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Abstract. The Yau-Zaslow conjecture predicts the genus 0 curve
counts of K3 surfaces in terms of the Dedekind η function. The
classical intersection theory of curves in the moduli of K3 surfaces
with Noether-Lefschetz divisors is related to 3-fold Gromov-Witten
invariants via the K3 curve counts. Results by Borcherds and
Kudla-Millson determine these classical intersections in terms of
vector-valued modular forms. Proven mirror transformations can
often be used to calculate the 3-fold invariants which arise.

Via a detailed study of the STU model (determining special
curves in the moduli of K3 surfaces), we prove the Yau-Zaslow
conjecture for all curve classes on K3 surfaces. Two modular form
identities are required. The first, the Klemm-Lerche-Mayr identity
relating hypergeometric series to modular forms after mirror trans-
formation, is proven here. The second, the Harvey-Moore identity,
is proven by D. Zagier and presented in the paper.
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0. Introduction

0.1. Yau-Zaslow conjecture. Let S be a nonsingular projective K3

surface, and let

β ∈ Pic(S) = H2(S, Z) ∩ H1,1(S, C)

be a nonzero effective curve class. The moduli space M0(S, β) of genus

0 stable maps (with no marked points) has expected dimension

dimvir
C

(
M 0(S, β)

)
=

∫

β

c1(S) + dimC(S) − 3 = −1.

Hence, the virtual class [M 0(S, β)]vir vanishes, and the standard Gromov-

Witten theory is trivial.

Curve counting on K3 surfaces is captured instead by the reduced

Gromov-Witten theory constructed first via the twistor family in [6].

An algebraic construction following [1, 2] is given in [31]. Since the

reduced class

[M 0(S, β)]red ∈ H0(M 0(S, β), Q)

has dimension 0, the reduced Gromov-Witten integrals of S,

(1) R0,β(S) =

∫

[M0(S,β)]red

1 ∈ Q,
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are well-defined. For deformations of S for which β remains a (1, 1)-

class, the integrals (1) are invariant.

The second cohomology of S is a rank 22 lattice with intersection

form

(2) H2(S, Z)
∼
= U ⊕ U ⊕ U ⊕ E8(−1) ⊕ E8(−1)

where

U =

(
0 1
1 0

)

and

E8(−1) =




−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2




is the (negative) Cartan matrix. The intersection form (2) is even.

The divisibility m(β) is the maximal positive integer dividing the

lattice element β ∈ H2(S, Z). If the divisibility is 1, β is primitive.

Elements with equal divisibility and norm are equivalent up to or-

thogonal transformation of H2(S, Z). By straightforward deformation

arguments using the Torelli theorem for K3 surfaces, R0,β(S) depends,

for effective classes, only on the divisibility m(β) and the norm 〈β, β〉.
We will omit the argument S in the notation.

The genus 0 BPS counts associated to K3 surfaces have the following

definition. Let α ∈ Pic(S) be a nonzero class which is both effective and

primitive. The Gromov-Witten potential Fα(v) for classes proportional

to α is

Fα =
∑

m>0

R0,mα vmα.

The BPS counts r0,mα are uniquely defined by via the Aspinwall-Morrison

formula,

(3) Fα =
∑

m>0

r0,mα

∑

d>0

vdmα

d3
,
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for both primitive and divisible classes.

The Yau-Zaslow conjecture [36] predicts the values of the genus 0

BPS counts for the reduced Gromov-Witten theory of K3 surfaces.

We interpret the conjecture in two parts.

Conjecture 1. The BPS count r0,β depends upon β only through the

norm 〈β, β〉.

Conjecture 1 is rather surprising from the point of view of Gromov-

Witten theory since R0,β certainly depends upon the divisibility of β.

Let r0,m,h denote the genus 0 BPS count associated to a class β of

divisibility m satisfying

〈β, β〉 = 2h − 2.

Assuming Conjecture 1 holds, we define

r0,h = r0,m,h

independent1 of m.

Conjecture 2. The BPS counts r0,h are uniquely determined by

(4)
∑

h≥0

r0,h qh =

∞∏

n=1

(1 − qn)−24.

Conjecture 2 can be written in terms of the Dedekind η function
∑

h≥0

r0,h qh−1 = η(τ)−24

where q = e2πiτ .

The conjectures have been previously proven in very few cases. A

proof of the Yau-Zaslow formula (4) for primitive classes β via Euler

characteristics of compactified Jacobians following [36] can be found

in [3, 7, 11]. The Yau-Zaslow formula (4) was proven via Gromov-

Witten theory for primitive classes β by Bryan and Leung [6]. An

early calculation by Gathmann [13] for a class β of divisibility 2 was

important for the correct formulation of the conjectures. Conjectures 1

1Independence of m holds when 2m2 divides 2h− 2. Otherwise, no such class β

exists and r0,m,h is defined to vanish.
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and 2 have been proven in the divisibility 2 case by Lee and Leung [26]

and Wu [35]. The main result of the paper is a proof of Conjectures 1

and 2 in all cases.

Theorem 1. The Yau-Zaslow conjecture holds for all nonzero effective

classes β ∈ Pic(S) on a K3 surface S.

0.2. Noether-Lefschetz theory.

0.2.1. Lattice polarization. Let S be a K3 surface. A primitive class

L ∈ Pic(S) is a quasi-polarization if

〈L, L〉 > 0 and 〈L, [C]〉 ≥ 0

for every curve C ⊂ S. A sufficiently high tensor power Ln of a quasi-

polarization is base point free and determines a birational morphism

S → S̃

contracting A-D-E configurations of (−2)-curves on S. Hence, every

quasi-polarized K3 surface is algebraic.

Let Λ be a fixed rank r primitive2 embedding

Λ ⊂ U ⊕ U ⊕ U ⊕ E8(−1) ⊕ E8(−1)

with signature (1, r − 1), and let v1, . . . , vr ∈ Λ be an integral basis.

The discriminant is

∆(Λ) = (−1)r−1 det



〈v1, v1〉 · · · 〈v1, vr〉

...
. . .

...
〈vr, v1〉 · · · 〈vr, vr〉


 .

The sign is chosen so ∆(Λ) > 0.

A Λ-polarization of a K3 surface S is a primitive embedding

j : Λ → Pic(S)

satisfying two properties:

(i) the lattice pairs Λ ⊂ U3 ⊕ E8(−1)2 and Λ ⊂ H2(S, Z) are

isomorphic via an isometry which restricts to the identity on Λ,

(ii) Im(j) contains a quasi-polarization.

2An embedding of lattices is primitive if the quotient is torsion free.



6 A. KLEMM, D. MAULIK, R. PANDHARIPANDE AND E. SCHEIDEGGER

By (ii), every Λ-polarized K3 surface is algebraic.

The period domain M of Hodge structures of type (1, 20, 1) on the

lattice U3 ⊕ E8(−1)2 is an analytic open set of the 20-dimensional

nonsingular isotropic quadric Q,

M ⊂ Q ⊂ P
(
(U3 ⊕ E8(−1)2) ⊗Z C

)
.

Let MΛ ⊂ M be the locus of vectors orthogonal to the entire sublattice

Λ ⊂ U3 ⊕ E8(−1)2.

Let Γ be the isometry group of the lattice U3 ⊕ E8(−1)2, and let

ΓΛ ⊂ Γ

be the subgroup restricting to the identity on Λ. By global Torelli, the

moduli space MΛ of Λ-polarized K3 surfaces is the quotient

MΛ = MΛ/ΓΛ.

We refer the reader to [10] for a detailed discussion.

0.2.2. Families. Let X be a compact 3-dimensional complex manifold

equipped with holomorphic line bundles

L1, . . . , Lr → X

and a holomorphic map

π : X → C

to a nonsingular complete curve.

The tuple (X, L1, . . . , Lr, π) is a 1-parameter family of nonsingular

Λ-polarized K3 surfaces if

(i) the fibers (Xξ, L1,ξ, . . . , Lr,ξ) are Λ-polarized K3 surfaces via

vi 7→ Li,ξ

for every ξ ∈ C,

(ii) there exists a λπ ∈ Λ which is a quasi-polarization of all fibers

of π simultaneously.

The family π yields a morphism,

ιπ : C → MΛ,
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to the moduli space of Λ-polarized K3 surfaces.

Let λπ = λπ
1v1+· · ·+λπ

r vr. A vector (d1, . . . , dr) of integers is positive

if
r∑

i=1

λπ
i di > 0.

If β ∈ Pic(Xξ) has intersection numbers

di = 〈Li,ξ, β〉,

then β has positive degree with respect to the quasi-polarization if and

only if (d1, . . . , dr) is positive.

0.2.3. Noether-Lefschetz divisors. Noether-Lefschetz numbers are de-

fined in [31] by the intersection of ιπ(C) with Noether-Lefschetz divi-

sors in MΛ. We briefly review the definition of the Noether-Lefschetz

divisors.

Let (L, ι) be a rank r + 1 lattice L with an even symmetric bilinear

form 〈, 〉 and a primitive embedding

ι : Λ → L.

Two data sets (L, ι) and (L′, ι′) are isomorphic if there is an isometry

which restricts to identity on Λ. The first invariant of the data (L, ι)

is the discriminant ∆ ∈ Z of L.

An additional invariant of (L, ι) can be obtained by considering any

vector v ∈ L for which

(5) L = ι(Λ) ⊕ Zv.

The pairing

〈v, ·〉 : Λ → Z

determines an element of δv ∈ Λ∗. Let G = Λ∗/Λ be quotient defined

via the injection Λ → Λ∗ obtained from the pairing 〈, 〉 on Λ. The

group G is abelian of order equal to the discriminant ∆(Λ). The image

δ ∈ G/±

of δv is easily seen to be independent of v satisfying (5). The invariant

δ is the coset of (L, ι)
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By elementary arguments, two data sets (L, ι) and (L′, ι′) of rank

r + 1 are isomorphic if and only if the discriminants and cosets are

equal.

Let v1, . . . , vr be an integral basis of Λ as before. The pairing of L

with respect to an extended basis v1, . . . , vr, v is encoded in the matrix

Lh,d1,...,dr
=




〈v1, v1〉 · · · 〈v1, vr〉 d1
...

. . .
...

...
〈vr, v1〉 · · · 〈vr, vr〉 dr

d1 · · · dr 2h − 2


 .

The discriminant is

∆(h, d1, . . . , dr) = (−1)rdet(Lh,d1,...,dr
).

The coset δ(h, d1, . . . , dr) is represented by the functional

vi 7→ di.

The Noether-Lefschetz divisor P∆,δ ⊂ MΛ is the closure of the locus

of Λ-polarized K3 surfaces S for which (Pic(S), j) has rank r + 1,

discriminant ∆, and coset δ. By the Hodge index theorem, P∆,δ is

empty unless ∆ > 0.

Let h, d1, . . . , dr determine a positive discriminant

∆(h, d1, . . . , dr) > 0.

The Noether-Lefschetz divisor Dh,(d1,...,dr) ⊂ MΛ is defined by the

weighted sum

Dh,(d1,...,dr) =
∑

∆,δ

m(h, d1, . . . , dr|∆, δ) · [P∆,δ]

where the multiplicity m(h, d1, . . . , dr|∆, δ) is the number of elements

β of the lattice (L, ι) of type (∆, δ) satisfying

(6) 〈β, β〉 = 2h − 2, 〈β, vi〉 = di.

If the multiplicity is nonzero, then ∆|∆(h, d1, . . . , dr) so only finitely

many divisors appear in the above sum.

If ∆(h, d1, . . . , dr) = 0, the divisor Dh,(d1,...,dr) has an alternate def-

inition. The tautological line bundle O(−1) is Γ-equivariant on the
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period domain MΛ and descends to the Hodge line bundle

K → MΛ.

We define Dh,(d1,...,dr) = K∗. See [31] for an alternate view of degenerate

intersection.

If ∆(h, d1, . . . , dr) < 0, the divisor Dh,(d1,...,dr) on MΛ is defined to

vanish by the Hodge index theorem.

0.2.4. Noether-Lefschetz numbers. Let Λ be a lattice of discriminant

l = ∆(Λ), and let (X, L1, . . . , Lr, π) be a 1-parameter family of Λ-

polarized K3 surfaces. The Noether-Lefschetz number NLπ
h,d1,...,dr

is

the classical intersection product

(7) NLπ
h,(d1,...,dr) =

∫

C

ι∗π[Dh,(d1,...,dr)].

Let Mp2(Z) be the metaplectic double cover of SL2(Z). There is a

canonical representation [4] associated to Λ,

ρ∗
Λ : Mp2(Z) → End(C[G]).

The full set of Noether-Lefschetz numbers NLπ
h,d1,...,dr

defines a vector

valued modular form

Φπ(q) =
∑

γ∈G

Φπ
γ (q)vγ ∈ C[[q

1

2l ]] ⊗ C[G],

of weight 22−r
2

and type ρ∗
Λ by results3 of Borcherds and Kudla-Millson

[4, 25]. The Noether-Lefschetz numbers are the coefficients4 of the

components of Φπ,

NLπ
h,(d1,...,dr) = Φπ

γ

[
∆(h, d1, . . . , dr)

2l

]

where δ(h, d1, . . . , dr) = ±γ. The modular form results significantly

constrain the Noether-Lefschetz numbers.

3While the results of the papers [4, 25] have considerable overlap, we will follow
the point of view of Borcherds.

4If f is a series in q, f [k] denotes the coefficient of qk.
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0.2.5. Refinements. If d1, . . . , dr do not simultaneously vanish, refined

Noether-Lefschetz divisors are defined. If ∆(h, d1, . . . , dr) > 0,

Dm,h,(d1,...,dr) ⊂ Dh,(d1,...,dr)

is defined by requiring the class β ∈ Pic(S) to satisfy (6) and have

divisibility m > 0. If ∆(h, d1, . . . , dr) = 0, then

Dm,h,(d1,...,dr) = Dh,(d1,...,dr)

if m > 0 is the greatest common divisor of d1, . . . , dr and 0 otherwise.

Refined Noether-Lefschetz numbers are defined by

(8) NLπ
m,h,(d1,...,dr) =

∫

C

ι∗π[Dm,h,(d1,...,dr)].

In Section 2.5, the full set of Noether-Lefschetz numbers NLπ
h,(d1,...,dr)

is easily shown to determine the refined numbers NLπ
m,h,(d1,...,dr).

0.3. Three theories. The main geometric idea in the proof is the

relationship of three theories associated to a 1-parameter family

π : X → C

of Λ-polarized K3 surfaces:

(i) the Noether-Lefschetz numbers of π,

(ii) the genus 0 Gromov-Witten invariants of X,

(iii) the genus 0 reduced Gromov-Witten invariants of the K3 fibers.

The Noether-Lefschetz numbers (i) are classical intersection products

while the Gromov-Witten invariants (ii)-(iii) are quantum in origin.

For (ii), we view the theory in terms the Gopakumar-Vafa invariants5

[16, 17].

Let nX
0,(d1,...,dr) denote the Gopakumar-Vafa invariant of X in genus 0

for π-vertical curve classes of degrees d1, . . . , dr with respect to the line

bundles L1, . . . , Lr. Let r0,m,h denote the reduced K3 invariant defined

in Section 0.1. The following result is proven6 in [31] by a comparison

5A review of the definitions can be found in Section 2.5.
6The result of the [31] is stated in the rank r = 1 case, but the argument is

identical for arbitrary r.
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of the reduced and usual deformation theories of maps of curves to the

K3 fibers of π.

Theorem 2. For degrees (d1, . . . , dr) positive with respect to the quasi-

polarization λπ,

nX
0,(d1,...,dr) =

∞∑

h=0

∞∑

m=1

r0,m,h · NLπ
m,h,(d1,...,dr).

0.4. Proof of Theorem 1. The STU model described in Section 1 is

a special family of rank 2 lattice polarized K3 surfaces

πSTU : XSTU → P1.

The fibered K3 surfaces of the STU model are themselves elliptically

fibered. The proof of Theorem 1 proceeds in four basic steps:

(i) The modular form [4, 25] determining the intersections of the

base P1 with the Noether-Lefschetz divisors is calculated. For

the STU model, the modular form has vector dimension 1 and

is proportional to the product E4E6 of Eisenstein series.

(ii) Theorem 2 is used to show the 3-fold BPS counts nXSTU

0,(d1,d2)
then

determine all the reduced K3 invariants r0,m,h. Strong use is

made of the rank 2 lattice of the STU model.

(iii) The BPS counts nXSTU

0,(d1,d2)
are calculated via mirror symmetry.

Since the STU model is realized as a Calabi-Yau complete in-

tersection in a nonsingular toric variety, the genus 0 Gromov-

Witten invariants are obtained after proven mirror transfor-

mations from hypergeometric series. The Klemm-Lerche-Mayr

identity, proven in Section 3, shows the invariants nXSTU

0,(d1,d2) are

themselves related to modular forms.

(iv) Theorem 1 then follows from the Harvey-Moore identity which

simultaneously relates the modular structures of

nXSTU

0,(d1,d2), r0,m,h, and NLπSTU

m,h,(d1,d2)

in the form specified by Theorem 2. D. Zagier’s proof of the

Harvey-Moore identity is presented in Section 4.
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The strategy of proof is special to genus 0. Much less is known

in higher genus. The Katz-Klemm-Vafa conjecture [21, 31] for the

integral7

∫

[Mg(S,β)]red

(−1)gλg

is a particular generalization of the Yau-Zaslow formula to higher gen-

era. The KKV formula does not yet appear easily approachable in

Gromov-Witten theory.8 However, a proof of the KKV formula for

primitive K3 classes in the conjecturally equivalent theory of stable

pairs in the derived category is given in [22, 34].
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1. The STU model

1.1. Overview. The STU model9 is a particular nonsingular projec-

tive Calabi-Yau 3-fold X equipped with a fibration

(9) π : X → P1.

Except for 528 points ξ ∈ P1, the fibers

Xξ = π−1(ξ)

are nonsingular elliptically fibered K3 surfaces. The 528 singular fibers

Xξ have exactly 1 ordinary double point singularity each.

The 3-fold X is constructed as an anticanonical section of a non-

singular projective toric 4-fold Y . The Picard rank of Y is 6. The

fibration (9) is obtained from a nonsingular toric fibration

πY : Y → P1.

The image of

Pic(Y ) → Pic(Xξ)

determines a rank 2 sublattice of each fiber Pic(Xξ) with intersection

form (
0 1
1 0

)
.

The toric data describing the construction of X ⊂ Y and the fibra-

tion structure are explained here.

1.2. Toric varieties. Let N be a lattice of rank d,

N
∼
= Zd.

A fan Σ in N is a collection of strongly convex rational polyhedral cones

containing all faces and intersections. A toric variety VΣ is canonically

associated to Σ. The variety VΣ is complete of dimension d if the

support of Σ covers N ⊗Z R. If all cones are simplicial and if all

9The model has been studied in physics since the 80’s. The letter S stands for
the dilaton and T and U label the torus moduli in the heterotic string. The STU
model was an important example for the duality between type IIA and heterotic
strings formulated in [20]. The ideas developed in [18, 19, 23, 24, 30] about the
STU model play an important role in our paper.
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maximal cones are generated by a lattice basis, then VΣ is nonsingular.

See [8, 12, 32] for the basic properties of toric varieties.

Let Σ be a fan corresponding to a nonsingular complete toric variety.

A 1-dimensional cone of Σ is a ray with a unique primitive vector.

Let Σ(1) denote the set of 1-dimensional cones of Σ indexed by their

primitive vectors

(10) {ρ1, . . . , ρn}.

Let r1, . . . rℓ be a basis over the integers of the module of relations

among the vectors (10). We write the jth relation as

rj
1ρ1 + . . . + rj

nρn = 0.

Define a torus

(C∗)ℓ ∼
=

ℓ∏

j=1

C∗
j

with factors indexed by the relations.

A simple description of VΣ is obtained via a quotient construction.

Let {zi}1≤i≤n be coordinates on Cn corresponding to the primitives ρi

of the rays in Σ(1). An action of C∗
j on Cn is defined by

(11) λj ·
(
z1, . . . , zn

)
=
(
λ

rj
1

j z1, . . . , λ
rj
n

j zn

)
, λj ∈ C∗

j

In order to obtain a well-behaved quotient for the induced (C∗)ℓ-action

on Cn, an exceptional set Z(Σ) ⊂ Cn consisting of a finite union of

linear subspaces is excluded. The linear space defined by {zi = 0 |i ∈ I}
is contained in Z(Σ) if there is no single cone in Σ containing all of the

primitives {ρi}i∈I . After removing Z(Σ), the quotient

(12) VΣ =
(

Cn \ Z(Σ)
)/(

C∗
)ℓ

yields the toric variety associated to Σ.

Since ℓ = n − d, the complex dimension of the quotient VΣ equals

the rank d of the lattice N . The variety VΣ is equipped with the action

of the quotient torus

T = (C∗)n/(C∗)ℓ.
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The rank of Pic(VΣ) is ℓ. The primitives ρi are in 1–to–1 correspondence

with the T -invariant divisors Di on VΣ defined by

(13) Di =
{
zi = 0

}
⊂ VΣ.

Conversely, the homogeneous coordinate zi is a section of the line bun-

dle O(Di). The anticanonical divisor class of VΣ is determined by

(14) −KVΣ
=

n∑

i=1

Di.

1.3. The toric 4-fold Y . The fan Σ in Z4 defining the toric 4-fold Y

has 10 rays with primitive elements

ρ1 = (1, 0, 2, 3) ρ2 = (−1, 0, 2, 3)
ρ3 = (0, 1, 2, 3) ρ4 = (0,−1, 2, 3)
ρ5 = (0, 0, 2, 3) ρ6 = (0, 0,−1, 0) ρ7 = (0, 0, 0,−1)
ρ8 = (0, 0, 1, 2) ρ9 = (0, 0, 0, 1) ρ10 = (0, 0, 1, 1).

The full fan Σ is obtained from the convex hull of the 10 primitives.

By explicitly checking each of 24 dimension 4 cones, Y is seen to be a

complete nonsingular toric 4-fold.

Generators r1, . . . , r6 of the rank 6 module of relations among the

primitives can be taken to be

ρ1 +ρ2 +4ρ6 +6ρ7 = 0
ρ3 +ρ4 +4ρ6 +6ρ7 = 0

ρ5 +2ρ6 +3ρ7 = 0
ρ6 +2ρ7 +ρ8 = 0

+ ρ7 +ρ9 = 0
ρ6 + ρ7 +ρ10 = 0

By the identification (14) of −KY , the product
∏10

i=1 zi defines an

anticanonical section. Hence, every product

10∏

i=1

zmi

i , mi ≥ 0
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which is homogeneous of degree
∑10

i=1 rj
i with respect to the action (11)

of C∗
j also defines an anticanonical section. Hence,

z1
12z4

12z5
6z8

4z9
2z10

3, z1
12z3

12z5
6z8

4z9
2z10

3,(15)

z2
12z4

12z5
6z8

4z9
2z10

3, z2
12z3

12z5
6z8

4z9
2z10

3,

z6
3z8z9

2, z7
2z10

are all sections of −KY .

From the definitions, we find Z(Σ) consists of the union of the fol-

lowing 11 linear spaces of dimension 2 in C4,

(16)

I1 = {1, 2}, I2 = {3, 4}, I3 = {5, 6}, I4 = {5, 7},
I5 = {5, 9}, I6 = {6, 8}, I7 = {6, 10}, I8 = {7, 8},
I9 = {7, 9}, I10 = {8, 10}, I11 = {9, 10} .

Recall, Ik indexes the coordinates which vanish.

A simple verification show the 6 sections (15) of −KY do not have a

common zero on the prequotient Cn \Z(Σ). Hence, −KY is generated

by global sections on Y . A hypersurface

X ⊂ Y

defined by a generic section of −KY is nonsingular by Bertini’s Theo-

rem. By adjunction, X is Calabi-Yau.

1.4. Fibrations. The toric variety Y admits two obvious fibrations

πY : Y → P1, µY :→ P1

given in homogeneous coordinates by

πY (z1, . . . , z10) = [z1, z2], µY (z1, . . . , z10) = [z3, z4].

Since Z(Σ) contains the linear spaces

I1 = {1, 2}, I2 = {3, 4},

both πY and µY are well-defined.
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Consider first πY . The fibers of πY are nonsingular complete toric

3-folds defined by the fan in

Z3 ⊂ Z4, (c1, c2, c3) 7→ (0, c1, c2, c3)

determined by the primitives ρ3, . . . , ρ10.

Let X be obtained from a generic section of −KY . Let

π : X → P1

be the restriction πY |X .

Proposition 1. Except for 528 points ξ ∈ P1, the fibers

Xξ = π−1(ξ)

are nonsingular elliptically fibered K3 surfaces The 528 singular fibers

Xξ each have exactly 1 ordinary double point singularity.

Proof. Let Pk,k(z1, z2|z3, z4) denote a bihomogeneous polynomial of de-

gree k in (z1, z2) and degree k in (z3, z4). Let

F = P12,12(z1, z2|z3, z4), G = P8,8(z1, z2|z3, z4), H = P4,4(z1, z2|z3, z4)

be bihomogeneous polynomials. Then

(17) Fz6
5z

4
8z

2
9z

3
10, Gz4

5z6z
3
8z

2
9z

2
10, Hz2

5z
2
6z

2
8z

2
9z10, z3

6z8z
2
9 , z2

7z10

all determine sections of −KY .

Let X be defined by a generic linear combination of the sections

(17). Since the base point free system (15) is contained in (17), X is

nonsingular. We will prove all the fibers Xξ are nonsingular, except for

finitely many with exactly 1 ordinary double point each, by an explicit

study of the equations.

Since I7 = {6, 10}, I10 = {8, 10}, and I11 = {9, 10} are in Z(Σ), we

easily see X ∩D10 = ∅ if the coefficient of z3
6z8z

2
9 is nonzero. Similarly

X ∩ D8 = ∅, X ∩ D9 = ∅.

Hence, using the last 3 factors of the torus (C∗)ℓ, the coordinates z8,

z9, and z10 can all be set to 1. The equation for X simplifies to

Fz6
5 + Gz4

5z6 + Hz2
5z

2
6 + αz3

6 + βz2
7.



18 A. KLEMM, D. MAULIK, R. PANDHARIPANDE AND E. SCHEIDEGGER

The coordinates z1 and z2 do not simultaneously vanish on Y . There

are two charts to consider. By symmetry, the analysis on each is identi-

cal, so we assume z1 6= 0. Using the first factor of (C∗)ℓ, we set z1 = 1.

By the same reasoning, we set z3 = 1 using the second factor of (C∗)ℓ.

Since I3 = {5, 6} and I4 = {5, 7} are in Z(Σ) either z5 6= 0 or both z6

and z7 do not vanish.

Case z5 6= 0. Using the third factor of (C∗)ℓ to set z5 = 1, we obtain

the equation

(18) F (1, z2|1, z4) + H(1, z2|1, z4)z6 + G(1, z2|1, z4)z
2
6 + αz3

6 + βz2
7

in C4 with coordinates z2, z4, z6, z7. The map π is given by the z2

coordinate. The partial derivative of (18) with respect z7 is 2βz7.

Hence, if β 6= 0, all singularities of π occur when z7 = 0.

We need only analyze the reduced dimension case

(19) F (1, z2|1, z4) + H(1, z2|1, z4)z6 + G(1, z2|1, z4)z
2
6 + z3

6

with coordinates z2, z4, z6. Here, α has been set to 1 by scaling the

equation. We must show all the fibers of π are nonsingular curves

except for finitely many with simple nodes. We view equation (19) as

defining a 1-parameter family of paths γz2
(z4) in the space

C = {γ0 + γ1z6 + γ2z
2
6 + z3

6 | γ0, γ1, γ2 ∈ C}

of cubic polynomials in the variable z6. The coordinate of the path is

z4. The variable z2 indexes the family of paths.

Let ∆ ⊂ C be the codimension 1 discriminant locus of cubics with

double roots. The discriminant is irreducible with cuspidal singularities

in codimension 2 in C. The possible singularities of the fiber π−1(λ)

occur only when the path γλ(z4) intersects ∆. The fiber π−1(λ) is

nonsingular over such an intersection point if either

(i) γλ is transverse to ∆ at a nonsingular point of ∆,

(ii) γλ is transverse to the codimension 1 tangent cone of a singular

point of ∆.
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The fiber π−1(λ) has a simple node over an intersection point of the

path γλ(z4) with ∆ if

(iii) γλ is tangent to ∆ at a nonsingular point of ∆.

The above are all the possibilities which can occur in a generic 1-

parameter family of paths in the space of cubic equations.10 Possibility

(iii) can happen only for finitely many λ and just once for each such λ.

Case z6 6= 0 and z7 6= 0. Using the third factor of (C∗)ℓ to set z6 = 1,

we obtain the equation

(20) F (1, z2|1, z4) + H(1, z2|1, z4) + G(1, z2|1, z4) + α + βz2
7

in C4 with coordinates z2, z4, z5, z7. The partial derivative of (20) with

respect z7 is not 0 for z7 6= 0. Hence, there are no singular fibers of π

on the chart.

We have proven all the fibers Xξ of π are nonsingular except for

finitely many with exactly 1 ordinary double point each. Let Xξ be a

nonsingular fiber. Let

µ : X → P1

be the restriction µY |X . The fibers of product

(π, µ) : X → P1 × P1

are easily seen to be anticanonical sections of the nonsingular toric

surface11 W with fan in Z2 determined by the primitives ρ5, . . . , ρ10.

These anticanonical sections are elliptic curves. Since Xξ has trivial

canonical bundle by adjunction and the map

µ : Xξ → P1

is dominant with elliptic fibers, we conclude Xξ is an elliptically fibered

K3 surface.

10A cusp of π−1(λ) occurs, for example, when the path has contact order 3 at a
nonsingular point of the discriminant.

11Since the product (πY , µY ) : Y → P1 × P1 has fibers isomorphic to the non-
singular complete (hence projective) toric surface W , the 4-fold Y is projective.
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The Euler characteristic of X can be calculated by toric intersection

in Y ,

χtop(X) = −480.

The Euler characteristic of a nonsingular K3 fibration over P1 is 48.

Since each fiber singularity reduces the Euler characteristic by 1, we

conclude π has exactly 528 singular fibers. �

For emphasis, we will sometimes denote the STU model by

πSTU : XSTU → P1.

1.5. Divisor restrictions. The divisors D1, D2, D8, D9, and D10

have already been shown to restrict to the trivial class in Pic(Xξ). The

divisors D3 and D4 restrict to the fiber class F ∈ Pic(Xξ) of the elliptic

fibration

(21) µ : Xξ → P1.

Certainly F 2 = 0. Let S ∈ Pic(Xξ) denote the restriction of D5. Toric

calculations yield the products

F · S = 1, S · S = −2.

Hence, S may be viewed as the section class of the elliptic fibration

(21). The divisors D6 and D7 restrict to classes in the rank 2 lattice

generated by F and S.

The restriction of Pic(Y ) to each fiber Xξ is a rank 2 lattice generated

by F and S with intersection form
(

0 1
1 −2

)
.

We may also choose generators L1 = F and L2 = F + S with intersec-

tion form

Λ =

(
0 1
1 0

)
.
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1.6. 1-parameter families. Let X be a compact 3-dimensional com-

plex manifold equipped with two holomorphic line bundles

L1, L2 → X

and a holomorphic map

π : X → C

to a nonsingular complete curve.

The data (X, L1, L2, π) determine a family of Λ-polarized K3 surfaces

if the fibers (Xξ, L1,ξ, L2,ξ) are K3 surfaces with intersection form
(

L1,ξ · L1,ξ L2,ξ · L1,ξ

L1,ξ · L2,ξ L2,ξ · L2,ξ

)
=

(
0 1
1 0

)

and there exists a simultaneous quasi-polarization. The 1-parameter

family (X, L1, L2, π) yields a morphism,

ιπ : C → MΛ,

to the moduli space of Λ-polarized K3 surfaces.

The construction (XSTU , L1, L2, π
STU) of the STU model in Sections

1.3-1.5 is almost a 1-parameter family of Λ-polarized K3 surfaces. The

only failing is the 528 singular fibers of πSTU . Let

ǫ : C
2−1−→ P1

be a hyperelliptic curve branched over the 528 points of P1 correspond-

ing to the singular fibers of π. The family

ǫ∗(XSTU) → C

has 3-fold double point singularities over the 528 nodes of the fibers of

the original family. Let

π̃STU : X̃STU → C

be obtained from a small resolution

X̃STU → ǫ∗(XSTU).

Let L̃i → X̃STU be the pull-back of Li by ǫ. The data

(X̃STU , L̃1, L̃2, π̃
STU)
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determine a 1-parameter family of Λ-polarized K3 surfaces, see Section

5.3 of [31]. The simultaneous quasi-polarization is obtained from the

projectivity of XSTU .

1.7. Gromov-Witten invariants. Since XSTU is defined by an an-

ticanonical section in a semi-positive nonsingular toric variety Y , the

genus 0 Gromov-Witten invariants have been proven by Givental [14,

15, 29, 33] to be related by mirror transformation to hypergeometric

solutions of the Picard-Fuchs equations of the Batyrev-Borisov mirror.

By Section 5.3 of [31], the Gromov-Witten invariants of X̃STU are ex-

actly twice the Gromov-Witten invariants of XSTU for curve classes in

the fibers.

2. Noether-Lefschetz numbers and reduced K3 invariants

2.1. Refined Noether-Lefschetz numbers. Following the notation

of Section 0.2, let

Λ ⊂ U ⊕ U ⊕ U ⊕ E8(−1) ⊕ E8(−1)

be primitively embedded with signature (1, r − 1) and integral basis

v1, . . . , vr. Let (X, L1, . . . , Lr, π) be a 1-parameter family of Λ-polarized

K3 surfaces. Let d1, . . . , dr be integers which do not all vanish.

Lemma 1. The Noether-Lefschetz numbers NLπ
h,(d1,...,dr) completely de-

termine the refinements NLπ
m,h,(d1,...,dr).

Proof. By definition, the refined Noether-Lefschetz numbers satisfy two

elementary identities. The first is

NLπ
h,(d1,...,dr) =

∞∑

m=1

NLπ
m,h,(d1,...,dr).

If m does not divide all di, then NLπ
m,h,(d1,...,dr) vanishes. If m divides

all di, then a second identity holds:

NLπ
m,h,(d1,...,dr) = NLπ

1,h′,(d1/m,...,dr/m)

where 2h − 2 = m2(2h′ − 2).



NOETHER-LEFSCHETZ THEORY AND THE YAU-ZASLOW CONJECTURE 23

If ∆(h, d1, . . . , dr) = 0, the refined number NLπ
m,h,(d1,...,dr) vanishes

by definition unless m is the GCD of (d1, . . . , dr). In the latter case,

NLπ
h,(d1,...,dr) = NLπ

m,h,(d1,...,dr).

Hence the Lemma is trivial in the ∆(h, d1, . . . , dr) = 0 case.

If ∆(h, d1, . . . , dr) > 0, we prove the Lemma by induction on ∆. The

second identity reduces us to the case where m = 1. The first identity

determines the m = 1 case in terms of the Noether-Lefschetz number

NLh,(d1,...,dr) and refined numbers with

∆(h′, d′
1, . . . , d

′
r) < ∆(h, d1, . . . , dr).

�

2.2. STU model. The resolved version of the STU model

π̃STU : X̃STU → C

is lattice polarized with respect to

Λ =

(
0 1
1 0

)
.

The application of the results of [4, 25] to the STU model is extremely

simple. Since the lattice Λ is unimodular, the corresponding represen-

tation ρ∗
Λ is 1-dimensional and, in fact, is the trivial representation of

Mp2(Z). The Noether-Lefschetz degrees are thus encoded by a scalar

modular form of weight 22−r
2

= 10. The space of such forms is well-

known to be of dimension 1 and spanned by the product of Eisenstein

series12

E10(q) = E4(q)E6(q) = 1 − 264
∑

n≥1

σ9(n)qn.

12The Eisenstein series E2k is the modular form defined by the equation

−B2k

4k
E2k(q) = −B2k

4k
+
∑

n≥1

σ2k−1(n)qn,

where B2n is the 2nth Bernoulli number and σn(k) is the sum of the kth powers of
the divisors of n,

σk(n) =
∑

i|n

ik.
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Hence, a single Noether-Lefschetz calculation determines the full series.

Lemma 2. NLeπ
0,(0,0) = 1056.

Proof. By Proposition 1, the STU model

πSTU : XSTU → P1

has 528 nodal fibers. Let S be a fiber of the resolved family π̃STU lying

over a singular fiber of π. The Picard lattice of S certainly contains

(22)




0 1 0
1 0 0
0 0 −2




spanned by L1, L2, and the (−2)-curve E of the small resolution. Let

ι̃ : C → MΛ

be the map to moduli. Since a class β satisfying

〈β, β〉 = −2

on a K3 surface is either effective or anti-effective, the set theoretic

intersections of ι̃ with D0,(0,0) correspond to fibers of π̃ where L1 and

L2 do not generate an ample class — precisely the 528 fibers of π̃ lying

over the singular fibers of π.

The divisor D0,(0,0) has multiplicity exactly 2 at the 528 intersections

with ι̃ since E and −E are the only −2 classes orthogonal to L1 and

L2. Finally, since E has normal bundle (−1,−1) in X̃STU , the curve

ι̃ is transverse to the reduced divisor 1
2
D0,(0,0) at the 528 intersections.

We conclude NLeπ
0,(0,0) = 528 · 2 = 1056. �

Proposition 2. The Noether-Lefschetz degrees of the resolved STU

model are given by the equation

NLπ̃
h,(d1,d2) = −4E4(q)E6(q)

[
∆(h, d1, d2)

2

]
.
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2.3. BPS states. Let (X̃STU , L̃1, L̃2, π̃
STU) the Λ-polarized STU model

The vertical classes are the kernel of the push-forward map by π̃,

0 → H2(X̃, Z)eπ → H2(X̃, Z) → H2(C, Z) → 0.

While X̃ need not be a projective variety, X̃ carries a (1, 1)-form ωK

which is Kähler on the K3 fibers of π̃. The existence of a fiberwise

Kähler form is sufficient to define Gromov-Witten theory for vertical

classes

0 6= γ ∈ H2(X̃, Z)eπ.

The fiberwise Kähler form ωK is obtained by a small perturbation

of the quasi-Kähler form obtained from the quasi-polarization. The

associated Gromov-Witten theory is independent of the perturbation

used.

Let M 0(X̃, γ) be the moduli space of stable maps from connected

genus 0 curves to X̃. Gromov-Witten theory is defined by integration

against the virtual class,

(23) N
eX

0,γ =

∫

[M0( eX,γ)]vir

1.

The expected dimension of the moduli space is 0.

The genus 0 Gromov-Witten potential F
eX(v) for nonzero vertical

classes is the series

F
eX =

∑

06=γ∈H2( eX,Z)eπ

N
eX

0,γ vγ

where v is the curve class variable. The BPS counts n
eX
0,γ of Gopakumar

and Vafa are uniquely defined by the following equation:

F
eX =

∑

06=γ∈H2( eX,Z)eπ

n
eX
0,γ

∑

d>0

vdγ

d3
.

Conjecturally, the invariants n
eX
0,γ are integral and obtained from the

cohomology of an as yet unspecified moduli space of sheaves on X̃. We

do not assume the conjectural properties hold.
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Using the Λ-polarization, we define the BPS counts

(24) n
eX
0,(d1,d2)

=
∑

γ∈H2( eX,Z)eπ ,
R

γ
eLi=di

n
eX
0,γ

when d1 and d2 are not both 0.

The original STU model,

πSTU : XSTU → P1,

with 528 singular fibers is a nonsingular, projective, Calabi-Yau 3-fold.

Hence the Gromov-Witten invariants are well-defined. Let nX
0,(d1,d2)

de-

note the fiberwise Gopakumar-Vafa invariant with degrees di measured

by Li. By the argument of Section 1.7,

n
eX
0,(d1,d2)

= 2nX
0,(d1,d2)

when d1 and d2 are not both 0.

2.4. Invertibility of constraints. Let P ⊂ Z2 be the set of pairs

P = { (d1, d2) 6= (0, 0) | d1 ≥ 0, d1 ≥ −d2 } .

Pairs (d2, d2) ∈ P are certainly positive with respect to any quasi-

polarization for π̃STU since such (d1, d2) can be realized by linear com-

binations of the effective classes F and S.

Theorem 2 applied to the resolved STU model yields the equation

(25) n
eX
0,(d1,d2)

=
∞∑

h=0

∞∑

m=1

r0,m,h · NLπ̃
m,h,(d1,d2)

for (d1, d2) ∈ P. The BPS states on the left side will be computed by

mirror symmetry in Section 3. The refined Noether-Lefschetz degrees

are determined by Lemma 1 and Proposition 2. Consequently, equation

(25) provides constraints on the reduced K3 invariants r0,m,h

The integrals r0,m,h are very simple in case h ≤ 0. By Lemma 2 of

[31], r0,m,h = 0 for h < 0,

r0,1,0 = 1,

and r0,m,0 = 0 otherwise.
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Proposition 3. The set of integrals {r0,m,h}m≥1,h>0 is uniquely deter-

mined by the set of constraints (25) for (d1 ≥ 0, d2 > 0) and the

integrals r0,m,h≤0.

Proof. A certain subset of the linear equations with d2 > 0 will be

shown to be upper triangular in the variables r0,m,h. Picard rank 2 is

crucial for the argument.

Let us fix in advance the values of m ≥ 1 and h > 0. We proceed

by induction on m assuming the reduced invariants r0,m′,h have already

been determined for all m′ < m. The assumption is vacuous when

m = 1. We can also assume r0,m,h′ has been determined inductively for

h′ < h. If 2h − 2 is not divisible by 2m2, then we have r0,m,h = 0, so

we can further assume

2h − 2 = m2(2s − 2)

for an integer s > 0.

Consider equation (25) for (d1, d2) = (m(s − 1), m). Certainly

NLeπ
m′,h′,(m(s−1),m) = 0

unless m′ divides m. By the Hodge index theorem, we must have

(26) ∆(h′, m(s − 1), m) = 2 − 2h′ + m2(2s − 2) ≥ 0

if NLeπ
m,h′,(m(s−1),m) 6= 0. Inequality (26) implies h′ ≤ h.

Therefore, the constraint (25) takes the form

n
eX
0,(m(s−1),m) = r0,m,hNLeπ

m,h,(m(s−1),m) + . . . ,

where the dots represent terms involving r0,m′,h′ with either

m′ < m or m′ = m, h′ < h.

The leading coefficient is given by

NLeπ
m,h,(m(s−1),m) = NLeπ

h,(m(s−1),m) = −4.

As the system is upper-triangular, we can invert to solve for r0,m,h. �
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2.5. Proof of the Yau-Zaslow conjecture. By Proposition 3, we

need only show the answer for r0,m,h predicted by the Yau-Zaslow con-

jecture satisfies the constraints (25) for all pairs (d1 ≥ 0, d2 > 0).

Let XSTU be the original Calabi-Yau 3-fold of the STU model. Let

(27) D3
2F

X =
∑

(d1,d2)∈P

d3
2 NX

0,(d1,d2) qd1

1 qd2

2

be the third derivative13 of the genus 0 Gromov-Witten series for π-

vertical classes in P.

We can calculate D3
2F

X by the constraint (25) assuming the validity

of the Yau-Zaslow conjecture,

(28) D3
2F

X =
∑

(d1,d2)∈P

d3
2 c(d1, d2)

qd1

1 qd2

2

1 − qd1

1 qd2

2

where c(k, l) is the coefficient of qkl in

−2
E4(q)E6(q)

η24(q)
.

Proposition 4. The Yau-Zaslow conjecture is implied by the identity

∑

(d1,d2)∈P

d3
2N

X
0,(d1,d2)q

d1

1 qd2

2 =
∑

(d1,d2)∈P

d3
2 c(d1, d2)

qd1

1 qd2

2

1 − qd1

1 qd2

2

.

Proof. The qd1

1 qd2

2 coefficient of the above identity is simply d3
2 times

the constraint (25). Since we only require the constraints in case

(d1 ≥ 0, d2 > 0) ∈ P,

the identity implies all the constraints we need. �

The remainder of the paper is devoted to the proof of Proposition 4.

The genus 0 Gromov-Witten invariants of X are related, after mirror

transformation, to hypergeometric solutions of the associated Picard-

Fuchs system of differential equations. Hence, Proposition 4 amounts

to a subtle identity among special functions.

13D2 = q2
d

dq2

.
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3. Mirror transform

3.1. Picard-Fuchs. Let π : X → P1 be the STU model. Let

δ0 ∈ H∗(X, C)

denote the identity class. A basis of H2(X, C) is obtained from the

restriction of the toric divisors of Y discussed in Section 1.5,

δ1 = 2D1 + 2D3 + D5, δ2 = D3, δ3 = D1.

Recall, δ3 vanishes on the fibers of π. Let {δj} be a full basis of

H∗(X, C) extending the above selections.

Let u1, u2, u3 be the canonical coordinates for the mirror family with

respect to the divisor basis δ1, δ2, δ3. Let

θi = ui
∂

∂ui
.

The Picard-Fuchs system associated to the mirror of XSTU is:

(29)

L1 = θ1 (θ1 − 2 θ2 − 2 θ3) − 12 (6 θ1 − 5) (6 θ1 − 1)u1

L2 = θ2
2 − (2 θ2 + 2 θ3 − θ1 − 2) (2 θ2 + 2 θ3 − θ1 − 1) u2,

L3 = θ3
2 − (2 θ2 + 2 θ3 − θ1 − 2) (2 θ2 + 2 θ3 − θ1 − 1) u3 .

The system is obtained canonically from the Batyrev-Borisov construc-

tion, see [9] for the formalism.

3.2. Solutions. A fundamental solution to the Picard-Fuchs system

can be written in terms of GKZ hypergeometric series,

(30) ̟ ∈ H∗(X, C) ⊗C C[log(u1), log(u2), log(u3)][[u1, u2, u3]].

Let ̟(u, δj) be the corresponding coefficient of (30), then

Li ̟(u, δj) = 0.

The standard normalization of ̟ satisfies two important properties:

(i) The δ0 coefficient is the unique solution

̟(u, δ0) = 1 + O(u)

holomorphic at u = 0.



30 A. KLEMM, D. MAULIK, R. PANDHARIPANDE AND E. SCHEIDEGGER

(ii) For 1 ≤ i ≤ 3,

̟(u, δi) =
̟(u, δ0)

2πi
log(ui) + O(u)

are the logarithmic solutions.

Let T1, T2, T3 be coordinates on H2(X, C) with respect to the basis

δ. The mirror transformation is defined by

Ti =
̟(u, δi)

̟(u, δ0)
=

1

2πi
log(ui) + O(u)

for 1 ≤ i ≤ 3.

The mirror transformation relates the genus 0 Gromov-Witten the-

ory of X to the Picard-Fuchs system for the mirror family. For anti-

canonical hypersurfaces in toric varieties, a proof is given in [15].

3.3. Mirror transform for q3 = 0. We introduce two modular pa-

rameters

(31) τ1 = T1, τ2 = T1 + T2 .

For i = 1 and 2, let

q̂i = exp(2πiτi),

and let q3 = exp(2πiT3).

Our first step is to find a modular expression for the mirror map

and the period ̟(u, δ0) to leading order in q3. We prove two formulas

discovered by Klemm, Lerche, and Mayr in [24].

Lemma 3. We have

u1 =
2(j(q̂1) + j(q̂2) − µ)

j(q̂1)j(q̂2) +
√

j(q̂1)(j(q̂1) − µ)
√

j(q̂2)(j(q̂2) − µ)
+ O(q3),

u2 =
(j(q̂1)j(q̂2) +

√
j(q̂1)(j(q̂2) − µ)

√
j(q̂2)(j(q̂2) − µ))2

4j(q̂1)j(q̂2)(j(q̂1) + j(q̂2) − µ)2
+ O(q3),

where µ = 1728 and

(32) j(q) =
E3

4

η24
=

1

q
+ 744 + 196884q + O(q2)

is the normalized j function.

Lemma 4. Limq3→0 ̟(u, δ0) = E4(q̂1)
1

4 E4(q̂2)
1

4 .
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Proof. We prove Lemmas 3 and 4 together. The first step is to perform

the following change of variables

u1 = z1, u2 =
z2

2

(
1 +

√
1 − 4z3

)
, u3 =

z2

2

(
1 −

√
1 − 4z3

)
,

with the inverse change

z1 = u1, z2 = u2 + u3, z3 =
u2u3

(u2 + u3)2
.

In the new variables, the limit u3 → 0 becomes the limit z3 → 0.

The statement of Lemma 3 in the variables zi remains unchanged to

first order in q3. We will prove

z1 =
2 (j(q̂1) + j(q̂2) − µ)

j(q̂1)j(q̂2) +
√

j(q̂1)(j(q̂1) − µ)
√

j(q̂2)(j(q̂2) − µ)
+ O(q3),

z2 =
(j(q̂1)j(q̂2) +

√
j(q̂1)(j(q̂2) − µ)

√
j(q̂2)(j(q̂2) − µ))2

4j(q̂1)j(q̂2)(j(q̂1) + j(q̂2) − µ)2
+ O(q3) .

The Picard-Fuchs differential operators (29) can be rewritten as

L′
1(z) = L1(u),

z2

√
1 − 4z3 L′

2(z) = L2(u) −L3(u),

z2

√
1 − 4z3 L′

3(z) = u3L2(u) − u2L3(u),

with

L′
1 = θ1 (θ1 − 2 θ2) − 12 (6 θ1 − 5) (6 θ1 − 1) z1,

L′
2 = θ2 (θ2 − 2 θ3) − (2 θ2 − θ1 − 2) (2 θ2 − θ1 − 1) z2,

L′
3 = θ3

2 − (2 θ3 − θ2 − 2) (2 θ3 − θ2 − 1) z3

where now θi = zi
d

dzi
. Since L′

3(z) → 0 in the limit z3 → 0, we need

only focus on L′
1(z) and L′

2(z).

Next, we transform L′
1(z) and L′

2(z) to new variables y1, y2, y3 via

the change

z1 =
2 (y1 + y2 − µ)

y1y2 +
√

y1(y1 − µ)
√

y2(y2 − µ)
,

z2 =
(y1y2 +

√
y1(y1 − µ)

√
y2(y2 − µ))2

4y1y2(y1 + y2 − µ)2
,

z3 = y3.
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We obtain

L′′
1 = y2

1y2(y1 − µ)∂2
y1

+ y1y2(y1 −
µ

2
)∂y1

− y1y
2
2(y2 − µ)∂2

y2

− y1y2(y2 −
µ

2
)∂y2

+ 60(y1 − y2),

L′′
2 = −y2

1(y1 − µ) ∂2
y1

+ y1(
µ

2
− y1)∂y1

+ y2
2(y2 − µ) ∂2

y2
+ y2(y2 −

µ

2
)∂y2

− 2y1y3(y1 − µ)∂y1
∂y3

+ 2y2y3(y2 − µ)∂y2
∂y3

.

In the limit y3 → 0, the second line on the right for L′′
2 vanishes. We

can combine L′′
1 and L′′

2 to obtain the following simple forms:

L′′
1 + y1 lim

y3→0
L′′

2 = (y1 − y2)
(
60 −

(
y1 −

µ

2

)
y1 ∂y1

− (y1 − µ) y2
1 ∂2

y1

)
,

L′′
1 + y2 lim

y3→0
L′′

2 = (y1 − y2)
(
60 −

(
y2 −

µ

2

)
y2 ∂y2

− (y2 − µ) y2
2 ∂2

y2

)
.

The solution ̟(y, δ0)y3=0 therefore satisfies the differential equation

(33) L = (y − µ) y2∂2
y +

(
y − µ

2

)
y ∂y − 60 .

in both y1 and y2.

Changing (33) to the variable t = 1728
y

yields

L = t(1 − t)∂2
t + (1 − 3

2
t)∂t − 5

144
,

which by comparing with the general hypergeometric differential oper-

ator

L = t(1 − t)∂2
t + (c − (1 + a + b)t)∂t − ab

is identified with the system

2F1(a, b; c; t) = 2F1(
1

12
,

5

12
; 1; t(τ)).

According to the results of Klein and Fricke as reviewed in [37], we have

a unique (up to scaling) solution g0 to (33) locally analytic at y = ∞.

The solution can be written as

g0(j(τ)) = (E4)
1

4 (τ), y(τ) = j(τ) .

Moreover, the inverse is

τ(y) =
g1(y)

2πig0(y)
,
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where g1 is a logarithmic solution at y = ∞ of L, unique up to nor-

malization and addition of g0.

Transformation of the solution ̟(u, δ0) is seen to be analytic in a

neighborhood of t1 = t2 = 0. We conclude

̟(u, δ0)u3=0 = E
1

4

4 (τ1)E
1

4

4 (τ2).

By comparing the first few coefficients of the actual solutions ̟(u, δi)

in the u3 → 0 limit, we can uniquely identify

τ1(u) = T1(u), τ2(u) = T1(u) + T2(u) .

Hence, Lemma 4 is established. Lemma 3 is proven by transforming

back to the u1 and u2 variables. �

Restricted to a K3 fiber of π : X → P1, we have

δ1 = 2F + S, δ2 = F.

The coordinates 2πiτ1 and 2πiτ2 correspond to the divisor basis

L2 = F + S, L1 = F

of the K3 fiber. Since the variables q1 and q2 of Section 2 measure

degrees against L1 and L2, we see

q̂1 = q2 and q̂2 = q1

for the fiber geometry.

3.4. B-model. The mirror transformation results of Section 3.3 to-

gether with a B-model calculation of the periods will be used to prove

the following result discovered by Klemm, Mayr, and Lerche [24].

Proposition 5. We have

2 +
∑

(d1,d2)∈P

d3
2N

X
0,(d1,d2)

qd1

1 qd2

2 = 2
E4(q1)E6(q1)

η24(q1)

E4(q2)

j(q1) − j(q2)
.

The left side of Proposition 5 is the left side of Proposition 4 with

an added degree 0 constant 2.
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Proof. We will use following universal expression for the Gromov-Witten

invariants of X in terms of the periods of the mirror:

2 +
∑

(d1,d2)∈P

d3
2N

X
0,(d1,d2)

qd1

1 qd2

2 =

lim
q3→0

1

̟(u(T ), δ0)2

3∑

i,j,k=1

∂ui

∂τ1

∂uj

∂τ1

∂uk

∂τ1
Yi,j,k(u(T ))

where Yi,j,k are the Yukawa couplings of the mirror family, see [9, 24].

The periods Yi,j,k can be explicitly computed via Griffith transver-

sality [24] and greatly simplify in the q3 → 0 limit. We tabulate the

results below:

Y111 =
8(1 − ũ1)

ũ3
1∆1

, Y133 =
2ũ1(1 − ũ1)

ũ3∆1
,

Y112 =
2(1 − ũ1)

2 + ũ2
1(ũ2 − ũ3)

ũ2
1ũ2∆1

, Y222 =
(1 − 2ũ1)A2

2ũ2
2∆1∆2

,

Y113 =
2(1 − ũ1)

2 + ũ2
1(ũ3 − ũ2)

ũ2
1ũ3∆1

, Y223 =
(1 − 2ũ1)A3

2ũ3ũ2∆1∆2
,

Y122 =
2ũ1(1 − ũ1)

ũ2∆1
, Y233 =

(1 − 2ũ1)A2

2ũ3ũ2∆1∆2
,

Y123 =
(1 − ũ1) ((1 − ũ1)

2 − (ũ2 + ũ3)ũ
2
1)

ũ1ũ2ũ3∆1
, Y333 =

(1 − 2ũ1)A3

2ũ2
3∆1∆2

.

Here, we have introduced the variables

ũ1 = 432u1, ũ2 = 4u2, ũ3 = 4u3

and the discriminant loci

(34)
∆1 = (1 − ũ1)

4 − 2(ũ2 + ũ3)ũ
2
1(1 − ũ1)

2 + (ũ2 − ũ3)
2ũ4

1,

∆2 = (1 − ũ2 − ũ3)
2 − 4ũ2ũ3.

The quantities A2 and A3 are defined by

(35)
A2 = (1 + ũ2 − ũ3) (1 − ũ1)

2 + ũ2
1 (1 − ũ3 − 3 ũ2) (ũ2 − ũ3) ,

A3 = (1 + ũ3 − ũ2) (1 − ũ1)
2 + ũ2

1 (1 − ũ2 − 3 ũ3) (ũ3 − ũ2) .

The normalizations of the Yukawa couplings Yi,j,k are fixed by the clas-

sical intersections.
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The leading behavior of the mirror map for u1, u2 is obtained by

rewriting Lemma 3 in terms of E4(τi) and E6(τi) as

(36)

u1 =
1

864

(
1 − E6(τ1) E6(τ2)

E4(τ1)
3

2 E4(τ2)
3

2

)
+ O(q3) ,

u2 =

(
E4(τ1)

3 − E6(τ1)
2) (E4(τ2)

3 − E6(τ2)
2)

4
(
E4(τ1)

3

2 E4(τ2)
3

2 − E6(τ1) E6(τ2)
)2 + O(q3)

Denote the leading behavior of the last mirror map by

(37) u3 = q3f3(q̂1, q̂2) + O(q2
3) .

The derivatives of the mirror maps with respect to T2 are easily eval-

uated using the standard identities

q
d

dq
E2 = 1

12
(E2

2 − E4)

q
d

dq
E4 = 1

3
(E2E4 − E6)

q
d

dq
E6 = 1

2
(E2E6 − E2

4)

q
d

dq
j = −j

E6

E4
.

We find, to leading order in q3,

∂u1

∂τ1
=

E6(τ2) (E4(τ1)3−E6(τ1)2)
1728 E4(τ2)

3
2 E4(τ1)

5
2

∂u2

∂τ1
=

√
E4(τ1) (E4(τ2)3−E6(τ2)2)

“

−
“

E4(τ1)
3
2 E6(τ2)

”

+E4(τ2)
3
2 E6(τ1)

”

(E4(τ1)3−E6(τ1)2)

4
“

E4(τ2)
3
2 E4(τ1)

3
2 −E6(τ2) E6(τ1)

”3

The derivative ∂u3

∂τ1
can be written to this order as

(38)
∂u3

∂τ1
=

u3

f3(q̂1, q̂2)

∂

∂τ1
f3(q̂1, q̂2) + O(u2

3) .

There are many simplifications in the limit u3 → 0. First the triple

couplings

Y133, Y233, Y333

do not have enough inverse powers of u3 and therefore do not contribute

by the vanishing (38). Second, the surviving Yi,j,k simplify in the limit.
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We evaluate

(39) lim
q3→0

1

̟(u(T ), δ0)2

3∑

i,j,k=1

∂ui

∂τ1

∂uj

∂τ1

∂uk

∂τ1

Yi,j,k(u(T )) =

− 2
E4(τ2) E4(τ1) E6(τ2)

(
E4(τ1)

3 − E6(τ1)
2)

E4(τ2)
3 E6(τ1)

2 − E4(τ1)
3 E6(τ2)

2 .

The possible linear dependence on f3(q̂1, q̂2) drops out as claimed in

[24]! Using the standard identities

j =
E3

4

η24
, η24 = E3

4 − E2
6 ,

we obtain the right side of Proposition 5. �

4. The Harvey-Moore identity

4.1. Proof of Proposition 4. After evaluating the left side via Propo-

sition 5 and dividing by 2, Proposition 4 amounts to a modular form

identity. Let

f(τ) =
E4(τ)E6(τ)

η(τ)24
=

∞∑

n=−1

c(n)qn

where q = exp(2πiτ). Then, we must prove

(40)
f(τ1)E4(τ2)

j(τ1) − j(τ2)
=

q1

q1 − q2
+ E4(τ2) −

∑

d,k,ℓ>0

ℓ3c(kℓ) qkd
1 qℓd

2 .

Equation (40) is the Harvey-Moore identity conjectured in [18].

4.2. Zagier’s proof of the Harvey-Moore identity. The Harvey-

Moore identity implies Proposition 4 and concludes the proof of the

Yau-Zaslow conjecture. We present here Zagier’s argument from [38].

Let Sk ⊂ Mk ⊂ M !
k denote the spaces of cusp forms, modular forms,

and weakly holomorphic 14 modular forms for Γ = SL(2, Z). Certainly

f(τ) ∈ M !
−2.

For each n ≥ 0, there is a unique function Fn ∈ M !
4 satisfying

Fn(τ) = q−n + O(q)

14Holomorphic except for a possible pole at infinity.
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as I(τ) → ∞. Uniqueness follows from the vanishing of S4. Existence

follows by writing Fn(τ) as E4(τ) times a polynomial in j(τ),

F0 = E4, F1 = E4(j − 984), F2 = E4(j
2 − 1728j + 393768) . . . .

We draw several consequences:

(i) F1|Tn = n3Fn for all n ≥ 1, where Tn is the nth Hecke operator

in weight 4. Indeed, Tn sends M !
4 to itself and, by standard

formulas for the action of Tn on Fourier expansions, Tn sends

q−1 + O(q) to n3q−n + O(q).

(ii) F1 = −f ′′′ where prime denotes differentiation by

1

2πi

d

dτ
= q

d

dq
.

We see f ′′′ lies in M !
4 by the k = 4 case of Bol’s identity

dk−1

dτk−1
(f |2−kγ) =

(
dk−1f

dτk−1

)
|kγ ∀γ ∈ Γ.

Since, the Fourier expansion of f ′′′ begins as −q−1 + O(q), the

claim is proven.

(iii) For I(τ1) > maxγ∈Γ I(γτ2),

f(τ1)E4(τ2)

j(τ1) − j(τ2)
=

∞∑

n=0

Fn(τ2)q
n
1 .

Let L(τ1, τ2) denote the left side of (4.2). We see L(τ1, τ2) is a

meromorphic modular form in τ2 with a simple pole of residue

− 1
2πi

at τ2 = τ1 (since j′ = −E2
4E6/η

24) and no poles outside

Γτ1. Moreover, L(τ1, τ2) tends to 0 as I(τ2) → ∞. These

properties characterize L(τ1, τ2) uniquely and show that the nth

Fourier coefficient with respect to τ1 for I(τ1) → ∞ has the

properties characterizing Fn(τ2).
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Combining (i) and (ii) with the formula for the action of Tn on Fourier

expansions, we obtain,

Fn(τ) = (−n−3f ′′′)|Tn = n−3

(
q−1 −

∞∑

m=1

m3c(m) qm

)
|Tn(41)

= q−n −
∑

k,ℓ,d>0

kd=n

ℓ3c(kℓ) qℓd

for n > 0. The Harvey-Moore identity follows from (41) and (iii)

together with the equality F0 = E4. �
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