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ABSTRACT. Hodge classes on the moduli space of admissible covers with monodromy group G are

associated to irreducible representations of G. We evaluate all linear Hodge integrals over moduli

spaces of admissible covers with abelian monodromy in terms of multiplication in an associated

wreath group algebra. In case G is cyclic and the representation is faithful, the evaluation is in terms

of double Hurwitz numbers. In case G is trivial, the formula specializes to the well-known result

of Ekedahl-Lando-Shapiro-Vainshtein for linear Hodge integrals over the moduli space of curves in

terms of single Hurwitz numbers.
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0. INTRODUCTION

0.1. Moduli of covers. Let Mg,n be the moduli space of nonsingular, connected, genus g curves

over C with n distinct points. Let G be a finite group. Given an element [C, p1, . . . , pn] ∈ Mg,n,

we will consider principal G-bundles,

(1)

G −−−→ Pyπ

C \ {p1, . . . , pn} ,

over the punctured curve. Denote the G-action on the fibers of π by

τ : G× P → P.

The monodromy defined by a positively oriented loop around the ith puncture determines a conju-

gacy class γi ∈ Conj(G). Let γ = (γ1, . . . , γn) be the n-tuple of monodromies. The moduli space
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of covers Ag,γ(G) parameterizes G-bundles (1) with the prescribed monodromy conditions. There

is a canonical morphism

ǫ : Ag,γ(G) → Mg,n

obtained from the base of theG-bundle. Both Ag,γ(G) and Mg,n are nonsingular Deligne-Mumford

stacks.

A compactification Ag,γ(G) ⊂ Ag,γ(G) by admissible covers was introduced by Harris and

Mumford in [15]. An admissible cover

[π, τ ] ∈ Ag,γ(G)

is a degree |G| finite map of complete curves

π : D → (C, p1, . . . , pn)

together with a G-action

τ : G×D → D

on the fibers of π satisfying the following properties:

(i) D is a possibly disconnected nodal curve,

(ii) [C, p1, . . . , pn] ∈ Mg,n is a stable curve,

(iii) π maps the nonsingular points to nonsingular points and nodes to nodes,

π(Dns) ⊂ Cns, π(Dsing) ⊂ Csing,

(iv) [π, τ ] restricts to a principal G-bundle over the punctured nonsingular locus

πopen : Dopen → Cns \ {p1, . . . , pn}

with monodromy γ,

(v) distinct branches of a node η ∈ Dsing map to distinct branches of π(η) ∈ Csing with equal

ramification orders over π(η),
(vi) the monodromies of the G-bundle πopen determined by the two branches of C at η ∈ Csing

lie in opposite conjugacy classes.

Harris and Mumford originally considered only symmetric group Σd monodromy, but the natural

setting for the construction is for all finite G.

An admissible cover may be alternatively viewed as a principalG-bundle over the stack quotient1

[D/G] inducing a stable map to the classifying space

(2) f : [D/G] → BG.

Then, Ag,γ(G) is simply a moduli space of stable maps [2, 5] 2,

Ag,γ(G)
∼
= Mg,γ(BG).

The deformation theory of stable maps endows Ag,γ(G) with a canonical nonsingular Deligne-

Mumford stack structure. We take the stable maps perspective here.

There are two flavors of such stable map theories. If the base C is required to be connected as

above, we write M
◦

g,γ(BG). If disconnected bases C are allowed, we write M
•

g,γ(BG). In the

1[D/G] differs from C only by possible stack structure at the markings pi and the nodes. In both cases, the order of

the isotropy group is the order of the local monodromy in G.
2We do not trivialize the marked gerbes on the domain in the definition of Mg,γ(BG).
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disconnected case, the genus g may be negative. If the superscript is omitted, the connected case is

assumed.

Our results are restricted to abelian groups G. Here, Conj(G) is the set of elements of G. Of

course, the cyclic groups Za will play the most important role. In case G is trivial, there is no extra

monodromy data, and the moduli space of maps Mg,(0,...,0)(BZ1) specializes to Mg,n.

0.2. Hodge integrals. Let R be an irreducible C-representation of G. If G is abelian, R is a

character

φR : G→ C∗.

By associating to each map [f ] ∈ Mg,γ(G) presented as (2) above the R-summand of the G-

representation H0(D,ωD), we obtain a vector bundle

ER → Mg,γ(BG) .

The rank of ER is locally constant and determined by the orbifold Riemann-Roch formula discussed

in Section 1. The Hodge classes on Mg,γ(BG) are Chern classes of ER,

λR
i = ci(E

R) ∈ H2i(Mg,γ(BG),Q).

The ith cotangent line bundle Li on the moduli space of curves has fiber

Li|(C,p1,...,pn) = T ∗
pi

(C).

Descendent classes on Mg,n are defined by

ψi = c1(Li) ∈ H2(Mg,n,Q).

Descendent classes ψ̄i on the space of stable maps are defined by pull-back via the morphism

ǫ : Mg,γ(BG) → Mg,n

to the moduli space of curves,

ψ̄i = ǫ∗(ψi) ∈ H2(Mg,γ(BG),Q).

The Hodge integrals over Mg,γ(BG) are the top intersection products of the classes {λR
i }R∈Irr(G)

and {ψ̄j}1≤j≤n. Linear Hodge integrals are of the form
∫

Mg,γ(BG)

λR
i ·

n∏

j=1

ψ̄
mj

j .

The term Hurwitz-Hodge integral was used in [3] to emphasize the role of the covering spaces.

0.3. Hurwitz numbers. Let g be a genus and let ν and µ be two (unordered) partitions of d ≥ 1.

Let ℓ(ν) and ℓ(µ) denote the lengths of the respective partitions. A Hurwitz cover of P1 of genus g
with ramifications ν and µ over 0,∞ ∈ P1 is a morphism

π : C → P1

satisfying the following properties:

(i) C is a nonsingular, connected, genus g curve,

(ii) the divisors π−1(0), π−1(∞) ⊂ C have profiles equal to the partitions ν and µ respectively,

(iii) the map π is simply ramified over C∗ = P1 \ {0,∞}.
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By condition (ii), the degree of π must be d. Two covers

π : C → P1, π′ : C ′ → P1

are isomorphic if there exists an isomorphism of curves φ : C → C ′ satisfying π′ ◦ φ = π. Each

cover π has an naturally associated automorphism group Aut(π).

By the Riemann-Hurwitz formula, the number of simple ramification points of π over C∗ is

rg(ν, µ) = 2g − 2 + ℓ(ν) + ℓ(µ).

Let Ur ⊂ C∗ be a fixed set of rg(ν, µ) distinct points. The set of rg(ν, µ)th roots of unity is the

standard choice. The double Hurwitz number Hg(ν, µ) is a weighted count of the distinct Hurwitz

covers π of genus g with ramifications ν and µ over 0,∞ ∈ P1 and simple ramification over Ur.

Each such cover is weighted by 1/|Aut(π)|. The count Hg(ν, µ) does not depend upon the location

of the points of Ur.

There are two flavors of Hurwitz numbers. The connected case defined above will be denoted

H◦
g (ν, µ). If C is allowed to be disconnected, the Hurwitz count is denoted H•

g (ν, µ). Again, the

absence of a superscript indicates the connected theory.

Disconnected Hurwitz numbers are easily expressed as products in the center ZΣd of the group

algebra of Σd,

(3) H•
g (ν, µ) =

1

d!

(
CνT

rg(ν,µ)Cµ

)
[Id]
.

Here, Cν and Cµ are the sums in the group algebra of all elements of Σd with cycle types ν and

µ respectively, and T is the sum of all transpositions. The subscript denotes the coefficient of the

identity [Id].

Multiplication in ZΣd is diagonalized by the representation basis. Hurwitz numbers can be writ-

ten as sums over characters of Σd and conveniently expressed as matrix elements in the infinite

wedge representation. The latter formalism naturally connects Hurwitz numbers to integrable sys-

tems [20, 21, 24].

0.4. Formula for Za. The formula for linear Hodge integrals is simplest in case the monodromy

group is Za and the representation U is given by

φU : Za → C∗, φU(1) = e
2πi
a .

Let γ = (γ1, . . . , γn) be a vector3 of nontrivial elements of Za,

γi ∈ {1, . . . , a− 1}.

Let µ be a partition of d ≥ 1 with parts µj and length ℓ,

ℓ∑

j=1

µj = d.

Let γ − µ denote the vector of elements of Za defined by

γ − µ = (γ1, . . . , γn,−µ1, . . . ,−µℓ).

3The length n may be taken to be 0 in which case γ = ∅.
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While the parts of µ are unordered, an ordering is chosen for γ − µ. The vector γ − µ may contain

trivial parts. We will consider Hodge integrals over the moduli space Mg,γ−µ(BZa).

For nonemptiness, the parity condition

(4) d−
n∑

i=1

γi = 0 mod a

is required. Non-negativity,

d−
n∑

i=1

γi ≥ 0,

and boundedness,

∀i 6= j, γi + γj ≤ a

will also be imposed. If γ = ∅, non-negativity and boundedness are satisfied.

An automorphism of a partition is an element of the permutation group preserving equal parts.

Let |Aut(γ)| and |Aut(µ)| denote the orders of the automorphism groups.4 Let γ+ be the partition

of d determined by adjoining
d−

Pn
i=1 γi

a
parts of size a,

γ+ = (γ1, . . . , γn, a, . . . , a).

A calculation shows

rg(γ+, µ) = 2g − 2 + n + ℓ+
d

a
−

n∑

i=1

γi

a
.

Let the monodromy group Za and representation φU be specified as above. Our main result for

linear Za-Hodge integrals is the following formula.

Theorem 1. Let γ = (γ1, . . . , γn) be nontrivial monodromies in Za satisfying the parity, non-

negativity, and boundedness conditions with respect to the partition µ. Then,

Hg(γ+, µ) =

rg(γ+, µ)!

|Aut(γ)| |Aut(µ)|
a1−g−

Pn
i=1

γi
a

+
Pℓ

j=1〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
.

The integer and fractional parts of a rational number are denoted in the above formula by

q = ⌊q⌋ + 〈q〉 , q ∈ Q.

The cotangent lines in the denominator on the far right are associated to the stack points of the

stable map domain corresponding to the parts of µ.

Theorem 1 is proven by virtual localization on the moduli space of stable maps to the stack P1[a]
with Za-structure at 0 following the arguments of [9, 12]. The space of stable maps to P1[a] is

discussed in Section 1, and the proof is given in Section 2. The formula is easily seen to determine

all linear Za-Hodge integrals with respect to U in terms of double Hurwitz numbers. In fact, the set

of evaluations with γ = ∅ is sufficient. Conversely, every double Hurwitz number is realized for a
sufficiently large.

4Here, γ is considered as a partition by forgetting the ordering of the elements.
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For the disconnected formula, we assume γ = ∅ and the parity condition d = 0 (mod a).5 Then,

Theorem 1 holds in exactly the same form,

(5) H•
g (∅+, µ) =

rg(∅+, µ)!

|Aut(µ)|
a1−g+

Pℓ
j=1〈

µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

M
•

g,−µ(BZa)

∑∞

i=0(−a)
iλU

i∏ℓ
j=1(1 − µjψ̄j)

.

The ELSV formula [6] for linear Hodge integrals on the moduli space of curves arises from the

a = 1 specialization of Theorem 1,

Hg(µ) =
(2g − 2 + d+ ℓ)!

|Aut(µ)|

ℓ∏

j=1

µ
µj

j

µj!

∫

Mg,ℓ

∑g
i=0(−1)iλi∏ℓ

j=1(1 − µjψj)
.

For a = 1, we must have γ = ∅.

The conditions γ allow for greater freedom in the a > 1 case. For example, the proof of Theorem

1 yields a remarkable vanishing property. The monodromy conditions γ satisfy negativity if

d−
n∑

i=1

γi < 0

and strong negativity if

d− n−
d−

∑n
i=1 γi

a
< 0.

Strong negativity is easily seen to imply negativity.

Theorem 2. Let γ = (γ1, . . . , γn) be nontrivial monodromies in Za satisfying the parity condition

with respect to the partition µ. In addition, let γ satisfy at least one of the following two conditions:

(i) negativity and boundedness, or

(ii) strong negativity.

Then, a vanishing result for Hurwitz-Hodge integrals holds:
∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
= 0.

A few examples of Theorems 1 and 2 where alternative approaches to the integrals are available

are presented in Section 3.

0.5. Abelian G. Since any faithful representation R of Za differs from U by an automorphism of

Za, Theorem 1 determines linear Hodge integrals with respect to R. Representations of Za with

kernels require an additional analysis.

Let G be an abelian group with group law written additively. Consider an irreducible representa-

tion R,

φR : G→ C∗,

5If γ 6= ∅, the non-negativity condition may satisfied globally but be violated on connected components.
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with associated exact sequence

(6) 0 → K → G
φR

→ Im(φR)
∼
= Za → 0.

The homomorphism φR induces a canonical morphism

ρ : Mg,γ(BG) → Mg,φR(γ)(BZa).

The morphism ρ satisfies

ρ∗(λU
i ) = λR

i

and has the same degree over each component of Mg,φR(γ)(BZa). Therefore, linear Hodge integrals

with respect to R can be calculated by multiplying the formula of Theorem 1 by the degree of ρ.

In Section 4, the solution for arbitrary G and R is cast in a more appealing way. When

φR(γ) = −µ ∈ Za,

Hodge integrals of the form ∫

Mg,γ(BG)

∑∞

i=0(−a)
iλR

i∏ℓ
j=1(1 − µjψ̄j)

are expressed in terms of Hurwitz numbers for Kd, the wreath product of K with the symmetric

group Σd. Since the infinite wedge formalism for Σd extends to a Fock space formalism for the

wreath product Kd, there is again a connection to integrable systems [25].

Conjugacy classes in Kd are indexed by Conj(K)-weighted partitions of d,

µ = {(µ1, κ1), . . . , (µℓ(µ), κℓ(µ))}.

Here, µ is a partition of d with parts µj, the weights κi ∈ Conj(K) are conjugacy classes in K, and

µ is an unordered set of pairs. Let Aut(µ) denote the automorphism group of µ. Let Cµ ∈ ZKd

be the element of the group algebra associated to the conjugacy class µ. The transposition element

T ∈ ZKd is associated to conjugacy class of Kd indexed by

τ = {(2, 0), (1, 0), . . . , (1, 0)}

where all the Conj(K)-weights are 0.

The wreath product Kd has a forgetful map to Σd which sends elements of cycle type µ to

elements of type µ. The Kd-Hurwitz number Hg,K(ν, µ) counts the degree d|K|-fold covers of

P1 with monodromy in Kd given by ν and µ at 0,∞ ∈ P1 and τ at all the points of

Urg(ν,µ) ⊂ P1.

Since K ⊂ Kd is contained in the center, any such cover has a canonical K-action which defines a

K-bundle over a punctured Hurwitz cover counted by Hg(ν, µ). The connectivity requirement we

place on covers counted by Hg,K(ν, µ) is not that the d|K|-fold cover is connected, but only that

the associated Hurwitz d-fold cover is connected. Similarly, g is the genus of the d-fold cover.

The natural extension of formula (3) for disconnected Hurwitz covers for the wreath product Kd

is

H•
g,K(ν, µ) =

1

|Kd|

(
CνT

rg(ν,µ)Cµ

)
[Id]
,

where the product on the right takes place in the group algebra of Kd.
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Select an element x ∈ G with φR(x) = 1. Let k = ax ∈ K. Denote by −µ the ℓ(µ)-tuple of

elements of G defined by:

−µ = (κ1 − µ1x, κ2 − µ2x, . . . , κℓ(µ) − µℓ(µ)x).

Although the parts of µ are unordered, an ordering is chosen for −µ. The parity condition is now

ℓ∑

j=1

κj − µjx = 0 ∈ G.

Denote by ∅+(k) the conjugacy class given by

∅+(k) = {(a,−k), . . . , (a,−k)︸ ︷︷ ︸
d/a times

}.

Theorem 3. For weighted-partitions µ satisfying the parity condition,

Hg,K(∅+(k), µ) =
rg(∅+, µ)!

|Aut(µ)|
a1−g+

Pℓ
j=1〈

µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

∫

Mg,−µ(BG)

∑∞
i=0(−a)

iλR
i∏ℓ

j=1(1 − µjψ̄j)
.

Theorem 3 determines all linear Hurwitz-Hodge integrals for G and holds in exactly the same

form for the disconnected theories H•
g,K(∅+(k), µ) and M

•

g,−µ(BG).

0.6. Future directions. The ELSV formula has two immediate applications in Gromov-Witten

theory. The first is the determination of descendent integrals over Mg,n via asymptotics to remove

the Hodge classes [18, 21]. The second is the exact evaluation of the vertex integrals in the local-

ization formula for P1 in [22, 23]. The latter requires the Hodge classes.

Since ǫ : Mg,γ(BG) → Mg,n is a finite map, a geometric approach to the descendent integrals

is not strictly necessary [16]. However, for the calculation of the Gromov-Witten theory of target

curves with orbifold structure [17], Theorem 3 is essential. The results may be viewed as a first step

for orbifolds along the successful line of exact Hodge integral formulas which have culminated in

the topological and equivariant vertices in ordinary Gromov-Witten theory.

Hurwitz-Hodge integrals can be viewed as pairings of tautological classes

ǫ∗(λ
R
i ) ∈ H2i(Mg,n,Q)

against the descendents ψi. Given an action

α : G× {1, . . . , k} → {1, . . . , k}

on a set with k elements, there is a second map to the moduli space of curves. Let

C → Mg,γ(BG), D → C

be the universal domain curve and the universal G-bundle respectively. A second universal curve

Dα = D ×G {1, . . . , k} → Mg,γ(BG)

is obtained by the mixing construction. We obtain

ǫα : Mg,γ(BG) → Mgα,nα,
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where gα and nα are the genus and the number of distinguished sections6 of the universal curve Dα.

Two questions immediately arise:

(i) Do the classes ǫα∗ (λR
i ) lie in the tautological ring of Mgα,nα?

(ii) Do the pairings of ǫα∗ (λR
i ) against the descendents of Mgα,nα admit simple evaluations?

The answer to (i) is known [11] to be false for g = 1, but may be true for g = 0. See [8] for positive

results related to (i) for the standard action of the symmetric group Σk in the g = 0 case.
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ounkov, Y. Ruan, and R. Vakil for related conversations.

P.J. was partially supported by RTG grant DMS-0602191 at the University of Michigan. R.P. was

partially supported by DMS-0500187. H.-H. T. thanks the Institut Mittag-Leffler for hospitality and

support during a visit in Spring 2007. The paper was furthered at a lunch in Kyoto while the last
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1. STABLE RELATIVE MAPS

1.1. Definitions. For a ≥ 1, let P1[a] be the projective line with a single stack point of order a at

0. Let

〈ζa〉 ⊂ C∗, ζa = e
2πi
a

be the group of ath-roots of unity. Locally at 0, P1[a] is the quotient stack C/ 〈ζa〉. Alternatively,

P1[a] is the ath-root stack of P1 along the divisor 0.

Let Mg,γ(P
1[a], µ) be the stack of stable relative maps to (P1[a],∞) where γ = (γ1, . . . , γn) is a

vector of nontrivial elements

1 ≤ γi ≤ a− 1, γi ∈ Za,

and µ is a partition of d ≥ 1 with parts µj and length ℓ. The moduli space parametrizes maps

[ f : (C, p1, . . . , pn) → P1[a] ] ∈ Mg,γ(P
1[a], µ)

for which

(i) the domain C is a nodal curve of genus g with stack structure at pi determined by γi,

(ii) relative conditions over ∞ ∈ P1[a] are given by the partition µ.

The isotropy group of pi ∈ C is the subgroup of Za generated by γi. Let ai denote the order of γi.

The domain C, called a twisted curve, may have additional stack structure at the nodes, see [2].

We recall the Riemann-Roch formula for twisted curves.7 Let C be a twisted curve whose non-

singular stack points are p1, ..., pn with cyclic isotropy groups I1, . . . , In. The group Ii is identified

with the ath
i -roots of unity via the action on Tpi

C,

Ii
∼
→ 〈ζai

〉 ⊂ C∗, ζai
= e

2πi
ai .

6We suppress the ordering issues here.
7See Theorem 7.2.1 of [1] for precisely our situation.
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Let E be a locally free sheaf over the stack C. Then, Ii acts on the restriction E|pi
. Let

E|pi
=

⊕

0≤s≤ai−1

V ⊕es
s

be the direct sum decomposition, where Vs is the irreducible representation of Zai
associated to the

character

φs : Ii → C∗, φs(ζai
) = ζs

ai
.

The age of E at pi is defined by

agepi
(E) =

∑

0≤s≤ai−1

es
s

ai
.

The Riemann-Roch formula for twisted curves is given as follows:

(7) χ(C,E) = rk(E)(1 − g) + deg(E) −
n∑

i=1

agepi
(E).

The virtual dimension of Mg,γ(P
1[a], µ) is calculated by the Riemann-Roch formula (7). Let

[ f : (C, p1, . . . , pn) → P1[a] ] ∈ Mg,γ(P
1[a], µ).

Certainly, deg
(
f ∗TP1[a](−∞)

)
= d/a. By the quotient presentation of P1[a], the character of

f ∗T0,P1[a] at pi is

ζai
7→ ζ

γiai
a

ai = ζγi
a .

Therefore, agepi

(
f ∗TP1[a](−∞)

)
= γi

a
and

vdimMg,γ(P
1[a], µ) = 3g − 3 + n+ ℓ+ χ(C, f ∗TP1[a](−∞))

= 3g − 3 + n+ ℓ+ 1 − g +
d

a
−

n∑

i=1

γi

a

= 2g − 2 + n+ ℓ+
d

a
−

n∑

i=1

γi

a
.

To simplify notation, let r denote the above virtual dimension. Since r must be an integer,

Mg,γ(P
1[a], µ) is empty unless the parity condition d =

∑n
i=1 γi (mod a) holds.

1.2. Hurwitz numbers. We now impose the non-negativity condition,

d−
n∑

i=1

γi ≥ 0.

Let Hg,a(γ, µ) denote the weighted count of degree d representable maps from nonsingular, con-

nected, genus g twisted curves with stack points of type γ to P1[a] with profile µ over ∞ and simple

ramification over r fixed points in P1[a] \ {0,∞}.

Lemma 1. Hg,a(γ, µ) is well-defined and equal to |Aut(γ)| ·Hg(γ+, µ).
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Given a stack map [f : C → P1[a]] ∈ Mg,γ(P
1[a], µ) satisfying the simple ramification condition

over the r points, the associated coarse map

f c : Cc → P1

is a usual Hurwitz covering counted by Hg(γ+, µ). The representability condition implies the point

pi has ramification profile γi over 0 for the coarse map. Conversely, we have the following result.

Lemma 2. Let Cc be a nonsingular curve and let f c : Cc → P1 be a nonconstant map. Then,

there is a unique (up to isomorphism) twisted curve (C, p1, . . . , pm) and a representable morphism

f : C → P1[a] whose induced map between coarse curves is f c.

Proof. Since the natural map P1[a] → P1 is an isomorphism over P1[a] \ [0/Za], we may consider

the composite

Cc \ (f c)−1(0)
fc

−→ P1 \ {0}
∼

−→ P1[a] \ {[0/Za]} ⊂ P1[a].

The Lemma follows by applying Lemma 7.2.6 of [2]. �

To proceed, we need to identify the ramification profile of f c over 0. Since P1[a] is a root stack,

we may use classification results on maps to root stacks proven in [4]. According to Theorem 3.3.6

of [4], maps considered in our stack Hurwitz problem are in bijective correspondence with maps

f c : Cc → P1 from a coarse curve Cc satisfying

(8) (f c)∗[0] =

n∑

i=1

γi[p̄i] + aD,

where p̄1, ..., p̄n ∈ Cc are distinct points and D ⊂ Cc is a divisor consisting of
d−

Pn
i=1 γi

a
additional

distinct points.

The proof of Lemma 1 is complete. The factor |Aut(γ)| occurs since the stack points of C are la-

belled while the corresponding ramification points on the Hurwitz covers enumerated by Hg(γ+, µ)
are not. ✷

1.3. Branch maps. There exists a basic branch morphism for stable maps,

br : Mg(P
1, µ) → Sym2g−2+d+ℓ(P1),

constructed in [9]. By composing with the coarsening map, we obtain

br : Mg,γ(P
1[a], µ) → Sym2g−2+d+ℓ(P1).

To proceed, we impose the boundedness condition,

∀i 6= j, γi + γj ≤ a.

Lemma 3. If the parity, non-negativity, and boundedness conditions are satisfied,

Im(br) ⊂

(
d− n−

d−
∑n

i=1 γi

a

)
[0] + Symr(P1) ⊂ Sym2g−2+d+ℓ(P1).

Proof. Let f : C → P1[a] be a Hurwitz cover counted by Hg,a(γ, µ). The expression

E = d− n−
d−

∑n
i=1 γi

a



12 P. JOHNSON, R. PANDHARIPANDE, AND H.-H. TSENG

is the order of [0] in br([f ]). The claim of the Lemma is simply that the minimum order of [0] in

br(f) is achieved at such Hurwitz covers f .

The proof requires checking all possible degenerations of f over 0. If the stack points p1, . . . , pn

do not bubble off the domain, the claim follows easily as in the coarse case. We leave the details to

the reader.

A more interesting calculus is encountered if a subset of stack points p1, . . . , pl bubbles off the

domain together over [0/Za] ∈ P1[a]. We do the analysis for a single bubble. We can assume the

bubble is of genus 0 since higher genus increases the branching order. The multi-bubble calculation

is identical.

The genus 0 bubble is attached to the rest of the curve in m stack points of type

δ1, . . . , δm ∈ Za, 1 ≤ δj ≤ a

on the noncollapsed side. The parity condition

(9)

l∑

i=1

γi −
m∑

j=1

δj = ka

must be satisfied with k ∈ Z.

The branch contribution over 0 of the bubbled map is at least

E ′ =
n∑

i=l+1

(γi − 1) +
m∑

j=1

(δj − 1) + 2m− 2 +
d−

∑n
i=l+1 γi −

∑m
j=1 δj

a
(a− 1).

All the terms on the right are obtained from the ramifications on the noncollapsed side except for

the 2m from the m nodes of the bubble and the −2 from the bubble itself, see [9]. Rewriting using

the parity condition (9), we find

E ′ = E + l +m− 2 − k.

By connectedness and bubble stability, we have

m ≥ 1, l +m ≥ 3.

If k ≤ 0, we conclude E ′ > E. If k ≥ 0, then k ≤ l − 2 by the boundedness condition and the

positivity of δ1. Again, E ′ > E. �

By Lemma 3, we may view the branch map with restricted image,

br0 : Mg,γ(P
1[a], µ) → Symr(P1).

The proof of Lemma 3 shows the maps f : C → P1[a] satisfying [0] /∈ br0(f) have no contraction

over 0 and coarse profile exactly γ+. The usual nonsingularity and Bertini arguments [9] then imply

the following result.

Lemma 4. If the parity, non-negativity, and boundedness conditions are satisfied,

Hg,a(γ, µ) =

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r),

where H ∈ H2(Symr(P1),Q) is the hyperplane class.
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2. LOCALIZATION

2.1. Fixed loci. The standard C∗-action on P1, defined by ξ · [z0, z1] = [z0, ξz1], lifts canonically

to C∗-actions on P1[a] and Mg,γ(P
1[a], µ) . We will evaluate the integral

(10)

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r)

by virtual localization for relative maps [10, 13] following [9, 12]. We assume the parity, non-

negativity, and boundedness conditions.

The first step is to define a lift of the C∗-action to the integrand. Certainly the C∗-action lifts

canonically to Symr(P1). A lift of Hr can be defined by choosing the C∗-fixed point r[0] ∈
Symr(P1). The tangent weights at [0/Za],∞ ∈ P1[a] are t

a
and −t respectively. The equivari-

ant Euler class of the normal bundle to r[0] in Symr(P1) has weight r!tr.

The second step is to identify the C∗-fixed locus Mg,γ(P
1[a], µ)C∗

⊂ Mg,γ(P
1[a], µ). The com-

ponents of the C∗-fixed locus lie over the r+1 points of Symr(P1)C∗

. By our lifting ofHr, we need

only consider

M
C∗

0 = Mg,γ(P
1[a], µ)C∗

∩ br−1
0 (r[0]).

Because of the strong restriction on the branching, the maps

[f : C → P1[a]] ∈ M
C∗

0

have a very simple structure:

(i) C = C0 ∪
∐ℓ

j=1Cj,

(ii) f |C0 is a constant map from a genus g curve to [0/Za] ∈ P1[a],

(iii) the coarse map f c|Cj
: Cc

j → P1 is a C∗-fixed Galois cover of degree µj for j > 0,

(iv) C0 meets Cj at a node qj.

The stack structure at qj ∈ Cj is easily determined using the relationship between stack Hurwitz

covers of P1[a] and ordinary Hurwitz covers of P1 discussed in Section 1.2. The stack structure at

qj ∈ Cj is of type µj ∈ Za. The stack structure at qj ∈ C0 where Cj is attached is of the opposite

type −µj ∈ Za. The map

f |C0 : (C, p1, . . . , pn, q1, . . . , qℓ) → [0/Za]

is an element of Mg,γ−µ(BZa).

The C∗-fixed locus may be identified with a quotient of a fibered product,

M
C∗

0
∼
=
(
Mg,γ−µ(BZa) ×(ĪBZℓ

a) P1 × ...× Pℓ

)
/Aut(µ)

,

where ĪBZa is the rigidified inertia stack of BZa and Pj is the moduli stack of C∗-fixed Galois cov-

ers of degree µj. By the standard multiplicity obtained from gluing stack Za-bundles, the projection

(11) M
C∗

0 →
(
Mg,γ−µ(BZa) × P1 × ...× Pℓ

)
/Aut(µ)
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has degree
∏ℓ

j=1
a
bj

where bj is the order of µj ∈ Za.

Fortunately, the residue integral over M
C∗

0 in the virtual localization formula for (10) is pulled-

back via (11). Instead of integrating over M
C∗

0 , we will integrate over

M̃C∗

0 = Mg,γ−µ(BZa) × P1 × ...× Pℓ

and multiply by

1

|Aut(µ)|

ℓ∏

j=1

a

bj
.

2.2. Virtual normal bundle. The virtual localization formula for (10) with our choice of equivari-

ant lifts takes the following form:

(12)

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

1

|Aut(µ)|

ℓ∏

j=1

a

bj

∫

fMC∗

0

r! tr

e(Normvir)
.

The equivariant Euler class of the virtual normal bundle is

(13)
1

e(Normvir)
=
e(H1(C, f ∗TP1[a](−∞)))

e(H0(C, f ∗TP1[a](−∞)))

1
∏ℓ

j=1 e(Nj)
,

see [10]. The last product is over the nodes of C, and Nj is the equivariant line bundle associated to

the smoothing of qj . The terms in (13) are computed via the normalization sequence of the domain

C. The various contributions over the components C0, C1, . . . , Cℓ are computed separately.

First consider the collapsed componentC0. The spaceH0(C0, f |
∗
C0
TP1[a](−∞)) is identified with

the subspace of TP1[a](−∞)|[0/Za] consisting of vectors invariant under the action of the image of

the monodromy representation πorb
1 (C0) → Za. Therefore, H0 vanishes unless the monodromy

representation is trivial, in which case H0 is 1-dimensional with weight t
a
.

The trivial monodromy representation πorb
1 (C0) → Za is possible only if

γ = ∅ and ∀j, µj = 0 mod a .

Even then, the locus with trivial monodromy is just a component8 of Mg,(0,...,0)(BZa). The trivial

monodromy representation locus will play a slightly special role throughout the calculation. But, in

the final formula, no different treatment is required.

The space H1(C0, f |
∗
C0
TP1[a](−∞)) yields the vector bundle

B = (EU)∨

over Mg,γ−µ(BZa) whose rank may be calculated by the orbifold Riemann-Roch formula. Over

the component of the fixed locus where the monodromy representation πorb
1 (C0) → Za is trivial,

the rank of B is g. Otherwise, the rank is

(14) rB = g − 1 +
n∑

i=1

γi

a
+

∑

µj 6=0 mod a

(
1 −

〈µj

a

〉)
.

8If g > 0, there will typically be other components as well.
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The H1 −H0 contribution from the collapsed component to the localization formula is

(15)

rB∑

i=0

(
t

a

)rB−i

ci(B) =

rB∑

i=0

(
t

a

)rB−i

(−1)iλU
i .

For the component where the monodromy representation is trivial, an additional factor of a
t

must

be inserted in (15).

Next consider the H1 −H0 contribution from the C∗-fixed Galois covers. Since

deg(f |∗Cj
TP1[a](−∞)) =

µj

a
,

we have

Hk(Cj, f |
∗
Cj
TP1[a](−∞)) = Hk

(
P1,OP1

(⌊µj

a

⌋))
.

The H0 weights are
t

µj
, 2

t

µj
, ...,

⌊µj

a

⌋ t

µj
,

where the weight 0 is omitted.9 The group H1 vanishes. The H1 −H0 contribution is

t−⌊
µj
a ⌋
µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!
.

Finally, consider the H1 −H0 contribution from the nodal point qj. If µj 6= 0 (mod a), then qj is

a stack point and

H0(qj , f
∗TP1[a](−∞)|qj

) = 0

as there is no invariant section. If µj = 0 (mod a) then H0(qj , f
∗TP1[a](−∞)|qj

) is 1-dimensional

and contributes a factor t
a
. Certainly, H1 vanishes here for dimension reasons.

The contribution from smoothing the node qj is the tensor product of the tangent lines of the two

branches incident to qj ,

e(Nj) =
1

bj

(
−ψ̄j +

t

µj

)
.

After putting the component calculations together in (13), we obtain the following expression for

for 1/e(Normvir):

(
rB∑

i=0

(
t

a

)rB−i

(−1)iλU
i

)
·

ℓ∏

j=1


t−⌊

µj
a ⌋
µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!

1

1
bj

(
−ψ̄j + t

µj

)


 ·

ℓ∏

j=1

(
t

a

)δ
0,〈

µj
a 〉
.

Regrouping of terms yields

(16)

∏ℓ
j=1 bjµj

a
rB+

Pℓ
j=1 δ

0,〈
µj
a 〉




ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊µj

a

⌋
!



(

rB∑

i=0

trB−i(−a)iλU
i

)
· t−

Pℓ
j=1⌊

µj
a ⌋

ℓ∏

j=1

t
δ
0,〈

µj
a 〉

(t− µjψ̄j)
.

For the component with trivial monodromy representation, a factor of a
t

must be inserted in the

formulas for 1/e(Normvir).

9The 0 weight is from reparameterization of the domain Cj and is not in the virtual normal bundle.
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2.3. Proof of Theorem 1. Putting the calculations of Section 2.2 together and passing to the non-

equivariant limit, we obtain the following evaluation

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

r!

|Aut(µ)|

aℓ

a
rB+

Pℓ
j=1 δ

0,〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊
µi

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞

i=0(−a)
iλU

i∏ℓ
j=1(1 − µjψ̄j)

.

On the right side, we have included the fundamental class factors

ℓ∏

j=1

1

µj

of the moduli spaces Pj. For the component with trivial monodromy representation, a factor of a
must be inserted in the formula.

We can simplify the integral evaluation by using the calculation (14) of rB,

rB +
ℓ∑

i=1

δ
0,〈

µj
a 〉

− ℓ

= g − 1 +

n∑

i=1

γi

a
+

∑

µj 6=0 mod a

(
1 −

〈µj

a

〉)
+


 ∑

µj=0 mod a

1


− ℓ

= g − 1 +
n∑

i=1

γi

a
−

ℓ∑

j=1

〈µj

a

〉
.

The above calculation is not valid for the component with trivial monodromy since rB = g not g−1.

The discrepancy is exactly fixed by the extra factor a required for the trivial monodromy case. We

conclude

(17)

∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) =

r!

|Aut(µ)|
a1−g−

Pn
i=1

γi
a

+
Pℓ

j=1〈
µj
a 〉

ℓ∏

j=1

µ
⌊

µj
a ⌋

j⌊
µi

a

⌋
!

∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
.

holds uniformly. Theorem 1 is then obtained from Lemmas 1 and 4. ✷

In degenerate cases, unstable integrals may appear on the right side of the formula in Theorem 1.

The unstable integrals come in two forms and are defined by the localization contributions:
∫

M0,(0)(BZa)

∑
i≥0(−a)

iλU
i

(1 − xψ̄1)
=

1

a
·

1

x2
,

∫

M0,(m,−m)(BZa)

∑
i≥0(−a)

iλU
i

(1 − xψ̄1)(1 − yψ̄2)
=

1

a
·

1

x+ y
.

With the above definitions, Theorem 1 holds in all cases.

The disconnected formula (5) follows easily from the connected case by the usual combinatorics

of distributing ramification points to the components of Hurwitz covers.
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2.4. Proof of Theorem 2. Suppose γ satisfies the parity and strong negativity condition with re-

spect to µ. Since

δ = d− n−
d−

∑n
i=1 γi

a
< 0,

the virtual dimension r of Mg,γ(P
1[a], µ) is greater than 2g − 2 + d + ℓ. As a consequence, we

immediately obtain the vanishing

(18)

∫

[Mg,γ(P1[a],µ)]vir

br∗(Hr) = 0

since Hr = 0 ∈ H∗(Sym2g−2+d+ℓ(P1),Q).

We may nevertheless calculate (18) by localization with the lift

Hr = (2g − 2 + d+ ℓ)[0] · t−δ

which does not vanish equivariantly. The analysis is identical to the calculations of Sections 2.1-2.3.

We find the integral (18) is proportional (with nonzero factor) to
∫

Mg,γ−µ(BZa)

∑∞
i=0(−a)

iλU
i∏ℓ

j=1(1 − µjψ̄j)
,

and therefore conclude the vanishing.

Assume now strong negativity does not hold, but γ satisfies the parity, negativity, and bounded-

ness condition. By the proof of Lemma 3, using the boundedness condition, the maps

f : C → P1[a]

which satisfy [0] /∈ br0(f) have no contraction over 0 and coarse profile determined by γ. By the

negativity condition, no such maps exists. Hence, [0] is always in br0(f). Therefore,
∫

[Mg,γ(P1[a],µ)]vir

br∗0(H
r) = 0

and we conclude as above.✷

3. EXAMPLES

3.1. Z2 example. The Hodge bundle EU has a very simple interpretation in the Z2 case. Let

C → Mg,γ(BZ2), D → C

be the universal domain curve and the universal Z2-bundle. Let

ǫ : Mg,γ(BZ2) → Mg, ǫ̃ : Mg,γ(BZ2) → Mg−1+ n
2

be the maps to moduli obtained from C and D respectively. The exact sequence

0 → ǫ∗(Eg) → ǫ̃∗(Eg−1+ n
2
) → EU → 0.

exhibits EU as the K-theoretic difference of the pulled-back Hodge bundles. If g = 0, then the

situation10 is even simpler,

(19) EU ∼
= ǫ̃∗(Eg−1+ n

2
).

10The map ǫ is not well-defined here for stability reasons.
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Consider the case of Theorem 1 where g = 0, γ = (1, 1), and µ = (1, 1). The statement is

H0((1, 1), (1, 1)) =
2

2!2!
21

∫

M0,(1,1,1,1)(BZ2)

1 − 2λU
1

(1 − ψ̄1)(1 − ψ̄2)
.

The double Hurwitz number on the left is 1
2
. Expansion of the right side yields:

∫

M0,(1,1,1,1)(BZ2)

1 − 2λU
1

(1 − ψ̄1)(1 − ψ̄2)
=

1

2

∫

M0,4

1

(1 − ψ1)(1 − ψ2)
− 2

∫

M0,(1,1,1,1)(BZ2)

λU
1

= 1 − 2

∫

M0,(1,1,1,1)(BZ2)

λU
1 .

To evaluate the last integral, we note the map

ǫ̃ : M0,(1,1,1,1)(BZ2) → M1,1,

where the first branch point is selected for the marking on the elliptic curve, is of degree 6. More-

over, λU
1 is the pull-back of λ1 under ǫ̃ by (19). Hence,

1 − 2

∫

M0,(1,1,1,1)(BZ2)

λU
1 = 1 − 2 · 6 ·

1

24
=

1

2
.

3.2. Vanishing example. The simplest example of the vanishing of Theorem 2 occurs for Z2. Let

g = 0,

γ = (1, . . . , 1︸ ︷︷ ︸
n

)

and µ = (1). By the parity condition, n must be odd. Boundedness holds. For the negativity

condition, we require n ≥ 2. By Theorem 2 (i),
∫

M0,γ−µ(BZ2)

∑
i≥0(−2)iλU

i

1 − ψ̄1

vanishes for all odd n ≥ 3.

We now use the identification of λU
i with the Chern classes of the Hodge bundle ǫ̃∗(En−1

2
) whose

fiber over

f : [D/Z2] → BZ2

is simply given by the space of differential forms on the genus n−1
2

curve D. The Chern roots of

ǫ̃∗(En−1
2

) can be identified by the vanishing sequence at a Weierstrass point of D. The Weierstrass

point can be chosen to lie above the marking corresponding to the single part of µ. The Chern roots

of ǫ̃∗(En−1
2

) are then L, 3L, . . . , (n − 2)L where L is the Chern class of the cotangent line of the

Weierstrass point. The class L on M0,γ−µ(BZ2) is 1
2
ψ̄1. Expanding the Chern roots, we find

∫

M0,γ−µ(BZ2)

∑
i≥0(−2)iλU

i

1 − ψ̄1

=

∫

M0,γ−µ(BZ2)

∏n−1
2

i=1 (1 − (2i− 1)ψ̄1)

(1 − ψ̄1)

=

∫

M0,γ−µ(BZ2)

n−1
2∏

i=2

(1 − (2i− 1)ψ̄1)

= 0,
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where the last integral vanishes for dimension reasons.

3.3. Z∞ example. An interesting feature of Theorem 1 is the possibility of studying the behavior

for large a. Let γ = (γ1, . . . , γn) determine a partition of d,

d =
n∑

i=1

γi.

Let µ = (d) consist of a single part. For a > d, the rank of the Hodge bundle

EU → M0,γ−µ(BZa)

is 0 by (14). Since the parity, non-negativity, and boundedness conditions hold for a > d, we may

apply Theorem 1 to conclude

H0(γ, (d)) =
(n− 1)!

|Aut(γ)|
a

∫

M0,γ−µ(BZa)

1

1 − dψ̄1

=
(n− 1)!

|Aut(γ)|
dn−2,

which is a well-known formula for genus 0 double Hurwitz numbers.

3.4. 1-point series. If µ = (d) consists of a single part, the entire generating series for double

Hurwitz numbers has been computed 11 in [14]:

(20)
∑

g≥0

t2g(−1)gHg(ν, (d)) =
r! dr−1

|Aut(ν)|

∏

k≥1

(
sin(kt/2)

kt/2

)mk(ν)−δk,1

,

where r = rg(ν, (d)) and mk(ν) is the number of times k appears as a part of ν. Single part double

Hurwitz numbers are considerably simpler because such covers are automatically connected and the

only characters with nonzero evaluation on the d-cycle are exterior powers of the standard (d− 1)-
dimensional representation.

Let γ = (γ1, . . . , γn) be a vector of nontrivial elements of Za satisfying the boundedness condi-

tion. We will consider degrees d for which the parity and non-negativity conditions are satisfied.

Then,

d−
n∑

i=1

γi = ab

for an integer b ≥ 0. Consider the generating series

Fγ(t, z) =

∞∑

g=0

g∑

l=−∞

t2gzl

∫

Mg,γ−(d)(BZa)

ψ̄
2g−2+ℓ(γ)+l
0 λU

g−l

where ψ̄0 is the class corresponding to the point with monodromy −d.

11We write Theorem 3.1 of [14] in terms of sin instead of sinh and divide by |Aut(ν)| since we do not mark

ramifications in our definition of Hurwitz numbers.
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The double Hurwitz number formula of Theorem 1 is

Hg(γ+, (d)) =
r!

|Aut(γ)|
a1−g−

Pn
i=1

γi
a

+〈 d
a〉d

⌊ d
a⌋

⌊
d
a

⌋
!

g∑

l=−∞

dr−b−1+l(−a)g−l

∫

Mg,γ−(d)(BZa)

ψ̄r−b−1+l
0 λU

g−l

= (−1)g adr−1r!
(

d
a

)j

P

γi
a

k

|Aut(γ)|
(
b+

⌊
P

γi

a

⌋)
!

g∑

l=−∞

(
−d

a

)l ∫

Mg,γ−(d)(BZa)

ψ̄r−b−1+l
0 λU

g−l

or, equivalently,

∑

g≥0

(−1)gt2gHg(γ+, (d)) =
adr−1r!

|Aut(γ)|
(
b+

⌊
P

γi

a

⌋)
!

(
d

a

)j

P

γi
a

k

Fγ(t,−d/a)

where r = rg(γ+, (d)). After combining with (20), we obtain

(21) Fγ(t,−d/a) =
1

a

(
b+

⌊
P

γi

a

⌋)
!

b!

(a
d

)j P

γi
a

k∏

k≥1

(
sin(kt/2)

kt/2

)mk(γ+)−δk,1

.

for b ≥ 0.

Theorem 4. Fγ(t, z) equals

1

a

(
−z −

∑ γi

a
+
∑⌊

P

γi

a

⌋)
!

(
−z −

∑ γi

a

)
!

(−z)
−

j

P

γi
a

k

(
sin(at/2)

at/2

)−z−
P γi

a ∏

k≥1

(
sin(kt/2)

kt/2

)mk(γ)−δk,1

.

Proof. Using the standard polynomial expansion
(
−z −

∑ γi

a
+
∑⌊

P

γi

a

⌋)
!

(
−z −

∑ γi

a

)
!

=

(
−z −

∑ γi

a
+
∑⌊∑

γi

a

⌋)
. . .
(
−z −

∑ γi

a
+ 1
)
,

we see the t2g coefficients of both sides of Theorem 4 are Laurent polynomials in z. Equation (21)

shows Theorem 4 holds for all evaluations of the form z = −d/a where

d−
n∑

i=1

γi = ab

and b is a non-negative integer. Since there are infinitely many such evaluations, the coefficient

Laurent polynomials in z must be equal for all t2g. �

If we specialize Theorem 4 to the case where γ = ∅, we obtain

(22)
1

a
+
∑

g>0

g∑

l=0

t2gzl

∫

Mg,1(BZa)

ψ̄2g−2+l
1 λU

g−l =
1

a

(
at/2

sin(at/2)

)z
t/2

sin(t/2)

If γ = ∅ and a = 1 we recover

(23) 1 +
∑

g>0

g∑

l=0

t2gzl

∫

Mg,1

ψ2g−2+l
1 λg−l =

(
t/2

sin(t/2)

)z+1

first calculated in [7].
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In (22), the term λU
g vanishes for dimensional reasons except over the trivial monodromy com-

ponent, where it agrees with the usual λg. Indeed, setting z = 0 in (22) yields

1

a
+
∑

g>0

t2g

∫

Mg,1(BZa)

ψ2g−2
1 λU

g =
1

a

t/2

sin(t/2)

which is the expected contribution from (23) with a factor of 1/a coming from the automorphisms.

4. ABELIAN GROUPS

4.1. Pull-back. For an abelian group G and irreducible representation R, recall the sequence (6),

0 → K → G
φR

→ Im(φR)
∼
= Za → 0.

By construction R
∼
= φR∗(U). The homomorphism φR induces a canonical map

ρ : Mg,γ(BG) → Mg,φR(γ)(BZa)

by sending a principal G-bundle to its quotient by K.

Lemma 5. ER ∼
= ρ∗(EU).

Proof. Recall E → Mg,n(BH) is the bundle whose fiber over

[f ] : [D/H ] → BH ∈ Mg,n(BH)

is H0(D,ωD). The latter can be understood as the space of 1-forms α on the normalization D̃ of D
with possible simple poles with opposite residues at the two preimages of each node qi.

Let ρ̃ be the map between the universal principal G- and Za-curves that induces ρ. We obtain

dρ̃ : ρ∗(E) → E

by pulling-back differential forms. An easy verification shows ρ̃ is well-defined even at points in

the moduli space Mg,γ(BG) for which the G-curve is nodal.

The map dρ̃ is injective on each fiber since the pull-back of a nonzero differential form by a finite

surjective map is nonzero. Certainly dρ̃ carries the subbundle ρ∗(EU) to the subbundle ER. These

bundles have the same dimension by the Riemann-Roch formula for twisted curves. Hence, dρ̃ is

an isomorphism. �

The map ρ does not preserve the isotropy groups at the marked points. However, since the classes

ψ̄i are pulled-back from Mg,n,

ρ∗(ψ̄) = ψ̄.

By Lemma 5, we concluded the integrand in Theorem 3 is exactly the integrand of Theorem 1
pulled-back via ρ.
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4.2. Degree. The degree of ρ is determined by the following result.

Lemma 6. We have

deg(ρ) =

{
0

∑
i γi 6= 0

|K|2g−1
∑

i γi = 0
.

Proof. Consider a nonsingular curve [C, p1, . . . , pn] ∈ Mg,n. Let

Γ = π1(C \ {p1, . . . , pn}) =

〈
Γi, Aj , Bj

∣∣∣
n∏

i=1

Γi

g∏

j=1

[Aj, Bj ]

〉
,

where Γi is a loop around pi and the loops Aj, Bj are the standard generators of π1(C).

The elements of Mg,γ(BG) lying above [C, p1, . . . pn] are in bijective correspondence with the

homomorphisms12 ϕ : Γ → G with

(24) ϕ(Γi) = γi.

Since G is abelian, ϕ([Aj , Bj]) = 0. Hence, the parity condition

(25)

n∑

i=1

γi = 0

must be satisfied for Mg,γ(BG) to be nonempty.

If the parity condition holds, then the images of Aj and Bj are completely unconstrained. There

are |G|2g homomorphisms φ satisfying (24). Stated in terms of homomorphisms, the map ρ corre-

sponds to composing ϕ : Γ → G with φR : G → Za. Since there are |K| elements of G in the

preimage of any element of Za, there are |K|2g elements in a generic fiber of ρ. SinceG is abelian, a

cover in Mg,γ(BG) has automorphism group G. A cover in the image of ρ only has automorphism

group Za. Thus, the degree of ρ is |K|2g−1. �

Although Mg,φR(γ)(BZa) may have several components, Lemma 6 implies the degree of ρ is the

same over each component. In the nonabelian case, the situation is much more complicated. For

example, let η be the conjugacy class of a 3-cycle in Σ3, let

s : Σ3 → Z2

be the sign representation, and let

ρ : M1,η(BΣ3) → M1,0(BZ2)

be the map induced by s. The space M1,0(BZ2) consists of two components: one with trivial

monodromy, and one with nontrivial monodromy. There are covers in M1,η(BΣ3) lying above

the nontrivial monodromy component. If t1 6= t2 ∈ Σ3 are two transpositions, then [t1, t2] is a

3-cycle. On the other hand, there are no elements of M1,η(BΣ3) lying above the trivial monodromy

component. All the monodromy in such a cover would lie in the abelian group Z3 = ker(s),
and there are no such covers with nontrivial monodromy about the one marked point by (25). As

the formula in Theorem 1 considers all components of Mg,φR(γ)(BZa) at once, a more nuanced

approach would be required to understand Hurwitz-Hodge integrals for nonabelian groups, even

for 1-dimensional representations.

12Composition in Γ is written multiplicatively while composition in G is additive.



ABELIAN HURWITZ-HODGE INTEGRALS 23

In the disconnected case ρ : M
•

g,γ(BG) → M
•

g,φR(γ)(BZa), Lemma 6 has a few minor compli-

cations:

(i) The monodromy condition
∑

i γi = 0 ∈ G cannot be checked globally, but must be verified

separately on each domain component.

(ii) The number of components matters. For disconnected curves with h components, each of

which satisfies the monodromy requirements, the degree of ρ is |K|2g−2+h.

When ρ is nonzero, the degree |K|2g−2+h is independent of G and the monodromy conditions (25).

The only role these conditions play is to determine when the degree is nonzero.

4.3. Wreath Hurwitz numbers. The wreath product Kd is defined by

Kd = {(k, σ) | k = (k1, . . . , kd) ∈ Kd, σ ∈ Σd},

(k, σ)(k′, σ′) = (k + σ(k′), σσ′).

Conjugacy classes of Kd are determined by their cycle types [19]. Since K is abelian, for each

m-cycle (i1i2 · · · im) of σ, the element kim + kim−1 + · · · + ki1 is well-defined. The resulting

Conj(K)-wieghted partition of d is the called the cycle type of (k, σ). Two elements of Kd are

conjugate exactly when they have the same cycle type.

We index the conjugacy classes of Kd by Conj(K)-weighted partitions of d. Let

ν = {(ν1, ι1), . . . , (νℓ(ν), ιℓ(µ))},

µ = {(µ1, κ1), . . . , (µℓ(µ), κℓ(µ))}

be two such partitions. Let ν∗ be the partition with parts νj with a partial labelling given by ιj . Then

Aut(ν∗) = Aut(ν).

The Hurwitz number Hg(ν
∗, µ∗) counts cover with the additional labelling data,

Hg(ν
∗, µ∗) =

|Aut(ν)|

|Aut(ν∗)|

|Aut(µ)|

|Aut(µ∗)|
Hg(ν, µ).

Lemma 7. Hg,K(ν, µ) is the count of the covers π : C → P1 enumerated by Hg(ν
∗, µ∗) with

multiplicity mπ . The multiplicity mπ is the automorphism-weighted count of principal K-bundles

on C \ π−1({0,∞}) with monodromy ιi at pi ∈ π−1(0) and κj at qj ∈ π−1(∞).

Proof. Let π′ : D → P1 be a cover counted by Hg,K(ν, µ). By definition, π′ is a d|K|-fold cover of

P1 with monodromies ν, µ and τ over 0,∞ and the points of Ur respectively.

Each such cover has an associated cover π : C → P1 counted by Hg(ν
∗, µ∗). Algebraically, the

cover is obtained by the forgetful map from Kd → Σd. Geometrically, the cover is obtained by

taking the quotient of D by the diagonal subgroup K ⊂ Kd. There is a natural map f : D → C.

Away from the preimages of 0,∞ and Ur, the map f is a principal K-bundle.

Consider the point pi ∈ π−1(0) corresponding to a cycle νi which is labelled with ιi ∈ K. A

small loop winding once around pi on C has an image that winds νi times around 0. But we know

that the monodromy for π′ : D → P1 around 0 is given by ν. By the definition of the cycle type,

the monodromy of f around pi is ιi. An identical argument shows the monodromy at qi over ∞ is

κi and the monodromy around all preimages of a point in Ur is zero.
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The above process is reversible. We start with a d-fold cover π′ : C → P1 counted by Hg(ν
∗, µ∗)

and a principal K-bundle f : D → C with monodromy ιi around pi and κi around qi. Then, the

composition π = π′ ◦ f is a cover counted by Hg,K(ν, µ). �

In other words, if ρ′ : Mg,ι∪κ(BK) → Mg,ℓ(λ)+ℓ(µ) is the natural map, then

Hg,K(ν, µ) = deg(ρ′)Hg(ν
∗, µ∗).

4.4. Proof of Theorem 3. By Lemma 5, we can compute the integral in Theorem 3 by computing

the analogous Hurwitz-Hodge integral (appearing in Theorem 1) over Mg,−µ(BZa) and multiplying

by the degree of

ρ : Mg,−µ(BG) → Mg,−µ(BZa).

On the other hand, by Lemma 7, we can calculate Hg,K(∅+(k), µ) by computing Hg(∅+, µ), multi-

plying by the degree of

ρ′ : Mg,(−k)d/a∪κ(BK) → Mg,d/a+ℓ(µ),

and correcting for the difference in the sizes of the automorphism groups Aut(µ) and

Aut(µ) = Aut(µ∗).

Thus, to deduce Theorem 3 from Theorem 1, we need only check that the degrees of ρ and ρ′

agree. By Lemma 6, the degrees agree when nonzero. The last step is to check the parity condition

(25) is the same for ρ and ρ′. For ρ, the parity condition is

0 =
ℓ∑

j=1

(−µ)j =
ℓ∑

j=1

(κj − µjx) =
ℓ∑

j=1

κj − dx.

For ρ′, the parity condition is

0 = −
d

a
k +

ℓ∑

j=1

κj.

Since ax = k, the conditions are equivalent. ✷

As in the faithful case, unstable integrals may appear on the right side of the formula in Theorem

3. These unstable terms are defined in a completely analogous manner, and extend Theorem 3 to

all contributions:

∫

M0,(0)(BG)

∑
i≥0(−a)

iλR
i

(1 − xψ̄1)
=

1

|G|
·

1

x2
,

∫

M0,(m,−m)(BG)

∑
i≥0(−a)

iλR
i

(1 − xψ̄1)(1 − yψ̄2)
=

1

|G|
·

1

x+ y
.

Alternatively, using a theory of stable maps relative to a stack divisor13 at ∞, Theorem 3 could

be proven in a manner closely parallel to the proof of Theorem 1.

13We avoid the foundational discussion of this theory.
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