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Abstract. A moduli space of stable quotients of the rank n trivial
sheaf on stable curves is introduced. Over nonsingular curves, the
moduli space is Grothendieck’s Quot scheme. Over nodal curves,
a relative construction is made to keep the torsion of the quotient
away from the singularities. New compactifications of classical
spaces arise naturally: a nonsingular and irreducible compactifica-
tion of the moduli of maps from genus 1 curves to projective space
is obtained. Localization on the moduli of stable quotients leads
to new relations in the tautological ring generalizing Brill-Noether
constructions.

The moduli space of stable quotients is proven to carry a canon-
ical 2-term obstruction theory and thus a virtual class. The result-
ing system of descendent invariants is proven to equal the Gromov-
Witten theory of the Grassmannian in all genera. Stable quotients
can also be used to study Calabi-Yau geometries. The conifold is
calculated to agree with stable maps. Several questions about the
behavior of stable quotients for arbitrary targets are raised.
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1. Introduction

1.1. Virtual classes. Only a few compact moduli spaces in algebraic

geometry carry virtual classes. The conditions placed on the associated

deformation theories are rather strong. The principal cases (so far) are:

(i) stable maps to nonsingular varieties [2, 17, 22],

(ii) stable sheaves on nonsingular 3-folds [35, 38],

(iii) stable sheaves on nonsingular surfaces [22],

(iv) Grothendieck’s Quot scheme on nonsingular curves [3, 27].

Of the above four families, the first three are understood to be related.

The correspondences of [28, 29, 35] relate (i) and (ii). The connections

[21, 40] between Gromov-Witten invariants and Donaldson/Seiberg-

Witten invariants relate (i) and (iii). For equivalence with (ii) and

(iii), the associated Gromov-Witten theories must be considered with

domains varying in the moduli of stable curves M g.

The construction of the virtual class of the Quot scheme (iv) requires

the curve C to be fixed in moduli. In fact, the Quot scheme of a nodal

curve does not carry a virtual class via the standard deformation theory.

In order to fully connect (i) and (iv), new moduli spaces are required.

1.2. Stable quotients. We introduce here a moduli space of stable

quotients

Cn ⊗OC → Q → 0

on m-pointed curves C with (at worst) nodal singularities. Two basic

properties are satisfied:

• the quotient sheaf Q is locally free at the nodes and markings

of C,

• the moduli of stable quotients is proper over M g,m.

The first property yields a virtual class, and the second property leads

to a system of invariants over M g,m. Our main result equates the

descendent theory of the moduli of stable quotients to the Gromov-

Witten theory of the Grassmannian in all genera.

Stable quotients are defined in Section 2. The basic structures of the

moduli space (including the virtual class) are discussed in Section 3.

The important case of mapping to a point is studied in Section 4. Com-

parison results with the Gromov-Witten theory of Grassmannians in
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the strongest equivariant form are stated in Section 5. The construc-

tion of the moduli of stable quotients and proofs of the comparison

results are presented in Section 6 - 7.

The intersection theory of the moduli of stable quotients leads to new

tautological relations on the moduli of curves. Basic relations gener-

alizing classical Brill-Noether constructions are presented in Section

8.

Stable quotients can also be used to study Calabi-Yau geometries.

The most accessible are the local toric cases. The conifold, given by

the total space of

OP1(−1) ⊕OP1(−1) → P1,

is calculated in Section 9 and found to agree exactly with Gromov-

Witten theory.

Given a projective embedding of an arbitrary scheme

X ⊂ Pn,

a moduli space of stable quotients associated to X is defined in Section

10. We speculate, at least when X is a nonsingular complete intersec-

tion, that the moduli spaces carry virtual classes in all genera. Virtual

classes may exist in even greater generality.

Stable quotient invariants in genus 1 for Calabi-Yau hypersurfaces

are discussed in Section 10.2. Let

M1(P
n, d) ⊂ M1(P

n, d)

be the open locus of the moduli of stable maps with nonsingular irre-

ducible domain curves. Stable quotients provide a nonsingular1, irre-

ducible, modular compactification

M1(P
n, d) ⊂ Q1(P

n, d).

For the Calabi-Yau hypersurface of degree n + 1,

Xn+1 ⊂ Pn,

genus 1 invariants can be defined naturally as an Euler characteristic

of a rank (n + 1)d vector bundle on Q1(P
n, d). The relationship to the

Gromov-Witten invariants of Xn+1 is not yet clear, but there will likely

be a transformation.

1Nonsingularity here is as a Deligne-Mumford stack.
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The paper ends with several questions about the behavior of stable

quotients. Certainly, our main results carry over to the hyperquot

schemes associated to SLn-flag varieties. Other variants are discussed

in Section 10.3. The toric case has been addressed in [4].

1.3. Later work. Tautological relations coming from the stable quo-

tient geometry, similar to those presented in Section 8, are studied in

[33] on the moduli spaces M c
g,n of marked curves of compact type. A

Wick formalism is developed in order to evaluate the relations explicitly

in terms of κ classes. The main results for n > 0 are:

(i) the κ rings κ∗(M c
g,n) are generated by κ classes of degree at

most g − 1 + ⌊n
2
⌋,

(ii) there are no relations between the kappa classes below the

threshold degree,

(iii) there is a natural isomorphism

κ∗(M c
0,2g+n)

∼
−→ κ∗(M c

g,n) .

Result (iii) is used to completely determine the κ rings including for-

mulas for their Betti numbers.

A detailed study of the stable quotient relations on Mg is undertaken

in [34]. The virtual class of the stable quotient space can be viewed as

a new object in the classical theory of linear systems on curves. Using

the Wick formalism and a series of transformations, the stable quotient

relations are recast to prove an elegant set of relations in R∗(Mg) con-

jectured by Faber and Zagier a decade ago. Whether the Faber-Zagier

relations are a complete set for R∗(Mg) is an interesting question. For

g ≤ 23, there are no further relations. No further relations have been

found in any genus, but by calculations of Faber, the set does not yield

a Gorenstein ring in genus 24.

Finally, stable quotients should be considered to lie between stable

maps to the Grassmannian and stable sheaves relatively over M g [31].

Recent wall-crossing methods [15, 20] will likely be relevant to the

study. A step in this direction is taken in [41]: a series of moduli spaces

is constructed, depending on a stability parameter and interpolating

between the stable quotient and the stable map spaces. Several further

directions which have stable quotients as their starting point are [4, 5,

26].
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2. Stability

2.1. Curves. A curve is a reduced and connected scheme over C of

pure dimension 1. Let C be a curve of arithmetic genus

g = h1(C,OC)

with at worst nodal singularities. Let

Cns ⊂ C

denote the nonsingular locus. The data (C, p1, . . . , pm) with distinct

markings pi ∈ Cns determine a genus g, m-pointed, quasi-stable curve.

A quasi-stable curve is stable if ωC(p1 + . . . + pm) is ample.

2.2. Quotients. Let q be a quotient of the trivial bundle on a pointed

quasi-stable curve C,

Cn ⊗OC
q
→ Q → 0.

If Q is locally free at the nodes and markings of C, q is a quasi-stable

quotient. Quasi-stability of q implies

(i) the torsion subsheaf τ(Q) ⊂ Q has support contained in

Cns \ {p1, . . . , pm},

(ii) the associated kernel,

0 → S → Cn ⊗OC
q
→ Q → 0,

is a locally free sheaf on C.
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Let r denote the rank of S.

Let (C, p1, . . . , pm) be a quasi-stable curve equipped with a quasi-

stable quotient q. The data (C, p1, . . . , pm, q) determine a stable quo-

tient if the Q-line bundle

(1) ωC(p1 + . . . + pm) ⊗ (∧rS∗)⊗ǫ

is ample on C for every strictly positive ǫ ∈ Q. Quotient stability

implies 2g − 2 + m ≥ 0.

Viewed in concrete terms, no amount of positivity of S∗ can stabilize

a genus 0 component

P1 ∼
= P ⊂ C

unless P contains at least 2 nodes or markings. If P contains exactly

2 nodes or markings, then S∗ must have positive degree.

Of course, when considering stable quotients in families, flatness over

the base is imposed on both the curve C and the quotient sheaf Q.

2.3. Isomorphisms. Let (C, p1, . . . , pm) be a quasi-stable curve. Two

quasi-stable quotients

(2) Cn ⊗OC
q
→ Q → 0, Cn ⊗OC

q′

→ Q′ → 0

on C are strongly isomorphic if the associated kernels

S, S ′ ⊂ Cn ⊗OC

are equal.

An isomorphism of quasi-stable quotients

φ : (C, p1, . . . , pm, q) → (C ′, p′1, . . . , p
′
m, q′)

is an isomorphism of curves

φ : C
∼
→ C ′

satisfying

(i) φ(pi) = p′i for 1 ≤ i ≤ m,

(ii) the quotients q and φ∗(q′) are strongly isomorphic.

Quasi-stable quotients (2) on the same curve C may be isomorphic

without being strongly isomorphic.

Theorem 1. The moduli space of stable quotients Qg,m(G(r, n), d) pa-

rameterizing the data

(C, p1, . . . , pm, 0 → S → Cn ⊗OC
q
→ Q → 0),
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with rank(S) = r and deg(S) = −d, is a separated and proper Deligne-

Mumford stack of finite type over C.

Theorem 1 is obtained by mixing the construction of the moduli

of stable curves with the Quot scheme. Keeping the torsion of the

quotient away from the nodes and markings is a twist motivated by

relative geometry. The proof of Theorem 1 is given in Section 6.

2.4. Automorphisms. The automorphism group AC of a quasi-stable

curve (C, p1, . . . , pm) may be positive dimensional. If the dimension is 0,

AC is finite. Stability of (C, p1, . . . , pm) is well-known to be equivalent

to the finiteness of AC . If (C, p1, . . . , pm, q) is a stable quotient, the

ampleness condition (1) implies that the marked curve (C, p1, . . . , pm)

is semistable. Then, the connected component of the automorphism

group AC is a torus.2

An automorphism of a quasi-stable quotient (C, p1, . . . , pm, q) is a

self-isomorphism. The automorphism group Aq of the quasi-stable quo-

tient q embeds in the automorphism group of the underlying curve

Aq ⊂ AC .

We leave the proof of the following elementary result to the reader.

Lemma 1. Let (C, p1, . . . , pm, q) be a quasi-stable quotient such that

(C, p1, . . . , pm) is semistable. Then q is stable if and only if Aq is finite.

2.5. First examples. The simplest examples occur when d = 0. Then,

stability of the quotient implies the underlying pointed curve is stable.

We see

Qg,m(G(r, n), 0) = M g,m × G(r, n)

where G(r, n) denotes the Grassmannian of r-planes in Cn.

A more interesting example is Q1,0(G(1, n), 1). A direct analysis

yields

Q1,0(G(1, n), 1) = M1,1 × Pn−1.

Given a 1-pointed stable genus 1 curve (E, p) and an element ξ ∈ Pn−1,

the associated stable quotient is

0 → OE(−p)
ιξ
→ Cn ⊗OE → Q → 0

2We assume (g,m) 6= (1, 0).
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where ιξ is the composition of the canonical inclusion

0 → OE(−p) → OE

with the line in Cn determined by ξ.

The open locus Qg,0(G(r, n), d) ⊂ Qg,0(G(r, n), d), corresponding to

nonsingular domains C, is simply the universal Quot scheme over the

moduli space of nonsingular curves.

3. Structures

3.1. Maps. Over the moduli space of stable quotients, there is a uni-

versal curve

(3) π : U → Qg,m(G(r, n), d)

with m sections and a universal quotient

0 → SU → Cn ⊗OU
qU→ QU → 0.

The subsheaf SU is locally free on U because of the stability condition.

The moduli space Qg,m(G(r, n), d) is equipped with two basic types

of maps. If 2g − 2 + m > 0, then the stabilization of (C, p1, . . . , pm)

determines a map

ν : Qg,m(G(r, n), d) → M g,m

by forgetting the quotient. For each marking pi, the quotient is locally

free over pi, hence it determines an evaluation map

evi : Qg,m(G(r, n), d) → G(r, n).

Furthermore, as in Gromov-Witten theory, there are gluing maps

Qg1,m1+1(G(r, n), d1) ×G(r,n) Qg2,m2+1(G(r, n), d2) → Qg,m(G(r, n), d)

whenever

g = g1 + g2, m = m1 + m2, d = d1 + d2.

In contrast with Gromov-Witten theory, the universal curve (3) is not

isomorphic to Qg,m+1(G(r, n), d). In fact, there does not exist a forget-

ful map of the form

Qg,m+1(G(r, n), d) → Qg,m(G(r, n), d)

since there is no canonical way to contract the quotient sequence.
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The general linear group GLn(C) acts on Qg,m(G(r, n), d) via the

standard action on Cn ⊗OC . The structures π, qU , ν and the evalua-

tions maps are all GLn(C)-equivariant.

3.2. Obstruction theory. Even if 2g − 2 + m is not strictly posi-

tive, the moduli of stable quotients maps to the Artin stack of pointed

domain curves

νA : Qg,m(G(r, n), d) → Mg,m.

The moduli of stable quotients with fixed underlying curve

(C, p1, . . . , pm) ∈ Mg,m

is simply an open set of the Quot scheme. The following result is

obtained from the standard deformation theory of the Quot scheme.

Theorem 2. The deformation theory of the Quot scheme determines

a 2-term obstruction theory on Qg,m(G(r, n), d) relative to νA given by

RHom(S,Q).

An absolute 2-term obstruction theory on Qg,m(G(r, n), d) is ob-

tained from Theorem 2 and the smoothness of Mg,m, see [2, 12]. The

analogue of Theorem 2 for the Quot scheme of a fixed nonsingular curve

was observed in [3, 27].

Proof. Let C → Mg,m be the universal curve, and let Q be the relative

Quot scheme along its fibers. We write

ν : Q
′

→ Mg,m

for the locus of Q corresponding to locally free subsheaves, and consider

the universal sequence

0 → S → Cn ⊗O → Q → 0

over Q
′
×Mg,m

C.

We endow Q′ with a relative perfect obstruction theory. Writing π

for the projection map

Q′ ×Mg,m
C → Q′,

the relative deformation-obstruction theory of the Quot scheme is stan-

dardly given by

(4) RHomπ(S,Q) = Rπ⋆Hom(S,Q).
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The equality (4) uses the fact that the subsheaf S is locally free.

Finally, we must show that Rπ⋆Hom(S,Q) can be resolved by a two

step complex of vector bundles. The proof of Theorem 1 in [27] applies

verbatim to this situation, yielding the claim.3 ¤

The GLn(C)-action lifts to the obstruction theory, and the resulting

virtual class is defined in GLn(C)-equivariant cycle theory,

[Qg,m(G(r, n), d)]vir ∈ AGLn(C)
∗ (Qg,m(G(r, n), d), Q).

A system of GLn(C)-equivariant descendent invariants is defined by

the brackets

〈τa1
(γ1) . . . τam

(γm)〉g,d =

∫

[Qg,m(G(r,n),d)]vir

m∏

i=1

ψai

i ∪ ev∗
i (γi)

where γi ∈ A∗
GLn(C)(G(r, n), Q). The classes ψi are obtained from the

cotangent lines on the domain (or, equivalently, pulled-back from the

Artin stack by νA).

3.3. Nonsingularity. Let E be a nonsingular curve of genus 1, and

let

f : E → G(1, n)

be a morphism of degree d > 0. The pull-back of the tautological

sequence on G(1, n) determines a stable quotient on E. The moduli

space of maps is an open4 subset

(5) M1,0(G(1, n), d) ⊂ Q1,0(G(1, n), d)

for d > 0.

Let (C, q) be a stable quotient parameterized by Q1,0(G(1, n), d). By

stability, C is either a nonsingular genus 1 curve or a cycle of rational

curves. The associated sheaf S is a line bundle of degree −d < 0. The

vanishing

Ext1(S,Q) = 0

3The language of Li-Tian [22] is used in [27]. Alternatively, in the Behrend-
Fantechi formalism [2], the reduced Atiyah class yields a morphism in the derived
category

RHomπ(S,Q)∨ → Lν

to the relative cotangent complex of the morphism ν [10].
4If d > 1, the subset is nonempty. If d = 1, the subset is empty.
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holds since there are no nonspecial line bundles of positive degree on

such curves.

Proposition 1. Q1,0(G(1, n), d) is a nonsingular irreducible Deligne-

Mumford stack of dimension nd for d > 0.

Proof. Nonsingularity has already been established. The dimension is

obtained from a Riemann-Roch calculation5 of χ(S,Q). Irreducibility

is clear since Q1,0(G(1, n), d) is an open set of a projective bundle over

the moduli of elliptic curves. ¤

For simplicity, we will denote the moduli space by Q1,0(P
n−1, d). Sta-

ble quotients provide an efficient compactification (5) of M1,0(P
n−1, d).

Instead of desingularizing the moduli of maps by blowing-up the closure

of

M1,0(P
n−1, d) ⊂ M1,0(P

n−1, d)

in the moduli of stable maps [14, 42], the stable quotient space achieves

a simple modular desingularization by blowing-down.

For large degree d, all line bundles on nonsingular curves are non-

special. As a result, the following nonsingularity result holds.

Proposition 2. For g ≥ 2 and d ≥ 2g − 1, the forgetful morphism

ν : Qg,0(P
n−1, d) → Mg

is smooth of expected relative dimension.

The result does not hold over the boundary or even over the interior

if markings are present.

4. Stable quotients for G(n, n)

4.1. n = 1. Consider Qg,m(G(1, 1), d) for d > 0. The moduli space

parameterizes stable quotients

0 → S → OC → Q → 0.

Hence, S is an ideal sheaf of C.

Let M g,m|d be the moduli space of genus g curves with markings

{p1 . . . , pm} ∪ {p̂1, . . . , p̂d} ∈ Cns ⊂ C

satisfying the conditions

5The calculation is done in general in Lemma 4 below.
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(i) the points pi are distinct,

(ii) the points p̂j are distinct from the points pi,

with stability given by the ampleness of

ωC(
m∑

i=1

pi + ǫ

d∑

j=1

p̂j)

for every strictly positive ǫ ∈ Q. The conditions allow the points p̂j

and p̂j′ to coincide.

The moduli space M g,m|d is a nonsingular, irreducible, Deligne-Mumford

stack.6 Given an element

[C, p1, . . . , pm, p̂1, . . . , p̂d] ∈ M g,m|d ,

there is a canonically associated stable quotient

(6) 0 → OC(−
d∑

j=1

p̂j) → OC → Q → 0.

We obtain a morphism

φ : M g,m|d → Qg,m(G(1, 1), d).

The following result is proven by matching the stability conditions.

Proposition 3. The map φ induces an isomorphism of coarse moduli

spaces

M g,m|d/Sd
∼
→ Qg,m(G(1, 1), d)

where the symmetric group Sd acts by permuting the markings p̂j.

The first example to consider is Q0,2(G(1, 1), d) for d > 0. The space

has a rather simple geometry. For example, the Poincaré polynomial

pd =
2d−2∑

k=0

Bkt
k

where Bk is the kth Betti number of Q0,2(G(1, 1), d), is easily obtained.

Lemma 2. pd = (1 + t2)d−1 for d > 0.

6In fact, Mg,m|d is a special case of the moduli of pointed curves with weights

studied by [13, 25].
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Proof. Let (C, p1, p2, q) be an element of Q0,2(G(1, 1), d). By the sta-

bility condition, (C, p1, p2) must be a simple chain of rational curves

with the markings p1 and p2 on opposite extremal components. We

may stratify Q0,2(G(1, 1), d) by the number n of components of C and

the distribution of the degree d on these components. The associated

quasi-projective strata

S(d1,...,dn) ⊂ Q0,2(G(1, 1), d)

are indexed by vectors

(d1, . . . , dn), di > 0,
n∑

i=1

di = d.

Moreover, each stratum is a product,

S(d1,...,dn)
∼
=

n∏

i=1

(Symdi(C∗)/C∗).

To calculate pd, we must compute the virtual Poincaré polynomial

of the quotient space Symk(C∗)/C∗ for all k > 0. We start with the

virtual Poincaré polynomial of Symk(C),

p(Symk(C)) = p(Ck) = t2k.

Filtering by the order at 0 ∈ C, we find

p(Symk(C)) =
k∑

i=0

p(Symi(C∗)).

We conclude

p(Symk(C∗)) = t2k − t2k−2

for k > 0. The quotient by C∗ can be handled simply by dividing by

t2 − 1, see [9]. Hence,

p(Symk(C∗)/C∗) = t2k−2.

The Lemma then follows by elementary counting. ¤
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4.2. Classes. There are several basic classes on M g,m|d. As in the

study of the standard moduli space of stable curves, there are strata

classes

S ∈ A∗(M g,m|d, Q)

given by fixing the topological type of a degeneration. New diagonal

classes are defined for every subset J ⊂ {1, . . . , d} of size at least 2,

DJ ∈ A|J |−1(M g,m|d, Q),

corresponding to the locus where the points {p̂j}j∈J are coincident. In

fact, the subvariety

DJ ⊂ M g,m|d

is isomorphic to M g,m|(d−|J |+1). The cotangent bundles

Li → M g,m|d, L̂j → M g,m|d

corresponding to the two types of markings have respective Chern

classes

ψi = c1(Li), ψ̂j = c1(L̂j) ∈ A1(M g,m|d, Q).

The Hodge bundle with fiber H0(C, ωC) over the curve [C] ∈ M g,m|d,

E → M g,m|d,

has Chern classes

λi = ci(E) ∈ Ai(M g,m|d, Q).

4.3. Cotangent calculus. Assume 2g − 2 + m ≥ 0. Canonical con-

traction defines a fundamental birational morphism

(7) τ : M g,m+d → M g,m|d

constructed in a more general context by Hassett [13]. By the sta-

bility conditions, the contraction map does not affect the points pi.

Therefore, the cotangent lines at the points pi are unchanged by τ ,

τ ∗(ψi) = ψi, 1 ≤ i ≤ m.

However, contraction affects the cotangent line classes at the other

points

(8) ψm+j = τ ∗(ψ̂j) + ∆m+j.
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Here, ∆m+j is the sum

∆m+j =
∑

J ′,J ′′

∆J ′,J ′′ ,

for partitions

J ′ ∪ J ′′ = {1, . . . ,m + d}, ,m + j ∈ J ′ ⊂ {m + 1, . . . ,m + d}.

The boundary divisor ∆J ′,J ′′ of M g,m+d parameterizes curves

C = C ′ ∪ C ′′, g(C ′) = 0, g(C ′′) = g

with a single separating node and the markings labelled J ′ and J ′′

distributed on C ′ and C ′′ respectively.

Let
∏d

j=1 ψ̂
yj

j be a monomial class on M g,m|d. Since τ is birational,

(9) τ∗τ
∗(

d∏

j=1

ψ̂
yj

j ) =
d∏

j=1

ψ̂
yj

j .

After using relations (8) and (9), we see for example

τ∗(ψm+j) = ψ̂j +
∑

j′ 6=j

Dj,j′ .

Indeed, the only contributions come from the 2 element sets

J ′ = {m + j,m + j′}.

For |J ′| > 2, the pushforward of ∆J ′,J ′′ under τ vanishes for dimension

reasons. The method proves the following result.

Lemma 3. There exists a universal formula

τ∗

(
m∏

i=1

ψxi

i

d∏

j=1

ψ
yj

m+j

)
=

m∏

i=1

ψxi

i

(
d∏

j=1

ψ̂
yj

j + . . .

)

where the dots are polynomials in the ψ̂j and DJ classes which are

independent of g and m.

4.4. Canonical forms. Let J, J ′ ⊂ {1, . . . , d}. The cotangent line

classes

(10) ψ̂j|DJ = ψ̂J

are all equal for j ∈ J . If J and J ′ have nontrivial intersection, we

obtain

(11) DJ · DJ ′ = (−ψ̂J∪J ′)|J∩J ′|−1DJ∪J ′ .
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by examining normal bundles.

If M(ψ̂j, DJ) is any monomial in the cotangent line and diagonal

classes, we can write M in a canonical form in two steps:

(i) multiply the diagonal classes using (11) until the result is a

product of cotangent line classes with DJ1
DJ2

· · ·DJl
where all

the subsets Ji are disjoint,

(ii) collect the equal cotangent line classes using (10).

Let MC denote the resulting canonical form.

By extending the operation linearly, we can write any polynomial

P (ψ̂j, DJ) in canonical form PC . In particular, the universal formulas

of Lemma 3 can be taken to be in canonical form.

4.5. Example. The cotangent class intersections on M0,2|d,

(12)

∫

M0,2|d

ψx1

1 ψx2

2 ψ̂ y1

1 · · · ψ̂ yd

d ,

for d > 0 are straightforward to calculate. Since the dimension of

M0,2|d is d− 1, at least one of the yj must vanish. After permuting the

indices, we may take yd = 0. By studying the geometry of the map

π : M0,2|d → M0,2|d−1

forgetting p̂d in case d > 1, we deduce the identities

ψi = π⋆ψi + ∆i, 1 ≤ i ≤ 2, and ψ̂j = π⋆ψ̂j, 1 ≤ j ≤ d − 1.

Here, ∆i
∼= M0,2|d−1 denotes the canonical section of π corresponding

to nodal domains with pi and p̂d on a common rational tail. Since

∆i · ψi = 0, we see

ψxi

i = π⋆ψxi

i + π⋆ψxi−1
i · ∆i

for 1 ≤ i ≤ 2. In turn, these identities imply

∫

M0,2|d

ψx1

1 ψx2

2 ψ̂ y1

1 · · · ψ̂
yd−1

d−1 =

∫

M0,2|d−1

ψx1−1
1 ψx2

2 ψ̂ y1

1 · · · ψ̂
yd−1

d−1 +

∫

M0,2|d−1

ψx1

1 ψx2−1
2 ψ̂ y1

1 · · · ψ̂
yd−1

d−1 .
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Solving the recurrence, we conclude (12) vanishes unless all yj = 0 and
∫

M0,2|d

ψx1

1 ψx2

2 =

(
d − 1

x1, x2

)
.

4.6. Tautological complexes. Consider the universal curve

π : U → M g,m|d

with universal quotient sequence

0 → SU → OU → QU → 0

obtained from (6). The complex Rπ∗(S
∗
U) ∈ Db

coh(M g,m|d) will arise

naturally in localization calculations on the moduli of stable quotients.

Base change of the complex to

[C, p1, . . . , pm, p̂1, . . . , p̂d] ∈ M g,m|d

computes the cohomology groups

H0(C,OC(
d∑

j=1

p̂j)), H1(C,OC(
d∑

j=1

p̂j))

with varying ranks.

A canonical resolution by vector bundles of Rπ∗(S
∗
U) is easily ob-

tained from the sequence

(13) 0 → OC → OC(
d∑

j=1

p̂j) → OC(
d∑

j=1

p̂j)|Pd
j=1

bpj
→ 0.

The rank d bundle

Bd → M g,m|d

with fiber

H0(C,OC(
d∑

j=1

p̂j)|Pd
j=1

bpj
)

is obtained from the geometry of the points p̂j. The Chern classes of

Bd are universal polynomials in the ψ̂j and DJ classes, which do not

depend on g and m. A precise expression for the Chern classes will

be obtained in Section 8.3. Up to a rank 1 trivial factor, Rπ∗(S
∗
U) is

equivalent to the complex

Bd → E∗

obtained from the derived push-forward of (13).
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4.7. General n. While the moduli space

Qg,m(G(1, 1), d) → M g,m

may be viewed simply as a compactification of the symmetric product

of the universal curve over M g,m, the moduli space Qg,m(G(n, n), d) is

more difficult to describe since the stable subbundles have higher rank.

Nevertheless, since Ext1(S,Q) always vanishes, we obtain the following

result.

Proposition 4. Qg,m(G(n, n), d) is nonsingular of expected dimension

3g − 3 + m + nd.

5. Gromov-Witten comparison

5.1. Dimensions. The moduli space of stable maps M g,m(G(r, n), d)

also carries a perfect obstruction theory and a virtual class. In order

to compare with the moduli space of stable quotients, we will always

assume 2g − 2 + m ≥ 0 and 0 < r < n.

Lemma 4. The virtual dimensions of the spaces M g,m(G(r, n), d) and

Qg,m(G(r, n), d) are equal.

Proof. The virtual dimension of the moduli space of stable maps is∫

β

c1(T )+(dimC G(r, n)−3)(1−g)+m = nd+(r(n−r)−3)(1−g)+m.

where β is the degree d curve class and T is the tangent bundle of

G(r, n). Similarly, the virtual dimension of the moduli of stable quo-

tients is

χ(S,Q) + 3g − 3 + m = nd + r(n − r)(1 − g) + 3g − 3 + m,

by Riemann-Roch, which agrees. ¤

5.2. Stable maps to stable quotients. There exists a natural mor-

phism

c : M g,m(G(1, n), d) → Qg,m(G(1, n), d).

Given a stable map

f : (C, p1, . . . , pm) → G(1, n)

of degree d, the image c([f ]) ∈ Qg,m(G(1, n), d) is obtained by the

following construction.
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The first step is to consider the minimal contraction

κ : C → Ĉ

of rational components yielding a quasi-stable curve (Ĉ, p1, . . . , pm)

with the automorphism group of each component of dimension at most

1. The minimal contraction κ is unique — the exceptional curves of κ

are the maximal connected trees T ⊂ C of rational curves which

(i) contain no markings,

(ii) meet C \ T in a single point.

Let T1, . . . , Tt be the set of maximal trees satisfying (i) and (ii). Then,

Ĉ = C \ ∪iTi

is canonically a subcurve of C. Let x1, . . . , xt ∈ Ĉns be the points of

incidence with the trees T1, . . . , Tt respectively.

Let di be the degree of the restriction of f to Ti. Let

0 → S → Cn ⊗O
bC → Q → 0

be the pull-back by the restriction of f to Ĉ of the tautological sequence

on G(1, n). The canonical inclusion

0 → S(−
t∑

i=1

dixi) → S

yields a new quotient

0 → S(−
t∑

i=1

dixi) → Cn ⊗O
bC

bq
→ Q̂ → 0.

Stability of the map f implies (Ĉ, p1, . . . , pm, q̂) is a stable quotient.

We define

c([f ]) = (Ĉ, p1, . . . , pm, q̂) ∈ Qg,m(G(1, n), d).

The morphism c has been studied earlier for genus 0 curves in the

linear sigma model constructions of [11]. The morphism c is considered

for the Quot scheme of a fixed nonsingular curve of arbitrary genus in

[37]. We have described the morphism c pointwise — we refer the

reader to [23, 26, 37] for a scheme theoretic construction.
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5.3. Equivalence. The strongest possible comparison result holds for

G(1, n).

Theorem 3. c∗[M g,m(G(1, n), d)]vir = [Qg,m(G(1, n), d)]vir.

If r > 1, a morphism c for G(r, n) does not in general exist. However,

the following construction provides a substitute. Recall the Plücker

embedding

ι : G(r, n) → G(1, N),

for

N =

(
n

r

)
.

The Plücker embedding induces canonical maps

ιM : M g,m(G(r, n), d) → M g,m(G(1, N), d),

ιQ : Qg,m(G(r, n), d) → Qg,m(G(1, N), d).

The morphism ιM is obtained by composing stable maps with ι. The

morphism ιQ is obtained by associating the subsheaf

0 → ∧rS → ∧rCn ⊗OC

to the subsheaf 0 → S → Cn ⊗OC .

Theorem 4. For 0 < r < n and all classes γi ∈ A∗
GLn(C)(G(r, n), Q),

c∗ιM∗

( m∏

i=1

ev∗
i (γi) ∩ [M g,m(G(r, n), d)]vir

)
=

ιQ∗

( m∏

i=1

ev∗
i (γi) ∩ [Qg,m(G(r, n), d)]vir

)
.

Since descendent classes in both cases are easily seen to be pulled-

back via c ◦ ιM and ιQ respectively, there is no need to include them

in the statement of Theorem 4. In particular, Theorem 4 implies the

fully equivariant stable map and stable quotient brackets (and CoFT)

are equal.
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5.4. Example. To see Theorems 3 and 4 are not purely formal, we

can study the case of genus 1 maps to Pn−1 of degree 1 for n ≥ 2. Let

I ⊂ Pn−1 × G(2, n)

be the incidence correspondence consisting of points and lines (p, L)

with p ∈ L. First, the moduli space of stable maps is

M1,0(P
n−1, 1) = M1,1 × I.

We will denote elements of the moduli space of stable maps by (E, p, L)

where (E, p) ∈ M1,1 and (p, L) ∈ I. The triple (E, p, L) specifies

a stable map whose domain is the union of two components E and

L joined together at p with the genus one component E contracted.

Second, we have already seen

Q1,0(P
n−1, 1) = M1,1 × Pn−1.

The morphism

c : M1,0(P
n−1, 1) → Q1,0(P

n−1, 1)

is given by

(E, p, L) → (E, p).

The virtual class of the moduli space of stable maps is easily computed

from deformation theory,

[M1,0(P
n−1, 1)]vir = cn−2(Obs) ∩ [M1,0(P

n−1, 1)],

where the rank n − 2 obstruction bundle is

Obs(E,p,L) =
E∗ ⊗ Tp(P

n−1)

Ψ∗
p ⊗ Tp(L)

= E∗ ⊗ Np(P
n−1/L) .

Here, E is the Hodge bundle on M1,1, Ψp is the cotangent line, and

Np(P
n−1/L) is the normal space to L ⊂ Pn−1 at p. We see

cn−2(Obs) = cn−2(Np(P
n−1/L)) − λcn−3(Np(P

n−1/L))

+ λ2cn−4(Np(P
n−1/L)) + . . .

where λ = c1(E). Since I → Pn−1 is a Pn−2-bundle,

c∗[M1,0(P
n−1, 1)]vir = c∗(cn−2(Np(P

n−1/L)) ∩ [M1,0(P
n−1, 1)])

= [Q1,0(P
n−1, 1)]

= [Q1,0(P
n−1, 1)]vir.
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For the second equality, we use the elementary projective geometry

calculation

cn−2(Q) = 1

where Q is universal rank n − 2 quotient on the projective space of

lines in Cn−1. The last equality follows since the moduli space of stable

quotients is nonsingular of expected dimension.

6. Construction

6.1. Quotient presentation. Let g, m, and d satisfy

2g − 2 + m + ǫd > 0

for all ǫ > 0. We will exhibit the moduli space Qg,m(G(r, n), d) as a

quotient stack.

To begin, fix a stable quotient (C, p1, . . . , pm, q) where

0 → S → Cn ⊗OC
q
→ Q → 0.

By assumption, the line bundle

Lǫ = ωC(p1 + . . . + pm) ⊗ (ΛrS∗)ǫ

is ample for all ǫ > 0. The genus 0 components of C must contain

at least 2 nodes or markings with strict inequality for components of

degree 0. As a consequence, ampleness of Lǫ for ǫ = 1
d+1

is enough

to ensure the stability of a degree d quotient. We will fix ǫ = 1
d+1

throughout.

Lemma 5. There exists a sufficiently large and divisible integer f such

that the line bundle Lf is very ample with no higher cohomology

H1(C,Lf ) = 0.

Proof. We will show that for all k ≥ 5, the choice

f = k(d + 1)

suffices. Then,

Lf =

(
ωC

(
m∑

i=1

pi

))k(d+1)

⊗ (ΛrS∗)k .

To check very ampleness, we verify

(14) H1
(
C,Lf ⊗ Iq1

Iq2

)
= 0
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for all pairs of (not necessarily distinct) points q1, q2 ∈ C. By duality,

the vanishing (14) is equivalent to

Ext0(Iq1
Iq2

, ωC ⊗ L−f ) = 0.

If q1, q2 ∈ Cns, we can check instead

H0(C, ωC(q1 + q2) ⊗ L−f ) = 0,

which is clear since the line bundle has negative degree on each com-

ponent. The following three cases also need to be taken into account:

(i) q1 is node and q2 ∈ Cns,

(ii) q1 and q2 are distinct nodes,

(iii) q1 = q2 are coincident nodes.

Cases (i-iii) can be easily handled. For instance, to check (i), consider

the normalization at q1,

π : C̃ → C,

and let π−1(q1) = {q′1, q
′′
1}. We have

Ext0(Iq1
Iq2

, ωC ⊗ L−f ) = H0(C̃, ω
eC ⊗ π∗L−f (q′1 + q′′1 + q2))

which vanishes since the line bundle on the right has negative degree

on each component. Indeed, for a component of genus h, degree e and

ℓ special points (nodes or markings), the maximum possible degree is

3 + (−k(d + 1) + 1)(2h − 2) − k(d + 1)ℓ − ek < 0.

The last inequality follows immediately when h ≥ 2, while the remain-

ing cases are checked by hand using that k ≥ 5. For instance, it may

be useful to split the analysis according to the following 4 situations:

• h = 0, ℓ > 2,

• h = 0, ℓ = 2, e > 0,

• h = 1, ℓ > 0,

• h = 1, ℓ = 0, e > 0.

Next, for case (ii), we use that

Ext0(Iq1
Iq2

, ωC ⊗ L−f ) = H0(C̃, ω
eC ⊗ π⋆L−f (q′1 + q′′1 + q′2 + q′′2)) = 0,

while for (iii), we have

Ext0(I2
q1

, ωC ⊗ L−f ) = H0(C̃, ω
eC ⊗ π⋆L−f (2q′1 + 2q′′1)) = 0.

In both cases, the vanishing follows since the degree is negative on

every component of C̃. ¤
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By the vanishing of the higher cohomology, the dimension

(15) h0(C,Lf ) = 1 − g + k(d + 1)(2g − 2 + m) + kd

is independent of the choice of stable quotient. Let V be a vector space

of dimension (15). Given an identification

H0(C,Lf ) ∼= V∗,

we obtain an embedding

i : C →֒ P(V),

well-defined up to the action of the group PGL(V). Let Hilb denote

the Hilbert scheme of curves in P(V) of genus g and degree

k(d + 1)(2g − 2 + m) + kd ,

equal to the degree of Lf . Each stable quotient gives rise to a point in

H = Hilb × P(V)m,

where the last factors record the locations of the markings p1, . . . , pm.

Elements of H are tuples (C, p1, . . . , pm). A quasi-projective sub-

scheme H′ ⊂ H is defined by requiring

(i) the points p1, . . . , pm are contained in C,

(ii) the curve (C, p1, . . . , pm) is quasi-stable.

We denote the universal curve over H′ by

π : C′ → H′.

Next, we construct the π-relative Quot scheme

Quot(n − r, d) → H′

parametrizing rank n − r degree d quotients

0 → S → Cn ⊗OC → Q → 0

on the fibers of π. A locally closed subscheme

Q′ ⊂ Quot(n − r, d)

is further singled out by requiring

(iii) Q is locally free at the nodes and markings of C,

(iv) the restriction of OP(V)(1) to C agrees with the line bundle
(
ω

(∑
pi

))k(d+1)

⊗ (ΛrS∗)k.
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The action of PGL(V) extends to H′ and Q′. A PGL(V)-orbit in

Q′ corresponds to a stable quotient up to isomorphism. By stability,

each orbit has finite stabilizers. The moduli space Qg,m(G(r, n), d) is

the stack quotient [Q′/PGL(V)].

6.2. Separatedness. We prove the moduli stack Qg,m(G(r, n), d) is

separated by the valuative criterion.

Let (∆, 0) be a nonsingular pointed curve with complement

∆0 = ∆ \ {0}.

We consider two flat families of quasi-stable pointed curves

Xi → ∆, pi
1, . . . , p

i
m : ∆ → Xi,

and two flat families of stable quotients

0 → Si → Cn ⊗OXi
→ Qi → 0,

for 1 ≤ i ≤ 2. We assume the two families are isomorphic away from

the central fiber. We will show the isomorphism extends over 0. In

fact, by the separatedness of the Quot functor, we only need to show

that the isomorphism extends to the families of curves Xi → ∆ in a

manner preserving the sections.

By the semistable reduction theorem, discussed for instance in [16],

we derive that possibly after base change ramified over 0, there exists

a third family

Y → ∆, p1, . . . , pm : ∆ → Y

of quasi-stable pointed curves and dominant morphisms

πi : Y → Xi

compatible with the sections. We may assume that πi restricts to an

isomorphism away from the nodes of (Xi)0.

After pull-back, we obtain exact sequences of quotients

(16) 0 → π∗
i Si → Cn ⊗OY → π∗

i Qi → 0

on Y of the same degree and rank. Exactness holds after pull-back

since the quotient Qi is locally free at the nodes of (Xi)0.

The two pull-back sequences (16) must agree on the central fiber

by the separatedness of the Quot functor. We claim the central fiber

Y0 cannot contain components which are contracted over the nodes

of (X1)0 but uncontracted over the nodes of (X2)0. Indeed, if such a
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component E existed, the quotient π∗
1Q1 would be trivial on E, whereas

by stability, since E is rational, the quotient π∗
2Q2 could not be trivial.

We conclude the families X1 and X2 are isomorphic. ¤

6.3. Properness. We prove the moduli stack Qg,m(G(r, n), d) is proper

by the valuative criterion. Let

π0 : X 0 → ∆0, p1, . . . , pm : ∆0 → X 0

carry a flat family of stable quotients

(17) 0 → S → Cn ⊗OX 0 → Q → 0

which we must extend over ∆, possibly after base-change. By standard

reductions, after base change and normalization, we may assume the

fibers of π0 are nonsingular and irreducible curves, possibly after adding

the preimages of the nodes to the marking set. The original family is

reconstructed by gluing stable quotients on different components via

the evaluation maps at the nodes 7.

Once the general fiber of π0 is assumed to be nonsingular, we con-

struct an extension

π : X → ∆, p1, . . . , pm : ∆ → X

with central fiber an m-pointed stable curve [16].8 After resolving the

possible singularities of the total space at the nodes of X0 by blow-ups,

we may take X to be a nonsingular surface. Using the properness of

the relative Quot functor, we complete the family of quotients across

the central fiber:

0 → S → Cn ⊗OX → Q → 0.

The extension may fail to be a quasi-stable quotient since Q may not

be locally free at the nodes or the markings of the central fiber. This

will be corrected by further blowups.

We will first treat the case when S has rank 1. As explained in

Lemma 1.1.10 of [30], the sheaf S∗ is reflexive over the nonsingular

7The gluing maps were noted in Subsection 3.1.
8There are exactly two cases where the central fiber can not be taken to stable,

(g,m) = (0, 2) or (1, 0) .

In both cases, the central fiber can be taken to be irreducible and nodal. The
argument afterwards is the same. We leave the details to the reader.
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surface X , hence locally free. Consider the image T of the map

(Cn ⊗OX )∗ → S∗

which can be written as

T = S∗ ⊗ IZ

for a subscheme Z ⊂ X . The quotient Q will have torsion supported

on Z. By the flatness of Q, the subscheme Z is not supported on any

components of the central fiber.

We consider a point ξ ∈ X which is a node or marking of the central

fiber. After restriction to an open set containing ξ, we may assume all

components of Z pass through ξ. After a sequence of blow-ups

µ : X̃ → X ,

we may take

Z̃ = µ−1(Z) =
∑

i

miEi +
∑

j

njDj,

where the Ei ⊂ X are the exceptional curves of µ and the Dj intersect

the Ei away from the nodes and markings. Since we are only interested

in constraining the behavior of Z̃ at the nodes or markings over ξ, the

morphism µ can be achieved by repeatedly blowing-up only nodes or

markings of the fiber over ξ.

On the blow-up, the image of the map

(Cn ⊗OX )∗ → µ∗S∗

factors though µ∗S∗(−Z̃). Setting

S̃ = µ∗S(
∑

i

miEi) →֒ Cn ⊗O
eX ,

we obtain a flat family

(18) 0 → S̃ → Cn ⊗O
eX → Q̃ → 0

on X̃ where the quotient Q̃ is locally free at the nodes or the markings

of the (reduced) central fiber.

Unfortunately, the above blow-up process yields a family

X̃ → ∆
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with possible nonreduced components occuring in chains over nodes

and markings of X0. The multiple components can be removed by base

change and normalization,

X ′ → X̃ ,

with the nodes and markings of X ′
0 mapping to the nodes and markings

of X̃ red
0 .

The pull-back of (18) to X ′ yields a quotient

Cn ⊗OX ′ → Q′ → 0.

The quotient Q′ is certainly locally free (and hence flat) over the nodes

and markings of X ′
0. The quotient Q′ may fail to be flat over finitely

many nonsingular points of X ′
0. A flat limit

(19) 0 → S ′′ → Cn ⊗OX ′ → Q′′ → 0

can then be found after altering Q′ only at the latter points. Since Q′′

is locally free over the nodes and markings of X ′
0, we have constructed

a quasi-stable quotient. However (19) may fail to be stable because of

possible unstable genus 0 components in the central fiber.

By the economical choice of blow-ups (occuring only at nodes and

markings over ξ), all unstable genus 0 curves P carry exactly 2 special

points and

S ′′|P
∼
= OP .

All such unstable components are contracted by the line bundle

L = ωC(p1 + . . . + pm)d+1 ⊗ Λr(S ′′)∗.

Indeed, Lk is π′-relatively9 basepoint free for k ≥ 2 and trivial over the

unstable genus 0 curves. As a consequence, Lk determines a morphism

q : X ′ → Y = Proj
(
⊕mLkm

)
.

The push-forward

0 → q∗S
′′ → Cn ⊗OY → q∗Q

′′ → 0

is stable. We have constructed the limit of the original family (17) of

stable quotients over ∆0.

9Here, π′ : X ′ → ∆.
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The case when the subsheaf S has arbitrary rank is similar. The

cokernel K of the map

(Cn ⊗OX )∗ → S∗

has support of dimension at most 1. The initial Fitting ideal of K,

denoted F0(K), endows the support of K with a natural scheme struc-

ture. After a suitable composition of blow-ups

µ : X̃ → X ,

we may take

F0(p
∗K) = p∗F0(K)

to be divisorial with only exceptional components passing through the

nodes and markings of the central fiber. Let V be the exceptional part

of F0(p
∗K) We set

K ′ = µ∗K ⊗OV ,

and define the sheaves K̃ and S̃ by the diagram

(Cn ⊗O
eX )∗ // S̃∗ //

²²

K̃

²²

(Cn ⊗OX )∗ // µ∗S∗ //

²²

µ∗K

²²

K ′ K ′

.

The Fitting ideal F0(K̃) does not vanish on exceptional divisors of µ.

Therefore, the quotient

0 → S̃ → Cn ⊗O
eX → Q̃ → 0

is locally free at the nodes or the markings of the (reduced) central

fiber. The remaining steps exactly follow the rank 1 case. ¤

7. Proofs of Theorems 3 and 4

7.1. Localization. Since Theorem 3 is a special case of Theorem 4,

we will restrict our attention to the latter.

The idea is to proceed by localization with respect to the maximal

torus T ⊂ GLn(C) acting with diagonal weights w1, . . . , wn. By the

usual splitting principle, the torus calculation is enough for the full

equivariant result. Localization formulas for the virtual classes of the
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moduli of stable maps and stable quotients10 are both given by [12].

We will compare fixed point residues pushed-forward via the Plücker

embedding to

Qg,m(G(1, N), d),

for N =
(

n

r

)
.

To state the localization theorem, we write

j : M g,m(G(r, n), d)T →֒ M g,m(G(r, n), d)

for the inclusion of the fixed point locus. The restriction of the deformation-

obstruction theory of M g,m(G(r, n), d) to the fixed point locus deter-

mines

(i) a virtual class of M g,m(G(r, n), d)T obtained from the T-invariant

part,

(ii) a virtual normal bundle N vir
M obtained from the moving part.

We wrote e for the T-equivariant Euler class in K-theory.

Then,
[
M g,m(G(r, n), d)

]vir
= j⋆

(
e(−N vir

M ) ∩
[
M g,m(G(r, n), d)T

]vir
)

.

In parallel, on the stable quotient side, we have
[
Qg,m(G(r, n), d)

]vir
= j⋆

(
e(−N vir

Q ) ∩
[
Qg,m(G(r, n), d)T

]vir
)

.

We will use the Plücker diagram

M g,m(G(r, n), d)
ιM

// M g,m(G(1, N), d)

c

²²

Qg,m(G(r, n), d)
ιQ

// Qg,m(G(1, N), d).

By equivariance, we obtain the diagram of fixed loci

M g,m(G(r, n), d)T
ιTM

// M g,m(G(1, N), d)T

cT

²²

Qg,m(G(r, n), d)T
ιTQ

// Qg,m(G(1, N), d)T.

10An analogous localization computation for the virtual class of the Quot scheme
of a fixed nonsingular curve was carried out in [27]. In particular, the fixed loci
and their contributions were explicitly determined. The localization for the stable
quotient space is conceptually similar.
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The fixed loci will be described in the next subsection, and their virtual

fundamental classes will be shown to agree with the usual fundamental

classes. Finally, we will prove

cT⋆ ιTM⋆(e(−N vir
M ) ∩

[
M g,m(G(r, n), d)T

]vir
) =

ιTQ⋆(e(−N vir
Q ) ∩

[
Qg,m(G(r, n), d)T

]vir
).

In fact, the identity will be verified over each connected component of

the fixed point locus Qg,m(G(1, N), d)T.

7.2. T-fixed loci for stable maps. The T-fixed loci of the moduli

space M g,m(G(r, n), d) are described in detail in [12]. We briefly recall

here that the fixed loci are indexed by decorated graphs (Γ, ν, γ, ǫ, δ, µ)

where

(i) Γ = (V,E) such that V is the vertex set and E is the edge set

(with no self-edges),

(ii) ν : V → G(r, n)T is an assignment of a T-fixed point ν(v) to

each element v ∈ V ,

(iii) γ : V → Z≥0 is a genus assignment,

(iv) ǫ is an assignment to each e ∈ E of a T-invariant curve ǫ(e) ∼= P1

of G(r, n) together with a covering number δ(e) ≥ 1,

(v) µ is a distribution of the m markings to the vertices V .

The graph Γ is required to be connected. The two vertices incident

to the edge e ∈ E must correspond via ν to the two T-fixed points

incident to ǫ(e). The sum of γ over V together with h1(Γ) must equal

g. The sum of δ over E must equal d.

The T-fixed locus corresponding to a given graph is, up to automor-

phisms, the product ∏

v

Mγ(v), val(v),

where val(v) counts all incident edges and markings. The stable maps

in the T-fixed locus are easily described. If the condition

2γ(v) − 2 + val(v) > 0

holds, then the vertex v is said to be nondegenerate. Such a vertex

corresponds to a collapsed curve varying in Mγ(v),val(v). Moreover, each

edge e gives a degree δ(e) covering of the invariant curve ǫ(e) ∼= P1,
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ramified only over the two torus fixed points. The stable map is ob-

tained by gluing along the graph incidences. The factor Mγ(v), val(v) cor-

responding to a degenerate vertex in the product above is interpreted

as a point.

7.3. T-fixed loci for stable quotients.

7.3.1. The indexing set. The T-fixed loci of Qg,m(G(r, n), d) are simi-

larly indexed by decorated graphs (Γ, ν, γ, s, ǫ, δ, µ) where

(i) Γ = (V,E) such that V is the vertex set and E is the edge set

(no self-edges are allowed),

(ii) ν : V → G(r, n)T is an assignment of a T-fixed point ν(v) to

each element v ∈ V ,

(iii) γ : V → Z≥0 is a genus assignment,

(iv) s(v) = (s1(v), . . . , sr(v)) is an assignment of a tuple of non-

negative integers with s(v) =
∑r

i=1 si(v) together with an in-

clusion

ιs : {1, . . . , r} → {1, . . . , n},

(v) ǫ is an assignment to each e ∈ E of a T-invariant curve ǫ(e) of

G(r, n) together with a covering number δ(e) ≥ 1,

(vi) µ is a distribution of the markings to the vertices V .

The graph Γ is required to be connected. The two vertices incident

to the edge e ∈ E must correspond via ν to the two T-fixed points

incident to ǫ(e). The sum of γ over V together with h1(Γ) must equal

g. The assignment s determines the splitting type of the subsheaf over

the vertex v. The inclusion ιs determines r trivial factors of Cn ⊗OC

in which the subsheaf S injects. The inclusion ιs must be compatible

with ν(v). The sum of s(v) over V together with the sum of δ over E

must equal d.

A vertex v occurring in stable quotient graphs is degenerate if

γ(v) = 0, val(v) = 2, s(v) = 0.

For nondegenerate vertices, the stability condition

2γ(v) − 2 + val(v) + ǫ · s(v) > 0

holds for every strictly positive ǫ ∈ Q. The valence of v, as before,

counts all incident edges and markings.
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7.3.2. Mixed pointed spaces. The T-fixed loci for the stable quotients

are described in terms of mixed pointed spaces. Let s = (s1, . . . , sr)

be a tuple of non-negative integers. Let M g,A|s be the moduli space of

genus g curves with markings

{p1, . . . , pA} ∪
r⋃

j=1

{p̂j1, . . . , p̂jsj
} ∈ Cns ⊂ C

satisfying the conditions

(i) the points pi are distinct,

(ii) the points p̂jk are distinct from the points pi,

with stability given by the ampleness of

ωC(
A∑

i=1

pi + ǫ
∑

j,k

p̂jk)

for every strictly positive ǫ ∈ Q. The conditions allow the points p̂jk

and p̂j′k′ to coincide. If

s =
r∑

j=1

sj,

then M g,A|s = M g,A|s defined in Section 4.1.

7.3.3. Torus fixed quotients. Fix a decorated graph (Γ, ν, γ, s, ǫ, δ, µ)

indexing a T-fixed locus of the moduli space Qg,m(G(r, n), d). The

corresponding T-fixed locus is, up to a finite map, the product of mixed

pointed spaces ∏

v∈V

Mγ(v), val(v)|s(v).

As usual, the factors corresponding to degenerate vertices are treated

as points.

The corresponding T-fixed stable quotients can be described explic-

itly. For each vertex v of the graph, pick a curve Cv in the mixed

moduli space with markings

{p1, . . . , pval(v)} ∪
r⋃

j=1

{p̂j1, . . . , p̂jsj(v)}.

For each edge e, pick a rational curve Ce. A pointed curve C is ob-

tained by gluing the curves Cv and Ce via the graph incidences, and

distributing the markings on the domain via the assignment µ.
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(i) On the component Cv, the stable quotient is given by the exact

sequence

0 → ⊕r
j=1OCv

(−

sj(v)∑

k=1

p̂jk) → Cn ⊗OCv
→ Q → 0.

The first inclusion is the composition of

⊕r
j=1OCv

(−

sj(v)∑

k=1

p̂jk) → Cr ⊗OCv

with the r-plane Cr ⊗OCv
→ Cn ⊗OCv

determined by is.

(ii) For each edge e, consider the degree δe covering of the T-

invariant curve ǫ(e) ∼= P1 in the Grassmannian G(r, n):

fe : Ce → ǫ(e)

ramified only over the two torus fixed points. The stable quo-

tient is obtained pulling back the tautological sequence of G(r, n)

to Ce.

The gluing of stable quotients on different components via the maps

described in 3.1 is made possible by the compatibility of is, ν and ǫ.

7.4. Contributions. Consider a graph indexing a fixed locus in the

stable map space. When lifted to
∏

v

Mγ(v),val(v),

the contribution of the normal bundle N vir
M to the localization formula

takes the product form
∏

v

MapCont(v)
∏

e

MapCont(e)
∏

(v,e)

MapCont(v, e)

for vertices v, edges e and flags (v, e). Here,

MapCont(v) ∈ A⋆
T,loc(Mγ(v),val(v))

are cohomology classes involving also the localized equivariant param-

eter, while MapCont(e) and MapCont(v, e) (and the contributions of

degenerate vertices) are pulled back from A⋆
T,loc(Spec(C)). This factor-

ization is obtained in [12].
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Similarly, the stable quotient contributions will be written in the

product form
∏

v

QuotCont(v)
∏

e

QuotCont(e)
∏

(v,e)

QuotCont(v, e)

where

QuotCont(v) ∈ A⋆
T,loc(Mγ(v),val(v)|s(v)),

and the edge and flag contributions are in A⋆
T,loc(Spec(C)). We now

describe the exact expressions.

7.4.1. Vertices for stable maps. Consider the case of a nondegenerate

vertex v occurring in a graph for stable maps. The vertex corresponds

to the moduli space11 Mγ(v),val(v). The vertex contribution is computed

in [12]12

(20) MapCont(v) =
e(E∗ ⊗ Tν(v))

e(Tν(v))

1
∏

e
w(e)
δ(e)

− ψe

.

Here, e denotes the Euler class, Tν(v) is the T-representation on the

tangent space of G(r, n) at ν(v), and

E → Mγ(v),val(v),

is the Hodge bundle. Finally, the product in the denominator is over

all edges incident to v. The factor w(e) denotes the T-weight of the

tangent representation Tν(v)ǫ(v) along the corresponding T-fixed edge,

and ψe denotes the cotangent line at the corresponding marking of

Mγ(v),val(v).

7.4.2. Vertices for stable quotients. Next, let v be a nondegenerate ver-

tex occurring in a graph for stable quotients. For simplicity, assume

ιs(j) = j, 1 ≤ j ≤ r.

The vertex corresponds to the moduli space13 Mγ(v),val(v)|s(v) where the

subsheaf is given by

0 → S = ⊕r
j=1OC(−

sj(v)∑

k=1

p̂jk)
ιs→ Cn ⊗OC → Q → 0.

11As usual we order all issues and quotient by the overcounting.
12We deviate from the conventions of [12] slightly. Some of the flag contributions

in [12] are absorbed here by the vertices.
13Again, we order all issues and quotient by the overcounting.
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The vertex contribution, determined by the moving part of RHom(S,Q)

and the moving part of the deformation space of the underlying curve,

is

(21) QuotCont(v) =
e(Ext1(S,Q)m)

e(Ext0(S,Q)m)

1
∏

e
w(e)
δ(e)

− ψe

.

Since the Ext spaces are not separately of constant rank, a better form

is needed for (21).

Let P̂i ⊂ C be the divisor associated to points corresponding to si

P̂i =

si(v)∑

j=1

p̂ij.

In the quotient sequence above we have

S = ⊕r
i=1OC(−P̂i), Q =

(
Cn−r ⊗OC

)
⊕ (⊕r

i=1O bPi
).

We calculate

Hom(S,Q) = S∨ ⊗ Cn−r ⊕

(
⊕

1≤i,j≤r

OC(P̂j) ⊗O
bPi

)
.

Using the exact sequence

0 → (Cr)∨ ⊗OC → S∨ → ⊕r
i=1OC(P̂i)| bPi

→ 0,

we can compute the moving part of RHom(S,Q). We see that (21) is

equivalent to

QuotCont(v) =
e(E∗ ⊗ Tν(v))

e(Tν(v))

1
∏

e
w(e)
δ(e)

− ψe

·

1
∏

i6=j e(H0(OC(P̂i)| bPj
) ⊗ [wj − wi])

·

1
∏

i,j∗ e(H0(OC(P̂i)| bPi
) ⊗ [wj∗ − wi]))

where the products in the last factors satisfy the following conditions

1 ≤ i ≤ r, 1 ≤ j ≤ r, r + 1 ≤ j∗ ≤ n .

The brackets [ · ] in the above expression denote the trivial line bundle

with the specified weights. Using the remarks of Subsection 4.6, the
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second and third line in the above expression give a universal polyno-

mial

Qv(ψ̂i, DJ) ∈ A⋆
T,loc(Mγ(v),val(v)|s(v))

[
ψ̂i, DJ

]
,

independently of γ(v) and val(v).

In a similar fashion, the vertex contribution to the fixed part of

RHom(S,Q) equals

⊕r
i=1RHom(OC(−P̂i),O bPi

).

Hence, the virtual fundamental class of the fixed locus agrees with the

usual fundamental class.

While the vertex contributions for stable maps and stable quotients

appear quite different, the genus dependent part of the integrand in-

volving the Hodge bundle is the same. The differences all involve the

local geometry of the points.

7.5. Matching.

7.5.1. Genus 0. Theorem 4 is immediate in genus 0 by a geometric

argument. Since

M0,m(G(r, n), d) and Q0,m(G(r, n), d)

are nonsingular of expected dimension, the virtual class in both cases

is the usual fundamental class. Moreover, since the moduli spaces are

irreducible14 and birational, Theorem 4 in the form

(22) c∗ιM∗

(
[M0,m(G(r, n), d)]vir

)
= ιQ∗

(
[Q0,m(G(r, n), d)]vir

)
.

follows since image of c ◦ ιM simply coincides with the image of ιQ.

7.5.2. Arbitrary genus. In arbitrary genus, the argument relies on the

localization theorem. The crucial step is to notice Theorems 3 and

4 are a consequence of a universal calculation in a moduli space of

pointed curves. In fact, the universal calculation is genus independent

since the genus dependent integrand factors agree.

Matching the stable map and stable quotient localization formulas

requires a discussion of the morphisms ιTM , ιTQ and cT. The Plücker

14See [18, 39].
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morphism ιTM takes a fixed locus in M g,m(G(r, n), d) and maps it iso-

morphically to a fixed locus in M g,m(G(1, N), d). The morphism

cT : M g,m(G(1, N), d)T → Qg,m(G(1, N), d)T

is more interesting to analyze. For stable maps, the composition cTιTM
collapses the unmarked genus 0 tails into torsion quotients, the tor-

sion having multiplicity equal to the degree of the collapsed compo-

nents. Different fixed loci may be mapped non-isomorphically to a sin-

gle component of Qg,m(G(1, N), d)T. Similarly, the stable quotient side

Qg,m(G(r, n), d)T has many splitting types of the subbundle S which

are collapsed via the Plücker morphism into the same fixed locus in

Qg,m(G(1, N), d)T.

Differences in the localization formulas occur in the nondegenerate

vertices. For noncollapsed edges (not occurring in genus 0 tails of the

stable map space) and noncollapsed degenerate vertices of valence 2,

the edge and vertex contributions exactly coincide, since the moduli

spaces are identified as stacks with the same perfect-obstruction theo-

ries. Edges corresponding to unmarked rational tails on the Gromov-

Witten side are collapsed to nondegenerate vertices — their contribu-

tions will be absorbed by these vertices.

Summarizing, the resulting localization formulas for both stable maps

and stable quotients take the product forms
∏

v

MapCont(v)
∏

e

MapCont(e)
∏

(v,e)

MapCont(v, e)

∏

v

QuotCont(v)
∏

e

QuotCont(e)
∏

(v,e)

QuotCont(v, e),

where the last two factors agree, while

MapCont(v) =
e(E∨ ⊗ Tν(v))

e(Tν(v))

∏

e

1
w(e)
δ(e)

− ψe

Mv(ψ̂j, DJ)

and

QuotCont(v) =
e(E∨ ⊗ Tν(v))

e(Tν(v))

∏

e

1
w(e)
δ(e)

− ψe

Qv(ψ̂j, DJ).

Furthermore,

Mv(ψ̂j, DJ), Qv(ψ̂j, DJ) ∈ A⋆
T,loc(Mγ(v),val(v)|s(v))
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are universal polynomials which do not depend on γ(v) and val(v),

but only on s(v) and ν(v). Lemma 3 is used to obtain the polynomial

Qv. To apply the Lemma, note that cT essentially coincides with the

Hassett contractions (7), composed with diagonal maps which increase

the multiplicities of coinciding points according to the degree of the

collapsed rational tails. For example, the simplest diagonal morphism

M g,m|1 → M g,m|d

is obtained by assigning multiplicity d to the last marking. Such a

morphism corresponds to the contraction of a degree d rational tail

of a stable map into a degree d torsion quotient with support at the

attaching node of the tail.

We will prove the equality

Mv(ψ̂j, DJ) = Qv(ψ̂j, DJ).

We may take the polynomials Mv and Qv to be in canonical form as

defined in Section 4.4. Equality (22) established in genus 0, implies

a matching after T-equivariant localization. In particular, there is a

matching obtained for T-equivariant residues on the locus M0,val(v)|s(v).

Hence, in genus 0, we have

Mv(ψ̂j, DJ) = Qv(ψ̂j, DJ)

in A⋆
T,loc(M0,val(v)|s(v)). By the independence result of Section 7.6, we

conclude the much stronger equality

Mv = Qv

as abstract polynomials. This implies Theorems 3 and 4 for arbitrary

genus. ¤

7.6. Independence.

7.6.1. Polynomials. Consider variables ψ̂1, . . . , ψ̂d and

{ DJ | J ⊂ {1, . . . , d}, |J | ≥ 2 }

for fixed d ≥ 0. Given a polynomial P (ψ̂j, DJ), we obtain a canonical

form PC in the sense of Section 4.4.

We view PC in two different ways. First, PC yields a class

(23) PC = P (ψ̂j, DJ) ∈ A∗(M0,m|d, Q)
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for every m. We will always take m ≥ 3 to avoid unstable cases.

Second, PC is an abstract polynomial. If PC always vanishes in the

first sense (23), then we will show that PC vanishes as an abstract

polynomial.

If P (ψ̂j, DJ) is symmetric with respect to the Sd-action on the vari-

ables, then PC is also symmetric. The class (23) lies in the Sd-invariant

sector,

(24) PC ∈ A∗(M0,m|d, Q)Sd = A∗(M0,m|d/Sd, Q).

Hence, for symmetric P , only the vanishing in A∗(M0,m|d/Sd, Q) will

be required to show PC vanishes as an abstract polynomial.

7.6.2. Partitions. Fix a codimension k. Let

P = (P1, . . . ,Pℓ)

be a set partition of {1, . . . , d} with ℓ ≥ d − k nonempty parts,

∪ℓ
i=1Pi = {1, . . . , d}.

The parts Pi are ordered by lexicographical ordering.15 Let

τ = (t1, . . . , tℓ),
ℓ∑

i=1

ti = k − d + ℓ

be an ordered partition of k − d + ℓ. The parts ti are allowed to be 0.

Let P[d, k] be the set of all such pairs [P , τ ]. Let V[d, k] be a Q-

vector space with basis given by the elements of P[d, k]. To each pair

[P , τ ] ∈ P[d, k] and integer m ≥ 3, we associate the class

Xm[P , τ ] = ψ̂ t1
P1

. . . ψ̂ tℓ
Pℓ

· DP1
· · ·DPℓ

∈ Ak(M0,m|d) .

7.6.3. Pairing. Let Wm the Q-vector space with basis given by the

symbols [S, µ] where S ⊂ M0,m|d is a stratum of dimension s ≥ k and

µ is a monomial in the variables

ψ1, . . . , ψm

of degree s − k.

There is a canonical Poincaré pairing

I : V[d, k] × Wm → Q

15The choice of ordering will not play a role in the argument.
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defined on the bases by

I([P , τ ], [S, µ]) =

∫

S

Xm[P , τ ] ∪ µ(ψ1, . . . , ψm).

Lemma 6. A vector v ∈ V[d, k] is 0 if and only if v is in the null

space of all the pairings I for m ≥ 3.

Proof. To [P , τ ] ∈ P[d, k], we associate Ym[P , τ ] ∈ Wm, where

m = 4 + k − d + 2ℓ

and ℓ is the length of P , by the following construction.

Let S ⊂ M0,m|d be the stratum consisting of a chain of ℓ+2 rational

curves attached head to tail,

R0, R1, R2, . . . , Rℓ, Rℓ+1,

with the m markings p1, . . . , pm distributed by the rules:

(i) R0 and Rℓ+1 each carry exactly 2 markings,

(ii) For 1 ≤ i ≤ ℓ, Ri carries ti + 1 markings,

(iii) the marking are distributed in order from left to right.

We write ri for the minimal label of the markings on Ri. The d mark-

ings p̂1, . . . , p̂d are distributed by the rules

(iv) R0 and Rℓ+1 each carry 0 markings

(v) For 1 ≤ i ≤ ℓ, Ri carries the markings corresponding to Pi.

The dimension of S is easily calculated,

dim(S) = dim(M0,m|d) − ℓ − 1

= 4 + k − d + 2ℓ + d − 3 − ℓ − 1

= ℓ + k.

The associated element of Wm is defined by

Ym[P , τ ] = [S, ψr1
· · ·ψrℓ

].

The next step is to find when the pairing

(25) I([P , τ ], Ym′ [P ′, τ ′])

is nontrivial for

[P , τ ], [P ′, τ ′] ∈ P[d, k],
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with m′ = 4 + k − d + 2ℓ′. By definition, the pairing (25) equals

(26)

∫

S′

Xm′ [P , τ ] ∪ ψr′
1
· · ·ψr′

ℓ′
=

∫

S′

ψr′
1
· · ·ψr′

ℓ′
· ψ̂ t1

P1
. . . ψ̂ tℓ

Pℓ
· DP1

· · ·DPℓ

The integral (26) is calculated by distributing the diagonal points cor-

responding to DPj
to the components R′

i of curves in S ′ in all possible

ways. Note that unless there is at least one diagonal DPj
distributed

to each R′
i for 1 ≤ i ≤ ℓ′, the contribution to the integral (26) vanishes.

Hence, nonvanishing implies ℓ ≥ ℓ′.

If ℓ = ℓ′, then the distribution rule (v) implies the set theoretic

intersection

S ′ ∩ DP1
∩ · · · ∩ DPℓ

is empty unless P = P ′. If P = P ′, the only nonvanishing diagonal

distribution is given by sending DPi
to R′

i. The integral (26) is easily

seen to be nonzero then if and only if τ = τ ′. Indeed, the contribution

of R′
i to the integral is

∫

M
0,t′

i
+3||Pi|

ψr′i
ψ̂ti
Pi

· DPi
=

∫

M
0,t′

i
+4

ψr′i
ψti

t′i+4 =

{
ti + 1 if ti = t′i
0 otherwise

.

The linear functions on V[d, k] determined by I(·, Ym′ [P ′, τ ′]) are

block lower-triangular with respect to the partial ordering by the length

of the set partition. Moreover, the diagonal blocks are themselves di-

agonal with nonzero entries. ¤

Following the notation of Section 7.6.1, Lemma 6 proves that if

PC ∈ A∗(M0,m|d, Q)

vanishes for all m ≥ 3, then PC vanishes as an abstract polynomial.

The proofs of Theorems 3 and 4 are therefore complete.

8. Tautological relations

8.1. Tautological classes. Let g ≥ 2. The tautological ring of the

moduli space of curves

R∗(Mg) ⊂ A∗(Mg, Q)
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is generated by the classes

κi = ǫ∗(ψ
i+1
1 ), Mg,1

ǫ
→ Mg.

Here, κ0 = 2g− 2 is a multiple of the unit class. A conjectural descrip-

tion of R∗(Mg) is presented in [6]. The basic vanishing result,

Ri(Mg) = 0

for i > g − 2, has been proven by Looijenga [24].

8.2. Relations. Let g ≥ 2 and d ≥ 0. The moduli space

Mg,0|d
ǫ
→ Mg

is simply the d-fold product of the universal curve over Mg. Given an

element

[C, p̂1, . . . , p̂d] ∈ Mg,0|d ,

there is a canonically associated stable quotient

(27) 0 → OC(−
d∑

j=1

p̂j) → OC → Q → 0.

Consider the universal curve

π : U → Mg,0|d

with universal quotient sequence

0 → SU → OU → QU → 0

obtained from (27). Let

Fd = −Rπ∗(S
∗
U) ∈ K(Mg,0|d)

be the class in K-theory. For example,

F0 = E∗ − C

is the dual of the Hodge bundle minus a rank 1 trivial bundle.

By Riemann-Roch, the rank of Fd is

rg(d) = g − d − 1.

However, Fd is not always represented by a bundle. By the derivation

of Section 4.6,

(28) Fd = E∗ − Bd − C,
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where Bd has fiber H0(C,OC(
∑d

j=1 p̂j)|Pd
j=1

bpj
) over [C, p̂1, . . . , p̂d]. Al-

ternatively, Bd is the ǫ-relative tangent bundle.

Theorem 5. For every integer k > 0,

ǫ∗
(
crg(d)+2k(Fd)

)
= 0 ∈ R∗(Mg).

Since the morphism ǫ has fibers of dimension d,

ǫ∗
(
crg(d)+2k(Fd)

)
∈ Rg−2d−1+2k(Mg).

By Looijenga’s vanishing, Theorem 5 is only nontrivial when

0 ≤ 2d − 2k − 1 ≤ g − 2.

The vanishing of Theorem 5 does not naively extend. We calculate

(29) ǫ∗
(
crg(1)+1(F1)

)
= κg−2 − λ1κg−3 + . . . + (−1)g−2κ0λg−2

in Rg−2(Mg) by (28). However, the class (29) is known not to vanish

by the pairing with λgλg−1 calculated in [32].

Theorem 5 directly yields relations among the generators κi of R∗(Mg)

by the standard ǫ push-forward rules [6]. The construction is more sub-

tle than the method of [6] as the relations only hold after push-forward.

An advantage is that the boundary terms of the relations here can eas-

ily be calculated.

8.3. Example. The Chern classes of Fd can be easily computed. Re-

call the divisor Di,j where the markings p̂i and p̂j coincide. Set

∆i = D1,i + . . . + Di−1,i,

with the convention ∆1 = 0. Over [C, p̂1, . . . , p̂d], the virtual bundle Fd

is the formal difference

H1(OC(p̂1 + . . . + p̂d)) − H0(OC(p̂1 + . . . + p̂d)).

Taking the cohomology of the exact sequence

0 → OC(p̂1+. . .+p̂d−1) → OC(p̂1+. . .+p̂d) → OC(p̂1+. . .+p̂d)|bpd
→ 0,

we find

c(Fd) =
c(Fd−1)

1 + ∆d − ψ̂d

.

Inductively, we obtain

(30) c(Fd) =
c(E∗)

(1 + ∆1 − ψ̂1) · · · (1 + ∆d − ψ̂d)
.
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In the d = 2 and k = 1 case, Theorem 5 gives the vanishing of the

class

ǫ∗ cg−1(Fd) = ǫ∗

[
c(E∗)

(1 − ψ̂1)(1 + ∆ − ψ̂2)

]g−1

,

where ∆ is the divisor of coincident markings on Mg,0|2. The superscript

indicates the degree g−1 part of the bracketed expression. Expanding,

we obtain

(31)
∑

i

(−1)iλg−1−i

∑

i1+i2=i

ǫ∗

(
ψ̂i1

1 (ψ̂2 − ∆)i2

)
= 0.

We have

ǫ∗

(
ψ̂i1

1 (ψ̂2 − ∆)i2

)
=

∑

m

(−1)i2−m

(
i2
m

)
ǫ∗

(
ψ̂i1

1 ψ̂m
2 ∆i2−m

)
.

Using

∆2 = −ψ̂1 ∆ = −ψ̂2 ∆

and the ǫ-calculus rules in [6], we rewrite the last expression as

−
∑

m6=i2

(
i2
m

)
ǫ∗(ψ̂

i1+i2−1
1 ∆)+ǫ∗(ψ̂

i1
1 ψ̂i2

2 ) = −(2i2−1)κi1+i2−2+κi1−1 κi2−1.

After summing over i1, i2 in (31), we arrive at the relation

(32)

g−1∑

i=2

(−1)iλg−1−i

((
∑

i1+i2=i

κi1−1κi2−1

)
− (2i+1 − i − 2)κi−2

)
= 0

in Rg−3(Mg).

The λ classes can be expressed in terms of the κ classes by Mumford’s

Chern character calculation

ch2ℓ(E) = 0, ch2ℓ−1(E) =
B2ℓ

(2ℓ)!
κ2ℓ−1

for ℓ > 0. From (32), we obtain a relation involving only the tautolog-

ical generators κi. To illustrate, in genus 6, we obtain the relation

25κ3
1 + 15912κ3 − 1080κ1κ2 = 0,

which is consistent with the presentation of R∗(M6) in [6].
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8.4. Brill-Noether construction. The k = 1 case of Theorem 5 for

positive d ≤ g admits an alternative derivation via Brill-Noether the-

ory.16

To start, consider the rank d bundle,

Wd → Mg,0|d ,

with fiber H0(C, ωC |Pd
j=1

bpj
) over [C, p̂1, . . . , p̂d]. There is a canonical

map of vector bundles on Mg,0|d,

ρ : E → Wd ,

defined by the restriction H0(C, ωC) → H0(C, ωC |Pd
j=1

bpj
). After dual-

izing, we obtain

ρ∗ : W∗
d → E∗ .

If ρ∗ fails to have maximal rank at [C, p̂1, . . . , p̂d] ∈ Mg,0|d , then the

divisor p̂1 + . . . + p̂d must move in a nontrivial linear series. The de-

generacy locus of ρ∗ precisely defines the Brill-Noether variety [1]

G1
d ⊂ Mg,0|d ,

well-known to be of expected codimension g − d + 1. Since

ǫ : G1
d → Mg

has positive dimensional fibers, certainly

ǫ∗[G
1
d] = 0 ∈ A∗(Mg)

By the Porteous formula [8],

[G1
d] = cg−d+1(E

∗ − W∗
d) .

Hence, we obtain the relation

(33) ǫ∗ (cg−d+1(E
∗ − W∗

d)) = 0 ∈ R∗(Mg) .

Lemma 7. Wd
∼
= B∗

d .

Proof. Let P̂ ⊂ C denote the divisor p̂1 + . . . + p̂d. The fiber of Wd

over [C, p̂1, . . . , p̂d] is

Ext0(OC , ωC | bP )
∼
= Ext1(O

bP ,OC)∗

16The Brill-Noether connection was suggested by C. Faber who recognized equa-
tion (32).
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by Serre duality. Let

I = [OC(−P̂ ) → OC ]

denote the complex of line bundles in grade -1 and 0. Since I is quasi-

isomorphic to O
bP , we find

Ext1(I,OC)
∼
= Ext1(O

bP ,OC)

On the other hand, we have

I∗ = [OC → OC(P̂ )] and Ext1(OC , I∗)
∼
= Ext0(OC ,O

bP (P̂ )).

We have hence found a canonical isomorphism

Ext1(O
bP ,OC)

∼
= Ext0(OC ,O

bP (P̂ ))

where the latter space is the fiber of Bd ¤

The k = 1 case of Theorem 5 concerns the class

cg−d+1(Fd) = cg−d+1(E
∗ − Bd − C)

= cg−d+1(E
∗ − Bd)

= cg−d+1(E
∗ − W∗

d).

Hence, the vanishing

ǫ∗(cg−d+1(Fd)) = 0

of Theorem 5 exactly coincides with the Brill-Noether vanishing (33).

Theorem 5 may be viewed as a generalization of Brill-Noether van-

ishing obtained from the virtual geometry of the moduli of stable quo-

tients.

8.5. Proof of Theorem 5. Consider the proper morphism

ν : Qg(P
1, d) → Mg.

The universal curve

π : U → Qg(P
1, d)

carries the basic divisor classes

s = c1(S
∗
U), ω = c1(ωπ)

obtained from the universal subsheaf SU and the π-relative dualizing

sheaf. The class

(34) ν∗
(
π∗(s

aωb) · 0c ∩ [Qg(P
1, d)]vir

)
∈ A∗(Mg, Q),
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where 0 is first Chern class of the trivial bundle, certainly vanishes if

c > 0. Theorem 5 is proven by calculating (34) by localization. We

will find Theorem 5 is a subset of a richer family of relations.

Let the 1-dimensional torus C∗ act on a 2-dimensional vector space

V
∼
= C2 with diagonal weights [0, 1]. The C∗-action lifts canonically to

the following spaces and sheaves:

P(V ), Qg(P(V ), d), U, SU , and ωπ.

We lift the C∗-action to a rank 1 trivial bundle on Qg(P(V ), d) by

specifying fiber weight 1. The choices determine a C∗-lift of the class

π∗(s
a · ωb) · 0c ∩ [Qg(P(V ), d)]vir ∈ A2d+2g−1−a−b−c(Qg(P(V ), d), Q).

The push-forward (34) is determined by the virtual localization for-

mula [12]. There are only two C∗-fixed loci. The first corresponds to a

vertex lying over 0 ∈ P(V ). The locus is isomorphic to

Mg,0|d / Sd

and the associated subsheaf (27) lies in the first factor of V ⊗ OC

when considered as a stable quotient in the moduli space Qg(P(V ), d).

Similarly, the second fixed locus corresponds to a vertex lying over

∞ ∈ P(V ).

The localization contribution of the first locus to (34) is

1

d!
ǫ∗

(
π∗(s

aωb) · cg−d−1+c(Fd)
)

where s and ω are the corresponding classes on the universal curve over

Mg,0|d. Let c−(Fd) denote the total Chern class of Fd evaluated at −1.

The localization contribution of the second locus is

(−1)g−d−1

d!
ǫ∗

[
π∗

(
(s − 1)aωb

)
· c−(Fd)

]g−d−2+a+b+c

where [γ]k is the part of γ in Ak(Mg,0|d, Q).

Both localization contributions are found by straightforward expan-

sion of the vertex formulas of Section 7.4.2. Summing the contributions

yields the following result.
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Proposition 5. Let c > 0. Then

ǫ∗

(
π∗(s

aωb) · cg−d−1+c(Fd)+

(−1)g−d−1
[
π∗

(
(s − 1)aωb

)
· c−(Fd)

]g−d−2+a+b+c)
= 0

in R∗(Mg).

If a = 0 and b = 1, the relation of Proposition 5 specializes to

Theorem 5 for even c = 2k. ¤

Question 1. Do the relations obtained from Proposition 5 generate all

the relations among the classes κi in R∗(Mg) ?

8.6. Further examples. Let σi ∈ A1(U, Q) be the class of the ith

section of the universal curve

π : U → Mg,0|d .

The class s = c1(S
∗
U) of Proposition 5 is

s = σ1 + . . . + σd ∈ A1(U, Q).

We calculate

π∗(s) = d

π∗(ω) = 2g − 2

π∗(s ω) = ψ̂1 + . . . + ψ̂d

π∗(s
2) = −(ψ̂1 + . . . + ψ̂d) + 2∆

in A∗(Mg,0|d, Q), where

∆ =
∑

i<j

Di,j ∈ A1(Mg,0|d, Q)

is the symmetric diagonal. The push-forwards π∗(s
aωb) are all easily

obtained.

Using the above π∗ calculations, the a = 1, b = 1, c = 2k case of

Proposition 5 yields

ǫ∗

(
2(ψ̂1 + . . . + ψ̂d) · crg(d)+2k(Fd) + (2g − 2) crg(d)+2k+1(Fd)

)
= 0.

The a = 2, b = 0, c = 2k case yields

ǫ∗

(
− 2(ψ̂1 + . . . + ψ̂d − 2∆) · crg(d)+2k(Fd) + 2d · crg(d)+2k+1(Fd)

)
= 0.
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Summation yields a third relation,

ǫ∗

(
2∆ · crg(d)+2k(Fd) + (d + g − 1) · crg(d)+2k+1(Fd)

)
= 0.

The relations of Proposition 5 include the classes crg(d)+2k+1(Fd) omit-

ted in Theorem 5.

9. Calabi-Yau geometry

The moduli of stable quotients may be used to define counting in-

variants in the local Calabi-Yau geometries. For example consider the

conifold, the total space of

OP1(−1) ⊕OP1(−1) → P1.

Just as in Gromov-Witten theory, we define

(35) Ng,d =
1

d2

∫

[Qg,2(P1,d)]vir

e(R1π∗(SU)⊕R1π∗(SU))∪ev∗
1(H) ·ev∗

2(H)

where SU is the universal subsheaf on the universal curve

π : U → Qg,2(P
1, d)

and H ∈ H2(P1, Q) is the hyperplane class. The two point insertions

are required for stability in genus 0. Let

F (t) =
∑

g≥1

Ng,1t
2g.

Proposition 6. The local invariants Ng,d are determined by the fol-

lowing two equations,

Ng,d = d2g−3Ng,1,

F (t) =

(
t/2

sin(t/2)

)2

.

Proof. We compute the integral Ng,d by localization. Let C∗ act on the

vector space V
∼
= C2 with diagonal weights [0, 1]. The C∗-action lifts

canonically to Qg,2(P(V ), d) and SU . For the first SU in the integrand

(35), we use the canonical lifting of C∗. For the second SU , we tensor

by a trivial line bundle with fiber weights −1 over the two C∗-fixed

points of P(V ). The classes H are lifted to the distinct C∗-fixed points

on P(V ).
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The above choice of C∗-action on the integrand exactly parallels the

choice of C∗-action taken in [7] for the analogous Gromov-Witten calcu-

lation. The vanishing obtained in [7] also applies for the stable quotient

calculation here. The only loci with non-vanishing contribution to the

localization sum consist of two vertices of genera

g1 + g2 = g

connected by a single edge of degree d. The moduli spaces at these

vertices are M gi,2|0 where

(i) the first two points are the respective node and marking,

(ii) there are no markings after the bar by vanishing.

We find that the only non-vanishing contributions occur on C∗-fixed

loci where the moduli of stable quotients and the moduli of stable maps

are isomorphic. Moreover, on these loci, the bundle R1π∗(SU) agrees

with the analogous Gromov-Witten bundle. Hence, the stable quotient

integral Ng,d is equal to the Gromov-Witten calculation of the conifold

[7]. ¤

The matching is somewhat of a surprise. While the virtual classes

of the stable quotient and stable maps spaces to P1 are related by

Theorem 3, the bundles in the respective integrands for the conifold

geometry are not compatible. However, the differences happen away

from the non-vanishing loci.

If g ≥ 1, no point insertions are required for stability. The associated

conifold integral is more subtle to calculate, but the same result is

obtained. We leave the details to the reader.17

Proposition 7. For g ≥ 1,

Ng,d =

∫

[Qg,0(P1,d)]vir

e(R1π∗(SU) ⊕ R1π∗(SU)).

There are many other well-defined local toric Calabi-Yau geometries

to consider for stable quotients both in dimension 3 and higher [19, 36].

The simplest is local P2.

17The vanishing, as before, matches the C∗-fixed point loci of the stable quotients
and stable maps spaces. However, the two which correspond to a single vertex of
genus g are now not obviously equal. The match for these is obtained by redoing
the pointed integral (35) with both H classes in the integrand taken to lie over the
same C∗-fixed point.
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Question 2. What is the answer for the stable quotient theory for

OP2(−3) → P2 ?

10. Other targets

10.1. Virtual classes. Let X ⊂ Pn be a projective variety. There is

a naturally associated substack

(36) Qg,m(X, d) ⊂ Qg,m(Pn, d)

defined by the following principle. Let I ⊂ C[z0, . . . , zn] be the homo-

geneous ideal of X. Given an element

(37) (C, p1, . . . , pm, 0 → S → Cn+1 ⊗OC
q
→ Q → 0)

of Qg,m(Pn, d), consider the dual

Cn+1 ⊗OC
q∗

→ S∗

as a line bundle with n+1 sections s0, . . . , sn. The stable quotient (37)

lies in Qg,m(X, d) if for every homogeneous degree k polynomial fk ∈ I,

(38) fk(s0, . . . , sn) = 0 ∈ H0(C, Sk∗).

Condition (38) is certainly well-defined in families and determines a

Deligne-Mumford substack. Local equations for the substack (36) can

easily be found.

Question 3. If X is nonsingular, does Qg,m(X, d) carry a canonical

2-term perfect obstruction theory?

The moduli space Qg,m(X, d) depends upon the projective embed-

ding of X. If Qg,m(X, d) does carry a virtual class, the theory will

almost certainly differ somewhat from the Gromov-Witten counts.

If X ⊂ Pn is nonsingular complete intersection, more definite claims

can be made. For simplicity, assume X is a hypersurface defined by a

degree k equation F . Given an element

(C, p1, . . . , pm, 0 → S → Cn+1 ⊗OC
q
→ Q → 0)

of Qg,m(X, d), the pull-back to C of the tangent bundle to X may be

viewed as the complex

(39) S∗ ⊗ Q
dF
→ Sk∗
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defined by differentiation of the section F on the zero locus. We specu-

late an obstruction theory on Qg,m(X, d) can be defined by the hyper-

cohomology of the sequence (39). The 2-term condition follows from

the fact that the map dF has cokernel with dimension 0 support. Many

details have to be checked here.

10.2. Elliptic invariants. An interesting example to consider is the

moduli space Q1,0(Xn+1 ⊂ Pn, d) of stable quotients associated to the

Calabi-Yau hypersurfaces Xn+1 ⊂ Pn.

By Proposition 1, Q1,0(P
n, d) is a nonsingular space of expected di-

mension (n + 1)d. As before, let SU be the universal subsheaf on the

universal curve

π : U → Q1,0(P
n, d).

Since SU is locally free of rank 1, SU is a line bundle. By the vanishing

used in the proof of Proposition 1,

π∗S
∗(n+1)
U → Q1,0(P

n, d)

is locally free of rank (n + 1)d.

We define the genus 1 stable quotient invariants of Xn+1 ⊂ Pn by

the integral

(40) N
Xn+1

1,d =

∫

Q1,0(Pn,d)

e
(
π∗S

∗(n+1)
U

)
.

The definition of N
Xn+1

1,d is compatible with the discussion of the virtual

classes of hypersurfaces in Section 10.1.

The genus 1 Gromov-Witten theory of hypersurfaces has recently

been solved by Zinger [43]. Substantial work is required to convert the

Gromov-Witten calculation to an Euler class on a space of genus 1 maps

to projective space. The stable quotient invariants are immediately

given by such an Euler class. There is no obstruction to calculating

(40) by localization.

Question 4. What is the relationship between the stable quotient and

stable map invariants in genus 1 for Calabi-Yau hypersurfaces?

10.3. Variants. There are several variants which can be immediately

considered. Let X be a nonsingular projective variety with an ample

line bundle L. The stable quotient construction can be carried out
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over the moduli space of stable maps M g,m(X, β) instead of the moduli

space of curves M g,m. An object then consists of three pieces of data:

(i) a genus g, m-pointed, quasi-stable curve (C, p1, . . . , pm),

(ii) a map f : C → X representing class β ∈ H2(X, Z),

(iii) and a quasi-stable quotient sequence

0 → S → Cn ⊗OC → Q → 0.

Stability is defined by the ampleness of

ωC(p1 . . . + pm) ⊗ f ∗(L3) ⊗ (∧rS∗)⊗ǫ

on C for every strictly positive ǫ ∈ Q. We leave the details to the

reader. The moduli space is independent of the choice of L.

The moduli space carries a 2-term obstruction theory and a vir-

tual class. The corresponding descendent theory is equivalent to the

Gromov-Witten theory of X ×G(r, n) by straightforward modification

of the arguments used to prove Theorem 4.

There is no reason to restrict to the trivial bundle in (iii) above. We

may fix a rank n vector bundle

B → X

and replace the quasi-stable quotient sequence by

0 → S → f ∗(B) → Q → 0.

The corresponding theory is perhaps equivalent to the Gromov-Witten

theory of the Grassmannian bundle over X associated to B. As B may

not split, a torus action may not be available. The strategy of the proof

of Theorem 4 does not directly apply.

A stranger replacement of the trivial bundle can be made even when

X is a point. We may choose the quotient sequence to be

0 → S → H0(C, ωC) ⊗OC → Q → 0.

The middle term is essentially the pull-back of the Hodge bundle from

the moduli space of curves.

Question 5. What do integrals over the moduli of stable Hodge quo-

tients correspond to in Gromov-Witten theory?
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