
THE κ RING OF THE MODULI OF CURVES OF

COMPACT TYPE: II
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Abstract. The subalgebra of the tautological ring of the moduli
of curves of compact type generated by the κ classes is studied.
Relations, constructed via the virtual geometry of the moduli of
stable maps, are used to prove universality results relating the κ

rings in genus 0 to higher genus. Predictions for κ classes of the
Gorenstein conjecture are proven.
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1. Introduction

1.1. κ classes. Let M g,n be the moduli space of genus g, n-pointed sta-

ble curves. The κ classes in the Chow ring A∗(M g,n) with Q-coefficients

are defined by the following construction. Let

ǫ : M g,n+1 →M g,n

be the universal curve viewed as the (n + 1)-pointed space, let

Ln+1 → Mg,n+1

be the line bundle obtained from the cotangent space of the last mark-

ing, and let

ψn+1 = c1(Ln+1) ∈ A1(M g,n+1)
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be the Chern class. The κ classes are

κi = ǫ∗(ψ
i+1
n+1) ∈ Ai(Mg,n), i ≥ 0 .

The simplest is κ0 which equals 2g− 2 +n times the unit in A0(M g,n).

The κ classes on the moduli space of curves of compact type

M c
g,n ⊂M g,n

are defined by restriction. The κ ring

κ∗(M c
g,n) ⊂ A∗(M c

g,n),

is the Q-subalgebra generated by the κ classes. The κ rings are graded

by degree.

By the results of [11], κ∗(M c
g,n) is generated as a Q-algebra by

κ1, κ2, . . . , κg−1+⌊n
2
⌋.

Moreover, there are no relation of degree less than or equal to g − 1 + ⌊n
2
⌋

if n > 0.

1.2. Universality. Let x1, x2, x3, . . . be variables with xi of degree i,

and let

f ∈ Q[x1, x2, x3, . . .]

be any graded homogeneous polynomial. The following universality

property was stated in [11].

Theorem 1. If f(κi) = 0 ∈ κ∗(M c
0,n), then

f(κi) = 0 ∈ κ∗(M c
g,n−2g)

for all genera g for which n− 2g ≥ 0.

By Theorem 1, the higher genus κ rings are canonically quotients of

the genus 0 rings,

κ∗(M c
0,2g+n)

ιg,n

→ κ∗(M c
g,n) → 0.

Theorem 1 is our main result here.
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1.3. Bases. Let P (d) be the set of partitions of d, and let

P (d, k) ⊂ P (d)

be the set of partitions of d into at most k parts. Let |P (d, k)| be the

cardinality. To a partition1

p = (p1, . . . , pℓ) ∈ P (d, k),

we associate a κ monomial by

κp = κp1 · · ·κpℓ
∈ κd(M c

g,n) .

In [11], two basic facts about the κ rings of the moduli space of

curves of compact type are derived from Theorem 1:

• the canonical quotient,

κ∗(M c
0,2g+n)

ιg,n

→ κ∗(M c
g,n) → 0

is an isomorphism for n > 0,

• a Q-basis of κd(M c
g,n) is given by

{κp | p ∈ P (d, 2g − 2 + n− d) }

for n > 0.

The main tools used in [11] are the virtual geometry of the moduli space

of stable quotients [9] and the intersection theory of strata classes in

the tautological ring R∗(M c
g,n).

By Theorem 5 of [11], proven unconditionally,

dimQ κd(M c
0,n) = |P (d, n− 2 − d)| .

Hence, Theorem 1 is a consequence of the following result.

Proposition 1. The space of relations among κ monomials of degree

d valid in all the rings

{κ∗(M c
g,n) | 2g − 2 + n = ζ }

is of rank at least |P (d)| − |P (d, ζ − d)|.

Proposition 1 is proven in Sections 2 - 4 by constructing universal

relations in κ∗(M c
g,n) via the virtual geometry of the moduli space of

stable maps. The interplay between stable quotients and stable maps

is an interesting aspect of the study of κ∗(M c
g,n).

1The parts of p are positive and satisfy p1 ≥ . . . ≥ pℓ.
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1.4. Gorenstein conjecture. The rank g Hodge bundle over the mod-

uli space of curves

E →M g,n

has fiber H0(C, ωC) over [C, p1, . . . , pn]. Let

λk = ck(E)

be the Chern classes. Since λg vanishes when restricted to

δ0 = M g,n \M
c
g,n ,

we obtain a well-defined evaluation

φ : A∗(M c
g,n) → Q

given by integration

φ(γ) =

∫

Mg,n

γ · λg ,

where γ is any lift of γ ∈ A∗(M c
g,n) to A∗(M g,n).

The tautological rings R∗(M c
g,n) ⊂ A∗(M c

g,n) have been conjectured

in [4, 10] to be Gorenstein algebras with socle in degree 2g − 3 + n,

φ : R2g−3+n(M c
g,n)

∼
→ Q .

As a consequence of Theorem 1 and the intersection calculations of

[11], we obtain the following result.

Theorem 2. If n > 0 and ξ ∈ κd(M c
g,n) 6= 0, the linear function

Lξ : R2g−3+n−d(M c
g,n) → Q

defined by the socle evaluation

Lξ(γ) = φ(γ · ξ)

is non-trivial.

Theorem 2, discussed in Section 5.1, may be viewed as significant

evidence for the Gorenstein conjecture for all M c
g,n with n > 0.
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2. κ and ψ

2.1. ψ classes. Consider the cotangent line classes

ψn+1, . . . , ψn+ℓ ∈ A1(M c
g,n+ℓ)

at the last ℓ marked points. Let

ǫc : M c
g,n+ℓ → M c

g,n

be the proper forgetful map. For each partition p ∈ P (d) of length ℓ,

we associate the class

ǫc∗
(
ψ

1+p1
n+1 · · ·ψ1+pℓ

n+ℓ

)
∈ Ad(M c

g,n) .

The relation between the above push-forwards of ψ monomials and

the κ classes is easily obtained. For p = (d), we have

ǫc∗(ψ
1+d
n+1) = κd

by definition. The standard cotangent line comparison formulas yield

the length 2 case,

ǫc∗(ψ
1+p1
n+1 ψ

1+p2
n+2 ) = κp1κp2 + κp1+p2 .

The full formula, due to Faber, is

(1) ǫc∗
(
ψ

1+p1
n+1 · · ·ψ1+pℓ

n+ℓ

)
=
∑

σ∈Sℓ

κσ(p) ,

where the sum is over the symmetric group Sℓ. For σ ∈ Sℓ, let

σ = γ1 . . . γr

be the canonical cycle decomposition (including the 1-cycles), and let

σ(p)i be the sum of the parts of p with indices in the cycle γi. Then,

κσ(p) = κσ(p)1 · · ·κσ(p)r
.

A discussion of (1) can be found in [1].
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Lemma 1. The sets of classes in Ad(M c
g,n) defined by

{ ǫc∗
(
ψ

1+p1
n+1 · · ·ψ1+pℓ

n+ℓ

)
| p ∈ P (d) } and { κp | p ∈ P (d) }

are related by an invertible linear transformation independent of g and

n.

Proof. Formula (1) defines a universal transformation independent of g

and n. Since the transformation is triangular in the partial ordering of

P (d) by length (with 1’s on the diagonal), the invertibility is clear. �

2.2. Bracket classes. Let p ∈ P (d) be a partition of length ℓ. Let

(2) 〈p〉 = ǫc∗

[ ℓ∏

i=1

1

1 − piψn+i

]ℓ+d
∈ Ad(M c

g,n) .

The superscript in the inhomogeneous expression
[∏ℓ

i=1
1

1−piψn+i

]ℓ+d

indicates the summand in Aℓ+d(M c
g,n+ℓ).

We can easily expand definition (2) to express the class 〈p〉 linearly

in terms of the classes

{ ǫc∗
(
ψ

1+p1
n+1 · · ·ψ1+pℓ

n+ℓ

)
| p ∈ P (d) } .

Since the string and dilation equation must be used to remove the

ψ0
n+i and ψ1

n+i factors, the transformation depends upon g and n only

through 2g − 2 + n.

Lemma 2. The sets of classes in Ad(M c
g,n) defined by

{ 〈p〉 | p ∈ P (d) } and { ǫc∗
(
ψ

1+p1
n+1 · · ·ψ1+pℓ

n+ℓ

)
| p ∈ P (d) }

are related by an invertible linear transformation depending only upon

2g − 2 + n.

Proof. Only the invertibility remains to be established. The result

exactly follows from the proof of Proposition 3 in [5]. �

By Lemma 1 and 2, the bracket classes lie in the κ ring,

〈p〉 ∈ κd(M c
g,n) .

We will prove Proposition 1 in the following equivalent form.
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Proposition 2. The space of relations among the classes

{ 〈p〉 | p ∈ P (d) }

valid in all the rings

{κ∗(M c
g,n) | 2g − 2 + n = ζ }

is of rank at least |P (d)| − |P (d, ζ − d)|.

3. Relations via stable maps

3.1. Moduli of stable maps. Let M g,n+m(P1, d) denote the moduli

of stable maps2 to P1 of degree d, and let

ν : Mg,n+m(P1, d) →M g,n

be the morphism forgetting the map and the last m markings. The

moduli space

M c
g,n+m(P1, d) ⊂M g,n+m(P1, d)

is defined by requiring the domain curve to be of compact type. The

restriction

νc : M c
g,n+m(P1, d) →M c

g,n

is proper and equivariant with respect to the symmetries of P1.

We will find relations in A∗(M c
g,n) by localizing νc push-forwards

which vanish geometrically. A complete analysis in the socle A2g−3(M c
g )

was carried out in [5], but much more will be required for Theorem

1. While the relations in A∗(M c
g,n) via stable quotients [11] are more

elegantly expressed, the ranks of the relations via stable maps appear

easier to compute.

3.2. Relations.

3.2.1. Indexing. Let d ≤ 2g − 3 + n, and let

δ = 2g − 3 + n− d .

We will construct a series of relations I(g, d, α) in Ad(M c
g,n) where

α = (α1, . . . , αm)

is a (non-empty) vector of non-negative integers satisfying two condi-

tions:

(i) |α| =
∑m

i=1 αi ≤ d− 2 − δ,

2Stable maps were defined in [8], see [6] for an introduction.



8 R. PANDHARIPANDE

(ii) αi > 0 for i > 1.

By condition (i), d− 2 − δ ≥ 0 so

d > g − 1 + ⌊
n

2
⌋ .

Condition (ii) implies α1 is the only integer permitted to vanish. The

relation I(g, d, α) will be a variant of the equations considered in [5].

3.2.2. Formulas. Let Γ denote the data type

(3) (p1, . . . , pm) ∪ {pm+1, . . . , pℓ},

satisfying

pi > 0,

ℓ∑

i=1

pi = d.

The first part of Γ is an ordered m-tuple (p1, . . . , pm). The second

part {pm+1, . . . , pℓ} is an unordered set. Let Aut({pm+1, . . . , pℓ}) be

the group which permutes equal parts. The group of automorphisms

Aut(Γ) equals Aut({pm+1, . . . , pℓ}).

Theorem 3. For all α satisfying (i-ii),

∑

Γ

1

|Aut(Γ)|

m∏

i=1

p−αi

i

ℓ∏

i=m+1

(−pi)
−1

ℓ∏

j=1

p
pi

i

pi!
〈p1, . . . , pℓ〉

= 0 ∈ Ad(M c
g,n),

where the sum is over all Γ of type (3).

The bracket 〈p1, . . . , pℓ〉 ∈ Ad(M c
g,n) denotes the class associated to

the partition defined by the union of all the parts pi of Γ.

3.3. Proof of Theorem 3.

3.3.1. Torus actions. The first step is to define the appropriate torus

actions. Let

P1 = P(V )

where V = C ⊕ C. Let C∗ act diagonally on V :

(4) ξ · (v1, v2) = (v1, ξ · v2).

Let p1, p2 be the fixed points [1, 0], [0, 1] of the corresponding action

on P(V ). An equivariant lifting of C∗ to a line bundle L over P(V ) is
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uniquely determined by the weights [l1, l2] of the fiber representations

at the fixed points

L1 = L|p1 , L2 = L|p2 .

The canonical lifting of C∗ to the tangent bundle TP has weights [1,−1].

We will utilize the equivariant liftings of C∗ to OP(V )(1) and OP(V )(−1)

with weights [1, 0], [0, 1] respectively.

Over the moduli space of stable maps M g,n+m(P(V ), d), we have

π : U → M g,n+m(P(V ), d), µ : U → P(V )

where U is the universal curve and µ is the universal map. The repre-

sentation (4) canonically induces C∗-actions on U and M g,n+m(P(V ), d)

compatible with the maps π and µ. The C∗-equivariant virtual class

[M g,n+m(P(V ), d)]vir ∈ AC∗

2g+2d−2+n+m(Mg,n+m(P(V ), d))

will play an important role.

3.3.2. Equivariant classes. Three types of equivariant Chow classes on

Mg,n+m(P(V ), d) will be considered here:

• The linearization [0, 1] on OP(V )(−1) defines an C∗-action on

the rank d+ g − 1 bundle

R = R1π∗(µ
∗OP(V )(−1))

on Mg,n+m(P(V ), d). Let

ctop(R) ∈ A
g+d−1
C∗ (Mg,n+m(P(V ), d))

be the top Chern class.

• For each marking i, let ψi ∈ A1
C∗(M g,n+m(P(V ), d) denote the

first Chern class of the canonically linearized cotangent line

corresponding to i.

• Denote the ith evaluation morphism by

evi : M g,n+m(P(V ), d) → P(V ).

With C∗-linearization [1, 0] on OP(V )(1), let

ρi = c1(ev
∗
iOP(V )(1)) ∈ A1

C∗(M g,n+m(P(V ), d) .

With C∗-linearization [0,−1] on OP(V )(1), let

ρ̃i = c1(ev
∗
iOP(V )(1)) ∈ A1

C∗(M g,n+m(P(V ), d) .
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In the non-equivariant limit, ρ2
i = 0. Our notation here closely follows

[5].

3.3.3. Vanishing integrals. The forgetful morphism

ν : M g,n+m(P(V ), d) →M g,n

is C∗-equivariant with respect to the trivial action on M g,n. As in

Section 3.2.1, let

d ≤ 2g − 3 + n, δ = 2g − 3 + n− d,

and let α = (α1, . . . , αm) satisfy

(i) |α| =
∑m

i=1 αi ≤ d− 2 − δ,

(ii) αi > 0 for i > 1.

Let I(g, d, α) be the C∗-equivariant push-forward

ν∗

(
ρ
d−1−δ−|α|
n+1

m∏

i=1

ρn+iψ
αi

n+i

n∏

j=1

ρ̃j ctop(R) ∩ [M g,n+m(P(V ), d)]vir

)
.

The degree of the class

ρ
d−1−δ−|α|
n+1

m∏

i=1

ρn+iψ
αi

n+i

n∏

j=1

ρ̃j ctop(R)

is easily computed to be

d− 1 − δ − |α| +m+ |α| + n + d+ g − 1 =

g + 2d− 2 + n +m− δ .

Since the cycle dimension of the virtual class is 2g + 2d − 2 + n + m,

the push-forward I(g, d, α) has cycle dimension

2g + 2d− 2 + n+m− (g + 2d− 2 + n+m− δ) = g + δ

= 3g − 3 + n− d .

Equivalently, I(g, d, α) ∈ AdC∗(M g,n). Since the class ρn+1 appears with

exponent

d− δ − |α| ≥ 2,

I(g, d, α) vanishes in the non-equivariant limit.
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3.3.4. Localization terms. The virtual localization formula of [7] cal-

culates I(g, d, α) in terms of tautological classes on the moduli space

Mg,n. To prove Theorem 3, we will calculate the restriction of the

localization formula to M c
g,n.

The localization formula expresses I(g, d, α) as a sum over connected

decorated graphs Γ indexing the C∗-fixed loci of Mg,n+m(P(V ), d). The

vertices of the graphs lie over the fixed points p1, p2 ∈ P(V ) and are

labelled with genera (which sum over the graph to g − h1(Γ)). The

edges of the graphs lie over P1 and are labelled with degrees (which

sum over the graph to d). Finally, the graphs carry n + m markings

on the vertices. The valence val(v) of a vertex v ∈ Γ counts both the

incident edges and markings. The edge valence of v counts only the

incident edges.

Only a very restricted subset of graphs will yield non-vanishing con-

tributions to I(g, d, α) in the non-equivariant limit. If a graph Γ con-

tains a vertex lying over p1 of edge valence greater than 1, then the

contribution of Γ to vanishes by our choice of linearization on the bun-

dle R. A vertex over p1 of edge valence greater than 1 yields a trivial

Chern root of R (with trivial weight 0) in the numerator of the local-

ization formula to force the vanishing.

By the above vanishing, only comb graphs Γ contribute to I(g, d, α).

Comb graphs contain ℓ ≤ d vertices lying over p1 each connected by a

distinct edge to a unique vertex lying over p2.

If Γ contains a vertex over p1 of positive genus, then the restriction

to M c
g,n of the contribution of Γ to I(g, d, α) vanishes by the following

argument. Let v be a genus g(v) > 0 vertex lying over p1. The inte-

grand term ctop(R) yields a factor cg(v)(E
∗) with trivial C∗-weight on

the genus g(v) moduli space corresponding to the vertex v. Since

λg(v)|Mc
g(v),val(v)

= 0

by [12], the required vanishing holds.

The linearizations of the classes ρi and ρ̃j place restrictions on the

marking distribution. Since the class ρ̃j is obtained from OP(V )(1)

with linearization [0,−1], the first n markings must lie on the unique

vertex over over p2. Since the class ρi is obtained from OP(V )(1) with

linearization [1, 0], the last m markings must lie on vertices over p1.
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Finally, we claim the last m markings of Γ must lie on distinct ver-

tices over p1 for nonvanishing contribution to I(g, d, α). Let v be a

vertex over p1 (with g(v) = 0). If v carries at least two markings, the

fixed locus corresponding to Γ contains a product factor M 0,r+1 where

r is the number of markings incident to v. The classes ψαi

n+i carry trivial

C∗-weight. Moreover, as each αi > 0 for i > 1, we see the sum of the

αi as i ranges over the set of markings incident to v is at least r − 1.

Since the sum exceeds the dimension of M0,r+1, the graph contribution

to I(g, d, α) vanishes.

The proof of the main result about the localization terms for I(g, d, α)

is now complete.

Proposition 3. The restriction of I(g, d, α) to M c
g,n is expressed via

the virtual localization formula as a sum over genus g, degree d, marked

comb graphs Γ satisfying:

(i) all vertices over p1 are of genus 0,

(ii) the unique vertex over p2 carries all of the first n markings,

(iii) the last m markings all lie over p1,

(iv) each vertex over p1 carries at most 1 of the last m markings.

3.3.5. Formulas. The precise contributions of allowable graphs Γ to the

non-equivariant limit of I(g, d, α) are now calculated.

Let Γ be a genus g, degree d, comb graph with n + m markings

satisfying conditions (i-iv) of Proposition 3. By condition (iv), Γ must

have ℓ ≥ m edges. Γ may be described uniquely by the data

(5) (p1, . . . , pm) ∪ {pm+1, . . . , pℓ},

satisfying:

pi > 0,

ℓ∑

i=1

pi = d.

The elements of the ordered m-tuple (p1, . . . , pm) correspond to the de-

gree assignments of the edges incident to the vertices marked by the last

m markings. The elements of the unordered partition {pm+1, . . . , pℓ}

correspond to the degrees of edges incident to the unmarked vertices

over p1. The group of graph automorphisms is

Aut(Γ) = Aut({pm+1, . . . , pℓ}) .
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By a direct application of the virtual localization formula of [7], we

find the contribution of the graph (5) to the normalized3 push-forward

(−1)g+1+|α|+n+m · I(g, d, α)

equals

1

|Aut(Γ)|

m∏

i=1

p−αi

i

ℓ∏

i=m+1

(−pi)
−1

ℓ∏

i=1

p
pi

i

pi!
〈p1, . . . , pℓ〉 .

Hence, the vanishing of I(g, d, α) yields the relation

∑

Γ

1

|Aut(Γ)|

m∏

i=1

p−αi

i

ℓ∏

i=m+1

(−pi)
−1

ℓ∏

i=1

p
pi

i

pi!
〈p1, . . . , pℓ〉 = 0 ,

where the sum is over all graphs (5). �

Question 1. Are the relations of Theorem 3 equivalent to relations

constructed in Section 3 of [9] via stable quotients?

4. Rank analysis

4.1. Matrix of relations. Theorem 3 yields relations in κd(M c
g,n),

indexed by α = (α1, . . . , αm) satisfying conditions (i-ii) of Section 3.2.1

with

δ = 2g − 3 + n− d ≥ 0.

We rewrite the relation obtained from the vanishing of I(g, d, α) as

(6)
∑

p∈P (d)

Cp

α 〈p〉 = 0 .

The coefficients are

Cp

α =
1

|Aut(p)|

ℓ∏

i=1

p
pi

i

pi!

∑

φ

m∏

i=1

p−αi

φ(i)

∏

j∈Im(φ)c

(−pj)
−1 ,

where the sum is over all injections

φ : {1, . . . , m} → {1, . . . , ℓ}

and

Im(φ)c ⊂ {1, . . . , ℓ}

is the complement of the image of φ.

3The parallel equation on page 106 of [5] has a sign error in the nor-
malization. Instead of (−1)g+1I(g, d, α) there, the normalization should be
(−1)g+1+|α|+ℓ(α)I(g, d, α). The sign change makes no difference.
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To prove Proposition 2, we will show the system (6) is of rank at

least |P (d)| − |P (d, δ + 1)|. The claim is empty unless 0 ≤ δ ≤ d− 2.

4.2. Ordering. For 0 ≤ δ ≤ d− 2, define the subset Pδ(d) ⊂ P (d) by

removing partitions of length at most δ + 1,

Pδ(d) = P (d) \ P (d, δ + 1) .

We order Pδ(d) by the following rules

• longer partitions appear before shorter partitions,

• for partitions of the same length, we use the lexicographic or-

dering with larger parts4 appearing before smaller parts.

For example, the ordered list of the 10 elements of P0(6) is

(16), (2, 14), (3, 13), (22, 12), (4, 12), (3, 2, 1), (23), (5, 1), (4, 2), (3, 3) .

Given a partition p ∈ P (d), let p̂ be the partition obtained removing

all parts equal to 1. For example,

(̂16) = ∅, ̂(3, 2, 1) = (3, 2) .

Let p− be the partition obtained by lowering all the parts of p by 1,

(16)− = ∅, (3, 2, 1)− = (2, 1) .

If p has length ℓ, then

p− ∈ P (d− ℓ).

To each partition p ∈ Pδ(d), we associate data α[p] satisfying con-

ditions (i)-(ii) with respect to δ by the following rules. The special

designation

α[(1d)] = (0)

is given. Otherwise

α[p] = p− .

We note condition (i) of Section 3.2.1,

|α[p]| ≤ d− 2 − δ ,

is satisfied in all cases.

Let Mδ(d) be the square matrix indexed by the ordered set Pδ(d)

with elements

Mδ(d)[p,q] = C
q

α[p] .

4Remember the parts of p = (p1, . . . , pℓ) are ordered by p1 ≥ . . . ≥ pℓ.
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The rank of the system (6) is at least

|Pδ(d)| = |P (d)| − |P (d, δ + 1)|

by the following nonsingularity result proven in Sections 4.3 - 4.6 below.

Proposition 4. For 0 ≤ δ ≤ d− 2, the matrix Mδ(d) is nonsingular.

Proposition 4 implies Proposition 2 and thus Theorem 1. Moreover,

Proposition 4 provides a new approach to [5].

4.3. Scaling. Let Xδ(d) be the square matrix indexed by the ordered

set Pδ(d) with elements

Xδ(d)[(1)d,q] = (−1)ℓ(q)−1d

Xδ(d)[p 6= (1)d,q] =
∑

φ

(−1)ℓ(q)−ℓ(bp)

ℓ(bp)∏

i=1

q
−bpi+2
φ(i) ,

where the sum is over all injections

φ : {1, . . . , ℓ(p̂)} → {1, . . . , ℓ(q)} .

For example, X0(6) is




−6 6 −6 −6 6 6 6 −6 −6 −6

−6 5 −4 −4 3 3 3 −2 −2 −2

−6 9
2

−10
3

−3 9
4

11
6

3
2

−6
5

−3
4

−2
3

30 −20 12 12 −6 −6 −6 2 2 2

−6 17
4

−28
9

−5
2

33
16

49
36

3
4

−26
25

− 5
16

−2
9

30 −18 10 9 −9
2

−11
3

−3 6
5

3
4

2
3

−120 60 −24 −24 6 6 6 0 0 0

−6 33
8

−82
27

−9
4

129
64

251
216

3
8

−126
125

− 9
64

− 2
27

30 −17 28
3

15
2

−33
8

−49
18

−3
2

26
25

5
16

2
9

30 −16 8 13
2

−3 −2 −3
2

2
5

1
4

2
9




.

The matrix Xδ(d) is obtained from Mδ(d) by dividing each column

corresponding to q by

1

|Aut(q)|

ℓ(q)∏

i=1

q
qi−1
i

qi!
.

Hence, Xδ(d) is nonsingular if and only if Mδ(d) is nonsingular.
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4.4. Elimination. Our strategy for proving Proposition 4 is to find

an upper-triangular square matrix Y0(d) for which the product

(7) X0(d) · Y0(d)

is lower-triangular with ±1’s on the diagonal. Since Xδ(d) for

0 ≤ δ ≤ d− 2

occurs as an upper left minor of X0(d), the lower-triangularity of the

product (7) will establish Proposition 4 for the full range of δ values.

We define Y0(d) to be the square matrix indexed by the ordered set

P0(d) given by the following rules. The upper left corner is

Y0(d)[(1
d), (1d)] =

1

d

If at least one of {p,q} is not equal to (1d), then the matrix elements

are

Y0(d)[p,q] =

1

|Aut(p)|

1

|Aut(q̂)|

∑

θ

ℓ(q)∏

i=1

(
qi

pi[1], . . . , pi[ℓi]

)
qℓi−2
i

ℓi∏

j=1

p
pij−1
ij ,

where the sum is over all functions

θ : {1, . . . , ℓ(p)} → {1, . . . , ℓ(q)}

with

θ−1(i) = {i[1], . . . , i[ℓi]}

satisfying

qi =

ℓi∑

j=1

pi[j] .

For example, Y0(6) is
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


1
6

1 3 1
2

16 3 1
6

125 16 9
2

0 1 6 1 48 9 1
2

500 64 18

0 0 3 0 36 3 0 450 36 9

0 0 0 1
2

12 6 1
2

300 60 18

0 0 0 0 16 0 0 320 16 0

0 0 0 0 0 3 0 180 36 18

0 0 0 0 0 0 1
6

0 12 0

0 0 0 0 0 0 0 125 0 0

0 0 0 0 0 0 0 0 16 0

0 0 0 0 0 0 0 0 0 9
2




.

By the conditions on θ in the definition, Y0(d) is easily seen to be

upper-triangular.

4.5. Generating functions. Let Q[t] denote the polynomial ring in

infinitely many variables

t = {t1, t2, t3, . . .} .

Define a Q-linear function

〈 〉 : Q[t] → Q

by the equations 〈1〉 = 1 and

〈td1td2 · · · tdk
〉 = (d1 + d2 + . . .+ dk)

k−3 .

We may extend 〈 〉 uniquely to define a x-linear function:

〈 〉 : Q[t][[x]] → Q[[x]].

For each non-negative integer i, let

Zi(t, x) =
∑

j>0

xjtj
jj−i

j!
∈ Q[t][[x]].

Applying the bracket, we define

Fα1,...,αm
= 〈exp(−Z1) · Zα1 · · ·Zαm

〉 ∈ Q[[x]].

Lemma 3. Let α = (α1, . . . , αn) be a non-empty sequence of non-

negative integers satisfying αi > 0 for i > 1. The series

Fα1,...,αm
∈ Q[[x]]

is a polynomial of degree at most 1 +
∑m

i=1 αi in x.
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Lemma 4. Let α1 ≥ 0. Then,

Fα1 =
(−1)α1

(1 + α1)(1 + α1)!
x1+α1 + . . .

where the dots stand for lower order terms.

Lemma 3 can be proven by various methods. A proof via localization

on moduli space is given in [5] in Section 1.7. �

Lemma 4 is more interesting. The integral

(8) J1+α1 =

∫

M0,1(P1,1+α1)

ρ1ψ
α1
1 ctop(R)

can be evaluated by exactly following5 the localization analysis of Sec-

tion 3.3. We find

J1+α1 = (−1)α1

∑

Γ

1

|Aut(Γ)|
p−α1

1

ℓ∏

i=2

(−pi)
−1

ℓ∏

i=1

p
pi

i

pi!
(1 + α1)

ℓ−3

where the sum is over all 1-pointed comb graphs (5) of total degree

1 + α1 . We conclude J1+α1 equals, up to the factor of (−1)α1 , the

leading x1+α1 coefficient of 〈exp(−Z1) · Zα1〉.

To calculate the integral (8), we use well-known equations in Gromov-

Witten theory. Certainly

(9) J1 = 1 .

By two applications of the divisor equation,

k2Jk =

∫

M0,3(P1,k)

ρ1ψ
k−1
1 ρ2ρ3 ctop(R)

By the topological recursion relation [2] applied to the right side,

k2Jk =

∫

M0,2(P1,k−1)

ρ1ψ
k−2
1 ρ2 ctop(R) ·

∫

M0,3(P1,1)

ρ1ρ2ρ3 ctop(R) .

We obtain the recursion

k2Jk = (k − 1)Jk−1J1

= (k − 1)Jk−1

which we can easily solve

Jk =
1

k · k!

5The equivariant lifts are taken just as in Section 3.3.2.
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starting with the initial condition (9). �

The case where the α data is empty will arise naturally. We define

F∅ = 〈exp(−Z1)〉.

The following result is derived from Lemma 3 by the relation

x
d

dx
F∅ = −F0.

Lemma 5. F∅ = 1 − x.

4.6. Product. We will now prove the basic identity

(10) X0(d) · Y0(d) = L0(d)

where L0(d) is lower triangular with diagonal entries all ±1.

We first address the special upper left corner. The product on the

left side of (10) is

L0(d)[(1
d), (1d)] = (−1)d−1d ·

1

d
= (−1)d−1 ,

a diagonal entry of the specified form.

Next assume p 6= (1d). Then, the matrix elements are

(11) L0(d)[p,q] =
1

|Aut(q̂)|

∑

γ

ℓ(q)∏

i=1

Coeff(Fγ−1(i), x
qi) qi qi! ,

where the sum is over all functions

γ : {1, . . . , ℓ(p̂)} → {1, . . . , ℓ(q)} .

In case γ−1(i) = {i[1], . . . , i[ℓi]} is nonempty, we define

Fγ−1(i) = Fbpi[1]−1,...,bpi[ℓi]
−1 .

If γ−1(i) = ∅, then

F∅ = 〈exp(−Z1)〉 = 1 − x.

Equation (11) is obtained from a simple unravelling of the definitions.

If qi > 1, Coeff(Fγ−1(i), x
qi) vanishes unless γ−1(i) is nonempty by

Lemma 5 and unless

(12) qi ≤ 1 − ℓi +

ℓi∑

j=1

p̂i[j]

by Lemma 3. Inequality (12) for all parts qi > 1 implies

ℓ(q) ≥ ℓ(p) .
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Moreover, if equality of length holds, then inequality (12) implies either

q precedes p in the ordering of P0(d) or q = p.

We conclude the matrix L0(d) is lower-triangular when the first co-

ordinate p is not (1)d. The diagonal elements for p 6= (1d) are

L0(d)[p,p] =

ℓ(bp)∏

i=1

(−1)bpi−1 · (−1)ℓ(p)−ℓ(bp)

by Lemmas 4 and 5.

To complete the proof of the lower-triangularity of L0(d), we must

show the vanishing of L0(d)[(1
d),q 6= (1d)]. The matrix elements are

L0(d)[(1
d),q 6= (1d)] =

1

|Aut(q̂)|

∑

γ̃

ℓ(q)∏

i=1

Coeff(F̃γ̃−1(i), x
qi) qi qi! ,

where the sum is over all functions

γ̃ : {1} → {1, . . . , ℓ(q)} .

In case γ̃−1(i) = {1} is nonempty, we define

F̃γ̃−1(i) = F0 .

If γ̃−1(i) = ∅, then

F̃∅ = 〈exp(−Z1)〉 = 1 − x.

Let q1 > 1 be the largest part of q. Then

Coeff(F̃γ̃−1(1), x
q1) = 0

by Lemmas 3 and 5. Hence,

L0(d)[(1
d),q 6= (1d)] = 0,

and the lower-triangularity of L0(d) is fully proven.

The proof of Proposition 4 is complete. Following the implications

back, the proof of Theorem 1 is also complete. �

Since we know explicitly the diagonal elements of the triangular ma-

trices Y0(d) and L0(d), the product

X0(d) · Y0(d) = L0(d)

yields a simple formula for the determinant,

det(X0,d) = (−1)d−1
∏

p∈P0(d)\{(1d)}


 |Aut(p̂)|
∏ℓ(p)

i=1 p
pi−2
i

(−1)ℓ(p)

ℓ(bp)∏

i=1

(−1)bpi


 .
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5. Gorenstein conjecture

5.1. Proof of Theorem 2. If n > 0, the pairing

κd(M c
g,n) ×R2g−3+n−d(M c

g,n) → Q

is shown to have rank at least |P (d, 2g − 2 + n − d)| in Section 6.3 of

[11]. Since

dimQκ
d(M c

g,n) = |P (d, 2g − 2 + n− d)|

by Theorem 1 and [11], Theorem 2 follows. �

5.2. Further directions. Perhaps the universality of Theorem 1 ex-

tends to larger subrings of R∗(M c
g,n). A natural place to start is the

ring

S∗(M c
g,n) ⊂ R∗(M c

g,n)

generated by all the κ and ψ classes.

Question 2. Is S∗(M c
g,n) canonically a subring of S∗(M c

0,2g+n) ?

At least the condition n > 0 must be imposed in Question 2. How

to include the strata classes in a universality statement is not clear.
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