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0. Introduction

We prove a localization formula for the virtual fundamental class
in the general context of C∗-equivariant perfect obstruction theories.
Let X be an algebraic scheme with a C∗-action and a C∗-equivariant
perfect obstruction theory. The virtual fundamental class [X]vir in
the expected equivariant Chow group AC∗

∗ (X) may be constructed by
the methods of Li-Tian [LT] and Behrend-Fantechi [B], [BF]. Each
connected component Xi of the fixed point scheme carries an associated
C∗-fixed perfect obstruction theory. A virtual fundamental class in
A∗(Xi) is thus determined. The virtual normal bundle toXi is obtained
from the moving part of the virtual tangent space determined by the
obstruction theory. The localization formula is then:

(1) [X]vir = ι∗
∑ [Xi]

vir

e(N vir

i )

in AC∗

∗ (X)⊗Q[t, 1
t
] where t is the generator of the C∗ -equivariant ring

of a point. This localization formula is the main result of the paper.
The proof requires an additional hypothesis on X: the existence of a
C∗-equivariant embedding in a nonsingular variety Y .

In case X is nonsingular with the trivial perfect obstruction theory,
equation (1) reduces immediately to the standard localization formula
[Bo], [AB]. Originally, this localization was proven in equivariant coho-
mology. Algebraic localization in equivariant Chow theory has recently
been established in [EG2]. The point of view of our paper is entirely
algebraic.

The definitions and constructions related to the virtual localization
formula (1) are discussed in Section 1. The simplest example of a
C∗-equivariant perfect obstruction theory is given by the following sit-
uation. Let Y be a nonsingular algebraic variety with a C∗-action. Let
V be a C∗-equivariant bundle on Y . Let v ∈ H0(Y, V )C∗

be a C∗-fixed
section. Let X be the scheme-theoretic zero locus of v. X is naturally
endowed with an equivariant perfect obstruction theory which yields
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the refined Euler class (top Chern class) of V as the virtual fundamental
class. The localization formula in this basic setting is proven in Sec-
tion 2. The method is to deduce (1) for X from the known localization
formula for the nonsingular variety Y .

The proof of (1) for general C∗-equivariant perfect obstruction the-
ories on an algebraic scheme X proceeds in a similar manner. Again,
formula (1) is deduced from the ambient localization formula for Y .
The argument here is more subtle: explicit manipulation of cones and
a rational equivalence due to Vistoli [V] are necessary. This proof is
given in Section 3.

There are two immediate applications of the virtual localization for-
mula. First, a local complete intersection scheme is endowed with a
canonical perfect obstruction theory obtained from the cotangent com-
plex. A localization formula is thus obtained for these singular schemes
(at least when equivariant embeddings in nonsingular varieties exist).
Second, the proper Deligne-Mumford moduli stack Mg,n(V, β) of sta-
ble maps to a nonsingular projective variety V is equipped with a
canonical perfect obstruction theory. If V has a C∗-action, then a nat-
ural C∗-action on M g,n(V, β) is defined by translation of the map. An
equivariant perfect obstruction theory on M g,n(V, β) can be obtained.

Moreover, Mg,n(V, β) admits an equivariant embedding in a nonsingu-
lar Deligne-Mumford stack. As a result, the virtual localization formula
holds for M g,n(V, β).

In the last two sections of the paper, consequences of the localization
formula in Gromov-Witten theory are explored. In Section 4, an ex-
plicit graph summation formula for the Gromov-Witten invariants (for
all genera) of Pr is presented via localization on the moduli space of
maps M g,n(P

r, d). The invariants are expressed as a sum over graphs
corresponding to the fixed point loci. For each graph, the summand
is a product over vertex terms. The vertex terms are integrals over
associated spaces Mg′,n′ of the Chern classes of the cotangent line bun-
dles and the Hodge bundle. All these integrals may be calculated from
Witten’s conjectures (Kontsevich’s theorem) by a method due to Faber
[Fa]. Similar graph sum formulas exist for Gromov-Witten invariants
(and their descendents) of all nonsingular projective toric varieties and
all compact algebraic homogeneous spaces G/P. The localization for-
mula also determines the full system of Gromov-Witten invariants (of
all genus) in the sense of [KM]. This system includes the top dimension
numerical invariants as well as higher codimension cohomology classes
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in M g,n. A corollary of localization is the following result: the full sys-
tem of Gromov-Witten invariants in these cases lies in the tautological
rings of the moduli spaces M g,n.

The positive degree Gromov-Witten invariants of P2 coincide with
enumerative geometry: they count the number Ng

d of genus g, degree
d, nodal plane curves passing through 3d+ g − 1 points in P2. Local-
ization presents a solution of this enumerative geometry problem via
integrals of tautological classes over the moduli space of pointed curves.
The numbers Ng

d have been computed via more classical degeneration
methods in [R1], [CH]. The character of the solutions in [R1], [CH] is
markedly different: it is by recursion over wider classes of enumerative
questions.

In Section 5, localization is applied to a question suggested to us
by S. Katz: the calculation of excess integrals on the moduli spaces
Mg,0(P

1, d) that arise in the study of Calabi-Yau 3-folds. Under suit-
able conditions, the integral

(2)

∫

[Mg,0(P1,d)]vir
ctop(R

1π∗µ
∗N)

is the contribution to the genus g Gromov-Witten invariant of a Calabi-
Yau 3-fold of multiple covers of a fixed rational curve (with normal
bundle N = O(−1) ⊕ O(−1)). In [M], the integral (2) is explicitly
evaluated to be 1/d3 in the genus g = 0 case via localization on the
nonsingular stack M 0,0(P

1, d). A trick of setting one of the C∗-weights
on P1 to be 0 is used. We evaluate the excess integral in the genus
g = 1 case in Section 5 via virtual localization on M 1,0(P

1, d). Manin’s
trick [M] and formulas for cotangent line integrals on M1,n are used to
handle the graph sum. The answer obtained, 1/12d, agrees with the
physics result of [BCOV]. The higher genus integrals may be explicitly
evaluated in any given case by virtual localization and the algorithm
implemented by Faber [Fa] to calculate the vertex integrals. The con-
jecture obtained from these calculations is: for g ≥ 2,

(3)

∫

[Mg,0(P1,d)]vir
ctop(R

1π∗µ
∗N) =

|B2g| · d
2g−3

2g · (2g − 2)!
= |χ(Mg)|

d2g−3

(2g − 3)!

where B2g is the 2gth Bernoulli number and χ(Mg) = B2g/2g(2g − 2)
is the orbifold Euler characteristic of Mg. This conjecture was made
jointly with C. Faber. We have not yet been able to evaluate the graph
sums uniformly to establish (3).

The localization formula and graph sum formulas were first intro-
duced in the context of stable maps by Kontsevich in [K] following
related work of Ellingsrud and Strømme [ES]. Kontsevich studied the
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convex genus 0 case where the moduli spaces are nonsingular Deligne-
Mumford stacks. Many ideas about the virtual fundamental class and
localization described here are implicit in [K]. In particular, the higher
genus formulas of Section 4 are identical to the genus 0 formulas of [K]
except for the new Hodge bundle terms. However, the higher genus map
spaces are in general nonreduced, reducible, and singular, so the virtual
localization formula (1) is essential. Givental has stated a localization
axiom for genus 0 Gromov-Witten invariants of toric varieties in [G]
which follows from (1). Localization formulas are used in [G] to prove
predictions of mirror symmetry in the case of Calabi-Yau complete in-
tersections in toric varieties. A different approach to localization in the
case of M g,n(Pr, d) has been pursued by Behrend via a factoring of the
fixed point inclusion through Artin stacks.

The authors thank P. Aluffi, K. Behrend, D. Edidin, W. Fulton,
E. Getzler, L. Göttsche, S. Katz, A. Kresch, J. Li, B. Siebert, M.
Thaddeus, and A. Vistoli for many valuable conversations. A special
thanks is due to C. Faber for his computations of the vertex integrals
in (3) and to B. Fantechi for her tireless explanations of obstruction
theories and virtual classes. The first author was supported by an NSF
graduate fellowship. The second author was partially supported by
an NSF post-doctoral fellowship. The authors also thank the Mittag-
Leffler Institute for support.

1. The virtual localization formula

Let X be an algebraic scheme over C. A perfect obstruction theory
consists of the following data:

(i) A two term complex of vector bundles E• = [E−1 → E0] on X.
(ii) A morphism φ in the derived category (of quasi-coherent sheaf

complexes bounded from above) from E• to the cotangent com-
plex L•X of X satisfying two properties.
(a) φ induces an isomorphism in cohomology in degree 0.
(b) φ induces a surjection in cohomology in degree -1.

The constructions of [LT], [BF] give rise to a virtual fundamental class,
[X]vir in Ad(X) where d = rk(E0)−rk(E−1) is the expected dimension.
Let E• = [E0 → E1] denote the dual complex of E•.

If X admits a global closed embedding in a nonsingular scheme (or
Deligne-Mumford stack) Y , one can give a relatively straightforward
construction of the virtual class as follows. In this situation, the two
term cut-off of the cotangent complex can be taken to be:

L•X = [I/I2 → ΩY ]
4



where I is the ideal sheaf of X in Y . Since only this cut-off will be used,
the cotangent complex will be identified with its cut-off throughout this
section. We assume for simplicity that

(4) φ : E• → [I/I2 → ΩY ]

is an actual map of complexes. This hypothesis is not required for the
constructions of [LT], [BF]. However, ifX has enough locally frees, such
a representative (E•, φ) may always be chosen in the derived category.

The mapping cone associated to the morphism φ of complexes yields
an exact sequence of sheaves:

(5) E−1 → E0 ⊕ I/I2 γ
→ ΩY → 0.

In fact, φ satisfies (a) and (b) if and only if (5) is exact. We consider
the associated exact sequence of abelian cones

(6) 0 → TY → C(I/I2) ×X E0 → C(Q) → 0

where C(Q) is the cone associated to the kernel Q of γ. As Q is
a quotient of E−1, C(Q) embeds in E1. The normal cone of X in
Y , CX/Y , is naturally a closed subscheme of C(I/I2). If we define
D = CX/Y ×X E0, then D is a TY -cone (see [BF]), and the quotient
of D by TY is a subcone of C(Q) which we will denote by Dvir . The
virtual fundamental class of X associated to this obstruction theory is
then the refined intersection of Dvir with the zero section of the vector
bundle E1.

If G acts algebraically on X, then there is a theory of equivariant
Chow groups AG

∗ (X), [EG1], [To]. These groups are defined to be
Chow groups of suitable algebraic approximations to the homotopy
quotient X × EG/G. A G-invariant cycle naturally yields a class in
AG

∗ (X). Given a G-equivariant vector bundle B over X, the standard
constructions hold for equivariant Chow groups: for example, Chern
classes and the refined Gysin homomorphism.

Suppose X ⊂ Y is equipped with an equivariant G-action together
with a lifting to the complex E• such that φ is a morphism in the
derived category of G-equivariant sheaves (with respect to the natural
G-action on L•X). The above construction then yields an equivariant
virtual fundamental class in the equivariant Chow group AG

d (X) since
the cones used are invariant. In fact, to define the equivariant virtual
class, global equivariant embeddings are not necessary.

We now assume the group G is the torus C∗. We expect to be able
to reduce integrals over [X]vir to integrals over the fixed point set. Let
Xf be the maximal C∗-fixed closed subscheme of X. Xf is the natural
scheme theoretic fixed point locus. If X = Spec(A), then the ideal
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of Xf is generated by the C∗-eigenfunctions with nontrivial characters.
For nonsingular Y , Y f is the nonsingular set theoretic fixed point locus
[I]. For X ⊂ Y , the relation Xf = X ∩ Y f holds. We let Y f =

⋃
Yi be

the decomposition into irreducible components. Let Xi = X ∩ Yi. Xi

is possibly reducible.
Let S be a coherent sheaf on a fixed component Xi with a C∗-action.

S decomposes as direct sum,

S =
⊕

k∈Z

Sk,

of C∗-eigensheaves of OXi
-modules. If S is locally free, each summand

is also locally free. We denote the fixed subsheaf S0 by Sf and the
moving subsheaf ⊕k 6=0S

k by Sm.

There is a natural isomorphism ΩY |
f
Yi

= ΩYi
[I]. It is easy to then

deduce:
ΩX |fXi

= ΩXi

from the equality Xi = X ∩ Yi.
Let E•

i denote the restriction of E• to Xi. Let E•,f
i denote the fixed

part of the complex E•
i . E

•,f
i is a two term complex of bundles. There

exists a canonical map,

ψi : E•,f
i → L•Xi,

determined by the following construction. Let φi : E•
i → L•X|Xi

be

the pull-back of φ, and let φf
i : E•,f

i → L•X|fXi
be the associated fixed

map. Similarly let δi : L•X|Xi
→ L•Xi be the canonical morphism,

and let δf
i be the associated fixed map. Then, ψi = δf

i ◦ φf
i .

Proposition 1. The map ψi : E•,f
i → L•Xi is a canonical perfect

obstruction theory on Xi.

Proof. To show ψi satisfies properties (a) and (b), it suffices to show

both maps φf
i and δf

i satisfy these properties.
A map of complexes ν : A• → B• satisfies (a) and (b) if and only if

the sequence
A−1 ⊕ B−2 → A0 ⊕ B−1 → B0 → 0

is exact. Since tensor product is right exact, the joint validity of (a) and
(b) is preserved under pull-back. As φ is a perfect obstruction theory,

φi satisfies (a) and (b). The fixed map φf
i also satisfies properties (a)

and (b) since taking invariants is exact.
The cotangent complex of Xi can be represented by the embedding

Xi ⊂ Yi:
L•Xi = [IXi/Yi

/I2
Xi/Yi

→ ΩYi
|Xi

].
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The zeroth cohomology of L•X|fXi
is ΩX |fXi

= ΩXi
. Thus, δf

i satisfies
property (a).

Property (b) for δf
i will now be established. The map δf

i is repre-
sented by the natural diagram:

IX/Y /I
2
X/Y |

f
Xi

−−−→ ΩY |
f
Xi

d−1

y d0

y

IXi/Yi
/I2

Xi/Yi
−−−→ ΩYi

|Xi

Since Xi = X ∩ Yi, the map

IX/Y /I
2
X/Y |Xi

→ IXi/Yi
/I2

Xi/Yi

is surjective. Hence, d−1 is surjective. As d0 is an isomorphism, δf
i is

surjective on cohomology in degree −1. �

The virtual structure on Xi is defined to be the one induced by the
perfect obstruction theory ψi : E•,f

i → L•Xi.
We define the virtual normal bundle, N vir

i to Xi to be the moving
part of E•,i. Note that E•,i is a complex, and not a single bundle. Also
note that in the non-virtual case, when the complex has just one term,
this coincides with the usual normal bundle. Define the Euler class
(top Chern class) of a two term complex [B0 → B1] to be the ratio of
the Euler classes of the two bundles: e(B0)/e(B1). We arrive at the
following natural formulation of the virtual Bott residue formula for
the Euler class of a bundle A of rank equal to the virtual dimension of
X:

(7)

∫

[X]vir
e(A) =

∑ ∫

[Xi]vir

e(Ai)

e(N vir

i )

where the Euler classes on the right hand side are equivariant classes.
Since N vir

i is a complex of bundles with nonzero C∗-weights, the Euler
class e(N vir

i ) is invertible in the localized ring

AC∗

∗ (X)t = AC∗

∗ (X) ⊗Q[t] Q[t,
1

t
].

Chow groups will always be taken with Q-coefficients. As in the case
of the standard Bott residue formula, equation (7) should be a con-
sequence of a localization formula in equivariant Chow groups. On a
nonsingular variety Y , the fundamental result which immediately im-
plies the residue formula is:

[Y ] = ι∗
∑ [Yi]

e(Ni)
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in AC∗

∗ (Y )t. The obvious generalization to the virtual setting which
would just as readily imply the virtual residue formula is:

(8) [X]vir = ι∗
∑ [Xi]

vir

e(N vir

i )
.

It is worth remarking that in the case of most interest to us, the
moduli space of maps to projective space, the right side of (8) is directly
accessible. In this case, three special properties hold. First, the fixed
loci Xi for a general C∗-action have been identified by Kontsevich in
[K]: they are indexed by graphs and are essentially products of Deligne-
Mumford moduli spaces of pointed curves. Second, [Xi]

vir = [Xi].
Finally, e(N vir

i ) is expressible in terms of tautological classes on Xi

via the deformation theory of curves and maps. Thus (8) provides a
concrete way to calculate virtual integrals on moduli spaces where it
seems quite difficult to directly evaluate the virtual fundamental class.

2. Proof in the basic case

As a first motivational step, we prove the virtual localization formula
(1) in the following situation. Let Y be a nonsingular variety equipped
with a C∗-action, a C∗-equivariant bundle V , and an invariant section
v of V . The zero scheme X of v carries a natural equivariant perfect
obstruction theory. The two term complex of bundles on X,

E• = [V ∨ → ΩY ],

is obtained from the the section v. The required morphism to the cotan-
gent complex L•X = [I/I2 → ΩY ] is obtained from the natural map
V ∨ → I/I2 on X. The definitions show the virtual fundamental class
in this case is just the refined Euler class of V . That is, if we consider
the graph of the section, and take its refined intersection product with
the zero section, we get a Chow homology class supported on the zero
locus X. The definitions of the virtual fundamental class for general
spaces are specifically designed to recover this refined Euler class from
the local data of the two term complex, and to generalize this class in
cases where such a geometric realization of the deformation complex
does not necessarily exist.

In this basic situation, we can express all of the virtual objects in
the localization formula in terms of familiar data on Y . As in Section
1, we denote the components of the fixed locus of Y by Yi. V splits
into eigenbundles on Yi. Since v is a C∗-invariant section, it necessarily
restricts to a section of the weight 0 bundle V f

i . Yi is a smooth manifold
with a vector bundle and a section which vanishes exactly on Xi =
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X ∩ Yi. The associated C∗-fixed obstruction theory defined in Section
1,

[(V f
i )∨ → ΩYi

],

is exactly the perfect obstruction theory obtained from the pair V f
i

and v ∈ H0(Yi, V
f
i ). Note the maps to the cotangent complex must be

checked to agree. It follows that the virtual fundamental class of Xi is
the same as the refined Euler class of V f

i on Yi.
The virtual normal bundle is by definition the moving part of the

complex [TY → V ]. The moving part of TY is just the normal bundle
to Yi. Hence N vir

i is the complex [NYi/Y → V m
i ]. By the definition of

Euler class of a complex, we obtain:

e(N vir

i ) =
e(NYi/Y )

e(V m
i )

.

After substituting this expression for e(N vir

i ) into the virtual localiza-
tion formula (1), we see the equality we want to prove in AC∗

∗ (X)t is:

(9) eref(V ) = ι∗
∑ eref(V

f
i ) ∩ e(V m

i )

e(NYi/Y )

where eref(V ) is the refined Euler class of V as a Chow homology class
on X. We know by the localization formula on Y :

[Y ] = ι∗
∑ [Yi]

e(NYi/Y )
.

Intersecting both sides with eref(V ) yields:

eref(V ) = ι∗
∑ eref(V ) ∩ [Yi]

e(NYi/Y )
.

Since taking refined Euler class commutes with pullback, the numera-
tors on the right hand side are just the refined Euler classes of Vi. On
each component, we have the splitting Vi = V f

i ⊕V m
i . Since the section

lives entirely in V f
i , it follows that eref(Vi) = eref(V

f
i )∩e(V m

i ). Formula
(9) is thus obtained. The proof of (1) in the basic case is complete.

3. Proof in the general case

In this section, we prove the virtual localization formula for an arbi-
trary scheme X which admits an equivariant embedding in a nonsin-
gular scheme Y . Recall from the construction of the virtual class in
Section 1, the two cones D and Dvir satisfy:

(10) 0 → TY → D → Dvir → 0
9



(11) D = CX/Y × E0.

Dvir is a embedded as a closed subcone of E1. The virtual class is
defined by [X]vir = s∗E1

[Dvir ]. Alternatively, there is a fiber square:

(12)

TY −−−→ D
y

y

X
0E1−−−→ E1

where the bottom map is the zero section. Then, [X]vir = s∗TY 0!
E1

[D].
Let Xi = X ∩ Yi be defined as in Section 2. Xi is a union of con-

nected components. C∗-fixed analogues of (10) and (11) hold for the
embeddings Xi ⊂ Yi:

0 → TYi → Di → Dvir

i → 0,

Di = CXi/Yi
×Ef

0 .

Dvir

i is a embedded as a closed subcone of Ef
1 , and [Xi]

vir = s∗
Ef

1

(Dvir

i ).

Since Xi is possibly disconnected, it should be noted that the ranks of
the bundles Ef

0,i and Ef
1,i may vary on the connected components. The

Euler classes of these bundles on Xi are taken with respect to their
ranks on each component. For notational convenience, the restriction
subscript i will be dropped. Similarly, the pull-backs of TY and TYi

to Xi will be denoted by TY and TYi.
The virtual localization formula for X will be deduced from local-

ization for Y . We start with the equality

[Y ] = ι∗
∑ [Yi]

e(TY m)

in AC∗

∗ (Y )t. The refined intersection product with [X]vir yields:

[X]vir = ι∗
∑ [X]vir · [Yi]

e(TY m)

in AC∗

∗ (X)t. Comparing this equation with our desired virtual localiza-
tion formula, we see that it suffices to establish:

(13)
[X]vir · [Yi]

e(TY m)
=

[Xi]
vir ∩ e(Em

1 )

e(Em
0 )

in AC∗

(Xi)t. The refined intersection of a basic linear equivalence due
to Vistoli [V], [Kr] with the zero section of a bundle will yield equation
(13).
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We first review Vistoli’s rational equivalence. Consider the following
Cartesian diagram:

(14)

ι∗CX/Y −−−→ CX/Yy
y

Xi −−−→ X
y

y

Yi
ι

−−−→ Y

The cone CXi/Yi
naturally embeds in ι∗CX/Y . Vistoli [V] p. 641, has

constructed a rational equivalence in NYi/Y × ι∗CX/Y which implies

(15) ι![CX/Y ] = [CXi/Yi
]

in A∗(ι
∗CX/Y ) (see [BF]). Applying Vistoli’s equivalence to the C∗-

homotopy quotients yields equation (15) in AC∗

∗ (ι∗CX/Y ). We will con-
sider the pull-back of this relation to ι∗D = ι∗CX/Y × E0:

(16) ι![D] = [Di × Em
0 ]

in AC∗

∗ (ι∗D).
Consider the pull-back of the exact sequence of abelian cones (6) to

Xi:
0 → TY → ι∗C(I/I2) ×E0 → ι∗C(Q) → 0.

There is an inclusion ι∗C(Q) ⊂ E1. The natural inclusion ι∗D ⊂
ι∗C(I/I2) × E0 is TY -invariant. Hence, the quotient cones

ι∗D/TYi → ι∗D/TY ⊂ ι∗C(Q)

exist. We obtain a three level Cartesian diagram:

(17)

TY −−−→ ι∗D
y

y

TY/TYi −−−→ ι∗D/TYiy
y

Xi

0E1−−−→ E1

Note that TY/TYi = TY m.
We now start the derivation of equation (13). The first steps are:

[X]vir · [Yi] = ι!s∗TY 0!
E1

[D]

= s∗TY 0!
E1
ι![D]

= s∗TY 0!
E1

[Di ×Em
0 ]
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in AC∗

∗ (Xi). The first equality is by the definition of [X]vir . The second
is obtained from the commutativity of the intersection product. The
third follows from equation (16).

The TYi-action on ι∗D leaves the cycle Di×E
m
0 invariant (since TYi

acts naturally on Di and trivially on Em
0 ). By definition,

Di/TYi = Dvir

i .

The class [Di ×Em
0 ] ∈ AC∗

∗ (ι∗D) is thus the pull-back of [Dvir

i ×Em
0 ] ∈

AC∗

∗ (ι∗D/TYi). Hence,

s∗TY 0!
E1

[Di × Em
0 ] = s∗TY m0!

E1
[Dvir

i ×Em
0 ].

The scheme-theoretic intersection 0−1
E1

(Dvir

i × Em
0 ) certainly lies in

TY m. The map

Dvir

i × Em
0 → E1

is the product of the inclusion Dvir

i ⊂ Ef
1 and the natural map from

the obstruction theory Em
0 → Em

1 . We thus observe 0−1
E1

(Dvir

i × Em
0 )

also lies in Em
0 . We conclude the existence of the following diagram:

(18)

0−1
E1

(Dvir

i ×Em
0 ) −−−→ Em

0y
y

TY m −−−→ Xi

To proceed, we need a relation among Gysin maps.

Lemma 1. Let B0 and B1 be C∗-equivariant bundles on Xi. Let Z be
a scheme equipped with two equivariant inclusions j0, j1 over Xi:

(19)

Z −−−→ B1y
y

B0 −−−→ Xi

Let ζ ∈ AC∗

∗ (Z). Then,

s∗B0
j0∗(ζ) ∩ e(B1) = s∗B1

j1∗(ζ) ∩ e(B0) ∈ AC∗

∗ (Xi).

Proof. Consider the family of inclusions jt : Z →֒ B0 × B1 defined for
t ∈ C by:

jt = (1 − t) · j0 + t · j1.

The existence of this family implies:

s∗B0×B1
j0∗(ζ) = s∗B0×B1

j1∗(ζ).

This yields the Lemma by the excess intersection formula. �
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Applying Lemma 1 to diagram (18) and the class ζ = 0!
E1

[Dvir

i ×Em
0 ]

yields:

(20) [X]vir · [Yi] = s∗Em
0

(
0!

E1
[Dvir

i × Em
0 ]

)
·
e(TY m)

e(Em
0 )

.

The class 0!
E1

[Dvir

i × Em
0 ] is now considered to lie in AC∗

∗ (Em
0 ). As

this class does not depend on the bundle map

(21) Em
0 → Em

1 ,

we are free to assume (21) is trivial. Then, the equality

(22) s∗Em
0

(
0!

E1
[Dvir

i × Em
0 ]

)
= [Xi]

vir ∩ e(Em
1 )

follows easily from the definition of [Xi]
vir and the excess intersection

formula. Equation (13) is a consequence of (20) and (22). The proof
of the virtual localization formula is complete.

4. The formula for Pr

We can use the virtual localization formula (1) to derive an expres-
sion for the higher genus Gromov-Witten invariants of projective space
analogous to the one given for genus 0 invariants in [K]. The additional
arguments needed to justify formula (1) in the category of Deligne-
Mumford stacks for the moduli space of maps are given in the Appen-
dices.

We first establish our conventions about the torus action on projec-
tive space. Let V = Cr+1. Let pi ∈ P(V ) be the points determined by
the basis vectors. Let C∗ act on V with generic weights −λ0, . . . ,−λr.
Then, the induced action on the tangent space to P(V ) at pi has weights
λi − λj for j 6= i.

Let T be the full diagonal torus acting on Pr. Following [K], we
can identify the components of the fixed point locus of the T-action on
Mg,n(Pr, d) with certain types of marked graphs. Let f : C → Pr be
a T-fixed stable map. The image of C is a T-invariant curve in P(V ),
and the images of all marked points, nodes, contracted components,
and ramification points are T-fixed points. The T-fixed points on Pr

are p0, . . . , pr, and the only invariant curves are the lines joining the
points pi. It follows that each non-contracted component of C must
map onto one of these lines, and be ramified only over the two fixed
points. This forces such a component to be rational, and the map
restricted to this component is completely determined by its degree.

We are led to identify the components of the fixed locus with marked
graphs. To an invariant stable map f , we associate a marked graph Γ
as follows. Γ has one edge for each non-contracted component. The
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edge e is marked with the degree de of the map from that component
to its image line. Γ has one vertex for each connected component of
f−1({p0, . . . , pr}). Define the labeling map

i : Vertices → {0, . . . , r}

by f(v) = pi(v). The vertices have an additional labeling g(v) by the
arithmetic genus of the associated component. (Note the component
may be a single point, in which case its genus is 0.) Finally, Γ has
n numbered legs coming from the n marked points. These legs are
attached to the appropriate vertex. An edge is incident to a vertex if
the two associated subschemes of C are incident.

The set of all invariant stable maps whose associated graph is Γ is
naturally identified with a finite quotient of a product of moduli spaces
of pointed curves. Define:

MΓ =
∏

vertices

M g(v),val(v).

M0,1 and M 0,2 are interpreted as points in this product. Over the
Deligne-Mumford stack MΓ, there is a canonical family

π : C → MΓ

of T-fixed stable maps to Pr yielding a morphism

γ : MΓ → Mg,n(Pr, d).

There is a natural automorphism group A acting π-equivariantly on C
and MΓ. A is filtered by an exact sequence of groups:

1 →
∏

edges

Z/de → A → Aut(Γ) → 1

where Aut(Γ) is the automorphism group of Γ (as a marked graph).
Aut(Γ) naturally acts on

∏
edges Z/de and A is the semidirect product.

The induced map:

γ/A : MΓ/A → Mg,n(Pr, d)

is a closed immersion of Deligne-Mumford stacks. It should be noted
that the subgroup

∏
edges Z/de acts trivially on MΓ and that MΓ/A is

nonsingular. A component of the T-fixed stack of M g,n(P
r, d) is sup-

ported on MΓ/A. The fixed stack will be shown to be nonsingular by
analysis of the fixed perfect obstruction theory which yields the Zariski
tangent space. This nonsingularity is surprising since the moduli stack
Mg,n(Pr, d) is singular. A generic C∗ ⊂ T will have the same fixed
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point loci in Mg,n(Pr, d). Via this fixed point identification, the vir-
tual localization formula will relate the Gromov-Witten invariants of
Pr to integrals over moduli spaces of pointed curves.

Following [K], we define a flag F of the graph Γ to be an incident
edge-vertex pair (e, v). Define i(F ) = i(v). The edge e is incident to
one other vertex v′. Define j(F ) = i(v′). Define:

ωF =
λi(F ) − λj(F )

de

.

This is the weight of the induced action of C∗ on the tangent space
to the rational component Ce of C corresponding to F at its preimage
over pi(F ). This fact follows from the corresponding calculation on the
weight of the action on the tangent space to the image line, with a
factor of 1

de
coming from the de-fold ramification of the map at the

fixed point.
We describe the obstruction theory ofM g,n(P

r, d) restricted toMΓ/A.
Define sheaves T 1 and T 2 on MΓ/A via the cohomology of the restric-
tion of the canonical (dual) perfect obstruction theoryE• onM g,n(P

r, d):

(23) 0 → T 1 → E0,Γ → E1,Γ → T 2 → 0.

There is a tangent-obstruction exact sequence of sheaves on the sub-
stack MΓ/A:

(24) 0 → Ext0(ΩC(D),OC) → H0(C, f ∗TX) → T 1 →

→ Ext1(ΩC(D),OC) → H1(C, f ∗TX) → T 2 → 0.

The marked point divisor on C is denoted by D. The 4 terms other
than the sheaves T i are vector bundles and are labeled by their fibers.
This sequence can be viewed as filtering the deformations of the maps
by those which preserve the domain curves. It arises via the pull-back
to MΓ/A of a distinguished triangle of complexes on Mg,n(Pr, d) (see
Appendix B). These results may be found in [LT], [R2], [B].

In the remainder of this section, the fixed and moving parts of the
4 bundles in the tangent-obstruction complex are explicitly identified
following [K]. It is simpler to carry out the bundle analysis on the
prequotient MΓ to avoid monodromy in the nodes. In fact, the final
integrals over the fixed locus will be evaluated on MΓ and corrected by
the order of A.

It will be seen that there are exactly 3 fixed pieces in the 4 bundles.
They occur in the 1st, 2nd, and 4th terms of the complex. The fixed
piece in the 1st term maps isomorphically to the fixed piece of the 2nd.
T 1,f is thus isomorphic to the fixed piece in the 4th term. The latter
is canonically the tangent bundle to MΓ. Also, T 2,f = 0. We can
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conclude that the fixed stack is nonsingular and equal to MΓ/A. The
two exact sequences (23) and (24) imply:

e(N vir ) =
e(Bm

2 )e(Bm
4 )

e(Bm
1 )e(Bm

5 )

where, for example, Bm
2 denotes the moving part of the 2nd term in

(24).
We first calculate the contribution coming from the bundle

Aut(C) = Ext(ΩC(D),OC)

parameterizing infinitesimal automorphisms of the pointed domain.
For each non-contracted component of C, there is a weight zero piece
coming from the infinitesimal automorphism of that component fixing
the two special points. This term will cancel with a similar term in
H0(f ∗TPr). Also, since there is no moving part, e(Bm

1 ) = 1. If it is
the case that the special points are not marked or nodes, that is the
associated vertex of the graph has genus 0 and valence one, there would
be an extra automorphism with nontrivial weight. We will leave this
case and the case of a genus 0 valence 2 vertex to the reader. No extra
trivial weight pieces arise in these two cases.

Next, we consider the bundle Def(C) = Ext1(ΩC(D),OC) param-
eterizing deformations of the pointed domain. A deformation of the
contracted components (as marked curves) is a weight zero deforma-
tion of the map which yields the tangent space of MΓ/A as a summand
in the weight zero piece of Def(C). The other deformations of C come
from smoothing nodes of C which join contracted components to non-
contracted components. This space splits into a product of spaces cor-
responding to deformations which smooth each node individually. The
one dimensional space associated to each node is identified as a bundle
with the tensor product of the tangent spaces of the two components at
the node. We see that the tangent space to the non-contracted curve
forms a trivial bundle with weight ωF while the tangent space to the
contracted curve varies but has trivial weight. Let eF denote the line
bundle on MΓ whose fiber over a point is the cotangent space to the
component associated to F at the corresponding node. Therefore,

e(Bm
4 ) =

∏

flags

(ωF − eF ).

To compute the contribution coming from H•(f ∗TPr), we consider
the normalization sequence resolving all of the nodes of C which are
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forced by the graph type Γ.

0 → OC →
⊕

vertices

OCv
⊕

⊕

edges

OCe
→

⊕

flags

OxF
→ 0

Twisting by f ∗(TPr) and taking cohomology yields:

0 → H0(f ∗TPr) →
⊕

vertices

H0(Cv, f
∗TPr) ⊕

⊕

edges

H0(Ce, f
∗TPr) →

→
⊕

flags

Tpi(F )
Pr → H1(f ∗TPr) →

⊕

vertices

H1(Cv, f
∗TPr) → 0

where we have used the fact that there will be no higher cohomology
on the non-contracted components since they are rational. Also note
that H0(Cv, f

∗(TPr) = Tpi(v)
Pr since Cv is connected and f is constant

on it. Thus, we obtain:

H0 −H1 =

+
⊕

vertices

Tpi(v)
Pr +

⊕

edges

H0(Ce, f
∗TPr)

−
⊕

flags

Tpi(F )
Pr −

⊕

vertices

H1(Cv, f
∗TPr)

As non-contracted components are rigid, we see that H0(Ce, f
∗TPr) is

trivial as a bundle, but we need to determine its weights. We do this
via the Euler sequence. On Pr we have:

0 → O → O(1) ⊗ V → TPr → 0.

Pulling back to Ce and taking cohomology gives us:

0 → C → H0(O(de)) ⊗ V → H0(f ∗TPr) → 0

Here the weight on C is trivial, and the weights on H0(O(de)) are given
by a

de
λi + b

de
λj for a+ b = de. The weights on V are −λ0, . . . ,−λr. So

the weights of the middle term are just the pairwise sums of these,
a
de
λi + b

de
λj − λk. There are exactly 2 zero weight terms here coming

from a = 0, k = j and b = 0, k = i. These cancel the zero weight term
from the C on the left, and the zero weight term occurring in Aut(C).
Breaking up the remaining terms into two groups corresponding to
k = i, j and k 6= i, j, we obtain the contribution of H0(Ce, f

∗TPr) to
the Euler class ratio e(Bm

2 )/e(Bm
5 ):

(−1)de
de!

2

d2de
e

(λi − λj)
2de ·

∏

a+b=de
k 6=i,j

(
a

de
λi +

b

de
λj − λk).

Finally, we evaluate the contribution of H1(Cv, f
∗TPr). This is sim-

ply H1(Cv,OCv
)⊗Tpi(v)

Pr. As a bundle, H1(Cv,OCv
) is the dual of the
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Hodge bundle E = π∗ω on the moduli space M g(v),val(v). The bundle
H1(Cv,OCv

) ⊗ Tpi(v)
Pr splits into r copies of E∨ twisted respectively

by the r weights λi − λj for j 6= i. Taking the equivariant top Chern
class of this bundle yields:

∏

j 6=i

c(λi−λj)−1(E∨) · (λi − λj)
g(v)

where for a bundle Q of rank q:

ct(Q) = 1 + tc1(Q) + . . . tqcq(Q).

We arrive at the following form of the inverse Euler class of the
virtual normal bundle to the fixed point locus corresponding to the
graph Γ.

∏

flags

1

ωF − eF

∏

j 6=i(F )

(λi(F ) − λj)

1

e(N vir)
=

∏

vertices

∏

j 6=i(v)

c(λi(v)−λj)−1(E∨) · (λi(v) − λj)
g(v)−1

∏

edges

(−1)ded2de
e

(de!)2(λi − λj)2de

∏

a+b=de
k 6=i,j

1
a
de
λi + b

de
λj − λk

In addition, the virtual fundamental class of the fixed locus must
be identified. We have already seen T 1,f is the tangent bundle of MΓ.
and T 2,f = 0. It then follows from (23) that the C∗-fixed (dual) perfect
obstruction theory is equivalent on the fixed stack to the trivial perfect
obstruction theory. The virtual fundamental class of the fixed stack is
simply the ordinary fundamental class.

The (numerical) Gromov-Witten invariants of Pr are the integrals:

IP
r

g,d(H l1, . . . , H ln) =

∫

[Mg,n(Pr ,d)]vir
e∗1(H

l1) ∪ · · · ∪ e∗n(H ln),

where H is the hyperplane class and ei are the evaluation maps. The
above expression for 1

e(Nvir )
may be used in the virtual Bott residue

formula (7) to deduce formulas expressing these Gromov-Witten in-
variants in terms of integrals on moduli spaces of pointed curves. The
numerator terms, coming from the cohomology classes of Pr, are identi-
cal in this higher genus case to the terms appearing in [K]. In particular,
they contribute only additional weights, and no cohomological terms.

Let [n] = {1, . . . , n} be the marking set of an n-pointed graph Γ. Let
i : [n] → {0, . . . , r} be defined by f(m) = pi(m). The final expression
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for the numerical Gromov-Witten invariants of Pr is:

IPr

g,d(H
l1 , . . . , H ln) =

∑

Γ

1

|AΓ|

∫

MΓ

∏
[n] λ

lm
i(m)

e(N vir

Γ )
.

The sum is over all graphs Γ indexing fixed loci of Mg,n(Pr, d). To
evaluate the integral, one expands the terms of the form 1

ω−e
as formal

power series, and then integrates all terms of the appropriate degree.
Each integral that is encountered will naturally split as a product of

integrals over the different moduli spaces of pointed curves. We remark
that the integrals over genus 0 spaces are identical to the ones which
are dealt with in [K]. In particular, while the formula given above is
incorrect for graphs with vertices of genus 0 and valence 1 or 2, the
formulas obtained in [K] after integrating over M0,n hold for these
degenerate cases as well.

In higher genera, we know of no closed formulas for the integrals
which occur in these calculations. However, C. Faber has constructed
an algorithm in [Fa] which determines all such integrals. Thus, this
formula, together with Faber’s algorithm, gives a method in principle
to determine all the Gromov-Witten invariants of projective space.

The full system of Gromov-Witten invariants consists of cohomology
classes in M g,n:

IPr

g,d(H
l1, . . . , H ln) = π∗

(
[M g,n(Pr, d)]vir ∩ e∗1(H

l1) ∩ · · · ∩ e∗n(H ln)
)
,

where π : M g,n(P
r, d) → Mg,n is the forgetful map. Since π is C∗-

equivariant morphism (with respect to the trivial action on Mg,n), vir-
tual localization may be used to explicitly equate these push-forwards
to push-forwards from the fixed loci of M g,n(Pr, d) to M g,n.

The tautological ring ofM g,n is defined to be the subring ofH∗(M g,n,Q)
generated by the Chern classes of the cotangent lines, the κ classes, and
the push-forwards of these classes from lower moduli spaces M g′,n′ to
the boundary strata of M g,n via the standard gluing maps.

Corollary 1. The full system of Gromov-Witten invariants of Pr lies
in the tautological rings of the moduli spaces Mg,n.

Proof. The proof relies upon two observations. First, the fixed loci
map to boundary strata of M g,n via the standard gluing maps (up to
an automorphism factor). Second, the classes that arise on the fixed
loci in the virtual localization formula are tautological. �
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The above analysis for the standard T-action on Pr is valid in the
following more general context. Let X be a nonsingular projective va-
riety with a torus action with finitely many 0 and 1 dimensional orbits.
As in the case of Pr, the closure of each 1 dimensional orbit is necessar-
ily a nonsingular P1 with 2 fixed points. The T-fixed loci of Mg,n(X, β)
are again nonsingular stacks with trivial fixed obstruction theory. The
components of M g,n(X, β)T are in bijective correspondence with dec-
orated graphs and admit analogous descriptions as in the case of Pr.
In particular, explicit graph sum formulas for equivariant integrals in
Gromov-Witten theory exist for X. Corollary 1 for X also holds.

We indicate the modifications needed to conclude these results for
the more general T-actions. By the finiteness assumption on the 0 and
1 dimensional orbits in X, the reduced structure on the fixed stack in
Mg,n(X, β) is clearly the nonsingular finite quotient stack of a product
of moduli spaces of pointed curves. As in the case of Pr, an analysis
of the weight 0 pieces of the obstruction theory via diagram (24) for
X is required to show the actual fixed stack is reduced with trivial
obstruction theory. Only two steps in the argument for Pr require new
justification. First, a weight computation of the bundle H0(C, f ∗TPr)
in (24) showed there was 1 fixed dimension for each noncontracted
component. Moreover, this fixed dimension exactly corresponded to an
infinitesimal automorphism of the noncontracted component. Second,
the bundle H1(C, f ∗TPr) had no fixed part. For more general X, we
will show these two facts hold: the fixed part of H0(C, f ∗TX) will
again correspond exactly to the infinitesimal automorphisms of the
noncontracted components, and H1(C, f ∗TX) will have no fixed part.
After this is established, the analysis in the projective space case may
be followed exactly to conclude that the fixed stack is nonsingular with
trivial perfect obstruction theory.

Lemma 2. Let L be a line bundle on P1. Let T act equivariantly
on L and P1. Let p ∈ P1 be a fixed point. If the weights of the
torus representations Lp and TP1,p are linearly independent, then the
T-invariant subspaces of H0(P1, L) and H1(P1, L) are 0.

Proof. Let the weights of the representation Lp and TP1,p be λ and ω
respectively. First consider H0(P1, L). Let d be the degree of L. If
d < 0, then H0(P1, L) = 0. If d ≥ 0, the weight decomposition of
H0(P1, L) is:

⊕d
i=0 (λ− iω).

Hence, H0(P1, L) has no fixed part by the independence assumption.
We conclude the result for H1 by applying Serre duality, and the result
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for H0(K⊗L∨). The linear independence assumption holds for K⊗L∨

since the weight of the representation (K ⊗ L∨)p is is −ω − λ. �

Lemma 3. Let X be a nonsingular variety with a T-action with finitely
many 0 and 1 dimensional orbits. Let f : P1 → P ⊂ X be a T-fixed
map onto a 1 dimensional orbit closure P . Then, the T-invariant sub-
space of H0(P1, f ∗TX) is 1 dimensional (obtained from the infinites-
simal automorphism of the domain) and the T-invariant subspace of
H1(P1, f ∗TX) is 0.

Proof. Let p ∈ P ⊂ X be a fixed point. The T-action on X is
isomorphic étale locally at p to a linear representation of T (see [Bi]).
The finiteness assumption on 1 dimensional orbits then implies the
weights of the T-action on TX,p are linearly independent. The pull-back
f ∗TX splits equivariantly as a direct sum of line bundles with respect
to the induced (fractional) action on P1. As the weights of TX,p are
distinct, there is a canonical equivariant decomposition of f ∗TX . One
of these factors is f ∗TP . The representation H0(P1, f ∗TP ) has a 1
dimensional fixed piece (obtained from the infinitesimal automorphism
of the domain) and H1(P1, f ∗TP ) = 0. It remains to show the other
line bundle factors yield no invariant sections or first cohomology on
P1. Let p1 ∈ P1 satisfy f(p1) = p. As the weights of the torus action
on the p1 fiber of each of the other factors are linearly independent
from the weight of TP1,p1

, the proof is complete by Lemma 2. �

Lemma 3 implies the two required facts about the bundlesH0(C, f ∗TX)
and H1(C, f ∗TX) on the fixed loci of Mg,n(X, β) via the standard nor-
malization sequence.

Both nonsingular projective toric varieties and projective algebraic
homogeneous spaces (with the natural maximal torus action) satisfy
the finiteness condition on 0 and 1 dimensional orbits. These exam-
ples cover all the deformation classes of nonsingular projective rational
surfaces.

5. Multiple cover calculations

Let C ⊂ X be a nonsingular rational curve with balanced normal
bundle N

∼
= O(−1)⊕O(−1) in a nonsingular Calabi-Yau 3-fold X. Let

[C] ∈ H2(X,Z) be the homology class of C. The space of stable elliptic
maps to X representing the curve class d[C] contains a component Yd

consisting of maps which factor through a d-fold cover of C. Yd is
naturally isomorphic to M 1,0(C, d), the space of unpointed, genus 1
stable maps. The contribution of Yd to the elliptic Gromov-Witten
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invariant IX
1,d[C] has been computed in physics [BCOV]. The answer

obtained is 1
12d

(accounting for the differing treatment of the elliptic
involution).

Mathematically, the excess contribution of Yd is expressed as an in-
tegral over M 1,0(C, d). The integral is computed here for all d via
localization. Localization reduces the contribution to a graph sum
which can be explicitly evaluated by Manin’s trick [M] and a formula
for intersections of cotangent lines on M 1,n.

Let π : U → M 1,0(C, d) be the universal family over the moduli
space. Let µ : U → C be the universal evaluation map. The expected
dimension of M 1,0(C, d) is 2d. By the cohomology and base change
theorems, R1π∗µ

∗N is a vector bundle of rank 2d on M1,0(P
1, d). The

contribution of Yd to the elliptic Gromov-Witten invariant of curve
class d[C] is:

(25)

∫

[M1,0(C,d)]vir
c2d(R

1π∗µ
∗N).

Natural lifts of C∗-actions on C to M1,0(C, d), N , and R1π∗µ
∗N exist.

The localization formula can therefore be applied to compute (25). The
answer obtained agrees with the physics calculation.

Proposition 2.
∫

[M1,0(C,d)]vir
c2d(R

1π∗µ
∗N) =

1

12d
.

Let V
∼
= C2. Let C = P(V ). Let C∗ act by weights 0 and −1 on

V . Let x0 and x−1 be the respective fixed points in C. The C∗-action
lifts naturally to the tautological line O(−1) and thus to N . Consider
the graph sum obtained by the localization formula for the integral
(25). The 0 weight leads to a drastic collapse of the sum. This was
observed by Manin in [M] for an analogous excess integral over a space
of genus 0 maps. In fact, the only graphs which contribute are comb
graphs where the backbone is an elliptic curve contracted over x−1 and
the teeth are rational curves multiple covering P(V ). The degree d

is distributed over the teeth by
∑k

1 mi = d. The denominator terms
in the localization formula are determined by the results of Section 4.
The numerator is given by the bundle R1π∗µ

∗N which is decomposed
on each fixed point locus via the natural normalization sequence. The
formula

(26)
∑

m⊢d

(−1)d−L(m)

Aut(m) Π
L(m)
1 mi

∫

M1,L(m)

1 + λ

Π
L(m)
1 (1 −miei)
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is obtained for the degree d contribution. The sum is over all positive
partitions:

m = (m1, . . . , mk), mi > 0,

k∑

1

mi = d.

L(m) denotes the length of m. Aut(m) is the order of the stabilizer of
the symmetric group Sk-action on the string (m1, . . . , mk). The class λ
in the numerator is the first Chern class of the Hodge bundle on M1,n.
As before, ei is the ith cotangent line bundle on M 1,n.

The integral (26) is calculated in two parts to prove Proposition 2.

Lemma 4.

∑

m⊢d

(−1)d−L(m)

Aut(m) Π
L(m)
1 mi

∫

M1,L(m)

λ

Π
L(m)
1 (1 −miei)

=
1

24d

Lemma 5.

∑

m⊢d

(−1)d−L(m)

Aut(m) Π
L(m)
1 mi

∫

M1,L(m)

1

Π
L(m)
1 (1 −miei)

=
1

24d

We start with Lemma 4. The first step is to use the boundary ex-
pression for λ to reduce to an integral over genus 0 pointed moduli
spaces. On M 1,1, the equation:

(27) λ =
∆0

12

holds where ∆0 is the irreducible boundary divisor. Since λ on M 1,n is
a pull-back from a one pointed space, (27) is valid on M 1,n. Using the

standard identification of ∆0 with the Z/2Z-quotient of M0,n+2, the
equality:

∫

M1,L(m)

λ

Π
L(m)
1 (1 −miei)

=
1

24

∫

M0,L(m)+2

1

Π
L(m)
1 (1 −miei)

is obtained. Next, using the well-known formula for intersection num-
bers on the genus 0 spaces, we see:

∫

M0,L(m)+2

1

Π
L(m)
1 (1 −miei)

= (

L(m)∑

1

mi)
L(m)−1 = dL(m)−1.

After substituting these equalities, the sum of Lemma 4 is transformed
to:

(28)
(−1)d

24d

∑

m⊢d

(−1)−L(m)

Aut(m) Π
L(m)
1 mi

dL(m).
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The summation term in (28) was encountered by Manin in [M]. It
evaluates explicitly to (−1)d via a generating function argument (see
[M] p.416). The value of (28) is thus 1

24d
. Lemma 4 is established.

We now prove Lemma 5. A generating function approach is taken.
For d ≥ 1, let

gd =
∑

m⊢d

(−1)d−L(m)

Aut(m) Π
L(m)
1 mi

∫

M1,L(m)

1

Π
L(m)
1 (1 −miei)

.

Define γ(t) by:

γ(t) =
∑

α≥1

(−1)αgαt
α.

An important observation is that γ(t) can be rewritten in the following
form:

(29) γ(t) =< exp (−
∑

α≥1

∑

i≥0

αi−1tασi) >1 .

Here, Witten’s notation,

(30) < σr0
0 σ

r1
1 · · ·σrk

k >1,

is used to denote the integral:
∫

M1,r

er0+1 . . . er0+r1︸ ︷︷ ︸
r1

· e2r0+r1+1 . . . e
2
r0+r1+r2︸ ︷︷ ︸

r2

. . . ek
r−rk+1 . . . e

k
r︸ ︷︷ ︸

rk

where r =
∑k

0 ri. Equality (29) is a simply a rewriting of terms. The
genus 1 integrals (30) are determined from genus 0 integrals by a beau-
tiful formula in the formal variables {zi}i≥0:

(31) < exp
∑

i≥0

ziσi >1=
1

24
log < σ3

0 exp
∑

i≥0

ziσi >0 .

Formula (31) can be found, for example, in [D]. Let zi = −
∑

α≥1 α
i−1tα.

Using (29) and (31), γ(t) may be expressed as:

(32) γ(t) =
1

24
log < σ3

0 exp(−
∑

α≥1

∑

i≥0

αi−1tασi) >0

Equation (32) will be used to determine γ(t). First, define another
generating function ψ(t) by:

ψ(t) = 1 +
∑

β

sβt
β

24



where the coefficients sβ are:

(33) sβ =
∑

m⊢β

(−1)−L(m)

Aut(m) Π
L(m)
1 mi

∫

M0,L(m)+3

1

Π
L(m)
1 (1 −miei)

.

As before, the equality:

ψ(t) =< σ3
0 exp(−

∑

α≥1

∑

i≥0

αi−1tασi) >0

is a rewriting of terms. However, the expression (33) may be explicitly
evaluated by the genus 0 intersection formulas and Manin’s summation
argument to yield:

sβ = (−1)β.

Hence, ψ(t) is simply 1/(1 + t), and

γ(t) = −
log(1 + t)

24
=

1

24
(−t+

t2

2
−
t3

3
+ . . .).

Thus, gd = 1
24d

. Lemma 5 is proven. Proposition 2 follows from (26)
and the two Lemmas.

Localization may be applied to the analogous excess integrals for
arbitrary genus g. The resulting formula is:

(34)

∫

[Mg,0(P1,d)]vir
ctop(R

1π∗µ
∗N) =

∑

m⊢d

(−1)d−L(m)

Aut(m) Π
L(m)
1 mi

∫

Mg,L(m)

1 + c1(E) + . . .+ cg(E)

Π
L(m)
1 (1 −miei)

where E is the Hodge bundle. For g ≥ 2, we have conjectured with C.
Faber the above integral sum is equal to:

|B2g| · d
2g−3

2g · (2g − 2)!
=

|χ(Mg)| · d
2g−3

(2g − 3)!
.

This equality has been verified in case g + d ≤ 7.

Appendix A. Global nonsingular embeddings

Let V be an nonsingular projective algebraic variety with a C∗-
action. There exists a C∗-equivariant polarization L on V (see [MFK]).
Mg,n(V, β) is a C∗-equivariant closed substack of M g,n(P

r, β) via the
equivariant embedding determined by L. It will be shown that the
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Deligne-Mumford stack M g,n(Pr, β) admits a global closed equivariant
embedding into a nonsingular Deligne-Mumford stack.

In [FP], the moduli space of maps to Pr is expressed as a quotient
of a locally closed scheme J of an associated (product) Hilbert scheme
H by a reductive group G = PGL. Four properties of this quotient
will be needed here.

(i) The stack quotient [J/G] is the Deligne-Mumford moduli stack
of maps Mg,n(Pr, β).

(ii) G acts with finite stabilizers on J (in fact, the G-action on J
is proper).

(iii) There is a C∗ × G-action on J which descends to the given
C∗-action on M g,n(Pr, β).

(iv) There is a C∗ × G-equivariant linearized embedding of J ⊂ H
in a nonsingular Grassmannian G.

All these properties are obtained directly from the construction in [FP].
The G-equivariant open set U ⊂ G on which the G-action has fi-

nite stabilizers contains J and is C∗-equivariant. Note that ∆ = J \ J
is closed in G and is C∗ × G-equivariant. After discarding ∆ ∩ U ,
it may be assumed that J is closed in U . Let Y be the nonsingu-
lar Deligne-Mumford stack [U/G]. The moduli space of maps embeds
C∗-equivariantly in Y . It should be noted that while Y is a (quasi-
separated) Deligne-Mumford stack of finite type, Y need not be sepa-
rated.

Appendix B. The obstruction theory on M g,n(V, β)

In [B] and [LT], a canonical obstruction theory on Mg,n(V, β) is de-
fined which is locally a two term complex of vector bundles. To ob-
tain a global two term complex, a polarization is required. Since the
constructions are C∗-equivariant, a C∗-equivariant perfect obstruction
theory on M g,n(V, β) may be defined using L.

We sketch here the method of [B] to obtain the equivariant perfect
obstruction theory on M g,n(V, β). The relative deformation problem is
considered for the canonical morphism

τ : M g,n(V, β) → Mg,n

where Mg,n is the nonsingular Artin stack of prestable curves. The
theory of the cotangent complex for Artin stacks has been developed
in [LM-B]. The morphism τ yields a distinguished triangle of cotangent
complexes on M g,n(V, β):

τ ∗L•
M

→ L•
M

→ L•
τ → τ ∗L•

M
[1].
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The complex τ ∗L•
M

has a two term bundle resolution of amplitude [0, 1],
A• = A0 → A1, in the C∗-equivariant derived category (obtained from
L). There is a relative obstruction theory (see [B])

(35) R•π∗(f
∗TV )∨ → L•

τ

with a natural map to τ ∗L•
M

[1]. Here, f is the map to V from the
universal curve and π is the projection from the universal curve to
Mg,n(V, β). Moreover, R•π∗(f

∗TV )∨ has a two term equivariant bun-
dle resolution B• = B−1 → B0. Representatives of L•

τ and L•
M

in the
equivariant derived category may be found from the global nonsingu-
lar embeddings constructed above. The diagram below of distinguished
triangles may be canonically completed in the equivariant derived cat-
egory to obtain an equivariant obstruction theory of amplitude [-1,1]:

E• = B−1 → B0 ⊕A0 → A1,

(36)

B• −−−→ A•[1] −−−→ E•[1] −−−→ B•[1]
y

y
y

y

L•
τ −−−→ τ ∗L•

M
[1] −−−→ L•

M
[1] −−−→ L•

τ [1].

The stability condition implies the cohomology of E• at grade 1 van-
ishes. Hence, E• may be represented by a two term equivariant complex
E−1 → E0. The morphism constructed in diagram (36),

φ : E• → L•
M

can be seen to be a equivariant perfect obstruction theory.
Property (iv) of Appendix A implies that the moduli stackM g,n(V, β)

has enough C∗-equivariant locally frees. Hence, representatives (E•, φ)
in the equivariant derived category may be chosen to map to the two
term cutoff [I/I2 → ΩY ] of L•

M
determined by the nonsingular em-

bedding (see Section 1). The distinguished triangle (36) is used in the
computations of Section 4.

Appendix C. Localization for Deligne-Mumford stacks

In this appendix, we extend the virtual localization formula to the
case of a Deligne-Mumford stack X with a C∗-equivariant perfect ob-
struction theory under the additional assumption that X admits an
equivariant global embedding in a nonsingular Deligne-Mumford stack.
This condition is satisfied for the moduli space of maps to a nonsingular
projective variety V with a C∗-action by the existence of the quotient
construction reviewed in Appendix A. We assume Deligne-Mumford
stacks are of finite type (but not necessarily separated). In fact, for the
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application to the moduli space of maps, only quotient stacks [U/G]
(where U is a quasi-projective scheme and G acts with finite stabiliz-
ers) need be considered. The C∗-actions on [U/G] which arise descend
from C∗ × G-actions on U .

First of all, a good theory of rational Chow groups on Deligne-
Mumford stacks has been constructed in [V]. A finite covering result of
[LM-B] (Theorem 10.1) is required for Vistoli’s theory to apply to gen-
eral Deligne-Mumford stacks. Essentially all properties of Chow groups
for schemes hold for Deligne-Mumford stacks. In particular, one ob-
tains flat pullbacks and proper pushforwards. Flat pullback gives an
isomorphism in Chow groups between any stack and any vector bun-
dle over the stack. Refined Gysin maps exist for regular embeddings,
giving rise to an intersection product on the Chow groups of smooth
Deligne-Mumford stacks. Finally, Chern and Segre classes for vector
bundles and cones exist and satisfy the same properties as they do for
schemes. Also, because these groups are defined in terms of closed
substacks, it is immediate that the Chow groups are non-zero only in
dimensions between zero and the dimension of the stack. (This last
condition would not be possible if one required a theory with inte-
gral coefficients satisfying the hypothesis that flat pullback to a vector
bundle gave isomorphisms in Chow groups.)

We can define a theory of C∗-equivariant Chow groups on Deligne-
Mumford stacks by the following construction. One simply defines
AC∗

∗ (X) to be the Chow groups of appropriate approximations to the
homotopy quotient as in [To], [EG1]. The only difference is that the ho-
motopy quotient is now taken to be the stack quotient, [X ×EC∗/C∗].
Since this is a free group action, the quotient is also a Deligne-Mumford
stack. Therefore, C∗-equivariant Chow groups are well defined for
Deligne-Mumford stacks:

AC∗

∗ (X) = A∗[X × EC∗/C∗].

The proof in Section 3 proves the virtual localization formula on Deligne-
Mumford stacks satisfying the embedding assumption provided we know
that the standard localization formula holds for nonsingular Deligne-
Mumford stacks.

The key step in the proof of the localization formula for nonsingular
Deligne-Mumford stacks, as in proofs of localization in other categories,
is the following lemma:

Lemma 6. If U is a Deligne-Mumford stack on which C∗ acts without
fixed points, then the equivariant Chow groups AC∗

∗ (U) vanish after
localization.
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Proof. We consider the stack quotient, [U/C∗]. Because the C∗-action
has no fixed points on U , the quotient is again Deligne-Mumford. Fur-
thermore, we claim that the Chow groups of [U/C∗] are naturally iso-
morphic to the equivariant Chow groups of U . In the diagram below,
both horizontal arrows are open sets of vector bundles.

U × EC∗
k −−−→ U

y
y

[U × EC∗
k/C

∗] −−−→ [U/C∗]

EC∗
k is an approximation to EC∗ determined by an open set of a C∗-

representation ([To], [EG1]). As these approximations to the homotopy
quotient are realized as open sets of vector bundles over [U/C∗], the
isomorphism in Chow groups follows. We have already observed that
A∗[U/C

∗] has only finitely many graded components. Hence, AC∗

∗ (U)
has only finitely many graded components and thus is trivial after
localization. �

Let Y be a nonsingular Deligne-Mumford stack with a C∗-action.
The fixed substack Y f is defined as the stack theoretic zero locus of
the canonical vector field determined in TY by the flow. Equivalently,
this is the maximal substack on which each element of C∗ acts trivially.
In the category of stacks, this does not imply that the action of C∗ on
Y f is trivial. However, the action becomes trivial after a finite cover
C∗ → C∗.

If we consider the pushforward ι∗ from the equivariant Chow groups
of the fixed locus, Y f to Y , we obtain the exact sequence in equivariant
Chow groups:

AC∗

∗ (Y f)
ι∗→ AC∗

∗ (Y ) → AC∗

∗ (U) → 0.

By the Lemma, ι∗ is surjective after localization.
To prove ι∗ is injective after localization, the nonsingularity of Y f will

be used. Some care must to be taken to establish this nonsingularity in
the category of Deligne-Mumford stacks. Let ζ be a C∗-fixed geometric
point. Although it doesn’t make sense to talk about the local ring of a

point in a stack, the completion of the local ring, Ôζ,Y , is well defined,
because it is invariant under étale covers. C∗ (or rather, the finite cover
of C∗ mentioned above) acts on this completion. The fixed scheme of
the induced action on the spectrum of this ring is an étale cover of a
formal neighborhood of ζ in Y f . The smoothness then follows from the

complete reducibility of the action of C∗ on Ôζ,Y as in [T].
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After the finite cover, C∗-equivariant sheaves on Y f split into eigen-
sheaves as before. The normal bundle to the fixed locus is seen to have
the standard identification with the moving part of the restriction of
the tangent bundle of Y . The representations of the covering C∗ may
be described by fractional weights of the original C∗.

The nonsingularity of Y and Y f implies that there is a pullback
from AC∗

∗ (Y ) to AC∗

∗ (Y f ) and that, on each component of Y f = ∪Yi,
the usual self-intersection formula ι∗ι∗α = e(Ni) · α holds.

Suppose α =
∑
αi in AC∗

∗ (Y f )t pushes forward to zero. Then,

0 = ι∗ι∗α =
∑

e(Ni) · αi

since pushing forward from one component of Y f and restricting to an-
other necessarily gives zero. Hence, for each i, e(Ni) ·αi = 0. However,
since e(Ni) is invertible in the localized ring, each αi is zero. We have
proven:

Proposition 3. The map ι∗ : AC∗

∗ (Y f) → AC∗

∗ (Y ) is an isomorphism
after localization.

The self intersection formula also quickly implies the explicit local-
ization formula:

[Y ] =
∑

i

[Yi]

e(Ni)
.

By Proposition 3, there exists a unique class α satisfying ι∗(α) = [Y ].
The condition ι∗ι∗(α) = [Y f ] then determines α.

If X ⊂ Y is a C∗-equivariant embedding, the fixed substack Xf may
be defined by Xf = X ∩ Y f . It follows from this definition that

ΩX |f
Xf = ΩXf .

It is not difficult to show the substack structure Xf is independent of
the choice of nonsingular equivariant embedding. The constructions
and arguments for the virtual localization formula for equivariant per-
fect obstruction theories on X now go through unchanged.
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