs(M) ⊂ T 0
s (M).
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Proof. Let q ∈M and assume first that the vector field X ∈ X (M) does not
vanish at q, i.e., X(q) 6= 0. From the Straightening Theorem 1.25 generalized
to vector fields on manifolds, we then deduce that there exists a local chart
(U, x) about q such that

X =
∂

∂x1
on U .

a) In a first step, we have to compute LXω, for ω ∈ Ωs(M). – By Defini-
tion 6.35, we have

(LXω)p = lim
t→0

1

t

(
ω(p) − Γ̃Xt ω(p)

)
, p ∈ U . (6.43)

Recall that Γ̃Xt denotes the extension of the flow ΓXt of X , where the time
t ∈ R is sufficiently small. Moreover, from (6.34) we deduce (see also the
Definition 3.23 of the pull-back)

Γ̃Xt ω(p) =
(
d(ΓXt )−1

p

)∗
ω
(
(ΓXt )−1(p)

)

=
(
d(ΓX−t)p

)∗
ω
(
ΓX−t(p)

)
=
(
(ΓX−t)

∗ω
)
(p) .

From the particular choice of the chart, we deduce that the coordinate ex-
pression for the inverse flow of X is given by

ΓX−t(x1, . . . , xn) = (x1 − t, x2, . . . , xn) , (6.44)

if the manifold M is assumed to be n-dimensional. Assuming that ω has the
local form

ω =
∑

I

ωI dx
i1 ∧ . . . ∧ dxis on U ,

we conclude, using well-known properties of the pull-back,

(
(ΓX−t)

∗ω
)
(p) =

∑

I

ωI
(
ΓX−t(p)

)
d
(
xi1 ◦ Γ

X
−t

)
∧ . . . ∧ d

(
xis ◦ ΓX−t

)

(6.44)
=

∑

I

ωI(x1 − t, x2, . . . , xn) dx
i1 ∧ . . . ∧ dxis .

Inserting this result into (6.43), we obtain that the Lie derivative (LXω)p at
p ∈ U equals

lim
t→0

∑

I

ωI(x1, x2, . . . , xn) − ωI(x1 − t, x2, . . . , xn)

t
dxi1 ∧ . . . ∧ dxis ,

and thus

(LXω)p =
∑

I

∂ωI
∂x1

(p) dxi1 ∧ . . . ∧ dxis . (6.45)
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b) In a second step, we compute d(intXω). – For this purpose, we first note
that in the local chart (U, x) the interior product is given by (see Definition
3.28)

intXdx
i1 ∧ . . . ∧ dxis(X2, . . . , Xs) = int ∂

∂x1

dxi1 ∧ . . . ∧ dxis(X2, . . . , Xs)

= dxi1 ∧ . . . ∧ dxis
(

∂

∂x1
, X2, . . . , Xs

)
.

where X2, . . . , Xs ∈ X (M). By a well-known formula for the wedge product,
the right-hand side of the last equation equals

∑

σ∈Ss

(−1)|σ|
〈
dxiσ(1) ,

∂

∂x1

〉 s∏

j=2

〈
dxiσ(j) , Xσ(j)

〉
.

Clearly, the expression
〈
dxiσ(1) , ∂

∂x1

〉
vanishes if iσ(1) 6= 1 and otherwise

equals 1. Thus, it follows

int ∂
∂x1

dx1 ∧ dxi2 ∧ . . . ∧ dxip(X2, . . . , Xs) =
∑

σ∈Ss−1

(−1)|σ|
s∏

j=2

〈
dxiσ(j) , Xσ(j)

〉

= dxi2 ∧ . . . ∧ dxis(X2, . . . , Xs) .

(6.46)

This result6 together with the local expression of ω in the chart (U, x), then
implies

int ∂
∂x1

ω =
∑

Ĩ

ωĨ dx
i2 ∧ . . . ∧ dxis ,

where Ĩ = {(i1, . . . , is) : 1 = i1 < i2 < . . . < is ≤ n} ⊂ I . Taking the
exterior derivative of the last equation, we get

d(int ∂
∂x1

ω) =
∑

Ĩ

∂ωĨ
∂x1

dx1 ∧ dxi2 ∧ . . . ∧ dxis

+

n∑

k=2

∑

Ĩ

∂ωĨ
∂xk

dxk ∧ dxi2 ∧ . . . ∧ dxis . (6.47)

c) In a third step, we compute intX(dω). – We write the exterior derivative
of ω ∈ Ωs(M) in the form

dω =
∑

Ĩc

∂ωĨc

∂x1
dx1 ∧ dxi1 ∧ . . . ∧ dxis

+

n∑

k=2

∑

I

∂ωI
∂xk

dxk ∧ dxi1 ∧ . . . ∧ dxis ,

6 Compare with 3.49.
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where Ĩc = {(i1, . . . , is) : 1 < i1 < i2 < . . . < is ≤ n} ⊂ I . Using (6.46) for
both terms, we obtain7

int ∂
∂x1

(dω) =
∑

Ĩc

∂ωĨc

∂x1
dxi1 ∧ . . . ∧ dxip

−
n∑

k=2

∑

Ĩ

∂ωĨ
∂xk

dxk ∧ dxi2 ∧ . . . ∧ dxip . (6.48)

d) Now, we put the results togther. –Adding (6.47) and (6.48), we obtain

d(intXω)+intX (dω) =
∑

Ĩ

∂ωĨ
∂x1

dx1∧dxi2∧. . .∧dxip+
∑

Ĩc

∂ωĨc

∂x1
dxi1∧. . .∧dxip ,

and conclude that this agrees with (6.45). Hence, the formula (6.42) holds
locally under the assumption that X(p) 6= 0. ut

As an application of Cartan’s formula (6.42), we prove the following
coordinate-free characterization for the exterior derivative.

Proposition 6.42. Let ω ∈ Ωs(M) and let X0 ∈ X (M). For the exterior
derivative of ω, we then have

dω(X0, X1, . . . , Xs) =

s∑

i=0

(−1)i d
(
ω(X0, . . . , X̂i, . . . , Xs)

)
·Xi

+
∑

0≤i<j≤s

(−1)i+j ω
(
[Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xs

)
,

(6.49)

where the “hat” over a vector field means that the latter is omitted and
X1, . . . , Xs ∈ X (M). In particular, for ω ∈ Ω1(M), we have

dω(X0, X1) = d
(
ω(X1)

)
·X0 − d

(
ω(X0)

)
·X1 − ω

(
[X0, X1]

)
. (6.50)

Proof. The proof is by induction on s. – First note that if ω is an element
of F(M), i.e., if s = 0, then (6.49) states that dω(X0) = dω · X0, which is
obviously correct.

For s = 1, we have ω ∈ Ω1(M) and from Cartan’s formula (6.42) it follows

LX0ω(X1) = d(intX0ω) ·X1 +
(
intX0(dω)

)
(X1)

= d
(
ω(X0)

)
·X1 + dω(X0, X1) .

Using Proposition 6.39 for LX0ω, we conclude

7 The minus sign in the last line comes from the permutation of dxk and dx1 before
applying formula (6.46) for the interior product.
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dω(X0, X1) = LX0ω(X1) − d
(
ω(X0)

)
·X1

= d
(
ω(X1)

)
·X0 − ω(LX0X1) − d

(
ω(X0)

)
·X1

= d
(
ω(X1)

)
·X0 − d

(
ω(X0)

)
·X1 − ω

(
[X0, X1]

)
,

Hence, formula (6.50) is established.
We now complete the proof by induction. – Assume that the formula

(6.49) is correct for all differential forms of degree s−1. If ω ∈ Ωs(M) we start
as before with Cartan’s formula (6.42). Then we use the induction assumption
for the term intX0ω ∈ Ωs−1(M), the Definition 3.28 of the interior product
for the term intX0(dω) and for LX0ω the explicit expression (6.38). (This is
the same strategy we used before for one-forms.) After a short calculation,
we observe that (6.49) remains true for differential forms of degree s. ut

∗ ∗ ∗

Exercises.

Exercise 6.43. Show that the bilinear map T on X (M) ×X (M), given by

T (X,Y ) = d
(
ω(Y )

)
·X − d

(
ω(X)

)
· Y − ω

(
[X,Y ]

)
,

defines a covariant tensor field of type (0, 2) on M .

Hint. In a first step, show that the map

T (X,Y ) : M −→ R .

p 7−→ T
(
X,Y

)
(p) :=

(
T (X,Y )

)
p

is an element of F(M). Hence, it follows

T : X (M) ×X (M) −→ F(M) .

In a second step, show that the value of T (X,Y ) ∈ F(M) at some point
p ∈M depends only on the values of the vector fields X,Y at the same point
p. Then, as in the proof of Proposition 6.30, we obtain the result.





7 An Introduction to Lie Groups

In this chapter, we give the basic definitions and properties of Lie groups.
We develop here enough tools concerning Lie groups in order to be able to
study fiber bundle in Chapter 9.

7.1 Lie Groups

Definition 7.1. A Lie group G is a differentiable manifold which is en-
dowed with a group structure such that the group operations

G×G −→ G , (g1, g2) 7−→ g1g2 ,

and
G −→ G , g 7−→ g−1 ,

are differentiable maps between G×G and G, respectively, G and G.

Remark. In other words, for a Lie group the group structure is consistent
with the differentiable structure.

Definition 7.2. We define the left translation by g0 ∈ G to be the follow-
ing map:

Lg0 : G −→ G ,

g 7−→ g0g . (7.1)

We show that the left translation is a diffeomorphism between G and G.
– By Definition 7.1, we see that Lg0 ∈ C∞(G,G). Moreover, we observe that

Lg−1
0

◦ Lg0(g) = Lg−1
0

(g0g) = g−1
0 (g0g) = g , g ∈ G .

Hence, the map Lg0 is invertible with inverse Lg−1
0

. The inverse being also

differentiable by definition, we conclude that the left translation is a diffeo-
morphism.
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Remark. a) The differentiability of the inversion map follows from the dif-
ferentiability of the multiplication map. Hence, it would be sufficient to
require the differentiability of the multiplication in the Definition 7.1 of
Lie groups. – Indeed, denoting the neutral element by e ∈ G, we want to
find a solution h(g) ∈ G of gh(g) = e, for g ∈ G. Since the partial deriva-
tive of the multiplication map with respect to the second argument is just
the differential of the left translation Lg being an isomorphism, we de-
duce by the Implicit Function Theorem 1.14 that the solution h(g) = g−1

is a smooth function on G.
b) Similarly, it is possible to define the right translation Rg0 : G −→ G,

g 7−→ gg0. But we prefer the left translation, since Lg1 ◦ Lg0 = Lg1g0 in
opposite to the more “complicated” formula Rg1 ◦Rg0 = Rg0g1 .

The next definition combines the concepts of subgroup and submanifold.

Definition 7.3. A (regular) Lie subgroup H of a Lie group G is a sub-
group of G that is also a submanifold of G. A Lie subgroup H of G is itself
a Lie group.

Theorem 7.4. Let H be a closed subgroup of a Lie group G. Then H is a
Lie subgroup.

Remark. The previous theorem gives a powerful tool in order to find examples
for Lie subgroups (see Example 7.7 below).

Examples of Lie Groups

Example 7.5. The simplest example for a Lie group is Rn with the usual
vector addition. Left translation by v ∈ Rn is just Lvw = v + w, for all
w ∈ Rn.

Example 7.6 (The General Linear Group GLn(R)). The general linear
group is defined by

GLn(R) = {A ∈ Mn(R) : detA 6= 0} , (7.2)

where Mn(R) denotes the space of real square matrices of order n which

can be identified with Rn
2

. The general linear group is a differentiable man-
ifold of dimension n2, since it is an open subset of Rn

2

. Indeed, consider the
continuous map

det : Rn
2

−→ R ,

A 7−→ detA .

Then, we observe that GLn(R) is the inverse image of the open set R \ {0}
under this map. Moreover, for the usual matrix multiplication and matrix in-
version, with identity element 1 ∈ GLn(R) given by the identity n×nmatrix,
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the general linear group can be made to a Lie group. Note that the smooth-
ness of the group operations is obvious, since the formulas for the product
and inverse of matrices are smooth functions of the matrix components. –
Note also that GLn(R) is obviously non-compact, since it is open.

Example 7.7 (The Lie Subgroups of GLn(R)).

a) As a direct consequence of Example 2.4, we get that the orthogonal group
O(n) is a Lie subgroup of GLn(R) with dimension n(n−1)/2. Note that,
it is also compact. Indeed, from the determinant map we see that O(n)
is closed and the boundedness follows directly from the definition of the
orthogonal group.

b) In an analogous manner, we deduce from Example 2.5 that the special
orthogonal group SO(n) is also a compact Lie subgroup of GLn(R).

Remark. Considering the case of complex matrices, we recover the same type
of matrix Lie groups as for real matrices. – More precisely, the (complex)
general linear group GLn(C) defined by

GLn(C) = {A ∈Mn(C) : detA 6= 0} (7.3)

is a Lie group of (real) dimension 2n2 with the unitary group

U(n) = {A ∈ GLn(C) : A† A = AA† = 1} , (7.4)

where A† denotes the hermitian conjugate ĀT of A ∈ GLn(C), and the
special unitary group

SU(n) = {A ∈ U(n) : detA = 1} = U(n) ∩ SL(n,C) (7.5)

as Lie subgroups. Note also that U(n) and SU(n) are both compact. We will
come back later to these matrix Lie groups. – For more details, we refer to [].

In the following, the tangent space TeG of G at the neutral element e will
play an important role for the study of geometrical aspects of Lie groups.
This becomes already clear in the next definition.

Definition 7.8. Let G be a Lie group with neutral element e. We then define
θ ∈ Ω1(G, TeG) by

θg(X) = (dLg−1)g ·X , (7.6)

where X ∈ TgG. The TeG-valued differential one-form θ is called the canon-
ical one-form or Maurer-Cartan form.

Remark. Note that the Maurer-Cartan form acting on vectors in TeG coin-
cides with the identity of TeG. More precisely, for A ∈ TeG, we have1

θe(A) = (dLe)e · A = A . (7.7)

1 The particular choice of notation for elements in TeG will become clear later.
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Next, we want to show that the Maurer-Cartan form is left invariant, i.e.,
it satisfies

(Lg)
∗θ = θ , (7.8)

for all g ∈ G. – Let X ∈ TgG and g0 ∈ G. By definition of the pull-back, we
have

(
(Lg0)

∗θ
)
g
(X) = θLg0(g)

(
(dLg0)g ·X

)
= θg0g

(
(dLg0)g ·X

)
.

Using 7.6, it follows

(
(Lg0)

∗θ
)
g
(X) = (dL(g0g)−1)g0g ·

(
(dLg0)g ·X

)
.

From the chain rule, we then conclude

(
(Lg0)

∗θ
)
g
(X) = d(L(g0g)−1 ◦ Lg0)g ·X = (dLg−1)g ·X

= θg(X) ,

showing that θ is indeed left invariant.

Proposition 7.9. Let G be a Lie group and V a vector space. Then ω ∈
Ω1(G, V ) is left invariant if and only if there exists a linear map f ∈
C∞(TeG, V ) such that

ω = f ◦ θ .
Proof. ut

In opposite to usual manifolds, there exists a special class of vector fields
on Lie groups characterized by an invariance under left translations.

Definition 7.10. Let X ∈ X (G) be a vector field on a Lie group G. Then
X is said to be left invariant if (Lg)∗X = X, that is, if

(dLg0)g ·X(g) = X(g0g) , (7.9)

for all left translations Lg0 , g0 ∈ G and all g ∈ G. We denote the vector space
of left invariant vector fields by XL(G).

Proposition 7.11. Let G be a Lie group and A ∈ TeG. Then we have that
X ∈ XL(G) if and only if θg

(
X(g)

)
= A, for all g ∈ G.

Proof. Let X ∈ XL(M) be a left invariant vector field on G. Using the defin-
ing equation 7.6 for the Maurer-Cartan form, we observe that

θg
(
X(g)

)
= (dLg−1)g ·X(g) = X(g−1g) = X(e) .

Setting X(e) = A, this shows that for all g ∈ G, it follows θg
(
X(g)

)
= A.

Conversely, let X ∈ X (M) satisfying θg
(
X(g)

)
= A, for all g ∈ G, with

A ∈ TeG. First note that because of (7.7), we must have A = X(e). By
definition of the pull-back, we get
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(
(Lg−1)∗θ

)
g

(
X(g)

)
= θe

(
(dLg−1)g ·X(g)

) (7.7)
= (dLg−1)g ·X(g) .

Since the Maurer-Cartan form θ is left invariant, we then deduce

θg
(
X(g)

)
= (dLg−1)g ·X(g) .

Using the assumption on X ∈ X (M), it follows (dLg−1)g ·X(g) = X(e), for
all g ∈ G, being equivalent to

X(g) = (dLg)e ·X(e) .

It is easy to check that this implies (dLg0)g · X(g) = X(g0g), showing that
X is a left invariant vector field. ut

The next proposition shows that every left invariant vector field corre-
sponds to an unique element of TeG.

Proposition 7.12. Let G be a Lie group and let XL(M) be the vector space
of left invariant vector fields on G. Then the map

XL(M) −→ TeG , X 7−→ X(e)

is an isomorphism of vector spaces. In particular, dimG = dimXL(M).

Proof. Let X ∈ XL(M) such that X(e) = 0. Since X is left invariant, we
have X(g) = dLg · X(e), for all g ∈ G. This implies that X(g) = 0, for all
g ∈ G, and hence the map in the proposition is injective.

For the surjectivity, let A ∈ TeG and define, for all g ∈ G,

XA(g) := (dLg)e ·A . (7.10)

Clearly, XA(e) = A. It remains to show that XA ∈ XL(M). For this purpose,
we compute

θg
(
XA(g)

)
= θg

(
(dLg)e ·A

)

=
(
(Lg)

∗θ
)
e
(A) = θe(A) = A ,

where we used (7.7) and (7.8) for the Maurer-Cartan form. From Proposition
7.11, we then deduce that XA ∈ XL(M). ut

The flow of a left invariant vector field has some interesting properties.
More precisely, we have

Proposition 7.13. Let G be a Lie group and let X ∈ XL(M) be a left in-
variant vector field. Then the flow ΓXt of X is defined on R ×G. Moreover,
the flow of X commutes with left translations, i.e., for all g ∈ G and all
t ∈ R, we have

Lg ◦ Γ
X
t = ΓXt ◦ Lg . (7.11)

In particular, we have
gΓXt (e) = ΓXt (g) . (7.12)
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Proof. We first establish (7.11) locally. – Let g̃ ∈ G. From Section 2.7 it is
well-known that there exist an open neighborhood U of g̃ and 0 < T ∈ R

such that the existence of the flow ΓXt on [−T, T ]×U can be deduced. Then
for g0 ∈ G consider the map

Lg0(U) ⊂ G −→ G , g 7−→ Lg0
(
ΓXt (g−1

0 g)
)
.

Note that the map is well-defined since g−1
0 g ∈ U . We compute, using the

chain rule and the defining equation for the flow,

∂(Lg0 ◦ Γ
X
t )

∂t
(g−1

0 g) = dLg0 ·

(
∂ΓXt
∂t

(g−1
0 g)

)

= dLg0 ·X
(
ΓXt (g−1

0 g)
)
.

Since X ∈ XL(M), we deduce

∂(Lg0 ◦ Γ
X
t )

∂t
(g−1

0 g) = X
(
Lg0 ◦ Γ

X
t (g−1

0 g)
)
.

Moreover, it is easy to see that

Lg0 ◦ Γ
X
0 (g−1

0 g) = g0Γ
X
0 (g−1

0 g) = g0(g
−1
0 g) = g ,

showing that the flow ΓXt of X exists also on [−T, T ] × Lg0(U). Note that
Lg0(U) is open.

As a consequence, we get on [−T, T ]× Lg0(U) that

ΓXt = Lg0 ◦ Γ
X
t ◦ Lg−1

0
,

implying that (7.11) holds locally on U , for all t ∈ [−T, T ].
Next, we show that ΓXt is defined on R × G. – From the first part of

the proof, we know that if the flow ΓXt of X exists on [−T, T ] × U , where
U ⊂ G open neighborhood of g̃, then the flow also exists on [−T, T ] × U ′,
where U ′ = Lg0(U) open neighborhood of g′ with g0 = g′g̃−1. This holds
for all g′ ∈ G. Hence, the flow ΓXt is defined on [−T, T ] × G. This implies
that it is also defined on R ×G. Indeed, for t̃ ∈ [−T, T ] such that 2|t̃| > |T |,
we deduce from ΓX

t̃
◦ ΓX

t̃
= ΓX

2t̃
that ΓX

2t̃
is also defined. – This proves the

proposition. ut

Definition 7.14. We define the exponential map by

exp : TeG −→ G ,

A 7−→ ΓXA

1 (e) ,

where XA, defined in (7.10), is the unique left invariant vector field generated
by A ∈ TeG and ΓXA

t its flow.
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Proposition 7.15. Let A ∈ TeG and t̃, t ∈ R. Then the exponential map
satisfies

exp(tA) = ΓXA

t (e) , (7.13)

and
exp
(
(t+ t̃)A

)
= exp(tA) exp(t̃A) . (7.14)

Remark. Equation (7.14) can be seen as a reason for calling the map of
Definition 7.14 “exponential” map. Moreover, we will show in Example 7.20
below that the exponential map for matrix Lie groups is simply given by the
exponential of matrices.

Proof. First, we fix t and introduce a new “time” variable τ ∈ R. Then, we
have

∂ΓXA

tτ

∂τ
(g) = tXA

(
ΓXA

tτ (g)
)
,

and clearly ΓXA

0 (g) = g. We deduce that ΓXA

tτ is the flow of the left invariant
vector field tXA satisfying tXA(e) = tA. On the other hand, let ΓXtA

τ be the
flow of the left invariant vector field XtA ∈ XL(M) generated by tA ∈ TeG.
From the uniqueness of the flow, we deduce that ΓXtA

τ (g) = ΓXA

tτ (g), for all
g ∈ G. In particular, for τ = 1 we get, using Definition 7.14,

ΓXA

t (e) = ΓXtA

1 (e) = exp(tA) .

This shows (7.13).
By definition of the exponential map, Equation (7.14) translates to

Γ
X(t+t̃)A

1 (e) = ΓXtA

1 (e)Γ
Xt̃A

1 (e) . (7.15)

In order to show this equality, note that we have, using (7.13),

ΓXtA

1 (e)Γ
Xt̃A

1 (e) = ΓXA

t (e)ΓXA

t̃
(e) .

Since by Proposition 7.13 the flow commutes with the left translation by
ΓXtA

1 (e), we obtain

ΓXA

t (e)ΓXA

t̃
(e)

(7.12)
= ΓXA

t̃

(
ΓXA

t (e)
)

= ΓXA

t+t̃
(e) ,

where we also used a standard formula for the composition of flows. Using
again (7.13) for the right-hand side, Equation (7.15) follows. ut

7.2 Lie Algebras

Definition 7.16. Let E be a R-vector space. We call E a Lie algebra if
there exists a bilinear map [·, ·] : E ×E −→ E which is anti-symmetric, i.e.,
[e, f ] = −[f, e], and which satisfies

[
[e, f ], g

]
+
[
[g, e], f

]
+
[
[f, g], e

]
= 0 . (7.16)

for all e, f, g ∈ E. The last condition is often called Jacobi identity.
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Example 7.17. Let M be a differentiable manifold. Then the vector space
X (M) of C∞-vector fields on M is a Lie algebra for the usual bracket oper-
ation on vector fields defined in Section 2.7.1.

Coming back to Lie groups we note the following important fact. – For
the left translation Lg : G −→ G being a diffeomorphism, we know from
(2.40) that

(Lg)∗[X,Y ] =
[
(Lg)∗X, (Lg)∗Y

]
,

for all X,Y ∈ X (G). In particular, for left invariant vector fields X,Y ∈
XL(G), we have

(Lg)∗[X,Y ] =
[
(Lg)∗X, (Lg)∗Y

]
= [X,Y ] ,

showing that the vector field [X,Y ] remains invariant under left translations,
i.e., [X,Y ] ∈ XL(G). – As a consequence, the following definition is well-
posed.

Definition 7.18. Let G be a Lie group. The vector space XL(M) of left
invariant vector fields on G together with the bracket operation on vector
fields is called the Lie algebra of the Lie group G. We denote this Lie algebra
by g.

Remark. Recalling Proposition 7.12 we see that the Lie algebra g of a Lie
group G can be identified with the tangent space TeG of G at the identity.
Thus, the previous definition can be reformulated in the following way: Let
A,B ∈ TeG and XA, XB ∈ XL(M) be the unique left invariant vector fields
generated by A, respectively B. Then the vector space TeG can be made into
a Lie algebra for the bracket operation defined by

[A,B] = [XA, XB ](e) . (7.17)

Examples of Lie Algebras

Example 7.19 (Lie algebra of Rn). Obviously, the Lie algebra of Rn can be
identified with Rn itself. The constant vector field XA(v) = A, for all v ∈ Rn,
generated by A ∈ Rn is left invariant. Indeed, we have

XA(Lv0v) = XA(v0 + v) = A = (dLv0)v ·XA(v) .

Therefore, the Lie algebra of Rn is Rn itself together with the trivial bracket
[v, w] = 0, for all v, w ∈ Rn. Moreover, the exponential map exp : Rn −→ Rn

is the identity map.

Example 7.20 (Lie algebra of GLn(R)). We show that the Lie algebra of
GLn(R), denoted by gln(R), is Mn(R). Moreover, for all A,B ∈ Mn(R), we
have

[A,B] = AB −BA .
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To see this, we recall that GLn(R) is open in Mn(R). Thus, its Lie algebra
gln(R) can be identified with Mn(R). To compute the bracket, note that for
every A ∈Mn(R) the vector field XA(P ) := PA on GLn(R) is left invariant.
Indeed, for P0 ∈ GLn(R), we have

XA(LP0P ) = XA(P0P ) = P0PA = (dLP0)P ·XA(P ) .

Note also that the Maurer-Cartan form reads as

θP
(
XA(P )

)
= (dLP−1)P ·XA(P ) = P−1XA(P ) = P−1PA .

Using the local formula (2.33) – written in terms of Jacobian matrices – for
the bracket of vector fields, we then obtain

[A,B]
(7.17)
= [XA, XB ](1) = (JXB)1 ·XA(1) − (JXA)1 ·XB(1) .

By linearity of the map XA, it follows that (JXA)1 ·P = PA. Hence, we have
(JXA)1 ·XB(1) = BA. For the bracket, we then conclude

[A,B] = AB −BA .

Next, we want to give an explicit expression for the exponential map
exp : gln(R) −→ GLn(R). – Let XA(P ) = PA, for P ∈ GLn(R), denote the
left invariant vector field generated by A ∈ Mn(R). Its corresponding flow
ΓXA

t must satisfy, for all P ∈ GLn(R) and t ∈ R,

∂ΓXA

t

∂t
(P ) = XA

(
ΓXA

t (P )
)

= ΓXA

t (P )A , ΓXA

0 (P ) = P . (7.18)

We fix P0 ∈ GLn(R) and claim that

ΓXA

t (P0) = P0 exp tA = P0

∞∑

k=1

(tA)k

k!
(7.19)

solves (7.18). Indeed, we have P0 exp 0 = P0 and

d

dt

(
P0

∞∑

k=1

(tA)k

k!

)
= P0

∞∑

k=1

tk−1

(k − 1)!
Ak = P0 exp(tA)A .

Moreover, for the exponential map, we conclude

exp(A) = ΓXA

1 (1) =

∞∑

k=1

Ak

k!
, (7.20)

showing that for matrix Lie groups the exponential map equals the usual
exponential of matrices.
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Now, we compute again the bracket of A,B ∈ gln(R) using the explicit
expression for its flows. – From the expression (2.32) for the bracket of vector
fields, we get

[A,B] = [XA, XB ](1) = lim
t→0

1

t

(
(dΓXB

t )
Γ

XB
−t (1)

·XA

(
ΓXB

−t (1)
)
−XA(1)

)
.

The linearity of the flow ΓXB

t (see (7.19)) implies

[A,B] = lim
t→0

1

t

(
XA

(
ΓXB

−t (1)
)
exp tB −XA(1)

)
.

By definition of the left invariant vector field XA, it follows

[A,B] = lim
t→0

1

t

(
ΓXB

−t (1)A exp tB −A
)
.

Using the explicit expression for the flow, we arrive at the same result as
before:

[A,B] = lim
t→0

1

t

(
∞∑

k=1

(−tB)k

k!
A

∞∑

l=1

(tB)l

l!
−A

)

= lim
t→0

1

t

((
A+ (−tB A) +A tB + . . .

)
−A

)
= AB −BA .

Example 7.21 (Lie algebra of O(n)). Recall that O(n) = g−1(0), where the
map g is explicitly given in Example 2.4. Using Proposition 2.33, it follows

T1O(n) = kerdg1 =
{
A ∈Mn(R) : AT +A = 0

}
.

As a direct consequence, the Lie algebra o(n) of O(n) is the space of skew-
symmetric n× n matrices together with the bracket as in Example 7.20.

Example 7.22 (Lie algebra of SL(n,R)). Recall from Exercise 2.5 that SL(n,R) =
g−1(0), where g : GLn(R) −→ R is given by A 7−→ detA−1. For the tangent
space of SL(n,R) at 1, we have, using Proposition 2.33,

T1SL(n,R) = ker dg1 .

Exercise 2.7 then implies that T1SL(n,R) consists of all n×n matrices with
trace zero. As a direct consequence, the Lie algebra sl(n,R) is given by the
space of all n × n matrices with trace zero together with the bracket as in
Example 7.20. – Note that we also have o(n) = so(n), where so(n) denotes
the Lie algebra of SO(n).

∗ ∗ ∗

Next, we introduce some definitions choosing a more general setting which
will be also useful in the next chapters. – Let M be a differentiable manifold
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and let ω ∈ Ω1(M, g) be a Lie algebra-valued one-form on M . Then, in a
basis E1, . . . , En of g, we write ω as

ω =

n∑

i=1

ωiEi ,

where ωi ∈ Ω1(M), for i = 1, . . . , n, are real-valued one-forms on M such
that {ωi(p)}i=1,...,n form a basis of T ∗

pM , for each p ∈M . We call {ωi}i=1,...,n

a coframe of M . Moreover, we define

ω ∧ ω =

n∑

i,j=1

ωi ∧ ωj [Ei, Ej ] , (7.21)

being an element of Ω2(M, g). – It is easy to check that ω∧ω is independent
of the choice of the basis for g.

∗ ∗ ∗

Coming back to Lie groups, there is the following important

Definition 7.23. Let G be a Lie group with finite dimensional Lie algebra
g. Moreover, let E1, . . . , En denote a basis of g. We define the structure
coefficients ckij ∈ R of g with respect to the basis E1, . . . , En by

[Ei, Ej ] =

n∑

k=1

ckij Ek . (7.22)

Proposition 7.24. Let G be a Lie group and g its Lie algebra. Then for the
Maurer-Cartan form θ ∈ Ω1(G, g) the following equation holds on G:

dθ +
1

2
θ ∧ θ = 0 . (7.23)

This equation is called Maurer-Cartan’s structure equation.

Proof. Recall that the Maurer-Cartan form θ is left invariant, i.e., L∗
g0θ = θ,

for all g0 ∈ G. Since the pull-back and the exterior differentiation commute,
it follows that L∗

g0(dθ) = d(L∗
g0θ) = dθ, showing that dθ is also left invariant.

Obviously, the same holds for θ ∧ θ. Thus, it suffices to show the Maurer-
Cartan equation at e ∈ G, i.e.,

dθ(e) +
1

2
θ ∧ θ(e) = 0 .

Let A and B ∈ g with corresponding left invariant vector fields XA and
XB ∈ XL(M) (see Proposition 7.12). We deduce from (6.50) that

dθe(A,B) = d
(
θ(XB)

)
e
· A− d

(
θ(XA)

)
e
·B − θe

(
[XA, XB ](e)

)
.
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Since by Proposition 7.11 the functions θ(XA) and θ(XB) are constant on G,
we obtain

dθe(A,B) = −θe
(
[XA, XB ](e)

)
. (7.24)

Now, let E1, . . . , En be a basis of the Lie algebra g. We then write the
constants θ(XA) and θ(XB) as θ(XA) =

∑n
i=1A

i Ei, respectively as θ(XB) =∑n
i=1B

i Ei, where Ai, Bi ∈ R. On the other hand, it is clear that θ(XA) =
XA(e) = A and θ(XB) = XB(e) = B. For the right-hand side of (7.24), we
get by linearity

θe
(
[XA, XB ](e)

)
= [A,B] =

n∑

i<j=1

(AiBj −AjBi) [Ei, Ej ] . (7.25)

Next, writing θ =
∑n

i=1 θ
iEi, where {θi}i=1,...,n is the so-called Maurer-

Cartan coframe2 on G, we observe that θi(XA) = Ai, since

θ(XA) =

n∑

i=1

θi(XA)Ei =

n∑

i=1

AiEi .

Inserting this in (7.25), we deduce

n∑

i<j=1

(AiBj −AjBi) [Ei, Ej ] =

n∑

i<j=1

θi ∧ θj(XA, XB) [Ei, Ej ] .

With (7.24) it then follows

dθ = −
n∑

i<j=1

θi ∧ θj [Ei, Ej ] .

From (7.21), we then deduce Maurer-Cartan’s structure equation. ut

Remark. In a basis {E1, . . . , En} of g Maurer-Cartan’s structure equation
becomes

dθk = −
n∑

i<j=1

ckij θ
i ∧ θj . (7.26)

Using (7.22) and writing dθ =
∑n
k=1 dθ

k Ek, this follows directly from (7.23).

∗ ∗ ∗

Exercises.

Exercise 7.25. Show that the structure coefficients are skew-symmetric, i.e.,
ckij = −ckij , and satisfy the Jacobi identity, i.e., for all i, j, l,m ∈ {1, . . . , n},

n∑

k=1

(ckij c
m
kl + ckli c

m
kj + ckjl c

m
ki) = 0 .

2 Obviously, θi ∈ Ω1(G) are left invariant, for i = 1, . . . , n.
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Exercise 7.26 (Lie algebra of SU(n)). With the help of Example 7.21
and 7.22 show that the Lie algebra su(n) of the special unitary group SU(2)
defined in (7.5) is given by

su(n) =
{
A ∈ Mn(C) : A† +A = 0 and Tr(A) = 0

}
,

with bracket [A,B] = AB −BA, for A,B ∈ su(n).

7.3 Lie Groups Acting on Manifolds

Definition 7.27. Let G be a Lie group and M a differentiable manifold. We
say that G is a Lie transformation group on M or that G is a (right)
action on M if there exists a differentiable map

A : G×M −→M

such that A(g, ·) : M −→ M is a diffeomorphism, for all g ∈ G, and such
that A(gg̃, p) = A

(
g̃,A(g, p)

)
, for all g, g̃ ∈ G, p ∈ M . Moreover, a (left)

action must satisfy A(g̃g, p) = A
(
g̃,A(g, p)

)
.

Remark. For a right action, we will often write pg instead of A(g, p) and Rg :
M −→ M for the map A(g, ·). Note also that Re is the identity transformation
on M , i.e., Re = idM . In fact, since by definition we have Rep = pe = p(ee) =
(pe)e = Re(Rep), it follows that

p = (Re)
−1Re(Rep) = Rep .

Definition 7.28. Let G be a right action on a manifold M . We say that G
acts freely on M if Rgp = p, for some p ∈ M , implies that g = e. In other
words, the action G is free if e ∈ G is the only element in G having a fixed
point in M . Moreover, we say that G acts effectively on M if Rgp = p, for
all p ∈M , implies that g = e.

Next, we introduce a particular vector field on M which will be important
for Section 9.92. – Let G act on M on the right. Then we assign to each A ∈ g

the vector field A∗ ∈ X (M) defined by

A∗(p) =
d

dt

∣∣∣∣
t=0

Rexp tA p =
d

dt

∣∣∣∣
t=0

p exp tA , (7.27)

for all p ∈ M and t ∈ R. – Recall Definition 7.14 for the exponential map.
The vector field A∗ ∈ X (M) can also be defined in the following manner:

For every p ∈ M consider the map

σp : G −→ M ,

g 7−→ pg . (7.28)
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Obviously, we have σp = A(·, p). The differential of σp at e – which we will
simply denote by dσp – applied to the left invariant vector field XA ∈ XL(G)
generated by A ∈ g reads as

dσp ·XA(e) = dσp ·
d

dt

∣∣∣∣
t=0

ΓXA

t (e) =
d

dt

∣∣∣∣
t=0

p ΓXA

t (e)

=
d

dt

∣∣∣∣
t=0

p exp(tA) =
d

dt

∣∣∣∣
t=0

Rexp tAp = A∗(p) . (7.29)

Next, we define a map from g into X (M), also denoted by σ, as follows:

σ : g −→ X (M) ,

A 7−→ A∗ . (7.30)

Proposition 7.29. Let a Lie group G act on M on the right. Then, the map
σ : g −→ X (M) is a Lie algebra homomorphism. Moreover, if G acts freely
on M , then σ(A) never vanishes on M , whenever A ∈ g is non-zero.

Proof. In this proof, we will use the notation at = exp tA ∈ G and note that
the linearity is clear since σ(A)p = A∗(p) = dσp · A by (7.29). – First, we
determine the flow corresponding to A∗ ∈ X (M). We observe that

d

dt

∣∣∣∣
t=t0

Rat
p =

d

dt

∣∣∣∣
t=0

Rat+t0
p .

As a consequence of Definition 7.27 and (7.14), we also have that

Rat+t0
p = p exp

(
(t+ t0)A

)
= p
(
exp(t0A) exp(tA)

)
= Rat

(p at0) .

This gives, using (7.27),

d

dt

∣∣∣∣
t=t0

Rat
p =

d

dt

∣∣∣∣
t=0

Rat
(p at0) = A∗(p at0) = A∗(Rat0

p) .

It follows that Rat
: M −→M is the flow of A∗ (note also that Ra0p = p).

Now, we show that the map σ commutes with the brackets of the Lie
algebras g and X (M) (see (7.17) and Example 7.17). – Let A,B ∈ g and
A∗ = σ(A), B∗ = σ(B). Using formula (2.32) for the bracket of vector fields
and the fact that Rbt

is the flow of B∗, we obtain that

[A∗, B∗](p) = lim
t→0

1

t

((
dRbt

)
Rb

−t
p
·A∗

(
Rb−t

p
)
−A∗(p)

)
. (7.31)

Using (7.29), we observe that

dRbt
·A∗(Rb−t

p) = dRbt
·A∗(pb−t)

= dRbt
· dσpb−t

·XA(e) = d(Rbt
◦ σpb−t

)e ·XA(e) .
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Note that in terms of conjugation cb−t
: G −→ G defined in Example 7.30

below, we can write

Rbt
◦ σpb−t

(g) = p b−tgbt = σp ◦ cb−t
(g) .

With the adjoint action defined in (7.37) below, we then arrive at

dRbt
·A∗(Rb−t

p) = d(σp ◦ cb−t
)e ·XA(e)

= dσp · (dcb−t
)e ·XA(e) = dσp ·Adb−t

(
XA(e)

)
.

(7.32)

Inserting this into (7.31), we deduce

[A∗, B∗](p) = lim
t→0

1

t

(
dσp ·

(
Adb−t

(
XA(e)

)
−XA(e)

))
.

Next, we compute the following limit:

lim
t→0

1

t

(
Adb−t

(
XA(e)

)
−XA(e)

)
= lim

t→0

1

t

(
dRbt

· dLb−t
·XA(e) −XA(e)

)

= lim
t→0

1

t

(
dRbt

·XA(b−t) −XA(e)
)

= [XA, XB ](e) ,

where we used that XA is left invariant and that XB has the flow Rbt
. (The

last statement is a direct consequence of (7.34) below.) From this we finally
deduce that

[
σ(A), σ(B)

]
(p) = [A∗, B∗](p)

= dσp ·
(

lim
t→0

1

t

(
Adb−t

(
XA(e)

)
−XA(e)

))

= dσp · [XA, XB ](e)
(7.29)
= σ

(
[A,B]

)
(p) .

Hence, we have shown that σ : g −→ X (M) is a Lie algebra homomorphism.
To prove the last assertion of the proposition, we assume that σ(A) van-

ishes at some point p0 ∈M and claim that this implies

Rat
p0 = p0 ,

for all t ∈ R. – Since Rat
: M −→M is the flow of the vector field A∗ ∈ X (M),

we have
d

dt

∣∣∣∣
t=0

Rat
p0 = A∗(Ra0p0) = A∗(p0) = 0 .

Solving the resulting ordinary differential equation with this initial data in a
chart the claim follows directly. Thus, if G acts freely on M , we conclude that
at = e, for all t ∈ R, and moreover A∗ vanishes on M as direct consequence
of (7.27). ut



192 7 An Introduction to Lie Groups

∗ ∗ ∗

We consider the particular case of a Lie group acting on itself. So, let G act
on G on the right. Then for each A ∈ g the vector field A∗ ∈ X (G) is given
by

A∗(g) =
d

dt

∣∣∣∣
t=0

Rexp tA g =
d

dt

∣∣∣∣
t=0

g exp tA . (7.33)

Now, we claim that
XA(g) = A∗(g) , (7.34)

where XA ∈ XL(G) defined in (7.10) is the unique left invariant vector field
generated by A. In order to prove the claim, we compute

XA(g) = (dLg)e ·A = (dLg)e ·XA(e) = (dLg)e ·
d

dt

∣∣∣∣
t=0

ΓXA

t (e)

=
d

dt

∣∣∣∣
t=0

g ΓXA

t (e) =
d

dt

∣∣∣∣
t=0

g exp(tA)
(7.33)
= A∗(g) .

Remark. Note that this calculation is completely similar to the one in (7.29),
which comes from the fact that the map defined in (7.28) translates to left
translation onG in the particular case ofG acting on itself. We also emphasize
that we need a right action of G on itself in order to obtain a left invariant
vector field.

Example 7.30. There is a particular (left) action of a Lie group G on itself.
– Let g0 ∈ G and define the conjugation cg0 by g0 to be the map

cg0 : G −→ G ,

g 7−→ Lg0 ◦Rg−1
0

(g) = g0gg
−1
0 . (7.35)

Clearly, the conjugation is a homomorphism. Next, we consider the map

c : G×G −→ G ,

(g0, g) 7−→ cg0(g) (7.36)

being a left action of G on itself in the sense of Definition 7.27. Noting that
cg0(e) = e and restricting the tangent map dcg0 to TeG – which we identify
with the Lie algebra g – we obtain the following (left) action of G on the Lie
algebra g:

Ad : G× g −→ g ,

(g0, A) 7−→ (dcg0)e · A . (7.37)

This is the so-called adjoint action and we will also write Adg0 : g −→ g

for the diffeomorphism (dcg0 )e.
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∗ ∗ ∗

Exercises.

Exercise 7.31. Show that in the case of a matrix Lie group the diffeomor-
phism AdP0 : g −→ g is simply given by

AdP0(A) = P0AP
−1
0 . (7.38)





8 Distributions and Frobenius’ Theorem

Consider a vector field X on a manifold M and assume that X vanishes
nowhere. The map

p 7−→ span{X(p)}

assigns to each point p ∈ M a one-dimensional subspace of TpM . Then the
integral curves of X – which always exist (locally) – are one-dimensional
submanifolds of M being everywhere tangent to these given subspaces of
TpM .

Instead of an one-dimensional subspace we now assign a k-dimensional
subspace of TpM to each point p ∈ M . The following question arises: Is it
possible to find k-dimensional submanifolds of M being everywhere tangent
to these subspaces? Note that, in general, such submanifolds do not exist,
even locally. In Section 8.2 we will give necessary and sufficient criteria guar-
anteeing the existence of such submanifolds. – We begin with precisions in
the following section.

8.1 Distributions on Manifolds

Let Mn be an n-dimensional differentiable manifold. From a “set” point of
view, we define

Gk(TM) =
⋃

p∈M

Gk(TpM) , (8.1)

where Gk(TpM) denotes the set of k-dimensional subspaces of TpM . In Ap-
pendix 9.92 we show that Gk(TM) can be made to a differentiable manifold,
called the Grassmannian bundle. For D(p) ∈ Gk(TpM), the projection
map to the base point reads as

π : Gk(M) −→ M ,

D(p) 7−→ p . (8.2)

Note that the following concept appears at various places in previous chap-
ters: Starting with some bundle, we construct a natural object corresponding
to the bundle – called section – which is equivalently characterized by some
particular local representation. For example, take the cotangent bundle and
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the differential one-forms. This concept also applies to the Grassmannian
bundle. More precisely, we have

Definition 8.1. Let Mn be a differentiable manifold of dimension n and
k ≤ n. A k-dimensional distribution on M is a map

D : M −→ Gk(M)

such that π ◦ D = idM , and for all local charts (U, x) on Mn there exists a
function D̃ ∈ C∞(U,Gk(R

n)) satisfying

Φkp
(
D(p)

)
= D̃(p) (8.3)

for all p ∈ U , where Φkp : Gk(TpM) −→ Gk(R
n) is defined by

Φkp

(
span

{
n∑

i=1

ai1
∂

∂xi
(p), . . . ,

n∑

i=1

aik
∂

∂xi
(p)

})

= span

{
n∑

i=1

ai1 ei, . . . ,

n∑

i=1

aik ei

}

with {ei}i=1,...,n the canonical basis of Rn and aij ∈ R, for j = 1 . . . , k.

Lemma 8.2. Let D be a k-dimensional distribution on M . Then, for all
p ∈M , there exists U ⊂M open containing p, and

(i) smooth, linearly independent one-forms ωk+1, . . . , ωn on U such that

D(q) =

n⋂

j=k+1

ker ωj(q) , (8.4)

for q ∈ U .
(ii) smooth, linearly independent vector fields X1, . . . , Xk on U such that

span
{
X1(q), . . . , Xk(q)

}
= D(q) , (8.5)

for q ∈ U .

Proof. Let p ∈ Mn. We choose a chart (U, x) about p such that the k-
dimensional distribution at p can be written as

D(p) = span

{
∂

∂x1
(p), . . . ,

∂

∂xk
(p)

}
⊂ TpM ,

and thus by definition

D̃(p) = span{e1, . . . , ek} ⊂ Rn .
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Let ιD̃(p) : D̃(p) ↪→ Rn denote the canonical inclusion and observe that

ι∗
D̃(p)

e1 ∧ . . . ∧ ek 6= 0. By continuity of D̃ : U −→ Gk(R
n), we deduce that

there exists a neighborhood V ⊂ U of p such that ι∗
D̃(q)

e1, . . . , ι∗
D̃(q)

ek are

linearly independent in V , i.e.,

ι∗
D̃(q)

e1 ∧ . . . ∧ ek = ι∗
D̃(q)

e1 ∧ . . . ∧ ι∗
D̃(q)

ek 6= 0 ,

for all q ∈ V . Since dim D̃(q) = k, it follows that {ι∗
D̃(q)

ei}i=1,...,k forms a basis

for the dual
(
D̃(q)

)∗
of D̃(q) ⊂ Rn. Hence, we can write, for j = k+1, . . . , n,

ι∗
D̃(q)

ej =

k∑

i=1

λji (q) ι
∗
D̃(q)

ei . (8.6)

Note that since D̃ ∈ C∞(V,Gk(R
n)), we clearly have that λji ∈ C∞(V,R).

By linearity of the pull-back, (8.6) can be written as

ι∗
D̃(q)

(
ej −

k∑

i=1

λji (q) e
i

)
= 0 .

Recalling that the last expression is an element of
(
D̃(q)

)∗
, we obtain that

n⋂

j=k+1

ker

(
ej −

k∑

i=1

λji (q) e
i

)
⊂ D̃(q) . (8.7)

Moreover, it is not difficult to check that

dim

n⋂

j=k+1

ker

(
ej −

k∑

i=1

λji (q) e
i

)
= n− (n− k) = k .

Hence, we deduce from (8.7) that

D̃(q) =

n⋂

j=k+1

ker

(
ej −

k∑

i=1

λji (q) e
i

)
,

for all q ∈ V . As a direct consequence, it then follows that

D(q) =

n⋂

j=k+1

ker

(
dxj(q) −

k∑

i=1

λji (q) dx
i(q)

)
, (8.8)

for all q ∈ V . Defining smooth, linearly independent one-forms ωj , for j =
k + 1, . . . , n, on V by
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ωj = dxj −
k∑

i=1

λji dx
i , (8.9)

we see that the first part of the proposition is proved.
For the second part, we define smooth vector fields Xi, i = 1, . . . , k, on V

by

Xi =
∂

∂xi
+

n∑

j=k+1

λji
∂

∂xj
. (8.10)

Note that since λji ∈ C∞(V,R) (see (8.6)) these vector fields are linearly
independent. Moreover, we have, using (8.9), for j = k + 1, . . . , n, that

ωj(Xl) = dxj −
k∑

i=1

λji dx
i

(
∂

∂xl
+

n∑

m=k+1

λml
∂

∂xm

)

=
n∑

m=k+1

λml dx
j

(
∂

∂xm

)
−

k∑

i=1

λji dx
i

(
∂

∂xl

)

= λjl − λjl = 0 .

This implies that, for q ∈ V and i = 1, . . . , k,

Xi(q) ∈
n⋂

j=k+1

kerωj(q) = D(q) ,

showing the second part of the proposition. ut

Remark. Since D must be a solution of the system of partial differential
equations defined in (8.4) by the vanishing of a collection of differential forms,
it is also often called differential system.

In the next section, it will be useful to work not only with the one-forms
ωk+1, . . . , ωn of the previous lemma but with all differential forms having a
vanishing restriction to D. More precisely, we associate to each k-dimensional
distribution D the set I(D) ⊂ Ω(M) defined by

I(D) =
{
ω ∈ Ω(M) : ι∗D(p)ω(p) = 0 , ∀p ∈M

}
, (8.11)

i.e., all differential forms in the exterior algebra Ω(M) whose restriction to D
vanishes for all p ∈ M . The set I(D) is called the annihilator 1 of the distri-
bution D. It is easy to verify that I(D) is locally generated by ωk+1, . . . , ωn.
This means that every ω ∈ I(D) can be expressed on U as

1 Note that I(D) is an ideal of the exterior algebra Ω(M), i.e., if ω1, ω2 ∈ I(D),
then ω1 + ω2 ∈ I(D); and if ω ∈ I(D), ω̃ ∈ Ω(M), then ω ∧ ω̃ ∈ I(D).
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ω =
n∑

i=k+1

θi ∧ ωi , (8.12)

for some smooth differential forms θi on U . Moreover, we say that the an-
nihilator is a differential ideal if whenever ω ∈ I(D), then also dω ∈ I(D).
This will be often written as dI(D) ⊂ I(D) ⊂.

8.2 Frobenius’ Theorem

In this section, we will give an answer to the question at the beginning of
this chapter. This will be first done in the language of vector fields.

Vector Field Version of Frobenius’ Theorem

Definition 8.3. Let D be a k-dimensional distribution on a n-dimensional
manifold Mn. A k-dimensional submanifold Nk of Mn is called an integral
manifold of D if for every p ∈ Nk, we have

(dιN )p(TpN
k) = D(p) , (8.13)

where ιN : Nk ↪→ Mn is the inclusion map. Moreover, we say that the dis-
tribution D on M is integrable if an integral manifold passes through each
point p ∈M . These integral manifolds will be denoted by N(p), p ∈ M .

We want to find out when a distribution is integrable. – For this purpose,
we consider vector fields which belong to a distribution D. More precisely, we
say that a vector field X ∈ X (M) belongs to D if X(p) ∈ D(p), for all p ∈M .
We then write X ∈ D.

In a first step, we suppose that the distribution D is integrable with
integral manifolds N(p), p ∈ M . Let X,Y ∈ D be two vector fields belonging
to D. Since (dιN(p))q : TqN(p) −→ D(q) is an isomorphism for every q ∈
N(p) by assumption, there exist smooth unique vector fields X̄ and Ȳ on
N(p) such that X(q) = (dιN(p))q · X̄(q) and Y (q) = (dιN(p))q · Ȳ (q), for all
q ∈ N(p). (Note that the smoothness of X̄ and Ȳ is not difficult to show.)
From Proposition 2.55, we deduce that

(dιN(p))q · [X̄, Ȳ ](q) = [X,Y ](q)

Since [X̄, Ȳ ](q) ∈ TqN(p), we conclude that [X,Y ](q) ∈ D(q), for all q ∈
N(p). – This suggests to introduce the following concept:

Definition 8.4. Let X,Y ∈ D. The k-dimensional distribution D on M is
then said to be involutive if the bracket of X and Y also belongs to D, i.e.,
if [X,Y ] ∈ D.
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Using this terminology, we have previously shown that if a distribution
D is integrable then it is involutive. – It turns out that the converse is also
true.

Theorem 8.5 (Frobenius’ Theorem (Vector Field Version)). Let D be
a k-dimensional distribution on a manifold M . Assume that D is involutive.
Then the distribution D is integrable.

More precisely, the following holds: For every point p ∈ M , there exists
a chart (U, x) about p, an interval I ⊂ R around 0, such that x(p) = 0,
x(U) = In, and for any ak+1, . . . , an ∈ I, the slice

Nak+1,...,an
(p) :=

{
q ∈ U : xk+1(q) = ak+1, . . . , xn(q) = an

}
(8.14)

is an integral manifold of D. Moreover, any connected integral manifold of D
contained in U is of this form.

Proof. The statement being a local one, we can work in Rn and choose p =
0 ∈ Rn. Moreover, we can assume that D(0) ⊂ T0Rn is spanned by

{
∂

∂x1
(0), . . . ,

∂

∂xk
(0)

}
,

where (x1, . . . , xn) denote the standard coordinate functions on Rn.
Let π : Rn −→ Rk be the canonical projection. Then, we see that

dπ|D(0) : D(0) −→ Rk

is an isomorphism. By continuity, the tangent map dπ remains an isomor-
phism on D(q), for all q ∈ Rn in some neighborhood Ũ of the point 0 ∈ Rn.
It follows that there are unique vector fields X1, . . . , Xk on Ũ belonging to
D such that, for i = 1, . . . , k,

(dπ)q ·Xi(q) =
∂

∂xi

(
π(q)

)
.

Using Proposition 2.55, we then obtain

(dπ)q · [Xi, Xj ](q) =

[
∂

∂xi
,
∂

∂xj

] (
π(q)

)
. (8.15)

The right-hand side vanishes as a consequence of the “Double” Straightening
Theorem 2.58 applied to π(Ũ) ⊂ Rk. Since D was assumed to be involutive,
we have [Xi, Xj ] ∈ D, thus [Xi, Xj ](q) = 0, for all q ∈ Ũ , using (8.15).
According to a slight generalization of the “double” straightening theorem ,
there exists a chart (U, y) about 0 ∈ Rn with y(U) = In and

Xi(q) =
∂

∂yi
(q) , q ∈ U , (8.16)
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for some interval I ⊂ R around 0 and i = 1, . . . , k. – Now, it is not difficult
to see that the slices

{
q ∈ U : yk+1(q) = ak+1, . . . , yn(q) = an

}

are integral manifolds of D, since their tangent spaces are spanned by (8.16).
Next, we show that any connected integral manifold contained in U is of

the form (8.14). For this purpose, suppose N(p) is an integral manifold of D
contained in U . For X(q) ∈ TqN(p) and i = k + 1, . . . , n, we then have

d(xi ◦ ιN(p))q ·X(q) = dxi
(
(dιN(p))q ·X(q)

)
= 0 ,

using the fact that by assumption (dιN(p))q · X(q) is an element of D(q),
which is spanned by the vectors in (8.16). Thus d(xi ◦ ιN(p))q = 0 for every
q ∈ N(p), implying that xi ◦ ιN is constant on the connected manifold N(p).
In other words, we have N(p) = Nak+1,...,an

(p), for some ak+1, . . . , an ∈ I . –
This completes the proof of Frobenius’ theorem in the vector field version.

ut

Differential Form Version of Frobenius’ Theorem

Next, we reformulate Frobenius’ theorem in terms of differential forms. – For
this purpose, we first translate Definition 8.3 in the language of differential
forms.

Proposition 8.6. Let D be a k-dimensional distribution on a manifold M .
Then D is involutive if and only if the annihilator I(D) is a differential ideal.

Proof. From the proof of Lemma 8.2, we know that the smooth, linearly
independent one-forms ωk+1, . . . , ωn on U defined in (8.9) belong to I(D). We
complete ωk+1, . . . , ωn by adding ω1, . . . , ωk in such a way that {ωj}j=1,...,n

form a coframe on U , i.e., {ω1(p), . . . , ωn(p)} is a basis for T ∗
pM , for all p ∈ U .

Moreover, we denote by {X1(p), . . . , Xn(p)} the dual of {ω1(p), . . . , ωn(p)}.
It is easy to check that X1, . . . , Xn are smooth, linearly independent vector
fields on U . Note that ωj(p)

(
Xi(p)

)
= δji , for all p ∈ U . In particular, this

implies that
ωj(p)

(
Xi(p)

)
= 0 , (8.17)

for all j = k+ 1, . . . , n and i = 1, . . . , k. From the second part of Lemma 8.2,
we then deduce that

span
{
X1(p), . . . , Xk(p)

}
= D(p) , (8.18)

for all p ∈ U .
Next, we observe that because of (8.12) it is sufficient to check the

condition dI(D) ⊂ I(D) on ωk+1, . . . , ωn, since dωj ∈ I(D) implies that
θi ∧ dωj ∈ I(D), for all differential forms θi on U .
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The exterior derivative of the one-forms ωk+1, . . . , ωn on U can be com-
puted using the formula (6.50). More precisely, for j = k + 1, . . . , n and
l,m = 1, . . . , n we have

dωj(Xl, Xm) = d
(
ωj(Xm)

)
·Xl − d

(
ωj(Xl)

)
·Xm − ωj

(
[Xl, Xm]

)
.

If 1 ≤ l,m ≤ k, it follows from (8.17) that the first two terms on the right-
hand side vanish, hence

dωj(Xl, Xm) = −ωj
(
[Xl, Xm]

)
. (8.19)

The assertion then follows from the last equation. In fact, assuming that
D is involutive, i.e., [Xl, Xm] ∈ D, the right-hand side of (8.19) vanishes. This
shows that dωj(Xl, Xm) = 0, for l,m = 1, . . . , k, and therefore dωj ∈ I(D).

Conversely, assume that dωj ∈ I(D), for j = k + 1, . . . , n. Then the left-
hand side of (8.19) vanishes, showing that ωj

(
[Xl, Xm]

)
= 0, for 1 ≤ l,m ≤ k.

This implies that (see (8.18))

[Xl, Xm](p) ∈ span
{
X1(p), . . . , Xk(p)

}

for all p ∈ U , which is equivalent to

[Xl, Xm] =

k∑

i=1

CklmXi ,

for some Cklm ∈ C∞(U,R), implying that the distribution D is involutive. ut

Next, we establish that the condition dI(D) ⊂ I(D) can be expressed
differently.

Proposition 8.7. Let I(D) be the annihilator of a distribution D on M be-
ing locally generated by the smooth, linearly independent one-forms ωk+1, . . . , ωn

on U . Moreover, let ω be the smooth differential (n − k)-form on U defined
by ω = ωk+1 ∧ . . . ∧ ωn. Then the following statements are equivalent:

(i) the annihilator I(D) is a differential ideal, i.e., dI(D) ⊂ I(D);
(ii) the exterior derivative of the generating one-forms ωk+1, . . . , ωn equals

dωj =

n∑

i=k+1

ωji ∧ ω
i ,

for some differential one-form ωji on U , j = k + 1 . . . , n;
(iii) ω ∧ dωj = 0, for j = k + 1 . . . , n;
(iv) and dω = θ ∧ ω, for some differential one-form θ on U .
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Proof. For (i) implies (ii): By assumption, we have that dωj ∈ I(D), for
j = k+1 . . . , n. Thus the representation (8.12) holds for dωj . Setting θi = ωji
we obtain (ii).

For (i) implies (iii): Obviously, it follows from (i) that ω ∧ dωj = 0.
For (i) implies (iv): This implication can easily be checked.
For (ii) implies (iii): We simply insert (ii) in ω ∧ dωi obtaining that the

last expression vanishes.
For (iv) implies (iii): Note that (iv) means that

dω =

n∑

i=k+1

(−1)idωi ∧ ωk+1 ∧ . . . ∧ ω̂i ∧ . . . ∧ ωn = θ ∧ ωk+1 ∧ . . . ∧ ωn .

Multiplying with ωi both sides of the last equation, we obtain (iii).
For (iii) implies (ii): As in the proof of Proposition 8.6, let {ω1, . . . , ωn}

be a coframe on U such that ωk+1, . . . , ωn locally generate the annihilator
I(D). Thus, for dωh, h = 1, . . . , n, we have the following representation in
the above coframe:

dωh =

n∑

l<m=1

fhlm ω
l ∧ ωm , (8.20)

where fhlm ∈ C∞(U,R). This implies, for j = k + 1, . . . , n, using (iii),

dωj ∧ω =

n∑

l<m=1

f jlm ω
l∧ωm∧ω =

k∑

l<m=1

f jlm ω
l∧ωm ∧ωk+1 ∧ . . .∧ωn = 0 .

Hence, the functions in (8.20) satisfy f ilm = 0, for j = k + 1, . . . , n and
1 ≤ l,m ≤ k, showing that (8.20) can be written as in (ii).

For (iii) implies (i): This implication is straightforward. ut

We collect the previous results concerning the annihilator of a distribution
in the following version of Frobenius’ theorem.

Theorem 8.8 (Frobenius’ Theorem (Differential Form Version)).
Let D be a k-dimensional distribution on a manifold M with annihilator
I(D). Then D is integrable if and only if one of the following equivalent
statements hold:

(i) We have dI(D) ⊂ I(D).
(ii) For every point p ∈ M , there exists a neighborhood U of p and smooth,

linearly independent one-forms ωk+1, . . . , ωn on U which generate locally
I(D) and such that

dωj =

n∑

i=k+1

ωji ∧ ω
i , (8.21)

for some smooth one-forms ωji on U .
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(iii) Let ω = ωk+1 ∧ . . . ∧ ωn be a smooth (n− k)-form on U . Then, we have

dωj ∧ ω = 0 , (8.22)

for j = k + 1, . . . , n.
(iv) Let ω = ωk+1 ∧ . . . ∧ ωn be a smooth (n− k)-form on U . Then we have

dω = θ ∧ ω , (8.23)

for some smooth one-form θ on U .

Example 8.9. We consider the case of a 2-dimensional distribution D on R3.
– Assume that the annihilator I(D) is locally generated by the smooth one-
form ω = x1 dx

2 + dx3 on U ⊂ R3 open. It follows that

D(p) = ker (x1 dx
2 + dx3)p ,

for all p ∈ U . Since dω = dx1 ∧ dx2, we deduce that

dω ∧ ω = (dx1 ∧ dx2) ∧ (x1 dx
2 + dx3) = dx1 ∧ dx2 ∧ dx3 .

The last expression being different from zero, condition (iii) of Frobenius’
Theorem 8.8 implies that D is not integrable.

Application of Frobenius’ Theorem

As an application of Frobenius’ theorem, we discuss the so-called coframe
equivalence problem: Given a Lie group and a manifold of same dimension we
want to determine when their coframes can be mapped to each other. For a
more general setting of the equivalence problem of coframes we refer to [].

Theorem 8.10. Let G be an n-dimensional Lie group whose Lie algebra g

has structure coefficients ckij ∈ R with respect to a basis {E1, . . . , En} of g,

and let {θ1, . . . , θn} denote the Maurer-Cartan coframe. On the other hand,
let {θ̄1, . . . , θ̄n} be a coframe on an n-dimensional manifold M satisfying, for
k = 1, . . . , n,

dθ̄k = −
n∑

i<j=1

ckij θ̄
i ∧ θ̄j ,

where ckij are the above structure coefficients. Then, for every p ∈ M , there
exists an open neighborhood U ⊂M of p and a local diffeomorphism ϕ : U −→
G with ϕ(p) = e such that the coframe on M is mapped to the Maurer-Cartan
coframe on G, i.e.,

ϕ∗θi = θ̄i , (8.24)

for i = 1, . . . , n.
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Remark. Suppose that there exist two such diffeomorphisms ϕ1 and ϕ2 sat-
isfying (8.24). Then, we observe that (ϕ−1

2 )∗θ̄i = θi, for i = 1, . . . , n. Thus,
inserting (8.24) for ϕ1, it follows

θi = (ϕ−1
2 )∗θ̄i = (ϕ−1

2 )∗
(
ϕ∗

1θ
i
)

= (ϕ1 ◦ ϕ
−1
2 )∗θi .

Since θi ∈ Ω1(G) are left invariant, we then deduce that ϕ1 ◦ ϕ
−1
2 = Lg , for

some g ∈ G, showing that the two local diffeomorphisms ϕ1 and ϕ2 differ by
a left translation on the Lie group on G.

Proof. Let p ∈ M with open neighborhood U ⊂ M . Consider the canonical
projections

π1 : U ×G −→ U and π2 : U ×G −→ G ,

where U ×G is an 2n-dimensional manifold and introduce ϑ̄j = π∗
1 θ̄
j , ϑi =

π∗
2θ
i being one-forms on U ×G, for i, j = 1, . . . , n.
Next, we claim that {ϑ̄1, . . . , ϑ̄n, ϑ1, . . . , ϑn} is a coframe on U ×G. – In

order to show the claim, let (p0, g0) ∈ U ×G and consider the maps

σ1 : U −→ U ×G , σ2 : G −→ U ×G ,

q 7−→ (q, g0) , g 7−→ (p0, g) .

We then see that

π1 ◦ σ1 = idU , π1 ◦ σ2 = p0 , π2 ◦ σ2 = idG , π2 ◦ σ1 = g0 .

This implies that

σ∗
1 ϑ̄

j = σ∗
1(π∗

1 θ̄
j) = (π1 ◦ σ1)

∗θ̄j = θ̄j ,

and
σ∗

1ϑ
i = σ∗

1(π∗
2θ
i) = (π2 ◦ σ1)

∗θi = 0 .

Similarly, we compute σ∗
2 ϑ̄

j and σ∗
2ϑ

i.
Now, assume that there exist λ1, . . . , λn ∈ R and µ1, . . . , µn ∈ R such

that
n∑

j=1

λj ϑ̄
j(p0, g0) +

n∑

i=1

µi ϑ
i(p0, g0) = 0 . (8.25)

Taking the pull-back by σ1 of the left-hand side, leads to

n∑

j=1

λj
(
σ∗

1 ϑ̄
j
)
(p0) +

n∑

i=1

µi
(
σ∗

1ϑ
i
)
(p0) =

n∑

j=1

λj θ̄
j(p0) = 0 .

Since {θ̄1(p0), . . . , θ̄
n(p0)} are linearly independent by assumption, we con-

clude that λj = 0, for j = 1, . . . , n. On the other-hand, taking the pull-back
by σ2 of the left-hand side of (8.25), we deduce that
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n∑

j=1

λj
(
σ∗

2 ϑ̄
j
)
(g0) +

n∑

i=1

µi
(
σ∗

2ϑ
i
)
(g0) =

n∑

i=1

µi θ
i(g0) = 0 .

Hence, it follows by assumption that µi = 0, for i = 1, . . . , n. In summary,
we get that

{
ϑ̄1(p0, g0), . . . , ϑ̄

n(p0, g0), ϑ
1(p0, g0), . . . , ϑ

n(p0, g0)
}

is a basis of T ∗
(p0,g0)

U × G. Since, this holds for every (p0, g0) ∈ U × G the
claim follows.

In order to apply Frobenius’ theorem, we first observe that ϑ̄1−ϑ1, . . . , ϑ̄n−
ϑn are smooth, linearly independent one-forms on U × G and consider the
n-dimensional distribution D on U ×G defined by (see Lemma 8.2)

D(q, g) =

n⋂

i=1

ker
(
ϑ̄i(q, g) − ϑi(q, g)

)
, (8.26)

where (q, g) ∈ U × G. We want to show that D is integrable. Applying
Frobenius’ Theorem 8.8 this can be done by establishing that the annihi-
lator I(D) of D generated by ϑ̄1 − ϑ1, . . . , ϑ̄n − ϑn is a differential ideal, i.e.,
dI(D) ⊂ I(D). – For this purpose, note that by assumption we have, for
k = 1, . . . , n,

dϑ̄k = d(π∗
1 θ̄
k) = π∗

1(dθ̄k) = π∗
1




n∑

i<j=1

ckij θ̄
i ∧ θ̄j




=
n∑

i<j=1

ckij π
∗
1 θ̄
i ∧ π∗

1 θ̄
j =

n∑

i<j=1

ckij ϑ̄
i ∧ ϑ̄j .

(8.27)

Similarly, we have that

dϑk =

n∑

i<j=1

ckij ϑ
i ∧ ϑj . (8.28)

From (8.27) and (8.28), it then follows that

d(ϑ̄k − ϑk) =
n∑

i<j=1

ckij(ϑ̄
i ∧ ϑ̄j − ϑi ∧ ϑj) .

The right-hand side can be written differently and we obtain

d(ϑ̄k − ϑk) =

n∑

i<j=1

ckij
(
(ϑ̄i − ϑi) ∧ ϑ̄j + ϑi ∧ (ϑ̄j − ϑj)

)
.
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Since I(D) is generated by ϑ̄1−ϑ1, . . . , ϑ̄n−ϑn, we conclude that d(ϑ̄k−ϑk) ∈
I(D), for k = 1, . . . , n. Hence, the n-dimensional distribution D on U ×G is
integrable. Considering (p, e) ∈ U × G, this means by definition that there
exists a n-dimensional submanifold Nn of U ×G passing through (p, e) such
that

(dιN )(q,g)(T(q,g)N
n) = D(q, g) , (8.29)

for all (q, g) ∈ Nn. Note that in order to simplify the notation we write Nn

instead of Nn(p, e).
Next, let π̃1 and π̃2 be the restrictions of π1 and π2 to Nn, i.e.,

π̃1 = π1 ◦ ιN : Nn −→ U and π̃2 = π2 ◦ ιN : Nn −→ G .

It is left as an exercise to show that

(dπ̃1)(p,e) : T(p,e)N
n −→ TpU and (dπ̃2)(p,e) : T(p,e)N

n −→ TeG

are isomorphisms. Note that the statement is a direct consequence of the
fact that Θi := ι∗Nϑ

i = π̃∗
2θi respectively, Θ̄i := ι∗N ϑ̄

i = π̃∗
1 θ̄i are coframes

on the integral manifold Nn, for i = 1, . . . , n. In other words, the statement
says that at the point (p, e) ∈ Nn the tangent space T(p,e)N

n contains no
horizontal or vertical tangent vectors (see Fig. 8.1).

We deduce from the Local Inversion Theorem 1.10 the existence of an
open neighborhood U ′ of (p, e) ∈ Nn and an open neighborhood W ⊂ M of
π̃1(p, e) = p such that π̃1|U ′ : U ′ −→ W is invertible. We denote the inverse
by σ̃1 : W −→ U ′. Similarly, we deduce by the local inversion theorem for
π̃2. Then, we define

ϕ = π̃2 ◦ σ̃1 : W ⊂M −→ G .

It is clear that ϕ is a diffeomorphism between W and ϕ(W ) with ϕ(p) = e.
It remains to check that (8.24) holds for ϕ. For this purpose, we compute,
for i = 1, . . . , n,

ϕ∗θi = (π̃2 ◦ σ̃1)
∗θi = σ̃∗

1(π̃∗
2θ
i)

= σ̃∗
1Θ

i = σ̃∗
1Θ̄

i

= σ̃∗
1(π̃∗

1 θ̄
i) = (π̃1 ◦ σ̃1)

∗θ̄i = θ̄i .

This completes the proof of the theorem. ut

Fig. 8.1. Setting for the proof of the theorem concerning the equivalence problem
of coframes.





9 Fiber Bundles

In the previous chapters, we encountered the tangent bundle, cotangent bun-
dle and the tensor bundle. These are examples of manifolds that possess
some additional structure. Namely, taking the tangent bundle TM of an n-
dimensional manifold M , we know that each point of TM has a neighborhood
diffeomorphic to U×Rn, where U is an open subset of M . Of course, the tan-
gent bundle itself need not to be diffeomorphic to M×Rn. – In the following,
we will give a detailed definition for such manifolds, that is, manifolds which
look locally like a product.

9.1 Basic Definitions and Examples

Definition 9.1. Let F , M , B denote manifolds and G a Lie group acting
effectively on F . A coordinate bundle over the base space B with total
space M , fiber F and structure group G is a submersion

π : M −→ B ,

called the bundle projection, together with a bundle atlas
{(
π−1(Ui), (π, ϕi)

)}
i∈I

on M . This means the following:

(i) The family {Ui}i∈I is an open covering of B.
(ii) The map

(π, ϕi) : π−1(Ui) −→ Ui × F

is a diffeomorphism. For b ∈ Ui, note that

ϕi|π−1(b) : π−1(b) −→ F

is also a diffeomorphism. If b belongs also to Uj , then ϕj |π−1(b) : π−1(b) −→
F do not necessarily coincide with ϕi. However, they must differ by the
action of some element in G. More precisely, we have

(iii) For i, j ∈ I with Ui ∩ Uj 6= ∅, there is a smooth map

fi,j : Ui ∩ Uj −→ G ,

called the transition function from ϕi to ϕj , given by

fi,j(b) = ϕj ◦ (ϕi|π−1(b))
−1 : F −→ F . (9.1)
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Remark. a) Roughly speaking, the total space M consists of an union of
products Ui × F , where the open sets Ui, i ∈ I , cover the base space B
and the copies of F belonging to intersecting Ui and Uj are identified by
means of elements of G.

b) The set π−1(b) is called the fiber over b. Note also that the bundle at-
las will be often called a trivialization, in order to emphasize the local
triviality property of the coordinate bundle.

c) For the transition functions the following holds for b ∈ Ui ∩ Uj 6= ∅ and
m ∈ F : (

π, ϕj
)
◦
(
π, ϕi

)−1
(b,m) =

(
b, fi,j(b)m

)
. (9.2)

Note also that (iii) implies that fi,i(b) = e,
(
fi,j(b)

)−1
= fj,i(b) and the

transition functions satisfy the cocycle condition

fi,k(b) = fj,k(b) ◦ fi,j(b) , b ∈ Ui ∩ Uj ∩ Uk 6= ∅ . (9.3)

Fig. 9.1. Fiber bundle.

There is an important particular class of coordinate bundles.

Definition 9.2. A (real) coordinate vector bundle of rank n is a coor-
dinate bundle π : M −→ B with fiber Rn and structure group GLn(R) (or
a subgroup of GLn(R)). A (complex) coordinate vector bundle of rank
n is defined analogously. – In the following, we will always denote the total
space of a vector bundle by E.

Now, we define in a detailed manner the notion of differentiable maps be-
tween coordinate fiber bundles which will allow us to introduce in Definition
9.4 below equivalence classes of coordinate fiber bundles, simply called fiber
bundles.

Definition 9.3. Let πi : Mi −→ Bi, for i = 1, 2, be two coordinate bundles
with fiber F and structure group G. A differentiable map

h : M1 −→M2

is said to be a bundle map if it maps each fiber π−1
1 (b1) diffeomorphically

onto a fiber π−1
2 (b2), thereby inducing a differentiable map h̄ : B1 −→ B2 such

that π2 ◦ h = h̄ ◦ π1. Moreover, for every bundle charts
(
π−1

1 (Ui), (π1, ϕi)
)

and
(
π−1

2 (Vj), (π2, ψj)
)

of π1, respectively π2, the local representation of
h at b ∈ Ui ∩ h̄

−1(Vj) given by

ψj ◦ h ◦ (ϕi|π−1
1 (b))

−1 : F −→ F ,
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coincides with the action of an element of G, and the resulting map

hi,j : Ui ∩ h̄
−1(Vj) −→ G ,

b 7−→ ψj ◦ h ◦ (ϕi|π−1
1 (b))

−1 (9.4)

is smooth.

Fig. 9.2. Bundle map.

Definition 9.4. Let h : M1 −→M2 be a bundle map between two coordinate
bundles πi : Mi −→ B with the same structure group, fiber and base space B.
Then, if the induced map h̄ : B −→ B is the identity map on B, the coordinate
bundles π1 and π2 are called equivalent and h a bundle isomorphism. A
fiber bundle is then defined to be an equivalence class of coordinate bundles.
Moreover, a fiber bundle is called trivial if the product bundle is an element
of its equivalence class.

Remark. Note that, alternatively, a fiber bundle can be defined in terms of
equivalent system of bundle charts as in the case of manifolds (see Definition
2.17).

Next, we define a special type of fiber bundles whose fiber and structure
group coincide and whose total space will be denoted by P .

Definition 9.5. A fiber bundle π : P −→ B with fiber and structure group
G is a called a principal G-bundle if there exists a free right action on P
and a bundle atlas such that for each bundle chart

(
π−1(U), (π, ϕ)

)
, the map

ϕ : π−1(U) −→ G is G-equivariant, i.e.,

(
π, ϕ

)
(pg) =

(
π(p), ϕ(p)g

)
, (9.5)

for p ∈ π−1(U) and all g ∈ G.

We claim that for a principal G-bundle the base space B is the quotient
space P/G. – Since from (9.5) we have that π(pg) = π(p), the orbit Gp =
{pg : g ∈ G} ⊂ P of p ∈ P is contained in π−1

(
π(p)

)
. Conversely, if(

π−1(U), (π, ϕ)
)

is a bundle chart about p, then it follows, for q ∈ π−1
(
π(p)

)
,

q = (π, ϕ)−1
(
π(q), ϕ(q)

)
= (π, ϕ)−1

(
π(q), ϕ(p)ϕ(p)−1ϕ(q)

)

= (π, ϕ)−1
(
π(q), ϕ(p)g

) (9.5)
= pg ,

where g = ϕ(p)−1ϕ(q) ∈ G. This shows the claim.
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Moreover, note that for a principal G-bundle the Lie group G acts on
itself by left translations. Indeed, the transition functions for p ∈ P read as1

fi,j
(
π(p)

)
= ϕj(p)ϕi(p)

−1 : G −→ G , (9.6)

being independent of the choice of q ∈ π−1
(
π(p)

)
, since for q = pg we have

ϕj(pg)ϕi(pg)
−1 = ϕj(p)g

(
ϕi(p)g

)−1
= ϕj(p)gg

−1ϕi(p)
−1 = ϕj(p)ϕi(p)

−1 .

In the following theorem, we characterize bundle isomorphisms between
principal bundles.

Theorem 9.6. Let πi : Pi −→ B be two principal G-bundles over B and
assume that h : P1 −→ P2 is a G-equivariant smooth map inducing the
identity on B. Then, we have that h is a bundle isomorphism implying that
the two bundles are equivalent.

Proof. Let
(
π−1

1 (Ui), (π1, ϕi)
)

and
(
π−1

2 (Vj), (π1, ψj)
)

be bundle charts of π1

and π2, respectively. Then the maps

π−1
1 (Ui) −→ G , π−1

1 (Vj) −→ G ,

p 7−→ ϕi(p) , p 7−→
(
ψj ◦ h

)
(p)

are smooth and well-defined since h induces the identity map on B by as-
sumption. Thus the assignment

fi,j : Ui ∩ Vj −→ G ,

b 7−→ (ψj ◦ h
)
(p)ϕi(p)

−1 ,

where p ∈ π−1
1 (b), is also smooth.

Now, we show that fi,j(b) equals the local representation hi,j(b) of h at
b given by ψj ◦ h ◦ (ϕi|π−1

1 (b))
−1. – Let g ∈ G and let a := ϕi(p) ∈ G. Then,

we have

g = aa−1g = ϕi(p)a
−1g

(9.5)
= ϕi(pa

−1g) .

For p ∈ π−1
1 (b), this implies that

ψj ◦ h ◦ (ϕi|π−1
1 (b))

−1(g) = ψj ◦ h(pa
−1g) = ψj

(
h(p)

)
a−1g

= (ψj ◦ h
)
(p)ϕi(p)

−1g , (9.7)

where we used that the map h is G-equivariant by assumption. Thus the
theorem follows using Definition 9.4. ut

1 Let g ∈ G and let a := ϕi(p) ∈ G. Then, we can write g = aa−1g = ϕi(p)a
−1g =

ϕi(pa
−1g), implying for p ∈ π−1(b) that (see (9.1))

ϕj ◦ (ϕi|π−1(b))
−1(g) = ϕj(pa

−1
g) = ϕj(p)ϕi(p)

−1
g .
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Fig. 9.3. Equivalent G-principal bundles.

Examples of Fiber Bundles

Example 9.7. The trivial fiber bundle with base space B and fiber F is the
projection π : B × F −→ B onto the first factor. The structure group of
the trivial bundle is simply the identity transformation on F . – Note that in
general the size of the structure group measures how twisted the bundle is.

Example 9.8. The trivial principal G-bundle over B is the projection π :
B × G −→ B onto the first factor. The free action of G on P = B × G is
defined by right multiplication on G, i.e., (b, g0)g = (b, g0g) ∈ P .

Example 9.9. The tangent bundle TM of an n-dimensional manifold M is
the total space of a rank n vector bundle over M with bundle projection
π : TM −→ M (see Section 2.5.3). Recall that if {(Ui, ϕi)}i∈I is an atlas on
M , then

{(
π−1(Ui), Φi

)}
i∈I

, where Φi = (π, dϕi), is an bundle atlas on TM .

Moreover, the transition functions are given by (see (2.21))

fi,j = d(ϕj ◦ ϕ
−1
i ) ◦ ϕi : Ui ∩ Uj −→ GLn(R) .

Note that similar arguments hold for the exterior bundle
∧p

T ∗M and the
tensor bundle T rs (M).

Example 9.10 (Canonical Line Bundle over CP n). There is a canonical or
”tautological” (complex) vector bundle of rank 1 over CP n, where the com-
plex projective space CP n is defined similarly to RP n (see Example 2.21). –
The total space EL of this bundle is given by

EL =
{(

[z], ξ
)
∈ CPn × Cn+1 : ξ ∈ [z]

}
,

with bundle projection

πL : EL −→ CPn ,(
[z], ξ

)
7−→ [z] .

In other words, the fiber π−1
L ([z]) over [z] ∈ CP n is simply [z] itself. For the

open covering
Ui = {[z] ∈ CP n : zi 6= 0} ,

of the complex projective space, with i = 1, . . . , n + 1, we take the bundle
charts

(πL, ϕi) : π−1
L (Ui) −→ Ui × C ,(
[z], ξ

)
7−→

(
[z], λi

)
, (9.8)



214 9 Fiber Bundles

where λi ∈ C is such that (ξ1, . . . , ξn+1) = λi

(
z1
zi
, . . . , 1, . . . , zn+1

zi

)
∈ Cn+1.

Moreover, the transition functions on Ui ∩ Uj 6= ∅ are given by

fi,j
(
[z]
)

=
zj
zi
. (9.9)

Since zi 6= 0 and zj 6= 0 on Ui ∩ Uj , we deduce that the transition functions
are elements of GL1(C) as required by Definition 9.2.

Sections of Bundles

It is clear that the trivial bundle B×F −→ B has the property that through
any point (b,m) ∈ B × F there is a copy B × {m} of B. This fact can be
reformulated in the following way: For a trivial bundle, there exists a map
s : B −→ B × F defined by s(b) = (b,m) such that it is a lift of idB , i.e.,
π ◦ s = idB , through (b,m). However, such maps do not exist for all fiber
bundles.

Definition 9.11. Let π : M −→ B be a fiber bundle. A differentiable map
s : B −→M is called a section if π ◦ s = idB.

Note that we already encountered the concept of sections in the case of
vector bundles. For example, we know that vector fields are sections of the
tangent bundle and that differential one-forms are sections of the cotangent
bundle. More generally, every vector bundle admits a section, namely the
zero section given by s(b) = 0 ∈ Eb, where Eb denotes the fiber π−1(b) over
b ∈ B which is a vector space. Note that from Exercise 9.13 we know that
0 ∈ eb is independent of the trivialization. – For principal bundles, however,
we have

Theorem 9.12. Let π : P −→M be a principal G-bundle. Then it admits a
section if and only if it is the trivial principal G-bundle.

Remark. It is important to note that we mean the existence of a section
defined on B and not a (local) section s : U −→ P defined only on U ⊂ B
open, since – by local triviality – the map

s(b) =
(
π, ϕ

)−1
(b, g) ,

where g ∈ G is fixed and b ∈ U , defines automatically a (local) section for
every principal bundle. If a (local) section s : U −→ P satisfies

s(b) =
(
π, ϕ

)−1
(b, e) , (9.10)

then it will be called the (local) section associated to the bundle chart (π, ϕ).
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Proof. Assume that h : P −→ B×G is the bundle map making π to a trivial
bundle. Then, for any g ∈ G, the map s(b) := h−1(b, g) defines a section of
the trivial principal G-bundle.

Conversely, assume that there exists a section s : B −→ P . Then consider
the map ϕ : P −→ G such that

p = s
(
π(p)

)
ϕ(p) . (9.11)

Since p ∈ P and s
(
π(p)

)
belong by definition to the same fiber, this map is

well-defined. Moreover, it is equivariant. Indeed, observe that (9.11) can be
written as

ϕi
(
s(π(p))

)−1
ϕi(p) = ϕ(p) ,

implying that

ϕ(pg) = ϕi
(
s(π(pg))

)−1
ϕi(pg)

= ϕi
(
s(π(p))

)−1
ϕi(p)g = ϕ(p)g .

Note that the smoothness of ϕ : P −→ G is clear.
Next, we define the bundle map

h := (π, ϕ) : P −→ B ×G ,

which obviously induces the identity map on B. Then we conclude using
Theorem 9.6. ut

∗ ∗ ∗

Exercises.

Exercise 9.13. Show that for a coordinate vector bundle πE : E −→ B the
fiber π−1(b) over each point b of the base space B is a vector space with
vector space structure independent of the chosen bundle atlas.

9.2 The Tangent Bundle of a Sphere as Principal Bundle

In this section, as detailed illustration of some concepts in the previous sec-
tion, we consider the tangent bundle TS2 of the two-sphere S2 which can be
made to a principal U(1)-bundle. – It is left as an exercise to translate the
results of this section to the case of the n-dimensional sphere.

From Example 2.34, we know that the tangent bundle TS2 of the two-
dimensional unit sphere can be written as

TS2 =
⋃

p∈S2

TpS
2 =

{
(p, v) ∈ S2 × R3 : 〈p, v〉 = 0

}
,
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where 〈·, ·〉 means the usual scalar product in R3. Considering only tangent
vectors with unit length we define the set

P =
{
(p, v) ∈ S2 × S2 : 〈p, v〉 = 0

}
. (9.12)

a) In a first step, we show that P is an one-dimensional submanifold of
S2 × S2. For this purpose, let

f : R3 × R3 −→ R ,

(p, v) 7−→ 〈p, v〉

be a smooth map, whose restriction to S2×S2 – also denoted by f – remains
smooth. Obviously, we have that P = f−1(0). Next, we claim that f : S2 ×
S2 −→ R is a submersion. – Let (p, v) ∈ P be given by p = (0, 0, 1) ∈ R3

and v = (v1, v2, 0) ∈ R3 with v2
1 + v2

2 = 1. Note that the tangent space
T(p,v)S

2 × S2 ⊂ R3 × R3 is then generated by

ẽ1 = (1, 0, 0, 0, 0, 0) , ẽ2 = (0, 1, 0, 0, 0, 0) ,

ẽ3 = (0, 0, 0,−v2, v1, 0) , ẽ4 = (0, 0, 0, 0, 0, 1) .

From this we easily deduce that

df(p,v) · ẽ1 =
∂f

∂x1
(p, v) = v1 , df(p,v) · ẽ2 =

∂f

∂x2
(p, v) = v2 ,

df(p,v) · ẽ3 = 0 , df(p,v) · ẽ4 =
∂f

∂x6
(p, v) = 1 .

Thus it follows that the differential df(p,v) is of maximal rank 1. Using Propo-
sition 2.2, we conclude that P is a submanifold of S2 × S2.

b) In a second step, we note that the map

π : P −→ S2 ,

(p, v) 7−→ p (9.13)

defines a submersion from P into S2.
c) Next, we want to introduce a free right action of U(1) on P . Recall

that the abelian Lie group U(1) = {eiθ ∈ C : θ ∈ R} is the unit circle in the
complex plane. – We define the map

U(1) × P −→ P ,(
eiθ, (p, v)

)
7−→ (p, v)eiθ =

(
p, cos θ v + sin θ p× v

)
, (9.14)

which describes in fact a rotation of v by the angle θ. It is left as an exercise
to check that this map defines a right action of U(1) on P in the sense
of Definition 7.27. Moreover, this action is free: Let (p, v) ∈ P such that
(p, v)eiθ = (p, v). This implies that v = cos θ v + sin θ p× v. Since {v, p× v}
is a basis of TpS

2, we deduce that cos θ = 1 and sin θ = 0, i.e., eiθ = 1.
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d) In a next step, we construct a bundle atlas for π : P −→ S2. – Let

U+
i =

{
p ∈ S2 : 〈p, ei〉 > 0

}
U−
i =

{
p ∈ S2 : 〈p, ei〉 < 0

}
,

with {ei}1≤i≤3 the canonical basis of R3, denote an open covering of S2. For
U+

3 , for example, we then consider the smooth map

v3 : U+
3 −→ R3 ,

p 7−→
e1 − 〈e1, p〉p

‖e1 − 〈e1, p〉p‖
. (9.15)

Obviously, we have ‖v3(p)‖ = 1 and
〈
p, v3(p)

〉
= 0, i.e.,

(
p, v3(p)

)
∈ P . Since

p 6= e1, for p ∈ U+
3 , the map v3 is also well-defined. Now, we are ready to

define the following smooth map, which will turn out to be a bundle chart:

(π, ϕ+
3 ) : π−1(U+

3 ) −→ U+
3 × U(1) ,

(p, v) 7−→
(
p,
〈
v, v3(p)

〉
+ i
〈
v, p× v3(p)

〉)
. (9.16)

Since
{
v3(p), p×v3(p)

}
is a basis of TpS

2, we observe that indeed
〈
v, v3(p)

〉
+

i
〈
v, p × v3(p)

〉
∈ U(1) and (π, ϕ+

3 ) is a smooth diffeomorphism. Moreover,
we have that

(π, ϕ+
3 )
(
(p, v)eiθ

)
= (π, ϕ+

3 )
(
p, cos θ v + sin θ p× v

)

=
(
p,
〈
(cos θ v + sin θ p× v), v3(p)

〉

+i
〈
(cos θ v + sin θ p× v), p× v3(p)

〉)
.

A straightforward calculation then gives that ϕ+
3 : π−1(U+

3 ) −→ U(1) is
U(1)-equivariant, i.e.,

(π, ϕ+
3 )
(
(p, v)eiθ

)
=
(
p,
(〈
v, v3(p)

〉
+ i
〈
v, p× v3(p)

〉)
eiθ
)
. (9.17)

e) We now determine the transition functions. – First, we observe that
the map

s+3 : U+
3 −→ π−1(U+

3 ) ⊂ P ,

p 7−→
(
p, v3(p)

)
, (9.18)

gives the (local) section associated to the bundle chart (π, ϕ+
3 ), i.e., it satisfies

s+3 (p) =
(
π, ϕ+

3

)−1
(p, 1) . (9.19)

Using formula (9.6) for the transition functions of a principal bundle and
(9.16), we obtain for p ∈ U+

3 ∩ U+
2 6= ∅ that

f3,2(p) = ϕ+
2

(
p, v3(p)

)
ϕ+

3

(
p, v3(p)

)−1
= ϕ+

2

(
p, v3(p)

)
.
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Remark. Summarizing the previous results, we have shown that π : P −→ S2

is a principal U(1)-bundle in the sense of Definition 9.5.

Using Theorem 9.12, we now want to decide if this principal bundle is
trivial or not. – Assume that there exists a smooth section s : S2 −→ P
with π ◦ s = idS2 . One can check that this is equivalent to the existence of a
smooth map s̃ : S2 −→ S2 such that

〈
s̃(p), p

〉
= 0, for all p ∈ S2. Moreover,

we consider the flow of a vector field X ∈ X (S2) given by

ΓXt : S2 −→ S2 ,

p 7−→ cos(πt)p+ sin(πt)s̃(p) . (9.20)

Note that
∥∥cos(πt)p + sin(πt)s̃(p)

∥∥ = 1, since
〈
s̃(p), p

〉
= 0. We also observe

that ΓX0 = idS2 and ΓX1 = −idS2 . For the volume form ωS2 = ι∗S2Ω of S2

(see Example 3.54), we claim that

d

dt

∣∣∣∣
t=s

∫

S2

(ΓXt )∗ωS2 = 0 . (9.21)

For a fixed s ∈ R, we compute, using Definition 6.35 for the Lie derivative,

LX
(
(ΓXs )∗ωS2

)
= lim
t→0

1

t

(
(ΓXs )∗ωS2 − (ΓX−t)

∗
(
(ΓXs )∗ωS2

))
.

Since (ΓX−t)
∗(ΓXs )∗ωS2 = (ΓXs ◦ ΓX−t)

∗ωS2 = (ΓXs−t)
∗ωS2 , we obtain that

LX
(
(ΓXs )∗ωS2

)
= lim

t→0

1

t

(
(ΓXs )∗ωS2 − (ΓXs−t)

∗ωS2

)

= −
d

dt

∣∣∣∣
t=s

(ΓXt )∗ωS2 .

On the other hand, using Cartan’s formula (6.42), the left-hand side of the
last equation can be written as

LX
(
(ΓXs )∗ωS2

)
= d
(
intX (ΓXs )∗ωS2

)
+ intX

(
d(ΓXs )∗ωS2

)
.

The second term on the right-hand side vanishes, since the pull-back and the
exterior differential commute. Thus, we deduce that

−
d

dt

∣∣∣∣
t=s

(ΓXt )∗ωS2 = d
(
intX(ΓXs )∗ωS2

)
.

Integrating the last equation over S2, it follows

−
d

dt

∣∣∣∣
t=s

∫

S2

(ΓXt )∗ωS2 =

∫

S2

d
(
intX(ΓXs )∗ωS2

)
.

Stokes’ theorem implies that the right-hand side vanishes and we arrive at
the claim (9.21).
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A straightforward calculation shows that
∫

S2

(ΓX0 )∗ωS2 =

∫

S2

ωS2 =

∫

S2

ι∗∂B3Ω =

∫

B3

dΩ

= 3

∫

B3

dx1 ∧ dx2 ∧ dx3 = 3 Vol(B3) . (9.22)

On the hand hand, a similar calculation gives
∫

S2

(ΓX1 )∗ωS2 = −

∫

S2

ωS2 = −3 Vol(B3) .

However, the last result must be equal to (9.22), as a direct consequence
of (9.21). Thus, we end up with a contradiction to the assumption of the
existence of a section s : S2 −→ P . Finally, we conclude with Theorem 9.12
that the principal U(1)-bundle π : P −→ S2 is not trivial.

9.3 Associated and Reducible Principal Bundles

In this section, we analyze the structure of fiber bundles in more detail.

Associated Principal Bundles

We have seen that a bundle atlas
{(
π−1(Ui), (π, ϕi)

)}
i∈I

of a given fiber
bundle π : M −→ B with structure group G induces transition functions
fi,j : Ui∩Uj −→ G which satisfy the cocycle condition (9.3). We will see that
these transition functions are the main ingredients for the reconstruction of
the given fiber bundle. More generally, we have

Proposition 9.14. Let {Ui}i∈I be an open covering of a manifold B and G
a Lie group acting effectively on a manifold F . Moreover, assume that there
exists for all i, j ∈ I maps fi,j : Ui ∩ Uj −→ G such that

fi,k(p) = fj,k(p) ◦ fi,j(p) , p ∈ Ui ∩ Uj ∩ Uk 6= ∅ . (9.23)

Then there exists a fiber bundle π : M −→ B with fiber F , structure group G
and a bundle atlas whose transition functions are given by fi,j . In the case of
F = G and if G acts on itself by left translations, then the atlas determines
a principal G-bundle.

Proof. Consider the disjoint union

X =
⋃

i∈I

(Ui × F ) ,

and define on this union the following equivalence relation: For (pi, q1) ∈ Ui×
F , (pj , q2) ∈ Uj ×F , we set (pi, q1) ∼ (pj , q2) if and only if pi = pj ∈ Ui ∩Uj
and q2 = fi,j(pi)q1, for some i, j ∈ I .
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We check that ∼ is an equivalence relation on X . – Since q = eq =
fi,i(pi)q, we have that (pi, q) ∼ (pi, q). Now, assume that (pi, q1) ∼ (pj , q2),
i.e., that pi = pj and q2 = fi,j(pi)q1. Hence, we get q1 = fi,j(pi)

−1q2 =
fj,i(pj)q2 showing that (pj , q2) ∼ (pi, q1). The transitivity is also a direct
consequence of the cocycle condition (9.23). This shows that ∼ defines indeed
an equivalence relation.

From a set point of view, we now define

M = X/ ∼=
⋃

i∈I

(Ui × F )/ ∼ ,

and consider the projection

π : M −→ B ,

[(p, q)] 7−→ p , (9.24)

where [(p, q)] denotes the equivalence class of (p, q) ∈ Ui ×F , for some i ∈ I .
Note that π is clearly well-defined meaning that it is independent of the choice
of representative. If ρ : X −→ M denotes the projection on the quotient
space, we claim that each restriction

ρi : Ui × F −→ ρi(Ui × F ) ⊂M ,

(pi, q) 7−→ [(pi, q)] , (9.25)

defines a bijection. Each equivalence class in ρi(Ui × F ) possesses a repre-
sentant in Ui × F . But by definition of the equivalence relation on X this
representant is unique and the claim follows. – We will take the inverse of
(9.25) as a bundle chart (π, ϕi), i.e.,

(π, ϕi) : π−1(Ui) −→ Ui × F ,

[(p, q)] 7−→ (p, q) . (9.26)

By construction the transition functions of the corresponding atlas are just
the given fi,j .

In order to make M to a differentiable manifold, we first introduce the
following topology on M : We say that Ω ⊂M is open in M if and only if the
set (π, ϕi)

(
Ω∩π−1(Ui)

)
is open in Ui×F , for all i ∈ I . Verify that this indeed

defines a topology onM . Next, let {(Ui, ψi)}i∈I and {(Vα, ξα)}α∈A be an atlas
for B, respectively F . On the open sets Wi,α = (π, ϕi)

−1(Ui × Vα) ⊂ M we
then consider the map Φi,α

(
[(p, q)]

)
=
(
ψi(p), ξα(q)

)
. It is left as an exercise

to show that {(Wi,α, Φi,α)}i∈I,α∈A defines a differentiable structure on M .
Moreover, one can show that for this differentiable structure on M the bundle
projection π : M −→ B and the bundle charts (π, ϕi) are smooth maps. – In
summary, π : M −→ B is the desired fiber bundle.

In the case of F = G, we define a right action of G on M by [(p, g)]g0 =
[(p, gg0)], for all g0 ∈ G. It is easy to see that this definition is independent
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of the choice of representative in the class [(p, g)] and that the action is free.
Moreover, the G-equivariance of ϕi follows from

(π, ϕi)
(
[(p, g)]g0

)
= (π, ϕi)

(
[(p, gg0)]

)

(9.26)
= (p, gg0) =

(
p, ϕi

(
[(p, g)]

)
g0
)
.

We then conclude the existence of a principal G-bundle π : P −→ B with the
desired properties. ut

This result leads to the following definition:

Definition 9.15. Let π : M −→ B be a fiber bundle with structure group G.
The principal G-bundle constructed from the transition functions of π as in
the previous proposition is called the principal G-bundle associated to the
given fiber bundle π : M −→ B.

There is also a canonical way of associating a fiber bundle to a given
principal bundle. – Let πP : P −→ B be a principal G-bundle and let F be
a manifold on which the Lie group G acts effectively on the left. On P × F ,
we then define the equivalence relation (p,m) ∼ (p′,m′) if and only if there
exists g ∈ G such that (p′,m′) = (pg, g−1m). The quotient space (P ×F )/ ∼
is denoted by P ×G F and there is a well-defined map

π̃ : P ×G F −→ B ,

[p,m] 7−→ πP (p) . (9.27)

Theorem 9.16. Let πP : P −→ B be a principal G-bundle and let F be
a manifold on which the Lie group G acts effectively on the left. Then π̃ :
P ×G F −→ B defined in (9.27) is a fiber bundle over B with fiber F and
structure group G. Moreover, the principal G-bundle πP is associated to π̃ in
the sense of Definition 9.15.

Proof. Let
(
π−1
P (U), (πP , ϕ)

)
be a chart for the given principal bundle. We

then define

(π̃, ϕ̃) : π̃−1(U) −→ U × F ,

[b,m] 7−→
(
πP (p), ϕ(p)m

)
. (9.28)

This map is a diffeomorphism. Indeed, let s : U −→ π−1
P (U) be the (local)

section associated to the above bundle chart of the principal bundle and let

f : U × F −→ π̃−1(U) ,

(p,m) 7−→ [s(b),m] . (9.29)

In order to show that f is the inverse of (π̃, ϕ̃) defined in (9.28), we observe
that



222 9 Fiber Bundles

(π̃, ϕ̃) ◦ f(b,m) = (π̃, ϕ̃)
(
[s(b),m]

)
=
(
πP
(
s(b)

)
, ϕ
(
s(b)

)
m
)

= (b,m) .

On the other hand, given p ∈ π−1
P (U) and noting that the (local) section can

be written as s
(
πP (p)

)
= pϕ(p)−1, we have

f ◦ (π̃, ϕ̃)
(
[p,m]

)
= f

(
πP (p), ϕ(p)m

)
=
[
s
(
πP (p)

)
, ϕ(p)m

]

=
[
pϕ(p)−1, ϕ(p)m

]
= [p,m] .

Next, let
(
π−1
P (V ), (πP , ψ)

)
be another chart of the principal bundle with

U ∩ V 6= ∅ and let b ∈ B be an element of this intersection. Defining (π̃, ψ̃) :
π̃−1(V ) −→ V × F as in (9.28), we obtain

ψ̃ ◦ (π̃, ϕ̃)−1(b,m)
(9.29)
= ψ̃

(
[s(b),m]

)
= ψ̃

(
[(πP , ϕ)−1(b, e),m]

)

(9.28)
=

(
ψ ◦ (πP , ϕ)−1(b, e)

)
m =

(
fϕ,ψ(b)e

)
m = fϕ,ψ(b)m,

where (9.2) for the transition function fϕ,ψ of πP is also used. In summary,
we have constructed a bundle atlas for the fiber bundle π̃ : P ×G F −→ B
with fiber F and structure group G. – The fact that the transition functions
of the fiber bundle π̃ : P ×G F −→ B coincide with those of πP : P −→ B
implies directly that πP is associated to π̃. ut

Remark. a) Note that the fiber bundle π̃ : P ×G F −→ B is also often said
to be associated to the principal bundle πP : P −→ B.

b) In the case of F = g with left action of G on g given by the adjoint action
Ad : G× g −→ g defined in (7.37), we obtain the so-called adjoint bundle
P ×Ad g. This vector bundle will be important in the following.

Reducible Principal Bundles

Definition 9.17. Let H be a Lie subgroup of G and PH , PG two manifolds
with PH ⊂ PG. Moreover, let πG : PG −→ B and πH : PH −→ B be a
principal G-bundle, respectively, a principal H-bundle over B such that the
injection f : PH ↪→ PG is a fiber preserving map and induces the identity
transformation on B (see Fig. ??). We then say that the structure group G
of πG is reducible to H and we call πH the reduced subbundle of πG.

Fig. 9.4. Reduction of the structure group. The map f satisfies πG ◦ f = πH .

Proposition 9.18. The structure group G of a principal bundle πG : PG −→
B is reducible to e – neutral element of G – if and only if πG is trivial.
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Proof. First, we assume that πG : PG −→ B is trivial. By definition this
means that there exists a bundle isomorphism h : B×G −→ PG. Considering
the map

(idB , ιe) : B × {e} −→ B ×G ,

we conclude that f = h ◦ (idB , ιe) reduces G to e.
Conversely, assume that f : B×{e} −→ P is a fiber preserving map such

that πG ◦ f = idB . Then it follows that the map

s : B −→ P ,

b 7−→ f(b, e)

is a section of P . Indeed, we have πG
(
s(b)

)
= πG

(
f(b, e)

)
= b. Theorem 9.12

then implies that P is trivial. ut

Proposition 9.19. The structure group G of a principal bundle πG : PG −→
B is reducible to a Lie subgroup H if and only if there exists a bundle at-
las
{(
π−1
G (Ui), (πG, ϕi)

)}
i∈I

of πG with transition functions fi,j taking their
values in H.

Proof. Suppose first that the structure group G is reducible to H and denote
by πH : PH −→ B the reduced subbundle, where PH is considered as sub-
manifold of PG. Moreover, let

{(
π−1
H (Vi), (πH , ψi)

)}
i∈I

be a bundle atlas for
πH whose corresponding transition functions clearly take their values in H . –
We now look for a bundle atlas of πG : PG −→ B whose transition functions
take their values only in H .

Take again {Vi = Ui}i∈I as open covering for B. By assumption every
p ∈ π−1

G (Ui) may be represented in the form p = qg, for some q ∈ π−1
H (Ui)

and g ∈ G. Then, we set
ϕi(p) = ψi(q)g .

Note that the map ϕ : π−1
G (Ui) −→ G is well-defined meaning that it is

independent of the representation for p ∈ π−1
G (Ui). Indeed, let p = q̃g̃ be

another representation, then we have

ϕ(p) = ψi(q̃)g̃ = ψi(pg̃
−1)g̃ = ψi(p) = ψ(qg) = ψ(q)g .

It is also clear that

(πG, ϕi) : π−1
G (Ui) −→ Ui ×G (9.30)

defines a diffeomorphism. Using (9.6), we find for the corresponding transition
functions

fi,j
(
πG(p)

)
= ϕj(p)ϕi(p)

−1 = ψj(q)ψi(q)
−1 ,

taking their values in H . Thus (9.30) is the desired bundle atlas for πG.
For the converse, we only give a sketch of the proof. – Assume that there

exists a bundle atlas
{(
π−1
G (Ui), (πG, ϕi)

)}
i∈I

of πG : PG −→ B with corre-
sponding transition functions fi,j taking their values in H . By Proposition
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9.14, we can construct a principal H-bundle from the covering {Ui}i∈I and
the transition functions fi,j which we will denote by πH : PH −→ B. Next,
we define the map fi : π−1

H (Ui) −→ π−1
G (Ui) to be the composition of the

following three maps:

π−1
H (Ui) −→ Ui ×H ↪→ Ui ×G

(πG,ϕi)
−1

−→ π−1
G (Ui) .

Obviously, we have fi = fj on Ui ∩ Uj 6= ∅. It is left as an exercise to check
that f : PH −→ PG given by {fi}i∈I reduces G to H in the sense of Definition
9.17. ut

9.4 Connections in a Principal Fiber Bundle

Let π : P −→ B be a principal G-bundle over B. For each p ∈ P , we denote
by Vp the subspace of the tangent space TpP of P at p consisting of vectors
tangent to the fiber over π(p). To be more precise, elements in Vp are those
being tangent to the orbit Gp = {pg : g ∈ G} of p – recall that for a
principal G-bundle we have B = P/G. In other words, we have Vp = ker dπp.
We will call Vp the vertical subspace of TpP .

The right action on P induces a homomorphism σ of the Lie algebra g of G
into the Lie algebra X (P ) of vector fields on P by Proposition 7.29. For every
A ∈ g, we call σ(A) = A∗ the fundamental vector field corresponding toA.
Then we make the following important observation: As a direct consequence
of (7.27) the fundamental vector field A∗(p) is an element of Vp ⊂ TpP , for
all p ∈ P . We also know from Proposition 7.29 that σ : g −→ X (P ) is an
injective map because the action of G is free. Since the dimension of each
vertical subspace equals that of the Lie algebra g, we then conclude that the
linear map

dσp : g −→ Vp ,

A 7−→ A∗(p) (9.31)

is an isomorphism. – Recall the computation in (7.29), where we showed that
the fundamental vector field can also be expressed in terms of the differential
dσp of σp.

Proposition 9.20. Let A∗ be the fundamental vector field corresponding to
A ∈ g. Then, for each g ∈ G, we have that (Rg)∗A

∗ is the fundamental vector
field for Adg−1(A) ∈ g.

Proof. By Definition 2.47 of the push-forward we have
(
(Rg)∗A

∗
)
(p) =

(dRg)pg−1 · A∗(pg−1) and (7.32) then shows that
(
(Rg)∗A

∗
)
(p) = dσp ·

Adg−1

(
XA(e)

)
= dσp ·Adg−1 (A). We conclude the proposition using (9.31).

ut
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Definition 9.21. Let Mn denote an n-dimensional manifold. A connection
on a principal G-bundle π : P −→ M is an n-dimensional differentiable
distribution H on P satisfying the following conditions:

(i) π∗H = TM ;
(ii) (Rg)∗H = H, for all g ∈ G.

Remark. The following remarks concerning the previous proposition are im-
portant:

a) By (i) there is a splitting TpP = Hp⊕ker dπp = Hp⊕Vp, for every p ∈ P .
In particular, every vector field X ∈ X (P ) can be written as

Xp = XH
p +XV

p ,

where XH
p ∈ Hp and XV

p ∈ Vp are called the horizontal, respectively, the
vertical component of X at p. Since H is an n-dimensional differentiable
distribution on P , we obviously have that XH

p induces a differentiable

horizontal vector field XH on P .
b) Note also that condition (ii) means that H is invariant by the action of

G on P .
c) We emphasize that there is no canonical differential distribution H. In

other words, by a connection we mean the choice of a differential distri-
bution such that (i) and (ii) hold.

Given a connection H on P , it is possible to define an one-form on P –
which we will denote by ω – with values in the Lie algebra g as follows:

Definition 9.22. The connection form ω of a connection H on a principal
G-bundle π : P −→M is the g-valued one-form on P given by

ωp(Xp) = (dσp)
−1 ·XV

p , (9.32)

where Xp ∈ TpP . In other words, for each Xp ∈ TpP , we define ωp(Xp) to be
the unique A ∈ g such that A∗(p) = XV

p .

Note that because dσp defined in (9.31) is an isomorphism, for every
p ∈ P , the definition makes sense. In the following, we will often write ω ∈
Ω1(P, g).

Proposition 9.23. The connection form ω ∈ Ω1(P, g) of a connection H on
a principal G-bundle π : P −→M satisfies the following:

(i) ω(A∗) = A, for all A ∈ g;
(ii) ω|H = 0;
(iii) (Rg)

∗ω = Adg−1 ◦ ω, for all g ∈ G.

Conversely, if ω ∈ Ω1(P, g) satisfies (i) and (iii), then kerω is a connection
on π : P −→M .
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Proof. The conditions (i) and (ii) follow immediately from Definition 9.22.
Since every X ∈ X (P ) can be decomposed into a horizontal and vertical
vector field XH and XV , respectively, it suffices to show (iii) in the following
two particular cases:

a) If X is horizontal, then the right-hand side of (iii) vanishes because of (ii).
On the other hand, since (Rg)∗X is also horizontal by (ii) of Definition
9.21, the left-hand side of (iii) also vanishes. This establishes (iii) in the
case of X being horizontal.

b) If X is vertical, we can further assume that X is a fundamental vector
field A∗. Then Proposition 9.20 implies that (Rg)∗A

∗ is the fundamental
vector field of Adg−1 (A) ∈ g. Thus by definition of the connection form
ω, it follows

(
(Rg)

∗ω
)
p
(A∗

p) = ωpg(dRg ·A
∗
p)

= Adg−1(A) = Adg−1 ◦ ωp(A
∗
p) .

Thus (iii) is proved.

For the converse, we define

Hp = kerωp =
{
Xp ∈ TpP : ωp(Xp) = 0

}
. (9.33)

It is left as an exercise to check that the differential distribution H thus
defined gives a connection for π : P −→M with connection form ω. ut

Connection Form in Local Coordinates

To a given connection form ω ∈ Ω1(P, g), we now associate a family of
g-valued one-forms defined on open subsets of the base space M . – Let{(
π−1(Ui), (π, ϕi)

)}
i∈I

be an atlas for a principal G-bundle π : P −→ M
with corresponding transition functions fi,j : Ui ∩ Uj −→ G. Moreover, for
all i ∈ I , let si : Ui −→ π−1(Ui) be the (local) section on Ui associated to
the chart

(
π−1(Ui), (π, ϕi)

)
, i.e.,

si(b) =
(
π, ϕi

)−1
(b, e) ,

and let θ ∈ Ω1(G, g) be the Maurer-Cartan form of Definition 7.8. We then
define a g-valued one-form Ai on Ui by

Ai = s∗iω , (9.34)

and a g-valued one-form θi,j on Ui ∩ Uj 6= ∅ by

θi,j = f∗
i,jθ . (9.35)

Note that in the physics literature the (local) section si : Ui −→ π−1(Ui) and
the g-valued one-form Ai are often called local gauge, respectively, (local)
gauge potential in the local gauge si.
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Proposition 9.24. Let
{(
π−1(Ui), (π, ϕi)

)}
i∈I

be an atlas and ω a con-
nection form for a principal G-bundle π : P −→ M . Then the one-forms
Ai ∈ Ω1(Ui, g) satisfy the following compatibility condition on Ui ∩ Uj :

Aj(b) = Adfj,i(b)−1 ◦Ai(b) + θj,i(b) . (9.36)

Proof. First, for b ∈ Ui ∩ Uj 6= ∅, we note that

sj(b) = si(b)fj,i(b) . (9.37)

Indeed, we have

(π, ϕi)
(
sj(b)

)
=
(
π, ϕi

)
◦
(
π, ϕj

)−1
(b, e)

(9.2)
=
(
b, fj,i(b)

) (9.5)
= (π, ϕi)

(
si(b)fj,i(b)

)
.

Consider now the right action A : G × P −→ P of the Lie group G on
P . By Leibniz’s formula (see []) the image of its differential dA at the point
(g, p) ∈ G× P applied to Z ∈ T(g,p)G× P equals

dA(g,p) · Z = (dσp)g · X̃g + (dRg)p · Ỹp , (9.38)

where σp : G −→ P , Rg : P −→ P are defined as usual and (X̃g , Ỹp) ∈
TgG⊕ TpP correspond to Z. In the particular case of (dfj,i)b ·Xb ∈ Tfj,i(b)G
and (dsi)b ·Xb ∈ Tsi(b)P , where Xb ∈ TbM , the differential in (9.38) reads as

dA(
fj,i(b),si(b)

) · Z = dσsi(b) · (dfj,i)b ·Xb + dRfj,i(b) · (dsi)b ·Xb .

Taking the differential of (9.37), we thus arrive at

(dsj)b ·Xb = dσsi(b) · (dfj,i)b ·Xb + dRfj,i(b) · (dsi)b ·Xb . (9.39)

In a next step, we apply the given connection one-form ω on both sides
of (9.39). – Since

ωsj(b)

(
(dsj)b ·Xb

)
=
(
s∗jω

)
b
(Xb) = Aj(Xb) (9.40)

by (9.34), we get Aj(Xb) for the left-hand side of (9.39). For the second term
on the right-hand side of (9.39), we have

ωsi(b)fj,i(b)

(
dRfj,i(b) · (dsi)b ·Xb

)
=

(
R∗
fj,i(b)

ω
)
si(b)

(
(dsi)b ·Xb

)

= Adfj,i(b)−1 ◦ ωsi(b)

(
(dsi)b ·Xb

)

(9.40)
= Adfj,i(b)−1 ◦Ai(Xb) ,

where we used (iii) of Proposition 9.23. Now, we apply ω on the first term of
the right-hand side of (9.39). For this purpose, we first consider XA ∈ XL(G)
generated by A ∈ g such that XA

(
fj,i(b)

)
= (dfj,i)b ·Xb. Hence by definition
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of the Maurer-Cartan form we have θfj,i(b)

(
(dfj,i)b ·Xb

)
= A. Using (7.29),

we deduce that

dσsi(b) ·XA

(
fj,i(b)

)
= A∗

(
si(b)fj,i(b)

)
. (9.41)

We then conclude that

ωsi(b)fj,i(b)

(
A∗
(
si(b)fj,i(b)

))
= A

= θfj,i(b)

(
(dfj,i)b ·Xb

)

=
(
f∗
j,iθ
)
b
(Xb)

(9.35)
=

(
θj,i
)
b
(Xb) .

Finally, putting the previous results together we arrive at the compatibility
condition (9.36). ut

Remark. a) Considering the case of a matrix Lie group G the compatibility
condition (9.36) takes the simple form

Aj(b) = fj,i(b)
−1Ai(b)fj,i(b) + fj,i(b)

−1(dfj,i)b . (9.42)

b) A change in the choice of the local gauge will be called a local gauge
transformation. The compatibility condition (9.36) then describes the
effect of a local gauge transformation on the gauge potentials representing
a fixed connection on P .

The converse of the previous proposition also holds:

Proposition 9.25. Let π : P −→ M be a principal G-bundle and {Ui}i∈I
an open covering of M . Moreover, assume that there exist g-valued one-forms
Ai on Ui satisfying (9.36) for every i ∈ I. Then there is a unique connection
form ω on P which gives rise to the family {Ai}i∈I in the above described
manner.

Gauge transformations

Bundle maps from a principal bundle into itself inducing the identity on the
base space play an important role. For the next definition we recall Theorem
9.6.

Definition 9.26. Let π : P −→ M be a principal G-bundle. Denote by h :
P −→ P a bundle automorphism, i.e., a G-equivariant smooth map inducing
the identity on M . The set of all bundle automorphisms form a group G under
composition called the group of gauge transformations for π : P −→M .

We observe that every bundle automorphism h : P −→ P can be repre-
sented for all p ∈ P as

h(p) = p u(p) , (9.43)
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where u : P −→ G is a smooth map that must satisfy

u(pg) = g−1u(p)g , (9.44)

since h is assumed to be G-equivariant. In the chart
(
π−1(Ui), (π, ϕi)

)
the

local representation of h at b ∈ Ui is given by

(
ϕi ◦ h

)
(p)ϕi(p)

−1 = ϕi
(
p u(p)

)
ϕi(p)

−1 = ϕi(p)u(p)ϕi(p)
−1 ,

where p ∈ π−1(b) and (9.7) is used. On Ui, we then define the map

ui(b) = ϕi
(
π−1(b)

)
u
(
π−1(b)

)
ϕi
(
π−1(b)

)−1
. (9.45)

Note that right-hand side is independent of q ∈ π−1(b), since for q = pg we
have

ϕi(pg)u(pg)ϕi(pg)
−1 = ϕi(p)g u(pg)g

−1ϕi(p)
−1 (9.44)

= ϕi(p)u(p)ϕi(p)
−1 .

Note also that if uj : Uj −→ G is defined as in (9.45) by another chart(
π−1(Uj), (π, ϕj)

)
, then the following equation holds for b ∈ Ui ∩ Uj 6= ∅:

uj(b) = fi,j(b)ui(b)fi,j(b)
−1 . (9.46)

Next, we give two other interpretations of the map u : P −→ G.

a) Let si : Ui −→ π−1(Ui) denote the (local) section associated the the
bundle chart

(
π−1(Ui), (π, ϕi)

)
of the principal G-bundle π. Noting that

si
(
π(p)

)
= pϕi(p)

−1, we obtain for p ∈ π−1(Ui) that

(
s∗i u
)(
π(p)

)
= u ◦ si

(
π(p)

)
= u

(
pϕi(p)

−1
)

(9.44)
= ϕi(p)u(p)ϕi(p)

−1 (9.45)
= ui(b) . (9.47)

b) The map u : P −→ G can also be seen as section of the associated
bundle π̃ : P ×c G −→M , where c denotes the action by conjugation on
G defined in (7.36). – We consider the (local) section of the associated
bundle π̃ given by

s̃i : Ui −→ P ×c G ,

π̃(p) 7−→
[
p, u(p)

]
. (9.48)

Note that he right-hand side is independent of p ∈ P by definition of
the associated bundle in Section 9.3. Moreover, using the bundle chart(
π̃−1(Ui), (π̃, ϕ̃i)

)
for π̃ constructed in the proof of Theorem 9.16, we see

that the map ϕ̃i ◦ s̃i : Ui −→ G agrees with (9.45).

Now, we want to determine how a connection form transforms under
a bundle automorphism. – Let ω ∈ Ω1(P, g) be a connection form on the
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principal G-bundle π : P −→ M . Clearly, the pull-back h∗ω by the bundle
automorphism h : P −→ P is again a connection form on P . For Xp ∈ TpP ,
we have (

h∗ω
)
p
(Xp) = ωh(p)(dhp ·Xp) .

In order to compute the right-hand side, we use (9.43) for the differential dh
and then proceed as in the proof of Proposition 9.24 to obtain2

(
h∗ω

)
p
(Xp) = u(p)−1ωp(Xp)u(p) + u(b)−1dup ·Xp . (9.49)

With the (local) section si : Ui −→ π−1(Ui) associated the bundle chart, we
obtain using (9.47) that

(
s∗i (u

−1ωu)
)
π(p)

(Xb) = u−1 ◦ si
(
π(p)

)
(s∗iω)π(p)(Xb) u ◦ si

(
π(p)

)

= ui(b)
−1 (s∗iω)π(p)(Xb) ui(b) ,

where b = π(p) ∈ Ui. Applying the pull-back of si on both sides of (9.49), we
thus arrive at

s∗i
(
h∗ω

)
(b) = ui(b)

−1Ai(b)ui(b) + ui(b)
−1(dui)b , (9.50)

where Ai = s∗iω denote the gauge potentials introduced in (9.34).

Remark. Comparing with (9.42), we conclude that the above transformation
formula can be interpreted equivalently as the effect of a local gauge trans-
formation on the gauge potentials representing a fixed connection form, or
as effect of a gauge transformation on a connection form, viewed in a fixed
local gauge.

Horizontal Lift and Parallel Transport

Given a connection on a principal G-bundle π : P −→M , we can now define
the concept of parallel transport of fibers along any given curve in the base
space M .

Definition 9.27. The horizontal lift of a vector field X ∈ X (M) on M is
a vector field X̃ ∈ X (P ) on P such that (dπ)p · X̃p = Xπ(p), for every p ∈ P .

We observe that – as a direct consequence of Definition 9.21 – a connection
makes the linear map (dπ)p : Hp −→ Tπ(p)M to an isomorphism. This leads
to the following result.

Proposition 9.28. Let X ∈ X (M) and H be a connection on a principal
G-bundle π : P −→ M . Then there exists a unique horizontal lift X̃ ∈ X (P )
of X. Moreover, the horizontal lift X̃ is invariant by Rg, for every g ∈ G.
Conversely, for every horizontal vector field Y ∈ X (P ) being invariant by
Rg, there exists a vector field X ∈ X (M) whose horizontal lift equals Y .

2 The computation is completely analogous to the one in the proof of Proposition
9.24 except that (9.37) is replaced by (9.43).
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Proof. The existence and uniqueness of the horizontal lift X̃ is clear from the
above observation. It remains to show that X̃ ∈ X (P ), i.e., that X̃ is smooth.

For this purpose, let b ∈ M and consider a chart
(
π−1(U), (π, ϕ)

)
of

π : P −→ M about π−1(b) which is by definition a diffeomorphism between
π−1(U) and U × G. Using this diffeomorphism, we deduce the existence of
a smooth vector field Z on π−1(U) such that Xc = (dπ)π−1(c) · Zπ−1(c), for

all c ∈ U . Then due to the uniqueness we have X̃ = ZH and the horizontal
vector field ZH on π−1(U) remains smooth. – The fact that X̃ is invariant
by Rg , for every g ∈ G, is a direct consequence of the Rg-invariance of the
connection in (ii) of Definition 9.21.

Conversely, let Y ∈ X (P ) be a horizontal Rg-invariant vector field on P .
For every b ∈M we then choose a point p ∈ π−1(b) and set Xb = (dπ)p · Yp.
Note that Xb ∈ TbM is independent of the choice of p in the fiber π−1(b)
over b. Indeed, if q = pg ∈ π−1(b) and using the properties of Y , we have

(dπ)q · Yq = (dπ)pg ·
(
(dRg)p · Yp

)
= (dπ)p · Yp .

The smoothness of the resulting vector field X on M is clear. ut

The notion of horizontal lift of a vector field X on M naturally leads to
the following concept of horizontal lift of a curve in M : The integral curve
of the horizontal lift X̃ through a point p0 ∈ P will be defined to be the
horizontal lift of the integral curve of X through the point b0 = π(p0) ∈ M .
More precisely, we have

Definition 9.29. Let γ : [0, 1] −→ M be a C1-curve in M . A horizontal
lift of γ is a horizontal curve γ̃ : [0, 1] −→ P in P such that π ◦ γ̃ = γ.

Remark. Note that horizontal curve means that ˙̃γ(t) ∈ Hγ̃(t), for all t ∈ [0, 1],

where ˙̃γ(t) denotes the tangent vector of γ̃ at the point γ̃(t).

Theorem 9.30. Let γ : [0, 1] −→ M be a C1-curve in M and p0 ∈ P with
π(p0) = γ(0) ∈ M . Then there exists a unique horizontal lift γ̃ : [0, 1] −→ P
of γ through p0 meaning that γ̃(0) = p0.

Proof. Let t0 ∈ [0, 1] and choose I ⊂ [0, 1] containing t0 such that γ(I) ⊂
U with U open subset of M . By local triviality of the principal G-bundle
π : P −→ M , we deduce the existence of a C1-curve c : I −→ P such that
c(t0) = q0 with q0 ∈ P satisfying π(q0) = γ(t0) ∈ M and π

(
c(t)
)

= γ(t), for
all t ∈ I . Repeating this argument for an open covering of M , there exists
a C1-curve c : [0, 1] −→ P such that c(0) = p0 and π

(
c(t)
)

= γ(t), for all
t ∈ [0, 1].

Next, we observe that if the horizontal lift γ̃ : [0, 1] −→ P of γ exists, it
must be of the form

γ̃(t) = c(t)a(t) for t ∈ [0, 1] , (9.51)
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where a : [0, 1] −→ G is a curve in the structure group G with a(0) = e.
In order to determine the curve a : [0, 1] −→ G making γ̃ to a hori-

zontal one, we proceed again as in the proof of Proposition 9.24. First, we
apply Leibniz’s formula to the right action A : G × P −→ P and obtain by
differentiating (9.51) that

˙̃γ(t) = dσc(t) · ȧ(t) + dRa(t) · ċ(t) .

Applying the connection form ω to both sides, we then deduce

ω
(
˙̃γ(t)
)

= Ada(t)−1 ◦ ω
(
ċ(t)
)

+ a(t)−1ȧ(t) ,

where a(t)−1ȧ(t) : [0, 1] −→ g denotes the curve θa(t)
(
ȧ(t)

)
=
(
dLa(t)−1

)
a(t)

·

ȧ(t) in the Lie algebra g. Thus we arrive at the following condition for γ̃ to
be horizontal:

0 = Ada(t)−1 ◦ ω
(
ċ(t)
)

+ a(t)−1ȧ(t) ,

which is equivalent to
ȧ(t)a(t)−1 = −ω

(
ċ(t)
)
, (9.52)

where ȧ(t)a(t)−1 denotes the curve
(
dRa(t)−1

)
a(t)

·ȧ(t) in g. Lemma 9.31 below

then gives a solution a : [0, 1] −→ G for (9.52). – Thus, we have constructed
a horizontal lift γ̃ of γ. ut

Lemma 9.31. Let g be the Lie algebra of a Lie group G. Moreover, assume
that C : [0, 1] −→ g is a continuous curve in g. Then, there exists a unique
C1-curve a : [0, 1] −→ G in G such that

ȧ(t)a(t)−1 = C(t) , a(0) = e , (9.53)

for all t ∈ [0, 1].

Proof. In the particular case of a constant curve C(t) = A ∈ g, it follows for
(9.53) that (

dRa(t)−1

)
a(t)

· ȧ(t) = ȧ(t)a(t)−1 = A .

This equation is satisfied by a(t) = ΓXA

t (e) = Rexp(tA) e.
Returning to the general case, suppose that C(t) is defined for all t ∈ R.

We then consider a vector field X on R × G having the following value at
(t, g) ∈ R ×G:

X(t, g) =

(
∂

∂x
(t), (dRg)e · C(t)

)
∈ TtR × TgG ,

where x denotes the canonical coordinate function on R. It is clear that there
exists a unique (local) integral curve starting at (0, e) which we write as
t 7−→

(
t, a(t)

)
∈ R×G. Since ȧ(t) = (dRa(t))e ·C(t), we conclude that a(t) is

the desired C1-curve. It remains to show that a(t) is defined for all t ∈ [0, 1].
ut
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With the help of the previous theorem we are now ready to define the
parallel transport of fibers as follows:

Definition 9.32. Let γ : [0, 1] −→M be a C1-curve. We call the map

τγ : π−1
(
γ(0)

)
−→ π−1

(
γ(1)

)
,

p 7−→ γ̃p(1) .

where γ̃p denotes the horizontal lift of γ through p, the parallel transport
along γ.

Remark. Recall that the horizontal lift depends on the connection H for
π : P −→ M (see (9.52)). To be more precise we should call τγ the parallel
transport of γ with respect to H.

The next proposition shows that τγ is an isomorphism between π−1
(
γ(0)

)

and π−1
(
γ(1)

)
.

Proposition 9.33. Let γ : [0, 1] −→ M be a C1-curve. Then the parallel
transport commutes with the right action on G, i.e.,

τγ ◦Rg = Rg ◦ τγ ,

for all g ∈ G.

Proof. Let p ∈ π−1
(
γ(0)

)
and observe that Rg ◦ γ̃p(1) = γ̃pg(1) as a conse-

quence of the fact that Rg maps horizontal curves in P into horizontal ones
(see (ii) of Definition (9.21)). By uniqueness of γ̃pg(1) the assertion follows.

ut

9.5 Curvature of a Connection

Consider again a principal G-bundle π : P −→ M . Let α be a Lie algebra-
valued s-form on P , i.e., α ∈ Ωs(P, g). We say that α is (right) equivariant
if it satisfies

(Rg)
∗α = Adg−1 ◦ α , (9.54)

for all g ∈ G, and α is said to be horizontal if

α(X1, . . . , Xs) = 0 ,

whenever at least one of the vector fields X1, . . . , Xs ∈ X (P ) is vertical.

Example 9.34. A connection form ω on π : P −→ M is an equivariant one-
form on P .
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There is an interesting interpretation of such forms: Every equivariant
and horizontal Lie algebra-valued s-form α ∈ Ωs(P, g) on P can be regarded
as smooth section of

∧s
T ∗M ⊗ P ×Ad g. In other words, α is an s-form on

M with values in P ×Ad g defined in Section 9.3. Indeed, let α ∈ Ωs(P, g)
be equivariant and horizontal. Then we define, for all X1, . . . , Xs ∈ TpP , the
following s-form α̃ on M :

α̃π(p)(dπp ·X1, . . . , dπp ·Xs) =
[
p, αp(X1, . . . , Xs)

]
. (9.55)

It is left as an exercise to check that this definition is independent of p and
X1, . . . , Xs. – Note that this construction is completely similar to the one in
(9.48).

Remark. Since a connection form ω is only equivariant and not horizontal,
there is no interpretation as a section of

∧1
T ∗M ⊗ P ×Ad g. However, if we

fix a connection ω̃, then the difference α := ω− ω̃ – which is horizontal – can
be regarded as section of

∧1
T ∗M ⊗P ×Ad g. Conversely, given a connection

ω and α a section of
∧1

T ∗M⊗P×Adg, then ω̃ := ω+α is again a connection
form on P . In other words, the space of connections on P is an affine space.

Definition 9.35. Let π : P −→ M be a principal G-bundle with connection
H and α ∈ Ωs(P, g). We define the covariant derivative Dα of α with
respect to H to be the following element of Ωs+1(P, g):

Dα(X1, . . . , Xs+1) = dα(XH
1 , . . . , X

H
s+1) ,

where XH
1 , . . . , X

H
s+1 ∈ H are the horizontal components of the vector fields

X1, . . . , Xs+1 ∈ X (P ).

Proposition 9.36. Let α ∈ Ωs(P, g) be an equivariant Lie algebra-valued
s-form on P . Then Dα ∈ Ωs+1(P, g) is an equivariant and horizontal (s+1)-
form on P .

Proof. As a direct consequence of Definition 9.21, we observe that
(
(Rg)∗Y

)H
=

(Rg)∗Y
H , for every Y ∈ X (P ). This implies that

(Rg)
∗Dα(X1, . . . , Xs+1) = Dα

(
(Rg)∗X1, . . . , (Rg)∗Xs+1

)

= dα
((

(Rg)∗X1

)H
, . . . ,

(
(Rg)∗Xs+1

)H)

= dα
(
(Rg)∗X

H
1 , . . . , (Rg)∗X

H
s+1

)

= (Rg)
∗dα(XH

1 , . . . , X
H
s+1) .

Since pull-back and exterior derivative commute, it follows that

(Rg)
∗Dα(X1, . . . , Xs+1) = d

(
(Rg)

∗α
)
(XH

1 , . . . , X
H
s+1) .

By assumption α is an equivariant s-form. Hence, we obtain
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(Rg)
∗Dα(X1, . . . , Xs+1) = Adg−1 ◦ dα(XH

1 , . . . , X
H
s+1)

= Adg−1 ◦Dα(X1, . . . , Xs+1) ,

showing that Dα ∈ Ωs+1(P, g) is also equivariant. – The fact that Dα is
horizontal is obvious. ut

Definition 9.37. Let H be a connection for a principal G-bundle π : P −→
M with connection form ω. We define the curvature form Ω to be the
covariant derivative Dω ∈ Ω2(P, g) of ω with respect to H.

Remark. Note that because of the previous proposition the curvature form
is an equivariant and horizontal two-form on P . Explicitly, we have

(Rg)
∗Ω = Adg−1 ◦Ω . (9.56)

Moreover, the curvature form Ω ∈ Ω2(P, g) can be interpreted as smooth

section of
∧2

T ∗M ⊗ P ×Ad g as mentioned before.

Theorem 9.38 (Cartan’s Structure Equation). Let ω be a connection
form on a principal G-bundle π : P −→ M and Ω ∈ Ω2(P, g) its connection
form. Then, we have

Ωp(Xp, Yp) = (dω)p
(
Xp, Yp

)
+
[
ωp(Xp), ωp(Yp)

]
, (9.57)

for all Xp, Yp ∈ TpP .

Proof. First note that by assumption Xp, Yp ∈ TpP can be decomposed
uniquely into their vertical and horizontal components. Moreover, since both
sides of (9.57) are bilinear and skew-symmetric in Xp and Yp, it is sufficient
to show Cartan’s structure equation in the following three special cases:

a) If Xp and Yp are both horizontal, then ωp(Xp) = ωp(Yp) = 0. Thus, we
see that (9.57) reduces to the definition of the curvature form Ω.

b) Let Xp and Yp be both vertical. Then we consider A,B ∈ g such that
their corresponding fundamental vector fields A∗ and B∗ satisfy A∗(p) = Xp,
respectively, B∗(p) = Yp. Using formula (6.50) for the exterior derivative of
ω, we obtain

dω(A∗, B∗) = d
(
ω(B∗)

)
· A∗ − d

(
ω(A∗)

)
·B∗ − ω

(
[A∗, B∗]

)
. (9.58)

Since ω(A∗) = A and ω(B∗) = B are independent of p ∈ P , we deduce
that the first and second term on the right-hand side of (9.58) vanish. From
Proposition (7.29) we also deduce that

dω(A∗, B∗) = −ω
(
[A∗, B∗]

)
= −ω

(
[A,B]∗

)
.

This can be written as

dω(A∗, B∗) = −[A,B] = −
[
ω(A∗), ω(B∗)

]
.
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Since A∗(p) = Xp and B∗(p) = Yp, we arrive at

(dω)p(Xp, Yp) = −
[
ωp(Xp), ωp(Yp)

]
, .

On the other hand, we see that Ωp(Xp, Yp) = 0 for vertical Xp and Yp by
definition of the curvature form.

c) Let Xp be horizontal and Yp vertical. We extend Xp to a horizontal
vector field X on P and consider a fundamental vector field B∗ with B∗(p) =
Yp as before. Using again (6.50), we obtain

dω(X,B∗) = d
(
ω(B∗)

)
·X − d

(
ω(X)

)
·B∗ − ω

(
[X,B∗]

)
. (9.59)

Since ω(X) = 0 and d
(
ω(B∗)

)
·X vanishes as before, (9.59) simplifies to

dω(X,B∗) = −ω
(
[X,B∗]

)
.

From Lemma 9.39 below we conclude that the right-hand side of the last
equation vanishes. On the other hand, we clearly have Ωp(Xp, Yp) = 0. –
Thus we have established that Cartan’s formula also holds in the third case
and therefore (9.57) is proved. ut

Lemma 9.39. Let A∗ ∈ X (P ) be the fundamental vector field to A ∈ g and
X ∈ X (P ) a horizontal vector field. Then, the bracket [X,A∗] is a horizontal
vector field on P .

Proof. Recall from the proof of Proposition 7.29 that Rat
: P −→ P is the

flow of A∗. Hence, by definition of the bracket of vector fields

[X,A∗] = lim
t→0

1

t

(
(Rat

)∗X −X
)
.

From the assumption that X is horizontal and Definition 9.21, it follows that
(Rat

)∗X is also horizontal. Thus, we deduce the proposition. ut

Corollary 9.40. Let H be a connection on a principal G-bundle π : P −→
M with connection form ω and Ω ∈ Ω2(P, g) the curvature form with respect
to H. Assume also that X,Y ∈ X (P ) are horizontal vector fields. Then, we
have

Ωp(Xp, Yp) = −ωp
(
[X,Y ](p)

)
. (9.60)

In particular, the differentiable distribution H on P is integrable if and only
if Ω vanishes identically on P .

Proof. Since X and Y are horizontal, Cartan’s structure equation (9.57) im-
plies

Ωp(Xp, Yp) = (dω)p
(
Xp, Yp

)
.

Using (6.50) for the right-hand side, it follows
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Ωp(Xp, Yp) = −ωp
(
[X,Y ](p)

)
.

Recall that due to Frobenius’ Theorem 8.5 the distribution H on P is
integrable if and only if it is involutive in the sense of Definition 8.4. By (9.60)
we deduce that the involutivity of H is equivalent to the fact of vanishing
curvature on P . ut

In the following, we will often write Cartan’s structure equation differ-
ently. More precisely, in a basis {Ei}i=1,...,n of g with ω =

∑n
i=1 ω

i Ei, we
have (see (7.21))

ω ∧ ω(X,Y ) =

n∑

i,j=1

ωi ∧ ωj(X,Y ) [Ei, Ej ]

=

n∑

i,j=1

(
ωi(X)ωj(Y ) − ωj(X)ωi(Y )

)
[Ei, Ej ] = 2

[
ω(X), ω(Y )

]
,

implying that Cartan’s structure equation becomes

Ω = dω +
1

2
ω ∧ ω . (9.61)

Moreover, using the structure coefficients ckij of g defined in (7.22) and writing

Ω =
∑n

i=1Ω
i Ei, Cartan’s structure equation can also be written as

Ωk = dωk +

n∑

i<j=1

ckij ω
i ∧ ωj , (9.62)

for k = 1, . . . , n.

Theorem 9.41 (Bianchi’s Identity). Let H be a connection on a principal
G-bundle π : P −→M with curvature form Ω ∈ Ω2(P, g). Then the covariant
derivative of Ω with respect to H vanishes identically on P , i.e., we have

DΩ = 0 . (9.63)

Proof. By Definition 9.35 of the covariant derivative D, it suffices to show
that

dΩ(X,Y, Z) = 0 ,

where X,Y, Z ∈ X (P ) are all horizontal. For this purpose, we apply the
exterior derivation d on Cartan’s structure equation in the form (9.62) and
obtain

dΩk(X,Y, Z) = +

n∑

i<j=1

ckij dω
i ∧ ωj(X,Y, Z) −

n∑

i<j=1

ckij ω
i ∧ dωj(X,Y, Z) ,

Since ωi(X) = ωi(Y ) = ωi(Z) = 0, for i = 1, . . . , n, the right-hand side of
the last equation vanishes implying the result. ut
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Curvature Form in Local Coordinates

Proceeding as in the case of a connection form, we associate to the curvature
form Ω ∈ Ω2(P, g) a family of g-valued two-forms defined on open subsets of
the base space M . – Starting with the same setting as for a connection form
in Section 9.4, we define

Fi = s∗iΩ . (9.64)

Note that in the physics literature Fi is often called the (local) field
strength. From Cartan’s structure equation (9.61), we get

s∗iΩ = s∗i

(
dω +

1

2
ω ∧ ω

)
= d(s∗iω) +

1

2
(s∗i ω) ∧ (s∗iω) ,

and in terms of the gauge potential Ai = s∗iω defined (9.34) this becomes

Fi = dAi +
1

2
Ai ∧Ai . (9.65)

There is also a compatibility condition for the field strength.

Proposition 9.42. Let
{(
π−1(Ui), (π, ϕi)

)}
i∈I

be an atlas and ω a connec-
tion form for a principal G-bundle π : P −→ M with curvature form Ω. Then
the two-forms Fi ∈ Ω2(Ui, g) satisfy the following compatibility condition on
Ui ∩ Uj 6= ∅:

Fj(b) = Adfj,i(b)−1 ◦ Fi(b) . (9.66)

Proof. Let b ∈ Ui ∩ Uj and Xb, Yb ∈ TbM . Then, we have

(Fj)b
(
Xb, Yb

)
= (s∗jΩ)b

(
Xb, Yb

)
= Ωsj (b)

(
(dsj)b ·Xb, (dsj)b · Yb

)
.

Now, we use the formula (9.39) for (dsj)b ·Xb and (dsj)b · Yb. Note that the
first term on the right-hand side of (9.39) is vertical because of (9.41). For
the curvature being horizontal, we thus obtain

(Fj)b
(
Xb, Yb

)
= Ωsj(b)

(
dRfj,i(b) · (dsi)b ·Xb, dRfj,i(b) · (dsi)b · Yb

)

=
(
(Rfj,i(b))

∗Ω
)
si(b)

(
(dsi)b ·Xb, (dsi)b · Yb

)
.

Since Ω is equivariant (see (9.56)), it then follows

(Fj)b
(
Xb, Yb

)
= Adfj,i(b)−1 ◦Ωsi(b)

(
(dsi)b ·Xb, (dsi)b · Yb

)

= Adfj,i(b)−1 ◦ (Fi)b
(
Xb, Yb

)
,

showing the proposition. ut

Remark. In Exercise 9.44 below, we show the compatibility condition when
interpreting the curvature form as a section of

∧2 T ∗M ⊗ P ×Ad g.



9.5 Curvature of a Connection 239

Flat Connections

Because of their integrability proved in Corollary 9.40, connections with van-
ishing curvature are very important.

Definition 9.43. A connection ω on a principal G-bundle π : P −→ M is
said to be flat if its corresponding curvature form Ω vanishes identically.

On trivial principal bundles such connections are easy to produce. – Con-
sider the trivial principal G-bundle π : M ×G −→ G with projection on the
second factor and let θ be the Maurer-Cartan form on G. Then we define a
g-valued one-form ω on P by

ω = π∗θ . (9.67)

We first claim that ω is a connection form on P = M×G −→ G. – Note that
for A ∈ TeG, we have

(
(Rg)

∗θ
)
e
(A) = θg

(
(dRg)e · A

)
= (dLg−1)g · (dRg)e · A

= d(Lg−1 ◦Rg)e ·A = Adg−1 (A) = Adg−1 ◦ θe(A) ,

showing that the Maurer-Cartan form θ is equivariant and also the equivari-
ance of ω. Moreover, using (7.34) and Proposition 7.11, we have that

ω(p,g)

(
A∗(p, g)

)
= (π∗θ)(p,g)

(
A∗(p, g)

)
= θg

(
dπ(p,g) ·A

∗(p, g)
)

= θg
(
A∗(g)

)
= θg

(
XA(g)

)
= A .

Proposition 9.23 then implies that ω is a connection form as claimed with
connection (see (9.33))

H(p,g) = kerω(p,g) =
{
X(p,g) ∈ TpM ⊕ TgG : ω(p,g)(X(p,g)) = 0

}
,

being as direct consequence of (9.67) the tangent space to the submanifold
M × {g} of M ×G. In order to show that ω is flat, we use Maurer-Cartan’s
structure equation (7.23) for the computation of

dω = d(π∗θ) = π∗(dω) = π∗

(
−

1

2
θ ∧ θ

)
= −

1

2
ω ∧ ω .

This gives

Ω
(9.61)
= dω +

1

2
ω ∧ ω = 0 ,

showing the flatness of ω.

∗ ∗ ∗

Exercises.
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Exercise 9.44. At the beginning of this section, we have seen that the cur-
vature form can be regarded as section of

∧2
T ∗M⊗P×Adg. Using the bundle

atlas for π : P ×Ad g −→M constructed in the proof of Theorem 9.16, define
Fi ∈ Ω2(Ui, g) in a suitable way and show the compatibility condition (9.66)
with the help of the corresponding transition functions.

Hint. Proceed similarly to the case of local gauge transformations studied in
Section 9.4.



9.6 The Hopf Bundle

The complex projective space CP n is defined similarly to RP n (see Example
2.21). We will study the case n = 1 in more detail. – On C2 \{0}, we consider
the equivalence relation z = (z1, z2) ∼ ξ = (ξ1, ξ2) if and only if there exists
λ ∈ C such that z = λξ. Let

π : C2 \ {0} −→ CP 1 ,

z = (z1, z2) 7−→ [z] = [z1, z2], , (9.68)

denote the canonical projection which gives the quotient CP 1 = C2 \ {0}/ ∼
the quotient topology. Next, we define the open sets

U1 =
{
[z] ∈ CP 1 : z1 6= 0

}
, U2 =

{
[z] ∈ CP 1 : z2 6= 0

}
,

in CP 1 with U1 ∪ U2 = CP 1 and the homeomorphisms

ϕ1 : U1 −→ C = R2 , ϕ2 : U2 −→ C = R2 ,

[z] 7−→
z2
z1
, [z] 7−→

z1
z2
.

Moreover, the transition function ϕ2 ◦ ϕ−1
1 : ϕ1(U1 ∩ U2) −→ ϕ2(U1 ∩ U2)

given by

ϕ2 ◦ ϕ
−1
1 (z) = ϕ2

(
[1, z]

)
=

1

z
, (9.69)

is a C∞-diffeomorphism. The same holds for the other transition function
ϕ1 ◦ ϕ−1

2 . In summary, the complexe projective space CP 1 becomes a C∞-
differentiable manifold of (real) dimension two for this differentiable struc-
ture.

Now, we consider the two-dimensional unit sphere S2 in R3 for which
we construct a differentiable structure via the stereographic projection. More
precisely, let N = (0, 0, 1) and S = (0, 0,−1) be the north and south pole of
S2 and define the open sets

US = S2 \ {N} , UN = S2 \ {S} .

The stereographic projection maps are then given by

ϕS : US −→ R2 , ϕN : UN −→ R2 ,

x 7−→

(
x1

1 − x3
,

x2

1 − x3

)
, x 7−→

(
x1

1 + x3
,

x2

1 + x3

)
. (9.70)

In words, the values of ϕS and ϕN correspond to the intersection with the
(x1, x2)-plane of the straight line joining x and the north pole N , respectively
the south pole S. Moreover, the transition functions from R2 \ {0, 0} into
R2 \ {0, 0} read as
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ϕS ◦ ϕ−1
N (x) =

1

‖x‖2
x = ϕN ◦ ϕ−1

S (x) . (9.71)

Identifying R2 with C this becomes

ϕS ◦ ϕ−1
N (z) =

1

z̄
= ϕN ◦ ϕ−1

S (z) .

Note that these transition functions coincide up to complex conjugation with
(9.69).

By composition of the transition functions (9.71) and (9.69) for S2, re-
spectively CP 1, and a gluing argument, it is now possible to construct a
diffeomorphism

f : CP 1 −→ S2 ,

[z] 7−→
1

|z1|2 + |z2|2
(
2 z1z̄2, |z1|

2 − |z2|
2
)
, (9.72)

showing that CP 1 and S2 are diffeomorphic. – For more details, we refer to
G.L. Naber [], Section 1.2.

Next, we consider S3 ⊂ R4 viewed as

S3 =
{
(z1, z2) ∈ C2 : |z1|

2 + |z2|
2 = 1

}
,

and the map

S3 × U(1) −→ S3 ,(
(z1, z2), e

iθ
)
7−→ (z1, z2)e

iθ = (z1 e
iθ, z2 e

iθ) .

It is left as an exercise to check that this map is well-defined and gives a free
right action of U(1) = {z ∈ C : |z| = 1} = {eiθ ∈ C : θ ∈ R} on S3.
Now, consider the restriction of the projection π : C2 \ {0} −→ CP 1 defined
in (9.68) to S3 – which we will also denote by π – and let (z1, z2) ∈ S3 and
(ξ1, ξ2) ∈ S3 such that π(z1, z2) = π(ξ1, ξ2). This implies that there exists
λ ∈ U(1) such that (z1, z2) = λ (ξ1, ξ2). In other words, for (z1, z2) ∈ S3 and
all eiθ ∈ U(1), we have

π
(
(z1, z2)e

iθ
)

= π(z1, z2) . (9.73)

Note that the restriction of π : C2 \ {0} −→ CP 1 to S3 can also be written
differently in the following way: Identyfing C2 with R4 and using the fact
that CP 1 and S2 are diffeomorphic, we obtain

π : S3 −→ S2 ,

(x1, x2, x3, x4) 7−→
(
2x1x3 + 2x2x4, 2x2x3 − 2x1x4,

(x1)
2 + (x2)

2 − (x3)
2 − (x4)

2
)
. (9.74)
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Now, we want to show that π : S3 −→ CP 1 is a principal U(1)-bundle,
called the Hopf bundle. For this purpose, we have to construct a bundle
atlas. – Let U1 and U2 be open subsets of CP 1 as defined before. Then, for
i = 1, 2, we define the following diffeomorphisms:

(π, ϕi) : π−1(Ui) −→ Ui × U(1) ,

(z1, z2) 7−→

(
[z1, z2],

zi
|zi|

)
. (9.75)

Moreover, for all eiθ ∈ U(1), we have

ϕi
(
(z1, z2)e

iθ
)

= ϕi
(
(z1 e

iθ, z2 e
iθ)
)

=
zi
|zi|

eiθ = ϕi
(
(z1, z2)

)
eiθ .

Togther with (9.73), we have thus shown that the bundle atlas

{(
π−1(U1), (π, ϕ1)

)
,
(
π−1(U2), (π, ϕ2)

)}

satisfies (9.5) implying that π : S3 −→ CP 1 is a principal U(1)-bundle.
Equivalently, we have constructed a principal U(1)-bundle π : S3 −→ S2. For
completeness, we note that the transition functions f1,2 : U1 ∩ U2 −→ U(1)
and f2,1 : U2 ∩ U1 −→ U(1) are given by (see (9.6))

f1,2
(
(z1, z2)

)
= ϕ2(z1, z2)ϕ1(z1, z2)

−1 =
|z1| z2
|z2| z1

,

respectively, by

f2,1
(
(z1, z2)

)
= ϕ1(z1, z2)ϕ2(z1, z2)

−1 =
|z2| z1
|z1| z2

.

Moreover, the (local) sections associated to the above bundle charts read as

s1
(
[z1, z2]

)
= (π, ϕ1)

−1
(
[z1, z2], 1

)
=

(
|z1|,

z2
z1

|z1|

)
∈ S3 , (9.76)

respectively as

s2
(
[z1, z2]

)
= (π, ϕ2)

−1
(
[z1, z2], 1

)
=

(
z1
z2

|z2|, |z2|

)
∈ S3 . (9.77)

On R4, there is an addition to the vector space structure an associative
and distributive multiplication generalizing that of complex numbers. More
precisely, we write elements in R4 as x1 + i x2 + j x3 + k x4 and define

i2 = j2 = k2 = −1 ,

ij = −ji = k , jk = −kj = i , ki = −ik = j .
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We end up with the so-called quaternionic numbers H. The imaginary part
of q ∈ H is given by Im(q) = i x2 + j x3 + k x4, the real part by Re(q) = x1

and the quaternionic conjugate by q̄ = x1 − i x2 − j x3 − k x4. Moreover, the
norm |q|2 = qq̄ equals the usual norm on R4.

As in the case of complex numbers, we can define the quaternionic pro-
jective space HP 1 as the quotient H2 \ {0}/ ∼ with canonical projection

π : H2 \ {0} −→ HP 1 ,

(q1, q2) 7−→ [q1, q2] . (9.78)

We also endow H2 with the standard scalar product

〈
(q1, q2), (q̃1, q̃2)

〉
= q1q̃1 + q2q̃2 . (9.79)

Note that the real part of the last expression just gives the usual standard
scalar product on R8 = H2.

Now, we proceed as in the case of the Hopf bundle: Consider the restriction
of the canonical projection π : H2 \ {0} −→ HP 1 to S7 ⊂ R8 viewed as

S7 =
{
(q1, q2) ∈ H2 : |q1|

2 + |q2|
2 = 1

}
,

and define a free a right action

S7 × SU(2) −→ S7 ,(
(q1, q2), g

)
7−→ (q1, q2)g = (q1g, q2g)

of SU(2) = {q ∈ H : |q| = 1} on S7, in order to obtain a principal
SU(2)-bundle π : S7 −→ HP 1. Equivalently, since HP 1 is isomorphic to
S4, we have obtained a principal SU(2)-bundle π : S7 −→ S4, the so-called
(generalized) Hopf bundle.

Connection and Curvature for the Hopf Bundle

We now construct a connection on the generalized Hopf bundle by introducing
first a Lie algebra-valued one-form on S7 having the characteristic properites
of a connection form. Then we will see that the connection corresponding to
this one-form has a precise geometrical interpretation.

Consider the following one-form ω̃ on H2:

ω̃(q1,q2) = Im(q̄1 dq1 + q̄2 dq2) .

Then, let ω be the restriction of ω̃ to S7, i.e.,

ω = ι∗S7 ω̃ . (9.80)

This one-form is clearly Im H-valued. Because of Exercise 9.46, the one-form
ω on S7 can also be seen as taking its values in the Lie algebra su(2) of
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SU(2). For p = (q1, q2) ∈ S7 ⊂ H2 and Xp = (X1
p , X

2
p ) ∈ TpS

7 ⊂ TpH
2 =

Tq1H × Tq2H, we have

ωp(Xp) = ω̃p(dιS7 ·Xp) = ω(q1,q2)(X̃(q1,q2))

= Im
(
q̄1 dq1(X̃(q1,q2)) + q̄2 dq2(X̃(q1,q2))

)

= Im
(
q̄1X

1
(q1,q2) + q̄2X

2
(q1,q2)

)
, (9.81)

where, as usual, tangent vectors to H are identified with elements of H via
the canonical isomorphism and dιS7 ·Xp = X̃p ∈ TpH

2.
Next, we claim that

(Rg)
∗ω = Adg−1 ◦ ω , (9.82)

for all g ∈ SU(2). In order to show the claim, we compute for Xp ∈ TpS
7

(
(Rg)

∗ω
)
p
(Xp) = ωpg(dRg ·Xp) = ωpg(X

1
pg,X

2
pg)

(9.81)
= Im

(
q1gX

1
pg + q2gX

2
pg
)

= Im
(
ḡq̄1X

1
pg + ḡq̄2X

2
pg
)

= Im
(
g−1q̄1X

1
pg + g−1q̄2X

2
pg
)

= g−1Im
(
q̄1X

1
p + q̄2X

2
p

)
g = Adg−1

(
ωp(Xp)

)
,

where we used that ḡ = g−1, for g ∈ SU(2).
For all p ∈ S7, the Im H-valued one-form ω also satisfies

ωp
(
A∗(p)

)
= A , (9.83)

where A∗ ∈ X (S7) is the fundamental vector field generated by A ∈ su(2) =
Im H. Indeed, we have

ωp
(
A∗(p)

)
= ωp

(
q1A, q2A

)
= Im

(
q̄1 q1A+ q̄2 q2A

)

= Im
(
(|q1|

2 + |q2|
2)A
)

= Im(A) = A ,

since p ∈ S7 and A ∈ Im H. – Note that the previous calculations are carried
out in more details in G.L. Naber [], Section 4.8.

Because of (9.82) and (9.83) we can now apply Proposition 9.23 to
conclude that ω defines a connection form for the principal SU(2)-bundle
π : S7 −→ S4. Moreover, a connection H on π : S7 −→ S4 is then given by

Hp = kerωp =
{
Xp ∈ TpS

7 : Im
(
q̄1X

1
p + q̄2X

2
p

)
= 0
}
. (9.84)

This subspace of TpS
7 has a simple geometrical interpretation. – Since the

vertical subspace Vp of TpS
7 contains vectors being tangent to the fiber{

(q1g, q2g) : g ∈ SU(2)
}

through p, we deduce
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Vp =
{
Xp ∈ TpS

7 : Xp =
d

dt

∣∣∣∣
t=0

(q1, q2) g(t)
}

=
{
(q1A, q2A) : A ∈ Im H

}
,

where g(t) ∈ C1
(
[−δ, δ], SU(2)

)
is a curve in SU(2) with g(0) = e. The

orthogonal complement of Vp in H2 for the standard scalar product in R8

consists of elements (q̃1, q̃2) ∈ H2 satisfying (see (9.79))

Re
(〈

(q1A, q2A), (q̃1, q̃2)
〉)

= Re
(
q1A q̃1 + q2A q̃2

)
= 0 ,

for all A ∈ Im H. It is not difficult to check that the last equation is equivalent
to

Im
(
q̄1q̃1 + q̄2q̃2

)
= 0 .

Comparing with (9.84) we then deduce that Hp is just the subset of the real
orthogonal complement of Vp which lies in TpS

7. This is why H is often called
the natural connection on the generalized Hopf bundle (see G.L. Naber [],
Section 5.1).

In an analogous manner, we construct the natural connection on the Hopf
bundle π : S3 −→ S2 with connection form given by

ω = ι∗S3

(
Im(z̄1 dz1 + z̄2 dz2)

)

= ι∗S3

(
x1 dx2 − x2 dx1 + x3 dx4 − x4 dx3

)
, (9.85)

where z1 = x1 + i x2 and z2 = x3 + i x4. Since the structure group U(1) of
the Hopf bundle is abelian, we conclude using Cartan’s structure equation
(9.57) that the curvature form is simply

Ω = dω = ι∗S3

(
Im(dz̄1 ∧ dz1 + dz̄2 ∧ dz2)

)

= 2 ι∗S3

(
dx1 ∧ dx2 + dx3 ∧ dx4

)
. (9.86)

In a next step, we express the natural connection form of the generalized
Hopf bundle in local coordinates. – Let s1 : U1 ⊂ S4 −→ S7 be the (local)
section associated to a bundle chart of π : S7 −→ S4 and ϕ1 : U1 −→ H = R4

the usual coordinate function for S4 being isomorphic to HP 1. ( At the
beginning of this section explicit expressions are given in the complex case).
In order to make sure that the map s1 ◦ ϕ−1

1 : ϕ1(U1) ⊂ R4 −→ S7 takes it
values in S7, the following representation for ϕ−1

1 will be used:

ϕ−1
1 (q) =

[
1√

1 + |q|2
,

q√
1 + |q|2

]
. (9.87)

For q ∈ H \ {0}, we then obtain

(
s1 ◦ ϕ

−1
1

)
(q) =

1√
1 + |q|2

(1, q) ∈ S7 ⊂ H2 .
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It is left as an exercise (see G.L. Naber [], Equation 4.8.14) to show that the
local coordinate expression for the connection form ω is given by

(
(s1 ◦ ϕ

−1
1 )∗ω

)
q

= Im

(
q̄

1 + |q|2
dq

)
. (9.88)

Moreover, as a consequence of Cartan’s structure equation (9.57), we obtain
for the local coordinate expression of the curvature form (see G.L. Naber [],
Equation 4.10.13)

(
(s1 ◦ ϕ

−1
1 )∗Ω

)
q

= Im

(
1

(1 + |q|2)2
dq ∧ dq̄

)
. (9.89)

∗ ∗ ∗

Exercise 9.45. Show that the Lie algebra u(1) of U(1) is isomorphic to the
pure imaginary complex numbers Im C with trivial bracket.

Exercise 9.46. Show that the Lie algebra su(2) of SU(2) is isomorphic to
the pure imaginary quaternions Im H with bracket [q1, q2] = q1q2 − q2q1.

9.7 Grassmannian Manifolds and Stiefel Bundles

We give a straightforward generalization of the projective spaces encountered
in previous chapters. – Let E denote an n-dimensional vector space over the
ground field F and k ≤ n. The collection of k-dimensional subspaces or k-
planes Gk(E) of E can be made to a manifold, the so-called Grassmannian
manifold. Note that G1(R

n) = RPn−1, G1(C
n) = CPn−1 and G1(H

n) =
HPn−1.

Next, we construct a canonical vector bundle over the Grassmannian man-
ifold being a generalization of Example 9.92. – The total space Ek of this
vector bundle is given by

Ek =
{
(P, v) ∈ Gk(E) ×E : v ∈ P

}
, (9.90)

with bundle projection

πk : Ek −→ Gk(E) ,

(P, v) 7−→ P . (9.91)

Thus the fiber over P ∈ Gk(E) is P itself. Details are left to the reader.
There is also a principal bundle over the Grassmannian manifold. – Con-

sidering the complex case, we define the k-frames V in Cn as the set of k
orthonormal vectors (v1, . . . , vk) satisfying

〈vi, vj〉 = δij ,
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for i, j = 1, . . . , k, where 〈·, ·〉 denotes the standard scalar product in Cn. The
collection of all k-frames can be made to a manifold, which we will denote
by Vk(C

n). The right action of g ∈ U(k) on V ∈ Vk(C
n) is denoted by V g.

Then, we define the following bundle projection:

π : Vk(C
n) −→ Gk(C

n) ,

V 7−→ PV , (9.92)

where PV ∈ Gk(C
n) is the k-plane in Cn passing through the origin generated

by the k-frame V . For V, Ṽ ∈ Vk(C
n) such that π(V ) = π̃(V ), there exists

g ∈ U(k) with V = Ṽ g. We deduce that the quotient of Vk(C
n) by this

U(k)-action is just Gk(C
n). Thus, we arrive at the principal U(k)-bundle

π : Vk(C
n) −→ Gk(C

n), the so-called Stiefel bundle.

Remark. It is important to note that in the case of n = 2 and k = 1 the
Stiefel bundle π : V1(C

2) −→ G1(C
2) = CP 1 is exactly the Hopf bundle

π : S3 −→ S2 of Section 9.92. Moreover, note also that the Stiefel bundle
π : V1(H

2) −→ G1(H
2) = HP 1 gives the (generalized) Hopf bundle π : S7 −→

S4.


