
ALGEBRAIC COBORDISM REVISITED
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Abstract. We define a cobordism theory in algebraic geometry
based on normal crossing degenerations with double point singu-
larities. The main result is the equivalence of double point cobor-
dism to the theory of algebraic cobordism previously defined by
Levine and Morel. Double point cobordism provides a simple, geo-
metric presentation of algebraic cobordism theory. As a corollary,
the Lazard ring given by products of projective spaces rationally
generates all nonsingular projective varieties modulo double point
degenerations.

Double point degenerations arise naturally in relative Donaldson-
Thomas theory. We use double point cobordism to prove all the
degree 0 conjectures in Donaldson-Thomas theory: absolute, rela-
tive, and equivariant.

Introduction

0.1. Overview. A first idea for defining cobordism in algebraic ge-
ometry is to naively follow the well-known presentation of complex
cobordism. Let X be a variety over a field k. We form the free abelian
group on projective morphisms

f : Y → X

from smooth k-varieties Y to X (modulo isomorphism over X). We
impose the relations

(0.1) [π−1(0) → X] = [π−1(∞) → X]

obtained from projective morphisms

g : Y → X × P1,

where π = p2◦g and the varieties Y , π−1(0), and π−1(∞) are all smooth.
Unfortunately, the resulting theory bears no structural resemblance to
complex cobordism. Further discussion of the difficulities here can be
found in [22, Remark 1.2.9].

A successful theory of algebraic cobordism has been constructed in
[18, 21, 22] from Quillen’s axiomatic perspective, see also [16, 17, 19,
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20]. The result Ω∗ is the universal oriented Borel-Moore homology the-
ory of schemes, yielding the universal oriented Borel-Moore cohomology
theory Ω∗ for the subcategory of smooth schemes (see [22, Definitions
1.1.2, 5.1.3] for the precise definitions). The construction yields, in
principle, a presentation for algebraic cobordism, but the relations are
considerably more complicated than desired.

A second idea for defining algebraic cobordism geometrically is to
impose relations obtained by fibers of π with normal crossing singu-
larities. The simplest of these are the double point degenerations —
where the fiber is a union of two smooth transverse divisors. We prove
the cobordism theory obtained from double point degenerations is al-
gebraic cobordism.

Algebraic cobordism may thus be viewed both functorially and geo-
metrically. In practice, the different perspectives are very useful. We
prove several conjectural formulas concerning the virtual class of the
Hilbert scheme of points of a 3-fold as an application.

0.2. Double point degenerations. Let k be a field of characteris-
tic 0. Let Schk be the category of separated schemes of finite type
over k, and let Smk be the full subcategory of smooth quasi-projective
k-schemes. Since we will use resolution of singularities, weak factor-
ization, and Bertini’s Theorem, the characteristic 0 hypothesis will be
required for the entire paper.

For X ∈ Schk, let M(X) denote the set of isomorphism classes over
X of projective morphisms

(0.2) f : Y → X

with Y ∈ Smk. The set M(X) is a monoid under disjoint union of
domains and is graded by the dimension of Y over k. Let M∗(X)+

denote the graded group completion of M(X).
Alternatively, Mn(X)+ is the free abelian group generated by mor-

phisms (0.2) where Y is irreducible and of dimension n over k. Let

[f : Y → X] ∈ M∗(X)+

denote the element determined by the morphism.
Let Y ∈ Smk be of pure dimension. A morphism

π : Y → P1

is a double point degeneration over 0 ∈ P1 if π−1(0) can be written as

π−1(0) = A ∪ B
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where A and B are smooth codimension one closed subschemes of Y ,
intersecting transversely. The intersection

D = A ∩ B

is the double point locus of π over 0 ∈ P1. We also allow A, B or D to
be empty.

Let NA/D and NB/D denote the normal bundles of D in A and B
respectively. Since OD(A + B) is trivial,

NA/D ⊗ NB/D
∼= OD.

Hence, as OD ⊕ NA/D
∼= NA/D ⊗ (OD ⊕ NB/D), the projective bundles

(0.3) P(OD ⊕ NA/D) → D and P(OD ⊕ NB/D) → D

are isomorphic. Let

P(π) → D

denote either of (0.3).

0.3. Double point relations. Let X ∈ Schk, and let p1 and p2 denote
the projections to the first and second factors of X × P1 respectively.

Let Y ∈ Smk be of pure dimension. Let

g : Y → X × P1

be a projective morphism for which the composition

(0.4) π = p2 ◦ g : Y → P1

is a double point degeneration over 0 ∈ P1. Let

[A → X], [B → X], [P(π) → X] ∈ M(X)+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g.

Definition 0.1. Let ζ ∈ P1(k) be a regular value of π. We call the
map g a double point cobordism with degenerate fiber over 0 and smooth
fiber over ζ . The associated double point relation over X is

(0.5) [Yζ → X] − [A → X] − [B → X] + [P(π) → X]

where Yζ = π−1(ζ).

The relation (0.5) depends not only on the morphism g and the point
ζ , but also on the choice of decomposition of the fiber

π−1(0) = A ∪ B.

We view (0.5) as an analog of the classical relation of rational equiv-
alence of algebraic cycles, see [22, Theorem 1.2.19] for a more precise
statement.
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Let R∗(X) ⊂ M∗(X)+ be the subgroup generated by all double
point relations over X. Since (0.5) is a homogeneous element of M∗(X)+,
R∗(X) is a graded subgroup of M∗(X)+.

Definition 0.2. For X in Schk, double-pont cobordism ω∗(X) is defined
by

ω∗(X) = M∗(X)+/R∗(X).

Naive cobordism (0.1) may be viewed as a special case of a double
point relation. Indeed, let Y ∈ Smk be of pure dimension. Let

g : Y → X × P1

be a projective morphism with π = p2 ◦ g smooth over 0,∞ ∈ P1. We
may view π as a double point degeneration over 0 ∈ P1 with

π−1(0) = A ∪ ∅.

The associated double point relation is

[Y∞ → X] − [Y0 → X] ∈ R(X).

0.4. Algebraic cobordism. Let Ω∗(X) be the theory of algebraic
cobordism defined in [22]. The central object of the paper is relation
of Ω∗ with double-point cobordism ω∗.

Theorem 1. For X ∈ Schk, there is a canonical isomorphism

ω∗(X) ∼= Ω∗(X).

We actually prove a stronger result, giving an isomorphism ω∗
∼= Ω∗

of oriented Borel-Moore functors of geometric type (see below).
Theorem 1 may be viewed as a geometric presentation of Ω∗(X) via

the simplest possible cobordisms. A homomorphism

(0.6) ω∗(X) → Ω∗(X)

is obtained immediately from the definitions once the double point
relations are shown to hold in Ω∗(X). The inverse is more difficult to
construct.

The idea for constructing the inverse uses oriented Borel-Moore func-
tors of geometric type on Schk. Every oriented Borel-Moore homology
theory on Schk canonically defines an oriented Borel-Moore functor of
geometric type on Schk [22, Remark 4.1.10, Rroposition 5.2.6], but the
converse is false. The theory Ω∗ is the universal Borel-Moore homol-
ogy theory of Schk. By the construction in [22] via generators and
relations, Ω∗ is also the universal oriented Borel-Moore functor of geo-
metric type on Schk. The universal mapping property of the latter will
provide an inverse to (0.6) once we establish the following result.
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Theorem 2. ω∗ determines an oriented Borel-Moore functor of geo-
metric type on Schk.

The proof of Theorem 2 is the technical heart of the paper. Besides
several elementary structures and properties obviously possessed by ω∗,
an oriented Borel-Moore functor of geometric type A has:

(i) A first Chern class operator c̃1(L) : A∗(X) → A∗−1(X) for each
line bundle L → X.

(ii) A formal group law FA(u, v) ∈ A∗(k)[[u, v]], with

FA(c̃1(L), c̃1(M)) = c̃1(L ⊗ M) .

The key geometric step in the argument is the construction of a formal
group law for ω∗ in Section 8.

0.5. Algebraic cobordism over a point. We write Ω∗(k) and ω∗(k)
for Ω∗(Spec (k)) and ω∗(Spec (k)) respectively. Let L∗ be the Lazard
ring [15]. The canonical map

L∗ → Ω∗(k)

classifying the formal group law for Ω∗ is proven to be an isomorphism
in [22, Theorem 4.3.7]. By Quillen’s theorem,

Ln
∼= MU−2n(pt),

and the known generators of MU∗(pt)Q [33, Theorem, pg. 110, Chap.
VII], we see Ω∗(k)⊗Q is generated as a Q-algebra by the classes of pro-
jective spaces. The following result is then a consequence of Theorem
1.

Corollary 3. We have

ω∗(k) ⊗Z Q =
⊕

λ

Q[Pλ1 × ... × Pλℓ(λ)]

where the sum is over all partitions λ.

0.6. Donaldson-Thomas theory. Corollary 3 is directly applicable
to the Donaldson-Thomas theory of 3-folds.

Let X be a smooth projective 3-fold over C, and let Hilb(X, n) be
the Hilbert scheme of n points. Viewing the Hilbert scheme as the
moduli space of ideal sheaves I0(X, n), a natural 0-dimensional virtual
Chow class can be constructed

[Hilb(X, n)]vir ∈ A0(Hilb(X, n), Z),
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see [25, 26, 34]. The degree 0 Donaldson-Thomas invariants are defined
by

NX
n,0 =

∫

[Hilb(X,n)]vir

1.

Let
Z(X, q) = 1 +

∑

n≥1

NX
n,0 qn

be the associated partition function.

Conjecture 1. [25] Z(X, q) = M(−q)
R

X
c3(TX⊗KX).

Here, M(q) denotes the MacMahon function,

M(q) =
∏

n≥1

1

(1 − qn)n
,

the generating function of 3-dimensional partitions [32].
For a nonsingular divisor S ⊂ X, a relative Donaldson-Thomas the-

ory1 is defined via the moduli space of relative ideal sheaves I0(X/S, n).
The degree 0 relative invariants,

N
X/S
n,0 =

∫

[I0(X/S,n)]vir

1,

determine a relative partition function

Z(X/S, q) = 1 +
∑

n≥1

N
X/S
n,0 qn.

Let ΩX [S] denote the locally free sheaf of differential forms of X with
logarithmic poles along S. Let

TX [−S] = ΩX [S] ∨,

denote the dual sheaf of tangent fields with logarithmic zeros. Let

KX [S] = Λ3ΩX [S]

denote the logarithmic canonical class.

Conjecture 2. [26] Z(X/S, q) = M(−q)
R

X
c3(TX [−S]⊗KX [S]).

We prove Conjectures 1 and 2, as well as an equivariant version
of Conjecture 1 proposed in [5], using Corollary 3 to reduce to toric
cases previously calculated in [25, 26]. The use of Corollary 3 relies
on that fact that the double point relations naturally arise in degree 0
Donaldson-Thomas theory.

1See [25, 29] for a detailed discussion.
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0.7. Double point relations in DT theory. Let Y ∈ SmC be a
4-dimensional projective variety, and let

π : Y → P1

be a double point degeneration over 0 ∈ P1. Let

π−1(0) = A ∪ B, D = A ∩ B.

The degeneration formula in relative Donaldson-Thomas theory yields

(0.7) Z(Yζ) = Z(A/D) · Z(B/D)

for a π-regular value ζ ∈ P1, see [26].
Since the deformation to the normal cone of D ⊂ A is a double point

degeneration,

(0.8) Z(A) = Z(A/D) · Z(P(OD ⊕ NA/D)/D).

On the right, the divisor D ⊂ P(OD ⊕ NA/D) is included with normal
bundle NA/D. Similarly,

(0.9) Z(B) = Z(B/D) · Z(P(OD ⊕ NB/D)/D)

where the divisor D ⊂ P(OD ⊕ NA/D) is included with normal bundle
NB/D.

Since NA/B ⊗NB/D
∼= OD, the deformation of P(OD ⊕NA/D) to the

normal cone of D ⊂ P(OD ⊕ NA/D) yields

Z(P(π)) = Z(P(OD ⊕ NA/D)/D) · Z(P(OD ⊕ NB/D)/D).

When combined with equations (0.7)-(0.9), we find

(0.10) Z(Yζ) · Z(A)−1 · Z(B)−1 · Z(P(π)) = 1

which is the double point relation (0.5) over Spec(C) in multiplicative
form.

0.8. Gromov-Witten speculations. Let X be a nonsingular pro-
jective variety over C. Gromov-Witten theory concerns integration
against the virtual class,

[Mg,n(X, β)]vir ∈ H∗(M g,n(X, β), Q),

of the moduli space of stable maps to X.
There are two main techniques available in Gromov-Witten theory:

localization [12, 14] and degeneration [7, 13, 23, 24, 27]. Localiza-
tion is most effective for toric targets — all the Gromov-Witten data
of products of projective spaces are accessible by localization. The de-
generation formula yields Gromov-Witten relations precisely for double
point degenerations.
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By Corollary 3, all varieties are linked to products of projective
spaces by double point degenerations. We can expect, therefore, that
many aspects of the Gromov-Witten theory of arbitrary varieties will
follow the behavior found in toric targets. An example is the following
speculation about the virtual class — which, at present, appears out
of reach of Corollary 3.

Speculation. The push forward ǫ∗[M g,n(X, β)]vir via the canonical
map

ǫ : M g,n(X, β) → M g,n

lies in the tautological ring

RH∗(M g,n, Q) ⊂ H∗(M g,n, Q).

See [9, 30] for a discussion of similar (and stronger) statements. In
particular, a definition of the tautological ring can be found there.

Gromov-Witten theory is most naturally viewed as an aspect of sym-
plectic geometry. The construction of a parallel symplectic cobordism
theory based on double point degenerations appears to be a natural
path to follow.

0.9. An outline of the paper. The construction of algebraic cobor-
dism Ω∗ is recalled in Section 1. Oriented Borel-Moore functors of
geometric type and the universality of Ω∗ are discussed in Section 2
following [22, Sections 2.1, 2.2 and 5.1]. The elementary properties of
ω∗ and the construction of the map

ω∗ → Ω∗

are treated in Section 3. We begin the construction of Chern classes
for ω∗ in Section 4 by defining the Chern class operators for globally
generated line bundles. Our next goal is the construction of the formal
group law for ω∗. The required technical preparation is presented in
Sections 5-7. The formal group law is constructed in Section 8. We
use the formal group law to extend the Chern class operators to arbi-
trary bundles in Section 9. The proof of Theorem 2 is completed in
Section 10. Theorem 1 and Corollary 3 are proven in Section 11. We
apply our results in Section 12 to give a new proof of a result of Fulton
on Euler characteristics, and conclude by presenting the proofs of the
conjectures in Donaldson-Thomas theory in Section 13.
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1. Algebraic cobordism theory Ω∗

1.1. Construction. Algebraic cobordism theory is constructed in [22],
and the fundamental properties of Ω∗ are verified there. We recall the
construction of Ω∗ here.

1.2. Ω∗. For X ∈ Schk, Ωn(X) is generated (as an abelian group) by
cobordism cycles

(f : Y → X, L1, . . . , Lr),

where f is a projective morphism, Y ∈ Smk is irreducible of dimension
n + r over k, and the Li are line bundles on Y . We identify two
cobordism cycles if they are isomorphic over X up to reorderings of
the line bundles Li.

We will impose several relations on cobordism cycles. To start, two
basic relations are imposed (see [22, 2.4.2, 2.4.3]):

I. If there exists a smooth quasi-projective morphism π : Y → Z
and line bundles M1, . . . , Ms>dimk Z on Z with Li

∼= π∗Mi for
i = 1, . . . , s ≤ r, then

(f : Y → X, L1, . . . , Lr) = 0.
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II. If s : Y → L is a section of a line bundle with smooth associated
divisor i : D → Y , then

(f : Y → X, L1, . . . , Lr, L) = (f ◦ i : D → X, i∗L1, . . . , i
∗Lr).

The graded group generated by cobordism cycles modulo relations I
and II is denoted Ω∗(X).

Relation II yields as a special case the naive cobordism relation. Let

π : Y → X × P1

be a projective morphism with Y ∈ Smk for which p2 ◦ π is transverse
to the inclusion {0,∞} → P1. Let L1, . . . , Lr be line bundles on Y ,
and let

i0 : Y0 → Y, i∞ : Y∞ → Y

be the inclusions of the fibers over 0,∞. Then

(p1 ◦ π : Y0 → X, i∗0L1, . . . , i
∗
0Lr) = (p1 ◦ π : Y∞ → X, i∗∞L1, . . . , i

∗
∞Lr)

in Ω∗(X).
Several structures are easily constructed on Ω∗. For a projective

morphism g : X → X ′, define

g∗ : Ω∗(X) → Ω∗(X
′)

by the rule

g∗(f : Y → X, L1, . . . , Lr) = (g ◦ f : Y → X ′, L1, . . . , Lr).

For a smooth quasi-projective morphism g : X → X ′ of relative dimen-
sion d, define

g∗ : Ω∗(X
′) → Ω∗+d(X)

by the rule

g∗(f : Y → X ′, L1, . . . , Lr) = (p2 : Y ×X′ X → X, p∗1L1, . . . , p
∗
1Lr).

External products Ω∗(X) ⊗ Ω∗(X) → Ω∗(X ×k X ′) are defined by

(f : Y → X, L1, . . . , Lr) ⊗ (f ′ : Y ′ → X ′, M1, . . . , Ms)

7→ (f × f ′ : Y ×k Y ′ → X ×k X ′, p∗1L1, . . . , p
∗
1Lr, p

∗
2M1, . . . , p

∗
2Ms).

The Chern class operator c̃1(L) : Ωn(X) → Ωn−1(X) is defined by the
following formula:

c̃1(L)((f : Y → X, L1, . . . , Lr)) = (f : Y → X, L1, . . . , Lr, f
∗L).



ALGEBRAIC COBORDISM REVISITED 11

1.3. Ω∗. Contrary to the purely topological theory of complex cobor-
dism, relations I and II do not suffice to define Ω∗. One needs to impose
the formal group law.

A (commutative, rank one) formal group law over a commutative ring
R is a power series F (u, v) ∈ R[[u, v]] satisfying the formal relations of
identity, commutativity and associativity:

(i) F (u, 0) = F (0, u) = u,
(ii) F (u, v) = F (v, u),

(iii) F (F (u, v), w) = F (u, F (v, w)).

The Lazard ring L is defined by the following construction [15]. Start
with the polynomial ring

Z[{Aij , i, j ≥ 1}],

and form the power series

F̃ (u, v) = u + v +
∑

i,j≥1

Aiju
ivj.

Relation (i) is already satisfied. Relations (ii) and (iii) give polynomial
relations on the Aij . L is the quotient of Z[{Aij}] by these relations.
Letting aij be the image of Aij in L, the universal formal group law is

FL(u, v) = u + v +
∑

i,j≥1

aiju
ivj ∈ L[[u, v]].

We grade L by giving aij degree i + j − 1. If we give u and v degrees
-1, then has FL(u, v) total degree −1.

To construct Ω∗, we take the functor L∗ ⊗Z Ω∗ and impose the rela-
tions

FL(c̃1(L), c̃1(M))(f : Y → X, L1, . . . , Lr)

= c̃1(L ⊗ M)(f : Y → X, L1, . . . , Lr)

for each pair of line bundles L, M on X. Since as c̃1(L) and c̃1(M) com-
mute, the expression FL(c̃1(L), c̃1(M)) makes sense as a formal infinite
sum of operators. The defining relation I for Ω∗ shows the a priori in-
finite sum FL(c̃1(L), c̃1(M))(f : Y → X, L1, . . . , Lr), is actually a finite
sum. Thus, the above relation is well-defined.

The structures of projective push-forward, smooth pull-back, exter-
nal products and first Chern class for Ω∗ extend L∗-linearly to these
structures on Ω∗.
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2. Oriented Borel-Moore functors of geometric type

2.1. Universality. Algebraic cobordism Ω∗ is the universal theory in
the setting of oriented Borel-Moore functors of geometric type. We
recall the definitions from [22, §2.1 and §2.2] here for the reader’s con-
venience.

2.2. Notation. Let X ∈ Schk. A divisor D on X will be understood
to be Cartier unless otherwise stated. The line bundle associated to
the locally free sheaf OX(D) is denoted OX(D).

Let E be a rank n locally free sheaf E on X. Let

q : P(E) → X

denote the projective bundle ProjX(Sym∗(E)) of rank one quotients2 of
E with tautological quotient invertible sheaf

q∗E → O(1)E .

We let O(1)E denote the line bundle on P(E) with sheaf of sections
O(1)E . The subscript E is omitted if the context makes the meaning
clear. The notation PX(E) is used to emphasize the base scheme X.

2.3. Oriented Borel-Moore functors with product. Let Sch′
k be

the subcategory of Schk, with the same objects, but with morphisms
given by the projective morphisms of Schk. Let Ab∗ denote the cate-
gory of graded abelian groups.

Definition 2.1. An oriented Borel-Moore functor with product on Schk

consists of the following data:

(D1) An additive functor H∗ : Sch′
k → Ab∗.

(D2) For each smooth quasi-projective morphism f : Y → X in Schk

of pure relative dimension d, a homomorphism of graded abelian
groups

f ∗ : H∗(X) → H∗+d(Y ).

(D3) For each line bundle L on X, a homomorphism of graded abelian
groups

c̃1(L) : H∗(X) → H∗−1(X).

(D4) For each pair (X, Y ) in Schk, a bilinear graded pairing

× : H∗(X) × H∗(Y ) → H∗(X × Y )

(α, β) 7→ α × β

2P(E) will denote projectivization by one dimension quotients for the entire paper
except for Section 13 where projectivization by subspaces will be used.
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which is commutative, associative, and admits a distinguished
element 1 ∈ H0(Spec(k)) as a unit.

The pairing in (D4) is the external product. The data (D1)-(D4) are
required to satisfy eight conditions:

(A1) Let f : Y → X and g : Z → Y be smooth quasi-projective
morphisms in Schk of pure relative dimension. Then,

(f ◦ g)∗ = g∗ ◦ f ∗.

Moreover, Id∗
X = IdH∗(X).

(A2) Let f : X → Z and g : Y → Z be morphisms in Schk where f is
projective and g is smooth and quasi-projective of pure relative
dimension. In the cartesian square

W
g′

//

f ′

��

X

f
��

Y g
// Z ,

f ′ is projective and g is smooth and quasi-projective of pure
relative dimension. Then,

g∗f∗ = f ′
∗g

′∗.

(A3) Let f : Y → X be projective. Then,

f∗ ◦ c̃1(f ∗L) = c̃1(L) ◦ f∗

for all line bundles L on X.
(A4) Let f : Y → X be smooth and quasi-projective of pure relative

dimension. Then,

c̃1(f
∗L) ◦ f ∗ = f ∗ ◦ c̃1(L) .

for all line bundles L on X.
(A5) For all line bundles L and M on X ∈ Schk,

c̃1(L) ◦ c̃1(M) = c̃1(M) ◦ c̃1(L) .

Moreover, if L and M are isomorphic, then c̃1(L) = c̃1(M).
(A6) For projective morphisms f and g,

× ◦ (f∗ × g∗) = (f × g)∗ ◦ × .

(A7) For smooth quasi-projective morphisms f and g of pure relative
dimension,

× ◦ (f ∗ × g∗) = (f × g)∗ ◦ × .
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(A8) For X, Y ∈ Schk,

(c̃1(L)(α)) × β = c̃1(p∗1(L))
(
α × β

)
,

for α ∈ H∗(X), β ∈ H∗(Y ), and all line bundles L on X.

Let H∗ be an oriented Borel-Moore functor with product on Schk.
The external products make H∗(k) into a graded, commutative ring
with unit 1 ∈ H0(k). For each X, the external product

H∗(k) ⊗ H∗(X) → H∗(X)

makes H∗(X) into a graded H∗(k)-module. The pull-back and push-
forward maps are H∗(k)-module homomorphisms.

2.4. Geometric type. Let R∗ be a graded commutative ring with
unit. An oriented Borel-Moore R∗-functor with product on Schk is an
oriented Borel-Moore functor with product H∗ on Schk together with
a graded ring homomorphism

R∗ → H∗(k).

An oriented Borel-Moore functor on Schk of geometric type (see [22,
Definition 2.2.1]) is an oriented Borel-Moore L∗-functor A∗ with prod-
uct on Schk satisfying the following three additional axioms:

(Dim) For Y ∈ Smk and line bundles L1, . . . , Lr>dimk(Y ) on Y ,

c̃1(L1) ◦ · · · ◦ c̃1(Lr)(1Y ) = 0 ∈ A∗(Y ) .

(Sect) For Y ∈ Smk and a section s ∈ H0(Y, L) of a line bundle L
transverse to the zero section of L,

c̃1(L)(1Y ) = i∗(1Z),

where i : Z → Y is the closed immersion of the zero subscheme
of s.

(FGL) For Y ∈ Smk and line bundles L, M on Y ,

FA(c̃1(L), c̃1(M))(1Y ) = c̃1(L ⊗ M)(1Y ) ∈ A∗(Y ) ,

where FA ∈ A∗(k)[[u, v]] is the image of the universal formal
group law FL(u, v) ∈ L∗[[u, v]] under the homomorphism

φA : L∗ → A∗(k)

giving the L∗-structure.

Ω∗ has a natural structure of an oriented Borel-Moore functor of
geometric type on Schk. In fact, more is true.

Theorem 2.2 ([22, Theorem 2.4.13]). The oriented Borel-Moore func-
tor of geometric type on Schk determined by Ω∗ is universal.
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2.5. The classifying map. Let A∗ be an oriented Borel-Moore func-
tor of geometric type on Schk. Universality yields a canonical natural
transformation

ϑA : Ω∗ → A∗

which is compatible with projective push-forward, smooth pull-backs,
Chern class operators c̃1(L), and external products.

In addition, ϑA is compatible with the L∗-structures:

φA = ϑA(k) ◦ φΩ,

hence ϑA(k) defines a morphism of formal group laws

ϑA(k) : (Ω∗(k), FΩ) → (A∗(k), FA).

In fact, (Ω∗(k), FΩ) is the universal formal group law.

Theorem 2.3 ([22, Theorem 4.3.7]). The homomorphism

φΩ : L∗ → Ω∗(k)

is an isomorphism.

For X ∈ Smk of dimension d, we often regrade Ω∗(X) by codimen-
sion,

Ωn(X) = Ωd−n(X).

We refer the reader to [22, Definition 1.1.2, Proposition 5.2.1] for
the definition of an oriented Borel-Moore cohomology theory and the
relation to oriented Borel-Moore homology theories. The restriction to
Smk of an oriented Borel-Moore homology theory on Schk defines an
oriented Borel-Moore cohomology theory on Smk, after regrading as
above. We recall a main result of [22].

Theorem 2.4 ([22, Theorem 7.1.2]). Let k be a field of characteristic
0. Then X 7→ Ω∗(X) is the universal oriented Borel-Moore cohomology
theory on Smk.

Fix an embedding σ : k → C. Complex cobordism MU∗(−) defines
an oriented Borel-Moore cohomology theory MU2∗

σ on Smk by

X 7→ MU2∗(X(C)).

By Theorem 2.4, we obtain a natural transformation

ϑMU,σ : Ω∗ → MU2∗
σ .

In particular, we obtain a graded ring homomorphism

ϑMU,σ
pt : Ω∗(k) → MU2∗(pt).

The formal group law for MU∗ is also the Lazard ring (after multiplying
the degrees by 2, see [31]), so by Theorem 2.3, we have obtained the
following result.



16 M. LEVINE AND R. PANDHARIPANDE

Corollary 2.5 ([22, Corollary 1.2.13]). The map

ϑMU,σ
pt : Ω∗(k) → MU2∗(pt)

is an isomorphism of graded rings.

2.6. Borel-Moore homology. The notion of an oriented Borel-Moore
functor of geometric type is weaker than that of an oriented Borel-
Moore homology theory [22, Definition 5.1.3]. The two notions are
related as follows:

(i) An oriented Borel-Moore homology theory has pull-back maps
for all l.c.i. morphisms, while an oriented Borel-Moore functor of
geometric type has pull-back maps for smooth quasi-projective
morphisms only. In particular, if A is an oriented Borel-Moore
homology theory, then pulling-back the external products by
the diagonal map makes A∗(X) a graded commutative ring for
all X smooth over k.

(ii) The Chern class operators for an oriented Borel-Moore homol-
ogy theory are not given as part of the data, but are rather
defined by the following explicit formula. Let L → X be a line
bundle with zero-section s : X → L. Then,

c̃1(L)(x) = s∗(s∗(x)).

(iii) An oriented Borel-Moore homology theory A satisfies the pro-
jective bundle formula. Let E → X be a rank n + 1 vector
bundle with associated Pn-bundle

q : P(E) → X.

Let ξ = O(1) be the tautological quotient line bundle on P(E).
Then,

n∑

j=0

c̃1(ξ)j ◦ q∗ : ⊕n
j=0A∗−n+j(X) → A∗(P(E))

is an isomorphism.
(iv) An oriented Borel-Moore homology theory A satisfies the ex-

tended homotopy property. Let

p : V → X

be a principal homogenous space for a vector bundle E → X of
rank n. Then,

p∗ : A∗(X) → A∗+n(V )

is an isomorphism.
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(v) By applying the projective bundle formula twice, we obtain

A∗(P
n × Pm) = A∗(k)[u, v]/(un+1, vm+1)

with u = c̃1(O(1, 0))(1Pn×Pm) and v = c̃1(O(0, 1))(1Pn×Pm). Ex-
pressing c̃1(O(1, 1))(1Pn×Pm) in terms of u and v and taking the
limit over n, m yields a power series

FA(u, v) ∈ A∗(k)[[u, v]].

The series FA(u, v) defines a formal group law with coefficients
in A∗(k), and the resulting homomorphism L∗ → A∗(k) makes
A∗ an oriented Borel-Moore functor of geometric type (see [22,
Remarks 4.1.10, Proposition 5.2.6]).

We will directly show double-point cobordism ω∗ determines an ori-
ented Borel-Moore functor of geometric type instead of an oriented
Borel-Moore homology theory. Since the former has less structure,
fewer properties of ω∗ will be required. However, since Ω∗ is the uni-
versal oriented Borel-Moore homology theory, Theorem 1 will imply ω∗

is also an oriented Borel-Moore homology theory and, in particular, ω∗

admits pull-back maps for arbitrary l.c.i. morphisms.

2.7. Characteristic. As stated in Section 0.2, our base field k is of
characteristic 0. Some of the results quoted above are also true for k
of positive characteristic. Some are true for such k if we assume that
resolution of singularities holds for varieties of finite type over k, while
others use, in addition, the weak factorization theorem of Abramovich-
Karu-Matsuki-W lodarczyk [1].

The construction of Ω∗ sketched above makes sense over an arbitrary
field, as does the universality of Ω∗ as an oriented Borel-Moore func-
tor of geometric type in Theorem 2.2. If resolution of singularities is
assumed, then Ω∗ is the universal oriented Borel-Moore homology the-
ory on Schk and Ω∗ is the universal Borel-Moore cohomology theory
on Smk. However, the identification of L∗ with Ω∗(k) in Theorem 2.3
requires both resolution of singularities and weak factorization.

Although our definition of ω∗ makes sense in arbitrary characteris-
tic, our approach to the construction of Chern class operators relies
on Bertini’s Theorem for sections of globally generated line bundles
on smooth varieties. We do not know if ω∗

∼= Ω∗ holds in arbitrary
characteristic.

3. The functor ω∗

3.1. Push-forward, pull-back, and external products. We start
the proof of Theorem 2 by observing several basic properties of ω∗. The
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assignment

X 7→ ω∗(X)

carries the following structures:

Projective push-forward. Let g : X → X ′ be a projective morphism in
Schk. A map

g∗ : M∗(X)+ → M∗(X
′)+

is defined by

g∗([f : Y → X]) = [g ◦ f : Y → X ′].

By the definition of double point cobordism, g∗ descends to a functorial
push-forward

g∗ : ω∗(X) → ω∗(X
′)

satisfying

(g1 ◦ g2)∗ = g1∗ ◦ g2∗.

Smooth pull-back. Let g : X ′ → X be a smooth quasi-projective mor-
phism in Schk of pure relative dimension d. A map

g∗ : M∗(X)+ → M∗+d(X ′)+

is defined by

g∗([f : Y → X]) = [p2 : Y ×X X ′ → X ′].

Since the pull-back by g× IdP1 of a double point cobordism over X is a
double point cobordism over X ′, g∗ descends to a functorial pull-back

g∗ : ω∗(X) → ω∗+d(X ′)

satisfying

(g1 ◦ g2)∗ = g∗
2 ◦ g∗

1.

External product. A double point cobordism π : Y → X × P1 over X
gives rise to a double point cobordism

Y × Y ′ → X × X ′ × P1

for each [Y ′ → X ′] ∈ M(X ′). Hence, the external product

[f : Y → X] × [f ′ : Y ′ → X ′] = [f × f ′ : Y ×k Y ′ → X ×k X ′]

on M∗(−)+ descends to an external product on ω∗.

Multiplicative unit. The class [Id : Spec(k) → Spec(k)] ∈ ω0(k) is a
unit for the external product on ω∗.
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3.2. Borel-Moore functors with product. A Borel-Moore functor
with product on Schk consists of the structures (D1), (D2), and (D4)
of Section 2.3 satisfying axioms (A1),(A2), (A6), and (A7). A Borel-
Moore functor with product is simply an oriented Borel-Moore functor
with product without Chern class operations.

Lemma 3.1. Double point cobordism ω∗ is a Borel-Moore functor with
product.

Proof. The structures (D1), (D2), and (D4) have been constructed in
Section 3.1 . Axioms (A1), (A2), (A6), and (A7) follow easily from the
definitions. �

3.3. Double point relations. We will show the double point relations
are satisfied in Ω∗. Then, a natural transformation of Borel-Moore
functors with product is obtained,

ω∗ → Ω∗ .

In what follows, we will be working in Ω∗ rather than Ω∗, unless
expressly noted. We write [f : Y → X] for the image in Ω∗ of

1 ⊗ [f : Y → X] ∈ L∗ ⊗ Ω∗ .

The class [f : Y → X] may also be considered as an element of ω∗.
If needed, we will distinguish the two meanings explicity by using the
notation [f : Y → X]ω or [f : Y → X]Ω.

Let F (u, v) ∈ Ω∗(k)[[u, v]] be the formal group law for Ω∗. By defi-
nition,

F (u, v) = u + v +
∑

i,j≥1

ai,ju
ivj

with ai,j ∈ Ωi+j−1. Let F 1,1(u, v) =
∑

i,j≥1 ai,ju
i−1vj−1. We have

F (u, v) = u + v + uv · F 1,1(u, v).

Let Y ∈ Smk. Let E1, E2 be smooth divisors on Y , intersecting
transversely in Y , with sum E = E1 + E2. Let

iD : D = E1 ∩ E2 → Y

be the inclusion of the intersection. Let OD(E1), OD(E2) be the re-
strictions to D of the line bundles OY (E1), OY (E2). Define an element
[E → Y ] ∈ Ω∗(Y ) by

[E → Y ] = [E1 → Y ] + [E2 → Y ]

+ iD∗

(
F 1,1

(
c̃1(OD(E1)), c̃1(OD(E2))

)
(1D)

)
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(see [22, Definition 3.1.5] for the definition of [E → Y ] for an arbitrary
strict normal crossing divisor E). The following result is proven in [22,
Definition 2.4.5 and Proposition 3.1.9] as a consequence of the formal
group law for Ω∗.

Lemma 3.2. Let F ⊂ Y be a smooth divisor linearly equivalent to E,
then

[F → Y ] = [E → Y ] ∈ Ω∗(Y ).

If the additional condition

OD(E1) ∼= OD(E2)
−1

is satisfied, a direct evaluation is possible. Let PD → D be the P1-
bundle P(OD ⊕ OD(E1)).

Lemma 3.3. We have

F 1,1
(
c̃1(OD(E1)), c̃1(OD(E2))

)
(1D) = −[PD → D] ∈ Ω∗(D).

Proof. Both sides of the formula depend only upon the line bundles
OD(E1) and OD(E2). To prove the Lemma, we may replace E with
any E ′ = E ′

1 + E ′
2 on any Y ′, so long as E ′

1 ∩ E ′
2 = D and OY ′(E ′

i)
restricts to OD(Ei) on D.

The surjection OD⊕OD(E1) → OD(E1) defines a section s : D → PD

with normal bundle OD(E1). Let Y ′ be the deformation to the normal
cone of the closed immersion s. By definition, Y ′ is the blow-up of
PD × P1 along s(D) × 0. The blow-up of PD along D is PD and the
exceptional divisor P of Y ′ → PD × P1 is also PD.

The composition Y ′ → PD × P1 → P1 has fiber Y ′
0 over 0 ∈ P1 equal

to PD∪P. The intersection PD∩P is s(D) and the line bundles OY ′(P),
OY ′(PD) restrict to OD(E1), OD(E2) on s(D) respectively. Thus, we
may use E ′ = Y ′

0 , E ′
1 = PD, and E ′

2 = P ∼= PD.
By Lemma 3.2, we have the relation [Y ′

∞ → Y ′] = [Y ′
0 → Y ′] in

Ω∗(Y
′). By definition, [Y ′

0 → Y ′] is the sum

[Y ′
0 → Y ] = [PD → Y ′] + [P → Y ′]

+ iD∗

(
F 1,1

(
c̃1(OD(PD)), c̃1(OD(P))

)
(1D)

)
.

Pushing forward the relation [Y ′
∞ → Y ] = [Y ′

0 → Y ′] to Ω∗(D) by the
composition

Y ′ → PD × P1 p1
−→ PD → D

yields the relation

[PD → D] = [PD → D] + [P → D] + F 1,1
(
c̃1(OD(PD)), c̃1(OD(P))

)
(1D)

in Ω∗(D). Since P ∼= PD as a D-scheme, the proof is complete. �
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Corollary 3.4. Let π : Y → P1 be a double point degeneration over
0 ∈ P1. Let

π−1(0) = A ∪ B.

Suppose the fiber Y∞ = π−1(∞) is smooth. Then

[Y∞ → Y ] = [A → Y ] + [B → Y ] − [P(π) → Y ] ∈ Ω∗(Y ).

Sending [f : Y → X] ∈ M+
n (X) to the class [f : Y → X]Ω ∈ Ωn(X)

defines a natural transformation M+
∗ → Ω∗ of Borel-Moore functors

with product on Schk.

Proposition 3.5. The map M+
∗ → Ω∗ descends to a natural transfor-

mation

ϑ : ω∗ → Ω∗

ϑX([f : Y → X]ω) = [f : Y → X]Ω

of Borel-Morel functors with product on Schk. Moreover, ϑX is surjec-
tive for each X ∈ Schk.

Proof. Let π : Y → X × P1 be a double point degeneration over X.
We obtain a canonical double point degeneration

π′ = (Id, p2 ◦ π) : Y → Y × P1.

Certainly
π = (p1 ◦ f, Id) ◦ g.

Since M+
∗ → Ω∗ is compatible with projective push-forward, the first

assertion reduces to Lemma 3.4.
The surjectivity follows from the fact that the canonical map

M∗(X)+ → Ω∗(X)

is surjective by [22, Lemma 2.5.11]. �

We will prove Theorem 1 by showing ϑ is an isomorphism. The
strategy of the proof is to show that ω∗ admits first Chern class oper-
ators and a formal group law, making ω∗ into an oriented Borel-Moore
functor of geometric type. We then use the universality of Ω∗ given by
Theorem 2.2 to determine an inverse Ω∗ → ω∗ to ϑ.

4. Chern classes I

Let X ∈ Schk, and let L → X be a line bundle generated by global
sections. We will define a first Chern class operator

c̃1(L) : ω∗(X) → ω∗−1(X).

A technical Lemma is required for the definition.
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Let [f : Y → X] ∈ M(X)+ with Y irreducible of dimension n. For
s ∈ H0(Y, f ∗L), s 6= 0, let

is : Hs → Y

be the inclusion of the zero subscheme of s; note that Hs depends only
on the point [s] of P(H0(Y, f ∗L)) defined by s. Let

U ⊂ P(H0(Y, f ∗L)) = {[s] | Hs is smooth and of codimension 1 in Y }.

Lemma 4.1. We have

(i) U is an open subscheme of P(H0(Y, f ∗L)) with U(k) non-empty.
(ii) For [s1], [s2] ∈ U(k), [Hs1 → X] = [Hs2 → X] ∈ ωn−1(X).

Proof. Since L is globally generated, so is f ∗L. Then (i) follows from
Bertini’s theorem (using the characteristic 0 assumption for k).

Let H ⊂ Y × P(H0(Y, f ∗L)) be the universal Cartier divisor. Let
y ∈ Y be a closed point with ideal sheaf my ⊂ OY,y. Since f ∗L is
globally generated, the fiber of H → Y over y is the hyperplane

P(H0(Y, f ∗L ⊗ my)) ⊂ P(H0(Y, f ∗L)).

Hence, H is smooth over k.
For (ii), let

i : P1 → P(H0(Y, f ∗L))

be a linearly embedded P1 with i(0) = s1. By Bertini’s theorem, the
pull-back

Hi = H×P(H0(Y,f∗L)) P1

is smooth for general i. Clearly Hi → X × P1 gives a naive cobordism
between [Hs1 → X] and [Hi(t) → X] for all k-valued points t in a dense
open subset of P1. Since i is general, we have

[Hs1 → X] = [Hs → X] ∈ ωn−1(X)

for all k-valued points s in a dense open subset of U . The same result
for s2 completes the proof. �

For L globally generated, we can therefore define the homomorphism

c̃1(L) : M∗(X)+ → ω∗−1(X)

by sending [f : Y → X] to [Hs → X] for Hs smooth and codimension
1 in Y .

Lemma 4.2. The map c̃1(L) descends to

c̃1(L) : ω∗(X) → ω∗−1(X)
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Proof. Let π : W → X × P1 be a double point cobordism with degen-
erate fiber over 0 ∈ P1 and smooth fiber over ∞ ∈ P1. Hence,

W0 = A ∪ B

with A, B smooth divisors intersecting transversely in the double point
locus D = A ∩ B. The double point relation is

(4.1) [W∞ → X] = [A → X] + [B → X] − [P(π) → X].

Let is : Hs → W be the divisor of a general section s of (p1 ◦ π)∗L.
As in the proof of lemma 4.1, we may assume Hs, Hs ∩ W∞, Hs ∩ D,
Hs ∩ A and Hs ∩ B are smooth divisors on W , W∞, A, B, and D
respectively. Then

π ◦ is : Hs → X × P1

is again a double point cobordism. The associated double point relation

[Hs ∩ W∞ → X] = [Hs ∩ S → X] + [Hs ∩ T → X] − [P(π ◦ is) → X].

is obtained by applying c̃1(L) term-wise to relation (4.1) and therefore
c̃1(L) descends. �

Thus, we have established the existence of first Chern class opera-
tors, axiom (D3) of Definition 2.1, for globally generated line bundles.
Axioms (A3), (A4), (A5) and (A8) for an oriented Borel-Moore functor
with product are easily checked for our definition of c̃1(L), assuming all
line bundles in question are globally generated. In particular, the oper-
ators c̃1(L) for globally generated line bundles L on X are ω∗(k)-linear
and commute pairwise.

Lemma 4.3. Let X ∈ Schk, and let

L1, . . . , Lr>dimk X → X

be globally generated line bundles. Then,
r∏

i=1

c̃1(Li) = 0

as an operator on ω∗(X).

Proof. Let [f : Y → X] ∈ M(X)+. By Bertini’s theorem, Hf∗s is
smooth for a general choice of section s ∈ H0(X, L). Thus

c̃1(L)(f) = [f : Hf∗s → X].

By induction,
∏

i c̃1(Li)(f) is represented by the restriction of f to
∩r

i=1Hf∗si
. But set-theoretically, ∩r

i=1Hf∗si
= f−1(∩r

i=1Hsi
). Since the

sections si are general, the intersection ∩r
i=1Hsi

is empty, whence the
result. �
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Let F (u1, . . . , ur) ∈ ω∗(k)[[u1, . . . , ur]] be a power series and let
L1, . . . , Lr be globally generated on X ∈ Schk. By Lemma 4.3, the ex-
pression F (c̃1(L1), . . . , c̃1(Lr)) is well defined as an operator on ω∗(X).

Lemma 4.3 is condition (Dim) for an oriented Borel-Moore functor
of geometric type in case all the line bundles in question are globally
generated.

Chern classes for arbitrary line bundle will be constructed in Section
9. The axioms (FGL) and (Sect) will be verified in Section 9 and Sec-
tion 10, and we will then complete the story by proving the remaining
axioms for arbitrary (not necessarily globally generated) line bundles.

5. Extending the double point relation

5.1. The blow-up relation. Before we construct the formal group
law and the rest of the Chern class operators for ω∗, we describe two
useful relations which are consequences of the basic double point cobor-
dism relation.

The first is the blow-up relation. Let F → X be a closed embedding
in Smk with conormal bundle η = IF /I2

F of rank n. Let

µ : XF → X

be the blow-up of X along F . Let PF be the Pn−1-bundle P(η) → F .
Let

P1 = P(η ⊕ OF ) → F

P2 = PPF
(OPF

⊕ O(1)) → PF .

We consider P1 and P2 as X-schemes by the composition of the struc-
ture morphisms with the inclusion F → X.

Lemma 5.1. We have

[XF → X] = [Id : X → X] − [P1 → X] + [P2 → X] ∈ ω∗(X).

Proof. The Lemma follows the double point relation obtained from the
deformation to the normal cone of F → X. Indeed, let

π : Y → X × P1

be the blow-up along F × 0 with structure morphism

π2 = p2 ◦ π : Y → P1.

The fiber π−1(∞) is just X, and

π−1(0) = XF ∪ P1,
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with XF and P1 intersecting transversely along the exceptional divisor
PF of µ. The normal bundle of PF in P1 is O(1). Thus the associated
double point relation is

[Id : X → X] = [XF → X] + [P1 → X] − [P2 → X]

in ω∗(X). �

Via Proposition 3.5, one obtains the blow-up relation

[XF → X] = [Id : X → X] − [P1 → X] + [P2 → X]

in Ω∗(X) as well, first proved by Nenashev [28].

5.2. The extended double point relation. Let Y ∈ Smk. Let
A, B, C ⊂ Y be smooth divisors such that A + B + C is a reduced
strict normal crossing divisor. Let

D = A ∩ B, E = A ∩ B ∩ C.

As before, we let OD(A) denote the restriction of OY (A) to D, and use
a similar notation for the restrictions of bundles to E. Let

P1 = P(OD(A) ⊕ OD) → D

PE = P(OE(−B) ⊕ OE(−C)) → E

P2 = PPE
(O ⊕ O(1)) → PE → E

P3 = P(OE(−B) ⊕ OE(−C) ⊕ OE) → E.

We consider P1, P2 and P3 as Y -schemes by composing the structure
morphisms with the inclusions D → Y and E → Y .

Lemma 5.2. Suppose C is linearly equivalent to A + B on Y . Then,

[C → Y ] = [A → Y ] + [B → Y ] − [P1 → Y ] + [P2 → Y ] − [P3 → Y ]

in ω∗(Y )

Proof. Let Y1 → Y be the blow-up of Y along (A ∪ B) ∩ C. Since
(A ∪ B) ∩ C is a Cartier divisor on both A ∪ B and C, the proper
transforms of both A ∪ B and C define closed immersions

A ∪ B → Y1, C → Y1

lifting the inclusions A∪B → Y and C → Y . We denote the resulting
closed subschemes of Y1 by A1, B1 and C1.

Let f be a rational function on Y with Div(f) = A + B − C. We
obtain a morphism f : Y1 → P1 satisfying

f−1(0) = A1 ∪ B1, f−1(∞) = C1.
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However, Y1 is singular, unless E = ∅. Indeed, if A, B and C are
defined near a point x of E by local parameters a, b and c, then locally
analytically near x ∈ A1 ∩ B1 ⊂ Y1,

Y1
∼= E × Spec (k[a, b, c, z]/(ab − cz)) .

Here, the exceptional divisor of Y1 → Y is defined by the ideal (c), A1

is defined by (a, z) and B1 is defined by (b, z). The singular locus of Y1

is isomorphic to E. We write E1 for the singular locus of Y1.
Let µ2 : Y2 → Y1 be the blow-up of Y1 along A1. Since A1 ⊂ Y1

is a Cartier divisor off of the singular locus E1, the blow-up µ2 is an
isomorphism over Y1 \ E1. In our local description of Y1, we see that
A1 ∩ B1 is the Cartier divisor on B1 defined by (a), hence the proper
transform of B1 to Y2 is isomorphic to B. Also, since

b(a, z) = (ab, zb) = (zb, zc) = z(b, c),

the strict transform of A1 by µ2 is identified with the blow-up AE of
A along E. In particular, since E has codimension 2 in A with normal
bundle OE(B) ⊕ OE(C), we have the identification

µ−1
2 (E1) = P(OE(−B) ⊕ OE(−C)).

In addition, Y2 is smooth. Indeed, the singular locus of Y2 is contained
in

µ−1
2 (E1) ⊂ µ−1

2 (A1) = AE .

Since AE is a smooth Cartier divisor on Y2, Y2 is itself smooth, as
claimed.

The morphism π : Y2 → P1 defined by π = f ◦ µ2 is a double point
degeneration over 0 ∈ P1. with

π−1(0) = AE ∪ B

and double point locus AE ∩ B = A ∩ B = D.
Since π−1(∞) = C, we obtain the following double point relation

[C → Y ] = [AE → Y ] + [B → Y ] − [P(OD(A) ⊕ OD) → Y ].

in ω∗(Y ). Inserting the blow-up formula from Lemma 5.1 completes
the proof. �

6. Pull-backs in ω∗

6.1. Pull-backs. The most difficult part of the construction of Ω∗ is
the extension of the pull-back maps from smooth quasi-projective mor-
phisms to l.c.i. morphisms. We cannot hope to reproduce the full
theory for ω∗ directly. Fortunately, only smooth pull-backs for ω∗ are
required for the construction of an oriented Borel-Moore functor of
geometric type. However, our discussion of the formal group law for
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ω∗ will require more than just smooth pull-backs. The technique of
moving by translation gives us sufficiently many pull-back maps for ω∗.

6.2. Moving by translation. We consider pull-back maps in the fol-
lowing setting. Let G1 and G2 be general linear groups over k

Gi = GLni
/k; ni ≥ 0, i = 1, 2.

Let Y ∈ Smk admit a G1 × G2-action, and let B ∈ Smk admit a
transitive G2-action. Let

p : Y → B

be a smooth quasi-projective morphism equivariant with respect to
G1 × G2 → G2. Let

s : B → Y

be a section of p satisfying three conditions:

(i) s is equivariant with respect to the inclusion G2 = Id × G2 ⊂
G1 × G2,

(ii) G1 = G1 × Id ⊂ G1 × G2 acts trivially on s(B),
(iii) G1 × G2 acts transitively on Y \ s(B).

We will assume the above conditions hold throughout Section 6.2.
A special case in which all the hypotheses are verified occurs when

G1 = 1, Y admits a transitive G2-action, and

p : Y → Y, s : Y → Y

are both the identity.
Given A, B, C ∈ Smk and morphisms f : A → C, g : B → C, we

say f and g are transverse if A×C B is smooth, and, for all irreducible
components A′ ⊂ A, B′ ⊂ B with f(A′) and g(B′) contained in the
same irreducible component C ′ ⊂ C, we have

dimk A′ ×C′ B′ = dimk A′ + dimk B′ − dimk C ′,

or A′ ×C′ B′ = ∅. For y ∈ Y ∈ Smk, we denote the tangent space to Y
at y by Ty(Y ).

Lemma 6.1. Let i : Z → Y be a morphism in Smk transverse to
s : B → Y . Take C ∈ Smk and let f : W → Y × C be a projective
morphism in Smk.

(1) For all g = (g1, g2) in a nonempty open set

U(i, f) ⊂ G1 × G2,

the morphisms (g · i) × IdC and f are transverse.
(2) If C = Spec (k), then for g, g′ ∈ U(i, f),

[Z ×g·i W → Z] = [Z ×g′·i W → Z] ∈ ω∗(Z).
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Proof. Let G = G1 × G2. Consider the map

µ : G × Z → Y

defined by µ(g, z) = g · i(z). We first prove µ is smooth. In fact, we
will check µ is a submersion at each point (g, z).

If i(z) ∈ Y \ s(B), then G × z → Y is smooth 3 and surjective by
condition (iii), hence µ is a submersion at (g, z) for all g.

Suppose i(z) ∈ s(B). The map G2 × z → s(B) is smooth and
surjective since G2 acts transitively on B, so the image of T(g,z)(G× z)
contains

Ti(z)(s(B)) ⊂ Ti(z)(Y ).

Since i is transverse to s, g · i is transverse to s for all g and the
composition

TzZ
d(g·i)
−−−→ Tg·i(z)(Y ) → Tg·i(z)(Y )/Tg·i(z)(s(B))

is surjective. Thus

T(g,z)(G × Z) = T(g,z)(G × z) ⊕ T(g,z)(g × Z)
dµ
−→ Tg·i(z)(Y )

is surjective, and µ is a submersion at (g, z).
The smoothness of µ clearly implies the smoothness of

µ × IdC : G × Z × C → Y × C.

Hence (G × Z × C) ×µ W is smooth over k, and the projection

(G × Z × C) ×µ W → G × Z × C

is a well-defined element of M(G × Z × C). Consider the projection

π : (G × Z × C) ×µ W → G.

Since the characteristic is 0, the set of regular values of π contains a
nonempty Zariski open dense subset

U(i, f) ⊂ G.

Since G is an open subscheme of the affine space An2
1+n2

2, the set of k-
points of U(i, f) is dense in U(i, f). Any k-point g = (g1, g2) in U(i, f)
satisfies claim (1) of the Lemma.

For g ∈ U(i, f), denote the element of M(Z × C) corresponding to

(Z × C) ×g·i×IdC
W → Z × C

by (g · i)∗(f).
For (2), let g, g′ ∈ U(i, f) be two k-points. As we have seen, U(i, f)

is an open subset of an affine space AN . The pull-back π−1(ℓg,g′) of the

3Since k has characteristic 0 and G acts transitively on Y \ s(B), the orbit map
is smooth.
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line ℓg,g′ through g and g′ will be a closed subscheme of (G×Z)×µ W
which smooth and projective over an open neighborhood U ⊂ ℓg,g′

containing g and g′. Then

(6.1) (U × Z) ×µ W → U

provides a naive cobordism proving

(6.2) [Z ×g·i W → Z] = [Z ×g′·i W → Z] ∈ ω∗(Z).

Technically, the naive cobordism (6.1) has been constructed only
over an open set U ⊂ P1. By taking a closure followed by a resolution
of singularities, the family (6.1) can be extended appropriately over P1.
The relation is (6.2) unaffected. �

Let i : Z → Y be a morphism in Smk of pure codimension d trans-
verse to s : B → Y . We define

(6.3) i∗ : M∗(Y )+ → ω∗−d(Z)

using (2) of Lemma 6.1 by

i∗[f : W → Y ] = [(g · i)∗(f)]

for g ∈ U(i, f).

Proposition 6.2. The pull-back (6.3) descends to a well-defined ω∗(k)-
linear pull-back

i∗ : ω∗(Y ) → ω∗−d(Z).

Proof. The M∗(k)+-linearity of the map

i∗ : M∗(Y )+ → ω∗−d(Z)

is evident from the construction.
Given a double point cobordism f : W → Y ×P1 over 0 ∈ P1, we will

show the pull-back of f by (g · i)× IdP1 gives a double point cobordism
for all g in a dense open set of U(i, f).

Applying (1) of Lemma 6.1 with C = P1 yields an open subscheme

U1 ⊂ G1 × G2

for which (g ·i)×IdP1 pulls W back to a smooth scheme (g ·i)×IdP1(W ),
with a projective map to Z×P1. Similarly, applying Lemma 6.1 to the
smooth fiber W∞ → Y , we find a subset U2 ⊂ U1 for which the fiber
(g·i)×IdP1(W )∞ is smooth. Finally, if W0 = A∪B, applying Lemma 6.1
to A → Y , B → Y and A∩B → Y yields an open subscheme U3 ⊂ U2

for which (g · i) × IdP1(W ) gives the double point relation

(g · i)∗([W∞ → Y ]) =

(g · i)∗([A → Y ]) + (g · i)∗([B → Y ]) − (g · i)∗([P(f) → Y ]),
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as desired. �

Lemma 6.3. Let L → Y be a globally generated line bundle on Y .
Then,

i∗ ◦ c̃1(L) = c̃1(i
∗L) ◦ i∗.

Proof. Since i∗L is globally generated on Z, c̃1(i
∗L) is well-defined.

Let [f : W → Y ] ∈ M(Y ) and take g ∈ G1 × G2 so g · i : Z → Y is
transverse to f . For a general section s of f ∗L, the divisor of s,

Hs → W,

is also transverse to g · i. Hence,

i∗ ◦ c̃1(L)([W → Y ]) = [Z ×g·i Hs → Z].

Let Hp∗1(s) be the divisor of p∗1(s) on Z ×g·i W where p1 is projection to
the first factor. Then,

c̃1(i∗L) ◦ i∗([W → Y ]) = [Hp∗1(s) → Z].

The isomorphism (as Z-schemes)

Z ×g·i Hs
∼= Hp∗1(s)

yields the Lemma. �

6.3. Examples. There are two main applications of pull-backs con-
structed in Section 6.2.

First, let Y =
∏

i PNi be a product of projective spaces. Let

G1 = 1, G2 =
∏

i

GLNi+1.

Let p : Y → Y and s : Y → Y both be the identity. For each morphism

i : Z →
∏

i

PNi

in Smk of codimension d, Proposition 6.2 gives us a well-defined ω∗(k)-
linear pull-back

i∗ : ω∗(
∏

i

PNi) → ω∗−d(Z).

Second, let Y be the total space of a line bundle L on B =
∏

i PNi

with projection p and zero-section s,

p : L → B, s : B → L.

Here, G1 = GL1 acts by scaling L, and G2 =
∏

i GLNi+1 acts by
symmetries on B. For each morphism

i : Z → L
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in Smk which is transverse to the zero-section, Proposition 6.2 gives
us an ω∗(k)-linear pull-back

i∗ : ω∗(L) → ω∗−d(Z).

6.4. Independence. The pull-backs constructed in Section 6.2 can be
used to prove several independence statements.

A linear embedding of PN−j → PN is an inclusion as linear subspace.
A multilinear embedding

m∏

i=1

PNi−ji →
m∏

i=1

PNi

is a product of linear embeddings (for m = 2, we call this a bi-linear
embedding). For fixed ji, any two multilinear embeddings are related
by a naive cobordism. The classes

(6.4) Mj1,...,jm
=

[
m∏

i=1

PNi−ji →
m∏

i=1

PNi

]
∈ ω∗(

m∏

i=1

PNi)

are therefore well-defined, independent of the choice of multi-linear
embedding.

Proposition 6.4. The classes

{Mj1,...,jm
| 0 ≤ ji ≤ Ni } ⊂ ω∗(

m∏

i=1

PNi)

are independent over ω∗(k).

Proof. Let J = (j1, . . . , jm) be a multi-index. There is a partial order-
ing defined by

J ≤ J ′

if ji ≤ j′i for all 1 ≤ i ≤ m. Let

α =
∑

J

aJMJ ∈ ω∗(
m∏

i=1

PNi)

where aJ ∈ ω∗(k).
If the aJ are not all zero, let J0 = (j1, . . . , jm) be a minimal multi-

index for which aJ 6= 0. If we take a pull-back by a multi-linear em-
bedding

i :
∏

i

Pji →
∏

i

PNi,
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then

i∗(α) = aJ0 ·

[
m∏

i=1

P0 →
m∏

i=1

Pji

]
∈ ω∗(

m∏

i=1

Pji).

Let q :
∏m

i=1 Pji → Spec (k) be the structure morphism. Pushing-
forward to ω∗(k) gives q∗(i

∗(α)) = aJ0 6= 0 and hence α 6= 0. �

Let Hn,m ⊂ Pn ×Pm be the hypersurface defined by the vanishing of
a general section of O(1, 1). More generally, for 0 ≤ i ≤ n, let

H(i)
n,m ⊂ Pn × Pm

be the (smooth) subscheme defined by the vanishing of i general sec-
tions of O(1, 1). Taking linear embeddings Pm−j → Pn, we may con-
sider

H
(i)
n,m−j ⊂ Pn × Pm

for 0 ≤ j ≤ m. The proof of the following result is similar to the proof
of proposition 6.4 and is left to the reader.

Lemma 6.5. The classes [H
(i)
n,m−j → Pn × Pm] ∈ ω∗(P

n × Pm) for
0 ≤ i ≤ n, 0 ≤ j ≤ m are independent over ω∗(k).

If classes H
(i)
n,j are taken for i > n, we have a partial independence

result.

Proposition 6.6. If the identity
n+2m∑

i=0

m∑

j=0

αi,j · [H
(i)
n+m,m−j → Pn+m × Pm] = 0 ∈ ω∗(P

n+m × Pm)

holds for αi,j ∈ ω∗(k), then αi,j = 0 for 0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m.

Proof. We argue by induction. Consider all pairs (i, j) satisfying

0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m

for which αi,j 6= 0. Of these, take the ones with minimal sum i + j,
and of these, take the one with minimal j, denote the resulting pair by
(a, b). Note that a ≤ a + b ≤ n + m.

Take the pull-back of the identity by a bi-linear embedding

i : Pa × Pb → Pn+m × Pm.

Then, for each pair (i, j) with i + j > a + b,

i∗[H
(i)
n+m,m−j → Pn+m × Pm] = 0,

since H
(i)
n+m,m−j has codimension i + j. Similarly

i∗[H
(i)
n+m,m−j → Pn+m × Pm] = 0
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if j > b. Thus the identity in question pulls back to

αa,b · [H
(a)
a,0 → Pa × Pb] = 0

Since H
(a)
a,0 = Spec (k), pushing-forward to a point yields αa,b = 0. �

Let YN,M be the total space of the bundle O(1,−1) on PN × PM ,
and let Yi,j → YN,M be the closed immersion induced by a bi-linear
embedding

Pi × Pj → Pn × Pm.

Proposition 6.7. If the identity

N∑

i=0

M∑

j=0

αi,j · [YN−i,M−j → YN,M ] = 0 ∈ ω∗(YN,M)

holds for αi,j ∈ ω∗(k), then αi,j = 0 for 0 ≤ i + j ≤ N , 0 ≤ j ≤ M .

Proof. The proof is similar to that of Proposition 6.6. Consider all
pairs (i, j) satisfying

0 ≤ i + j ≤ N, 0 ≤ j ≤ m

for which αi,j 6= 0. Of these, take the ones with minimal sum i + j,
and of these, take the one with minimal j, denote the resulting pair by
(a, b). Note that a ≤ a + b ≤ N .

Let s0, . . . , sN be sections of H0(Pa × Pb,O(1, 1)). Since

N + 1 ≥ a + b + 1 > dimk Pa × Pb,

we may choose the si so as to have no common zeros. Hence s0, . . . , sN

define a morphism
f : Pa × Pb → PN .

Let g : Pb → PM be a linear embedding. We obtain a morphism

h = (f, g ◦ p2) : Pa × Pb → PN × PM

satisfying h∗(O(1,−1)) ∼= O(1, 0).
A non-zero section s ∈ H0(Pa × Pb, O(1, 0)) with smooth divisor

defines a lifting

(h, s) : Pa × Pb → YN,M

of h which is transverse to the zero-section

PN × PM → YN,M .

We may therefore apply Proposition 6.2 as explained in the second
example of Section 6.3 to give a well-defined ω∗(k)-linear pull-back map

(h, s)∗ : ω∗(YN,M) → ω∗(P
a × Pb).
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We have

(h, s)∗([YN−i,M−j → YN,M ]) = [H
(i)
a,b−j → Pa × Pb].

Hence,

(h, s)∗([YN−i,M−j → YN,M ]) = 0

if i + j > a + b or j > b for dimensional reasons. Also,

(h, s)∗([YN−a,M−b → YN,M ]) = [H
(a)
a,0 → Pa × Pb]

= [Spec (k) → Pa × Pb].

If we pull-back the identity stated in the Proposition by (h, s)∗ and
then push-forward to the point, we see that αa,b = 0. �

7. Admissible towers

7.1. Overview. We would like to construct a formal group law over
ω∗(k) using the method of Quillen described in Section 2.6 (v). For
Quillen’s construction, the classes

(7.1)
{

[Pi × Pj → Pn × Pm]
}

0≤i≤n, 0≤j≤m
⊂ ω∗(P

n × Pm)

are required to constitute an ω∗(k)-basis. However, Lemma 6.4 only
establishes independence. We circumvent the problem by proving a
weak version of the generation of ω∗(P

n × Pm) by the classes (7.1).
Let Y be in Smk. An admissible projective bundle over Y is a mor-

phism of the form

P(⊕iLi) → Y

where the Li are line bundles on Y . An admissible tower over Y is a
morphism P → Y which factorizes

P = Pn → Pn−1 → . . . → P1 → P0 = Y

as a sequence of admissible projective bundles, i.e., Pi+1 → Pi is an
admissible projective bundle over Pi for each i = 0, . . . , n − 1. We call
n the length of the admissible tower P → Y . In particular, the identity
map Y → Y is an admissible tower of length 0.

We proceed to prove that the ω∗(k)-span of classes (7.1) contains the
classes of all admissible towers over Pn × Pm.
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7.2. Twisting. Our main decomposition result for admissible towers
[P → Y ] is based on “twisting modifications” in the various steps of
the tower.

Take Y ∈ Smk. Let E be a vector bundle on Y , let L be a line
bundle on Y , and let H a smooth divisor on Y . Denote L⊗OY (H) by
L(H) and let EH , LH and L(H)H denote the restrictions to H . The
projections

E ⊕ L ⊕ L(H) → E ⊕ L,

E ⊕ L ⊕ L(H) → E ⊕ L(H)

give closed immersions

P(E ⊕ L) → P(E ⊕ L ⊕ L(H)),

P(E ⊕ L(H)) → P(E ⊕ L ⊕ L(H)).

The projective bundle

P(EH ⊕ LH ⊕ L(H)H) → H

has a closed immersion over H → Y ,

P(EH ⊕ LH ⊕ L(H)H) → P(E ⊕ L ⊕ L(H)).

The subvarieties P(E ⊕ L), P(E ⊕ L(H)), and P(EH ⊕ LH ⊕ L(H)H)
are smooth divisors in P(E ⊕ L ⊕ L(H)) and the union

P(E ⊕L(H)) + P(E ⊕L) + P(EH ⊕LH ⊕L(H)H) ⊂ P(E ⊕L⊕L(H))

has strict normal crossing singularities. Indeed, as a Y -scheme the
union is locally isomorphic to

Y × H1 + Y × H2 + H × PN ⊂ Y × PN ,

where H1, H2 ⊂ PN are distinct hyperplanes.
We also have the bundles

P(EH ⊕ LH) → H, P(EH) → H,

with closed immersions into P(E ⊕ L ⊕ L(H)) over H → Y . The
intersections

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH ⊕ LH),

P(E ⊕ L) ∩ P(E ⊕ L(H)) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH)

are easily calculated.

Lemma 7.1. The linear equivalence

P(E ⊕ L(H)) ∼ P(E ⊕ L) + P(EH ⊕ LH ⊕ L(H)H)

holds on P(E ⊕ L ⊕ L(H)).
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Proof. Let P denote P(E ⊕ L ⊕ L(H)), and let q : P → Y be the
structure morphism. As P(E ⊕L) ⊂ P is given by the vanishing of the
composition

q∗(L(H)) → q∗(E ⊕ L ⊕ L(H)) → OP (1),

we find OP (P(E ⊕ L)) ∼= q∗(L(H))∨(1). Similarly,

OP (P(E ⊕ L(H))) ∼= q∗(L)∨(1),

OP (P(EH ⊕ LH ⊕ L(H)H)) ∼= q∗(OY (H)).

The linear equivalence of the Lemma is now easily obtained. �

Let H be a smooth divisor on Y ∈ Smk. Let

P = Pn → Pn−1 → . . . → P1 → P0 = Y

be the factorization of an admissible tower P → Y as a sequence of
admissible projective bundles. Fix an i ≤ n − 1 and write the bundle
Pi+1 → Pi as

P(⊕r
j=1Lj) → Pi

for line bundles Lj on Pi. We write Li(H) for Li(π
∗
i H), where πi : Pi →

Y is the projection.

Lemma 7.2. There exists an admissible tower P′ → Y which factors
as

P′ = P′
n → P′

n−1 → . . . → P′
i+1 → Pi → . . . P1 → P0 = Y

with P′
i+1 → Pi given by the bundle

P(⊕r−1
j=1Lj ⊕ Lr(H)) → Pi,

and admissible towers Q0 → H, Q1 → H, Q2 → H, Q3 → H satisfying

[P′ → Y ] = [P → Y ] +
3∑

ℓ=0

(−1)ℓiH∗([Qi → H ]) ∈ ω∗(Y ).

Proof. If X ∈ Smk is irreducible and E → X is a vector bundle,

Pic(P(E)) = Pic(X) ⊕ Z · [O(1)].

In particular, if E → F is a surjection of vector bundles on X, the
restriction map

Pic(P(E)) → Pic(P(F ))

is surjective. Hence, if PP(F ) → P(F ) is an admissible projective bundle,
then there is an admissible projective bundle PP(E) → P(E) and an
isomorphism of projective bundles over P(F )

PP(F )
∼= P(F ) ×P(E) PP(E).
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By induction on the length of an admissible tower, the same holds for
each admissible tower P → P(F ).

Let E = ⊕r−1
i=1Li, and let L = Lr. Consider the admissible projective

bundle

P̂i+1 = P(E ⊕ Lr ⊕ Lr(H)) → Pi

and the closed immersions

i0 : P(E ⊕ L) → P̂i+1

i1 : P(E ⊕ L(H)) → P̂i+1.

By our remarks above, we may extend i0 to a closed embedding of
admissible towers over Y ,

ĩ0 : P → P̂,

where P̂ → Y admits a factorization

P̂ = P̂n → P̂n−1 → . . . → P̂i+1 → Pi → . . . → P1 → P0 = Y

Let ĩ1 : P′ → P̂ be the pull-back P(E⊕L(H))×Pi
P̂, and let P̂H → H

be the pull-back of P̂ → Y via H → Y . By Lemma 7.1, we have the
linear equivalence

P′ ∼ P + P̂H

on P̂.
Since P(E ⊕L) + P(EH ⊕LH ⊕L(H)H) + P(E ⊕L(H)) is a reduced

strict normal crossing divisor on P(E⊕L⊕L(H)), the sum P+ P̂H +P′

is a reduced strict normal crossing divisor on P̂. Since

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH ⊕ LH),

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) ∩ P(E ⊕ L(H)) = P(EH)

are both admissible projective bundles over Pi ×Y H ,

D = P ∩ P̂H , F = P ∩ P̂H ∩ P′

are both admissible towers over H . Let

Q0 = P̂H

Q1 = PD(OD(P) ⊕ OD)

Q2 = PPF (OF (−H)⊕OF (−P′))(O ⊕ O(1))

Q3 = PF (OF (−H) ⊕ OF (−P′) ⊕ OF ).

Each Qi → H is an admissible tower. Lemma 5.2 completes the proof.
�
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7.3. Generation. Let ω∗(k)′ ⊂ ω∗(k) be the subgroup generated by
classes of admissible towers over Spec (k). Clearly, ω∗(k)′ is a subring.

Let H1, . . . , Hs be divisors on some Y ∈ Smk for which the associated
invertible sheaves OY (Hi) are generated by global sections. Let

I = (i1, . . . , is)

be a multi-index with ir non-negative for all r. Let

[HI → Y ] ∈ ω∗(Y )

denote the class of the closed immersion HI → Y , where HI is the
closed subscheme of codimension

∑
r ir defined by the simultaneous

vanishing of i1 sections of OY (H1), i2 sections of OY (H2), . . . , and is
sections of OY (H2). By definition,

[H(0,...,0) → Y ] = [Y → Y ].

For a general choice of sections, HI is smooth. By naive cobordisms,
[HI → Y ] is independent of the choice of sections.

The subvarieties HI may not be irreducible; let HI
1 , . . .H

I
nI

be the

irreducible components of HI .

Lemma 7.3. If the restrictions of the invertible sheaves OY (Hi) gen-
erate Pic(HI

j ) for every HI
j , then the classes of admissible towers over

Y lie in the ω∗(k)′-span of [HI
j → Y ] in ω∗(Y ).

Proof. Given an admissible tower P → Y , we must find an identity

[P → Y ] =
∑

I,j

aI,j · [HI
j → Y ] ∈ ω∗(Y )

with aI,j ∈ ω∗(k)′.
We may assume Y is irreducible and the divisors Hi are smooth. If

Y has dimension 0, then every line bundle on Y is trivial. By induction
on the length of the tower, every admissible tower P → Y is the pull-
back of an admissible tower P′ → Spec (k) by the structure morphism
Y → Spec (k). The result is proven in case dimk Y = 0.

We proceed by induction on dimk Y . Let ω∗(Y )′ be the subgroup
generated by the push-forward to Y of classes of the form [P′ → HI

j ],

where P′ → HI
j is an admissible tower and I 6= (0, . . . , 0). Since such

HI
j satisfy the hypotheses of the Lemma and have dimension strictly

less than Y , the push-forwards to Y of the classes [P′ → HI
j ] lie in the

ω∗(k)′-span of the classes [HI
j → Y ].

Let P → Y be an admissible tower of length n which factors as

P → Q → Y
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where P → Q is an admissible tower of length n − i and Q → Y is an
admissible tower of length i < n isomorphic to a pull-back

Q ∼= Q0 ×k Y → Y

of an admissible tower Q0 → Spec (k) of length i. By twisting, we will
prove the condition

(7.2) [P → Y ] − [P′ → Y ] ∈ ω∗(Y )′

is satisfied for an admissible tower P′ → Y of length n which admits
a factorization P′ → Q′ → Y as above where Q′ → Y is an admissible
tower of length i + 1 of the form

Q′ ∼= Q′
0 ×k Y → Y

for an admissible tower Q′
0 → Spec (k) of length i + 1.

The construction of P′ → Y satisfying (7.2) follows directly from
Lemma 7.2. Indeed, suppose

Pi+1 → Pi = Q

is of the form PQ(⊕iLi) → Q. Since Q = Q0 ×k Y , we have

Pic(Q) = Pic(Q0) ⊕ Pic(Y ).

We can write each Li as

Li
∼= p∗1L

0
i ⊗ p∗2Mi

for suitable line bundles L0
i on Q0, and Mi on Y . By Lemma 7.2 and our

induction hypothesis, the class [P → Y ] is equivalent modulo ω∗(Y )′

to a class [P̃ → Y ], where P̃ → Y is an admissible tower of length n
which factors as

P̃ → P̃i+1 → Q → Y

and where P̃i+1 = P(⊕i6=jLi ⊕Lj(Hℓ)) for any choice of j and ℓ we like.
Since the Hℓ generate Pic(Y ), there are non-negative integers mij such
that

Mi(
∑

j

mijHj) ∼= Mi′(
∑

j

mi′jHj)

for all i, i′. Let L = M1(
∑

j m1jHj). After several such applications of
Lemma 7.2, we may replace P with an admissible tower

P′ → P′
i+1 → Q → Y,

where

P′
i+1

∼= P(⊕i p∗1L
0
i ⊗ p∗2Mi(

∑

j

mijHj)) ∼= P(⊕i p∗1L
0
i ⊗ p∗2L).
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But as P(E) ∼= P(E ⊗ M) for E → T a vector bundle and M → T a
line bundle, we have

P′
i+1

∼= P(⊕i p∗1L
0
i ).

Thus, P′
i+1 → Q → Y is the pullback to Y of an admissible tower

Q′
0 → Q0 → Spec (k), and we obtain condition (7.2).
Repeated application of (7.2) yields the relation

[P → Y ] − [Q → Y ] ∈ ω∗(Y )′

where
Q ∼= Y ×k Q0 → Y

for an admissible tower Q0 → Spec (k) of length n. �

Recall the “multi-linear” classes (6.4) Mj1,...,jm
∈ ω∗(

∏m
i=1 PNi).

Corollary 7.4. Let P →
∏m

i=1 PNi be an admissible tower. Then,

[P →
m∏

i=1

PNi ] =
∑

J=(j1,...,jm)

aJ · MJ ∈ ω∗(

m∏

i=1

PNi)

for unique elements aJ ∈ ω∗(k). The aJ are in fact in ω∗(k)′ ⊂ ω∗(k).

Proof. For existence, we apply Lemma 7.3 with Y =
∏m

i=1 PNi and
the divisors Hi defined by the pull-backs of hyperplanes in PNi via the
projections Y → PNi. Uniqueness follows from Proposition 6.4. �

Corollary 7.5. Let P → Hn,m be an admissible tower. Then,

[P → Hn,m] =
∑

i,j

ai,j · [Hn−i,m−j → Hn,m]

for elements ai,j ∈ ω∗(k)′.

Here, Hn−i,m−j → Hn,m is induced by the bi-linear embedding

Pn−i × Pm−j → Pn × Pm.

The sum in Corollary 7.5 is over

0 ≤ i ≤ n, 0 ≤ j ≤ m, i + j < n + m

for dimension reasons.

Proof. We apply Lemma 7.3 with Y = Hn,m and divisors H1 = Hn−1,m,
H2 = Hn,m−1. If n ≥ m, the projection

p2 : Hn,m → Pm

expresses Hn,m as a Pn−1-bundle over Pm. Hence, H1 and H2 generate
Pic(Hn,m). Since

H
(i)
1 · H

(j)
2 = Hn−i,m−j,
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the hypotheses of Lemma 7.3 are satisfied and yield the desired result.
�

Proposition 7.6. Let P → Hn,m be an admissible tower. Then,

iHn,m∗([P → Hn,m]) =
∑

(i,j)6=(0,0)

ai,j · [Pn−i × Pm−j → Pn × Pm]

for unique elements ai,j ∈ ω∗(k), 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Proof. If m = 0, then Hn,m is a hyperplane in Pn, and the result follows
from Corollary 7.4. The same argument is valid for n = 0.

We proceed by induction on (n, m). Only existence is required since
uniqueness follows from Proposition 6.4; we will show in fact that the
ai,j are in ω∗(k)′ ⊂ ω∗(k). By Corollary 7.5, we need only construct
relations of the form

iHn,m∗(a · [Hn,m → Hn,m]) =
∑

(i,j)6=(0,0)

ai,j · [Pn−i × Pm−j → Pn × Pm].

with ai,j ∈ ω∗(k)′, for every a ∈ ω∗(k)′. Since

iHn,m∗(a · [Hn,m → Hn,m]) = a · iHn,m∗([Hn,m → Hn,m]),

the case a = 1 suffices.
We have the linear equivalence on Pn × Pm,

Hn,m ∼ Pn−1 × Pm + Pn × Pm−1.

By the extended double point relation of Lemma 5.2, there are admis-
sible towers P1 → Pn−1 × Pm−1, P2 → Hn−1,m−1 and P3 → Hn−1,m−1

for which

[Hn,m → Pn × Pm] = [Pn−1 × Pm → Pn × Pm]

+[Pn × Pm−1 → Pn × Pm]

−[P1 → Pn × Pm]

+[P2 → Pn × Pm]

−[P3 → Pn × Pm].

By induction, the classes [P2 → Pn−1 × Pm−1] and [P3 → Pn−1 × Pm−1]
are expressible as

[Pℓ → Pn−1 × Pm−1] =
∑

i,j

aℓ
i,j · [Pn−i−1 × Pm−j−1 → Pn−1 × Pm−1],

for aℓ
i,j ∈ ω∗(k)′ for ℓ = 2, 3. By Corollary 7.4, a similar expression is

obtained in case ℓ = 1. �
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8. The formal group law over ω∗(k)

We use the classical method of Quillen to construct a formal group
law over ω∗(k). Proposition 7.6 replaces the projective bundle formula.

By Proposition 7.6 applied to the admissible tower Id : Hn,m → Hn,m,
there are unique elements an,m

i,j ∈ ωi+j−1(k) for which the identity

(8.1) [Hn,m → Pn × Pm] =
∑

(i,j)6=(0,0)

an,m
i,j · [Pn−i × Pm−j → Pn × Pm]

holds in ω∗(P
n × Pm). For convenience, we set an,m

0,0 = 0.

Lemma 8.1. If N ≥ n, M ≥ m, then

aN,M
i,j = an,m

i,j

for 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Proof. We pull back the relation (8.1) for N, M by a bi-linear embed-
ding

i : Pn × Pm → PN × PM ;

see Section 6.3 for the pull-back construction. We find

i∗([HN,M → PN × PM ]) = [Hn,m → Pn × Pm]

i∗([PN−i × PM−j → PN × PM ]) = [Pn−i × Pm−j → Pn × Pm]

for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Since i∗ is ω∗(k)-linear, the result follows
from the uniqueness of the an,m

i,j . �

By Lemma 8.1, we may define ai,j ∈ ω∗(k) by

ai,j = lim
N→∞,M→∞

aN,M
i,j .

Following the convention

[Pn−i × Pm−j → Pn × Pm] = 0

if i > n or if j > m, we write ai,j for an,m
i,j in relation (8.1).

Taking n = 0 and noting H0,m = Pm−1 linearly embeds in Pm, we
find

a0,1 = 1, a0,j>1 = 0.

As the exchange of factors Pn × Pm → Pm × Pn sends Hn,m to Hm,n,
we obtain the symmetry

ai,j = aj,i.

Let Fω(u, v) ∈ ω∗(k)[[u, v]] be the power series

Fω(u, v) = u + v +
∑

i,j≥1

ai,ju
ivj .
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Proposition 8.2. Let L1 and L2 be globally generated line bundles on
X ∈ Schk. Then, L1 ⊗ L2 is globally generated and

c̃1(L1 ⊗ L2) = Fω(c̃1(L1), c̃1(L2)).

Proof. The Proposition follows from the equation

(8.2) c̃1(L1 ⊗ L2)(1Y ) = Fω(c̃1(L1), c̃1(L2))(1Y ).

for all globally generated L1, L2 on all Y ∈ Smk. Indeed, if [f : Y →
X] ∈ M(X)+, then

f∗(1Y ) = [f : Y → X] ∈ ω∗(X).

By (A3), we have

c̃1(L)([f : Y → X]) = c̃1(f∗(1Y )) = f∗(c̃1(f
∗L)(1Y ))

for all globally generated L on X, which verifies the claim.
Since L1 and L2 are globally generated, we have morphisms

fi : Y → Pni

with Li
∼= f ∗

i (O(1)) for i = 1, 2. Thus,

L1 ⊗ L2
∼= (f1 × f2)

∗(O(1, 1)).

By the functoriality result Lemma 6.3, we need only prove (8.2) in
case

Y = Pn × Pm, L1 = O(1, 0), L2 = O(0, 1), L1 ⊗ L2 = O(1, 1).

Since

c̃1(O(1, 1))(1Pn×Pm) = [Hn,m → Pn × Pm]

c̃1(O(1, 0))i ◦ c̃1(O(0, 1))j(1Pn×Pm) = [Pn−i × Pm−j → Pn × Pm],

the defining relation (8.1) for the ai,j becomes

c̃1(O(1, 1))(1Pn×Pm) = Fω(c̃1(O(1, 0), c̃1(O(0, 1))(1Pn×Pm),

as desired. �

Proposition 8.3. Fω(u, v) defines a formal group law over ω∗(k).

Proof. Of the axioms for formal group laws, the first two have already
been established:

(i) F (u, 0) = F (0, u) = u,
(ii) F (u, v) = F (v, u).

The last axiom

(iii) F (F (u, v), w) = F (u, F (v, w)).
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will now be proven.
Let G1(u, v, w) = F (F (u, v), w) and G2(u, v, w) = F (u, F (v, w)).

For ℓ = 1, 2, write

Gℓ(u, v, w) =
∑

i,j,k

aℓ
i,j,ku

ivjwk.

For globally generated line bundles L1, L2, L3 on X ∈ Schk,

G1(c̃1(L1), c̃1(L2), c̃1(L3)) = F (c̃1(L1 ⊗ L2), c̃1(L3)) = c̃1(L1 ⊗ L2 ⊗ L3)

by Proposition 8.2. A similar equation holds for G2. Thus

(8.3) G1(c̃1(L1), c̃1(L2), c̃1(L3)) = G2(c̃1(L1), c̃1(L2), c̃1(L3))

as operators on ω∗(X).
Specializing to X = Pn × Pm × Pr, we find

Gℓ(c̃1(O(1, 0, 0), c̃1(O(0, 1, 0)), c̃1(O(0, 0, 1))(1X)

=
n∑

i=0

m∑

j=0

r∑

k=0

aℓ
i,j,k · [Pn−i × Pm−j × Pr−k → Pn × Pm × Pr]

for ℓ = 1, 2. By Proposition 6.4 and (8.3), we have

a1
i,j,k = a2

i,j,k

for 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ r. As n, m and r were arbitrary,
the proof is complete. �

9. Chern classes II

9.1. Definition. Because Fω(u, v) is a formal group law, there exists
an inverse power series χω(u) ∈ ω∗(k)[[u]] characterized by the identity

Fω(u, χω(u)) = 0.

We let F−
ω (u, v) be the difference in our group law,

F−
ω (u, v) = Fω(u, χω(v)).

Using F−
ω (u, v), we can extend the definition of c̃1(L) given in Section

4 for globally generated L to arbitrary line bundles.

Lemma 9.1. Let L, M, N be line bundles on Y ∈ Smk where

L, M, L ⊗ N, M ⊗ N

are globally generated. Then,

F−
ω (c̃1(L), c̃1(M)) = F−

ω (c̃1(L ⊗ N), c̃1(M ⊗ N))

as operators on ω∗(Y ).
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Proof. We first assume N is globally generated. Then

c̃1(L ⊗ N) = Fω(c̃1(L), c̃1(N))

c̃1(M ⊗ N) = Fω(c̃1(M), c̃1(N))

by Proposition 8.2. The result then follows from the power series iden-
tity

F−
ω (Fω(u, w), Fω(v, w)) = F−

ω (u, v).

In general, since Y is quasi-projective, there is a very ample line
bundle N ′ such that N ′′ = N ′ ⊗ N−1 is very ample. Then

F−
ω (c̃1(L), c̃1(M)) = F−

ω (c̃1(L ⊗ N ′), c̃1(M ⊗ N ′))

= F−
ω (c̃1(L ⊗ N ⊗ N ′′), c̃1(M ⊗ N ⊗ N ′′))

= F−
ω (c̃1(L ⊗ N), c̃1(M ⊗ N)),

completing the proof. �

Let L be an arbitrary line bundle on X ∈ Schk. Define the operator

c̃1(L) : M∗(X)+ → ω∗−1(X)

by the following construction. Let Y ∈ Smk be irreducible. Let

(9.1) [f : Y → X] ∈ M(X)+.

Let M be a very ample line bundle on Y for which f ∗(L) ⊗ M is also
very ample. Define

c̃1(L)([f : Y → X]) = f∗

(
F−

ω

(
c̃1(f ∗(L) ⊗ M), c̃1(M)

)
(1Y )

)
.

By Lemma 9.1, c̃1(L)([f ]) is independent of the choice of M . Since
M∗(X)+ is the free abelian group with generators (9.1), c̃1(L) is de-
fined on M∗(X)+. Also, by Lemma 9.1 and Definition 2.1(A3), we see
c̃1(L) agrees with the definition given in Section 4 in case L is globally
generated.

Let X ∈ Schk, and let π : Y → X × P1 be a double point degenera-
tion over 0 ∈ P1. Let

Y0 = A ∪ B → X

be the fiber over 0, and let Y∞ → X be a regular fiber. The associated
double point relation is

[Y∞ → X] = [A → X] + [B → X] − [P(π) → X] ∈ ω∗(X).

Lemma 9.2. Let L be a line bundle on X. Then,

c̃1(L)([Y∞ → X]) = c̃1(L)
(

[A → X] + [B → X] − [P(π) → X]
)
.
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Proof. The various classes c̃1(L)([W → X]) are defined by operating
on ω∗(W ) and then pushing forward to X. Hence, we may replace X
with Y , L with π∗p∗1L, and π with

(IdY , p2 ◦ π) : Y → Y × P1.

Since Y ∈ Smk, we may choose a very ample line bundle M for
which L⊗M is also very ample. Then, by the definition of c̃1(L) given
above, we have

c̃1(L) = F−
ω (c̃1(L ⊗ M), c̃1(M)),

as a map from M∗(Y )+ to ω∗−1(Y ). The result follows from Lem-
mas 4.2 and 4.3. �

By Lemma 9.2, the operator c̃1(L) : M∗(X)+ → ω∗−1(X) descends
to

c̃1(L) : ω∗(X) → ω∗−1(X).

Hence, we have constructed first Chern class operators on ω∗ for arbi-
trary line bundles.

Lemma 9.3. Let Y ∈ Smk, and let

L1, . . . , Lr>dimk Y → Y

be line bundles. Then,
r∏

i=1

c̃1(Li) = 0

as an operator on ω∗(Y ).

Proof. Since Y quasi-projective, c̃1(Li) = F−
ω (c̃1(Li ⊗ M), c̃1(M)) for

any choice of very ample line bundle M on Y for which Li ⊗M is very
ample. Since

F−
ω (u, v) = u − v mod (u, v)2,

Lemma 4.3 implies the result. �

Axioms (A3), (A4), (A5) and (A8) for globally generated L imme-
diately imply these axioms for arbitrary L. Similarly, the functoriality
of Lemma 6.3 extends to arbitrary line bundles L.

Proposition 9.4. Let L and M be line bundles on X ∈ Schk. Then,

c̃1(L ⊗ M) = Fω(c̃1(L), c̃1(M)).

Proof. By the definition of Chern classes and Lemma 9.3, the operator

Fω(c̃1(L), c̃1(M)) : ω∗(X) → ω∗−1(X)

is well-defined.
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Since ω∗(X) is generated by the classes f∗(1Y ) for

[f : Y → X] ∈ M(X)+,

property (A3) can be used to reduce to the case of X ∈ Smk.
Take very ample line bundles N1, N2 on X with L⊗N1 and M ⊗N2

very ample. Then,

L ⊗ M ⊗ N1 ⊗ N2, N1 ⊗ N2

are also very ample. The Proposition follows from Proposition 8.2 and
the power series identity

Fω(F−
ω (u1, v1), F

−
ω (u2, v2)) = F−

ω (Fω(u1, u2), Fω(v1, v2)),

after taking

u1 = c̃1(L ⊗ N1), v1 = c̃1(N1),

u2 = c̃1(M ⊗ N2), v2 = c̃1(N2).

�

9.2. Proof of Theorem 2. Double point cobordism theory ω∗ was
shown in Section 3.2 to define a Borel-Moore functor with product:
structures (D1), (D2), and (D4) satisfying axioms (A1), (A2), (A6),
and (A7).

We have added first Chern classes (D3) and verified axioms (A3),
(A4), (A5), and (A8). Hence, ω∗ is oriented.

The formal group law defined by Proposition 8.3 yields a canonical
ring homomorphism

L∗ → ω∗(k).

Hence, ω∗ is L∗-functor.
In order for ω∗ to be an oriented Borel-Moore L∗-functor of geometric

type, the axioms of Section 2.4 must be satisfied. Axiom (Dim) is
Lemma 9.3, and axiom (FGL) is Proposition 9.4. The proof of Theorem
2 will be completed by establishing the remaining axiom (Sect).

10. Axiom (Sect)

10.1. The difference series. Since the Chern class operator c̃1(L) for
a general line bundle L is defined using the difference F−

ω in our formal
group law, we will require a universal construction of F−

ω along the
lines of our construction of Fω.

The variety Yn,m, defined in Section 6.4, is the total space of the line
bundle O(1,−1) on Pn × Pm with projection π and zero-section s,

π : Yn,m → Pn × Pm, s : Pn × Pm → Yn,m.

Let Sn,m ⊂ Yn,m be the image of the zero section.
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For 0 ≤ i ≤ n and 0,≤ j ≤ m, a closed immersion

Yi,j → Yn,m

is induced by a choice of bi-linear embedding Pi × Pj → Pn × Pm.

Lemma 10.1. For n, m ≥ 0,

(10.1) [Sn,m → Yn,m] =
n∑

i=0

m∑

j=0

bn,m
i,j · [Yn−i,m−j → Yn,m] ∈ ω∗(Yn,m)

for bn,m
i,j ∈ ωi+j−1(k).

Proof. If n = m = 0, then Yn,m = A1 with Sn,m → Yn,m given by the
inclusion of 0. Clearly [0 → A1] = 0 in ω0(A

1), whence the result.4

We proceed by induction on (n, m). We give the argument for the
induction from (n, m − 1) to (n, m). The induction from (n − 1, m) to
(n, m) is similar and is left to the reader.

We have the linear equivalence

Sn,m + Yn,m−1 ∼ Yn−1,m

on Yn,m. Clearly Sn,m + Yn,m−1 + Yn−1,m is a reduced strict normal
crossing divisor on Yn,m. By Lemma 5.2, we obtain the relation

[Sn,m → Yn,m] = [Yn−1,m → Yn,m] − [Yn,m−1 → Yn,m]

+ [P1 → Yn,m] − [P2 → Yn,m] + [P3 → Yn,m]

where P1 → Sn,m−1 is an admissible P1-bundle, P2 → Sn−1,m−1 is an
admissible tower, and P3 → Sn−1,m−1 is an admissible P2-bundle.

We apply Lemma 7.3 to P1 → Sn,m−1 with generators Sn−1,m−1

and Sn,m−2 for Pic(Sn,m−1). Similarly, we apply Lemma 7.3 to P2 →
Sn−1,m−1 and P3 → Sn−1,m−1. We find

[Sn,m → Yn,m] = [Yn−1,m → Yn,m] − [Yn,m−1 → Yn,m]

+

n∑

i=0

m∑

j=1

ci,j · [Sn−i,m−j → Yn,m]

with ci,j ∈ ω∗(k).

4Consider the morphism π : A1 → A1 × P1 determined by (Id, i) where

i : A1 → P1

is the inclusion obtained by omitting 0 ∈ P1. The projective morphism π is a double
point degeneration over 0 ∈ P1,

π−1(0) = ∅ ∪ ∅.

The associated double point cobordism shows [Spec (k) → A1] = 0 in ω∗(A1) for
every closed point.



ALGEBRAIC COBORDISM REVISITED 49

Since Sn−i,m−j → Yn,m factors through Sn−i,m−j → Yn−i,m−j, the
induction hypothesis finishes the proof. �

For 0 ≤ i + j ≤ n, 0 ≤ j ≤ m, the elements bn,m
i,j on the right side of

(10.1) are uniquely determined by Proposition 6.7.

Lemma 10.2. If N ≥ n, M ≥ m, then

bn,m
i,j = bN,M

i,j

for 0 ≤ i + j ≤ n, 0 ≤ j ≤ m.

Proof. The bi-linear embedding Pn × Pm → PN × PM induces a closed
embedding

i : Yn,m → YN,M

which satisfies the conditions of the second example of Section 6.3.
Thus, we have a well-defined ω∗(k)-linear pull-back

i∗ : ω∗(YN,M) → ω∗−d(Yn,m)

with d = N − n + M − m. Clearly

i∗([SN,M → YN,M ]) = [Sn,m → Yn,m],

i∗([YN−i,M−j → YN,M ]) = [Yn−i,m−j → Yn,m],

so the uniqueness statement implies the result. �

By Lemma 10.2, we may define bi,j ∈ ω∗(k) by

bi,j = lim
n,m→∞

bn,m
i,j .

By the proof of Lemma 10.1, b0,0 = 0, b1,0 = 1, and b0,1 = −1.

Lemma 10.3. F−
ω (u, v) =

∑
i,j bi,ju

ivj.

Proof. Let n, m ≥ 0, and let N = n + 2m, M = m. Let a = n + m,
b = m. We will use the morphism

(h, s) : Pa × Pa → YN,M

constructed in the proof of Proposition 6.7, using a suitably general
choice of sections s0, . . . , sN ∈ H0(Pn+m×Pm,O(1, 1)), s ∈ H0(Pn+m×
Pm,O(1, 0)).

Since s is a non-zero section of H0(Pn+m×Pm,O(1, 0)), the pull-back
by (h, s) of the inclusion SN,M →֒ YN,M is a bi-linear embedding

(h, s)−1(SN,M) = Pn+m−1 × Pm → Pn+m × Pm;

we have already seen in the proof of Proposition 6.7 that the pull-back
by (h, s) of the inclusion YN−i,M−j →֒ YN,M is the map

(h, s)−1(YN−i,M−j) = H
(i)
n+m,m−j → Pn+m × Pm.
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The relation (10.1) for (N, M) therefore pulls back under (h, s) to

[Pn+m−1 × Pm → Pn+m × Pm] =
∑

i,j

bN,M
i,j · [H

(i)
n+m,m−j → Pn+m × Pm].

By Lemma 10.2 , we have bN,M
i,j = bi,j for

0 ≤ i + j ≤ N = n + 2m, 0 ≤ j ≤ M = m.

Since H
(i)
n+m,m−j → Pn+m × Pm has codimension i + j and is empty if

j > m,

[Pn+m−1 × Pm] =
n+m∑

i=0

m∑

j=0

bi,j · [H
(i)
n+m,m−j → Pn+m × Pm].

Consider the formal group law determined by ω∗. The difference F−
ω

admits a power series expansion,

F−
ω (u, v) =

∑

i,j

b̃i,ju
ivj,

where b̃i,j ∈ ω∗(k). Certainly,

c̃1(O(1, 0))(1Pn+m×Pm) = F−
ω (c̃1(O(1, 1)), c̃1(O(0, 1))(1Pn+m×Pm).

Since

[Pn+m−1 × Pm] = c̃1(O(1, 0))(1Pn+m×Pm),

[H
(i)
n+m,m−j → Pn+m × Pm] = c̃1(O(1, 1))ic̃1(O(0, 1))j(1Pn+m×Pm),

we find

[Pn+m−1 × Pm] =
∑

i,j

b̃i,j · [H
(i)
n+m,m−j → Pn+m × Pm].

Therefore,
∑

i,j

(b̃i,j − bi,j) · [H
(i)
n+m,m−j → Pn+m × Pm] = 0.

By Proposition 6.6, bi,j = b̃i,j for 0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m. As n
and m were arbitrary, the proof is complete. �

10.2. Proof of Theorem 2. We now complete the last step in the
proof of Theorem 2.

Proposition 10.4. Double point cobordism ω∗ satisfies axiom (Sect).
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Proof. Let Y ∈ Smk be of dimension d. Let L be a line bundle on
Y with transverse section s ∈ H0(Y, L). Let D ⊂ Y be the smooth
divisor associated to s.

Let M be a very ample line bundle on Y for which L ⊗ M is also
very ample. Let

f : Y → Pn, g : Y → Pm

be closed embeddings satisfying

L ⊗ M ∼= f ∗O(1), M ∼= g∗O(1).

Certainly, d ≤ n, d ≤ m.
Let h = (f, g) : Y → Pn × Pm. The section s defines a lifting

(h, s) : Y → Yn,m

which satisfies the conditions of the second example of Section 6.3. We
obtain a well-defined ω∗(k)-linear pull-back

(h, s)∗ : ω∗(Yn,m) → ω∗−n−m−1+d(Y ).

By construction, (h, s)∗([Sn,m → Yn,m]) = [D → Y ].
Since c̃1(π

∗O(1, 0))ic̃1(π∗O(0, 1))j(1Yn,m
) = [Yn−i,m−j → Yn,m] and

(h, s)∗(π∗O(1, 0)) = L ⊗ M, (h, s)∗(π∗O(0, 1)) = M,

Lemma 10.2, Lemma 10.3, and the naturality of c̃1 given by Lemma 6.3
yield

(h, s)∗(
∑

i,j

bn,m
i,j [Yn−i,m−j → Yn,m]) = F−

ω (c̃1(L ⊗ M), c̃1(M))(1Y ).

The “error terms” arising from any inequalities bn,m
i,j 6= bi,j vanish be-

cause

(h, s)∗([Yn−i,m−j → Yn,m]) = 0

if i + j > n ≥ d or if j > m for dimensional reasons.
Applying (h, s)∗ to the relation (10.1) yields the identity

[D → Y ] = F−
ω (c̃1(L ⊗ M), c̃1(M))(1Y ) = c̃1(L)(1Y ),

which verifies axiom (Sect). �

11. Theorem 1 and Corollary 3

11.1. Proofs. Proof of Theorem 1. For clarity, we write [f : Y → X]ω
for

[f : Y → X] ∈ ω∗(X)

and [f : Y → X]Ω for the associated class in Ω∗(X). Similarly, let

1ω
Y = [IdY ]ω, 1Ω

Y = [IdY ]Ω.
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By Proposition 3.5, there is natural transformation

ϑ : ω∗ → Ω∗

of Borel-Moore functors on Schk,

ϑX([f : Y → X]ω) = [f : Y → X]Ω ∈ Ω∗(X).

Moreover, ϑX is surjective for every X ∈ Schk.
By Theorems 2 and 2.2, there is a natural transformation

τ : Ω∗ → ω∗

of oriented Borel-Moore functors of geometric type. Let Y ∈ Smk, and
let

p : Y → Spec (k)

be the structure map. Since

1Ω
Y = p∗(1), 1ω

Y = p∗(1),

and τ respects the unit and smooth pull-back,

τ(1Ω
Y ) = 1ω

Y .

Hence,

τX([f : Y → X]Ω) = τX(f∗(1
Ω
Y ))

= f∗(τY (1Ω
Y ))

= f∗(1
ω
Y )

= [f : Y → X]ω.

Therefore τ ◦ ϑ = Idω, so ϑ is an isomorphism. �

Proof of Corollary 3. We temporarily include the choice of base field in
our notation, writing ωk

∗(X) for the value on X ∈ Schk of the oriented
Borel-Moore functor ω∗ on Schk.

If L → L′ is an extension of fields, a natural map

−×L L′ : ωL
∗ (X) → ωL′

∗ (XL′)

is defined by sending [f : Y → X] ∈ M∗(X)+ with X ∈ SchL to
the base extension [fL′ : YL′ → XL′] with XL′ ∈ SchL′. Since all the
generators and relations defining ωk

∗(k) are given by smooth varieties
of finite type over k, we have

ωk
∗(k) ∼= lim

→
L

ωL
∗ (L)

as L runs over fields finitely generated over Q, where we use the natural
maps defined above to define both the colimit and the map of the
colimit to ωk

∗(k). The proof of Corollary 3 is reduced to the case of a
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field finitely generated over Q. We may therefore assume k admits an
embedding σ : k →֒ C. We now revert to our original notation.

By Corollary 2.5, the canonical homomorphism

ϑMU,σ : Ω∗(k) → MU2∗(pt)

is an isomorphism of graded rings. Since MU2∗(pt) has a rational basis
given by the classes of products of projective spaces, the Corollary
follows from Theorem 1. �

11.2. Curves. In the coefficient ring Ω∗(k) of algebraic cobordism, the
relation

(11.1) [C] = (1 − g)[P1]

holds for every smooth irreducible curve C of genus g (see [22, Remark
1.2.9]). The genus of a curve is certainly invariant modulo naive cobor-
dism (0.1), hence naive cobordism does not suffice to give the relation
(11.1).

We do not know a simple proof that the double point relations imply
(11.1) for arbitrary C. In the proof of the isomorphism

Ω∗(C) ∼= L∗

in [22, Theorem 4.3.7], even for the case of curves, an extended rela-
tion which takes into account degenerations to effective strict normal
crossing divisors having components of multiplicity > 1 is needed. The
extended relation is furnished by the formal group law.

If C is a smooth plane curve of genus g a direct argument for (11.1)
using double point relations is available. Let f be the degree d equation
of C. Let g and h be the equations of generic curves of degrees d − 1
and 1 respectively. Let Y ⊂ P2 ×P1 be the nonsingular surface defined
by x0 ·f +x1 ·gh where [x0, x1] are coordinates on P1. The double point
relation obtained from the fibers over 0 and ∞ of the projection

π : Y → P1

inductively yields (11.1) from the trivial degree d=1 case.
Double point cobordism is related to rational equivalence since the

base of cobordism
π : Y → X × P1

has a P1-factor. A double point cobordism theory ωalg
∗ related to alge-

braic equivalence can be defined by considering cobordisms

π : Y → X × B

with arbitrary smooth bases B of dimension one. We easily see

ω∗(k) ∼= ωalg
∗ (k) ∼= L∗.
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Relation (11.1) is obtained directly in ωalg
∗ (k) by considering a 1-parameter

degeneration of C to the boundary of the moduli space of curves.

12. A theorem of Fulton

Let χ be a C-valued function on the set of isomorphism classes of
smooth projective varieties over k normalized by

(i) χ(Spec (k)) = 1

and satisfying additivity for disjoint union,

(ii) χ(X ∐ Y ) = χ(X) + χ(Y ).

Suppose further that the relation

(iii) χ(C) = χ(A) + χ(B) − χ(A ∩ B)

holds whenever A, B, C ⊂ Y are smooth divisors satisfying the linear
equivalence

A + B ∼ C

in an ambient smooth projective variety Y over k and A ∩ B is a
transverse intersection.

As a first application, we use Theorem 1 to give a new proof of the
following result of Fulton.

Theorem 12.1 ([11]). Let k be an algebraically closed field of charac-
teristic 0. If χ satisfies (i-iii), then χ is the sheaf Euler characteristic,

χ(Y ) =

dim Y∑

i=0

(−1)i dimk H i(Y,OY ).

The sheaf Euler characteristic is easily seen to satisfy the required
conditions (i-iii). The main point of Theorem 12.1 is uniqueness. We
will prove a stronger result — we will assume k has characteristic 0,
but will not require k to be algebraically closed.

For X ∈ Schk, consider the subgroup I(X) ⊂ ω∗(X) generated by
elements of the form

f∗([A → Y ] + [B → Y ] − [A ∩ B → Y ] − [C → Y ])

where f : Y → X is in M(X) and A, B, C are smooth divisors on Y
satisfying condition (iii) of Theorem 12.1. Since I(X) is not a graded
subgroup of ω∗(X), we consider as well a variant that is graded. Let

I∗(X) ⊂ ω∗(X)

be generated by elements of the form

f∗([A → Y ] + [B → Y ] − [P1 × (A ∩ B) → Y ] − [C → Y ])
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with f : Y → X, A, B, C as above. Here,

P1 × (A ∩ B) → Y

is the projection P1 × (A ∩ B) → A ∩ B followed by the inclusion
A ∩ B → Y . Let

ω∗(X) = ω∗(X)/I∗(X).

Lemma 12.2. The following results hold:

(i) X 7→ ω∗(X) inherits the structure of an oriented Borel-Moore
functor of geometric type from ω∗. In particular, ω∗(X) is a
ω∗(k)-module.

(ii) ω∗(k)/I(k) = ω∗(k)/([P1] − [Spec (k)]) · ω∗(k).
(iii) ω∗(X)/I(X) = ω∗(X) ⊗ω∗(k) (ω∗(k)/I(k)).

Proof. For (i), the only non-evident point to check is the descent of the
first Chern class endomorphisms c̃1(L) on ω∗(X) to ω∗(X). We may
assume L is globally generated. Then, given f : Y → X and A, B, C
on Y as above, a general section s of f ∗L has smooth divisor i : E → Y
intersecting A, B, C and A ∩ B transversely, so

c̃1(L)(f∗([A → Y ] + [B → Y ] − [P1 × (A ∩ B) → Y ] − [C → Y ]))

= (f ◦ i)∗([A ∩ E → E] + [B ∩ E → E]

− [P1 × (A ∩ B ∩ E) → E] − [C ∩ E → Y ]).

For (ii) and (iii), we need only verify

(12.1) ([P1] − 1) · [IdW ] ∈ I(W )

for each W ∈ Smk. Indeed, given f : Y → X in M(X) and A, B, C
on Y as above, we have the identity

([A → Y ] + [B → Y ] − [P1 × (A ∩ B) → Y ] − [C → Y ]))

− ([A → Y ] + [B → Y ] − [(A ∩ B) → Y ] − [C → Y ]))

= iA∩B∗(([P
1] − 1) · [IdA∩B]).

Taking W = A ∩ B, this shows that (12.1) implies I∗(X) ⊂ I(X) for
all X ∈ Schk, and in fact

I∗(X) + ([P1] − 1) · ω∗(X) = I(X)

for all X ∈ Schk, from which (ii) and (iii) follow directly.
Finally, (12.1) is obtained by taking the generator of I(W ) with

Y = P1 × P1 × W , f the projection to W and

A = P1 × 0 × W, B = 0 × P1 × W, C = ∆ × W,
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with ∆ ⊂ P1 × P1 the diagonal, where we use the linear equivalence

∆ × W ∼ P1 × 0 × W + 0 × P1 × W

on P1 × P1 × W ,
�

Lemma 12.3. Let D be smooth and projective over k, and let L be a
line bundle over D. Let χ be as in Theorem 12.1. Then,

χ(P(OD ⊕ L)) = χ(D) = χ(P1 × D) .

Proof. We need only check the first identity. As in the proof of Lemma 3.3,
we have the double point degeneration

π : Y → P1

with π−1(0) = P(OD ⊕L) ∪D P(OD ⊕L) and π−1(1) = P(OD ⊕L). By
condition (iii), we have

χ(P(OD ⊕ L)) = 2χ(P(OD ⊕ L)) − χ(D)

or χ(D) = χ(P(OD ⊕ L)). �

Lemma 12.4. Let χ : M(k) → C be as in Theorem 12.1. Then, χ
descends to a group homomorphism χ : ω∗(k)/I(k) → C.

Proof. Since χ is additive, χ defines a group homomorphism

χ : M∗(k)+ → C.

Let π : Y → P1 be a double-point cobordism with Y0 = A ∪ B, Y∞

smooth. By Lemma 12.3, we have

χ(Y∞) = χ(A) + χ(B) − χ(P(π)),

so χ descends to a group homomorphism

χ : ω∗(k) → C

annihilating I(k) by assumption. �

Lemma 12.5. Let Fω̄ be the formal group law of ω. Then,

Fω(u, v) = u + v − [P1]uv.

Proof. It suffices to check the universal examples

OPn×Pm(1, 1) = OPn(1) ⊠ OPm(1).

The linear equivalence Hn,m ∼ Pn×Pm−1 +Pn−1×Pm on Pn×Pm gives
the relation

[Hn,m → Pn×Pm] = [Pn×Pm−1 → Pn×Pm]+[Pn−1×Pm → Pn×Pm]

− [P1] · [Pn−1 × Pm−1 → Pn × Pn]
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in ω∗(P
n × Pm). Since

c̃1(OPn×Pm(1, 1))(1Pn×Pm) = [Hn,m → Pn × Pm]

c̃1(OPn×Pm(0, 1))(1Pn×Pm) = [Pn × Pm−1 → Pn × Pm]

c̃1(OPn×Pm(1, 0))(1Pn×Pm) = [Pn−1 × Pm → Pn × Pm]

and

c̃1(OPn×Pm(0, 1))◦c̃1(OPn×Pm(1, 0))(1Pn×Pm) = [Pn−1×Pm−1 → Pn×Pm],

the projective bundle formula shows that we have

Fω(u, v) = u + v − [P1]uv mod (un+1, vm+1).

Since n, m were arbitrary, the results is proven. �

Lemma 12.6. The ring homomorphism φ : Z[t] → ω∗(k) sending t
to −[P1] is surjective. In addition, the canonical ring homomorphism
Z → ω∗(k)/I(k) is an isomorphism.

Proof. The homomorphism Z → ω∗(k)/I(k) is split by Y 7→ χ(OY ),
hence the second assertion follows from the first and (2) of Lemma 12.2.

For the first assertion, write the universal group law as

FL(u, v) = u + v +
∑

i,j≥1

aiju
ivj.

By Lemma 12.5, the canonical homomorphism φω : L → ω̄∗(k) classi-
fying Fω sends a11 to −[P1] and all other aij to zero. By Theorem 1
and the isomorphism L∗ → Ω∗(k) [22, Theorem 4.3.7],

L∗ → ω∗(k)

is surjective, completing the proof. �

Proof of Theorem 12.1. Let χ : M(k) → C be given. By Lemma 12.4,
χ descends to a homomorphism

χ : ω∗(k)/I(k) → C

with χ([Spec (k)]) = 1. Since ω∗(k)/I(k) ∼= Z by Lemma 12.6, there is
at most one such χ, hence χ(Y ) equals the sheaf Euler characteristic.

�

The proof improves Fulton’s result slightly (still assuming k has char-
acteristic 0). We may replace replace C with any abelian group A,

χ : M(k) → A.
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If χ satisfies conditions (ii) and (iii), then

χ(Y ) = χ([Spec (k)]) ·

(
dimY∑

i=0

(−1)i dimk H i(Y,OY )

)
∈ A

for all smooth projective Y over k.
In fact, we can prove more. Denote the localization of ω∗ at [P1] by

ω̃∗ = ω∗[[P
1]−1].

Let L → Z[t] be the homomorphism classifying the group law

u + v + tuv.

For X ∈ Schk, let G0(X) denote the Grothendieck group of coherent
sheaves following the notation of [22]. Let QSchk ⊂ Schk denote the
full subcategory of quasi-proejctive k-schemes.

Theorem 12.7. There are natural isomorphisms for X ∈ QSchk:

ω∗(X) ∼= Ω∗(X) ⊗L Z[t]

ω̃∗(X) ∼= G0(X)[t, t−1]

ω∗(X)/I(X) ∼= G0(X).

Proof. We have already seen that the formal group law for ω∗ is

u + v − [P1]uv.

The canonical morphism Ω∗ → ω̄∗ therefore factors through

(12.2) Ω∗ ⊗L Z[t] → ω∗ ,

with t mapping to −[P1]. The map (12.2) is clearly surjective.
Injectivity is obtained from the formal group law

u + v − [P1]uv

of Ω∗ ⊗L Z[t]. Let f : Y → X, A, B, C be as in condition (iii) of
Theorem 12.1. As operators on Ω∗(Y ) ⊗L Z[t],

c̃1(OY (C)) = c̃1(OY (A)) + c̃1(OY (B)) − [P1]c̃1(OY (A)) ◦ c̃1(OY (B)).

Evaluating on 1Y , using the Gysin relations, and pushing forward to
X gives the relation

[C → X] = [A → X] + [B → X] − [P1] · [A ∩ B → X]

in Ω∗(X) ⊗L Z[t]. In other words, I∗(X) = 0 in Ω∗(X) ⊗L Z[t]. Since
ω∗ = Ω∗, we conclude (12.2) is injective and hence an isomorphism.

The definition of ω̃∗ and isomorphism (12.2) together yield

ω̃∗(X) ∼= Ω∗(X) ⊗L Z[t, t−1].
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In case X ∈ Smk, the natural map

Ω∗(X) ⊗L Z[t, t−1] → K0(X)[t, t−1]

is an isomorphism by [22], where K0(X) is the Grothendieck group of
locally free sheaves. For the general case X ∈ QSchk, Dai [6] has shown
that the natural map Ω∗(X) → G0(X)[t, t−1] induces an isomorphism

Ω∗(X) ⊗L Z[t, t−1] → G0(X)[t, t−1],

proving the second isomorphism of the Theorem.
Since ω∗(X)/I(X) ∼= ω∗(X)/([P1]−1), the third isomorphism follows

from the second. �

By Theorem 12.7, we have a presentation of G0(X) for X ∈ QSchk

as

G0(X) ∼= M(X)+/<f∗([A → Y ]+[B → Y ]−[A∩B → Y ]−[C → Y ])>

for f : Y → X ∈ M(X), A, B, C as in condition (iii) of Theorem 12.1.
Strangely, only the relation of linear equivalence of smooth divisors on
smooth varieties is used!

13. Donaldson-Thomas theory

13.1. Proof of Conjecture 1. Let Q[[q]]∗ ⊂ Q[[q]] denote the multi-
plicative group of power series with constant term 1. Define a group
homomorphism

Z : (M3(Spec (C))+, +) → (Q[[q]]∗, ·)

on generators by the partition function for degree 0 Donaldson-Thomas
theory defined in Section 0.6,

Z([Y ]) = Z(Y, q).

We use here the abbreviated notation

[Y ] = [Y → Spec (C)] ∈ M3(Spec (C)).

Since double point relations hold in Donaldson-Thomas theory (0.10),
the homomorphism Z descends to ω∗(C),

Z : ω∗(C) → Q[[q]]∗.

By Corollary 3, the class [Y ] ∈ ω3(C) is expressible rationally in
terms of the classes

[P3], [P2 × P1], [P1 × P1 × P1].

Hence,

r[Y ] = s3[P
3] + s21[P2 × P1] + s111[P1 × P1 × P1] ∈ ω∗(C)
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for integers r 6= 0, s3, s21, and s111. Therefore

(13.1) Z(Y, q)r =
∏

|λ|=3

Z(Pλ, q)sλ .

Conjecture 1 has been proven for 3-dimensional products of pro-
jective spaces in [25, 26]. The right side of (13.1) can therefore be
evaluated: ∏

|λ|=3

Z(Pλ, q)sλ =
∏

|λ|=3

M(−q)sλ

R

Pλ c3(TPλ⊗K
Pλ )

= M(−q)
P

|λ|=3 sλ

R

Pλ c3(T
Pλ⊗K

Pλ)

Since algebraic cobordism respects Chern numbers5,

Z(Y, q)r = M(−q)r
R

Y
c3(TY ⊗KY ).

Finally, since Z(Y, 0) = 1 and M(0) = 1,

Z(Y, q) = M(−q)
R

Y
c3(TY ⊗KY ),

completing the proof. �

13.2. Conjecture 1′. Next, we consider an equivariant version of Con-
jecture 1 proposed in [5].

Let X be a smooth quasi-projective 3-fold over C equipped with an
action of an algebraic torus T with compact fixed locus XT . If XT is
compact, Hilb(X, n)T is also compact, and

NX
n,0 =

∫

[Hilb(X,n)T ]vir

1

e(Normvir)
∈ Q(t)

is well-defined [12]. Here

t = {t1, . . . , trk(T )}

is a set of generators of the T -equivariant cohomology of a point. Let

Z(X, q, t) = 1 +
∑

n≥1

NX
n,0 qn

be the equivariant partition function.
Since XT is compact, the right side of the equality of Conjecture 1

is also well-defined via localization,
∫

X

c3(TX ⊗ KX) =

∫

XT

c3(TX ⊗ KX)

e(Norm)
∈ Q(t).

5Either use the operations ϑCF : Ω∗(k) → CH∗(k)[t] = Z[t] constructed in [22,
Example 4.1.26], or reduce to the case of k admitting an embedding σ : k →֒ C

and recall that complex cobordism respects Chern numbers [33, Theorem, pg. 117,
Chap. VII].
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Conjecture 1′. [5] Z(X, q, t) = M(−q)
R

X
c3(TX⊗KX).

We will prove Conjecture 1′ before proving Conjecture 2 for relative
Donldson-Thomas theory.

13.3. Local geometries. Let M be a smooth projective variety over
C of pure dimension at most 3. Let

N → M

be a vector bundle of satisfying

rk(N) = 3 − dimC M.

The space total space N may be viewed as a local neighborhood6 of
M in a 3-fold embedding. If

N =
r⊕

i=1

Ni

is a direct sum decomposition, an r-dimensional torus T acts canoni-
cally on the total space N by scaling the factors of N . Since NT = M ,
the fixed locus is compact.

We will first prove Conjecture 1′ for the local geometry N . In case M
has dimension 0 or 1, Conjecture 1′ has been proven in [25, 26] and [29]
respectively. If Y has dimension 3, Conjecture 1′ reduces to Conjecture
1. Only the dimension 2 case remains.

13.4. Proof of Conjecture 1′ for local surfaces. The proof relies
upon a double point cobordism theory for local geometries. To ab-
breviate the discussion, we focus our attention on the double point
cobordism theory for local surfaces over Spec (C).

Consider the free group M2,1(C)+ generated by pairs [S, L] where S
is smooth, irreducible, projective surface and

L → S

is a line bundle. The subscript (2, 1) captures the dimension of S and

the rank of L. We will define a double point cobordism theory ωalg
2,1 (C)

as a quotient of M2,1(C)+ by double point relations.
Double point relations are easily defined in the local setting. Let C

be a smooth projective curve with a base point 0 ∈ C. Let

π : S → C

be a projective morphism determining a double point degeneration with

S0 = A ∪ B,

6There is no algebraic tubular neighborhood result even formally.
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and let
L → S

be a line bundle. For each regular value ζ ∈ C of π, define an associated
double point relation by

(13.2) [Sζ ,Lζ] − [A,LA] − [B,LB] + [P(π),LP(π)].

Here, subscripts denote restriction (or, in the case of LP(π), pull-back).

Let Ralg
2,1(C) ⊂ M2,1(C)+ be the subgroup generated by all double

point relations. Double point cobordism theory for local surfaces is
defined by

ωalg
2,1 (C) = M2,1(C)+/Ralg

2,1(C).

Lemma 13.1. Double point cobordism theory ωalg
2,1 (C) for local surfaces

is generated (over Q) by elements of the following form:

(i) [P2, OP2],
(ii) [P1 × P1, L],

(iii) [F1, L],

where F1 is the blow-up of P2 in a point.

Proof. There is a natural group homomorphism

ι : ω2(C) ⊗Z Q → ωalg
2,1 (C) ⊗Z Q

defined by ι([S]) = [S, OS]. By Corollary 3, the image of ι is generated
by

[P2, OP2], [P1 × P1, OP1×P1].

Let [S, OS(C)] ∈ M2,1(C)+ where C ⊂ S is smooth divisor. Consider
the deformation to the normal cone of C ⊂ S,

π : S → P1

with degenerate fiber

S0 = S ∪ P(OC ⊕ OC(C)).

Since S is the blow-up of S × P1 along C × 0, there is a canonical
morphism

ν : S → S

obtained from blow-down and projection. Let L → S be defined by

L = ν∗(OS(C + D)) ⊗ OS(−P(OC ⊕ OC(C))).

where D is a Cartier divisor on S. The double point relation associated
to L → S is

(13.3) [S, OS(C + D)]− [S, OS(D)]− [P(OC ⊕OC(C)), L′] + [P(π), L′′]

where L′ and L′′ are line bundles.
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Let Γ ⊂ ωalg
2,1 (C) be the subgroup generated by Im(ι) and elements of

the form [P, L] where P is a P1-bundle over a smooth projective curve.
If D is taken to be 0 in (13.3), we find [S, OS(C)] ∈ Γ. For general a
Cartier divisor D,

[S, OS(C + D)] ∈ Γ ⇐⇒ [S, OS(D)] ∈ Γ.

Since, for any D, there exists smooth curves C, C ′ for which

OS(C + D) ∼= OS(C ′),

we find Γ = ωalg
2,1 (C).

Since the double point cobordisms here are allowed to have arbitrary
curves as bases, elementary degenerations show elements of type (ii)
and (iii) generate the classes [P, L] of Γ. �

The computation of the degree 0 equivariant vertex in [25, 26] proves
Conjecture 1′ for the toric generators (i-iii) of Lemma 13.1. Conjecture
1′ then follows for local surfaces by an argument parallel to the proof
of Conjecture 1. �

13.5. Proof of Conjecture 1′. Let T be an r-dimensional torus acting
on a smooth quasi-projective 3-fold X with compact fixed locus XT .
The 1-dimensional subtori of T are described by elements of the lattice
Zr. Since 1-dimensional tori T1 ⊂ T with equal fixed loci

XT1 = XT

determine a Zariski dense subset of Zr, Conjecture 1′ is implied by the
rank 1 case.

We assume T is a 1-dimensional torus. If the T -action on X is
trivial, Conjecture 1′ reduces to Conjecture 1. We assume the T -action
is nontrivial. The components of the fixed locus

XT =
⋃

i

XT
i

are of dimension 0, 1, or 2. Certainly

(13.4) Z(X, q, t) =
∏

i

Z(Xi, q, t)

where

Z(Xi, q, t) =
∑

n

qn

∫

[Hilb(X,n)T
i ]vir

1

e(Normvir)

and Hilb(X, n)T
i ⊂ Hilb(X, n)T is locus supported on XT

i . We will
prove

(13.5) Z(Xi, q, t) = M(−q)
R

XT
i

c3(TX⊗KX )

e(Normi)
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where Normi is the normal bundle of XT
i ⊂ X. Conjecture 1′ follows

from (13.4) and (13.5).
Equality (13.5) is proven separately for each possible dimension of

XT
i . The dimension 1 case is the most delicate.

Dim 0. If XT
i = p is a point, then by Theorem 2.4 of [4], the T -action

on X is analytically equivalent in a Euclidean neighborhood of p to
the T -action on the tangent space Tp(X). The T -action at a point
u ∈ U of a Euclidean neighborhood is defined only locally at 1 ∈ T .
Equality (13.5) in the dimension 0 case follows from the degree 0 vertex
evaluation of [25, 26].

Dim 2. If XT
i = S is a surface, the T -weight on the normal bundle of

S ⊂ X may be assumed positive. The Bialynicki-Birula stratification
[4] provides a T -equivariant Zariski neighborhood of S determined by
a T -equivariant affine bundle

S+ → S

of rank 1 with a T -fixed section. In the rank 1 case, S+ is the total
space of a T -equivariant line bundle over S. Equality (13.5) in the
dimension 2 case follows from Conjecture 1′ for local surfaces.

If XT
i = C is a curve, there are three possibilities. Let NC be the

rank 2 normal bundle of C ⊂ X. The T -representation on the fiber of
NC has nontrivial weights w1 and w2.

Dim 1, weights of opposite sign. If the weights w1 and w2 have
opposite signs, then there is a canonical T -equivariant splitting

N = N+ ⊕ N−

as a sum of line bundles. The Bialynicki-Birula stratification yields
quasi-projective surfaces

C+, C− ⊂ X

corresponding to the positive and negative normal directions. Since
the affine bundles

C± → C

are of rank 1 with T -fixed sections, there are T -equivariant isomor-
phisms

φ± : C± → N±

where the total spaces of the line bundles occur on the right.
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Let p ∈ C. By Theorem 2.4 of [4], the T -action on a Euclidean
neighborhood UX ⊂ X of p ∈ X is analytically equivalent to the T -
action on a Euclidean neighborhood UN ⊂ NC of p ∈ NC . Certainly
the images of C± are the intersections of U with N±.

Since the T -action on NC has weights of opposite sign, the T -equivar-
iant automorphism group of U over C which fixes U ∩N± pointwise is
trivial. In particular, there is a unique T -equivariant isomorphism

UX → UN

compatible with φ±. Patching together the isomorphisms yields an
T -equivariant analytic isomorphism between X and NC defined in a
Euclidean neighborhood of C. Equality (13.5) in the 1-dimensional op-
posite sign case then follows from Conjecture 1′ for local curves proved
in [29].

If the weights w1 and w2 are of the same sign, we may assume the
weights to be positive. The Biaylnicki-Birula stratification yields a T -
equivariant Zariski neighborhood of C determined by a T -equivariant
affine bundle

C+ → C

of rank 2. We will see C+ need not be the total space of a T -equivariant
rank 2 vector bundle on C.

The weights w1 and w1 are related if there exists an integer k ≥ 2
for which either

w1
∼= kw2 or kw1

∼= w2.

Dim 1, related weights of same sign. Without loss of generality,
we may assume the relation is w1 = kw2.

Let C2 be a T -representation with weights w1 and w2,

t · (z1, z2) = (tw1z1, t
w2z2).

The T -equivariant automorphism group G of C2 is given by 2×2 upper
triangular matrices,

(13.6) γ0

@

λ1 δ
0 λ2

1

A

(
z1, z2

)
=
(
λ1z1 + δzk

2 , λ2z2

)
.

Every Zariski locally trivial G-torsor τ on C yields an T -equivariant
affine bundle

Aτ → C



66 M. LEVINE AND R. PANDHARIPANDE

of rank 2 over C with a T -equivariant section. The bundle Aτ is ob-
tained by the G-action (13.6). The family of homomorphisms

ρξ : G → G

for ξ ∈ C defined by

ρξ

(
λ1 δ
0 λ2

)
=

(
λ1 ξ · δ
0 λ2

)

is a algebraic deformation of the identity ρ1 to the the diagonal pro-
jection

ρ0 : G → (C∗)2.

For each G-torsor τ , let τξ be the G-torsor induced by ρξ. Then, the
algebraic family Aτξ

of G-torsors is a T -equivariant deformation of Aτ

to Aτ0 . The latter is the total space of a T -equivariant vector bundle
on C.

Bialynicki-Birula proves the T -equivariant affine bundle

C+ → C

is obtained from a G-torsor as above. Since C+ is T -equivariantly
deformation equivalent to the total space of a rank 2 vector bundle
over C, equality (13.5) follows from the local curve case together with
the deformation invariance of the virtual class.

Dim 1, unrelated weights of the same sign. If w1 and w2 are not
related,

C+ → C

is the total space of a T -equivariant rank 2 vector bundle over C, see
Section 3 of [4]. Equality (13.5) then follows from Conjecture 1′ for
local curves. �

13.6. Proof of Conjecture 2. Let X be a smooth projective 3-fold
over C, and let Let S ⊂ X be a smooth surface. Let

P = P(OS ⊕ OS(S)).

Let S+, S− ⊂ P denote the sections with respective normal bundles
OS(S), OS(−S) corresponding to the quotients OS(S), OS.

We will study the Donaldson-Thomas theory of P/S− by localization.
A 1-dimensional scaling torus T acts on P with

PT = S+ ∪ S−

and normal weights t and −t along S+ and S− respectively. The com-
ponents of the T -fixed loci of In(P/S−, 0) lie over either S− or S+.
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A Donaldson-Thomas theory of rubber naturally arises on the fixed
loci of In(P/S−, 0) over S−. Let

W− = 1 +
∑

n≥1

qn

∫

[In(P/S−∪S+,0) ˜ ]vir

1

−t − Ψ+

denote the rubber contributions. Here, In(P/S− ∪ S+, 0)˜denotes the
rubber moduli space, and Ψ+ denotes the cotangent line associated
to target degeneration. However, since the virtual dimension of the
rubber space In(P/S− ∪ S+, 0)˜is −1,

W− = 1.

A discussion of virtual localization in relative Donaldson-Thomas the-
ory and rubber moduli spaces can be found in [26]. See [27] for a
construction of Ψ+.

A local neighborhood of S+ ⊂ P is given by the total space

P+ = P \ S−

of the line bundle

OS(S) → S+.

Hence, the contributions over S+ are determined by Conjecture 1′ for
local surfaces,

W+ = M(−q)
R

P+
c3(TP+

⊗KP+
)
.

The equivariant integral in the exponent is easily computed
∫

P+

c3(TP+ ⊗ KP+) =

∫

P

c3(TP[−S−] ⊗ KP[S−]).

The product of the localization contributions over S− and S+ yields
the partition function,

Z(P/S−, q) = W− · W+

= M(−q)
R

P
c3(TP[−S−]⊗KP[S−]).

Conjecture 2 for P/S− is proven.
Deformation to the normal cone of S ⊂ X yields

(13.7) Z(X/S, q) = Z(X, q) · Z(P/S, q)−1.

Then, Conjecture 1 for Z(X, q) and Conjecture 2 for Z(P/S, q) imply
Conjecture 2 for Z(X/S, q). �
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