
VERLINDE FLATNESS AND RELATIONS IN H∗(Mg)

CAREL, ALINA, RAHUL (IN PROGRESS)

1. Verlinde bundles

1.1. Flatness constraint. Let Mg be the moduli space of nonsingular curves of genus

g ≥ 2. Let

µ : Ug(r, d) → Mg

be the moduli space of rank r degree d semistable bundles on nonsingular genus g curves.

The space Ug(r, r(g − 1)) carries a canonical theta divisor

Θr = {(C, E → C) with h0(C, E) 6= 0}.

For levels k ≥ 1, the divisors Θk
r are known to have no higher cohomology on the fibers

of µ. The µ-pushforwards of the powers of the associated line bundle give the Verlinde

vector bundles on Mg,

Vr,k = µ⋆Θ
k
r .

The rank of Vr,k is given by the well-known Verlinde formula [9].

For all ranks r and levels k, the Verlinde bundle Vr,k carries a projectively flat connec-

tion defined by Hitchin [1, 3, 5]. As a basic consequence, the Verlinde bundle satisifes

the topological constraint

(1) chVr,k = rankVr,k · exp

(
c1(Vr,k)

rankVr,k

)
∈ H∗(Mg),

where chi Vr,k is the ith Chern character.

1.2. Fixed determinant. We specialize now to the case of bundles of rank 2 and fixed

determinant. We denote by

µ : SUg(2, 2g − 2) → Mg

the moduli space of semistable rank 2 bundles over nonsingular curves C with determi-

nant equal to the canonical bundle ωC . In the fixed determinant situation, the push-

forward

Vr,k = µ⋆Θ
k
2

is also projectively flat [1, 5], so the Chern character again satisfies (1) on Mg.
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We will study the moduli of semistable bundles over the moduli space Mg,1. Let

SUg,1(2, 2g − 2) = SUg(2, 2g − 2) ×Mg
Mg,1

be the fiber product, and let

µ : SUg,1(2, 2g − 2) → Mg,1

be the projection. Similarly, we let

µ : SUg,1(2, 2g) → Mg,1

be the moduli space of rank 2 bundles E on nonsingular pointed curves (C, p) satisfying

detE ≃ ωC(2p).

There is a canonical isomorphism,

α : SUg,1(2, 2g) −→ SUg,1(2, 2g − 2)

defined by

(C, p, E → C) 7→ (C, p, E(−p) → C).

Certainly, we have

µ⋆α
⋆Θk

2 = µ⋆Θ
k
2,

so the Chern classes of µ⋆α
⋆Θk

2 are pulled back to Mg,1 via

ι : Mg,1 → Mg,

and satisfy (1) on Mg,1.

2. The wall-crossing calculation

2.1. Overview. In the rank 2 case with fixed determinant, we will calculate the Chern

character of the level k Verlinde bundle by geometry independent of projective flatness.

The idea is to employ the wall-crossing method of Thaddeus (used to prove the Verlinde

formula) uniformly over the moduli of curves. Where Thaddeus studies rank, we will

require K-theory. The final result computes the Chern character of the Verlinde bundle

in the tautological ring R∗(Mg,1). The projective flatness condition (1) then produces

non-trivial relations.

More precisely, the pairs construction of Thaddeus [8] determines the Verlinde vector

space

H0(SUC(2, Λ), Θ̃k
2)

associated to rank 2 and level k with fixed determinant Λ on a fixed curve C. We will

carry out the construction of Thaddeus canonically for the universal family of curves

over Mg,1 to study

µ : SUg,1(2, 2g) → Mg,1
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with determinant equal to ωC(2p). The universal theta divisor Θ̃2 on SUg,1(2, 2g) which

arises from the construction of Thaddeus must be related to the divisor α⋆Θ2 above by

a possible twist

(2) Θ̃2
∼= α⋆Θ2 ⊗ L

by a line bundle L on the base Mg,1. Since the associated Verlinde bundle

Ṽ2,k = µ∗Θ̃
k
2

is still projectively flat, the constraint (1) again holds,

(3) ch Ṽ2,k = rank Ṽ2,k · exp

(
c1(Ṽ2,k)

rank Ṽ2,k

)
∈ H∗(Mg,1).

On the other hand, by the main result of the wall-crossing method of Thaddeus, we

can write

(4) Ṽ2,k =

g−1∑

i=0

(−1)iNi

in the K-theory of Mg,1. The objects Ni and their Chern characters will be discussed

below. In fact, equation (4) allows effective computation of the Chern character of Ṽ2,k.

Relation (3) certainly implies the Chern character of Ṽ2,k lies in the tautological ring

in cohomology

RH∗(Mg,1) ⊂ H∗(Mg,1) .

However, equation (4) together with the analysis of the Ni implies the following refined

result.

Theorem 1. The Chern characters of Ṽ2,k lie in the tautological Chow ring

chi Ṽ2,k ∈ R∗(Mg,1) .

The parallel result, chi V2,k ∈ R∗(Mg), is an easy corollary. Of course, we expect

the Chern characters of the Verlinde bundles to be tautological in Chow for higher rank

r > 2 as well.

The main point of our investigation is not Theorem 1. Our hope, rather, is to combine

the constraints (3) with the calculation (4) to force new relations in the tautological ring

of the moduli space of curves [2, 6]. In light of recent progress [7] in the study of R∗(Mg),

of particular interest is the genus 24 case.
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2.2. The bundle N0. We denote the universal curve over Mg,1 by

π : C → Mg,1.

Let σ0 be the universal section, and let ω be the π-relative canonical bundle. Let

V = π⋆ (OC(2σ0) ⊗ 2ω)

The bundle N0 is a push-forward to Mg,1 from the projective bundle

ρ : PV ⋆ → Mg,1.

Specifically, letting OP(1) be the hyperplane bundle on PV ⋆, we define

N0 = ρ⋆ (OP(kg)) = Symkg V.

2.3. The objects Ni>0. The wall contributions Ni>0 are push-forwards from the sym-

metric products

ǫ[i] : C[i] → Mg,1,

where 1 ≤ i ≤
[

d−1
2

]
= g − 1. We consider the fiber product

C[i] × C

over Mg,1, and let

Di ⊂ C[i] × C

be the universal divisor. We denote by π all projections from the universal curve, for

instance

π : C → Mg,1 and π : C[i] × C → C[i].

As before, σ0 is the universal section on the second factor of the product C[i] × C.

In order to define Ni>0, we will require several vector bundles on the symmetric

product C[i]. The first two arise via cohomology along the fibers of π:

W−

i = R0π⋆ (ODi
(−Di + 2σ0) ⊗ ω) ,(5)

W+
i = R1π⋆ (OC(2Di − 2σ0) ⊗ (−ω)) .

Let U denote the sum

(6) U = W−

i ⊕ W+
i

⋆

and define the line bundle

(7) Li = det−1Rπ⋆ (OC(−Di + 2σ0) ⊗ ω) ⊗ det−1Rπ⋆ OC(Di) ⊗ det2 Eg ⊗ L⋆
p.

The rank g Hodge bundle Eg and the cotangent line Lp at the marking

Eg → Mg,1 , Lp → Mg,1

enter in the definition of Li.
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Finally, we define the objects Ni in the K-theory of Mg,1 by

(8) Ni = Rǫ⋆

(
Lk

i ⊗ ΛiW−

i ⊗ Symk(g−i)−i Ui

)
,

with the convention Ni = 0 when k(g − i) − i < 0.

2.4. Chern classes. We start by defining several classes on the universal product

ǫi : Ci → Mg,1.

The most basic is the diagonal divisor class ∆xy for indices x 6= y. Furthermore,

• Ψj is the cotangent line class on the jth factor of Ci → Mg,1,

• Ψ̂ is the cotangent line class on Mg,1,

• σj is the class of the section of the jth factor of Ci → Mg,1,

• ∆j = ∆1j + · · · + ∆j−1,j , with ∆1 = 0.

In order the calculate the Chern character of N0, we calculate the Chern character of

V by Riemann-Roch applied to π,

chV = π⋆

(
e2σ0+2ω −ω

1 − eω

)

= π⋆

((
1 +

1 − e−2ω

ω
σ0

)
e2ω −ω

1 − eω

)

= −π⋆

(
ω e2ω

1 − eω

)
−

1 − e−2bΨ

1 − e
bΨ

e2bΨ

= −π⋆

(
ω e2ω

1 − eω

)
+ 1 + e

bΨ.

Here, ω is the cotangent line class on the universal curve over Mg,1. The Chern character

of Symkg V is then determined by the symmetric product formula.

We calculate next the Chern roots of the bundles (5)-(7) after pull-back to Ci via the

natural map

φ : Ci → C[i].

To start, in K-theory,

W−

i = Rπ⋆ (ODi
(−Di + 2σ0) ⊗ ω)

= Rπ⋆ (OC(−Di + 2σ0) ⊗ ω) − Rπ⋆ (OC(−2Di + 2σ0) ⊗ ω)

= Rπ⋆ (OC(2Di − 2σ0))
⋆ − Rπ⋆ (OC(Di − 2σ0))

⋆ .

Over the point [C, p, p1 + · · · + pi] ∈ C[i], the virtual sheaf Rπ⋆ (OC(2Di − 2σ0)) is the

formal difference

H0(OC(2p1 + · · · + 2pi − 2p)) − H1(OC(2p1 + · · · + 2pi − 2p)).
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We calculate the Chern roots of the pull-back to the ordered product Ci, by taking the

cohomology of the following two exact sequences on C,

0 → OC(−2p + 2p1 + · · · + 2pj−1 + pj) →

OC(−2p + 2p1 + · · · + 2pj−1 + 2pj) →

OC(−2p + 2p1 + · · · + 2pj−1 + 2pj)|pj
→ 0,

0 → OC(−2p + 2p1 + · · · + 2pj−1) →

OC(−2p + 2p1 + · · · + 2pj−1 + pj) →

OC(−2p + 2p1 + · · · + 2pj−1 + pj)|pj
→ 0,

for 1 ≤ j ≤ i. Leaving out the contributions of the K-class of Rπ⋆OC(−2σ0) pulled-back

from Mg,1, we can therefore write the Chern roots as

−2σj + 2∆j − 2Ψj , −2σj + 2∆j − Ψj , 1 ≤ j ≤ i.

Just as above, excluding the contributions of Rπ⋆OC(−2σ0), for the virtual sheaf

Rπ⋆ (OC(Di − 2σ0)), we can write the Chern roots as

−2σj + ∆j − Ψj , 1 ≤ j ≤ i.

Since the two Rπ⋆OC(−2σ0) terms cancel, we have

(9) ch W−

i =
i∑

j=1

eΨj+2σj−∆j
(
eΨj−∆j + e−∆j − 1

)
.

Over the point [C, p, p1 + · · · + pi] ∈ C[i], the bundle W+
i

⋆
is

H0(OC(2p − 2p1 − · · · − 2pi) ⊗ 2ωC).

We write the Chern roots of the pull-back to the ordered product Ci by taking the

cohomology of the following two exact sequences on C,

0 → ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1 − 2pj) →

ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1 − pj) →

ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1 − pj)|pj

→ 0,

0 → ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1 − pj) →

ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1) →

ω2
C ⊗OC(2p − 2p1 − · · · − 2pj−1)|pj

→ 0
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for 1 ≤ j ≤ i. We find

(10) ch W+
i

⋆
= chπ⋆(2ω) + e

bΨ + 1 −

i∑

j=1

e2Ψj+2σj−2∆j
(
eΨj + 1

)
,

where Ψ̂ is the cotangent line on Mg,1. From (9) and (10), we conclude

(11) ch Ui = chπ⋆(2ω) + e
bΨ + 1 +

i∑

j=1

eΨj+2σj−2∆j
(
1 − e2Ψj − e∆j

)
.

Finally, Li is a line bundle with Chern class determined by Riemann-Roch. Let ∆ on

Ci be the sum of all the diagonals

∆ =
∑

x<y

∆xy .

The following basic push-forwards are easily calculated,

π⋆(D
2
i ) = −

i∑

j=1

Ψj + 2∆, π⋆(Di ω) =
i∑

j=1

Ψj ,

π⋆(Di σ0) =
i∑

j=1

σj , π⋆(ω σ0) = Ψ̂, π⋆(σ
2
0) = −Ψ̂.

Using the above, we calculate

c1(det Rπ⋆OC(Di)) = π⋆

(
eDi

−ω

1 − eω

)

(1)

= π⋆

[(
1 + Di +

D2
i

2

) (
1 −

ω

2
+

ω2

12

)]

(1)

= π⋆

(
D2

i

2
−

Di ω

2
+

ω2

12

)

= ∆ − (Ψ1 + · · · + Ψi) +
κ1

12
.

Similarly, for c1 (detRπ⋆ (OC(−Di + 2σ0) ⊗ ω)), we find

π⋆

(
e−Di+2σ0+ω −ω

1 − eω

)

(1)

=

π⋆

[(
1 −Di +

D2
i

2

) (
1 + 2σ0 + 2σ2

0

) (
1 +

ω

2
+

ω2

12

)]

(1)

=

π⋆

(
D2

i

2
+ 2σ2

0 +
ω2

12
−

Di ω

2
− 2Di σ0 + ω σ0

)
=

∆ − (Ψ1 + · · · + Ψi) − Ψ̂ − 2(σ1 + · · · + σi) +
κ1

12
.
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The two calculations together with (7) yield

c1(Li) = −2∆ + 2(Ψ1 + · · · + Ψi) + 2(σ1 + · · · + σi) + Ψ̂ −
κ1

6
+ 2λ1 − Ψ̂(12)

= −2∆ + 2(Ψ1 + · · · + Ψi) + 2(σ1 + · · · + σi).

We have used here

det Eg = λ1 =
κ1

12
, ci(Lp) = Ψ̂ .

2.5. Riemann-Roch. The Chern character of Ni is given by Riemann-Roch

chNi = ǫ
[i]
⋆

(
ch Lk

i · chΛiW−

i · ch Symk(g−i)−i Ui · td Tǫ[i]

)

for the morphism

ǫ[i] : C[i] → Mg,1.

Here, td is the Todd class.

We prefer to calculate the push-forward via ǫ[i] after pull-back via φ to Ci. Since we

have already determined the Chern characters of Li, W−

i and Ui after pull-back via φ,

the only term left to discuss is the Todd class class φ∗Tǫ[i] . The bundle φ∗Tǫ[i] has fiber

H0(OD(D)) over the divisor

D = p1 + . . . + pi.

The Chern roots have been calculated in [4] to be

∆j − Ψj , 1 ≤ j ≤ i.

We can then write a formula for the Chern character of Ni,

(13) chNi =
1

i!
ǫi
⋆


chLk

i · ch ΛiW−

i · ch Symk(g−i)−i Ui ·
i∏

j=1

∆j − Ψj

1 − e−∆j+Ψj


 ,

with respect to the push-forward via

ǫi : Ci → Mg,1 .

Every term of the right side of (13) is determined, so the push-forward can be calculated

explicitly in terms of tautologcal classes on Mg,1.

Together with the flatness relation (3), we obtain relations in the tautological ring

R∗(Mg,1) which can be pushed-down to yield relations in R∗(Mg).
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3. Construction of Thaddeus

3.1. Comparison. The objects W−

i , W+
i

⋆
, U , and Li all appear in the study of pairs

moduli spaces by Thaddeus [8]. Since he considers only a fixed curve C, the factors

det2 Eg ⊗ Lp are absent in his definition of Li. However for us, the additional twisting

of Li over Mg,1 plays a crucial role. The treatment by Thaddeus of W−

i and W+
i

⋆
is

sufficiently canonical to be valid over Mg,1.

We record here the difference in the calculation of our Li and the line bundle Li of

Thaddeus. For ease of comparison, we follow here the terminology of [8]. Of course for

us,

d = 2g and Λ = ω(2σ0) .

Also, we write π! for Rπ⋆.

In Section 5.4 of [8], Thaddeus selects a point of the curve C. Since we are working

over Mg,1, a marking is always there for us. However, the equations of 5.4 must be

corrected for twists over Mg,1. We have

∧2(E0)p = O0(−1, 0) ⊗ L⋆
p,

∧2(E1)p = O1(0,−1) ⊗ L⋆
p

where we follow the notation of [8] for the universal sheaves E0 and E1 and the line

bundles Oi(m, n). A more important correction appears in the calculation of det π!E1 in

the middle of 5.4,

(14) det π!E1 = O1(−1, g − d) ⊗ det2 Eg ⊗ L⋆
p.

A factor det Eg comes from det π!O(E+
1 ) in the computation of Thaddeus, and a factor

det Eg ⊗ L⋆
p comes from det π!Λ(−1)(E+

1 ). Putting the above together, we find

O1(m, n) = det−mπ!E1 ⊗⊗
(
det2 Eg ⊗ L⋆

p

)m
⊗

(
∧2(E1)p

)(d−g)m−n
⊗ L(d−g)m−n

p .

We turn now to Section 3.3 of [8] and consider the restrictions of

det π!Ei and ∧2 (Ei)p

to PW−

i . Following Thaddeus, we drop the subscript i in the notation for Ei. From the

main extension equation at the end of the proof, we see

det π!E = det π!Λ(−Di) ⊗ Hd−i−g+1 ⊗ det π!OC(Di)

where H is O(1) on the projective bundle PW−

i . Using the same extension, we also find

∧2(E)p = H ⊗ L⋆
p .
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The changes in 3.3 imply corrections for Section 6.5,

Oi−1(m, n) = det−mπ!E ⊗
(
det2 Eg ⊗ L⋆

p

)m
⊗

(
∧2(E)p

)(d−g)m−n
⊗ L(d−g)m−n

p

=
(
det−1 π!Λ(−Di) ⊗ det−1 π!OC(Di) ⊗ det2 Eg ⊗ L⋆

p

)m

⊗H−m(d−i−g+1) ⊗ H(d−g)m−n ⊗ (L⋆
p)

(d−g)m−n ⊗ Lp
(d−g)m−n

= Lm
i ⊗ Hm(i−1)−n

where we must take now

Li = det−1 π!Λ(−Di) ⊗ det−1 π!OC(Di) ⊗ det2 Eg ⊗ L⋆
p .

While the above modifications are somewhat subtle, the main construction of Thad-

deus is very natural for Mg,1 and goes through beautifully.

3.2. Twisting the Verlinde bundle. Following the terminology of Section 2.1, the

Verlinde bundles Ṽ2,k and ι⋆V2,k differ by a twist

(15) Ṽ2,k
∼= ι⋆V2,k ⊗ L

by a line bundle L on Mg,1.

Proposition 1. We have Ṽ2,k
∼= ι∗V2,k ⊗ (∧gEg)

2.

Proof. Since both Θ̃2 and α⋆Θ2 restrict to the positive generator of the Picard group of

each fiber of

SUg,1(2, 2g) → Mg,1,

a line bundle L on Mg,1 satisfying

Θ̃2
∼= α⋆Θ2

and thus (15) must exist.

Following the notation of [8], let Mw be the last space of rank 2 stable pairs of fixed

determinant ωC(2p) over Mg,1. Let

γ : Mw → SUg,1(2, 2g)

be the contraction. By Section 5.9 of [8], the universal theta divisor Θ̃2 which arises

from the construction of Thaddeus satisfies

(16) γ⋆Θ̃2
∼= Ow(1, g − 1) .

By definition, the canonical theta divisor γ⋆α⋆Θ2 arises from the determinant of coho-

mology,

(17) γ⋆α⋆Θ2 = det−1 (π!Ew(−σ0)) ,

where Ew is the univeral sheaf.
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Our calculation of the difference between (16) and (17) can be carried out on any of

the stable pairs moduli spaces. We choose to work on M1 which is the simplest. Then,

γ⋆α⋆Θ2 = det−1 (π!E1(−σ0))

= det−1(π!E1) ⊗ ∧2(E1)p

Using the identification of det(π!E1) and (E1)p from Section 3.1, we find

γ⋆α⋆Θ2 = O1(1, g − 1) ⊗ (∧gEg)
−2

= γ⋆Θ̃2 ⊗ (∧gEg)
−2

which is equivalent to the claim of the Proposition. ¤

As a direct consequence, we conclude a result which is not at all obvious from the

formulas for the Chern character of Ṽ2,k.

Proposition 2. The first Chern class of Ṽ2,k on Mg,1 is proportional to κ1.

The class κ1, pulled-back from Mg via ι, is the generator of H2(Mg). Let us now find

a formula for ch1 Ṽ2,k ...

4. Genus 2

4.1. Level 1. The genus 2 case is not of much interest to us since R>0(M2) and R>1(M2,1)

vanish. There is no room for any further non-trivial relations. Nevertheless, we can cal-

culate the Chern character of the Verlinde bundle in level 1. Since

(g − i) − i = 2 − 2i

is non-negative only for i = 1, we see

Ṽ2,1 = N0 − N1

in the K-theory of M2,1 by (4).

We use the formulas of Section 2.4 to find the nonvanishing Chern characters of V ,

ch0 V = 5,

ch1 V =
13

12
κ1 + Ψ̂.

Since N0 is the second symmetric power of V ,

ch0 N0 = 15,

ch1 N0 =
13

2
κ1 + 6Ψ̂.
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To calculate the Chern character of N1, we use formula (13),

chN1 = ǫ1⋆

(
chL1 · chΛ1W−

1 · ch Sym0 U1 ·
−Ψ1

1 − eΨ1

)

= ǫ1⋆

(
chL1 · chW−

1 ·
−Ψ1

1 − eΨ1

)
.

By equations (9) and (12), we have

ch (L1) = e2Ψ1+2σ1 and chW−

1 = e2Ψ1+2σ1 .

After calculating the push-forward, we find

ch0 N1 = 11,

ch1 N1 =
73

12
κ1 + 6Ψ̂.

Putting the above equations together yields

ch0 Ṽ2,1 = 4,

ch1 Ṽ2,1 =
5

12
κ1.

Since the ch0 is the rank, we recover the Verlinde rank calculation by Thaddeus. The

Verlinde formula here is

rank Ṽ2,1 =

(
3

2 sin2(π
3 )

)
+

(
3

2 sin2(2π
3 )

)
= 4.

By the first Chern class calculation, the line bundle L of equation (2) is pulled-back

from M2. Hence our Verlinde bundle is also pulled-back from M2.

4.2. Level 2. For the Verlinde bundle in level 2,

2(g − i) − i = 4 − 3i

is non-negative only for i = 1. Again, we have

Ṽ2,1 = N0 − N1

in the K-theory of M2,1 by (4).

In level 2, N0 is the fourth symmetric power of V . Hence

ch0 N0 = 70,

ch1 N0 =
182

3
κ1 + 56Ψ̂.

To calculate the Chern character of N1, we use formula (13),

chN1 = ǫ1⋆

(
chL2

1 · chΛ1W−

1 · ch Sym1 U1 ·
−Ψ1

1 − eΨ1

)

= ǫ1⋆

(
chL2

1 · chW−

1 · chU1 ·
−Ψ1

1 − eΨ1

)
.
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By equations (9) and (12), we have

ch (L2
1) = e4Ψ1+4σ1 and chW−

1 = e2Ψ1+2σ1 .

The Chern character of the bundle U1 is determined in (11) by

ch U1 = ch π⋆(2ω) + e
bΨ + 1 − e3Ψ1+2σ1 .

After calculating the push-forward, we find

ch0 N1 = 60,

ch1 N1 =
231

4
κ1 + 56Ψ̂.

Putting the above equations together yields

ch0 Ṽ2,1 = 10,

ch1 Ṽ2,1 =
35

12
κ1.

We have agreement here with the Verlinde formula,

rank Ṽ2,1 =

(
4

2 sin2(π
4 )

)
+

(
4

2 sin2(2π
4 )

)
+

(
4

2 sin2(3π
4 )

)
= 10.

5. Example in genus 3

5.1. Flatness constraint. We study here the rank 2 and level 1 Verlinde bundle on

R∗(M3,1). By the Verlinde formula,

rank Ṽ2,1 =

(
3

2 sin2(π
3 )

)2

+

(
3

2 sin2(2π
3 )

)2

= 8.

Genus 3 is still too low for the flatness constraint to be of much interest. Nevertheless,

the calculation will not go unrewarded.

5.2. The bundle N0. We turn now to the geometric calculation of the Chern characters

of Ṽ2,1. Since

(g − i) − i = 3 − 2i

is non-negative only for i = 1, we see

Ṽ2,1 = N0 − N1

in the K-theory of M4,1 by (4).
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In order to calculate the first few Chern characters of N0, we use the formulas of

Section 2.4 to find the nonvanishing Chern characters of V ,

ch0 V = 8,

ch1 V =
13

12
κ1 + Ψ̂,

ch2 V =
1

2
Ψ̂2,

where we have used the well-known vanishing of κ2 in R∗(M3) and thus in R∗(M3,1).

We will impose the vanishing of R2(M3) and R3(M3,1) in all our calculations. Since N0

is the third symmetric power of V ,

ch0 N0 = 120,

ch1 N0 =
195

4
κ1 + 45Ψ̂,

ch2 N0 =
65

6
κ1Ψ̂ +

65

2
Ψ̂2.

5.3. The object N1. Our next task is to calculate the Chern character of N1. By

formula (13), we see

chN1 = ǫ1⋆

(
chL1 · chΛ1W−

1 · ch Sym1 U1 ·
−Ψ1

1 − eΨ1

)

= ǫ1⋆

(
chL1 · chW−

1 · chU1 ·
−Ψ1

1 − eΨ1

)
.

By equations (9) and (12), we have

ch (L1) = e2Ψ1+2σ1 and chW−

1 = e2Ψ1+2σ1 .

The bundle U1 is determined as a K-theoretic difference in (11),

ch U1 = ch π⋆(2ω) + e
bΨ + 1 − e3Ψ1+2σ1 .

Putting the above equations together yields

ch0 N1 = 112,

ch1 N1 =
565

12
κ1 + 45Ψ̂,

ch2 N1 =
151

12
κ1Ψ̂ +

51

2
Ψ̂2.
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5.4. Flatness constraint. We now have enough information to calculate the Chern

characters of the Verlinde bundle,

ch0 Ṽ2,1 = 8,

ch1 Ṽ2,1 =
5

3
κ1,

ch2 Ṽ2,1 = −
7

4
κ1Ψ̂ + 7Ψ̂2.

The flatness constraint (3) requires

ch2 Ṽ2,1 =
1

16
ch2

1 Ṽ2,1 =
25

144
κ2

1 = 0 ∈ H4(M3,1) .

Since R2(M3,1) ∼= Q, we can check the vanishing after push-forward to M3,

ι : M3,1 → M3 .

We easily calculate

ι∗(ch2 Ṽ2,1) = −7κ1 + 7κ1 = 0 ∈ R1(M3) .

6. Example in genus 4

6.1. Flatness constraint. We compute here the Chern character of the Verlinde bundle

Ṽ2,1 on R∗(M4,1). By the Verlinde formula,

rank Ṽ2,1 =

(
3

2 sin2(π
3 )

)3

+

(
3

2 sin2(2π
3 )

)3

= 16.

The flattness constraint (3) takes the following form:

ch Ṽ2,1 = 16 exp

(
ch1(Ṽ2,1)

16

)
(18)

= 16 + ch1(Ṽ2,1) +
1

32
ch1(Ṽ2,1)

2 +
1

1536
ch1(Ṽ2,1)

3 + . . . .

6.2. The bundle N0. We now consider the geometric calculation of the Chern charac-

ters of Ṽ2,1. Since

(g − i) − i = 4 − 2i

is non-negative only for i = 1 and 2, we see

V2,1 = N0 − N1 + N2

in the K-theory of M4,1 by (4).
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In order to calculate the first few Chern characters of N0, we use the formulas of

Section 2.4 to find the nonvanishing Chern characters of V ,

ch0 V = 11,

ch1 V =
13

12
κ1 + Ψ̂,

ch2 V =
1

2
κ2 +

1

2
Ψ̂2,

ch3 V =
1

6
Ψ̂3,

where we have used the well-known vanishing of κ3 in R∗(M4) and thus in R∗(M4,1).

We will impose the vanishing of R3(M4) and R4(M4,1) in all our calculations. Since N0

is the fourth symmetric power of V ,

ch0 N0 = 1001,

ch1 N0 =
1183

3
κ1 + 364Ψ̂,

ch2 N0 =
455

2
κ2 +

15379

288
κ2

1 +
1183

12
κ1Ψ̂ + 273Ψ̂2,

ch3 N0 =
105

2
κ2Ψ̂ +

1183

144
κ2

1Ψ̂ +
1547

24
κ1Ψ̂

2 +
497

3
Ψ̂3.

6.3. On Sym and Λ. Suppose C is a bundle written in K-theory as a virtual difference

C = A − B

of two bundles. We can calculate the Chern character of Sym∗C and Λ∗C in terms of

the Chern characters of A and B. For example, we have in K-theory

Sym2A = Sym2C + Sym2B + C ⊗ B .

After rewriting, we find

Sym2C = Sym2A − Sym2B − A ⊗ B + B ⊗ B

which easily leads to the desired Chern character formulas. Similarly,

Λ2C = Λ2A − Λ2B − A ⊗ B + B ⊗ B .

Formulas for the higher symmetric and wedge products are obtain in the same manner.

Since the bundles Wi, W+
i , and Ui have been determined in K-theory in Section 2.4

as virtual differences, we will require such formulas in the computations below.
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6.4. The object N1. Our next task is to calculate the Chern character of N1. By

formula (13), we see

chN1 = ǫ1⋆

(
ch L1 · chW−

1 · ch Sym2 U1 ·
−Ψ1

1 − eΨ1

)
.

By equations (9) and (12), we have

ch (L1) = e2Ψ1+2σ1 and chW−

1 = e2Ψ1+2σ1 .

The bundle U1 is determined as a K-theoretic difference in (11),

ch U1 = ch π⋆(2ω) + e
bΨ + 1 − e3Ψ1+2σ1 .

We can write U1 = A − B where A is rank 11, B is rank 1, and

ch A = ch π⋆(2ω) + e
bΨ + 1, chB = e3Ψ1+2σ1 .

More explicitly, the Chern characters of A are

ch0 A = 11,

ch1 A =
13

12
κ1 + Ψ̂,

ch2 A =
1

2
κ2 +

1

2
Ψ̂2,

ch3 A =
1

6
Ψ̂3,

with higher Chern characters vanishing in R∗(M4,1) and thus in R∗(C1). We find

ch0 Sym2A = 66,

ch1 Sym2A = 13κ1 + 12Ψ̂,

ch2 Sym2A =
13

2
κ2 +

169

288
κ2

1 +
13

12
κ1Ψ̂ + 7Ψ̂2,

ch3 Sym2A =
1

2
κ2Ψ̂ +

13

24
κ1Ψ̂

2 + 3Ψ̂3.

By the discussion in Section 6.3,

ch Sym2U1 = ch Sym2A − ch A · ch B .

Putting the above equations together yields

ch0 N1 = 1155,

ch1 N1 =
2675

6
κ1 + 420Ψ̂,

ch2 N1 =
203

2
κ2 +

20423

288
κ2

1 +
537

4
κ1Ψ̂ + 165Ψ̂2,

ch3 N1 =
159

2
κ2Ψ̂ +

91

9
κ2

1Ψ̂ +
2251

24
κ1Ψ̂

2 − 275Ψ̂3.
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6.5. The object N2. In order to calculate the Chern character of N2, we use the equa-

tion

chN2 =
1

2
ǫ2⋆

(
ch L2 · chΛ2W−

2 · ch Sym0 U2 ·
−Ψ1

1 − eΨ1
·

∆ − Ψ2

1 − e−∆+Ψ2

)

=
1

2
ǫ2⋆

(
ch L2 · ch det W−

2 ·
−Ψ1

1 − eΨ1
·

∆ − Ψ2

1 − e−∆+Ψ2

)
.

By equations (9) and (12), we have

ch (L2) = e−2∆+2Ψ1+2Ψ2+2σ1+2σ2 ,

ch detW−

2 = e−3∆+2Ψ1+2Ψ2+2σ1+2σ2 .

Putting the above equations together yields

ch0 N2 = 170,

ch1 N2 =
329

6
κ1 + 56Ψ̂,

ch2 N2 = −
267

2
κ2 +

5329

144
κ2

1 +
73

2
κ1Ψ̂ − 113Ψ̂2,

ch3 N2 = 42κ2Ψ̂ +
511

12
κ1Ψ̂

2 −
1652

3
Ψ̂3.

6.6. Chern characters. We now have enough information to calculate the Chern char-

acters of the Verlinde bundle,

ch0 Ṽ2,1 = 16,

ch1 Ṽ2,1 =
10

3
κ1,

ch2 Ṽ2,1 = −
15

2
κ2 +

95

96
κ2

1 +
5

6
κ1Ψ̂ − 5Ψ̂2,

ch3 Ṽ2,1 = 15κ2Ψ̂ −
91

48
κ2

1Ψ̂ +
53

4
κ1Ψ̂

2 − 110Ψ̂3.

The flatness relation occuring in degree 2 is

ch2 Ṽ2,1 −
1

32
ch2

1 Ṽ2,1 = 0 ∈ H4(M4,1).

After expanding the left side, we find the relation

−
15

2
κ2 +

185

288
κ2

1 +
5

6
κ1Ψ̂ − 5Ψ̂2 = 0 ∈ H4(M4,1)

which can be checked to hold. The flatness relation in degree 3 is

ch3 Ṽ2,1 =
1

1536
ch2

1 Ṽ2,1 =
25

3456
κ3

1 = 0 ∈ H6(M4,1)

which is also true.
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7. Example in genus 5

The results for the Verlinde bundle of rank 2 and level 1 on the moduli space M5,1 are

given below:

ch0 Ṽ2,1 = 32,

ch1 Ṽ2,1 =
20

3
κ1,

ch2 Ṽ2,1 =
5

2
κ2 +

25

48
κ2

1,

ch3 Ṽ2,1 =
17303

72
κ3 −

601

24
κ2κ1 +

9763

10368
κ3

1

−
47

2
κ2Ψ̂ +

701

288
κ2

1Ψ̂ −
121

6
κ1Ψ̂

2 + 198Ψ̂3,

ch4 Ṽ2,1 = −
9445

48
κ3Ψ̂ +

589

24
κ2κ1Ψ̃ −

1183

1152
κ3

1Ψ̃

−
363

4
κ2Ψ̂

2 +
6343

576
κ2

1Ψ̂
2 −

707

4
κ1Ψ̂

3 + 2192Ψ̂4.

The associated flatness relations can be verified to hold in H∗(M5,1) by known results

governing the tautological ring in genus 5.
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[7] R. Pandharipande and A. Pixton, Relations in the tautological ring, arXiv:1101.2236.
[8] M. Thaddeus, Stable pairs, linear systems, and the Verlinde formula, Inventiones Math. 117 (1994),

317–353.
[9] E. Verlinde, Fusion rules and modular transformations in 2d conformal field theory, Nucl. Phys. B

300 (1988), 360–376.


