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The notes below cover our series of three lectures at Humboldt Uni-

versity in Berlin for the October conference Intersection theory on mod-

uli space (organized by G. Farkas). The topic concerns relations among

the κ classes in the tautological ring of the moduli space of curves

Mg. After a discussion of classical constructions ending in Theorem 1,

we derive an explicit set of relations from the moduli space of stable

quotients. In a series of steps, the stable quotient relations are trans-

formed to simpler and simpler forms. The first step, Theorem 3, comes

almost immediately from the virtual geometry of the moduli space of

stable quotients. After a certain amount analysis, the simpler form

of Proposition 3 is found. Our final result, Theorem 5, establishes a

previously conjectural set of tautological relations proposed a decade

ago by Faber-Zagier. A detailed presentation of the proof will appear

in [7].

A. Chern vanishing relations

Faber’s original relations in Conjectural description of the tautolog-

ical ring [1] are obtained from a very simple geometric construction.

Let

π : C → Mg

be the universal curve over the moduli space, and let

πd : Cd → Mg

be the map associated to the dth fiber product of the universal curve.

For every point [C, p1, . . . , pd] ∈ Cd, we have the restriction map

(1) H0(C, ωC) → H0(C, ωC|p1+...+pd
) .
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Since the canonical bundle ωC has degree 2g−2, the map (1) is injective

if d > 2g − 2. Over the moduli space Cd, we obtain the exact sequence

0 → E → Ωd → Q → 0

where E is the rank g Hodge bundle, Ωd is the rank d > 2g − 2 bundle

with fiber H0(C, ωC|p1+...+pd
), and Q is the quotient bundle of rank

d − g. Hence,

ck(Q) = 0 ∈ Ak(Cd) for k > d − g .

After cutting such vanishing ck(Q) down with cotangent line and di-

agonal classes in Cd and pushing-forward via πd
∗ to Mg, we arrive at

Faber’s relations in R∗(Mg).

From our point of view, at the center of Faber’s relations in Conjec-

tural description of the tautological ring [1] is the function

Θ(t, x) =
∞∑

d=0

d∏

i=1

(1 + it)
(−1)d

d!

xd

td
.

The differential equation

t(x + 1)
d

dx
Θ + (t + 1)Θ = 0

is easily found. Hence, we obtain the following result.

Lemma 1. Θ = (1 + x)−
t+1

t .

We introduce a variable set z indexed by pairs of integers

z = { zi,j | i ≥ 1, j ≥ i − 1 } .

For monomials

zσ =
∏

i,j

z
σi,j

i,j ,

we define

ℓ(σ) =
∑

i,j

iσi,j , |σ| =
∑

i,j

jσi,j .

Of course |Aut(σ)| =
∏

i,j σi,j ! .

The variables z are used to define a differential operator

D =
∑

i,j

zi,j tj
(

x
d

dx

)i

.
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After applying exp(D) to Θ, we obtain

ΘD = exp(D) Θ

=
∑

σ

∞∑

d=0

d∏

i=1

(1 + it)
(−1)d

d!

xd

td
dℓ(σ)t|σ|zσ

|Aut(σ)|

where σ runs over all monomials in the variables z. Define constants

Cr
d(σ) by the formula

log(ΘD) =
∑

σ

∞∑

d=1

∞∑

r=−1

Cr
d(σ) tr

xd

d!
zσ .

By an elementary application of Wick, the t dependence of log(ΘD)

has at most simple poles.

Finally, we consider the following function,

γ =
∑

i≥1

B2i

2i(2i − 1)
κ2i−1t

2i−1 +
∑

σ

∞∑

d=1

∞∑

r=−1

Cr
d(σ) κrt

r xd

d!
zσ .

Denote the trxdzσ coefficient of exp(−γ) by
[
exp(−γ)

]
trxdzσ ∈ Q[κ−1, κ0, κ1, κ2, . . .] .

Our form of Faber’s equations is the following result.

Theorem 1. In Rr(Mg), the relation

[
exp(−γ)

]
trxdzσ = 0

holds when r > −g + |σ| and d > 2g − 2.

In the tautological ring R∗(Mg), the conventions

κ−1 = 0, κ0 = 2g − 2

will always be followed. For fixed g and r, Theorem 1 provides infinitely

many relations by increasing d.

While the proof of Theorem 1 is appealingly simple, the relations

do not seem to fit the other forms we will see later. The variables zi,j

efficiently encode both the cotangent and diagonal operations studied

in Conjectural description of the tautological ring [1]. In particular, the

relations of Theorem 1 are equivalent to the mixing of all cotangent

and diagonal operations studied there.
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B. Stable quotient relations

I. The function Φ.

The relations in the tautological ring R∗(Mg) obtained from Moduli

of stable quotients [4] are based on the function

Φ(t, x) =

∞∑

d=0

d∏

i=1

1

1 − it

(−1)d

d!

xd

td
.

Define the coefficients Cr
d by the logarithm,

log(Φ) =
∞∑

d=1

∞∑

r=−1

Cr
dt

r xd

d!
.

By an elementary application of Wick, the t dependence has at most a

simple pole. Let

γ =
∑

i≥1

B2i

2i(2i − 1)
κ2i−1t

2i−1 +
∞∑

d=1

∞∑

r=−1

Cr
dκrt

r xd

d!
.

Denote the trxd coefficient of exp(−γ) by

[
exp(−γ)

]
trxd ∈ Q[κ−1, κ0, κ1, κ2, . . .] .

In fact, [exp(−γ)]trxd is homogeneous of degree r in the κ classes. The

first tautological relations of Moduli space of stable quotients [4] are

given by the following result.

Theorem 2. In Rr(Mg), the relation

[
exp(−γ)

]
trxd = 0

holds when g − 2d − 1 < r and g ≡ r + 1 mod 2.

For fixed r and d, if Theorem 2 applies in genus g, then Theorem

2 applies in genera h = g − 2δ for all natural numbers δ ∈ N. The

genus shifting mod 2 property will also be present in the Faber-Zagier

conjecture discussed later.
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II. Partitions, differential operators, and logs.

We will write partitions σ as (1a12a23a3 . . .) with

ℓ(σ) =
∑

i

ai and |σ| =
∑

i

iai .

The empty partition ∅ corresponding to (102030 . . .) is permitted. In

all cases, we have

|Aut(σ)| = a1!a2!a3! · · · .

Consider the infinite set of variables p1, p2, p3, . . . . Monomials in the

pi correspond to partitions

pa1
1 pa2

2 pa3
3 . . . ↔ (1a12a23a3 . . .) .

Given a partition σ, let pσ denote the corresponding monomial. Let

Φp(t, x) =
∑

σ

∞∑

d=0

d∏

i=1

1

1 − it

(−1)d

d!

xd

td
dℓ(σ)t|σ|pσ

|Aut(σ)|

where the first sum is over all partitions σ. The summand correspond-

ing to the empty partition equals Φ(t, x).

The function Φp is easily obtained from Φ,

Φp(t, x) = exp

(
∞∑

i=1

pit
ix

d

dx

)
Φ(t, x) .

Let D denote the differential operator

D =

∞∑

i=1

pit
ix

d

dx
.

Expanding the exponential of D, we obtain

Φp = Φ + DΦ +
1

2
D2Φ +

1

6
D3Φ + . . .(2)

= Φ

(
1 +

DΦ

Φ
+

1

2

D2Φ

Φ
+

1

6

D3Φ

Φ
+ . . .

)
.

Let γ∗ = log(Φ) be the logarithm,

Dγ∗ =
DΦ

Φ
.
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After applying the logarithm to (2), we see

log(Φp) = γ∗ + log

(
1 + Dγ∗ +

1

2
(D2γ∗ + (Dγ∗)2) + ...

)

= γ∗ + Dγ∗ +
1

2
D2γ∗ + . . .

where the dots stand for a universal expression in the Dkγ∗. In fact, a

remarkable simplification occurs,

log(Φp) = exp

(
∞∑

i=1

pit
ix

d

dx

)

γ∗ .

The result follows from a general identity.

Proposition 1. If f is a function of x, then

log

(
exp

(
λx

d

dx

)
f

)
= exp

(
λx

d

dx

)
log(f) .

Proof. A simple computation for monomials in x shows

exp

(
λx

d

dx

)
xk = (eλx)k .

Hence, since the differential operator is additive,

exp

(
λx

d

dx

)
f(x) = f(eλx) .

The Proposition follows immediately. �

The coefficients of the logarithm may be written as

log(Φp) =
∞∑

d=1

∞∑

r=−1

Cr
d(p) tr

xd

d!

=

∞∑

d=1

∞∑

r=−1

Cr
d tr

xd

d!
exp

(
∞∑

i=1

dpit
i

)

=
∑

σ

∞∑

d=1

∞∑

r=−1

Cr
d tr

xd

d!

dℓ(σ)t|σ|pσ

|Aut(σ)| .
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III. Full system of tautological relations.

Following Proposition 5 of Moduli of stable quotients [4], we can

obtain a much larger set of relations in the tautological ring of Mg by

including several factors of π∗(s
aiωbi) in the integrand instead of just a

single factor. We study the associated relations where the ai are always

1. The bi then form the parts of a partition σ.

To state the relations we obtain, we start by enriching the function

γ from Section B.I,

γp =
∑

i≥1

B2i

2i(2i − 1)
κ2i−1t

2i−1

+
∑

σ

∞∑

d=1

∞∑

r=−1

Cr
dκr+|σ| tr

xd

d!

dℓ(σ)t|σ|pσ

|Aut(σ)| .

Let γ̂ p be defined by a similar formula,

γ̂ p =
∑

i≥1

B2i

2i(2i − 1)
κ2i−1(−t)2i−1

+
∑

σ

∞∑

d=1

∞∑

r=−1

Cr
dκr+|σ| (−t)r xd

d!

dℓ(σ)t|σ|pσ

|Aut(σ)| .

The sign of t in t|σ| does not change in γ̂ p. The κ−1 terms which appear

will later be set to 0.

The full system of relations are obtain from the coefficients of the

functions

exp(−γp), exp(−
∞∑

r=0

κrt
rpr+1) · exp(−γ̂ p)



8

Theorem 3. In Rr(Mg), the relation

[
exp(−γp)

]

trxdpσ
= (−1)g

[
exp(−

∞∑

r=0

κrt
rpr+1) · exp(−γ̂ p)

]

trxdpσ

holds when g − 2d − 1 + |σ| < r.

Again, we see the genus shifting mod 2 property. If the relation holds

in genus g, then the same relation holds in genera h = g − 2δ for all

natural numbers δ ∈ N.

In case σ = ∅, Theorem 3 specializes to the relation
[
exp(−γ(t, x))

]

trxd
= (−1)g

[
exp(−γ(−t, x))

]

trxd

= (−1)g+r
[
exp(−γ(t, x))

]

trxd
,

nontrivial only if g ≡ r + 1 mod 2. If the mod 2 condition holds, then

we obtain the relations of Theorem 2.

Consider the case σ = (1). The left side of the relation is then

[
exp(−γ(t, x)) ·

(
−

∞∑

d=1

∞∑

s=−1

Cs
d κs+1t

s+1dxd

d!

)]

trxd
.

The right side is

(−1)g
[
exp(−γ(−t, x)) ·

(
−κ0t

0 +
∞∑

d=1

∞∑

s=−1

Cs
d κs+1(−t)s+1 dxd

d!

)]

trxd
.

If g ≡ r + 1 mod 2, then the large terms cancel and we obtain

−κ0 ·
[
exp(−γ(t, x))

]

trxd
= 0 .

Since κ0 = 2g − 2 and

(g − 2d − 1 + 1 < r) =⇒ (g − 2d − 1 < r),

we recover most (but not all) of the σ = ∅ equations.

If g ≡ r mod 2, then the resulting equation is

[
exp(−γ(t, x)) ·

(
κ0 − 2

∞∑

d=1

∞∑

s=−1

Cs
d κs+1t

s+1dxd

d!

)]

trxd
= 0

when g − 2d < r.
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IV. Expanded form.

Let σ = (1a12a23a3 . . .) be a partition of length ℓ(σ) and size |σ|. We

can directly write the corresponding relation in R∗(Mg) obtained from

Theorem 3.

A subpartition σ′ ⊂ σ is obtained by selecting a nontrivial subset of

the parts of σ. A division of σ is a disjoint union

(3) σ = σ(1) ∪ σ(2) ∪ σ(3) . . .

of subpartitions which exhausts σ. The subpartitions in (3) are un-

ordered. Let S(σ) be the set of divisions of σ. For example,

S(1121) = { (1121), (11) ∪ (21) } ,

S(13) = { (13), (12) ∪ (11) } .

We will use the notation σ• to denote a division of σ with subparti-

tions σ(i). Let

m(σ•) =
1

|Aut(σ•)|
|Aut(σ)|

∏ℓ(σ•)
i=1 |Aut(σ(i))|

.

Here, Aut(σ•) is the group permuting equal subpartitions. The factor

m(σ•) may be interpreted as counting the number of different ways the

disjoint union can be made.

To write explicitly the pσ coefficient of exp(γp), we introduce the

functions

Fn,m(t, x) = −
∞∑

d=1

∞∑

s=−1

Cs
d κs+mts+mdnxd

d!

for n, m ≥ 1. Then,

|Aut(σ)| ·
[
exp(−γp)

]

trxdpσ
=

[
exp(−γ(t, x)) ·




∑

σ•∈S(σ)

m(σ•)

ℓ(σ•)∏

i=1

Fℓ(σ(i)),|σ(i)|




]

trxd
.

The length ℓ(σ∗,•) is the number of unmarked subpartitions.

Let σ∗,• be a division of σ with a marked subpartition,

(4) σ = σ∗ ∪ σ(1) ∪ σ(2) ∪ σ(3) . . . ,
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labelled by the superscript ∗. The marked subpartition is permitted to

be empty. Let S∗(σ) denote the set of marked divisions of σ. Let

m(σ∗,•) =
1

|Aut(σ•)|
|Aut(σ)|

|Aut(σ∗)|∏ℓ(σ∗,•)
i=1 |Aut(σ(i))|

.

Then, |Aut(σ)| times the right side of Theorem 3 may be written as

(−1)g+|σ||Aut(σ)| ·
[
exp(−γ(−t, x))·




∑

σ∗,•∈S∗(σ)

m(σ∗,•)

ℓ(σ∗)∏

j=1

κσ∗
j −1(−t)σ∗

j −1

ℓ(σ∗,•)∏

i=1

Fℓ(σ(i)),|σ(i)|(−t, x)




]

trxd

To write Theorem 3 in the simplest form, the following definition

with the Kronecker δ is useful,

m±(σ∗,•) = (1 ± δ0,|σ∗|) · m(σ∗,•).

There are two cases. If g ≡ r+ |σ| mod 2, then Theorem 3 is equivalent

to the vanishing of

[
exp(−γ)·




∑

σ∗,•∈S∗(σ)

m−(σ∗,•)

ℓ(σ∗)∏

j=1

κσ∗
j −1t

σ∗
j −1

ℓ(σ∗,•)∏

i=1

Fℓ(σ(i)),|σ(i)|




]

trxd
.

If g ≡ r + |σ|+1 mod 2, then Theorem 3 is equivalent to the vanishing

of

[
exp(−γ)·




∑

σ∗,•∈S∗(σ)

m+(σ∗,•)

ℓ(σ∗)∏

j=1

κσ∗
j −1t

σ∗
j −1

ℓ(σ∗,•)∏

i=1

Fℓ(σ(i)),|σ(i)|




]

trxd
.

In either case, the relations are valid in the ring R∗(Mg) only if the

condition g − 2d − 1 + |σ| < r holds.
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V. Further examples.

If σ = (k) has a single part, then the two cases of Theorem 3 are the

following. If g ≡ r + k mod 2, we have

[
exp(−γ) · κk−1t

k−1
]

trxd
= 0

which is a consequence of Theorem 2. If g ≡ r + k + 1 mod 2, we have

[
exp(−γ) ·

(
κk−1t

k−1 + 2F1,k

) ]

trxd
= 0

If σ = (k1k2) has two distinct parts, then the two cases of Theorem

3 are as follows. If g ≡ r + k1 + k2 mod 2, we have

[
exp(−γ) ·

(
κk1−1κk2−1t

k1+k2−2

+ κk1−1t
k1−1F1,k2 + κk2−1t

k2−1F1,k1

)]

trxd
= 0 .

If g ≡ r + k1 + k2 + 1 mod 2, we have

[
exp(−γ) ·

(
κk1−1κk2−1t

k1+k2−2 + κk1−1t
k1−1F1,k2

+ κk2−1t
k2−1F1,k1 + 2F2,k1+k2 + 2F1,k1F1,k2

)]

trxd
= 0 .

In fact, the g ≡ r + k1 + k2 mod 2 equation above is not new. The

genus g and codimension r1 = r − k2 + 1 case of partition (k1) yields

[
exp(−γ) ·

(
κk1−1t

k1−1 + 2F1,k1

) ]

tr1xd
= 0 .

After multiplication with κk2−1t
k2−1, we obtain

[
exp(−γ) ·

(
κk1−1κk2−1t

k1+k2−2 + 2κk2−1t
k2−1F1,k1

) ]

trxd
= 0 .

Summed with the corresponding equation with k1 and k2 interchanged

yields the above g ≡ r + k1 + k2 mod 2 case.
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VI. Expanded form revisited.

Consider the partition σ = (k1k2 · · · kℓ) with distinct parts. We

obtain from Theorem 3, in the g ≡ r + |σ| mod 2 case, the vanishing of

[
exp(−γ)·




∑

σ∗,•∈S∗(σ)

(1 − δ0,|σ∗|)

ℓ(σ∗)∏

j=1

κσ∗
j −1t

σ∗
j −1

ℓ(σ∗,•)∏

i=1

Fℓ(σ(i)),|σ(i)|




]

trxd

since all the factors m(σ∗,•) are 1. In the g ≡ r + |σ| + 1 mod 2 case,

we obtain the vanishing of

[
exp(−γ)·




∑

σ∗,•∈S∗(σ)

(1 + δ0,|σ∗|)

ℓ(σ∗)∏

j=1

κσ∗
j −1t

σ∗
j −1

ℓ(σ∗,•)∏

i=1

Fℓ(σ(i)),|σ(i)|




]

trxd

for the same reason.

Proposition 2. The g ≡ r + |σ| mod 2 case is a consequence of the

g ≡ r′ + |σ′| + 1 mod 2 cases of smaller partitions σ′.

Proof. The strategy is identical to that employed in the special cases

of the result proven in Section V. �

If σ has repeated parts, the relations of Theorem 3 are obtained

by viewing the parts are distinct and using the above formulas. For

example, the two cases of Theorem 3 for σ = (k2) are as follows. If

g ≡ r + 2k mod 2, we have

[
exp(−γ) ·

(
κk−1κk−1t

2k−2 + 2κk−1t
k−1F1,k

)]

trxd
= 0 .

If g ≡ r + 2k + 1 mod 2, we have

[
exp(−γ) ·

(
κk−1κk−1t

2k−2 + 2κk−1t
k−1F1,k

+ 2F2,2k + 2F1,kF1,k

)]

trxd
= 0 .

The factors occur via repetition of terms in the formulas for distinct

parts.
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VII. Differential equations.

The function Φ satisfies a basic differential equation obtained from

the series definition,

d

dx
(Φ − tx

d

dx
Φ) = −1

t
Φ .

After expanding and dividing by Φ, we find

−tx
Φxx

Φ
− t

Φx

Φ
+

Φx

Φ
= −1

t

which can be written as

(5) −t2xγ∗
xx = t2x(γ∗

x)
2 + t2γ∗

x − tγ∗
x − 1

where, as before, γ∗ = log(Φ). Equation (5) has been studied by Ionel

in Relations in the tautological ring [3]. We present here results of hers

which will be useful for us.

To kill the pole and match the required constant term, we will con-

sider the function

Γ = −t

(
∑

i≥1

B2i

2i(2i − 1)
t2i−1 + γ∗

)
.

The differential equation (5) becomes

txΓxx = x(Γx)
2 + (1 − t)Γx − 1 .

The differential equation is easily seen to uniquely determine Γ once

the initial conditions

Γ(t, 0) = −
∑

i≥1

B2i

2i(2i − 1)
t2i

are specified. By Ionel’s first result,

Γx =
−1 +

√
1 + 4x

2x
+

t

1 + 4x
+

∞∑

k=1

k∑

j=0

tk+1qk,j(−x)j(1 + 4x)−j− k
2
−1

where the postive integers qk,j (defined to vanish unless k ≥ j ≥ 0) are

defined via the recursion

qk,j = (2k + 4j − 2)qk−1,j−1 + (j + 1)qk−1,j +
k−1∑

m=0

j−1∑

l=0

qm,lqk−1−m,j−1−l

from the initial value q0,0 = 1.
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Ionel’s second result is obtained by integrating Γx with respect to x.

She finds

Γ = Γ(0, x) +
t

4
log(1 + 4x) −

∞∑

k=1

k∑

j=0

tk+1ck,j(−x)j(1 + 4x)−j− k
2

where the coefficients ck,j are determined by

qk,j = (2k + 4j)ck,j + (j + 1)ck,j+1

for k ≥ 1 and k ≥ j ≥ 0.

While the derivation of the formula for Γx is straightforward, the for-

mula for Γ is quite subtle as the intial conditions (given by the Bernoulli

numbers) are used to show the vanishing of constants of integration.

Said differently, the recusions for qk,j and ck,j must be shown to imply

the formula

ck,0 =
Bk

k(k − 1)
.

A third result of Ionel’s is the determination of the extremal ck,k,

∞∑

k=1

ck,kz
k = log

(
∞∑

k=1

(6k)!

(2k)!(3k)!

( z

72

)k

)

.

The formula for Γ becomes simpler after the following very natural

change of variables,

(6) u =
t√

1 + 4x
and y =

−x

1 + 4x
.

The change of variables defines a new function

Γ̂(u, y) = Γ(t, x) .

The formula for Γ implies

1

t
Γ(u, y) =

1

t
Γ(0, y) − 1

4
log(1 + 4y) −

∞∑

k=1

k∑

j=0

ck,ju
kyj .

Ionel’s fourth result relates coefficients of series after the change of

variables (6). Given any series

P (t, x) ∈ Q[[t, x]],

let P̂ (u, y) be the series obtained from the change of variables (6). Ionel

proves coefficient relation
[
P (t, x)

]
trxd = (−1)d

[
(1 + 4y)

r+2d−2
2 · P̂ (u, y)

]
uryd .
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VII. Analysis of the relations of Theorem 2

We now study in detail the simple relations of Theorem 2,
[
exp(−γ)

]
trxd = 0 ∈ Rr(Mg)

when g − 2d − 1 < r and g ≡ r + 1 mod 2. Let

γ̂(u, y) = γ(t, x)

be obtained from the variable change (6),

γ̂(u, y) =
κ0

4
log(1 + 4y) +

∞∑

k=1

k∑

j=0

κkck,ju
kyj

modulo κ−1 terms which we set to 0. Applying Ionel’s coefficient result,
[
exp(−γ)

]
trxd =

[
(1 + 4y)

r+2d−2
2 · exp(−γ̂)

]
uryd

=

[
(1 + 4y)

r+2d−2
2

−
κ0
4 · exp(−

∞∑

k=1

k∑

j=0

κkck,ju
kyj)

]

uryd

=

[
(1 + 4y)

r−g+2d−1
2 · exp(−

∞∑

k=1

k∑

j=0

κkck,ju
kyj)

]

uryd

.

In the last line, the substitution κ0 = 2g − 2 has been made.

Consider first the exponent of 1 + 4y. By the assumptions on g and

r in Theorem 2,
r − g + 2d − 1

2
≥ 0

and the fraction is integral. Hence, the y degree of the prefactor

(1 + 4y)
r−g+2d−1

2

is exactly r−g+2d−1
2

. The y degree of the exponential factor is bounded

from above by the u degree. We conclude
[
(1 + 4y)

r−g+2d−1
2 · exp(−

∞∑

k=1

k∑

j=0

κkck,ju
kyj)

]

uryd

= 0

is the trivial relation unless

r ≥ d − r − g + 2d − 1

2
= −r

2
+

g + 1

2
.

Rewriting the inequality, we obtain 3r ≥ g + 1 which is equivalent to

r > ⌊g

3
⌋. The conclusion is in agreement with the proven freeness of

R∗(Mg) up to (and including) degree ⌊g

3
⌋.
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A similar connection between Theorem 2 and Ionel’s relations in [3]

has also been found by Shengmao Zhu [8].

VIII. Analysis of the relations of Theorem 3

For the relations of Theorem 3, we will require additional notation.

To start, let

γc(u, y) =

∞∑

k=1

k∑

j=0

κkck,ju
kyj .

By Ionel’s second result,

1

t
Γ =

1

t
Γ(0, x) +

1

4
log(1 + 4x) −

∞∑

k=1

k∑

j=0

tkck,j(−x)j(1 + 4x)−j− k
2 .

Let c0
k,j = ck,j. We define the constants cn

k,j for n ≥ 1 by

(
x

d

dx

)n
1

t
Γ =

(
x

d

dx

)n−1(−1

2t
+

1

2t

√
1 + 4x

)

−
∞∑

k=0

k+n∑

j=0

tkcn
k,j(−x)j(1 + 4x)−j− k

2 .

Lemma 2. For n > 0, there are constants bn
j satisfying

(
x

d

dx

)n−1(
1

2t

√
1 + 4x

)
=

n−1∑

j=0

bn
j u−1yj .

Moreover, bn
n−1 = −2n−2 · (2n− 5)!! where (−1)!! = 1 and (−3)!! = −1.

Proof. The result is obtained by simple induction. The negative evalu-

ations (−1)!! = 1 and (−3)!! = −1 arise from the Γ-regularization. �

Lemma 3. For n > 0, we have cn
0,n = 4n−1(n − 1)!.

Lemma 4. For n > 0 and k > 0, we have

cn
k,k+n = (6k)(6k + 4) · · · (6k + 4(n − 1)) ck,k.



17

Consider next the full set of equations given by Theorem 3 in the

expanded form of Section VI. The function Fn,m may be rewritten as

Fn,m(t, x) = −
∞∑

d=1

∞∑

s=−1

Cs
d κs+mts+mdnxd

d!

= −tm
(

x
d

dx

)n ∞∑

d=1

∞∑

s=−1

Cs
d κs+mts

xd

d!
.

We may write the result in terms of the constants bn
j and cn

k,j,

t−(m−n)Fn,m = −δn,1
κm−1

2

+ (1 + 4y)−
n
2

( n−1∑

j=0

κm−1b
n
j un−1yj −

∞∑

k=0

k+n∑

j=0

κk+mcn
k,ju

k+nyj
)

Define the functions Gn,m(u, y) by

Gn,m(u, y) =
n−1∑

j=0

κm−1b
n
j u

n−1yj −
∞∑

k=0

k+n∑

j=0

κk+mcn
k,ju

k+nyj .

Let σ = (1a12a23a3 . . .) be a partition of length ℓ(σ) and size |σ|. We

assume the parity condition

(7) g ≡ r + |σ| + 1 .

Let G±
σ (u, y) be the following function associated to σ,

G±
σ (u, y) =

∑

σ•∈S(σ)

ℓ(σ•)∏

i=1

(
Gℓ(σ(i)),|σ(i)| ±

δℓ(σ(i)),1

2

√
1 + 4y κ|σ(i)|−1

)
.

The relations of Theorem 3 written in the variables u and y is
[
(1 + 4y)

r−|σ|−g+2d−1
2 exp(−γc)

(
G+

σ + G−
σ

) ]

ur−|σ|+ℓ(σ)yd
= 0

In fact, the relations of Theorem 3 can be written in a much more

efficient form when the strategy of Proposition 2 is used to take out

lower equations.

Theorem 4. In Rr(Mg), the relation

[
(1+4y)

r−|σ|−g+2d−1
2 exp



−γc +
∑

σ 6=∅

Gℓ(σ),|σ|
pσ

|Aut(σ)|




]

ur−|σ|+ℓ(σ)ydpσ
= 0

holds when g − 2d − 1 + |σ| < r and g ≡ r + |σ| + 1 mod 2.
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Consider the exponent of 1 + 4y. By the inequality and the parity

condition (7),

r − |σ| − g + 2d − 1

2
≥ 0

and the fraction is integral. Hence, the y degree of the prefactor

(1 + 4y)
r−|σ|−g+2d−1

2

is exactly r−|σ|−g+2d−1
2

. The y degree of the exponential factor is bounded

from above by the u degree. We conclude the relation of Theorem 4 is

trivial unless

r − |σ| + ℓ(σ) ≥ d − r − |σ| − g + 2d − 1

2
= −r − |σ|

2
+

g + 1

2
.

Rewriting the inequality, we obtain

3r ≥ g + 1 + 3|σ| − 2ℓ(σ)

which is consistent with the proven freeness of R∗(Mg) up to (and

including) degree ⌊g

3
⌋.
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X. Another form

A subset of the equations of Theorem 4 admits an especially simple

description. Consider the function

Hn,m(u) = 2n−2(2n − 5)!! κm−1u
n−1 + 4n−1(n − 1)! κmun

+

∞∑

k=1

(6k)(6k + 4) · · · (6k + 4(n − 1))ck,k κk+muk+n .

Proposition 3. In Rr(Mg), the relation

[
exp



−
∞∑

k=1

ck,kκku
k −

∑

σ 6=∅

Hℓ(σ),|σ|
pσ

|Aut(σ)|




]

ur−|σ|+ℓ(σ)pσ
= 0

holds when 3r ≥ g + 1 + 3|σ| − 2ℓ(σ) and g ≡ r + |σ| + 1 mod 2.

The main advantage of Proposition 3 is the dependence on only the

function

(8)
∞∑

k=1

ck,kz
k = log

(
∞∑

k=1

(6k)!

(2k)!(3k)!

( z

72

)k

)
.

Proposition 3 only provides finitely many relations for fixed g and r.

In Theorem 5 of Section C.I below, a more elegant set of relations in

Rr(Mg) conjectured by Faber-Zagier is presented. In fact, we show

Proposition 3 is equivalent to the Faber-Zagier conjecture.
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C. The conjecture of Faber-Zagier

I. The function Ψ

A third set of relations is defined as follows Let

p = { p1, p3, p4, p6, p7, p9, p10, . . . }
be a variable set indexed by integers not congruent to 2 mod 3. Let

Ψ(t,p) = (1 + tp3 + t2p6 + t3p9 + . . .)

∞∑

i=0

(6i)!

(3i)!(2i)!
ti

+ (p1 + tp4 + t2p7 + . . .)

∞∑

i=0

(6i)!

(3i)!(2i)!

6i + 1

6i − 1
ti

Define the constants Cr(σ) by the formula

log(Ψ) =
∑

σ

∞∑

r=0

Cr(σ) trpσ .

Here and below, σ denotes a partition which avoids all parts congruent

to 2 mod 3. Let

γ =
∑

σ

∞∑

r=0

Cr(σ) κrt
rpσ .

Our main result, starting from the stable quotient relations, is the

following final form.

Theorem 5. In Rr(Mg), the relation
[
exp(−γ)

]
trpσ = 0

holds when g − 1 + |σ| < 3r and g ≡ r + |σ| + 1 mod 2.

The relations of Theorem 5 were conjectured earlier by Faber and

Zagier from data and a study of the Gorenstein quotient of R∗(Mg).

To the best of our knowledge, a relation in R∗(Mg) which is not in

the span of the relations of Theorem 5 has not yet been found. In

particular, all relations obtained from Theorem 1 to date are in the

span of Theorem 5 (and conversely). It is very reasonable to expect

the spans of the relations in Theorem 1 and Theorem 5 exactly coin-

cide. Whether Theorem 5 exhausts all relations in R∗(Mg) is a very

interesting question.
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Theorem 5 is much more efficient than Theorem 1 for several reasons.

Theorem 5 only provides finitely many relations in Rr(Mg) for fixed

g and r, and thus may be calculated completely. When the relations

yield a Gorenstein ring with socle in Rg−2(Mg), no further relations are

possible. However, the relations of Theorem 5 do not always yield such

a Gorenstein ring (failing first in genus 24 as checked by Faber). For

g < 24, Faber’s calculations show Theorem 5 does provide all relations

in R∗(Mg). For higher genus g ≥ 24, either Theorem 5 fails to provide

all the relations in R∗(Mg) or R∗(Mg) is not Gorenstein.

II. Connection to the stable quotient relations

Theorem 5 is derived from Proposition 3. In fact, Proposition 3 is

equivalent to Theorem 5. The derivation is obtained by a triangular

transformation among distinguished generators. A certain amount of

differential algebra is required.

Consider the relation obtained from the partition σ = (1) in Propo-

sition 3 and the Conjecture. For convenience, let

A(z) =
∞∑

i=0

(6i)!

(3i)!(2i)!

( z

72

)i

,

B(z) =

∞∑

i=0

(6i)!

(3i)!(2i)!

6i + 1

6i − 1

( z

72

)i

The conjectures predict no room for different relations in R∗(Mg) for

σ = (1), so we must have

−1

2
+ z + 6z

(
z

d

dz

)
log(A)

proportional to B/A. We find the equation

−1

2
+ z + 6z

(
z

d

dz

)
log(A) =

1

2

B

A

holds. Equivalently,

−1

2
A + zA + 6z2 dA

dz
=

1

2
B



22

More interesting is the partition σ = (11). Here we predict, once the

definitions are unwound, that

z + 4z2 + 36z2

(
z

d

dz

)2

log(A) + 24z2

(
z

d

dz

)
log A

is a linear combination of 1 and B2/A2. We find the equation

z + 4z2 + 36z2

(
z

d

dz

)2

log(A) + 24z2

(
z

d

dz

)
log A =

1

4
− 1

4

B2

A2

holds.

In fact, the main hypergeometric differential equation satisfied by

the function A is

36z2 d2

dz2
A + (72z − 6)

d

dz
A + 5A = 0 .

In Section D below, further details describing the use of such differential

equations to prove Theorem 5 from Proposition 3 are presented.

III. Functions

While the functions A(z) and B(z) of Section II have radius of con-

vergence 0, an additional double factorial in the denominator yields

convergent classical series,

3

2t
sin

(
2

3
sin−1(t)

)
=

∞∑

i=0

(6i)!

(3i)!(2i)!(2i + 1)!!

(
t2

216

)i

,

− 3

4t
sin

(
4

3
sin−1(t)

)
=

∞∑

i=0

(6i)!

(3i)!(2i)!(2i + 1)!!

6i + 1

6i − 1

(
t2

216

)i

.

IV. Remarks

Stable quotients relations in R∗(Mg) have several advantages over

other geometric constructions. We have already seen here the possi-

bility of exact evaluation. Another advantage we have not explored in

these lectures is the extension of the stable quotients relations over Mg.

The boundary terms of the stable quotients relations are tautological.

A study of the relations among the κ classes in the tautological ring

of the moduli space of curves of compact type Mc
g,n has been under-

taken in [5, 6]. For example, the Gorenstein predictions for κ classes
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are proven there if n ≥ 1. But even for Mg, the extension of the

stable quotients relations over Mg has significant consequences. Since

we know the stable quotients relations are all relations in R∗(Mg) for

g < 24, the following result holds.

Proposition 4. For g < 24, we have a right exact sequence

R∗(∂Mg) → R∗(Mg) → R∗(Mg) → 0 .

Speculations about such right exactness for tautological rings were

advanced in [2].

D. The equivalence

I. Notation

The relations in Theorem 5 and Proposition 3 have a similar flavor.

We start with formal series related to

A(z) =
∞∑

i=0

(6i)!

(3i)!(2i)!

( z

72

)i

,

we insert classes κr, we exponentiate, and we extract coefficients to

obtain relations among the κ classes. In order to make the similarities

clearer, we will introduce additional notation.

If F is a formal power series in z,

F =
∞∑

r=0

crz
r

with coefficients in a ring R, let

{F}κ =
∞∑

r=0

crκrz
r

be the series with κ-classes inserted.

Let A be as above, and let B be the function defined in C.II. Let

C =
B

A
,

and let

E = exp(−{log(A)}κ) = exp

(
−

∞∑

k=1

ck,kκkz
k

)
.
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We will rewrite the relations of Theorem 5 and Proposition 3 in terms

of C and E. The equivalence between the two will rely on properties

of the differential equations satisfied by C.

II. Rewriting the relations

The relations of Theorem 5 conjectured by Faber-Zagier are straight-

forward to rewrite using the above notation:

(9)

[

E · exp
(
−
{

log(1 + p3z + p6z
2 + · · ·

+ C(p1 + p4z + p7z
2 + · · · ))

}

κ

)]

zrpσ

= 0

for 3r ≥ g + |σ| + 1 and 3r ≡ g + |σ| + 1 mod 2. We call the above

relations FZ.

The stable quotient relations of Proposition 3 are a bit more com-

plicated to rewrite in terms of C and E. Let

2−nCn = 2n−2(2n − 5)!!zn−1 + 4n−1(n − 1)!zn

+
∞∑

k=1

(6k)(6k + 4) · · · (6k + 4(n − 1))ck,kz
k+n.

We see

Hn,m(z) = 2−nzn−m{zm−nCn}κ.

The series Cn satisfy

C1 = C, Ci+1 =

(
12z2 d

dz
− 4iz

)
Ci.

Since C satisfies the differential equation

12z2 dC

dz
= 1 + 4zC − C2,

each Cn can be expressed as a polynomial in C and z:

C1 = C, C2 = 1 − C2, C3 = −8z − 2C + 2C3, . . . , .
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Proposition 3 can then be rewritten as follows (after an appropriate

change of variables):

(10)



E · exp



−
∑

σ 6=∅

{z|σ|−ℓ(σ)Cℓ(σ)}κ

pσ

|Aut(σ)|









zrpσ

= 0

for 3r ≥ g + 3|σ| − 2ℓ(σ) + 1 and 3r ≡ g + 3|σ| − 2ℓ(σ) + 1 mod 2. We

call the stable quotients relations SQ.

The FZ and SQ relations now look much more similar, but the rela-

tions in (9) are indexed by partitions with no parts of size 2 mod 3 and

satisfy a slightly different inequality. The indexing differences can be

erased by noting the variables p3k are actually not necessary in (9) if we

are just interested in the ideal generated by a set of relations (rather

than the linear span). If we remove the variables p3k and reindex the

others, we obtain the following equivalent form of the FZ relations:

(11)
[
E · exp

(
−
{

log(1 + C(p1 + p2z + p3z
2 + · · · ))

}
κ

)]

zrpσ
= 0

for 3r ≥ g + 3|σ| − 2ℓ(σ) + 1 and 3r ≡ g + 3|σ| − 2ℓ(σ) + 1 mod 2.

II. Comparing the relations

We now explain how to write the SQ relations (10) as linear com-

binations of the FZ relations (11) with coefficients in Q[κ0, κ1, κ2, . . .].

In fact, the associated matrix will be triangular with diagonal entries

equal to 1.

We start with further notation. For a partition σ, let

FZσ =
[
exp

(
−
{
log(1 + C(p1 + p2z + p3z

2 + · · · ))
}

κ

)]
pσ

and

SQσ =



exp



−
∑

σ 6=∅

{z|σ|−ℓ(σ)Cℓ(σ)}κ

pσ

|Aut(σ)|









pσ

be power series in z with coefficients that are polynomials in the κ

classes. The relations themselves are given by [E ·SQσ]zr and [E ·FZσ]zr .
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For each σ, we can write SQσ in terms of the FZσ. For example,

SQ(111) = −1

6
{C3}κ +

1

2
{C2}κ{C1}κ −

1

6
{C1}3

κ

=
4

3
κ1z +

1

3
{C}κ −

1

3
{C3}κ +

1

2
(κ0 − {C2}κ){C}κ −

1

6
{C}3

κ

=

(
4

3
κ1z

)
+

((
1

3
+

κ0

2

)
{C}κ

)

+

(
−1

3
{C3}κ −

1

2
{C2}κ{C}κ −

1

6
{C}3

κ

)

=
4

3
κ1z FZ∅ +

(
−1

3
− κ0

2

)
FZ(1) + FZ(111) .

We then obtain a corresponding linear relation between the relations

themselves:

[E·SQ(111)]zr =
4

3
κ1[E·FZ∅]zr−1+

(
−1

3
− κ0

2

)
[E·FZ(1)]zr+[E·FZ(111)]zr .

Constructing such linear combinations in general is not hard. When

expanded in terms of C as in the above example, FZσ always contains

exactly one term of the form

(12) {za1C}κ{za2C}κ · · · {zamC}κ .

All the other terms involve higher powers of C. If we expand SQσ in

terms of C, we can look at the terms of the form (12) which appear to

determine how to write the SQσ as a linear combination of the FZbσ.

We must check the terms involving higher powers of C also match up.

The matching amounts to proving an identity between the coefficients

of Ci when expressed a polynomial in C. Define polynomials fij ∈ Z[z]

by

Ci =

i∑

j=0

fijC
j,

and let

f = 1 +
∑

i,j≥1

(−1)j−1fij

i!(j − 1)!
xiyj.

Lemma 5. There exists a power series g ∈ Q[z][[x]] such that f = eyg.

The Lemma (which can be proven in straightforward fashion using

the differential equation satisfied by f) is the precise consistency state-

ment needed to express the SQ relations as linear combinations of the
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FZ relations. The associated matrix is triangular with respect to the

partial ordering of partitions by size, and the diagonal entries are eas-

ily computed to be equal to 1. Hence, the matrix is invertible. We

conclude the SQ relations are equivalent to the FZ relations.
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