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Part I

Overview

1 Introduction

1.1 Gromov-Witten theory, matrix models, and inte-

grable hierarchies

Our goal here is to present a new path connecting the intersection theory
of the moduli space M g,n of stable curves to the theory of matrix models.
The relationship between these subjects was first discovered by E. Witten
in 1990 through a study of 2-dimensional quantum gravity [93]. The path
integral of quantum gravity on a genus g topological surface Σg admits two
natural interpretations. First, the free energy of the theory may be expressed
as a generating series of tautological intersections products in Mg,n. A sec-
ond approach via approximations by singular metrics on Σg is connected to
the asymptotic expansions of Hermitian matrix integrals. The Korteweg-de
Vries equations which control the associated Hermitian matrix models were
conjectured by Witten to also govern the intersection theory of M g,n. As
there was no previous mathematical approach to the intersection theory of
M g,n, the relationship to matrix models and integrable systems came as a
beautiful surprise.

In 1992, M. Kontsevich provided a mathematical connection between the
intersection theory of M g,n and matrix models in two steps. First, Kontse-
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vich constructed a combinatorial model for the intersection theory of M g,n

via a topological stratification of the moduli space defined by Strebel differ-
entials [56]. The combinatorial model expresses the tautological intersections
as sums over trivalent graphs on Σg. Further details of Kontsevich’s construc-
tion, some quite subtle, are discussed in [64]. Second, Kontsevich interpreted
the trivalent graph summation as a Feynman diagram expansion for a new
matrix integral (Kontsevich’s matrix model). The KdV equations were then
deduced from the analysis of the matrix integral. The details of the second
step are discussed in several papers, see for example [18, 19, 20, 50].

Witten’s conjecture (Kontsevich’s theorem) is remarkable from several
perspectives and is certainly among the deepest known properties of the
moduli space of curves. Once the connection to matrix models is made,
combinatorial techniques and ideas from the theory of integrable systems
may be used study the free energy F and the partition function Z = eF .
For example, Witten’s conjecture may be reformulated in terms of Virasoro
constraints: the KdV equations for F are equivalent to the annihilation of
Z by a specific set of differential operators which form a representation of (a
part of) the Virasoro algebra.

The moduli of stable curves M g,n may be naturally viewed in the richer
context of the moduli of stable maps M g,n(X) from curves to target vari-
eties X. Gromov-Witten theory is the study of tautological intersections
in M g,n(X). The development of Gromov-Witten theory was motivated by
Gromov’s work on the moduli of pseudo-holomorphic maps in symplectic ge-
ometry and Witten’s study of 2-dimensional gravity [45, 93]. Perhaps the
intersection theory of M g,n(X) may also be governed by matrix models and
their associated integrable hierarchies.

In particular, the Gromov-Witten theory of the target X = P1 has been
intensively studied by the physicists T. Eguchi, K. Hori, C.-S. Xiong, Y. Ya-
mada, and S.-K. Yang. A conjectural formal matrix model for P1 has led to
a precise prediction for Gromov-Witten theory analogous to Witten’s con-
jecture: intersections in Mg,n(P1) are governed by the Toda equations (see
[25, 37, 82]).1

For arbitrary X, the corresponding matrix model or the integrable hi-
erarchy remain unclear. However, there exists a precise conjecture for the
associated Virasoro constraints formulated in 1997 for an arbitrary nonsingu-

1The Toda conjecture for P
1 has been proven in the strongest equivariant form in

[78, 79].
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lar projective target variety X by Eguchi, Hori, and Xiong (using also ideas of
S. Katz) [24]. The Virasoro conjecture generalizes the Virasoro formulation
of Witten’s conjecture and is one of the most fundamental open questions in
Gromov-Witten theory.2

1.2 Hurwitz numbers

The goal of the present paper is to provide a new and complete proof of Kont-
sevich’s combinatorial formula for intersections in M g,n. Our approach uses
a connection between intersections in M g,n and the enumeration of branched
coverings of P1 — Strebel differentials play no role. In fact, two models
for the intersection theory of Mg,n are naturally found from our perspective:
Kontsevich’s model and an alternate model called the edge-of-the-spectrum
matrix model. The relation between the latter matrix model and M g,n was
recognized in [75] and then used in [77].

Concretely, we consider the enumeration problem of Hurwitz covers of
P1. Let µ be a partition of d of length l. Let Hg,µ be the Hurwitz number:
the number of genus g degree d covers of P1 with profile µ over ∞ and simple
ramification over a fixed set of finite points. The path from the intersection
theory of the moduli space of curves to matrix models developed here uses
two approaches to the Hurwitz numbers.

First, the numbers Hg,µ may be expressed in terms of tautological inter-
section products in M g,l. The l-point generating series for intersections then
arises naturally via the large N asymptotics of Hg,Nµ.

The relationship between the numbers Hg,µ and the intersection theory
of M g,l was independently discovered in [31] (for µ = 1d) and [26] (for all
µ). The method of [31] is a direct calculation in the Gromov-Witten theory
of P1. The Hurwitz numbers arise by definition as intersections in M g(P1).
The virtual localization formula of [43] precisely relates these intersections to
M g,l. The study of Hg,µ for general µ within the Gromov-Witten framework
was completed in [44]. The method of [26] follows a different path — the
result is obtained by an analysis of a twisted Segre class construction for
cones over M g,l.

Second, the Hurwitz numbers may be approached via graph enumera-
tion. The large N asymptotics of Hg,Nµ is then related to the sum over

2The Virasoro conjecture has been proven in case X has dimension 1 in [80] and in
case X = P

n in [39]
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trivalent graphs arising in Kontsevich’s model. This asymptotic analysis
involves probabilistic techniques, in particular, a study of random trees is
required.

1.3 Plan of the paper

The Hurwitz path from the intersection theory of M g,n to matrix models
draws motivations and techniques from several distinct areas of mathematics.
A parallel goal of the paper is to provide an exposition of the circle of ideas
involving Gromov-Witten theory, Hurwitz numbers, and random graphs.

The paper consists of three parts. The first part covers the background
material and explains the general strategy of the proof. We start with a
review of Witten’s conjecture and Kontsevich’s combinatorial model for tau-
tological intersections in Section 2.

The Hurwitz numbers, which are the main focus of the paper, are dis-
cussed in Section 3. Three characterizations of Hg,µ are given in Section 3.1.
The relationship between the Hurwitz numbers and the intersection theory of
moduli space is introduced in Sections 3.2-3.3. A summary of the asymptotic
study of Hg,µ via graph enumeration is given in Section 3.4.

Section 4, concluding Part I of the paper, is devoted to a brief discussion
of the edge-of-the-spectrum matrix model and Kontsevich’s matrix model.
We also discuss there another connection between Hurwitz numbers and in-
tegrable hierarchies via the Toda equations.

Part II of the paper, consisting of Sections 5-7, contains a survey of the
proof in Gromov-Witten theory of the formula for Hg,µ in the intersection
theory of Mg,l. Our exposition follows [31, 44]. An effort is made here to
balance the geometrical ideas with the tools needed from Gromov-Witten
theory: branch morphisms, virtual classes, and the virtual localization for-
mula.

In Part III of the paper, we investigate the asymptotics of Hurwitz num-
bers using the methods of [75]. Results from the theory of random trees,
summarized in Section 8, play a significant role in this asymptotic analysis.
In the end, Kontsevich’s combinatorial model is precisely recovered from the
asymptotics of the Hurwitz numbers.

Finally, there are two appendices. The classical recursions for the Hurwitz
numbers are recalled in Appendix A. These recursive formulas are obtained
by studying the degenerations of covers as a finite branch point is moved to
∞. The degeneration formulas provide an elementary, if not very efficient,
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method of computing Hg,µ. A short table of the values of the various integrals
discussed in the paper is given in Appendix B. The tables cover the cases of
g ≤ 2 and d ≤ 4.
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1.5 Note

The paper was written in 2000. For the Seattle’05 volume, we have indi-
cated some futher developments by footnotes, but otherwise left the text
unchanged.

Several other approaches to Witten’s conjecture have now appeared. A
remarkable proof via the study of geodesic counts in hyperbolic geometry
has been found by M. Mirzakhani [72]. Closer to the line followed here, M.
Kazarian and S. Lando have found a direct and elegant derivation of the
KdV equations from the ELSV formula [54]. A related approach is pursued
by L. Chen, Y. Li, and K. Liu in [16].

Finally, the ELSV formula has been generalized in various stages to the
Gopakumar-Mariño-Vafa formula [67], the topological vertex [2], and the
equivariant vertex [68]. No attempt is made here to survey these develop-
ments or the closely related connections to relative Gromov-Witten theory.

2 Kontsevich’s combinatorial model for the

intersection theory of M g,n

2.1 Intersection theory of M g,n and KdV

The intersection theory of M g,n must be studied in the category of Deligne-
Mumford stacks (or alternatively, in the orbifold category) to correctly handle
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the automorphism groups of the pointed curves. M g,n is a complete, irre-
ducible, nonsingular Deligne-Mumford stack of complex dimension 3g−3+n.
Intersection theory for Mg,n was first developed in [74] (see also [92]).

We will require the tautological ψ classes in H2(M g,n,Q). For each mark-
ing i, there exists a canonical line bundle Li on Mg,n determined by the fol-
lowing prescription: the fiber of Li at the stable pointed curve (C, x1, . . . , xn)
is the cotangent space T ∗

C(xi) of C at xi. We note while Li is a stack line
bundle, Li only determines a Q-divisor on the coarse moduli space. Let ψi

denote the first Chern class of Li.
Witten’s conjecture concerns the complete set of evaluations of intersec-

tions of the ψ classes: ∫

Mg,n

ψk1
1 · · ·ψkn

n . (2.1)

The symmetric group Sn acts naturally on M g,n by permuting the markings.
Since the ψ classes are permuted by this Sn action, the integral (2.1) is
unchanged by a permutation of the exponents ki. A concise notation for
these intersections which exploits the Sn symmetry is given by:

〈τk1 · · · τkn〉g =

∫

Mg,n

ψk1
1 · · ·ψkn

n . (2.2)

Such products are well defined when the ki are non-negative integers and
the dimension condition 3g − 3 + n − ∑

ki = 0 holds. In all other cases,
〈∏n

i=1 τki
〉g is defined to be zero. The empty product 〈1〉1 is also set to zero.

The simplest integral is

〈τ 3
0 〉0 =

∫

M0,3

ψ0
1ψ

0
2ψ

0
3 = 1,

since M 0,3 is a point. In fact, the genus 0 integrals are determined by the
closed form [93]:

〈τk1 · · · τkn〉0 =

(
n− 3

k1, . . . , kn

)
. (2.3)

The first elliptic integral is 〈τ1〉1 = 1/24 which may be computed, for exam-
ple, by studying a pencil of cubic plane curves.

A fundamental property of the integrals (2.2) is the string equation: for
2g − 2 + n > 0,

〈τ0
n∏

i=1

τki
〉g =

n∑

j=1

〈τkj−1

∏

i6=j

τki
〉g.
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Equation (2.3) easily follows from the string equation and the evaluation
〈τ 3

0 〉0 = 1. A second property is the dilaton equation: for 2g − 2 + n > 0,

〈τ1
n∏

i=1

τki
〉g = (2g − 2 + n) 〈

n∏

i=1

τki
〉g.

The string equation, dilaton equation, and the evaluation 〈τ1〉1 = 1/24 de-
termine all the integrals (2.2) in genus 1.

Both the string and dilaton equations are derived from a comparison
result describing the behavior of the ψ classes under pull-back via the map

π : Mg,n+1 →M g,n

forgetting the last point. Let i ∈ {1, . . . , n}. The basic formula is:

ψi = π∗(ψi) + [Di] (2.4)

where Di is the boundary divisor in M g,n with genus splitting g + 0 and
marking splitting {1, . . . , î, . . . , n} ∪ {i, n + 1}. That is, the general point of
Di corresponds to a reducible curve C = C1 ∪ C2 connected by a single node
satisfying:

(i) C1 is nonsingular of genus g

(ii) C2 is nonsingular of genus 0.

(iii) The markings {1, ..., n} \ {i} lie on C1 and the remaining marking
{i, n+ 1} lie on C2.

The relation (2.4) implies the string and dilaton equations by a direct geo-
metric argument (see, for example, [93]).

The KdV equations are differential equations satisfied by a generating
series of the ψ intersections. Let t denote the set of variables {ti}∞i=0. Let
γ =

∑∞
i=0 tiτi be the formal sum. Consider the formal generating function

for the integrals (2.2):

Fg(t) =

∞∑

n=0

〈γn〉g
n!

.
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The expression 〈γn〉g is defined by monomial expansion and multilinearity in
the variables ti. More concretely,

Fg(t) =
∑

n≥1

1

n!

∑

k1,...,kn

〈τk1 · · · τkn〉g tk1 · · · tkn

=
∑

{ni}

〈τn0
0 τn1

1 τn2
2 · · · 〉g

∞∏

i=0

tni

i

ni!
,

where the last sum is over all sequences of nonnegative integers {ni} with
finitely many nonzero terms. Let F denote the full generating function:

F =
∞∑

g=0

Fg.

The genus subscript g of a non-vanishing bracket 〈τk1 . . . τkn〉g is determined
by the dimension condition 3g − 3 + n− ∑n

i=1 ki = 0. Hence, F is a faithful
generating series of all the ψ intersections in M g,n.

We will use the following notation for the derivatives of F :

〈〈τk1τk2 · · · τkn〉〉 =
∂

∂tk1

∂

∂tk1

· · · ∂

∂tk1

F. (2.5)

Note 〈〈τk1τk2 · · · τkn〉〉|ti=0 = 〈τk1τk2 · · · τkn〉.
F was conjectured by Witten to equal the free energy in 2-dimensional

quantum gravity and therefore to satisfy the KdV hierarchy. The classical
KdV equation (first studied in the 19th century to describe shallow water
waves) is:

∂U

∂t1
= U

∂U

∂t0
+

1

12

∂3U

∂t30
. (2.6)

Witten conjectured U = 〈〈t0t0〉〉 satisfies (2.6). The KdV hierarchy for F
may be written in the following form (equation (2.6) is recovered in case
n = 1).

Witten’s Conjecture. For all n ≥ 1,

(2n + 1)〈〈τnτ 2
0 〉〉 = (2.7)

〈〈τn−1τ0〉〉〈〈τ 3
0 〉〉 + 2〈〈τn−1τ

2
0 〉〉〈〈τ 2

0 〉〉 +
1

4
〈〈τn−1τ

4
0 〉〉.
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As an example, consider equation (2.7) for n = 3 evaluated at ti = 0. We
obtain:

7〈τ3τ 2
0 〉1 = 〈τ2τ0〉1〈τ 3

0 〉0 +
1

4
〈τ2τ 4

0 〉0.

Use of the string equation yields:

7〈τ1〉1 = 〈τ1〉1〈τ 3
0 〉0 +

1

4
〈τ 3

0 〉0.

Hence, we conclude 〈τ1〉1 = 1/24. The KdV equations (2.7) and the string
equation together determine all the integrals (2.2) from 〈τ 3

0 〉0 = 1. Therefore,
F is uniquely determined by Witten’s conjecture.

2.2 Kontsevich’s combinatorial model

We now explain the model found by Kontsevich for the generating series:

Kg(s1, . . . , sn) =
∑

P

ki=3g−3+n

〈τk1 · · · τkn〉g
n∏

i=1

(2ki − 1)!!

s2ki+1
i

(2.8)

of ψ intersections in M g,n.
Let Σg be an oriented topological surface of genus g. A map G on Σg is

a triple (V,E, φ) satisfying the following conditions:

(i) V ⊂ Σg is a finite set of vertices,

(ii) E is finite set of edges:

• each edge is a simple path in Σg connecting two vertices of V ,

• self-edges at vertices are permitted,

• distinct edge paths intersect only in vertices,

(iii) the graph G is connected,

(iv) the complement of the union of the edges in Σg is a disjoint union of
topological disks, called the cells of G,

(v) φ is a bijection of the set Cell(G) of cells with {1, . . . , |Cell(G)|}.

12



The origin of the term “map” is the following: one can visualize the cells
of a map G as different countries into which G divides the surface Σg.

The valence of a vertex v is given by the number of half-edges incident
to v. A map G is called trivalent if every vertex has valence exactly 3. The
map G is called stable if

2g − 2 + |Cell(G)| > 0 .

Two maps G and G′ on Σg are isomorphic if there is an orientation preserving
homeomorphism of Σg which maps G to G′ and respects φ. The automor-
phism group Aut(G) is the finite group of symmetries of (V,E, φ) induced by
orientation preserving homeomorphisms of Σg that map G to G and respect
the marking φ.

Let Gg,n denote the set of isomorphism classes of maps on Σg with n
cells and let G3

g,n ⊂ Gg,n denote the subset of trivalent maps. The trivalent
condition and the Euler characteristic constraint on G ∈ G3

g,n imply:

|V | =
2

3
|E| , (2.9)

|V | = 2(2g − 2 + n) , (2.10)

|E|, |V | denote the cardinality of E and V respectively. It is then easy to see
that G3

g,n is a finite set. An example of an element of G3
2,3 is shown in Figure

1.

Figure 1: A trivalent map on a genus 2 surface

Let g ≥ 0 and n be fixed in the stable range 2g − 2 + n > 0. Let the
variables s1, . . . , sn correspond to the markings of G ∈ G3

g,n. Each edge e ∈ E
of G borders two cells. Let i and j be the labels assigned by φ to these cells.
If both sides of e border the same cell, then i = j. We denote

s̃(e) = si + sj .

The fundamental result proven by Kontsevich is the following formula for
Kg in terms of combinatorics of trivalent maps:
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Theorem 1. Kg is obtained by a sum over trivalent maps:

Kg(s1, . . . , sn) =
∑

G∈G3
g,n

22g−2+n

|Aut(G)|
∏

e∈E

1

s̃(e)
. (2.11)

Kontsevich’s proof requires a topological decomposition of M g,n obtained
via the theory of Strebel differentials (see [56], Appendix B). Aspects of the
boundary behavior of this geometry are quite subtle. A discussion can also
be found in [64].

3 Hurwitz numbers

3.1 Three definitions of Hurwitz numbers

Three equivalent definitions of the Hurwitz numbers are discussed in this sec-
tion. Definitions 3.1 and 3.2 will be used to provide a new proof of Theorem
1 connecting ψ intersections in Mg,n to Kontsevich’s combinatorial model.
Definition 3.3 relates the Hurwitz numbers to the combinatorics of the sym-
metric group and arises in the connection between Hurwitz numbers and the
Toda equations in the Gromov-Witten theory of P1.

3.1.1 Enumeration of branched coverings

We start with the definition of the Hurwitz numbers Hg,µ via covers of P1.
Let g ≥ 0 and let µ be a non-empty partition. Let |µ| denote the sum of the
parts of µ, and let ℓ(µ) denote the length of µ. A Hurwitz cover of P1 of
genus g and ramification µ over ∞ is a morphism

π : C → P1

satisfying the following properties:

(i) C is a nonsingular, irreducible genus g curve,

(ii) the divisor π−1(∞) ⊂ C has profile equal to the partition µ,

(iii) the map π is simply ramified over A1 = P1 \∞.

14



Note that condition (ii) implies

deg π = |µ| .

By the Riemann-Hurwitz formula, the number of simple ramification
points of π over A1 is:

r(g, µ) = 2g − 2 + |µ| + ℓ(µ).

Let Ur denote a fixed set of r = r(g, µ) distinct points in A1 — it will be
convenient for us to take Ur equal to the set of rth roots of unity in C = A1.
We will require the simple ramification points of π to lie over Ur.

Two covers
π : C → P1, π′ : C ′ → P1

are isomorphic if there exits an isomorphism of curves φ : C → C ′ satisfying
π′ ◦ φ = π. Each cover π has an naturally associated automorphism group
Aut(π).

Definition 3.1. Hg,µ is a weighted count of the distinct Hurwitz covers π of
genus g with ramification µ over ∞ and simple ramification over Ur. Each
such cover is weighted by 1/|Aut(π)|.

3.1.2 Enumeration of branching graphs

The Hurwitz numbers admit a second definition via enumeration of graphs,
see for example [6]. Let g ≥ 0 and µ be fixed. Let r = r(g, µ) and Ur =
{ζ1, . . . , ζr} be the set of rth roots of unity as above.

A branching graph H on an oriented topological surface Σg consists of
the data (V,E, γ : E → Ur) satisfying the following conditions:

(i) the vertex set V ⊂ Σg consists of |µ| distinct points,

(ii) the set E consists of r edges:

• each edge is a simple path in Σg connecting two vertices of V ,

• self-edges at vertices are not permitted,

• distinct edge paths intersect only in vertices,

(iii) the graph H is connected,

15



(iv) the function γ is a bijection,

(v) at each vertex v ∈ V , the cyclic order of the edge markings (with
respect to the orientation of Σg) agrees with the cyclic order of the
roots of unity (with respect to the standard orientation of C),

(vi) the complement of the union of the edges is a disjoint union of l = ℓ(µ)
topological disks D1, . . . , Dl.

Let Di be a cell bounded by the sequence of edges e12, . . . , es1 of the graph
H . Assume the edge circuit is clockwise with respect to the orientation of
Di restricted from Σg. Then, to each pair of edges ek−1,k, ek,k+1 there is an
associated positive angle given by:

∡(ek−1,k, ek,k+1) = arg

(
γ(ek−1,k)

γ(ek,k+1)

)
∈ (0, 2π].

The sum of these angles along the boundary of Di is a multiple of 2π. In
other words, the following perimeter of the cell Di

per(Di) =
1

2π

s∑

k=1

∡(ek−1,k, ek,k+1)

is a positive integer.
The cyclic ordering condition (v) implies that

∑l
i=i per(Di) = |µ|. The

last condition in the definition of a branching graph is:

(vii) The partition µ equals (per(D1), . . . , per(Dl)).

Two branching graphs H and H ′ on Σg are isomorphic if there exists
an orientation preserving homeomorphism of Σg which maps H to H ′ and
respects the edge markings. The automorphism group Aut(H) is the finite
group of symmetries of (V,E) induced by orientation preserving homeomor-
phisms of Σg which map H to H and respect the edge markings.

Let Hg,µ denote the set of isomorphism classes of genus g branching graphs
with perimeter µ. The second definition of the Hurwitz numbers is by an
enumeration of graphs:

Definition 3.2. Hg,µ equals a weighted count of the branching graphs H in
Hg,µ, where each graph H is weighted by 1/|Aut(H)|.
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Definition 3.2 can be seen to agree with Definition 3.1 by a direct asso-
ciation of a branching graph to each Hurwitz cover with ramification µ. Let
π : C → P1 be a Hurwitz cover of genus g with ramification µ over infinity
and simple ramification over Ur. First, observe that π is unramified over the
open unit disk at the origin:

B ⊂ C = A1 .

Therefore, π−1(B) is the disjoint union of exactly |µ| open disks

B1, . . . , B|µ| ⊂ C.

Let Bi and ∂Bi = Bi \Bi denote the closure and the boundary of Bi respec-
tively.

Let q be an intersection point of two different closed disks Bi and Bj .
Then q must be a ramification point of π and hence π(q) ∈ Ur. In fact,
as π is simply ramified over Ur, every element ζ ∈ Ur must lie under ex-
actly one intersection of different closed disks. Therefore, there are exactly
r intersection points of pairs of closed disks Q = {q1, . . . , qr}, in bijective
correspondence π with the set Ur.

Define a branching graph H = (V,E, γ : E → Ur) on the Riemann surface
C by the following data:

(a) V = π−1(0),

(b) the edge set E corresponds to the intersection set Q,

(c) the function γ : E → Ur is defined by the projection π : Q→ Ur.

The edges E are constructed as follows. Suppose

q = Bi ∩Bj

and ζ = π(q). Let [0, ζ ] be the segment connecting 0 to ζ in A1. The edge
associated to q is defined to be the unique component of π−1([0, ζ ]) that
connects the centers of Bi and Bj. The required conditions (i)-(vii) of a
branching graph are easily checked.

Conversely, every branching graph on Σg with perimeter µ corresponds to
a Hurwitz cover with ramification µ which can be obtained by reversing the
above construction. The automorphism groups of the Hurwitz cover and of
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the branching graph coincide under this identification. We therefore conclude
that Definitions 3.1 and 3.2 agree.

Figures 2 and 3 should help visualize the relationship between Definitions
3.1 and 3.2. Suppose we have a covering π of P1 which satisfies the conditions
of Definition 3.1, such as the one shown schematically in Figure 2.

Figure 2: A covering π ramified over ∞ and roots of unity

In Figure 3, we see the preimage of the unit circle B under π consists
of deg π disks which meet at the ramification points of π. Such points cor-
respond bijectively under π to the roots of unity. The centers of the disks
form the vertices of the branching graph H , and the intersection points of
the disks correspond to the edges of H . Since the edges of H are labeled
by roots of unity, we can define the angle between two edges and then the
perimeters of the cells of H . In Figure 3, most edge labels of H are omitted
except on a small part of H which is magnified.

Figure 3: Preimage on Σ2 of the unit circle under the map π
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3.1.3 Counting factorizations into transpositions

A third approach to the Hurwitz numbers via the combinatorics of the sym-
metric group S|µ| also plays a role in Gromov-Witten theory. A Hurwitz
cover of genus g with ramification µ over ∞ and simple ramification over Ur

can be associated to an ordered sequence of transpositions (γ1, . . . , γr) of S|µ|

satisfying the following two properties:

(a) γ1, . . . , γr generate S|µ|,

(b) the product γ1γ2 · · · γr has cycle structure µ.

The associated Hurwitz cover is found by the following topological construc-
tion.

The fundamental group π1(A
1\Ur) is freely generated by the loops around

the points Ur. Let

Ã1 \ Ur

denote the universal cover of A1 \ Ur. The sequence (γ1, . . . , γr) defines an
action of π1(A1 \ Ur) on {1, 2, . . . , |µ|}. This determines an unramified, |µ|-
sheeted covering space

π0 : C0 → A1 \ Ur

defined by the mixing construction:

C0 = Ã1 \ Ur ×π1(A1\Ur) {1, 2, . . . |µ|}.

The covering C0 is connected by condition (a). C0 is naturally endowed with
a complex structure and may be canonically completed to yield a Hurwitz
cover π : C → P1 of genus g and ramification µ by condition (b). All Hurwitz
covers of genus g with ramification µ over ∞ and simple ramification over Ur

arise in this way. Therefore, the following definition of the Hurwitz numbers
is equivalent to Definition 3.1

Definition 3.3. Hg,µ equals 1/|µ|! times the number of r-tuples of 2-cycles
satisfying (a) and (b).

Formulas for Hg,µ in terms of the characters of the symmetric group were
deduced by Burnside from this perspective. In fact, Hurwitz’s original com-
putations of covering numbers were obtained via symmetric group calcula-
tions [48].
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3.2 Hurwitz numbers and the intersection theory of
M g,n

The Hurwitz numbers are naturally expressed in terms of tautological inter-
sections in M g,n. However, we will require here not only the ψ classes arising
in Witten’s conjecture, but also the λ classes. Let the Hodge bundle

E → M g,n

be the rank g vector bundle with fiber H0(C, ωC) over the moduli point
(C, p1, . . . , pn). The λ classes are the Chern classes of the Hodge bundle:

λi = ci(E) ∈ H2i(M g,n,Q).

The ψ and λ classes are tautological classes on the moduli space of curves.
A foundational treatment of the tautological intersection theory of M g,n can
be found in [74] (see [27, 29] for a current perspective).

Let µ = (µ1, . . . , µl) be a non-empty partition with positive parts. Let
Aut(µ) denote the permutation group of symmetries of the parts of µ. The
Hurwitz numbers Hg,µ are related to the intersection theory of M g,l by the
following formula.

Theorem 2. Let 2g − 2 + ℓ(µ) > 0. The Hurwitz number Hg,µ satisfies:

Hg,µ =
(2g − 2 + |µ| + l)!

|Aut(µ)|

l∏

i=1

µµi

i

µi!

∫

Mg,l

∑g
k=0(−1)kλk∏l

i=1(1 − µiψi)
. (3.1)

Theorem 2 was proven by T. Ekedahl, Lando, M. Shapiro, and Vainshtein
[26] using a theory of twisted Segre classes for cone bundles over Mg,n. In
case µ = 1d, the case of trivial ramification over ∞, formula (3.1) was inde-
pendently found and proven in [31] via a direct integration in Gromov-Witten
theory. This approach was later refined in [44] to yield the formula (3.1) for
the general partition µ.

The proof of [31] begins with an integral formula in Gromov-Witten the-
ory for the Hurwitz numbers. Let M g(P1, d) be the moduli space of stable
maps of genus g and degree d to P1. There is branch morphism:

br : M g(P1, d) → Sym2g−2+2d(P1)
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which assigns to each stable maps f : C → P1 the branch divisor in the
target [31]. Using Definition 1 of the Hurwitz numbers and properties of the
virtual class, an integral formula

Hg,1d =

∫

[Mg(P1,d)]vir

br∗(ξp) (3.2)

may be obtained. Here, ξp is (the Poincaré dual) of the point class of
Sym2g−2+2d(P1).

Integrals in Gromov-Witten are evaluated against the virtual fundamental
class of the moduli space of maps [M g(P1, d)]vir. The moduli space of maps
itself may be quite ill-behaved as all possible stable maps occur — including
maps with reducible domains, collapsed components, and maps defined by
special linear series. In general, M g(P1, d) is reducible and of impure dimen-
sion. However, Gromov-Witten theory is based on the remarkably uniform
behavior of the virtual class. Integrals against the virtual class are easier to
understand than general intersections in the moduli space of maps.

The virtual localization formula of [43] provides a direct approach to
the integral in (3.2). The moduli space Mg(P1, d) has a natural C∗-action
induced by the standard C∗-action on P1. By construction, br∗(ξp) is seen
to be an C∗-equivariant class. The C∗-fixed loci in M g(P1, d) are well-known
to be products of moduli spaces of pointed curves [57, 43]. The localization
formula then precisely relates equivariant integrals against [M g(P1, d)]vir to
tautological intersections in the moduli space of pointed curves. Formula
(3.1) for µ = 1d is the result.

In case µ is arbitrary, the above strategy may be followed on an appro-
priate component of the moduli space

M g(P1, d(µ) = |µ|)

via an elegant localization analysis provided in [44].
Sections 5-6 contains a review of the Gromov-Witten theory of P1 and the

virtual localization formula. The proof of Theorem 2 is presented in Section
7 following [31, 44].

3.3 Asymptotics of the Hurwitz numbers I: ψ integrals

Let µ be a partition with l parts µ1, . . . , µl (assumed here to be distinct).
Let Nµ denote the partition obtained by scaling each part of µ by N . The
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asymptotics of Hg,Nµ as N → ∞ are easily related to the l-point function in
2-dimensional quantum gravity by Theorem 2. After a Laplace transform,
Kontsevich’s series (2.8) is found.

The l-point function Pg is defined by the following equation (for 2g−2+l >
0):

Pg(x1, . . . , xl) =
∑

P

i ki=3g−3+l

〈τk1 · · · τkl
〉g

l∏

i=1

xki

i . (3.3)

The l-point function Pg contains the data of the full set of ψ integrals on
M g,l.

Define the function Hg(µ1, . . . , µl) as the following limit:

Hg(µ1, . . . , µl) = lim
N→∞

1

N3g−3+l/2

Hg,Nµ

eN |µ| r(g,Nµ)!
, (3.4)

A direct application of Theorem 2 together with Stirling’s formula (8.5) then
yields the following result governing the asymptotics of the Hurwitz numbers.

Proposition 3.4. We have:

Hg(µ1, . . . , µl) =
1

(2π)l/2

1
∏l

i=1 µ
1/2
i

Pg(µ1, . . . , µl) .

Let µ be a vector with distinct, positive, rational parts. The asymptotics
of Hg,Nµ are then well-defined over sufficiently divisible N , and Proposition
3.4 remains valid. It is natural to define Hg(x1, . . . , xl) for all positive real
values by Proposition 3.4.

Let LHg denote the Laplace transform of the function Hg:

LHg(y1, . . . , yl) =

∫

x∈Rl
>0

e−y·x 1

(2π)l/2

1
∏l

i=1 x
1/2
i

Pg(x) dx

=
∑

P

ki=3g−3+l

〈τk1 · · · τkl
〉g

l∏

i=1

(2ki − 1)!!

(2yi)
ki+

1
2

The variable substitution si =
√

2yi relates the answer to Kontsevich’s model.

Theorem 3. The Laplace transform of Hg in the variables si equals Kont-
sevich’s generating series for ψ integrals:

LHg(y1, . . . , yl) =
∑

P

ki=3g−3+l

〈τk1 · · · τkl
〉g

l∏

i=1

(2ki − 1)!!

s2ki+1
i

, si =
√

2yi .
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We have completed the path from Hurwitz numbers to ψ integrals via
Definition 1 and Gromov-Witten theory. The result after taking the appro-
priate asymptotics and the Laplace transform is Kontsevich’s series (2.8).

3.4 Asymptotics of the Hurwitz numbers II: graph enu-
meration

Let µ be a partition with l distinct parts as above. The asymptotics of the
Hurwitz numbers Hg,Nµ may be studied alternatively via Definition 3.2 and
an analysis of graphs. The result after Laplace transform exactly equals
Kontsevich’s sum over trivalent maps on Σg (2.11). The two approaches
to the asymptotics of the Hurwitz numbers together yield a new proof of
Theorem 1.

Let G≥3
g,n ⊂ Gg,n denote the subset of maps with at least trivalent vertices.

In case 2g − 2 + n > 0, there exists a natural map

hmt : Gg,n → G
≥3
g,n

which we call the homotopy type map. It is constructed as follows.
First, given a map G ∈ Gg,n one repeatedly removes all univalent vertices

from G together with the incident edges until there are no more univalent
vertices. After that, one removes all 2-valent vertices by concatenating their
incident edges. The resulting map is, by definition, hmt(G). It is clear that

|Cell(G)| = |Cell(hmt(G))| .

By definition, two maps G and G′ on Σg have the same homotopy type if
hmt(G) = hmt(G′).

In case the parts of µ are distinct, there is a natural mapping

und : Hg,µ → Gg,ℓ(µ)

from branching graphs to underlying maps which forgets the edge labels. The
composition of und and hmt defines homotopy type and homotopy equiv-
alence for branching graphs in Hg,µ. For example, the homotopy type G
corresponding to the branching graph H from Figure 3 is shown in Figure
4. Kontsevich’s combinatorial model is naturally found from the asymptotic
enumeration of branching graphs by their homotopy type.
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Figure 4: The homotopy type of the graph H from Figure 3

For any G ∈ G
≥3
g,l , let HG,µ denote the (weighted) number of branching

graphs H on Σg of homotopy type G. By Definition (3.2) of the Hurwitz
numbers,

Hg,Nµ =
∑

G∈G
≥3
g,l

HG,Nµ,

Since G
≥3
g,l is a finite set, we have

Hg(µ1, . . . , µl) =
∑

G∈G
≥3
g,l

lim
N→∞

1

N3g−3+l/2

HG,Nµ

eN |µ| r(g,Nµ)!
. (3.5)

The contribution of G to (3.5) is determined by an asymptotic analysis in
Section 9. If G is not trivalent, the contribution vanishes. For trivalent
graphs, the contribution of G to (3.5) is found to equal, after the Laplace
transform, the contribution of G to (2.11). As a consequence, we obtain the
following result:

Theorem 4. The Laplace transform of Hg in the variables si equals a sum
over trivalent graphs:

LHg(y1, . . . , yl) =
∑

G∈G3
g,l

22g−2+l

|Aut(G)|
∏

e∈E

1

s̃(e)
, si =

√
2yi .

Theorems 3 and 4 together provide a new proof of Theorem 1.
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The analysis of Section 9 is based on the study of trees undertaken in
Section 8. The (multivalued) inverse of the homotopy type map may be
viewed as generating trees over the edges of G. The large N asymptotics of
HG,Nµ is thus governed by the theory of random trees.

4 Matrix models and integrable hierarchies

We indicate here several connections between the material of the paper and
the theory of matrix models and integrable hierarchies. Some references to
existing literature are given below.

4.1 Edge-of-the-spectrum matrix model

4.1.1 Wick’s formula

Consider the linear space of all N ×N Hermitian matrices and the Gaussian
measure on it with density e−

1
2

tr M2

. The expectations with respect to this
measure will be denoted by

〈f〉N =

∫
f(M) exp

(
− trM2/2

)
dM

∫
exp

(
− trM2/2

)
dM

. (4.1)

It is clear that this measure has mean zero and its covariance matrix is easily
found to be

〈MijMkl〉N =

{
1 , (k, l) = (j, i) ,

0 , otherwise .
(4.2)

Expectations of any monomials in theMij’s can be computed using Wick’s
rule: the expectation is a sum over all ways to group the factors in pairs of
the products of the pair covariances. For example:

〈MabMcdMefMgh〉 = 〈MabMcd〉 〈MefMgh〉+

〈MabMef 〉 〈McdMgh〉 + 〈MabMgh〉 〈McdMef〉 =

δadδbcδehδfg + δafδbeδchδdg + δahδbgδcfδde .

The combinatorics of such expansions can be very conveniently handled using
diagrammatic techniques (a very accessible introduction to this subject can
be found in [94]).
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For example, the diagrammatic interpretation of the expectation

〈
trM4

〉
N

=

N∑

i,j,k,l=1

〈MijMjkMklMli〉N

is the following. We place the indices i, j, k, l on the vertices of a square and
place the matrix elements Mij , Mjk, Mkl, Mli on the corresponding edges.
The pairing in Wick’s formula can be interpreted as gluing pairs of sides of
the square together. Formula (4.2) implies then that the side identifications
have to satisfy:

(i) identified vertices carry equal indices,

(ii) the result is a closed and orientable surface,

see Figure 5. Since each combinatorial scheme in Figure 5 contributes a
power of N for every vertex on the resulting surface, we conclude that

〈
trM4

〉
N

= 2N3 +N .

Similarly, the expectation
〈
trMk

〉
N

can be diagrammatically interpreted as
counting surfaces glued out of a k-gon.

Figure 5: Diagrammatic interpretation of 〈trM4〉N

4.1.2 Asymptotics of maps on surfaces

More generally, an expectation of the form
〈

l∏

j=1

trMki

〉

N
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counts surfaces that one can glue out of a k1-gon, k2-gon, . . ., and a kl-gon.
More specifically, each polygon here comes with a choice of a special vertex
because the monomial

Mi1i2Mi2i3 · · ·Miki1 (4.3)

corresponds to a k-gon diagram with factors Mirir+1 placed on its edges to-
gether with a choice of the vertex from which we start reading the word
(4.3).

As a matter of fact, we have already encountered such a combinatorial
structure under the name of a ”map”. Indeed, if a surface Σ is glued out
of l polygons, then the boundaries of the polygons form, according to the
definition in Section 2.2, a map on the surface Σ with l cells. It follows that:

1

N |k|/2

〈
l∏

j=1

trMki

〉

N

=
∑

Σ

Nχ(Σ)−l MapΣ(k1, . . . , kl) . (4.4)

Here, |k| =
∑
ki. The summation is over all orientable, but not necessarily

connected, homeomorphism classes of surfaces Σ. MapΣ(k1, . . . , kl) is the
number of maps G on Σ satisfying:

(i) G is a map on Σ with l cells marked by 1, . . . , l,

(ii) the perimeters of cells (in the usual graph metric) are k1, k2, . . . , kl,

(iii) on the boundary of each cell, one vertex is specified as the first vertex.

The isomorphisms of such objects are isomorphisms of the underlying maps
which preserve the additional structure. The choice of a vertex at the bound-
ary of each cell eliminates all nontrivial automorphisms.

As the function MapΣ(k1, . . . , kl) vanishes unless |k| is even, we will as-
sume |k| to be even. Also, as the enumeration of maps on disconnected
surfaces is easily deduced from the connected case, we will study the func-
tion Mapg enumerating maps on the genus g connected surface Σg.

Consider now the limit as the ki’s increase to infinity at fixed relative
rates. In other words, introduce an extra parameter κ and assume that

ki

κ
→ xi , κ→ ∞ .

The following limit

mapg(x1, . . . , xl) = lim
κ→∞

Mapg(k1, . . . , kl)

2|k| κ3g−3+3l/2
(4.5)
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was computed in [75] and, by comparison with Kontsevich’s combinatorial
model, it was observed that

Pg(x1, . . . , xl) =
πl/2

2g

mapg(2x1, . . . , 2xl)√
x1 · · ·xl

, (4.6)

where Pg denotes the l-point function defined in Section 3.3.
Comparing Proposition 3.4 to (4.6), we find the asymptotics of the enu-

meration of branching graphs Hg,µ and the asymptotics of map enumeration
by Mapg(k1, . . . , kl) are closely related. Each branching graph determines
an underlying map by forgetting edge labels (see Section 3.4). The branch-
ing graph of Figure 3 determines the map shown in Figure 6. The function

Figure 6: The map on Σ2 corresponding to the graph from Figure 3

from branching graphs to underlying maps destroys the perimeter data of the
branching graph. However, the asymptotic behavior of perimeters is governed
by basic principles which apply for both the branching graphs and the under-
lying maps. Borrowing terminology from statistical physics, the enumeration
of branchings graphs by their perimeters and the enumeration of maps by
their perimeters belong to the same universality class. This universality class
is quite large (see, for example, [86]). Another classical combinatorial prob-
lem in the same universality class is the problem of increasing subsequences
in a random permutation, see [75]. The methods that we use in Sections 8
and 9 to analyze the asymptotics of the Hurwitz numbers are parallel to the
methods used in [75] for the asymptotic enumeration of maps.

In the case of branching graphs, the asymptotics is related to the intersec-
tion theory of Mg,n by Proposition 3.4. Therefore, a conceptual explanation
of relation (4.6) is obtained (complementing the derivation of [75]).
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4.1.3 Edge of the spectrum

The asymptotic function mapg has a natural extension mapΣ to disconnected
surfaces Σ which satisfies the obvious multiplicativity in connected compo-
nents. Formulas (4.4) and (4.5) together imply, provided each ki is even, the
limit: 〈

l∏

j=1

tr

(
M

2
√
N

)ki

〉

N

→
∑

Σ

mapΣ(x1, . . . , xl) , (4.7)

as N → ∞ and ki → ∞ in such a way that

ki

N2/3
→ xi .

In case some of the ki are odd, certain distributions of the ki between the
connected pieces of Σ become prohibited by parity and, consequently, the
corresponding terms in (4.7) should be omitted.

It is well known (see [69]) that, as N → ∞, the eigenvalue distribution of

the scaled matrix
M

2
√
N

converges to the (non-random) semicircle law with

density
2

π

√
1 − x2 dx , x ∈ [−1, 1] .

It is clear that the eigenvalues near the edges ±1 of the spectrum make the
maximal contribution to the traces of large powers of M

/
2
√
N in (4.7). This

is why we call the matrix model (4.7) the edge-of-the-spectrum matrix model.
The behavior of eigenvalues near the edges ±1 in the N → ∞ limit is

very well studied, see for example [91]. Let ρ(x1, . . . , xl;N) denote the l-
point correlation function for the eigenvalues of M

/
2
√
N . By definition,

ρ(x1, . . . , xl;N)
∏
dxi is the probability of finding an eigenvalue in each of

the infinitesimal intervals [xi, xi + dxi]. These correlation functions have the
following N → ∞ asymptotics

N−2l/3ρ
(

1 +
x1

N2/3
, . . . , 1 +

xl

N2/3

)
→ det

[
KAi(xi, xj)

]
1≤i,j≤l

, (4.8)

where KAi is the following kernel involving the classical Airy function

KAi(x, y) =
Ai(2x) Ai′(2y) − Ai′(2x) Ai(2y)

x− y
.
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The formula (4.8) together with (4.6) results in a closed Gaussian integral
formula for the l-point function Pg, see [77]. It also shows that the appearance
of Airy functions in both (4.8) and [56] is not a coincidence.

Another application of the edge-of-the-spectrum matrix model is the fol-
lowing. After Kontsevich’s combinatorial formula (2.11) is established, the
derivation of Witten’s KdV equations requires an additional analysis. Kont-
sevich’s original approach was to study an associated matrix integral (Kont-
sevich’s matrix model) which will be discussed in Section 4.2. Alternatively,
one can deduce, as was done in [77], the KdV equations using the edge-of-
the-spectrum model and the the work of Adler, Shiota, and van Moerbeke
[1].

4.2 Kontsevich’s matrix model

Let Λ be a diagonal N ×N matrix with positive real eigenvalues s1, . . . , sN .
Instead of the Gaussian measure (4.1) one can consider a more general Gaus-
sian measure on the space of Hermitian N × N matrices M with density
e−

1
2

tr ΛM2

. We denote expectations of a function f(M) respect to this mea-
sure by

〈f〉N,Λ =

∫
f(M) exp

(
− tr ΛM2/2

)
dM

∫
exp

(
− tr ΛM2/2

)
dM

The covariance matrix of this Gaussian measure is easily found to be:

〈MijMkl〉N,Λ =






2

si + sj
, (k, l) = (j, i) ,

0 , otherwise .

Expectations of any monomials in the Mij can be again computed using
Wick’s rule.

Kontsevich’s matrix integral ΘN is defined by:

ΘN(s1, . . . , sN) =

〈
exp

(
i

6
trM3

)〉

N,Λ

. (4.9)

Expanding the exponential by Taylor series and applying Wick’s formula
leads to the expansion:

log ΘN(s1, . . . , sN) =
∑

g≥0

∑

n≥1

(−2)2g−2+n
∑

G∈G3
g,n(N)

1

| Aut(G)|
∏

e∈E

1

s̃(e)
, (4.10)
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where G3
g,n(N) denotes the set of trivalent maps with n marked cells labeled

by a subset of the numbers {1, 2, . . . , N}. The logarithm function in (4.10)
has the effect of selecting only connected diagrams.

A change of variables is required to relate ΘN to the free energy F arising
in Witten’s conjectures. Let tN denote the variable set {tNi }∞i=0. For i ≥ 0,
let

tNi = −
N∑

k=1

(2i− 1)!!

s2i+1
k

. (4.11)

Substitution into F yields:

F (tN) =
∑

n≥1, k1,...,kn

1

n!
〈τk1 · · · τkn〉 tNk1

· · · tNkn

=
∑

n≥1, k1,...,kn

(−1)n

n!
〈τk1 · · · τkn〉

∑

1≤l1,...,ln≤N

n∏

i=1

(2ki − 1)!!

s2ki−1
li

=
∑

g≥0

∑

n≥1

(−2)2g−2+n
∑

G∈G3
g,n(N)

1

| Aut(G)|
∏

e∈E

1

s̃(e)
,

The last equality is a consequence of Theorem 1. Therefore,

F (tN ) = log ΘN(s1, . . . , sN).

As N → ∞, the change of variables (4.11) is faithful to higher and higher
orders. The entire function F may be recovered in the large N limit.

Theorem 5. F is the large N limit of Kontsevich’s matrix model:

F (t) = lim
N→∞

ΘN(tN).

Witten’s KdV equations for F are proven in [56] from the analysis of
Kontsevich’s matrix integral. An exposition of this analysis can be found in
[18, 19, 20].

4.3 Matrix models of 2-dimensional quantum gravity

In quantum gravity, one wishes to compute a Feynman integral of matter
fields over all possible topologies and metrics on a 2-dimensional worldsheet.
One way to make mathematical sense out of such integration is to interpret
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the result as a suitable integral over the moduli spaces of curves, see [93].
Another approach is to discretize the problem: instead of all possible metrics
one can consider, for example, only surfaces tessellated into standard squares,
or into more general polygons. In a suitable limit, in which the number of
tiles goes to infinity, one expects to be able to compute physically significant
quantities from this approximations.

Diagrammatic techniques for matrix integrals provide a very powerful
tool for enumerating tessellations and investigating their asymptotic behavior
(see, for example, the surveys [18, 19] as well the original papers [14, 21, 22,
46, 47]. More concretely, consider an integral over the space of N × N
Hermitian matrices of the following form

Z(V,N) =

∫
e−N tr V (M) dM

where
V (x) = 1

2
x2 + γ(x) ∈ R[x]

is a polynomial (usually assumed to be even). After an expansion by Wick’s
formula, Z(V,N) yields a weighted enumeration of surfaces tessellated into
polygons. The weight involves the genus of the surface, the automorphisms
group of the tessellation, and the coefficients of the polynomial V correspond-
ing to the tiles of the tessellation.

The physically interesting limit (the double scaling limit) is obtained when
the coefficients of the polynomial V approach certain critical values as N →
∞. Formal manipulation with asymptotics of orthogonal polynomials shows
that this limit is governed by the KdV hierarchy, see for example [18, 19]
for a survey. This is precisely what led Witten to conjecture that the same
hierarchy describes intersections on the moduli spaces of curves.

However, rigorous mathematical investigation of the corresponding double-
scaling asymptotics of orthogonal polynomials is a very difficult problem. At
present, only the case of even quartic potential V has been analyzed com-
pletely [12]. In this respect, the matrix integral Z(V,N), is a much more
problematic object than Kontsevich’s matrix model or the edge of the spec-
trum matrix model.

4.4 The Toda equation for P1

The moduli space Mg,n may be viewed as the moduli space of maps to a
point. The Hurwitz path to matrix models is found in the geometry of maps
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to P1. It is perhaps natural then to seek a link between the Gromov-Witten
theory of target varieties X and matrix models via the geometry of maps to
X × P1. While this direction has promise, no constructions have yet been
found even for X = P1.

Instead, the study of the Gromov-Witten theory of the target variety
X = P1 is again linked to the Hurwitz numbers. The Toda equation (conjec-
turally) constrains the free energy F of P1. The generating series H of the
Hurwitz numbers has been proven to satisfy an analogous Toda equation via
a representation theoretic analysis of Hg,µ [76]. The functions F and H may
be partially identified through the basic Hurwitz numbers Hg,1d [82]. The
two Toda equations agree in this region of overlap.

We explain here the basic relationship between the Gromov-Witten the-
ory of P1, the Hurwitz numbers, and the Toda equation. The tautological
classes in H∗(M g,n(P1, d),Q) which we will consider are of two types. First,
the classes ψi are defined on the moduli space M g,n(P1, d) by the same con-
struction used for Mg,n: ψi is the Chern class of the ith cotangent line bundle.
The tautological evaluation maps,

evj : M g,n(P1, d) → P1,

defined for each marking j provide a structure not present in the study of
M g,n. The second type of tautological class is:

ev∗
j(ω) ∈ H2(M g,n(P1, d),Q),

where ω ∈ H2(P1,Q) is the point class. The intersections of products of
ψi and ev∗

j (ω) in M g,n(P1, d) are the gravitational descendents of P1. The
bracket notation for the descendent integrals is:

〈
r∏

i=1

τai
·

r+s∏

j=r+1

τbj
(ω)〉P1

g,d =

∫

[Mg,n(P1,d)]vir

r∏

i=1

ψai

i ·
r+s∏

j=r+1

ψ
bj

j ev∗
j(ω). (4.12)

All integrals in Gromov-Witten theory are evaluated against the virtual fun-
damental class.

The free energy F of P1 is a complete generating function of the integrals
(4.12). Let the variables xi and yj correspond to the classes ψi and ev∗

j(ω).
Let x and y denote the sets of variables {xi}∞i=0 and {yi}∞i=0 respectively. F
is defined by the formula:

F (λ, x, y) =
∑

g≥0

∑

d≥0

∑

n≥0

λ2g−2
〈γn〉P1

g,d

n!
, (4.13)
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where γ =
∑

i≥0 xiτi + yiτi(ω). The bracket in (4.13) is viewed as linear in
the variables x and y.

The (conjectural) Toda equation3 for F may be written in the following
form:

exp
(
F (x0 + λ) + F (x0 − λ) − 2F

)
= λ2Fy0y0, (4.14)

where F (x0 ±λ) = F (λ, x0 ±λ, x1, x2, . . . , y0, y1, y2, . . .). Equation (4.14) has
its origins in the study of matrix models believed to be related to the Gromov-
Witten theory of P1 [25]. Proofs of the genus 0 and 1 implications of the
Toda equation can be found in [82]. The Toda equation (4.14) determines F
from degree d = 0 descendent invariants of P1.

A very similar Toda equation holds for the generating function of the
Hurwitz numbers Hg,µ. Let p denotes the variable set {pi}∞i=1. For each
partition µ of d with parts µ1, . . . , µl, let

pµ = pµ1 · · ·pµl
.

Define the Hurwitz generating function H by:

H(λ, y0, p) =
∑

g≥0

∑

d>0

∑

µ⊢d

λ2g−2edy0
Hg,µ

(2g − 2 + d+ l)!
pµ.

The definition of the Hurwitz numbers via the symmetric group in Section 3.1
may be used to prove a Toda equation for H . More precisely, the function H
is linked to the Toda lattice hierarchy of Takasaki and Ueno in representation
theory [76]. One specialization of this hierarchy is the following:

Proposition 4.1. H satisfies the Toda equation:

exp
(
H(y0 + λ) +H(y0 − λ) − 2H

)
= λ2e−y0Hp1y0. (4.15)

The Toda equations for the free energy F and the Hurwitz function H
are connected through a partial identification of these two series. Perhaps
the Toda equation for F could be proven by a better understanding of this
relationship.

Let Hg,d be the Hurwitz number of genus g, degree d, simply ramified
covers of P1. By definition, Hg,d equals Hg,1d. The generating function H̃ of

3Now proven in [78, 79], see also [37].
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the Hurwitz numbers Hg,d is obtained by a restriction of H :

H̃(λ, y0) =
∑

g≥0

∑

d>0

λ2g−2edy0
Hg,d

(2g − 2 + 2d)!

= H(λ, y0, p1 = 1, pi≥2 = 0).

The Hurwitz numbers Hg,d arise in Gromov-Witten theory as descendent
integrals of P1 [82].

Proposition 4.2. For all g ≥ 0 and d > 0,

Hg,d = 〈τ1(ω)2g+2d−2〉P1

g,d.

The generating function H̃ is therefore obtained by a restriction of F :

H̃(λ, y0) =
∑

g≥0

∑

d>0

λ2g−2edy0
〈τ1(ω)2g+2d−2〉P1

g,d

(2g − 2 + 2d)!

= F (λ, xi≥0 = 0, y0, y1 = 1, yi≥2 = 0).

There are two natural Toda equations for H̃ obtained from the Toda
equations for F and H respectively.

Theorem 6. The two Toda equations (4.14) and (4.15) specialize to a unique
Toda equation for H̃:

exp
(
H̃(y0 + λ) + H̃(y0 − λ) − 2H̃

)
= λ2e−y0H̃y0y0 . (4.16)

Theorem 6 provides strong evidence for the (conjectural) Toda equation for
F .

The Toda equation for the Hurwitz series H was found in the search for a
proof of prediction (4.16) of the Toda equation for P1. One may reasonably
hope the connection between the Toda equations for H and F is stronger
than Theorem 6. However, a direct extension of Proposition 4.2 relating all
the Hurwitz numbers Hg,µ to descendents has not been discovered.4 The
natural context for the Toda equation in [76] suggests the larger class of
double Hurwitz numbers may be related fundamentally to the Gromov-Witten
theory of P1.

4The Gromov-Witten/Hurwitz correspondence of [78] precisely extends Proposition
4.2.
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Part II

Hurwitz numbers in
Gromov-Witten theory

5 Gromov-Witten theory of P1

5.1 Stable maps

Let X be a nonsingular projective variety. A path integral over the space
of differential maps π : Σg → X naturally arises in the topological gravity
theory with target X. A stationary phase analysis then yields the following
string theoretic result: the path integral localizes to the space of holomorphic
maps from Riemann surfaces to X [93]. The path integral therefore should
be equivalent to classical integration over a space of holomorphic maps.

The moduli of maps may be studied in algebraic geometry by the equiv-
alence of the holomorphic and algebraic categories in complex dimension
1. However, the moduli space Mg,n(X, β) of n-pointed algebraic maps π :
(C, p1, . . . , pn) → X satisfying

(i) C is a nonsingular curve of genus g,

(ii) p1, . . . , pn ∈ C are distinct points,

(ii) π∗[C] = β ∈ H2(X,Z),

is not compact. For example, the domain may degenerate to a nodal curve,
the points may meet, or the map itself may acquire a singularity. The com-
pactification

Mg,n(X, β) ⊂M g,n(X, β)

by stable maps plays a central role in Gromov-Witten theory — it is conjec-
tured to be the correct compactification for calculating the path integral of
the gravity theory.

The moduli space of stable maps M g,n(X, β) parameterizes n-pointed
algebraic maps

π : (C, p1, . . . , pn) → X

satisfying:

36



(i) C is a compact, connected, reduced, (at worst) nodal curve of arith-
metic genus g,

(ii) p1, . . . , pn ∈ C are distinct and lie in the nonsingular locus,

(iii) π∗[C] = β,

(iv) π has no infinitesimal automorphisms.

A special point of the domain C is a marked point pi or a nodal point. An
infinitesimal automorphism of a map π is a tangent field v of the domain C
which vanishes at the special points and satisfies dπ(v) = 0. Stable maps
were defined by Kontsevich in [56, 58]. A construction of the moduli space
can be found in [34].

An irreducible component E ⊂ C is π-collapsed if the image π(E) is
a point. Property (iv) is equivalent to a geometric condition on each π-
collapsed component: π has no infinitesimal automorphisms if and only if
the normalization

Ẽ → E

of each π-collapsed component E contains the preimages of at least 3−2g(Ẽ)
special points of C. As 3 − 2g(Ẽ) > 0 only if g(Ẽ) = 0 or 1, this condition
only constrains rational and elliptic components. If the entire domain C
is π-collapsed, property (iv) is equivalent to the Deligne-Mumford stability
condition for pointed curves (C, p1, . . . , pn). The moduli space Mg,n(X, 0) is
therefore isomorphic to X ×M g,n. In particular, M g,n is recovered as the
space of stable maps to a point.

The moduli space Mg,n(X, β) is not always a nonsingular Deligne-Mumford
stack — in fact, the space may be singular, non-reduced, reducible, and of
impure dimension. While Mg,n(X, β) ⊂ M g,n(X, β) is an open subset, the
inclusion is not necessarily dense. The space of stable maps may be quite
complicated even when Mg,n(X, β) is empty.

Most pathologies occur even in case X = P1. Consider, for example,
M 2(P

1, 2). The closure of the locus of hyperelliptic maps M2(P1, 2) yields
an irreducible component of M 2(P

1, 2) of dimension 6. However, the set of
maps obtained by attaching a π-collapsed genus 2 curve to a rational double
cover of P1 forms another component of dimension 7. In fact, M 2(P

1, 2)
contains 7 irreducible components in all. One of the few global geometric
properties always satisfied by M g,n(P1, d) is connectedness [55].
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5.2 Branch morphisms

Let g ≥ 0 and d > 0. The moduli space M g(P1, d) supports a natural branch
morphism br which will play a basic role in the study of the Hurwitz numbers.

The branch morphism is first constructed for the open moduli space
Mg(P1, d). Let π : C → P1 be a degree d map with a nonsingular domain
C. A branch divisor on P1 is obtained from the ramifications of π. More
precisely, the branch divisor br(π) is the π push-forward of the degeneracy
locus of the differential map on C:

π∗ωP1 → ωC , (5.1)

where ωP1 and ωC denote the canonical bundles of P1 and C respectively.
By the Riemann-Hurwitz formula, br(π) has degree

r = 2g(C) − 2 + 2d.

A branch morphism from Mg(P1, d) to the space of divisors,

br : Mg(P1, d) → Symr(P1), (5.2)

is defined algebraically by the universal degeneracy locus (5.1).
A branch divisor br(π) is constructed for stable maps π : C → P1 by the

following definition. Let N ⊂ C be the cycle of nodes of C. Let ν : C̃ → C
be the normalization of C. Let A1, . . . , Aa be the components of C̃ which
dominate P1, and let {ai : Ai → P1} denote the natural maps. As ai is
a surjective map between nonsingular curves, the branch divisor br(ai) is
defined by (5.1). Let B1, . . . , Bb be the components of C̃ contracted over P1,
and let f(Bj) = qj ∈ P1. Define br(π) by:

br(π) =
∑

i

br(ai) +
∑

j

(2g(Bj) − 2)[qj ] + 2π∗(N). (5.3)

Formula (5.3) associates an effective divisor of degree r on P1 to every moduli
point [π] ∈M g(P1, d).

The branch divisor br(π) for stable maps may be constructed canonically
from the complex:

Rπ∗[π ∗ ωP1 → ωC ], (5.4)

well-defined in the derived category. An effective divisor on P1 is extracted
from (5.4) via a determinant construction. An algebraic branch morphism

br : Mg(P1, d) → Symr(P1) (5.5)
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is then obtained from the universal complex (5.4). The required derived
category arguments can be found in [31].

5.3 Virtual classes

5.3.1 Perfect obstruction theories

Let X be a nonsingular projective variety. The expected or virtual dimension
of the moduli space M g,n(X, β) is:

∫

β

c1(X) + dim(X)(1 − g) + 3g − 3 + n.

M g,n(X, β) carries a canonical obstruction theory which yields a virtual class

[M g,n(X, β)]vir ∈ Aexp(M g,n(X, β),Q)

in the expected rational Chow group. The virtual class of M g,n(X, β) was
first constructed in [63, 9, 10]. The virtual class plays a fundamental role
in Gromov-Witten theory — all cohomology evaluations in the theory are
taken against the virtual class.

The virtual class of M g,n(X, β) is constructed via a canonical perfect
obstruction theory carried by the moduli of maps. A perfect obstruction
theory on scheme (or Deligne-Mumford stack) V consists of the following
data:

(i) A two term complex of vector bundles E• = [E−1 → E0] on V .

(ii) A morphism φ : E• → L•
V in the derived category D−

qcoh(V ) to the
cotangent complex L•

V satisfying two properties:

(a) φ induces an isomorphism in cohomology in degree 0.

(b) φ induces a surjection in cohomology in degree -1.

A virtual fundamental class of dimension dim(E0)−dim(E−1) is canonically
associated to the data (i) and (ii).
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5.3.2 Categories of complexes

Let C−
qcoh(V ) be the category of complexes of quasi-coherent sheaves bounded

from above on V . The objects of C−
qcoh(V ) are complexes,

F • = [. . .→ F−1 → F 0 → F 1 → . . .],

satisfying Fi = 0 for i sufficiently large. The morphisms of C−
qcoh(V ) are chain

maps of complexes.
A chain map σ : F • → F̃ • is a quasi-isomorphism if σ induces an isomor-

phism on cohomology: H∗(σ) : H∗(F •) → H∗(F̃ •).
The objects of derived category D−

qcoh(V ) are also complexes of quasi-
coherent sheaves bounded from above on V . However, the morphisms of
D−

qcoh(V ) are obtained by inverting all quasi-isomorphisms in C−
qcoh(V ). A

basic result is a morphism F • → G• in D−
qcoh(V ) may be represented by a

diagram:
F̃ • τ−−−→ G•

σ

y

F •,

where σ is a quasi-isomorphism and τ is map of complexes.
An excellent reference for the derived category is [35]. A more informal

introduction may be found in [89].

5.3.3 Cotangent complexes

The cotangent complex L•
V is a canonical object (up to equivalence) of

D−
qcoh(V ). While the full complex L•

V is constructed abstractly, we will see
the essential properties which are required here can be described concretely.

If V is nonsingular, L•
V is defined by the 1 term complex [ΩV ] in degree

0 determined by the cotangent bundle. A nonsingular space V carries a
canonical trivial perfect obstruction theory:

φ : [0 → ΩV ]
∼→ L•

V .

We will see the virtual fundamental class of this trivial theory is the ordinary
fundamental class of V . For arbitrary V , the cotangent complex may be
viewed as a generalized cotangent bundle.
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We first note the k cut-off functor is well-defined in D−
qcoh(V ):

F≥k = [
F k

Im(F k−1)
→ F k+1 → F k+2 → . . .],

for any complex F •.
The cut-off L≥−1

V of the cotangent complex for singular V may be geo-
metrically identified by the following construction. Let

M ⊂ Y (5.6)

be an embedding in a nonsingular scheme (or Deligne-Mumford stack) Y .
The cut-off of L•

V is represented by:

L≥−1

M
= [I/I2 → ΩY ⊗ OM ]. (5.7)

Here, I is the ideal sheaf of V ⊂ Y . The complex (5.7) is independent (up
to equivalence in the derived category) of the embedding (5.6).

The representation (5.6) easily implies the cohomology of L•
V in degree 0

is the sheaf of differentials ΩM . The cohomology of L•
V is degree -1 is also

determined by (5.6): H−1(L•
V ) encodes singularity data of M .

For the study of perfect obstruction theories and virtual classes, it will
suffice to restrict the cotangent complex to the cut-off L≥−1

M
.

Stack quotient constructions of Mg,n(X, β) prove the existence of non-
singular embeddings (5.6) for the moduli space of maps [43]. The quotient
constructions also show the abundance of locally free sheaves on M g,n(X, β)
— a valuable property for the derived category.

5.3.4 Distinguished triangles

Before proceeding, we include here a short review of mapping cones and
distinguished triangles in the derived category.

Let A be a complex in C−
qcoh(V ). Let A[1] denote the shifted complex

with negative differential:

A[1]i = Ai+1, dA[1] = −dA.

Let γ : A• → B• be a morphism of complexes. The mapping cone M [γ]
is the complex with terms and differentials:

M [γ]i = A[1]i ⊕Bi, (dA[1], γ + dB).
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The mapping cone may be canonically placed in a triangle of morphisms:

A• γ→ B• →M [γ]• → A[1]•. (5.8)

A triangle of morphisms in the derived category,

X•→Y • → Z• → X[1]•, (5.9)

is a distinguished triangle if there exist:

(i) a map of complexes γ : A• → B•,

(ii) a triple of isomorphisms in D−
qcoh(V ),

A• ∼→ X•, B• ∼→ Y •, M [γ]•
∼→ Z•,

which together yield an isomorphism of the triangles (5.8) and (5.9) in the
derived category.

If the triangle (5.9) is distinguished, it is easily proven that

Y •→Z• → X[1]• → Y [1]•,

Z•→X[1]• → Y [1]• → Z[1]•,

are distinguished triangles as well. In this sense, the notion of a distinguished
triangle has a cyclic triangular symmetry.

Finally, we note that a distinguished triangle yields a long exact sequence
in cohomology by a standard result in homological algebra.

5.3.5 The perfect obstruction theory of the moduli of maps

Let
M = M g,n(X, β)

The perfect obstruction theory of M is obtained from the deformation theory
of maps. The main step is a construction of a perfect obstruction theory Ẽ•

relative to the morphism
τ : M → M

where M is the Artin stack of quasi-stable curves. The deformation theory
of maps

π : C → X
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from a fixed domain curve C is well-known: the tangent and obstruction
spaces are H0(C, π∗TX) and H1(C, π∗TX) respectively. A canonical relative
perfect obstruction theory is then defined by:

Ẽ• = [R•ρ∗(π
∗TX)]∨ → L•

τ , (5.10)

where ρ : U → M is the universal curve and L•
τ is the relative cotangent

complex of the morphism τ (see [9]). The relative theory satisfies conditions
(a) and (b) for the morphism (5.10).

The relative cotangent complex L•
τ is determined by a distinguished tri-

angle:
τ ∗L•

M
→ L•

M
→ L•

τ → τ ∗L•
M

[1], (5.11)

which generalizes the sequence of relative differentials of a morphism. The
pull-back τ ∗L•

M
is canonically identified on M :

τ ∗L•
M

∼
= [R•Hom

OM
(−,OU )(Ωρ(P ))]∨[−1].

Here, Ωρ is the sheaf of relative differentials on U , and P is the divisor of
marked points.

The absolute theory E• for M is then constructed by including the de-
formations of the domain curve via a canonical distinguished triangle.

τ ∗L•
M

−−−→ E• −−−→ [R•ρ∗(π
∗TX)]∨ −−−→ τ ∗L•

M
[1]y

yφ

y
y

τ ∗L•
M

−−−→ LM −−−→ L•
τ −−−→ τ ∗L•

M
[1].

(5.12)

The right arrow on the top line of (5.12) is obtained from the canonical
morphism,

π∗ΩX
dπ→ Ωρ → Ωρ(P ),

together with the identification

R∗ρ∗(π
∗TX)

∼
= R∗Hom

OM
(−,OU )(π∗ΩX).

The top line is then defined to be the distinguished triangle obtained from
the right arrow. The bottom line of (5.12) is the canonical distinguished
triangle of cotangent complexes obtained from the bottom right arrow. The
construction of the diagram is then formal once the canonical morphisms in
the right square are shown to commute.
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The projectivity of X may be used to find a two term sequences of vector
bundles representing both the terms and the morphism,

[R•ρ∗(π
∗TX)]∨ → τ ∗L•

M
[1],

in the derived category (see [9, 10]). By the mapping cone construction, E•

then admits a three term representation:

[E−1 → E0 → E1]. (5.13)

The stability condition on the moduli space of maps implies the cohomology
of E• vanishes in degree 1. Hence, the sequence (5.13) can be reduced to a
two term complex.

The defining conditions (i) and (ii) of a perfect obstruction theory are
easily verified for:

φ : E• → L•
M
,

by the long exact sequence obtained from diagram (5.12).
The diagram (5.12) is the primary method of studying the obstruction

theory E•. Treatments can be found in [9, 43, 63] (the latter pursues a
different perspective). A foundational exposition of these obstruction theories
will be developed in [42].

Let [π : (C, p1, . . . , pn) → X] be a moduli point of M . The cohomologies
of the dual complex [E•

[π]]
∨ are the tangent and obstruction spaces of M at

[π]. The long exact sequence in cohomology of (the dual of) the top line of
(5.12) yields the the familiar tangent-obstruction sequence:

0 → Ext0(ΩC(P ),OC) → H0(C, π∗TX) → Tan(π) (5.14)

→ Ext1(ΩC(P ),OC) → H1(C, π∗TX) → Obs(π) → 0.

The following Lemma provides a basic example of the use of the perfect
obstruction theory.

Lemma 5.1. If H1(C, π∗TX) = 0, then [π] is a nonsingular point of the
Deligne-Mumford stack M g,n(X, β).

Proof. If H1(C, π∗TX) = 0, then Obs(π) = 0. By semicontinuity, the ob-
struction space vanishes for every moduli point in an open set M containing
[π]. Therefore, the complex E• must have locally free cohomology in degree
0 and vanishing cohomology in degree -1 on M . By conditions (a) and (b) of
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the perfect obstruction theory, the cotangent complex must also have locally
free cohomology in degree 0 and vanishing cohomology in degree -1 on M .

Consider an embedding M ⊂ Y in a nonsingular Deligne-Mumford stack.
The cut-off of the cotangent complex is

[IM/I
2
M → ΩY ⊗ OM ].

By the cohomology conditions, we conclude IM/I
2
M is locally free and injects

into ΩY ⊗ OM . By the local criterion for nonsingularity, M is nonsingular.
We note the restriction of the perfect obstruction theory to M yields the

trivial perfect obstruction theory on a nonsingular space — where φ is an
isomorphism.

5.3.6 Construction of virtual classes

The perfect obstruction theory yields a map in the derived category

φ : E• → L•
M
.

After an exchange of representatives and cutting-off, we may assume

φ : E• → [I/I2 → ΩY ⊗ OM ] (5.15)

is a map of complexes. The virtual class is obtained from the geometry of
(5.15).

The mapping cone associated to (5.15) is the following complex of sheaves:

E−1 → E0 ⊕ I/I2 γ→ ΩY → 0. (5.16)

The above complex (5.16) is right exact by conditions (a) and (b) satisfied
by φ. Let Q denote the kernel of γ. Q is naturally a quotient of E−1 by right
exactness.

Let S be a coherent sheaf on M . The symmetric tensors define a sheaf of
OM algebras,

S =
∞⊕

k=0

Symk(S),

on M . The abelian cone C(S) is defined to be

Spec(S) →M.
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In case S is a vector bundle, C(S) is the total space of S∗. We let E0, E1

denote C(E0), C(E1) respectively.
The sequence (5.16) yields an exact sequence of abelian cones:

0 → TY → E0 ×M C(I/I2) → C(Q) → 0.

Here, the vector bundle TY acts fiberwise and freely on the abelian cone
E0 ×M C(I/I2) with quotient C(Q).

Recall the normal cone CM/Y is defined by:

CM/Y = Spec(

∞⊕

k=0

Ik/Ik+1) → M.

CM/Y has pure dimension equal to dim(Y ) (see [33]). There is closed em-

bedding of CM/Y ⊂ C(I/I2) given by a natural surjection of algebras:

∞⊕

k=0

Symk(I/I2) →
∞⊕

k=0

Ik/Ik+1.

The fundamental geometric fact is that the subcone

E0 ×M CM/Y ⊂ E0 ×M C(I/I2)

is invariant under the TY action [10]. The quotient cone

D =
E0 ×M CM/Y

TY

is of pure dimension equal to dim(E0) and lies in C(Q). There is an embed-
ding of abelian cones

C(Q) ⊂ E1

obtained from the surjection E−1 → C(Q). Hence D ⊂ E1.
Let z : M →֒ E1 be the inclusion of the zero section of the vector bundle

E1. Certainly z−1(D) = M as D is a cone. The refined intersection product
therefore yields a cycle class,

z![D] ∈ Adim(E0)−dim(E1)(M,Q).

The virtual fundamental class of the perfect obstruction theory is defined to
equal z![D].

The trivial perfect obstruction theory on a nonsingular space is easily
seen to yield the ordinary fundamental class as the virtual class.
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5.3.7 Properties

The virtual class of M g,n(P1, d) satisfies several remarkable properties —
only two of which will be required here.

Since the inclusion of the moduli of maps with nonsingular domains,

Mg,n(P1, d) ⊂M g,n(P1, d),

is open, there is a well-defined restriction of the virtual class.

Proposition 5.2. Let d ≥ 1. Mg,n(P1, d) is a nonsingular Deligne-Mumford
stack of expected dimension 2g − 2 + 2d+ n. The restriction of virtual class
is the ordinary fundamental class of Mg,n(P1, d).

Proof. Let [π : (C, p1, . . . , pn) → P1] determine a moduli point ofMg,n(P1, d).
The nonsingularity, the dimensionality, and the identification of the virtual
class follow directly from the vanishing of Obs(π) — as can be seen by Lemma
5.1 the definitions of Sections 5.3.6. The canonical right exact sequence:

Ext1(ΩC(D),OC)
i→ H1(C, π∗TP1) → Obs(π) → 0

is obtained from the tangent-obstruction sequence (5.14). Since C is non-
singular, Ext1(ΩC(D),OC) = H1(C, TC(−D)). Moreover, the map i factors
by:

H1(C, TC(−D)) → H1(C, TC) → H1(C, π∗TP1). (5.17)

The first map in (5.17) is certainly surjective. Since d > 0, the sheaf map
TC → π∗TP1 has a torsion quotient and the second map in (5.17) is also
surjective. Hence, i is surjective and Obs(π) = 0.

The second required property of the virtual class is the C∗-localization
formula discussed in Section 6.

6 Virtual localization

6.1 Atiyah-Bott localization

Let V be a nonsingular algebraic variety (or Deligne-Mumford stack) equipped
with an algebraic C∗-action. The Atiyah-Bott localization formula expresses
equivariant integrals over V as a sum of contributions over the C∗-fixed
subloci.
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Let H∗
C∗(V ) denote the equivariant cohomology of V with Q-coefficients.

Let H∗
C∗(BC∗) = Q[t] be the standard presentation of the equivariant coho-

mology ring of C∗. The equivariant cohomology ring H∗
C∗(V ) is canonically

a H∗
C∗(BC∗)-module. Let

H∗
C∗(V )[ 1

t
] = H∗

C∗(V ) ⊗ Q[t,
1

t
]

denote the H∗
C∗(BC∗)-module localization at the element t ∈ H∗

C∗(BC∗).
Let AC∗

∗ (V ) denote the closely related equivariant Chow ring of V with
Q-coefficients (defined in [23, 90] via homotopy quotients in the algebraic
category). AC∗

∗ (V ) is a module over A∗
C∗(BC∗) = Q[t].

Let {V f
i } be the connected components of the C∗-fixed locus, and let

ι : ∪iV
f
i → V

denote the inclusion morphism. The nonsingularity of V implies each V f
i is

also nonsingular [51]. Let Ni denote the normal bundle of V f
i in V , and let

e(Ni) denote the equivariant Euler class (top Chern class) of Ni.
The Atiyah-Bott localization formula [8] is:

[V ] = ι∗
∑

i

[V f
i ]

e(Ni)
∈ H∗

C∗(V )[ 1
t
] (6.1)

The formula is well-defined as the Euler classes e(Ni) are invertible in the
localized equivariant cohomology ring.

By a result of Edidin-Graham, formula (6.1) holds also in the localized
equivariant Chow ring AC∗

∗ (V )[ 1
t
].

Let ξ ∈ H∗
C∗(V ) be a class of degree equal to (twice) the dimension of

V . The Bott residue formula [9] expresses integrals over V in terms of fixed
point data: ∫

V

ξ =
∑

i

∫

V f
i

ι∗(ξ)

e(Ni)
.

The Bott residue formula is an immediate consequence of (6.1). Localization
therefore provides an effective method of computing integrals over V when
the fixed loci V f

i are well-understood.
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6.2 Localization of virtual classes

Let V be an algebraic variety (or Deligne-Mumford stack) equipped with a
C∗-action. Let V carry a perfect obstruction theory φ : E• → L•

V equipped
with an equivariant C∗-action. While V may be arbitrarily singular, a local-
ization formula for the virtual class holds.

Let {V f
i } be the connected components of the scheme theoretic C∗-fixed

locus as before. Since V may be singular, the components V f
i may be singular

as well. However, each V f
i is equipped with a canonical perfect obstruction

theory [43]. Moreover, a normal complex can be found for each V f
i (replacing

the normal bundle in the nonsingular case). Together, these constructions
yield a natural extension of the Atiyah-Bott localization formula to virtual
classes.

Let E•
i denote the restriction of the complex E• to V f

i . The complex E•
i

may be decomposed by C∗-characters:

E•
i = E•,f

i ⊕ E•,m
i ,

where the first summand corresponds to the trivial character (the C∗-fixed
part) and the second summand corresponds to all the non-trivial characters
(the C∗-moving part). A canonical morphism

φi : E•,f
i → L•

V f
i

(6.2)

is obtained from the C∗-fixed part of φ. It is shown in [43] that (6.2) is a
perfect obstruction theory on V f

i . The C∗-moving part E•,m
i is the defined

to be the virtual (co)normal complex [Nvir
i ]∨.

The virtual localization formula [43] is:

[V ]vir = ι∗
∑

i

[V f
i ]vir

e(Nvir
i )

∈ A∗
C∗(V )[ 1

t
]. (6.3)

The Euler class of Nvir
i = [Em

0,i → Em
1,i] is defined to be:

e(Nvir
i ) =

e(Em
0,i)

e(Em
1,i)

.

The virtual localization formula is well-defined since the Euler classes of the
moving parts of the bundles E0,i and E1,i are invertible after localization. The
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proof of (6.3) in [43] requires the existence of a C∗-equivariant embedding
V → Y in a nonsingular variety (or Deligne-Mumford stack) Y .

In case V is nonsingular, the Atiyah-Bott localization formula is recovered
from (6.3) via the trivial C∗-equivariant perfect obstruction theory on V .

If the nonsingular target X admits a C∗-action, a canonical C∗-action by
translation is induced on M g,n(X, β). Stack quotient constructions prove the
existence of C∗-equivariant nonsingular embeddings for M g,n(X, β) in this
case [43]. The virtual localization formula then provides an effective tool in
the study of integrals in Gromov-Witten theory of X.

6.3 Virtual localization for Mg(P
1, d)

6.3.1 The C∗-action on P1

We first establish our C∗-action conventions on P1. Let V = C2. Let C∗ act
on V with weights 0, 1:

t · [v0, v1] = [v0, tv1]. (6.4)

The action (6.4) canonically induces a C∗-action on P1 = P(V ). This action
will be fixed throughout the paper.

We identify 0,∞ ∈ P1 with the C∗-fixed points of P(V ):

p0 = [1, 0], p1 = [0, 1].

The canonical C∗-actions on the tangent spaces to P(V ) at p0, p1 have weights
+1, −1 respectively.

6.3.2 The C∗-action on M g(P1, d)

The C∗-action on P1 canonically induces a C∗-action on M g(P1, d) by trans-
lation of maps:

t · [π] = [t · π].

As the perfect obstruction theory of M g,n(P1, d) is constructed canonically,
C∗-equivariance is immediate.

The virtual localization formula is studied here for the translation action
on M g,n(P1, d) following [43]. Four properties of the geometry allow for a
complete analysis of the virtual localization formula:

(1) The C∗-fixed locus in M g,n(P1, d) is a disjoint union of nonsingular
(Deligne-Mumford stack) components.
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(2) Each C∗-fixed component is isomorphic a quotient of products of moduli
stacks of pointed curves Mγ,l.

(3) The virtual structure on the C∗-fixed components is the canonical triv-
ial structure on a nonsingular space.

(4) The Euler class of the normal complex is identified in terms of tauto-
logical ψ and λ classes on the fixed components.

6.3.3 The C∗-fixed components

Following [57], we can identify the components of the C∗-fixed locus of
M g,n(P1, d) with a set of graphs. We will always assume d > 0.

A graph Γ ∈ Gg,n(P1, d) consists of the data (V,E,N, γ, j, δ) where:

(i) V is the vertex set,

(ii) γ : V → Z≥0 is a genus assignment,

(iii) j : V → {0, 1} is a bipartite structure,

(iv) E is the edge set,

(a) If the edge e connects v, v′ ∈ V , then j(v) 6= j(v′) (in particular,
there are no self edges),

(b) Γ is connected,

(v) δ : E → Z>0 is a degree assignment,

(vi) N = {1, . . . , n} is a set of markings incident to vertices,

(vii) g =
∑

v∈V γ(v) + h1(Γ),

(viii) d =
∑

e∈E δ(e).

The C∗-fixed components of Mg,n(P1, d) are in bijective correspondence with
the graph set Gg,n(P1, d).

Let π : (C, p1, . . . , pn) → P1 be a C∗-fixed stable map. The images of
all marked points, nodes, contracted components, and ramification points
must lie in the C∗-fixed point set {p0, p1} of P1. In particular, each non-
contracted irreducible component D ⊂ C is ramified only over the two fixed
points {p0, p1}. Therefore D must be nonsingular and rational. Moreover,
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the restriction π|D is uniquely determined by the degree deg(π|D), π|D must
be the rational Galois cover with full ramification over p0 and p1.

To an invariant stable map π : (C, p1, . . . , pn) → P1, we associate a graph
Γ ∈ Gg,n(P1, d) as follows:

(i) V is the set of connected components of π−1({p0, p1}),

(ii) γ(v) is the arithmetic genus of the component corresponding to v (taken
to be 0 if the component is an isolated point),

(iii) j(v) is defined by π(v) = pj(v),

(iv) E is the set of non-contracted irreducible components D ⊂ C,

(v) δ(D) = deg(π|D),

(vi) N is the marking set.

Conditions (vii-viii) hold by definition.
The set of C∗-fixed stable maps with given graph Γ is naturally identified

with a finite quotient of a product of moduli spaces of pointed curves. Define:

MΓ =
∏

v∈V

Mγ(v),val(v).

The valence val(v) is the number of incident edges and markings. M 0,1 and
M 0,2 are interpreted as points in this product. Over MΓ, there is a canonical
universal family of C∗-fixed stable maps,

ρ : U →MΓ,

π : U → P1,

yielding a morphism of stacks τΓ : MΓ →M g,n(P1, d).
There is a natural automorphism group AΓ acting equivariantly on U and

MΓ with respect to the morphisms ρ and π. AΓ acts via automorphisms of
the Galois covers (corresponding to the edges) and the symmetries of the
graph Γ. AΓ is filtered by an exact sequence of groups:

1 →
∏

e∈E

Z/δ(e) → AΓ → Aut(Γ) → 1
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where Aut(Γ) is the automorphism group of Γ: Aut(Γ) is the subgroup of
the permutation group of the vertices and edges which respects all the struc-
tures of Γ. Aut(Γ) naturally acts on

∏
edges Z/δ(e) and AΓ is the semidirect

product.
Let QΓ denote the quotient stack MΓ/AΓ. The induced map:

τΓ/AΓ : QΓ →M g,n(P1, d)

is a closed immersion of Deligne-Mumford stacks. It should be noted that the
subgroup

∏
edges Z/δ(e) acts trivially on MΓ. QΓ is a nonsingular Deligne-

Mumford stack.
The above set-theoretic analysis proves a component of the C∗-fixed stack

of M g,n(P1, d) is supported on the substack QΓ.

6.3.4 The C∗-fixed perfect obstruction theory

Let φ : E• → L•
Mg,n(P1,d)

denote the C∗-equivariant perfect obstruction theory

of the moduli of maps. Let E•,Γ denote the restriction of E• to QΓ. Denote
the cohomology of E•,Γ by:

0 → Tan → E0,Γ → E1,Γ → Obs → 0. (6.5)

The tangent-obstruction sequence may be studied on QΓ — the sequence
is obtained from the cohomology of the (dual of) the restriction to QΓ of
the top distinguished triangle of (5.12). The fiber of the tangent-obstruction
sequence over [π] ∈ QΓ is:

0 → Ext0(ΩC(P ),OC) → H0(C, π∗TP1) → Tan (6.6)

→ Ext1(ΩC(P ),OC) → H1(C, π∗TP1) → Obs → 0.

The elements of (6.6) are vector bundles on QΓ (instead of possibly singular
sheaves) as theirs ranks are constant on [π] ∈ QΓ.

The scheme structure of the C∗-fixed stack supported on QΓ may be
determined from the perfect obstruction theory. The Zariski tangent space
at [π] to the C∗-fixed stack is Tanf

[π]. A direct study of the C∗-fixed part of

(6.6) in [43] shows this Zariski tangent space to be isomorphic to the tangent
space of QΓ. As QΓ is a nonsingular stack, we may conclude the QΓ is a
component of the C∗-fixed stack.
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The second use of (6.6) is to determine the perfect obstruction theory
of the C∗-fixed component QΓ induced by φ. An analysis of the C∗-fixed
part of (6.6) immediately implies the induced perfect obstruction theory is
trivial [43]. It is quite easy to analyze the sequence (6.6) as the stable maps
parameterized by QΓ are of a uniformly simple character.

The virtual localization formula for M g,n(P1, d) may now be written as:

[Mg,n(P1, d)]vir =
∑

Γ∈Gg,n(P1,d)

1

|AΓ|
τΓ∗[MΓ]

e(Nvir
Γ )

(6.7)

in AC∗

∗ (M g,n(P1, d))[ 1
t
]. The C∗-fixed loci QΓ enter (6.7) as push-forwards of

MΓ via τΓ.

6.3.5 The normal complex

The tangent-obstruction sequence (6.6) also determines the Euler class of
the normal complex of C∗-fixed loci induced by φ. The moving parts of the
vector bundle sequences (6.5-6.6) imply:

1

e(Nvir)
=
e(Ext0(ΩC(P ),OC)m)

e(Ext1(ΩC(P ),OC)m)
· e(H

1(C, π∗TP1)m)

e(H0(C, π∗TP1)m)
. (6.8)

Let Γ ∈ Gg,n(P1, d). The above identification (6.8) precisely specifies the
τΓ pull-back of 1/e(Nvir) to MΓ,

MΓ =
∏

v∈V

Mγ(v),val(v). (6.9)

The pull-backs of the Euler classes of the vector bundles on the right of (6.8)
naturally split over the vertex factors of Γ. We will find:

τ ∗Γ(
1

e(Nvir)
) = (−1)d

∏

v∈V

1

N(v)
, (6.10)

where the vertex contributions 1/N(v) lie in localized equivariant cohomology,

1

N(v)
∈ AC∗

∗ (Mγ(v),val(v))[ 1
t
].
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6.3.6 Vertex contributions

Intermediate vertex and edge contributions 1/Ñ(v) and 1/Ñ(e) naturally
arise in the geometric analysis of the (6.8). The intermediate contributions
will be joined to yield the single vertex contribution 1/N(v).

There are four types of vertices which we treat independently here. In
integration formulas, a uniform treatment of the four types is often found.

A vertex v is stable if 2γ(v) − 2 + val(v) > 0. If v is stable, the factor
Mγ(v),val(v) is a factor of MΓ by (6.9). The intermediate contribution 1/Ñ(v)
will be a equivariant cohomology class on the factor Mγ(v),val(v) in this case.

• Let v be a stable vertex. Let e1, . . . , el denote the distinct edges incident
to v (in bijective correspondence to a subset of the (local) markings of the
moduli space Mγ(v),val(v)). Let ψi denote the cotangent line of the marking
corresponding to ei.

1

Ñ(v)
=

l∏

i=1

1
(−1)j(v)t

δ(ei)
− ψi

·

((−1)j(v)t)l−1 ·
γ(v)∑

i=0

(−1)i((−1)j(v)t)γ(v)−iλi.

The three factors in 1/Ñ(v) are the contributions of Ext1(ΩC(P ),OC)m,
H0(C, π∗TX)m, and H1(C, π∗TX)m respectively. Ext0(ΩC(P ),OC)m does not
contribute to stable vertices.

We note both the tautological ψ and λ classes enter in 1/Ñ(v). The
Gromov-Witten theory of P1 is therefore fundamentally related to the inter-
section theory of the moduli space of curves.

If v is an unstable vertex, then γ(v) = 0 and val(v) ≤ 2. There are three
unstable cases: two with valence 2 and one with valence 1.

• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 2. Let e1 and e2
be the two incident edges. Then:

1

Ñ(v)
=

1
(−1)j(v)t

δ(e1)
+ (−1)j(v)t

δ(e2)

· (−1)j(v)t =
1

1
δ(e1)

+ 1
δ(e2)

.

The factors are obtained from Ext1(ΩC(P ),OC)m and H0(C, π∗TP1)m respec-
tively.
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• Let v be a 1-marked vertex with γ(v) = 0 and val(v) = 2. Let e be the
unique incident edge. Then:

1

Ñ(v)
= 1,

there are no contributing factors.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 1. Let e be the
unique incident edge. Then:

1

Ñ(v)
=

(−1)j(v)t

δ(e)
,

where Ext0(ΩC(P ),OC)m is the only contributing factor.
All of these contributions are easily extracted from an analysis of (6.8)

[43].

6.3.7 Edge contributions

Let e ∈ E be an edge corresponding to the non-contracted irreducible com-
ponent D ⊂ C (where

[π : (C, p1, . . . , pn) → P1]

is a moduli point parameterized by MΓ). The edge contribution,

1

Ñ(e)
∈ AC∗

∗ (BC∗)[ 1
t
],

is the inverse Euler class of the C∗-representation H0(D, π∗TP1)m. The con-
tribution is obtained from H0(C, π∗TP1)m.

Consider the C∗-equivariant Euler sequence on P1:

0 → O → O(1) ⊗ V → TP1 → 0.

After pulling back to D and taking cohomology, we find:

0 → C → H0(D,O(δ(e))) ⊗ V → H0(D, π∗TP1) → 0. (6.11)

The C∗-weight on C is trivial, and the weights of H0(D,O(δ(e))) are:

− it

δ(e)
, 0 ≤ i ≤ δ(e).
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The weights of V are 0, 1. The weights of the of the middle term in (6.11)
are therefore the pairwise sums:

− it

δ(e)
, 1 − it

δ(e)
, 0 ≤ i ≤ δ(e).

As only the moving weights concern us, we find:

1

Ñ(e)
=

1

(−1)δ(e) δ(e)!2

δ(e)2δ(e) t2δ(e)
.

By the analysis of [43], the contributions 1/Ñ(v) and 1/Ñ(e) together
account for the entire right side of (6.8). We find:

τ ∗Γ(
1

e(Nvir)
) =

∏

v∈V

1

Ñ(v)
·
∏

e∈E

1

Ñ(e)
. (6.12)

6.3.8 1/N(v)

Since the intermediate edge contribution (−1)δ(e)Ñ(e) admits a square root,

√
(−1)δ(e)

Ñ(e)
=
δ(e)δ(e)

δ(e)!
t−δ(e),

the edge contributions may be distributed to the incident vertices. Let v be
a vertex with incident edges e1, . . . , el. Define 1/N(v) by:

1

N(v)
=

1

Ñ(v)
·

l∏

i=1

δ(ei)
δ(ei)

δ(ei)!
t−δ(ei).

Equation (6.12) then immediately implies (6.10).

6.3.9 Integration

Virtual localization yields an integration formula for the Gromov-Witten
theory of P1. The expected dimension of the moduli space M g,n(P1, d) is
2g − 2 + 2d+ n. Let ξ be an equivariant class

ξ ∈ H
2(2g−2+2d+n)
C∗ (Mg,n(P1, d),Q).
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Via the canonical morphism,

H∗
C∗(Mg,n(P1, d),Q) → H∗(M g,n(P1, d),Q),

The class ξ may be viewed as an equivariant lift of an ordinary cohomology
class on M g,n(P1, d) — called the non-equivariant limit of ξ.

The virtual residue formula for the integral of ξ obtained from virtual
localization is:

∫

[Mg,n(P1,d)]vir

ξ =
∑

Γ∈Gg,n(P1,d)

(−1)d

|AΓ|

∫

MΓ

τ ∗Γ(ξ)∏
v∈V N(v)

. (6.13)

The left side of (6.13) is equal to the integral of the non-equivariant limit of
ξ. Only the t0 terms contribute to the right side after integration.

Formula (6.13) effectively relates integrals in the Gromov-Witten theory
of P1 to tautological integrals over the moduli space of curves.

6.4 Gravitational descendents

We explain here an application of the virtual localization formula to the
descendent invariants of P1:

〈
r∏

i=1

τai
·

r+s∏

j=r+1

τbj
(ω)〉P1

g,d =

∫

[Mg,n(P1,d)]vir

r∏

i=1

ψai

i ·
r+s∏

j=r+1

ψ
bj

j ev∗
j(ω). (6.14)

All terms of integrand of (6.14) are equipped with canonical C∗-equivariant
lifts. First, the C∗-action is canonically lifted to the cotangent classes ψi

of M g,n(P1, d). Second, the class ω = c1(O(1)) is canonically lifted to
H2

C∗(P1,Q) via the canonical C∗-action on O(1) — the C∗-action on V in-
duces an action on the tautological line O(−1) and (by dualizing) an action
on O(1). The C∗-action on O(1) has fiber weights

w0 = 0, w1 = −1

over the points p0, p1 ∈ P1 respectively. Finally, the class ev∗
j(ω) may be

canonically lifted from the lift of ω.
Let ξ denote the canonical lift of the integrand of (6.14). The virtual

localization formula applied to ξ determines the descendent invariant in terms
of tautological integrals over the moduli spaces of curves:

〈
r∏

i=1

τai
·

r+s∏

j=r+1

τbj
(ω)〉P1

g,d =
∑

Γ∈Gg,n(P1,d)

(−1)d

|AΓ|

∫

MΓ

τ ∗Γ(ξ)∏
v∈V N(v)

.
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The pull-back of ξ to MΓ factorizes over the vertices of Γ:

τ ∗Γ(ξ) =
∏

v∈V

ξ(v).

There are four types of vertex contributions ξ(v).

• Let v be a stable vertex. Let {1, . . . , r + s} denote the (global) marking
set of M g,r+s(P

1, , d). Let

R ⊂ {1, . . . , r}, S ⊂ {r + 1, . . . r + s}
denote the subsets of the global markings lying on v. Then,

ξ(v) =
∏

i∈R

ψai

i ·
∏

i∈S

ψbi

i wj(v)t ∈ H∗
C∗(Mγ(v),val(v)).

Note this contribution vanishes if j(v) = 0 and S is non-empty.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 2. Then,

ξ(v) = 1.

• Let v be a 1-marked vertex with γ(v) = 0 and val(v) = 2. Let e denote
the unique edge incident to e. If the marking i of v satisfies 1 ≤ i ≤ r, then

ξ(v) =
(
− (−1)j(v)t

δ(e)

)ai

.

If the marking i of v satisfies r + 1 ≤ i ≤ r + s, then

ξ(v) =
(
− (−1)j(v)t

δ(e)

)bi

wj(v)t.

Note the second contribution vanishes if j(v) = 0.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 1. Then,

ξ(v) = 1.

We find an explicit formula for the gravitational descendent invariants of
P1 in terms of tautological integrals over the moduli space of curves.

Proposition 6.1. The gravitational descendents of P1 are determined by
graph sums of Hodge integrals:

〈
r∏

i=1

τai
·

r+s∏

j=r+1

τbj
(ω)〉P1

g,d =
∑

Γ∈Gg,n(P1,d)

(−1)d

|AΓ|

∫

MΓ

∏

v∈V

ξ(v)

N(v)
.
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7 From Hurwitz numbers to Hodge integrals

7.1 The proof of Theorem 2

The Hurwitz numbers Hg,µ count genus g covers of P1 with profile µ over
∞ and simple ramification over a fixed set of finite points. The relation-
ship between Hurwitz numbers and Hodge integrals is proven here via the
Gromov-Witten theory of P1.

The proof of Theorem 2 is immediate in case µ is trivial, the case of the
Hurwitz numbers Hg,d. The Hurwitz numbers Hg,d arise as integrals against
[M g(P1, d)]vir via the branch morphism. The Hodge integral relationship is
then a direct consequence of the virtual residue formula. The argument for
Hg,d is explained first in Section 7.2.

Theorem 2 is proven for arbitrary profile µ in Section 7.3. The Hurwitz
numbers Hg,µ arise as integrals over natural components of M g(P1, d). A
detailed analysis is required to extract the relevant component contributions
from the virtual residue formula [44]. Our presentation in Section 7.3 follows
[44].

7.2 The Hurwitz number Hg,d

7.2.1 Integrals

The Hurwitz number Hg,d = Hg,1d counts genus g covers of P1 étale over ∞
with

r = 2g − 2 + 2d

fixed finite simple ramification points. The branch morphism br constructed
in Section 5.2 is:

br : M g(P1, d) → Symr(P1).

Let ξp denote (the Poincaré dual of) the point class of Symr(P1).

Proposition 7.1. The Hurwitz number Hg,d is an integral in Gromov-Witten
theory:

Hg,d =

∫

[Mg(P1,d)]vir

br∗(ξp).

Proof. The locus Mg(P1, d) ⊂ M g(P1, d) is nonsingular (of the expected
dimension) by Proposition 5.2.
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Let z1, . . . , zr ∈ P(V ) be distinct points. If [π : C → P1] is a stable map
with a singular domain curve, then the divisor br(π) must contain a double
point. Therefore, br−1(

∑r
i=1[zi]) ⊂Mg(P1, d). By Bertini’s Theorem applied

to the morphism

br : Mg(P1, d) → Symr(P1) = Pr,

a general divisor
∑r

i=1[zi] intersects the stack Mg(P1, d) transversely via br
in a finite number of points. These intersections are exactly the finitely
many Hurwitz covers Hg,d ramified over {zi} (weighted by 1/|Aut| in the
intersection product).

7.2.2 Localization

We follow the conventions set in Section 6.3.1 regarding the C∗-action on
P1 = P(V ).

The canonical C∗-actions on the spaces M g(P1, d) and Symr(P1) are br-
equivariant by the canonical construction of the branch morphism [31].

Let ξ be the C∗-equivariant lift of the point class ξp corresponding to the
C∗-fixed divisor r[p0] ∈ Symr(P(V )). The integral,

Hg,d =

∫

[Mg(P1,d)]vir

br∗(ξ),

may then be evaluated via the virtual residue formula:

Hg,d =
∑

Γ∈Gg(P1,d)

(−1)d

|AΓ|

∫

MΓ

br∗(ξ)∏
v∈V N(v)

. (7.1)

Symr(P1) has r + 1 isolated fixed points: (r − a)[p0] + a[p1], for 0 ≤
a ≤ r. For each graph Γ, the morphism br contracts MΓ to a fixed point of
Symr(P1). Therefore, br∗(ξ)|MΓ

= 0 unless br(MΓ) = r[p0].
Let [π : C → P1] be a stable map such that br(π) = r[p0]. All nodes,

collapsed components, and ramifications of π must lie over p0. Hence, if
br(MΓ) = r[p0], the graph Γ may not have any vertices of positive genus or
valence greater than 1 lying over p1. Moreover, the degrees of the edges of Γ
must all be 1.

Exactly one graph Γ0 satisfies br(MΓ) = r[p0]. Γ0 is determined by the
following construction. Γ0 has a unique genus g vertex v0 lying over p0 which
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is incident to exactly d degree 1 edges. The edges connect v0 to d unstable,
unmarked vertices v1

1, . . . , v
d
1 of valence 1 and genus 0 lying over p1.

By definition, MΓ0 = M g,d. Since the automorphism group of Γ0 is the
full permutation group of the edges, |AΓ0| = d!. The vertex contributions of
the Euler class of the normal complex were found in Section 6.3.8:

1

N(v0)
=
tg − tg−1λ1 + tg−2λ2 − tg−3λ3 + . . .+ (−1)gλg∏d

i=1(t− ψi)
t−1,

for the unique vertex over p0 and

1

N(vi
1)

= −1,

for each of the d unstable vertices over p1.
By the excess intersection formula, the class br∗(ξ)|MΓ

is the C∗-equivariant
Euler class of the normal bundle of the point r[p0] in Symr(P(V )):

br∗(ξ)|MΓ0
= r! tr,

easily computed, for example, via the canonical isomorphism

Symr(P1) = P(SymrV ∗).

The sum (7.1) contains only one term:

Hg,d =
(−1)d

|AΓ0 |

∫

MΓ0

br∗(ξ)∏
v∈V N(v)

.

After substitution of the identified factors, we find:

Theorem 2. (For Hg,d).

Hg,d =
(2g − 2 + 2d)!

d!

∫

Mg,d

1 − λ1 + λ2 − λ3 + . . .+ (−1)gλg∏d
i=1(1 − ψi)

,

for (g, d) 6= (0, 1), (0, 2).

The genus 0 formula,

H0,d =
(2d− 2)!

d!
dd−3, (7.2)

immediately follows from Theorem 2 together with the evaluations:
∫

M0,n

ψa1
1 · · ·ψan

n =

(
n− 3

a1, . . . , an

)
.

Equation (7.2) was first found by Hurwitz.
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7.3 The Hurwitz number Hg,µ

7.3.1 Overview

The proof of Theorem 2 for Hg,µ requires a study of maps with fixed profile
over ∞. However, the strategy of Section 7.2 is maintained. The Hurwitz
number Hg,µ is first identified as an integral over a restricted moduli space
of maps. Then, Theorem 2 is deduced from a vertex contribution via the
virtual residue formula. The presentation here follows [44].

7.3.2 Moduli spaces and integrals

Let C be a nonsingular genus g curve. Let π : C → P1 be a map with
profile µ = (m1, . . . , ml) over p1 = ∞. Let d = |µ| be the degree of π. Let
r = 2g − 2 + d + l be the number of simple ramifications of π over finite
points. Let k =

∑
i(mi − 1) = d− l. The branch morphism is:

br : M g(P1, d) → Symr+k(P1) = Pr+k.

Let Lk denote the linear subspace of Symr+k(P1) defined by:

Lk = { D + k[p1] | D ∈ Symr(P1)}.

As π has profile µ over p1, the branch divisor satisfies br(π) ∈ Lk. Define
M g(Lk) by the C∗-equivariant fiber square:

M g(Lk) −−−→ M g(P1, d)

brk

y br

y

Lk
ι−−−→ Symr+k(P1).

(7.3)

A virtual class of dimension r is induced on M g(Lk) by the Gysin map:

[M g(Lk)]vir = ι![M g(P1, d)]vir.

Theorem 2 is proven by virtual localization on Mg(Lk).
As before, let Mg(P1, d) be the open moduli space of maps with non-

singular domains. By Proposition 5.2, Mg(P1, d) is a nonsingular Deligne-
Mumford stack of pure dimension r + k. Let Mg(µ) ⊂Mg(P1, d) denote the
(reduced) substack of maps with profile µ over p1. Mg(µ) is of pure dimension
r. Let

Mg(µ) ⊂M g(µ)
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denote the closure.
M g(µ) is a substack ofMg(Lk) equal to a union of irreducible components.

The restricted branch divisor is well-defined:

brk = M g(µ) → Lk.

Let ξp denote (the Poincaré dual of) the point class of Lk.

Proposition 7.2. The Hurwitz number Hg,µ is an integral:

Hg,µ =

∫

[Mg(µ)]

br∗k(ξp).

Proof. The integral is well-defined as M g(µ) is of pure dimension r. By
Bertini’s Theorem, a general point

∑r
i=1[zi] + k[p1] of Lk intersects the stack

M g(µ) transversely via brk in a finite number of nonsingular points of Mg(µ).
These intersections are exactly the finitely many Hurwitz covers Hg,µ simply
ramified over {zi} (weighted by 1/|Aut| in the intersection product).

7.3.3 Multiplicity

The moduli space Mg(µ) ⊂Mg(P1, d) occurs as an open set of the intersection
br−1(Lk)∩Mg(P1, d). The multiplicity of br−1(Lk)∩Mg(P1, d) along Mg(µ)
will be required in the proof of Theorem 2.

Lemma 7.3. The intersection br−1(Lk)∩Mg(P1, d) is of uniform multiplicity

mult(µ) = k!
l∏

i=1

mmi−1
i

mi!

along Mg(µ).

Proof. Let m ≤ r + k. Let x1, . . . , xm be distinct points of P1. Define the
linear space L(x1, . . . , xm) ⊂ Symr+k(P1) by:

L(x1, . . . , xm) = { D +

m∑

i=1

[xi] | D ∈ Symr+k−m(P1)}.

Let [π] ∈ Mg(µ) be a map with simple ramification over the points
z1, . . . zr ∈ P1. Assume the linear space L(z1, . . . , zr) intersects Mg(µ) trans-
versely via br at nonsingular reduced points (including [π]). The assumption
holds for all [π] in a dense open subset of Mg(µ) by Bertini’s Theorem.

Let {z′j(s)}k
j=1 be holomorphic paths in P1 satisfying:
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(i) z′j1(s) 6= z′j2(s), for all j1 6= j2 and 0 6= s ∈ C,

(ii) z′j(0) = p1, for all j.

The substacks br−1(L(z′1(s), . . . , z′k(s))) ∩Mg(P1, d) form a flat family spe-
cializing to br−1(Lk) ∩Mg(P1, d) at s = 0.

For all except finitely many special values of s, zi 6= z′j(s). At nonspecial

values, L(z1, . . . , zr) intersects br−1(L(z′1(s), . . . , z′k(s))) transversely via br at
nonsingular reduced points corresponding to Hg,d Hurwitz covers with simple
ramification over {zi} ∪ {z′j(s)}.

Let H(s) denote the set of the Hurwitz covers specified by s. Let H(π) ⊂
H(s) be the subset of Hurwitz covers which specialize to [π] as s → 0. The
multiplicity of br−1(Lk) at [π] is equal to |H(π)|.

H(s) is equal to the set of (r + k)-tuples of 2-cycles

(γ1, . . . , γr, γ
′
1, . . . γ

′
k)

modulo Sd-conjugation satisfying:

(a) γ1, . . . , γr, γ
′
1, . . . , γ

′
k generate a transitive subgroup of Sd,

(b)
∏r

i=1 γi

∏k
j=1 γ

′
j = 1.

Let cm1 · · · cml
∈ Sd be a fixed element with cycle decomposition µ. The

elements H(π) ⊂ H(s) bijectively correspond to solutions of the equation:

k∏

j=1

γ′j = cm1 · · · cml
. (7.4)

The number of solutions of (7.4) is proven to equal

k!
l∏

i=1

mmi−1
i

mi!

in Lemma 7.4 below.

Lemma 7.4. The equation
∏k

j=1 γ
′
j = cm1 · · · cml

∈ Sd has

k!

l∏

i=1

mmi−1
i

mi!

solutions for k-tuples (γ′1, . . . , γ
′
k).
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Proof. A 2-cycle (x1x2) lies in the span of a cycle c = (y1 · · · ym) if

{x1, x2} ⊂ {y1, . . . , ym}.

Each solution of
k∏

j=1

γ′j = cm1 · · · cml
(7.5)

has the following property: for each i, exactly mi − 1 of the 2-cycles γ′j lie in
the span of cmi

.
An elegant proof of the above property is given in [44]. A solution of

(7.4) defines a degree d cover D → P1 with simple ramifications determined
by {γ′j} at fixed finite points q1, . . . qk and profile µ over p1. The arithmetic
genus of D is 1 − l by the Riemann-Hurwitz formula. As the preimage of p1

contains l nonsingular points of D, D has at most l components. Hence, D
must consist of exactly l disconnected genus 0 components ∪l

i=1Di. Each Di is
fully ramified over p1 with profile mi. Therefore, Di must be simply ramified
over exactly mi − 1 finite points. The proof of the property is complete.

As the number of factorizations of an m-cycle into m−1 transpositions in
Sm is well-known to be mm−2, the solutions of (7.5) are now easily counted:

(
k

m1 − 1, . . . , ml − 1

) l∏

i=1

mmi−2
i = k!

l∏

i=1

mmi−1
i

mi!
.

7.3.4 Localization

The virtual localization formula for Mg(P1, d) yields:

[M g(Lk)]vir =
∑

Γ∈Gg(P1,d)

1

|AΓ|
τΓ∗[MΓ] ∩ br∗[Lk]

e(Nvir
Γ )

(7.6)

in AC∗

∗ (M g(Lk))[ 1
t
] via the Gysin map.

Let ξ be the C∗-equivariant lift of the point class ξp of Lk corresponding
to the C∗-fixed point r[p0] + k[p1] ∈ Lk. The integral

∫

[Mg(Lk)]vir

br∗k(ξ) (7.7)
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is determined by the localization formula (7.6).
However, the Hurwitz number Hg,µ is not equal to (7.7), but rather to

the corresponding integral over Mg(µ) by Proposition 7.2. The central result
is the identification of the contribution of Mg(µ) to the integral (7.7).

Let Γµ be the following distinguished graph. Γµ has a unique genus
g vertex v0 lying over p0 which is incident to exactly l edges of degrees
m1, . . . , ml. The edges connect v0 to l unstable, unmarked vertices v1

1 , . . . , v
l
1

of valence 1 and genus 0 lying over p1.

Proposition 7.5.

mult(µ)

∫

Mg(µ)

br∗k(ξ) =
1

|AΓµ |

∫

MΓµ

br∗[Lk] ∪ br∗k(ξ)

e(Nvir
Γµ

)
.

Proposition 7.5 is proven in Section 7.3.6 below.
By definition, MΓµ = Mg,l. The order of the automorphism group is

easily determined:

|AΓµ| = |Aut(µ)|
l∏

i=1

mi.

The vertex contributions of the Euler class of the normal complex,

1

e(Nvir
Γµ

)
=

1∏
v∈V N(v)

,

were found in Section 6.3.8:

1

N(v0)
=
tg − tg−1λ1 + tg−2λ2 − tg−3λ3 + . . .+ (−1)gλg∏d

i=1(
t

mi
− ψi)

tl−1−d
l∏

i=1

mmi

i

mi!
,

for the unique vertex over p0 and

1

N(vi
1)

= −t
1−mi

mi

mmi

i

mi!
,

for the ith unstable vertex over p1.
By the excess intersection formula, the class

br∗(Lk) ∪ br∗k(ξ)|MΓ
= (−1)kr!k!tr+k
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is the C∗-equivariant Euler class of the normal bundle of the point r[p0]+k[p1]
in Symr+k(P1).

After substitution of these identified factors, Propositions 7.2 - 7.5 and
Lemma 7.3 yield Theorem 2. The Hurwitz number Hg,µ equals

(2g − 2 + |µ| + l)!

|Aut(µ)|

l∏

i=1

mmi

i

mi!

∫

Mg,l

1 − λ1 + λ2 − λ3 + . . .+ (−1)gλg∏l
i=1(1 −miψi)

,

in the stable range 2g − 2 + ℓ(µ) > 0.

7.3.5 Localization isomorphisms

The following result proven in [23, 59] will be used several times in the proof
of Proposition 7.5.

Lemma 7.6. Let V be an algebraic variety (or Deligne-Mumford stack)
equipped with a C∗-action. Let

ι : ∪iV
f
i → V

be the inclusion of the connected components of the C∗-fixed locus of V . Then
ι∗ is an isomorphism after localization:

ι∗ :
⊕

i

AC∗

∗ (V f
i )[ 1

t
]

∼→ AC∗

∗ (V )[ 1
t
]. (7.8)

Proof. We prove the result in case V admits a nonsingular C∗-equivariant
embedding V → Y . The full result in proven in [23, 59].

The surjectivity of ι∗ after localization follows from the right exact se-
quence of equivariant Chow groups of a closed inclusion:

AC∗

∗ (∪iV
f
i ) → AC∗

∗ (V ) → AC∗

∗ (U) → 0.

Since U admits a fixed point free C∗-action, there is an isomorphism

AC∗

∗ (U)
∼
= A∗(U/C

∗).

The right Chow group has finite grading (as U/C∗ is a finite dimensional al-
gebraic variety (or Deligne-Mumford stack)) . Therefore, AC∗

∗ (U) is t-torsion
and vanishes after localization.
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Injectivity is easily proven in case V admits an equivariant nonsingular
embedding V → Y . Let

j : Y f → Y

denote the inclusion of the C∗-fixed locus. Y f is nonsingular (but possibly
disconnected) Let N denote the normal bundle of Y f ⊂ Y . Since Y f ∩ V =
∪iV

f
i , there is a Gysin map obtained by intersection with Yf in Y :

j! : AC∗

(V ) →
⊕

i

AC∗

(V f
i ).

The composition j! ◦ ι∗ is equal to multiplication by e(N). As e(N) is invert-
ible after localization, ι is injective after localization.

As the moduli space M g(P1, d) admits C∗-equivariant nonsingular em-
beddings, Lemma 7.6 will only be used in the restricted case considered in
the proof.

7.3.6 Proof of Proposition 7.5

Let X0 = M g(µ). X0 is a union of irreducible components of M g(µ) of
pure dimension r. Let ∪j≥0Xj = Mg(Lk) where {Xj}j≥1 are the remaining
irreducible components of Mg(µ). The virtual class admits a (non-canonical)
decomposition:

[M g(Lk)]vir = ι∗
∑

j≥0

Rj ∈ AC∗

r (M g(Lk)),

where Rj ∈ AC∗

r (Xj). Since X0 is of multiplicity mult(µ) in br−1(Lk) ∩
Mg(P1, d),

R0 = mult(µ) [X0].

The classes {Rj}j≥1 are quite difficult to describe.
The C∗-fixed loci of M g(Lk) correspond to the set of graphs

Gg(µ) ⊂ Gg(P1, d)

satisfying br(MΓ) ∈ Lk. Let QΓ = MΓ/AΓ denote the C∗-fixed locus corre-
sponding to Γ (as in Section 6.3.3). The localization formula (7.6) may be
written as:

[M g(Lk)]vir = ι∗
∑

Γ∈Gg(P1,d)

CΓ ∈ AC∗

∗ (Mg(Lk))[ 1
t
],
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where CΓ ∈ AC∗

∗ (QΓ)[ 1
t
].

To prove Proposition 7.5, we must show:
∫

Mg(Lk)

ι∗R0 ∩ br∗k(ξ) =

∫

Mg(Lk)

ι∗CΓµ ∩ br∗k(ξ). (7.9)

For each j ≥ 0, we may use the localization isomorphism of Lemma 7.6
to uniquely determine classes Rj,Γ ∈ AC∗

∗ (QΓ)[ 1
t
] satisfying:

ι∗Rj = ι∗
∑

Γ∈Gg(µ)

Rj,Γ.

The localization isomorphism implies:

∑

j≥0

Rj,Γ = CΓ

for all Γ ∈ Gg(µ).
We may rewrite the desired equation (7.9) in the following form:

∫

Mg(Lk)

ι∗
∑

Γ∈Gg(µ)

R0,Γ ∩ br∗k(ξ) =

∫

Mg(Lk)

ι∗
∑

j≥0

Rj,Γµ ∩ br∗k(ξ). (7.10)

It will therefore suffice to prove the following vanishing results:

(i)
∫

Mg(Lk)
ι∗R0,Γ ∩ br∗k(ξ) = 0 for Γ 6= Γµ,

(ii)
∫

Mg(Lk)
ι∗Rj,Γµ ∩ br∗k(ξ) = 0 for j 6= 0.

A study of the component geometry of M(Lk) will be required to prove (i)
and (ii).

Let Γ ∈ Gg(µ) and let br(MΓ) = aΓ,0[p0] + aΓ,1[p1]. The inequality

aΓ,1 ≥ k

holds since br(MΓ) ∈ Lk. If aΓ,1 > k, then [QΓ] ∩ br∗k(ξ) = 0 as ξ is the class
corresponding to the C∗-fixed point r[p0] + k[p1]. Since Rj,Γ ∈ AC∗

r (QΓ)[ 1
t
],

we find the trivial vanishing:

(a) Rj,Γ ∩ br∗k(ξ) = 0 if aΓ,1 > k.
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As Xj is a C∗-equivariant locus, we may apply the localization isomor-
phism to decompose Rj on the C∗-fixed locus of Xj. By uniqueness, we
conclude another trivial vanishing:

(b) Rj,Γ = 0 if Xj ∩QΓ = ∅.

Proof of (i). The fixed locus QΓµ meets X0 = M g(µ). In fact the limit

Limt→0 t · [π]

of every element of Mg(µ) lies in QΓµ (see [55]).
Define a stable map π to have nonsingular profile µ over p1 if π−1(µ) is a

divisor of shape µ lying in the nonsingular locus of the domain. A limit [π]
of elements in Mg(µ) must either have nonsingular profile µ or degenerate
over p1. Any degeneration is easily seen to increase the branching order of π
over p1. As QΓµ is the unique fixed locus with nonsingular profile µ over p1,

QΓµ is the unique fixed locus meeting Mg(µ) with branching order exactly k
over p1. Vanishings (a) and (b) then imply (i).

Proof of (ii). Let j 6= 0. By vanishing (b), we may assume Xj ∩ QΓµ 6= ∅.

Since Xj ⊂ M g(Lk), every element [π] ∈ Xj corresponds to a map with
branching order at least k over p1. Since Xj ∩ QΓµ 6= ∅, the general map
[π] ∈ Xj must have nonsingular profile µ over p1.

As in the proof of (i), QΓµ must be the unique fixed locus meeting M g(µ)
with branching order exactly k over p1.

Maps π with no contracted components and nonsingular profile µ over
p1 are easily shown to be limits of Mg(µ). As Xj 6= X0, the general map
[π] ∈ Xj must contain a domain component collapsed away from p1. By the
definition of the branch morphism, br(π) then lies in the singular sublocus
Lsing

k ⊂ Lk:

Lsing
k = { D + k[p1] | D = 2[x1] + [x2] + · · · + [xr−1] ∈ Symr(P1)}.

As Lsing
k is a proper subvariety, the following integral vanishes:

∫

Mg(Lk)

ι∗Rj ∩ br∗k(ξ) = 0. (7.11)

By the localization isomorphism, the integral (7.11) may be rewritten as
∫

Mg(Lk)

ι∗
∑

aΓ,1=k

Rj,Γ ∩ br∗k(ξ) + ι∗
∑

aΓ,1>k

Rj,Γ ∩ br∗k(ξ) = 0.

71



The second sum vanishes completely by (a). As Γ = Γµ is the unique graph
satisfying aΓ,1 = k and Xj ∩ QΓ 6= ∅, all other term in the first sum vanish
by (b). We conclude: ∫

Mg(Lk)

ι∗Rj,Γµ = 0

for j 6= 0.

The proof of Proposition 7.5 is complete.

Part III

Asymptotics of Hurwitz
numbers

8 Random trees

8.1 Overview

The analysis of the N → ∞ asymptotics of the Hurwitz numbers Hg,Nµ

via the asymptotic enumeration of branching graphs will require a study of
trees. Trees naturally arise via edge terms in the homotopy classification of
branching graphs. The enumerative and probabilistic results for trees which
will be required are discussed here. The asymptotic analysis of Hg,Nµ is
undertaken in Section 9.

Section 8.2 contains a minimal discussion of probabilistic terminology.
Section 8.3 is a review of the basic enumeration formulas for trees. The
required properties of random edge trees are discussed in Sections 8.4-8.6.

The literature on trees and random trees is very large. An excellent place
to start is Chapter 5 of [87]. An introduction from a more probabilistic
perspective can be found in [83]. Many asymptotic properties of random
trees find a unified treatment in the theory of continuous random trees due
to Aldous [3, 4]. Fortunately, all the properties of random trees that we shall
need are quite basic. Instead of locating them in the literature, we will prove
these properties from first principles.
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The trees that we will consider naturally come with a choice of two dis-
tinguished vertices (a root and a top). Random trees are more often studied
with one special vertex (rooted trees) or with no special vertices (plain trees).
The properties we will require are simpler in the presence of a root and a
top. The analogous results for rooted trees are less elementary both to state
and to prove.

8.2 Review of probabilistic terminology

A probability space is a triple (Ω,B, P ), where Ω is any nonempty set, B is
a σ-algebra of subsets of Ω called the algebra of events, and

P : B → R≥0

is a measure such that P (Ω) = 1. We will primarily be concerned with finite
sets Ω: B will then include all subsets of Ω, and P will typically be the
uniform probability measure. When the probability measure is understood,
it will be denoted by the symbol Prob.

Any measurable function

X : Ω → Rk

is called a vector-valued random variable. The push-forward measure X∗P
on Rk is called the distribution of X. The integral

〈X〉 =

∫

Ω

X(ω)P (dω) =

∫

Rk

xX∗P (dx)

is called the expectation of X. Two random variables X and Y are said to
be independent if the distribution of their direct sum X ⊕ Y , also known as
the joint distribution of X and Y , is a product-measure.

A sequence {mn} of measures on Rk is said to converge weakly to a mea-
sure m if ∫

Rk

f(x) mn(dx) →
∫

Rk

f(x) m(dx)

for any bounded continuous function f . A sequence of random variables
Xn on a sequence of probability spaces (Ωn,Bn, Pn) is said to converge in
distribution to a random variable X∞ if the measures mn = (Xn)∗Pn converge
weakly to the distribution of X∞, or, equivalently, if

〈f(Xn)〉 → 〈f(X∞)〉 , n→ ∞ ,
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for any bounded continuous function f .
In particular, Xn converge in distribution to the variable identically equal

to 0 if
Prob(Xn ∈ U) → 1

for any neighborhood of U of 0. A basic continuity property of convergence
in distribution, which we will use often, is the following standard result (see,
for example, [11]).

Lemma 8.1. Let Xn and Yn, n = 1, 2, . . . ,∞, be vector-valued random vari-
ables on a sequence (Ωn,Bn, Pn) of probability spaces. If, as n → ∞, we
have

Xn → X∞, Xn − Yn → 0 ,

in distribution, then also
Yn → X∞

in distribution.

Proof. Let ‖X‖ denote a vector norm of X and consider the function

gAB : R≥0 → [0, 1]

such that gAB(x) = 0 for x > B, gAB(x) = 1 for x < A and gAB linearly
interpolates between 1 and 0 on [A,B]. Clearly, for any X,

Prob{‖X‖ ≤ A} ≤ 〈gAB(‖X‖)〉 ≤ Prob{‖X‖ ≤ B} .

For any ǫ > 0, we can find A such that

Prob{‖X∞‖ ≤ A} > 1 − ǫ .

By hypothesis, for any A and B we have

〈gAB(‖Xn‖)〉 → 〈gAB(‖X∞‖)〉 , n→ ∞ .

Therefore, for any B > A,

Prob{‖Xn‖ ≤ B} > 1 − 2ǫ

for all sufficiently large n. For any C > B, we have

Prob{‖Yn −Xn‖ > C −B} → 0 ,
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and, therefore, for all sufficiently large n we have

Prob{Xn ∈ K} > 1 − 2ǫ , Prob{Yn ∈ K} > 1 − 3ǫ ,

where K denotes the compact set

K = {X, ‖X‖ ≤ C} .

Since f is continuous and K is compact, f is uniformly continuous on K
and hence there exists δ > 0 such that

|f(X) − f(Y )| < ǫ ,

whenever X, Y ∈ K and ‖X − Y ‖ < δ. We can choose n large enough so
that

Prob{‖Xn − Yn‖ < δ} > 1 − ǫ .

Collecting all estimates, we obtain

|〈f(Xn) − f(Yn)〉| ≤ ǫ(1 + 12 max |f |) .

for all sufficiently large n. Since ǫ is arbitrary, the Lemma follows.

The above Lemma will often be used in the following situation. Suppose
there exists a “good” subset

Ω′
n ⊂ Ωn

such that on this good subset we have

sup
ω∈Ω′

n

|Xn(ω) − Yn(ω)| → 0 , n→ ∞ ,

and also such that, asymptotically, most ω are good, that is,

Prob Ω′
n → 1 , n→ ∞ .

In this case, Lemma 8.1 implies that if Xn has a limit in distribution then
Yn converges to the same limit.
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8.3 Enumeration of trees

8.3.1 Definitions

A tree (V,E) is a connected graph with no circuits. Let T(n) denote the set
of trees with n vertices. We will consider trees T with additional structures:
vertex and edge labels, and distinguished vertices.

Labelings of vertices and edges are bijections

φV : V → {1, 2, 3, . . . , |V |} ,
φE : E → {1, 2, 3, . . . , |E|} .

We will denote the set of vertex marked trees with n vertices by V(n). Let
E(n) denote the set of edge marked trees with n vertices.

One of the vertices of a tree T may be designated as a distinguished
vertex, called the root of T . The tree T is this case is called a rooted tree.
Let T1(n) denote the set of rooted trees with n vertices. Similarly, let V1(n)
and E1(n) denote the sets n vertex rooted trees with marked vertices and
marked edges respectively.

In addition to the root vertex, one may choose a top vertex of T . The
top vertex may or may not be allowed to coincide with the root vertex. Let
V11 denote vertex marked trees with distinct root and top vertices. V2 will
denote the larger set in which root and top are allowed to coincide. Let E11

and E2 denote the corresponding sets for edge marked trees.
Of these flavors of trees, two will be particularly important for us and

deserve special names. Edge marked trees will be also called branching trees,
and the E11-trees will be called edge trees. Edge trees naturally arise in
the study of the edge contributions in the asymptotic analysis of branching
graphs (see Section 9), whence the name. The term branching tree is justified
by the following:

Lemma 8.2. A branching tree with n vertices is isomorphic to the data of a
branching graph on the sphere Σ0 with perimeter (n), where (n) denotes the
length 1 partition of n.

Proof. First, we make a general remark. By definition, the edges of a branch-
ing graph are labeled by roots of unity, whereas the edges of an edge marked
tree T ∈ E(n) are labeled by 1, 2, 3, . . . , n− 1. We will identify the two kinds
of labeling using the bijection

{1, . . . , n− 1} ∋ k 7→ e2πik/(n−1) ∈ Un−1 .
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A branching tree T can be canonically (up to homeomorphism) embedded in
an oriented sphere Σ0. The embedding is uniquely determined by the follow-
ing condition: the cyclic order induced on the edges incident to each vertex
by the orientation of Σ0 must agree with the cyclic order of the markings
of the edges. The tree T ⊂ Σ0 then defines a branching graph on Σ0 (see
Section 3.1).

Conversely, every branching graph on Σ0 must be a tree (as the comple-
ment determines 1 cell). The edge markings then determine a branching tree
structure.

8.3.2 Automorphisms and counting

Trees T ∈ T (n) may have non-trivial automorphism groups. However, la-
belled trees in the sets V(n) and E(n) admit no non-trivial automorphisms
preserving their markings, the only exception being the unique element of
E(2).

We will exclusively count labelled trees (with distinguished vertices).
Therefore, by the number of trees, we will mean the actual number (ex-
cept in the E(2) case where the number is set, by definition, to 1/2 in order
to account for the order 2 automorphism group). Similarly, when considering
random labelled trees, we will always take the uniform probability measure
on the corresponding set.

8.3.3 Cayley’s formula and its consequences

We recall the following fundamental result about trees:

Proposition 8.3 (Cayley). We have

∑

T∈V(n)

n∏

i=1

z
val(i)
i = z1 · · · zn(z1 + · · · + zn)n−2 (8.1)

where the summation is over all trees T with vertex set {1, . . . , n} and val(i)
denotes the valence of the vertex i in the tree T .

See, for example [87], Theorem 5.3.4, for a proof of this formula. The
formula (8.1) has a large number of corollaries.
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Corollary 8.4. We have

|V(n)| = nn−2 , |E(n)| = nn−3 ,

|V1(n)| = nn−1 , |E1(n)| = nn−2 ,

|V11(n)| = (n− 1)nn−1 , |E11(n)| = (n− 1)nn−2 ,

|V2(n)| = nn , |E2(n)| = nn−1 ,

Recall that |E(2)| = 1/2, by our convention, reflects the order 2 automor-
phism group of the unique element of E(2).

Proof. The enumeration of V(n) is obtained by setting zi = 1, i = 1 . . . n, in
Cayley’s formula (8.1).

Given a vertex marked tree T with n vertices, one can mark its edges in
(n − 1)! ways. The vertex marking can then be removed by dividing by n!
which gives |E(n)| = nn−3. The remaining formulas are obvious.

Corollary 8.5. The number of trees in V(n) such that the valence val(1) of
the vertex 1 is k + 1 equals (n− 1)n−k−2

(
n−2

k

)
.

This is obtained by setting zi = 1, i = 2 . . . n, in (8.1) and extracting the
coefficient of zk+1

1 .
Consider the probability that in a uniformly random vertex marked tree

T ∈ V(n) the valence val(1) of the vertex marked by 1 equals k+ 1. We have

Prob
{

val(1) = k + 1
}

=
(n− 1)n−k−2

(
n−2

k

)

nn−2
→ e−1

k!
, n→ ∞ .

In other words, the valence distribution of a given vertex in a large random
tree converges in distribution to one plus a Poisson random variable with
mean 1.

This observation has an immediate generalization for the joint distribu-
tion of valences of several vertices. Given a vertex v ∈ T , let us call the
number val(v) − 1 the excess valence of the vertex v.

Corollary 8.6. As n→ ∞, the excess valences of vertices of a random tree
T ∈ V(n) converge in distribution to independent Poisson random variables
with mean 1.

Recall that a forest is graph which is a disjoint union of trees. A forest
is rooted if a distinguished vertex, called root, is specified in each connected
component.
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Corollary 8.7. The number of rooted forests with with vertex set {1, . . . , n}
and k connected components is equal to k

(
n
k

)
nn−k−1.

Proof. There exits a simple bijection between rooted forests that we want
to enumerate and trees with vertex set {0, 1, . . . , n} such that the vertex 0
is k-valent. We just add new edges which join 0 to the roots of the forests.
Now we apply Corollary 8.5.

8.3.4 Factorization into transpositions and trees

By Definition 3.2, the Hurwitz number H0,(n) equals the automorphism weighted
count of branching graphs on the sphere Σ0 with one cell of perimeter n. By
Corollary 8.4, H0,(n) = nn−3.

By Definition 3.3, H0,(n) is also equal to (1/n!) times the number of (n−1)-
tuples of transpositions in Sn with product in the conjugacy class of an n-
cycle. Equivalently, nH0,(n) equals the number of solution to the equation:

γ1 . . . γn−1 = (123 . . . n) ∈ Sn,

for 2-cycles γi ∈ Sn.
We therefore obtain the following classical result (used in the proof of

Lemma 7.4 in Section 7.3.3):

Corollary 8.8. The number of factorization of an n cycle into n− 1 trans-
positions in Sn is nn−2.

Corollary 8.8 is a particular case of a formula due to Hurwitz [48, 88] and
was also discovered by Dénes [17].

8.4 Trunk of a random edge tree

Given T ∈ E11(n), denote by tkT the trunk of T , that is, the shortest path
from then root to the top in T . Let | tkT | denote the number of vertices in
the trunk of T . We are interested in the distribution of this quantity with
respect to the uniform probability measure on E11(n) as n→ ∞.

Recall that an exponential random variable ξ with mean 1 is, by defini-
tion, the variable with distribution density e−x dx on [0,+∞). The random
variable

√
2ξ, which has the density x e−x2/2 dx on the half-line (0,∞), is

called a Rayleigh random variable.
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Proposition 8.9. As n → ∞, the random variable
1√
n
| tkT |, where T is

a random edge tree with n vertices, converges in distribution to a Rayleigh
random variable.

Proof. The same distribution of trunk heights is obtained if, instead of edge
trees, we consider random elements of V11(n). The notion of trunk and its
height have an obvious analog for such trees.

Given a tree T ∈ V11(n) with | tkT | = k and n vertices, we can associate
to it a forest with k components by deleting the trunk path tkT from T .
This forest comes with an additional structure, namely, an ordering on the
components of the forest. Since there are k! possible orderings, we conclude
using Corollary 8.7 that the probability to have | tkT | = k equals

k k!

(
n

k

)
nn−k−1

/
(n− 1)nn−1 =

k

n− 1

k−1∏

i=1

(
1 − i

n

)
. (8.2)

If k = x
√
n then, as n→ ∞, we have

ln
k−1∏

i=1

(
1 − i

n

)
∼ −1

n

k−1∑

i=1

i→ −x2/2 ,

hence the probability (8.2) is asymptotic to
1√
n
xe−x2/2, which completes the

proof.

Corollary 8.10. For any ǫ > 0, we have

Prob
{
| tkT | > n1/2+ǫ

}
→ 0 , n→ ∞ ,

with respect to the uniform probability measure on E11(n).

The trunk of a tree T appears in the literature under various names. See,
for example, [52, 60, 70]. In particular, our trunk is called the spine of T in
[5].

8.5 Size of the root component of a random tree

Given T ∈ E11(r), consider the edges incident to the root vertex. One of these
edges belongs to the trunk trT , we will call it the trunk edge. One of the two
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components of T that the trunk edge separates contains the root vertex, we
call this component the root component of T . We define the top component
of T similarly and call the complement of the root and top components of T
the trunk component of T . These notions are illustrated in Figure 7

Figure 7: The components of tree T ∈ E11(r)

Proposition 8.11. As n→ ∞, the probability that the root component of a

random edge tree T ∈ E11(n) contains k vertices has limit
kk−1

k!
e−k.

Proof. As in proof of Proposition 8.9, we can replace random edge trees by
random elements of V11. We can construct elements of V11(n) with given
root component of size k as follows: partition the n vertices into sets of order
k and n−k, take an element of V

1(k) and an element of V
2(n−k), join their

roots by an edge, and choose the root of the first tree to be the root of the
union.

It follows that the probability that the root component has size k equals

(
n

k

)
kk−1 (n− k)n−k

(n− 1)nn−1
→ kk−1

k!
e−k , k → ∞ ,

where the asymptotics follow immediately from the Stirling formula (8.5).

The root component of an element of V11(n) determines a rooted tree in
T1 after forgetting the vertex labels. The argument for Lemma 8.11 proves
more precise statements.
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Corollary 8.12. The probability that T ∈ T1(k) corresponds to the root
component of a random tree T ∈ V11(n) is asymptotic to

e−k

|Aut(T )|
as n→ ∞.

Corollary 8.13. The top component of random tree V11(n) has the same
distribution as the root component. Moreover, in the n → ∞ limit, the root
and top component distributions are independent.

The asymptotic probabilities of Proposition 8.11 determine a probability
measure.

Lemma 8.14. The measure Prob(k) =
kk−1

k!
e−k is a probability measure on

natural numbers.

Proof. This can be seen, for example, from the equation

w(z) = z ew(z) ,

satisfied by the function

w(z) =

∞∑

k=1

kk−1

k!
zk ,

which is the generating function for |V1(k)| and is, essentially, the same as
the Lambert W-function. The equation implies that

1 = w(1/e) =
∞∑

k=1

kk−1

k!
e−k .

In fact, the measure Prob(k) =
kk−1

k!
e−k is the Borel distribution [13] and

is well known to appear in the context of branching processes and random
trees. See, for example, Section 7 in [83].

Informally, Proposition 8.11 and Lemma 8.14 imply that the size of the
root component of a typical tree stays finite as the size of the tree goes to
infinity. A more formal statement is the following:
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Corollary 8.15. For any ǫ > 0 there exists M such that for all n the proba-
bility that a random tree T ∈ E11(n) has the root component with more than
M vertices is less than ǫ.

Similarly, we have:

Corollary 8.16. For any sequence {cn} such that cn → ∞, the probability
that a random tree T ∈ E11(n) has the trunk component of size ≥ n− cn goes
to 1 as n → ∞. In other words, all but finitely many vertices of a typical
large edge tree T lie in the trunk component.

8.6 Semiperimeters

8.6.1 Definitions

Let T ∈ E11(n) be an edge tree. Make T planar as in Lemma 8.2 and let λ
be a path with follows the perimeter of T once clockwise. Formally, λ is a
function

Z ∋ k 7→ λk ∈ E

periodic with period 2n − 2, which lists the edges in the order of their ap-
pearance along the boundary of Σ0 \ T .

Let φ : E → {1, . . . , n− 1} be the marking of the edges of T which is, by
definition, a part of the structure of an edge tree. Define the angle between
two edges e, e′ ∈ E by

∡(e, e′) =
2π(φ(e′) − φ(e))

n− 1
mod 2π , ∡(e, e′) ∈ (0, 2π] . (8.3)

Consider the perimeter of λ which, by definition, equals

per(λ) =
1

2π

2n−1∑

k=1

∡(λk, λk+1) .

Of course, per(λ) = n because every vertex contributes 1 to the above sum.
We now want to split the path λ, and its perimeter, into two parts:

the root perimeter path λR and the top perimeter path λT . We proceed as
follows. Let er, et ∈ E denote the trunk edges at the root and the top of T ,
respectively. As we follow the path λ, these edges appear in cycles of the
form

(er, . . . , er, . . . , et︸ ︷︷ ︸
λR

, . . . , et, . . . ) ,
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where the dots stand for other edges of T . The root part λR starts after the
first appearance of er and ends with the first appearance of et as shown above.
Similarly, we define the top part λT . We also define the two perimeters, PR

and PT as the perimeters of two paths λR and λT , respectively, and call them
the semiperimeters of T . Since the paths λR and λT are not closed, these
semiperimeters may be fractional. The definition of λR and λT is illustrated
in Figure 8

Figure 8: The paths λR and λT for the tree from Figure 7

We also define the canonical marking

ψ : V → {1, . . . , n}

of the vertices V by the order of their appearance in the concatenated path
λR + λT .

8.6.2 Perimeter estimates

Let us denote the root and top vertices by vr and vt, respectively.
A basic consequence of the definitions is:

Lemma 8.17. For T ∈ E11(n), |PR + PT − n| ≤ 2 .

Proof. The difference between PR +PT and the vertex number n occurs from
losses at vr and vt.

Lemma 8.18. |PR − ψ(vt)| ≤ | tkT |.

84



Proof. As we follow λR, every vertex on the trunk contributes 1 to ψ(vt) and
between 0 and 1 to PR. Every other vertex contributes 1 to both ψ(vt) and
PR.

8.6.3 Semiperimeter distribution

Proposition 8.19. As n→ ∞, the normalized semiperimeter
PR

n
converges

in distribution to the uniform distribution on [0, 1].

Proof. Since, by Lemma 8.18,
∣∣∣∣
PR

n
− ψ(vt)

n

∣∣∣∣ ≤
| tkT |
n

and the right-hand side converges to 0 in distribution by Corollary 8.10, it

suffices to prove that
ψ(vt)

n
converges to the [0, 1]-uniform random variable.

Consider the subset of E11(n) formed by trees with the root component
of fixed cardinality k ∈ {1, 2, . . .}. Clearly, on this subset, ψ(vt) is uni-
formly distributed on the interval {k + 1, . . . , n} and, hence, on this subset,
ψ(vt)

n
converges, in distribution, to the [0, 1]-uniform random variable. Now

Corollary 8.15 concludes the proof.

8.6.4 Perimeter measure

Let A ⊂ R2
≥0 be a compact polygonal region. Define the perimeter measure

mP (A) by:

m
P (A) = lim

N→∞

1√
N

∑

n≥1

∑

T∈E11(n)

(PR(T ),PT (T ))∈NA

1

en (n− 1)!
, (8.4)

where PR(T ) and PT (T ) denote the root and top perimeters of an edge tree
T and NA denotes the region A scaled by a factor of N .

Proposition 8.20. We have:

m
P (A) =

1√
2π

∫

A

dx dy

(x+ y)3/2
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Proof. It suffices to prove the Proposition for the sets A of the form

Ac,d =

{
(x, y), (x+ y) ≤ c,

x

x+ y
≤ d

}
, d ∈ [0, 1] .

It is clear, that in (8.4) we can replace the summation over n ≥ 1 by the
summation over n ≥M for any M , because the contribution of any particular

value of n is suppressed by the factor
1√
N

. By Proposition 8.19, choosing

M sufficiently large, we can make the distribution of
PR

PR + PT
be arbitrarily

close to the uniform distribution on [0, 1], whence

m
P (Ac,d) = dm

P (Ac,1) .

The measure m
P (Ac,1), by Lemma 8.17, just counts the number of trees of

size ≤ cN , or, more concretely,

m
P (Ac,1) = lim

N→∞

1√
N

cN∑

n=1

(n− 1)nn−2

en (n− 1)!
=

lim
N→∞

1√
N

cN∑

n=1

1√
2πn

= lim
N→∞

1

N

cN∑

n=1

1√
2π(n/N)

=
1√
2π

∫ c

0

dt√
t
,

where the second equality uses the Stirling formula (see e.g. [7])

n! =
√

2πn
nn

en

(
1 +O

(
1
n

))
(8.5)

and the last equality is by the definition of the integral. This determines the
measure mP uniquely and concludes the proof.

8.6.5 Independence of semiperimeters and root/top components

The analysis in Section 8.6.3 can be repeated exactly to obtain the asymp-

totics of the normalized perimeter
PR

n
for trees with fixed root and top com-

ponents. Concretely, suppose the fixed root and top components have k and l
vertices respectively. Then, by moving the point where the top component is
attached to the trunk component, one sees that on this set ψ(vt) is uniformly

distributed on the interval {k + 1, . . . , n− l+ 1}. Hence,
ψ(vt)

n
converges to

the uniform distribution on [0, 1]. Using Corollary 8.15 we conclude that:
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Proposition 8.21. In the limit n → ∞, the normalized perimeter
PR

n
of a

random tree T ∈ E11(n) is independent of the root and top components of T
and, in particular, independent of the valences of the root and top vertices of
T .

8.6.6 Effect of relabeling the edges

Recall that, by definition, the edges of an edge tree T ∈ E
11 come with a

bijective labeling
φ : E → {1, 2, . . . , n− 1} .

This labeling goes into the definition of the angle (8.3) between two adjacent
edges of T .

Suppose we have a monotone injective map

σ : {1, 2, . . . , n− 1} → {1, 2, . . . , N} , N ≥ n− 1 ,

using which we modify the definition (8.3) as follows:

∡̃(e, e′) =
2π

N
(σ(φ(e′)) − σ(φ(e))) mod 2π , ∡̃(e, e′) ∈ (0, 2π] ,

and, accordingly, we introduce modified semiperimeters P̃R and P̃T . Because
the vertices which do not belong to the trunk still contribute 1 to P̃R or P̃T ,
respectively, we have ∣∣∣∣∣

P̃R

n
− PR

n

∣∣∣∣∣ ≤
| tkT |
n

.

Recall that by Corollary 8.10 the right-hand side converges to 0 in distribu-
tion as n→ ∞.

9 Asymptotics of the Hurwitz numbers

9.1 Overview

Let µ be a partition with l distinct parts. By Definition 3.2, the Hurwitz
number Hg,µ is a weighted count of the branching graphs on Σg with perime-
ter µ. By Proposition 3.4, the asymptotics of Hg,Nµ as N → ∞ recover
the l-point function Pg(µ1, . . . , µl) defined in (3.3). In the present section,
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we compute these asymptotics using results about random trees obtained in
Section 8.

Instead of analyzing the asymptotics of Hg,Nµ for particular partitions µ,
we will study the Hurwitz asymptotics averaged over a neighborhood U of µ
values, that is, the asymptotics of the number

∑

ν∈NU

Hg,ν (9.1)

as N → ∞. Here, the sum is over integral points ν of NU (the set U scaled
by a factor of N). After weighting by functions of ν, these asymptotics will
define a Hurwitz measure mg(U) of U (see Section 9.2). The Hurwitz measure
mg will uniquely determine the l-point function Pg. The averaged data (9.1)
arises naturally in the Laplace transform of the Hurwitz asymptotics required
to recover Kontsevich’s series Kg (2.8). We will find that the averaging leads
to simplifications in the asymptotic analysis.

The Hurwitz measure mg is analyzed by studying the distribution of cell
perimeters of a random branching graph with a large total perimeter. The
following strategy will be used. The branching graphs of genus g with l cells
are partitioned into finitely many homotopy classes indexed by maps G ∈ G

≥3
g,l

with vertices of valence 3 and higher. Accordingly, the Hurwitz measure mg

is decomposed into a finite sum of contributions mG of homotopy classes.
In Section 9.4, mG is proven to vanish unless G is trivalent. For a triva-

lent G, mG is shown to be a push-forward under a linear map of a product
measures which is the product of the perimeter measures mP (see Section
8.6.4) over the edges of G. After the Laplace transform, we recover precisely
the contribution of G to Kontsevich’s combinatorial model (2.11). This es-
tablishes Theorem 4 and completes the proof of Theorem 1.

9.2 Hurwitz measure

Let A ⊂ Rl
≥0 be a compact polygonal region. Define the genus g Hurwitz

measure mg(A) by:

mg(A) = lim
N→∞

1

N3g−3+3l/2

∑

µ∈NA

Hg,µ

e|µ| r(g, µ)!
. (9.2)

Here, the sum is over integral points µ in NA (the set A scaled by the factor
of N), and

r(g, µ) = 2g − 2 + |µ| + ℓ(µ)
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is a number of simple ramifications of a genus g Hurwitz cover corresponding
to the partition µ.

Proposition 9.1. The Hurwitz measure is determined by:

mg(A) =

∫

A

Hg(x) dx1 · · ·dxl.

Proof. Hg(x) is defined on rational points x ∈ Ql
>0 satisfying xi 6= xj by:

Hg(x1, . . . , xl) = lim
N→∞

1

N3g−3+l/2

Hg,Nx

ed(Nx) r(g,Nx)!
.

Hg(x) is a polynomial function by Theorem 2. The Proposition then fol-
lows directly from Stirling’s formula (8.5) and the definition of the Riemann
integral.

The Laplace transformed measure Lmg is then determined as a function
of y1, . . . , yl by the equivalent formulas:

Lmg(A) = lim
N→∞

1

N3g−3+3l/2

∑

µ∈NA

e−y·µ/N Hg,µ

e|µ|r(g, µ)!

=

∫

A

e−y·xHg(x) dx1 · · · dxl

By construction,

LHg(y1, . . . , yl) =

∫

Rl
≥0

e−y·xHg(x) dx1 · · · dxl

= Lmg(Rl
≥0).

Our strategy, introduced in Section 3.4, is to express Lmg(A) as a sum of
contributions of the possible homotopy types G ∈ G

≥3
g,l . We define

mG(A) = lim
N→∞

1

N3g−3+3l/2

∑

µ∈NA

HG,µ

e|µ| r(g, µ)!
, (9.3)

where the number HG,µ is counting branching graphs with homotopy type
G, see Section 3.4.

The limit mG(A) will be shown to exist for all G ∈ G
≥3
g,l and, in fact,

shown to vanish unless G is trivalent.
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9.3 Assembling branching graphs from edge trees

Fix a homotopy type G ∈ G
≥3
g,l with |E| edges. Denote by HG,µ the set of all

branching graphs with homotopy type G and perimeter µ. We will use the
following procedure for enumerating all elements of HG,µ.

We will use the symbol

(
r

r1, . . . , rk

)
to denote both the multinomial co-

efficient and the corresponding set of k-tuples of subsets of an r-element
set. Fix an arbitrary orientation of the edges of G. There exists a natural
assembly map

AsmG :
⊔

r1,...,r|E|

(
r

r1, . . . , r|E|

)
×

|E|∏

i=1

E
11(ri + 1) →

⊔

|µ|=r+2−2g−l

HG,µ ∪ {∅} ,

(9.4)
which is defined as follows.

Let e1, . . . , e|E| be the edges of G and let

T1, . . . , T|E|

be an |E|-tuple of edge trees. First, we replace, preserving the order, the
edge markings of each tree by a subset of the set Ur of rth roots of unity

according to the given element of

(
r

r1, . . . , r|E|

)
.

After that, we replace each oriented edge ei of G by the corresponding
edge tree Ti ∈ E11(ri +1) in such a way that the root vertex of Ti is identified
with the initial vertex of ei and the top vertex of Ti is identified with the
final vertex of ei.

This replacement is done so that at the vertices v of G the edges coming
from the same tree Ti have consecutive places in the clockwise order around
v with the trunk edge being the last one.

This procedure is illustrated in Figure 9 where it is shown how the tree
from Figures 7 and 8 may be used in the assembly of a branching graph.
In Figure 9, the vertices of different trees are shown in different color and
those vertices which are shared by several trees (the ones which correspond
to the vertices of the graph G) are painted accordingly. Also observe how the
trunks of the trees in Figure 9 form the edges of the homotopy type graph
G.

The resulting graph H is a branching graph if the edge labels of H at each
vertex v respect the cyclic order of the roots of unity. If H is a branching
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Figure 9: The tree from Figures 7 and 8 as part of an assembly

graph, then define AsmG = H . Otherwise, the assembly result is declared a
failure, indicated by the formal symbol AsmG = ∅.

The group Aut(G) acts5 on the oriented edges of G. This action makes
Aut(G) act on the domain of the assembly map by permutation of factors
in the Cartesian product and reversal of the root/top choice in individual
factors. The following property of the assembly map is obvious from its
construction:

Proposition 9.2. The assembly map is surjective and for any H 6= ∅ the
preimage Asm−1

G (H) is a single Aut(G)-orbit.

We will call the edge trees in Asm−1
G (H) the edge parts of a branching

graph H , ignoring the minor ambiguity coming from the action of Aut(G).

9.4 Vanishing for non-trivalent graphs

Fix a homotopy type G and let |E| be the number of edges in G. From the
equation

r = 2g − 2 + |µ| + l

5This action is always free, whereas the action on just edges of G may not be as the
(g, n) = (1, 1) example shows.
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and Corollary 8.4 we have

1

e|µ| r!

(
r

r1, . . . , r|E|

)
×

|E|∏

i=1

∣∣E11(ri + 1)
∣∣ =

e|E|+l+2g−2

|E|∏

i=1

|E11(ri + 1)|
eri+1 ri!

∼ e|E|+l+2g−2

(2π)|E|

∏ 1√
ri
, (9.5)

as ri → ∞. By Proposition 9.2, this implies that

∑

|µ|≤N

1

e|µ| r!
HG,µ = O




|E|∏

i=1

N∑

ri=1

1√
ri


 = O

(
N |E|/2

)
, N → ∞ .

It follows that the limit (9.3) vanishes unless

|E| = 6g − 6 + 3l ,

which is equivalent to G being trivalent. Thus, we have established the
following:

Proposition 9.3. If the homotopy type G is not trivalent, then mG = 0.

Further, for a trivalent graph G we can assume the edge trees which
participate in the assembly map to be arbitrarily large. This is because the
contribution of edge trees of any fixed size to mG obviously vanishes for the
same reason as above.

This puts us in the asymptotic regime of large random edge trees, which
was considered in Section 8. In particular, in this regime

∣∣Asm−1
G (H)

∣∣ = |Aut(G)| ,

for a typical branching graphH . This is because the probability of having two
isomorphic edge parts or an edge part which has an automorphism permuting
root and top clearly goes to zero as the size of the edge parts goes to infinity.

9.5 Probability of assembly failure

In particular, let us compute the probability that for large random edge trees
the assembly (9.4) will end in failure ∅. In other words, we want to compute
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the probability that the cyclic order condition will be violated at one of the
vertices v of a trivalent graph G.

Suppose we have three random disjoint sequences Xi, i = 1, 2, 3 of ele-
ments of a some cyclically ordered set. The conditional probability that the
concatenation

X1, X2, X3

is cyclically ordered, given that each Xi is cyclically ordered and |Xi| = ki,
i = 1, 2, 3, is easily seen to be equal to

(k1 − 1)! (k2 − 1)! (k3 − 1)!

(k1 + k2 + k3 − 1)!
.

In our case, the cyclically ordered set is the set Ur of rth roots of unity and
the sequences Xi are the labels of the edges incident to the 3 root/top vertices
v1, v2, v3 that are glued together at v.

The probability that the valence if vi in the corresponding tree equals ki

approaches, by Corollary 8.6, the limit e−1/(ki − 1)! as the size of tree goes
to infinity. Therefore, the probability of failure at a given vertex v converges
to

e−3
∞∑

k1,k2,k3=1

1

(k1 + k2 + k3 − 1)!
=

e−3

∞∑

k=3

∑

k1+k2+k3=k

1

(k − 1)!
=
e−3

2

∞∑

k=3

(k − 1)(k − 2)

(k − 1)!
=
e−2

2
. (9.6)

Also, we see that at each vertex v, the probability to fail depends only on
the three valences k1, k2, k3 involved, and hence, in the limit of large random
edge trees, failures at vertices of G become independent events by Corollary
8.12.

Since a trivalent graph G has 4g−4 + 2l vertices, we obtain the following
conclusion (the second assertion follows from Proposition 8.21)

Proposition 9.4. For any trivalent homotopy type G, the probability of as-
sembly failure goes to

e−8g+8−4l 2−4g+4−2l

as the sizes of all edge trees go to infinity. Further, assembly failure is asymp-
totically independent of the normalized semiperimeters of the edge trees in-
volved.
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9.6 Computation of the Hurwitz measure

By definition (9.3), the Hurwitz measure mG(A) involves the asymptotics of
the weighted number of branching graphs H of homotopy type G such that

µ

N
∈ A ,

where µ is the perimeter of H .
Let D be a cell of H . The boundary ∂D, followed in the clockwise direc-

tion, is a sequences of edges

e1, e2, . . . , es , ei ∈ E(H) .

The perimeter of D is, by definition, the following sum

per(D) =
1

2π

s∑

k=1

arg

(
γ(ek)

γ(ek+1)

)
. (9.7)

where γ : E(H) → Ur is the labeling of the edges of H by roots of unity, the
argument takes values in (0, 2π], and es+1 = e1.

For most terms in (9.7) both ek and ek+1 belong to the same edge part of
H . The only exception are the terms corresponding to the vertices of G on
the boundary of D. The contribution of these exceptional terms to per(D)
is bounded by 4g− 4 + 2l because the contribution of each of the 4g− 4 + 2l
vertices of G to per(D) is bounded by 1. Since we are interested in the

distribution of
per(D)

N
as N → ∞, this contribution may be ignored.

Further, we can substitute the contribution of each edge part of H by
the semiperimeter of the corresponding edge tree T . The difference between
these two numbers is that the first is computed using the labeling γ of E(T )
by the rth roots of unity, whereas the second uses the labeling

φ : E(T ) → {1, 2, . . . , |E(T )|}

which is a part of the structure of an edge tree. By the results of Section
8.6.6 the difference between these two numbers is of the order of magnitude√
N . In particular, the probability of having a difference of size N1/2+ǫ goes

to zero for any ǫ > 0. This means that the effect of this difference on
per(D)

N
is negligible in the N → ∞ limit.
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It follows that, asymptotically,
per(D)

N
is a sum of independent random

variables which are the normalized semiperimeters of the edge parts of H
along the boundary of D. Recall that the distribution of the normalized
semiperimeters of a random edge tree is governed by the perimeter measure
mP , which was studied in Section 8.6.4. Together with (9.5) and Proposition
9.4, we conclude the following:

Proposition 9.5. For any G ∈ G3
g,l, we have

mG =
2−4g+4−2l

|Aut(G)| (asmG)∗




⊗

E(G)

m
P




where the product of perimeter measures is over all edges of G and asmG

is the linear map which takes the normalized semiperimeters to their sums
along the boundaries of the cells of G.

This result can be more conveniently stated in terms of the Laplace trans-
form

LmG(y1, . . . , yl) =

∫

Rl
>0

e−y·x
mG(dx) ,

for which it implies the following factorization

LmG(y) =
2−4g+4−2l

|Aut(G)|
∏

e∈E(G)

Lm
P (yi(e), yj(e)) ,

where i(e) and j(e) are the numbers of the cells of G that the edge e separates
and LmP is the Laplace transform of the perimeter measure mP .

It remains, therefore, to compute LmP which by Proposition 8.20 equals
the following integral

Lm
P (y1, y2) =

1√
2π

∫∫ ∞

0

e−x1y1−x2y2

(x1 + x2)3/2
dx1dx2 ,

where y1, y2 > 0.
Making a change of variables

x1 + x2 = u , x1 − x2 = v ,
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and integrating out v, we obtain

Lm
P (y1, y2) = − 1√

2π

1

y1 − y2

∫ ∞

0

(
e−y1u − e−y2u

) du

u3/2
.

For ℜα > −1 we have

∫ ∞

0

(
e−y1u − e−y2u

)
uα−1 du = Γ(α)

(
1

yα
1

− 1

yα
2

)

which for ℜα > 0 follows from the definition of the Γ-function and can be
extended to ℜα > −1 by analytic continuation because the integral remains
absolutely convergent. Since

Γ(−1/2) = −2
√
π ,

plugging in α = −1/2, we obtain

Lm
P (y1, y2) =

√
2√

y1 +
√
y2
.

Since a trivalent graph G has 6g − 6 + 3l vertices, it follows that

LmG(y) =
22g−2+l

|Aut(G)|
∏

e∈E(G)

1√
2yi(e) +

√
2yj(e)

.

Finally, summing over all homotopy types G and using the vanishing for
nontrivalent homotopy types established in Proposition 9.3, we obtain the
following:

Proposition 9.6. We have

LHg(y1, . . . , yl) =
∑

G∈G3
g,l

22g−2+l

|Aut(G)|
∏

e∈E(G)

1√
2yi(e) +

√
2yj(e)

,

where the product is over all edges of a trivalent map G and i(e) and j(e)
are the numbers of the edge e separates.

This Proposition completes the proof of Theorem 4. Theorems 3 and 4
imply Theorem 1 which, therefore, is established.
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9.7 Connection with the edge-of-the-spectrum matrix
model

After studying the asymptotic enumeration of branching graphs on Σg with
l cells, we see that the problem is exactly parallel to the asymptotic enumer-
ation of simple maps on Σg with l cells carried out in [75].

As in the case of branching graphs, there exist only finitely many homo-
topy types of simple maps, of which only the trivalent homotopy types make
a nonvanishing contribution to the asymptotics. The cell perimeters of a
map are now exactly equal to the sums of semiperimeters of edge parts along
the cell boundaries. An edge part of map is an unmarked planar tree with a
choice of a root and top vertex (the semiperimeter distribution is easily seen
to be asymptotically uniform).

This complete parallelism explains the equality (4.6) and therefore ex-
plains the connection between intersection theory of Mg,n and the matrix
model (4.4).

9.8 Lower order asymptotics

The lower order terms (in N) of the asymptotics of Hg,Nµ govern Hodge
integrals on Mg,l with integrand linear in the λ classes. It appears quite
difficult to extract lower order asymptotics from the random tree analysis.
However, the lowest order term, related to the λg integrals

〈τk1 · · · τkl
λg〉g =

∫

Mg,l

ψk1
1 · · ·ψkl

l λg,

is well-understood from a different perspective.
The λg integrals arise in the degree 0 sector of the Virasoro conjecture

for an elliptic target curve. In [38], the Virasoro conjecture for this degree 0
sector was shown to be equivalent to the following equation:

〈τk1 · · · τkl
λg〉g =

(
2g − 3 + l

k1, . . . , kl

)
〈τ2g−2λg〉g, (9.8)

where 〈τ−2λ0〉0 = 1. The λg conjecture (9.8) was later proven in [30] via
virtual localization techniques (independent of the Hurwitz connection de-
veloped here). The integrals 〈τ2g−2λg〉g are determined by:

∑

g≥0

t2g〈τ2g−2λg〉g =
( t/2

sin(t/2)

)
,
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proven in [28].
Hodge integrals over the moduli space of curves are intimately related to

Gromov-Witten theory via virtual localization, Virasoro constraints, Toda
equations, and Mirror symmetry. Additional Hodge integral formulas and
predictions may be found in [15, 27, 28, 30, 29, 38, 73, 77, 82, 81].

A Degeneration formulas for Hurwitz num-

bers

Classical recursive formulas for Hg,µ are obtained by studying the degenera-
tions of covers as a finite branch point is moved to ∞. The recursions provide
an elementary (though combinatorially complex) method of calculating Hg,µ.
We derive the degeneration formulas here from Definition 2 of the Hurwitz
numbers following a suggestion of R. Vakil. There are very many different
proofs of these formulas (see, for example, [40, 49, 61, 62]).

A Hurwitz cover π : C → P1 together with a marking of the fiber π−1(∞)
is a marked Hurwitz cover. LetH∗

g,µ denote the automorphism weighted count
of marked Hurwitz covers with ramification mi at the ith marked point. We
find:

H∗
g,µ = |Aut(µ)| ·Hg,µ.

By Definition 2, H∗
g,µ equals a count of distinct µ-graphs H∗ with marked

cells on Σg (weighted by 1/|Aut(H∗)|). The Hurwitz numbers H∗
g,µ are more

convenient for the degeneration formulas.
Let µ = (m1, . . . , ml) be a partition with positive parts. The following

partition terminology will be needed:

• µ −mi equals the partition (possibly empty) of length l − 1 obtained
by deleting mi.

• µ(mi +mj) equals the partition of length l− 1 obtained by combining
mi and mj .

• µ(a1+a2 = mi) equals the partition of length l+1 obtained by splitting
mi into positive parts a1 and a2.

• µ + a equals the partition of length l + 1 obtained adding a positive
part a.
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Finally, let µ1 + µ2 denote the union of the partitions µ1 and µ2.
As in Section 3.1, let r(g, µ) = 2g− 2 + |µ|+ ℓ(µ) be the number of finite

branch points of the Hurwitz covers counted by H∗
g,µ. If r(g, µ) vanishes,

then g = 0 and µ = (1). In this case, H∗
0,(1) = 1. The Hurwitz numbers H∗

g,µ

are determined recursively by the following Theorem.

Theorem 7. Let r(g, µ) > 0. The degeneration relation holds:

H∗
g,µ =

∑

i6=j

mi +mj

2
H∗

g,µ(mi+mj)

+
∑

i

∑

a1+a2=mi

a1a2

2
H∗

g−1,µ(a1+a2=mi)

+
∑

i

∑

a1+a2=mi

∑

g1+g2=g

∑

µ1+µ2=µ−mi

ǫ
a1a2

2
H∗

g1,µ1+a1
H∗

g2,µ2+a2
,

where ǫ denotes a binomial coefficient in the last sum:

ǫ =

(
r(g, µ) − 1

r(g1, µ1 + a1)

)
.

Proof. The degeneration of a Hurwitz cover as a branch point is moved to
∞ corresponds simply to edge removal for the associated µ-graphs.

Let H∗ be a µ-graph with marked cells on Σg. Let r = r(g, µ). Let Ur be
the set of rth roots of unity marking the edges. There are three possibilities
for the graph X obtained after removal of the edge e marked by the unit
1 ∈ Ur.

Case I. The edge e separates two distinct cells of H∗ with markings i 6= j.
Then, X is canonically a µ(mi + mj)-graph with marked cells on Σg. The
edge markings of X lie in Ur \ {1}.

Conversely, let X be a µ(mi + mj)-graph with marked cells on Σg. Let
the edge markings of X lie in set Ur \{1}. Let D be the cell corresponding to
the part (mi +mj). There are mi +mj distinct ways an edge e with marking
1 may be added which separates D into two cells of perimeters mi and mj

and respects the edge orientation conditions.

Case II. The two sides of e bound the same cell of H∗ and e is not a discon-
necting edge. Then, X is canonically a µ(a1 + a2 = mi)-graph with marked
cells on Σg−1. Conversely, there are a1a2 ways to add e to X to recover a
µ-graph with marked cells on Σg.
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Case III. The two sides of e bound the same cell H∗ and e is a disconnecting
edge. Then, X = X1 ∪ X2 is the union where Xi is a µi + ai-graph with
marked cells on Σgi

. Conversely, there are a1a2 ways to add e to X to
recover a µ-graph with marked cells on Σg.

The degeneration formula follows from counting these three cases (weighted
by the possible locations of e).

The degeneration formulas may be viewed as a first geometric approach to
the Hurwitz numbers. Unfortunately, a direct analysis of Hg,µ via Theorem
7 appears combinatorially difficult. More efficient recursive strategies for
the Hurwitz have been found (see [31, 41]), but these formulas are genus
dependent.

B Integral tables

Hodge integrals on M g,n are primitive if neither the string or dilaton equa-
tion may be applied. With the exception of 〈τ 3

0 〉0 and 〈τ1〉1, the primitive
condition is equivalent to the absence of τ0 and τ1 factors in the integrand.
The first table contains all primitive Hodge integrals with a single λ class for
g ≤ 2.

g = 0 〈τ 3
0 〉0 = 1

g = 1 〈τ1〉1 = 1/24, 〈λ1〉1 = 1/24
g = 2 〈τ4〉2 = 1/1152, 〈τ3τ2〉2 = 29/5760, 〈τ 3

2 〉2 = 7/240
〈τ3λ1〉2 = 1/480, 〈τ 2

2λ1〉2 = 5/576
〈τ2λ2〉2 = 7/5760

The second table contains Hurwitz numbers Hg,µ for g ≤ 2 and partitions
µ satisfying |µ| ≤ 4.

Hg,µ (1) (2) (1, 1) (3) (2, 1) (1, 1, 1)
g = 0 1 1/2 1/2 1 4 4
g = 1 0 1/2 1/2 9 40 40
g = 2 0 1/2 1/2 81 364 364
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Hg,µ (4) (3, 1) (2, 2) (2, 1, 1) (1, 1, 1, 1)
g = 0 4 27 12 120 120
g = 1 160 1215 480 5460 5460
g = 2 5824 45927 17472 206640 206640
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[48] A. Hurwitz, Über die Anzahl der Riemann’schen Flächen mit gegebenen
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(after Witten and Kontsevich), Séminaire Bourbaki, Vol. 1992/93. As-
trisque No. 216, (1993), Exp. No. 768, 4, 187-212.

[65] T.  Luczak, Random trees and random graphs, Proceedings of the Eighth
International Conference ”Random Structures and Algorithms” (Poz-
nan, 1997). Random Structures Algorithms 13 (1998), no. 3-4, 485–500.

[66] Yu. Manin, Generating functions in algebraic geometry and sums over
trees, in The moduli space of curves, (R. Dijkgraaf, C. Faber, and G.
van der Geer, eds.), 401-417, Birkhäuser: Boston, 1995.
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