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Abstract

We discuss the GW/DT correspondence for 3-folds in both the
absolute and relative cases. Descendents in Gromov-Witten theory
are conjectured to be equivalent to Chern characters of the universal
sheaf in Donaldson-Thomas theory. Relative constraints in Gromov-
Witten theory are conjectured to correspond in Donaldson-Thomas
theory to cohomology classes of the Hilbert scheme of points of the
relative divisor. Independent of the conjectural framework, we prove
degree 0 formulas for the absolute and relative Donaldson-Thomas
theories of toric varieties.

1 Introduction

1.1 Overview

The Gromov-Witten theory of a 3-fold X is defined via integrals over the
moduli space of stable maps. The Donaldson-Thomas theory of X is defined
via integrals over the moduli space of ideal sheaves. In [14], a GW/DT
correspondence equating the two theories was proposed, and the Calabi-Yau
case was presented. We discuss here the GW/DT correspondence for general
3-folds.

Let X be a nonsingular, projective 3-fold. Insertions in the Gromov-
Witten theory of X are determined by primary and descendent fields. Inser-
tions in the Donaldson-Thomas theory of X are naturally obtained from the
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Chern classes of universal sheaves. We conjecture a GW/DT correspondence
for 3-folds relating these two sets of insertions.

Let S ⊂ X be a nonsingular surface. The Gromov-Witten theory of
X relative to S has been defined in [4, 9, 10, 12]. The relative constraints
are determined by partitions weighted by cohomology classes of S. A rela-
tive Donaldson-Thomas theory has been defined by J. Li [13]. The relative
constraints are determined by cohomology classes of the Hilbert scheme of
points of S. We propose a GW/DT correspondence in the relative case re-
lating the Gromov-Witten constraints to the Donaldson-Thomas constraints
via Nakajima’s basis of the cohomology of the Hilbert scheme of points.

In the last Section of the paper, independent of the conjectural framework,
we study the Donaldson-Thomas theory in degree 0 using localization and
relative geometry. We derive a formula for the equivariant vertex measure in
the degree 0 case and prove Conjecture 1′ of [14] in the toric case. A degree
0 relative formula is also proven.
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2 The GW/DT correspondence for 3-folds

2.1 GW theory

Gromov-Witten theory is defined via integration over the moduli space of
stable maps. Let X be a nonsingular, projective 3-fold. Let M g,r(X, β)
denote the moduli space of r-pointed stable maps from connected, genus g
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curves to X representing the class β ∈ H2(X,Z). Let

evi : M g,r(X, β) → X,

Li → Mg,r(X, β)

denote the evaluation maps and cotangent lines bundles associated to the
marked points. Let γ1, . . . , γm be a basis of H∗(X,Q), and let

ψi = c1(Li) ∈M g,n(X, β).

The descendent fields, denoted by τk(γj), correspond to the classes ψk
i ev

∗
i (γj)

on the moduli space of maps. Let

〈τk1(γl1) · · · τkr
(γlr)〉g,β =

∫

[Mg,r(X,β)]vir

r
∏

i=1

ψki

i ev∗
i (γli)

denote the descendent Gromov-Witten invariants. Foundational aspects of
the theory are treated, for example, in [1, 2, 11].

Let C be a possibly disconnected curve with at worst nodal singularities.
The genus of C is defined by 1 − χ(OC). Let M

′

g,r(X, β) denote the mod-
uli space of maps with possibly disconnected domain curves C of genus g
with no collapsed connected components. The latter condition requires each
connected component of C to represent a nontrivial class in H2(X,Z). In
particular, C must represent a nonzero class β.

The descendent invariants are defined in the disconnected case by

〈τk1(γl1) · · · τkr
(γlr)〉

′
g,β =

∫

[M
′

g,r(X,β)]vir

r
∏

i=1

ψki

i ev∗
i (γli).

Define the following generating function,

Z
′
GW

(

X; u |
r
∏

i=1

τki
(γli)

)

β
=
∑

g∈Z

〈
r
∏

i=1

τki
(γli)〉

′
g,β u

2g−2. (1)

Since the domain components must map nontrivially, an elementary argu-
ment shows the genus g in the sum (1) is bounded from below. The descen-
dent insertions in (1) should match the (genus independent) virtual dimen-
sion,

dim [M
′

g,r(X, β)]vir =

∫

β

c1(TX) + r.

Following the terminology of [14], we view (1) as a reduced partition function.
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2.2 DT theory

Donaldson-Thomas theory is defined via integration over the moduli space
of ideal sheaves. Let X be a nonsingular, projective 3-fold. An ideal sheaf
is a torsion-free sheaf of rank 1 with trivial determinant. Each ideal sheaf I
injects into its double dual,

0 → I → I∨∨.

As I∨∨ is reflexive of rank 1 with trivial determinant,

I∨∨ ∼
= OX ,

see [17]. Each ideal sheaf I determines a subscheme Y ⊂ X,

0 → I → OX → OY → 0.

We will consider only ideal sheaves of subschemes Y with components of
dimension at most 1. The dimension 1 components of Y (weighted by their
intrinsic multiplicities) determine an element,

[Y ] ∈ H∗(X,Z).

Let In(X, β) denote the moduli space of ideal sheaves I satisfying

χ(OY ) = n,

and
[Y ] = β ∈ H2(X,Z).

Here, χ denotes the holomorphic Euler characteristic.
The Donaldson-Thomas invariant is defined via integration against virtual

class,
[In(X, β)]vir.

Foundational aspects of the theory are treated in [15, 21].

Lemma 1. The virtual dimension of In(X, β) equals
∫

β
c1(TX).

Proof. The virtual dimension, obtained from the obstruction theory, is

χ(OX ,OX) − χ(I, I),
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where

χ(A,B) =

3
∑

i=0

(−1)idim Exti(A,B).

Since X is a nonsingular 3-fold, there exists a finite resolution of I by locally
free sheaves,

0 → F3 → F2 → F1 → F0 → I → 0.

Let xij denote the Chern roots of Fi. Since the determinant of I is trivial,

3
∑

i=0

∑

j

(−1)ixij = 0.

Since the fundamental class of Y is β,

−ch2(I) = ch2(OY ) = β.

We will calculate the virtual dimension in terms of the Chern roots via
HRR. The first term is,

χ(OX ,OX) =

∫

X

Td(X). (2)

Next,

−χ(I, I) = −

∫

X

(

3
∑

i=0

∑

j

(−1)ie−xij
)

·
(

3
∑

î=0

∑

ĵ

(−1)îex
îĵ

)

· Td(X).

Since the Chern root expression in the integrand is even, only the components
in degrees 0 and 2 need be considered. The degree 0 component is equal to 1,
the square of the rank of I. The integral of the degree 0 component against
Td(X) cancels the first term (2). The degree 2 component is

3
∑

i,̂i=0

∑

j,ĵ

(−1)i+î

(

x2
ij

2
− xijxîĵ +

x2
îĵ

2

)

= 2ch2(I) −
3
∑

i,̂i=0

∑

j,ĵ

(−1)i+îxijxîĵ.

The second term on the right equals the square of the determinant of I and
hence vanishes. We conclude the virtual dimension equals

−

∫

X

2ch2(I) · Td(X) =

∫

β

c1(X)
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since the degree 1 term of Td(X) is c1(X)/2.

The moduli space In(X, β) is canonically isomorphic to the Hilbert scheme
[15]. As the Hilbert scheme is a fine moduli space, universal structures are
well-defined. Let π1 and π2 denote the projections to the respective factors
of In(X, β) ×X. Consider the universal ideal sheaf I,

I → In(X, β) ×X.

Since I is π1-flat and X is nonsingular, a finite resolution of I by locally free
sheaves on In(X, β)×X exists. Hence, the Chern classes of I are well-defined.

For γ ∈ H l(X,Z), let chk+2(γ) denote the following operation on the
homology of In(X, β):

chk+2(γ) : H∗(In(X, β),Q) → H∗−2k+2−l(In(X, β),Q),

chk+2(γ)
(

ξ
)

= π1∗

(

chk+2(I) · π∗
2(γ) ∩ π

∗
1(ξ)

)

.

Since π1 is flat, the homological pull-back π∗
1 is well-defined [3].

We define descendent fields in Donaldson-Thomas theory, denoted by
τ̃k(γ), to correspond to the operations (−1)k+1chk+2(γ). The descendent
invariants are defined by

〈τ̃k1(γl1) · · · τ̃kr
(γlr)〉n,β =

∫

[In(X,β)]vir

r
∏

i=1

(−1)ki+1chki+2(γli),

where the latter integral is the push-forward to a point of the class

(−1)k1+1chk1+2(γl1) ◦ · · · ◦ (−1)kr+1chkr+2(γlr)
(

[In(X, β)]vir
)

.

A similar slant product construction can be found in the Donaldson the-
ory of 4-manifolds. Since the Chern character contains denominators, the
descendent invariants in Donaldson-Thomas theory are rational numbers.

Define the Donaldson-Thomas partition function with descendent inser-
tions by

ZDT

(

X; q |
r
∏

i=1

τ̃ki
(γli)

)

β
=
∑

n∈Z

〈
r
∏

i=1

τ̃ki
(γli)〉n,β q

n. (3)

An elementary argument shows the charge n in the sum (3) is bounded from
below. As before, the descendent insertions in (3) should match the virtual
dimension.
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The reduced partition function is obtained by formally removing the de-
gree 0 contributions,

Z
′
DT

(

X; q |
r
∏

i=1

τ̃ki
(γli)

)

β
=

ZDT

(

X; q |
∏r

i=1 τ̃ki
(γli)

)

β

ZDT (X; q)0
.

The degree 0 partition function is determined by a conjecture of [14].
For the conjectural framework, we assume the cohomology of X is of Hodge
type (p, p). We conjecture the series Z

′
DT to be a rational function of q if no

descendent of 1 ∈ H∗(X,Z) occurs.

Conjecture 1. The degree 0 Donaldson-Thomas partition function for a
3-fold X is determined by:

ZDT (X; q)0 = M(−q)
R

X
c3(TX⊗KX) ,

where

M(q) =
∏

n≥1

1

(1 − qn)n

is the McMahon function.

Conjecture 2. The reduced series Z
′
DT

(

X; q |
∏r

i=1 τ̃ki
(γli)

)

β
is a rational

function of q if codim(γi) > 0 for each i.

Descendents of 1 play a special role. The series Z
′
DT with τ̃k(1) insertions

lie in a strictly larger algebra of functions. The topic will be pursued in [18].

2.3 Primary fields

The GW/DT correspondence is easiest to state for the primary fields τ0(γ)
and τ̃0(γ).

Conjecture 3. After the change of variables eiu = −q,

(−iu)d
Z
′
GW

(

X; u |
r
∏

i=1

τ0(γli)

)

β

= (−q)−d/2
Z
′
DT

(

X; q |
r
∏

i=1

τ̃0(γli)

)

β

,

where d =
∫

β
c1(TX).
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Conjecture 3 is consistent with the calculation of degenerate contributions
in [19]. Let C be a nonsingular, genus g curve in X which rigidly intersects
cycles dual to the classes γl1 , . . . γlr . The local Gromov-Witten series is
determined in [19],

Z
′
GW

(

X; u |
r
∏

i=1

τ0(γli)

)

[C]

=

(

sin(u/2)

u/2

)2g−2+d

u2g−2,

The local Donaldson-Thomas series is then predicted by Conjecture 3,

Z
′
DT

(

X; q |
r
∏

i=1

τ̃0(γli)

)

[C]

= (−iu)d(−q)d/2

(

eiu/2 − e−iu/2

iu

)2g−2+d

u2g−2

= q1−g(1 + q)2g−2+d

The normalizations and signs in Conjecture 3 are fixed by the requirement
that the reduced partition function Z

′
DT has initial term q1−g corresponding

to the ideal of C.
If the cohomology classes γi are integral, the Donaldson-Thomas invari-

ants for primary fields are integer valued. The integrality constraints for
Gromov-Witten theory obtained via the GW/DT correspondence for pri-
mary fields were conjectured previously in [19, 20].

2.4 Descendent fields

For fixed curve class β, consider the full set of (normalized) reduced partition
functions,

Z
′
GW,β =

{

(−iu)d−
P

ki Z
′
GW

(

X; u |
∏

τki
(γli)

)

β

}

,

where d =
∫

β
c1(TX) and codim(γli) > 0. Here, Z

′
GW,β consists of the finite set

of descendent series with insertions of the correct dimension. The set Z
′
GW,β

is partially ordered by
∑

ki, the descendent partial ordering. Similarly, let

Z
′
DT,β =

{

(−q)−d/2
Z
′
DT

(

X; q |
∏

τ̃ki
(γli)

)

β

}

.

Conjecture 4. After the change of variables eiu = −q,
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(i) the sets of functions Z
′
GW,β and Z

′
DT,β have the same linear spans,

(ii) there exists a canonical matrix expressing the functions Z
′
GW,β as linear

combinations of the functions Z
′
DT,β :

(a) the matrix coefficients depend only upon the classical cohomology
of X and universal series,

(b) the matrix is unipotent and upper-triangular with respect to the
descendent partial ordering.

By Conjecture 4, each element of Z
′
GW,β is a canonical linear combination,

(−iu)d−
P

ki Z
′
GW

(

∏

τki
(γli)

)

β
= (−q)−d/2

Z
′
DT

(

∏

τ̃ki
(γli)

)

β
+ ..., (4)

where the omitted terms are strictly lower in the partial ordering.
We do not yet have a complete formula for the canonical matrix of Con-

jecture 4. However, for the descendents of the point class [P ] ∈ H6(X,Z),
we can formulate a precise conjecture.

Conjecture 4′. After the change of variables eiu = −q,

(−iu)d−
P

kj Z
′
GW

(

∏

τ0(γli)
∏

τkj
(P )
)

β
=

(−q)−d/2
Z
′
DT

(

∏

τ̃0(γli)
∏

τ̃kj
(P )
)

β
,

if codim(γli) > 0 for each i.

An example of Conjecture 4′ is given in Section 2.6 below.

2.5 Reactions

We believe the upper-triangular matrix of Conjecture 4 is determined by two
types of reactions:

τa(γl) → Aj
a(γl) τa−j(cj(TX) ∪ γl)

τa(γl)τa′(γl′) → Aa,a′(γl, γl′) τa+a′−1(γl ∪ γ
′
l)
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The linear combination (4) should be generated by applying the two reactions
to the Gromov-Witten insertions

∏

τki
(γli)

to exhaustion and then interpreting the output in Donaldson-Thomas theory.
For example,

(−iu)d−k
Z
′
GW (τk(γl))β =

(−q)−d/2

k
∑

j=0

(

j
∏

i=1

Ak−i+1(c1(TX)i−1 ∪ γl)

)

Z
′
DT

(

τ̃k−j(c1(TX)j ∪ γl)
)

,

if c2(TX) = c3(TX) = 0.
The reaction matrix will be upper-triangular with respect to the reaction

partial ordering, a refinement of the descendent partial ordering. We further
speculate that the reaction amplitudes,

Aj
a(γl), Aa,a′(γl, γl′) ∈ Q,

are given by universal formulas depending only upon the classical cohomology
of X (including possibly the Hodge decomposition). Conjectures 3, 4, and 4′

are all consequences of the reaction view of the GW/DT correspondence for
descendent fields.

2.6 An example

Let X be P3 and let β be the class [L] of a line. A Gromov-Witten calculation
using localization and known Hodge integral evaluations yields the following
result,

Z
′
GW

(

X; u | τ0(L)τ1(P )
)

[L]
=

(

sin(u/2)

u/2

)

cos(u/2)u−2,

see [6, 7]. By Conjecture 4′,

Z
′
DT

(

X; q | τ̃0(L)τ̃1(P )
)

[L]
= (−iu)3(−q)2

(sin(u/2)

u/2

)

cos(u/2)u−2

= (−iu)3(−q)2 e
iu/2 − e−iu/2

iu

eiu/2 + e−iu/2

2
u−2

=
1

2
q(1 − q2)
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The resulting Donaldson-Thomas series can be checked order by order in q
via localization.

3 The GW/DT correspondence for relative

theories

3.1 GW theory

Let X be a nonsingular, projective 3-fold and let S ⊂ X be a nonsingular
divisor. The Gromov-Witten theory of X relative to S has been defined in
[4, 9, 10, 12]. Let β ∈ H2(X,Z) be a curve class satisfying

∫

β

[S] ≥ 0.

Let
→
µ be an ordered partition,

∑

µj =

∫

β

[S],

with positive parts. The moduli space M
′

g,n(X/S, β,
→
µ) parameterizes stable

relative maps with possibly disconnected domains and relative multiplicities

determined by
→
µ. As usual, the connected components of the domain are

required to map nontrivially. The target of a relative map is allowed to be a
k-step degeneration, X[k], of X along S, see [12].

The relative conditions in the theory correspond to partitions weighted by
the cohomology of S. Let δ1, . . . , δmS

be a basis of H∗(S,Q). A cohomology
weighted partition η consists of an unordered set of pairs,

{(η1, δℓ1), . . . , (ηs, δℓs
)} ,

where
∑

j ηj is an unordered partition of
∫

β
[S]. The automorphism group,

Aut(η), consists of permutation symmetries of η.
The standard order on the parts of η is

(ηi, δℓi
) > (ηi′ , δℓi′

)

if ηi > ηi′ or if ηi = ηi′ and ℓi > ℓi′. Let
→
η denote the partition (η1, . . . , ηs)

obtained from the standard order.
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Relative Gromov-Witten invariants are defined by integration against the
virtual class of the moduli of maps. Let γ1, . . . , γmX

be a basis of H∗(X,Q),
and let

〈τk1(γl1) · · · τkr
(γlr) |η〉′g,β =

1

|Aut(η)|

∫

[M
′

g,r(X/S,β,
→

η )]vir

r
∏

i=1

ψki

i ev∗
i (γli) ∪

s
∏

j=1

ev∗
j(δℓj

).

Here, the second evaluations,

evj : M
′

g,r(X/S, β,
→
η ) → S.

are determined by the relative points.
The Gromov-Witten invariant is defined for unordered weighted partitions

η. However, to fix the sign, the integrand on the right side requires an
ordering. The over counting is corrected by the automorphism prefactor.

As before, we will require the associated Gromov-Witten partition func-
tion,

Z
′
GW

(

X/S; u |
r
∏

i=1

τki
(γli)

)

β,η
=
∑

g∈Z

〈
r
∏

i=1

τki
(γli) |η〉′g,β u

2g−2. (5)

The definitions here parallel those of Section 2.1.

3.2 DT theory

3.2.1 Stable relative ideal sheaves

Relative Donaldson-Thomas theory is defined via integration over the moduli
space of relative ideal sheaves. We outline J. Li’s definition of the relative the-
ory here [13]. A full foundational treatment of the moduli space, obstruction
theory, and virtual class has not yet been written.

Let X be a nonsingular, projective 3-fold and let S ⊂ X be a nonsingular
divisor. Let I be an ideal sheaf on X with associated subscheme Y (assumed
to components of dimension at most 1). The ideal sheaf I is relative to S if
the natural map,

I ⊗OX
OS → OX ⊗OX

OS ,
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is injective. Relativity may be viewed as a transversality condition of Y with
respect to S. In particular, the scheme theoretic intersection, Y ∩ S, defines
an element of the Hilbert scheme,

Hilb(S,

∫

β

[S]),

of points of S.
Relativity is an open condition on ideal sheaves on X. A proper mod-

uli space, In(X/S, β), of relative ideal sheaves is constructed by considering
stable ideal sheaves relative on the degenerations X[k] of X.

Let S0, . . . , Sk denote the canonical images of S in the degeneration X[k].
Here, S0, . . . , Sk−1 are the singular divisors, and Sk is the transform of the
original relative divisor. An ideal sheaf on X[k] is predeformable if, for every
singular divisor Sl ⊂ X[k], the induced map,

I ⊗OX[k]
OSl

→ OX[k] ⊗OX[k]
OSl

is injective.
Let Y0, . . . , Yk be the restrictions of Y to the components of X[k] with

Yl and Yl+1 incident to Sl. The predeformability condition at the singular
divisor Sl can be restated in the following form: Yl and Yl+1 are transverse
to Sl with equal scheme theoretic intersections,

Yl ∩ Sl = Yl+1 ∩ Sl ⊂ Sl. (6)

Ideal sheaves I1 and I2 on the degenerations X[k1] and X[k2] are isomor-
phic if k1 = k2 and there exists an isomorphism of varieties

σ : X[k1] → X[k2]

over X such that

σ∗{I2 → OX[k2]}
∼= {I1 → OX[k1]},

where the isomorphism σ∗OX[k2]
∼= OX[k1] is the identity. The automorphism

group, Aut(I), is the set of equivalences of I to itself. A predeformable ideal
sheaf I on X[k] relative to Sk is stable if Aut(I) is finite.

The moduli space, In(X/S, β), parameterizes stable, predeformable, ideal
sheaves I on degenerations X[k] relative Sk satisfying

χ(OY ) = n
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and
π∗[Y ] = β ∈ H2(X,Z),

where π : X[k] → X is the canonical stabilization map. The moduli space
In(X/S, β) is a complete, Deligne-Mumford stack equipped with a canonical
perfect obstruction theory.

Relative Donaldson-Thomas theory is defined via integration against the
associated virtual class. The primary and descendent fields are defined via
the Chern characters of the universal ideal sheaf I on the universal product
stack following Section 2.2. The predeformability condition is expected to
imply the existence of finite resolutions of J by locally free sheaves. The
relative conditions in the theory are defined via the canonical intersection
map,

ǫ : In(X/S, β) → Hilb(S,

∫

β

[S]),

to the Hilbert scheme of points.

3.2.2 The Nakajima basis

The cohomology of the Hilbert scheme of points of S has a canonical basis
indexed by cohomology weighted partitions. The basis is obtained from the
representation of the Heisenberg algebra on the cohomologies of the Hilbert
schemes of points [8, 16].

Let η be a cohomology weighted partition with respect to the basis
δ1, . . . , δmS

of H∗(S,Q). Following the notation of [16], let

Cη =
1

z(η)
Pδ1 [η1] · · ·Pδs

[ηs] · 1 ∈ H∗(Hilb(S, |η|),Q), (7)

where
z(η) =

∏

i

ηi |Aut(η)| ,

and |η| =
∑

j ηj . In the presence of odd cohomology, the sign of Cη is fixed
by placing the operator product (7) in standard order.

The Nakajima basis of the cohomology of Hilb(S, k) is the set,

{Cη}|η|=k ,

see [16].
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We assume the cohomology basis of S is self dual with respect to the
Poincaré pairing. Then, to each weighted partition η, a dual partition η∨

is defined by taking the Poincaré duals of the cohomology weights. The
Nakajima basis is orthogonal with respect to the Poincaré pairing on the
cohomology of the Hilbert scheme,

∫

Hilb(S,k)

Cη ∪ Cν =
(−1)k−ℓ(η)

z(η)
δν,η∨ , (8)

see [5, 16].

3.2.3 Relative Donaldson-Thomas invariants

Relative Donaldson-Thomas invariants are defined via integration over the
moduli spaces of stable relative sheaves. The virtual dimension of the relative
moduli space In(X/S, β) can be calculated from the deformation theory.

Lemma 2. In(X/S, β) has virtual dimension
∫

β
c1(X).

Proof. The virtual dimension of In(X/S, β) at a stable relative sheaf with
associated subscheme Y ⊂ X[k] is easily calculated. Let Yl ⊂ Xl be the
restriction of Y to the lth step Xl ⊂ X[k]. Let ωX[k] denote the dualizing
sheaf of X[k]. Then,

vir dim =
k
∑

l=0

∫

[Yl]

c1(Xl) −
k−1
∑

l=0

∫

[Yl]

2[Sl] − k + k

=

∫

[Y ]

c1(ωX[k])

=

∫

β

c1(X).

The first term on the right in the first line is the sum of the virtual dimensions
of the relative ideal sheaves on the individual steps. The second term is
imposed by the matching condition (6). The automorphisms of the last k
steps contribute −1 each. Finally, the deformations of X[k] contribute k.

The descendent invariants in relative Donaldson-Thomas theory are de-
fined by

〈τ̃k1(γl1) · · · τ̃kr
(γlr) |η〉n,β =

∫

[In(X/S,β)]vir

(

r
∏

i=1

(−1)ki+1chki+2(γli)

)

∩ ǫ∗(Cη).
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Define the associated partition function by

ZDT

(

X/S; q |
r
∏

i=1

τ̃ki
(γli)

)

β,η
=
∑

n∈Z

〈
r
∏

i=1

τ̃ki
(γli) |η〉n,β q

n. (9)

As before the charge n in the sum (3) is bounded from below.
The reduced partition function is obtained by formally removing the de-

gree 0 contributions,

Z
′
DT

(

X/S; q |
r
∏

i=1

τ̃ki
(γli)

)

β,η
=

ZDT

(

X/S; q |
∏r

i=1 τ̃ki
(γli)

)

β,η

ZDT (X/S; q)0
.

We conjecture a complete formula for degree 0 relative theory. Let ΩX [S]
denote the locally free sheaf of differential forms of X with logarithmic poles
along S. Let

TX [−S] = ΩX [S] ∨,

denote the dual sheaf of tangent fields with logarithmic zeros. Let

KX [S] = Λ3ΩX [S]

denote the logarithmic canonical class.

Conjecture 1R. The degree 0 relative Donaldson-Thomas partition function
for a 3-fold X is determined by:

ZDT (X/S; q)0 = M(−q)
R

X
c3(TX [−S]⊗KX [S]) .

If S is empty, Conjecture 1R specializes to Conjecture 1′ of [14]. A proof
of Conjecture 1R in the toric case is presented in Section 4. As before, we
conjecture the reduced series are rational functions of q.

Conjecture 2R. The reduced series Z
′
DT

(

X/S; q |
∏r

i=1 τ̃ki
(γli)

)

β,η
is a ra-

tional function of q.
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3.3 Primary fields

We restrict our discussion of the relative GW/DT correspondence to the
primary fields. A treatment of the descendent correspondence at the level of
Section 2.4 is left to the reader. In particular, we do not know the precise
formulas for the descendent correspondence.

Conjecture 3R. After the change of variables eiu = −q,

(−iu)d+ℓ(η)−|η|
Z
′
GW

(

X/S; u |
r
∏

i=1

τ0(γli)

)

β,η

=

(−q)−d/2
Z
′
DT

(

X/S; q |
r
∏

i=1

τ̃0(γli)

)

β,η

,

where d =
∫

β
c1(TX) and ℓ(η) denotes the length of η.

We present the simplest example in which all the features of the corre-
spondence are visible. Let D be a nonsingular surface, and let

X = P1 ×D.

Let 0,∞ ∈ P1 be two points in the base, and letD0 andD∞ be the associated
fibers. Let

[P1] ∈ H2(X,Z)

denote the class of the horizontal P1, and let β = m[P1]. We will consider
the theories of X relative to the divisors D0 and D∞ in the curve class β.

Since there are two divisors, the boundary conditions of the relative the-
ories are specified by two partitions η and ν weighted by the cohomology of
D. The relative Gromov-Witten theory is particularly simple to compute. A
direct calculation yields the answer,

Z
′
GW (X/S; u)β,η,ν =

1

z(η)
u−2ℓ(η) δν,η∨ .

Our correspondence predicts the associated Donaldson-Thomas series,

Z
′
DT (X/S; q)β,η,ν = (−q)d/2(−iu)d−2m+ℓ(η)+ℓ(ν) 1

z(η)
u−2ℓ(η) δν,η∨

=
(−1)m−ℓ(η)

z(η)
qm δν,η∨ ,
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using the relation d = 2m in the last equality.
The moduli space Im(X/D0 ∪ D∞, β) is isomorphic to Hilb(D,m). The

Donaldson-Thomas invariant is therefore a classical intersection product,

〈η| |ν〉m,β =

∫

Hilb(D,m)

Cη ∪ Cν .

The qm term of the predicted Donaldson-Thomas series is thus correct by
(8). The division of the degree 0 series does not affect the first term.

3.4 The degeneration formula

The relative theories satisfy degeneration formulas. Let

λ : X → C

be a nonsingular 4-fold fibered over a nonsingular, irreducible curve. Let X
be a nonsingular fiber of λ, and let

X1 ∪S X2

be a reducible special fiber consisting of two nonsingular 3-folds intersect-
ing transversely along a nonsingular surface S. The degeneration formulas
express the absolute invariants of X via the relative invariants of X1/S and
X2/S. We will show the degeneration formulas of the relative theories are
compatible with the GW/DT correspondence for primary fields.

The degeneration formula for Gromov-Witten theory is naturally written
in terms of the absolute and relative partition functions,

Z
′
GW

(

X|
r
∏

i=1

τ0(γli)

)

β

=

∑

Z
′
GW

(

X1

S
|
∏

i∈P1

τ0(γli)

)

β1,η

z(η)u2ℓ(η)
Z
′
GW

(

X2

S
|
∏

i∈P2

τ0(γli)

)

β2,η∨

,

where the sum is over curve splittings β1 + β2 = β, marking partitions

P1 ∪ P2 = {1, . . . , r},
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and cohomology weighted partitions η. The central factor on the right ac-
counts for the multiplicities and the shift in the genus variable u. A proof
can be found in [4, 9, 10, 12].

The degeneration formula for Donaldson-Thomas theory takes a very sim-
ilar form,

Z
′
DT

(

X|
r
∏

i=1

τ̃0(γli)

)

β

=

∑

Z
′
DT

(

X1

S
|
∏

i∈P1

τ̃0(γli)

)

β1,η

(−1)|η|−ℓ(η)z(η)

q|η|
Z
′
DT

(

X2

S
|
∏

i∈P2

τ̃0(γli)

)

β2,η∨

,

where the sum is as before. The central factor on the right accounts for the
diagonal splitting,

[△] =
∑

|η|=k

(−1)k−ℓ(η)z(η) Cη ⊗ Cη∨ ∈ H∗(Hilb(S, k) × Hilb(S, k),Q),

and the shift in the charge variable q. The proof should follow [12] but has
yet to be written.

The compatibility between the degeneration formulas and the GW/DT
correspondence is straightforward. Let d =

∫

β
c1(X) as before, and let

di =

∫

βi

c1(Xi).

We have a partition of the total degree d,

d = d1 + d2 − 2

∫

β1

[S]

= (d1 − |η|) + (d2 − |η∨|).

Using the degree partition, the degeneration formulas for the relative theories
are equivalent via the GW/DT correspondence.
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4 The equivariant vertex measure

4.1 Summary

Let T be a 3-dimensional complex torus with coordinates ti. Let T act on
A3 with coordinates xi by

(t1, t2, t3) · xi = tixi . (10)

In these coordinates, the tangent representation at the origin 0 ∈ A3 has
character t−1

1 + t−1
2 + t−1

3 .
Let π be a 3-dimensional partition with three outgoing 2-dimensional

partitions λ1, λ2, and λ3. The equivariant vertex Vπ arises in the localization
formula for the Donaldson-Thomas theory of toric 3-folds [14].

The equivariant vertex determines a natural 3-parametric family of mea-
sures w on 3-dimensional partitions. The measure of π is defined by

w(π) =
∏

k∈Z3

(s, k)−vk ,

where s = (s1, s2, s3) are parameters, ( · , · ) denotes the standard inner prod-
uct, and vk is the coefficient of tk in Vπ.

Consider the generating series of the equivariant vertex measures of 3-
dimensional partitions π with fixed outgoing 2-dimensional partitions,

W(λ1, λ2, λ3) =
∑

π

w(π)q|π|.

Here |π| is defined as the (signed) number of boxes obtained by formally
removing the infinite outgoing cylinders [14].

Theorem 1. For finite 3-dimensional partitions,

W(∅, ∅, ∅) = M(−q)
−

(s1+s2)(s1+s3)(s2+s3)
s1s2s3 .

Our proof is independent of the conjectural GW/DT correspondence.
However, relative Donaldson-Thomas theory plays an essential role.
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4.2 Equivariant Donaldson-Thomas theory

Let the 1-dimensional torus T1 act on P1 with tangent weights −s1 and s1

at the fixed points 0 and ∞. Let the 2-dimensional torus T2 act on C2 with
weights −s2 and −s3. The torus T = T1 ×T2 acts on

X = P1 × C2

preserving the divisor S over ∞. We will study the equivariant Donaldson-
Thomas theory of X relative to S.

Since X is not projective, the non-equivariant theory is not well-defined.
However, the T-equivariant theory can be defined via the residue since the
T-fixed locus of In(X/S, 0) is projective. Let Z

T

DT (X/S; q)0 denote the degree
0 partition function for the equivariant relative theory.

A rational function f ∈ Q(s1, s2, s3) has only monomial poles in the vari-
ables s2 and s3 if

f(s1, s2, s3) =
p(s1, s2, s3)

sk2
2 s

k3
3

for p ∈ Q[s1, s2, s3] and k2, k3 ∈ Z.

Lemma 1. The q coefficients of Z
T

DT (X/S; q)0 have only monomial poles in
the variables s2 and s3.

Proof. The Hilbert-Chow morphism and the collapsing maps,

X[k] → X,

together yield a T-equivariant, proper morphism,

ι1 : In(X/S, 0) → Symn(X).

The projection X → C2 yields a T-equivariant, proper morphism,

ι2 : Symn(X) → Symn(C2).

Finally, a T-equivariant, proper morphism,

ι3 : Symn(C2) → ⊕n
1C2,

is obtain via the higher moments,

ι3

(

{(xi, yi)}
)

=
(

∑

i

xi,
∑

i

yi

)

⊕
(

∑

i

x2
i ,
∑

i

y2
i

)

⊕· · ·⊕
(

∑

i

xn
i ,
∑

i

yn
i

)

.
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Let j = ι3 ◦ ι2 ◦ ι1.
The virtual class [In(X/S, 0)]vir is an element of the T-equivariant Chow

ring of In(X/S, 0). Since j is T-equivariant and proper,
∫

[In(X/S,0)]vir

1 =

∫

⊕n
1 C2

j∗[In(X/S, 0)]vir,

where
∫

denotes T-equivariant integration. Since the space ⊕n
1C2 has a

unique T-fixed point with tangent weights,

−s2,−s3,−2s2,−2s3, . . . ,−ns2,−ns3,

we conclude the integral
∫

⊕n
1 C2

j∗[In(X/S, 0)]vir,

has only monomial poles in the variables s2 and s3.

4.3 Localization

The components of the T-fixed loci of In(X/S, 0) lie over either 0 or ∞.
The fixed points over 0 correspond to finite 3-dimensional partitions with
localization contributions to Z

T

DT (X/S; q)0 determined by W(∅, ∅, ∅), see [14].
A Donaldson-Thomas theory of rubber naturally arises on the fixed loci

of In(X/S, 0) over ∞. Let
R = P1 × C2,

and let S0 and S∞ denote the divisors over 0 and ∞ respectively. Let T2

act on C2 with weights −s2 and −s3. We will consider the T2-equivariant
Donaldson-Thomas rubber theory of R relative to S0 and S∞. For the rubber
theory, sheaves differing by the T1 action on P1 are identified. We denote
the rubber theory by a superscripted tilde.

The rubber moduli space In(R/S0 ∪ S∞, 0)˜ is obtained by an algebraic
quotient construction. Let

U ⊂ In(R/S0 ∪ S∞, 0)

be the open set with finite T1 stabilizers and no degeneration over ∞. Then,

In(R/S0 ∪ S∞, 0)˜= U/T1.
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The rubber moduli space In(R/S0 ∪S∞, 0)˜carries cotangent lines at the
dynamical points 0 and ∞ of P1. Let ψ0 denote the class of the cotangent
line at 0. Let

W∞ = 1 +
∑

n≥1

qn

∫

[In(R/S0∪S∞,0) ˜ ]vir

1

s1 − ψ0

,

where
∫

here denotes T2-equivariant integration. The leading term 1 may
be viewed as a degenerate n = 0 contribution. By the virtual localization
formula applied to the relative Donaldson-Thomas theory of X/S, the series
W∞ generates the localization contributions to Z

T

DT (X/S; q)0 of the T-fixed
points over ∞.

The product of the localization contributions over 0 and ∞ yields the
partition function,

Z
T

DT (X/S; q)0 = W(∅, ∅, ∅) · W∞. (11)

Consider the T2-equivariant rubber theory without any cotangent line
insertions,

F∞ =
∑

n≥0

qn

∫

[In(R/S0∪S∞,0) ˜ ]vir

1.

By definition,
W(∅, ∅, ∅), W∞ ∈ Q(s1, s2, s3)[[q]],

and
F∞ ∈ Q(s2, s3)[[q]].

Lemma 2. logW∞ = 1
s1

F∞.

Proof. We first expand W∞ by powers of the cotangent line,

W∞ = 1 +
∑

l≥0

1

sl+1
1

F∞,l ,

where

F∞,l =
∑

n≥1

qn

∫

[In(R/S0∪S∞,0) ˜ ]vir

ψl
0.

Next, we apply a version of the topological recursion relation to induc-
tively calculate F∞,l. Let

π : Yn → In(R/S0 ∪ S∞, 0)˜
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be the universal subscheme over the moduli space. The morphism π is finite,
flat, and compatible with the T2-action. Therefore,

q
d

dq
F∞,l =

∑

n>0

qn

∫

[Yn]vir

ψl
0,

where the virtual class of Y is defined as the pull-back of the virtual class of
the moduli space by π. The canonical map,

f : Yn → R[k],

projects further to P1[k], the associated degeneration of the base P1. By
the definition of the relative moduli space, the image in P1[k] is always
disjoint from the relative points 0 and ∞ and the nodes. Hence, the family
of degenerating bases over Yn has three disjoint nonsingular sections.

The application of the topological recursion relation determined by the
three sections to ψ0 yields the following equation,

q
d

dq
F∞,l = F∞,l−1 · q

d

dq
F∞,0.

The solution,

F∞,l =
F

l+1
∞,0

(l + 1)!
,

is easily found. We conclude W∞ = exp( 1
s1

F∞).

4.4 Proof of Theorem 1

The logarithm of equation (11) yields the relation,

log W(∅, ∅, ∅) = log Z
T

DT (X/S; q)0 − log W∞.

By Lemmas 1 and 2, the q coefficients of log W(∅, ∅, ∅) are of the form

1

s1

p1(s1, s2, s3)

p2(s2, s3)
,

where the pi are polynomials. Since the equivariant vertex measure is a
degree 0 rational function [14],

deg(p1) = 1 + deg(p2).
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Since the series W(∅, ∅, ∅) is symmetric in the variables s1, s2, and s3, we
conclude,

log W(∅, ∅, ∅) =
1

s1s2s3
F0(q, s1, s2, s3),

where F0 ∈ Q[s1, s2, s3][[q]]. The coefficients of F0 must be cubic polynomials.
By Lemma 3 below, the qn coefficient of W(∅, ∅, ∅) is divisible by the cubic

factor (s1 + s2)(s1 + s3)(s2 + s3) for all n > 0. Hence,

log W(∅, ∅, ∅) =
(s1 + s2)(s1 + s3)(s2 + s3)

s1s2s3
F0(q). (12)

The equivariant vertex measure takes a simple form after Calabi-Yau spe-
cialization,

W(∅, ∅, ∅)|s1+s2+s3=0 = M(−q). (13)

Viewing M as the generating function of 3-dimensional partitions, equation
(13) is a direct consequence of Theorem 2 of [14].

Finally, by (12) and (13), we conclude

F0 = − logM(−q).

The derivation is completed by exponentiating (12).

Lemma 3. The qn coefficient of W(∅, ∅, ∅) is divisible by the cubic factor
(s1 + s2)(s1 + s3)(s2 + s3) for all n > 0.

Proof. We will show the factor s1 + s2 occurs with positive multiplicity in
the equivariant vertex measure w(π) for any finite plane partition π. By
symmetry, the cyclic permutations of s1 + s2 also occur in w(π) with positive
multiplicity.

Following the notation of [14], let Qπ(t1, t2, t3) be the characteristic poly-
nomial of the partition π. Then, the character of the virtual tangent space
at π is given by

Vπ(t1, t2, t3) = Qπ −
Q̄π

t1t2t3
+QπQ̄π

(1 − t1)(1 − t2)(1 − t3)

t1t2t3
,

where Q̄π(t1, t2, t3) = Qπ(t−1
1 , t−1

2 , t−1
3 ). The vertex measure is obtained from

Vπ via the prescription
∑

cijkt
i
1t

j
2t

k
3 →

∏

(is1 + js2 + ks3)
−cijk .
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Hence, the monomials of the form ti1t
i
2t

0
3 in Vπ are those which contribute a

factor of s1 + s2 to w(π). The total multiplicity of s1 + s2 is the negative of
the constant term in the Laurent polynomial Vπ(x, x−1, t3).

Let ρ be a 2-dimensional partition. The content of the box (r, s) in ρ is
r−s. The slices of π perpendicular to the z direction determine 2-dimensional
partitions

π0, π1, π2, . . . .

Let ai,j be the number of boxes in πj with content i. For convenience, we set
ai,j = 0 for j < 0. By definition, Qπ(x, x−1, t3) =

∑

i,j ai,jx
itj3.

The constant term of Vπ(x, x−1, t3) may be expressed in terms of the
contents. Using

Vπ(x, x−1, t3) = Qπ(x, x−1, t3) −
Q̄π(x, x−1, t3)

t3
+QπQ̄π(2 − x−

1

x
)(

1

t3
− 1),

we find the constant term equals

a0,0+
∑

i,j∈Z

(2ai,j+1ai,j−ai,j+1ai+1,j−ai+1,j+1ai,j)−(2ai,jai,j−ai,jai+1,j−ai+1,jai,j).

We rewrite the constant term in a factored form,

a0,0 +
∑

i,j∈Z

(

(ai,j+1 − ai+1,j+1)(ai,j − ai+1,j) − (ai,j − ai+1,j)
2
)

which equals

a0,0 −
1

2

∑

i,j∈Z

(

(ai,j − ai+1,j) − (ai,j+1 − ai+1,j+1)
)2

. (14)

Since (ai,0 − ai+1,0) = 0 or 1, we see

a0,0 =
∑

i≥0

(ai,0 − ai+1,0) =
∑

i≥0

(ai,0 − ai+1,0)
2

with a similar equality for i < 0. Therefore, a0,0 precisely cancels the j = −1
term in (14), yielding the expression

−
1

2

∑

i∈Z,j≥0

((ai,j − ai+1,j) − (ai,j+1 − ai+1,j+1))
2 (15)
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for the constant term of Vπ(x, x−1, t3).
We conclude (15) is negative since ai,j = 0 for j sufficiently large. Hence,

the multiplicity of s1 + s2 in w(π) is strictly positive.

Corollary 1. The degree 0 localization contributions over ∞ are:

W∞ = M(−q)
s2+s3

s1 .

Proof. By Lemmas 1 and 2, the Corollary is obtained by extracting the pole
in s1 of log W(∅, ∅, ∅).

4.5 Degree 0 results for toric 3-folds

Let X be a nonsingular, projective, toric 3-fold equipped with a T-action,
and let S ⊂ X be a nonsingular toric divisor.

Theorem 2. ZDT (X; q)0 = M(−q)
R

X
c3(TX⊗KX).

Proof. Let {Xα} denote the set of T-fixed points of X. By localization,

ZDT (X; q)0 =
∏

Xα

W(∅, ∅, ∅)|s1=−sα
1 , s2=−sα

2 , s3=−sα
3
,

where sα
1 , s

α
2 , s

α
3 are the tangent weights at Xα. By Theorem 1,

logZDT (X; q)0 =
(

∑

Xα

(−sα
1 − sα

2 )(−sα
1 − sα

3 )(−sα
2 − sα

3 )

sα
1s

α
2 s

α
3

)

· logM(−q).

The prefactor on the right is equal to
∫

X
c3(TX ⊗KX) by a direct application

of the Bott residue formula.

Theorem 3. ZDT (X/S; q)0 = M(−q)
R

X
c3(TX [−S]⊗KX [S]).

Proof. Let {Sγ} denote the set of T-fixed points of S. Let sγ
1 be the normal

weight to S at Sγ , and let sγ
2 , s

γ
3 be the tangent weights to S at Sγ . By

localization,

ZDT (X/S; q)0 =
∏

Xα /∈S

W(∅, ∅, ∅)|s1=−sα
1 , s2=−sα

2 , s3=−sα
3

·

∏

Sγ

W∞|s1=sγ
1 , s2=−sγ

2 , s3=−sγ
3
.
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By Theorem 1 and Corollary 1,

logZDT (X/S; q)0

logM(−q)
=
∑

Xα /∈S

(−sα
1 − sα

2 )(−sα
1 − sα

3 )(−sα
2 − sα

3 )

sα
1 s

α
2s

α
3

+
∑

Sγ

−sγ
2 − sγ

3

sγ
1

.

The weights of TX [−S] ⊗KX [S] at Sγ are

−sγ
2 − sγ

3 ,−s
γ
2 ,−s

γ
3 .

Hence, the right side is equal to
∫

X
c3(TX [−S] ⊗KX [S]) by the Bott residue

formula.

4.6 Evaluations in higher degrees

While the equivariant vertex measure has a simple formula in degree 1,

W(1, ∅, ∅) = (1 + q)
s2+s3

s1 M(−q)
−

(s1+s2)(s1+s3)(s2+s3)

s1s2s3 ,

the higher degree cases are more subtle. We will study the evaluations in
degrees 1 and higher in a future paper.
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