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Abstract. We define a cobordism theory in algebraic geometry
based on normal crossing degenerations with double point singu-
larities. The main result is the equivalence of double point cobor-
dism to the theory of algebraic cobordism previously defined by
Levine and Morel. Double point cobordism provides a simple, geo-
metric presentation of algebraic cobordism theory. As a corollary,
the Lazard ring given by products of projective spaces rationally
generates all nonsingular projective varieties modulo double point
degenerations.

Double point degenerations arise naturally in relative Donaldson-
Thomas theory. We use double point cobordism to prove all the
degree 0 conjectures in Donaldson-Thomas theory: absolute, rela-
tive, and equivariant.

Introduction

0.1. Overview. A first idea for defining cobordism in algebraic geom-
etry is to impose the relation

(0.1) [π−1(0)] = [π−1(∞)]

for smooth fibers of a projective morphism

π : Y → P1.

The resulting theory bears no resemblance to complex cobordism.
A successful theory of algebraic cobordism has been constructed in

[16, 19, 20] from Quillen’s axiomatic perspective. The goal is to define
a universal oriented Borel-Moore cohomology theory of schemes. An
introduction to algebraic cobordism can be found in [14, 15, 17, 18].

A second idea for defining algebraic cobordism geometrically is to
impose relations obtained by fibers of π with normal crossing singu-
larities. The simplest of these are the double point degenerations —
where the fiber is a union of two smooth transverse divisors. We prove
the cobordism theory obtained from double point degenerations is al-
gebraic cobordism.
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Algebraic cobordism may thus be viewed both functorially and geo-
metrically. In practice, the different perspectives are very useful. We
prove several conjectural formulas concerning the virtual class of the
Hilbert scheme of points of a 3-fold as an application.

0.2. Schemes and morphisms. Let k be a field of characteristic 0.
Let Schk be the category of separated schemes of finite type over k, and
let Smk be the full subcategory of smooth quasi-projective k-schemes.

For X ∈ Schk, let M(X) denote the set of isomorphism classes over
X of projective morphisms

(0.2) f : Y → X

with Y ∈ Smk. The set M(X) is a monoid under disjoint union of
domains and is graded by the dimension of Y over k. Let M∗(X)+

denote the graderd group completion of M(X).
Alternatively, Mn(X)+ is the free abelian group generated by mor-

phisms (0.2) where Y is irreducible and of dimension n over k. Let

[f : Y → X] ∈ M∗(X)+

denote the element determined by the morphism.

0.3. Double point degenerations. Let Y ∈ Smk be of pure dimen-
sion. A morphism

π : Y → P1

is a double point degeneration over 0 ∈ P1 if

π−1(0) = A ∪ B

where A and B are smooth Cartier divisors intersecting transversely in
Y . The intersection

D = A ∩ B

is the double point locus of π over 0 ∈ P1.
Let NA/D and NB/D denote the normal bundles of D in A and B

respectively. Since OD(A + B) is trivial,

NA/D ⊗ NB/D
∼= OD.

Hence, the projective bundles

(0.3) P(OD ⊕ NA/D) → D and P(OD ⊕ NB/D) → D

are isomorphic. Let

P(π) → D

denote either of (0.3).
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0.4. Double point relations. Let X ∈ Schk, and let p1 and p2 denote
the projections to the first and second factors of X × P1 respectively.

Let Y ∈ Smk be of pure dimension. Let

π : Y → X × P1

be a projective morphism for which the composition

(0.4) π2 = p2 ◦ π : Y → P1

is a double point degeneration over 0 ∈ P1. Let

[A → X], [B → X], [P(π2) → X] ∈ M(X)+

be obtained from the fiber π−1
2 (0) and the morphism p1 ◦ π.

For each regular value ζ ∈ P1(k) of π2, define an associated double
point relation over X by

(0.5) [Yζ → X] − [A → X] − [B → X] + [P(π2) → X]

where Yζ = π−1
2 (ζ).

Let R∗(X) ⊂ M∗(X)+ be the subgroup generated by all double
point relations over X. As the notation suggests, R∗(X) is a graded
subgroup of M∗(X)+.

0.5. Naive cobordism. Naive cobordism (0.1) may be viewed as a
special case of a double point relation.

Let Y ∈ Smk be of pure dimension. Let

π : Y → X × P1

be a projective morphism with π2 = p2 ◦ π smooth over 0,∞ ∈ P1. We
may view π2 as a double point degeneration over 0 ∈ P1 with

π−1
2 (0) = A ∪ ∅.

The associated double point relation is

[Y∞ → X] − [Y0 → X] ∈ R(X).

0.6. Algebraic cobordism. The central object of the paper is the
quotient

ω∗(X) = M∗(X)+/R∗(X)

defining double point cobordism theory. Let Ω∗(X) be the theory of
algebraic cobordism defined in [20].

Theorem 0.1. There is a canonical isomorphism ω∗(X) ∼= Ω∗(X).
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Theorem 0.1 may be viewed as a geometric presentation of Ω∗(X)
via the simplest possible cobordisms. A homomorphism

(0.6) ω∗(X) → Ω∗(X)

is obtained immediately from the definitions once the double point
relations are shown to hold in Ω∗(X). The inverse is more difficult to
construct.

Theorem 0.2. ω∗ determines an oriented Borel-Moore functor of geo-
metric type on Schk.

Since algebraic cobordism is the universal Borel-Moore functor of
geometric type on Schk, an inverse

Ω∗(X) → ω∗(X)

to (0.6) is obtained from Theorem 0.2.
Oriented theories and Borel-Moore functors are discussed in Sections

1- 4 following [20, Sections 2.1, 2.2 and 5.1]. The proof of Theorem
0.2, presented in Sections 5-12, is the technical heart of the paper. The
key geometric step is the construction of a formal group law for ω∗ in
Section 10. Theorem 0.1 is proven in Section 13.

0.7. Algebraic cobordism over a point. Denote Spec(k) by k. Let
L∗ be the Lazard ring [13]. The canonical map

L∗ → Ω∗(k)

classifying the group law for Ω∗ is proven to be an isomorphism in [20,
Theorem 4.3.7]. By Theorem 0.1,

L∗ ∼= ω∗(k).

A basis of ω∗(k) ⊗Z Q is formed by the products of projective spaces.

Corollary 0.3. We have

ω∗(k) ⊗Z Q =
⊕

λ

Q[Pλ1 × ... × Pλℓ(λ)]

where the sum is over all partitions λ.

0.8. Donaldson-Thomas theory. Corollary 0.3 is directly applicable
to the Donaldson-Thomas theory of 3-folds.

Let X be a smooth projective 3-fold over C, and let Hilb(X, n) be
the Hilbert scheme of n points. Viewing the Hilbert scheme as the
moduli space of ideal sheaves I0(X, n), a natural 0-dimensional virtual
Chow class can be constructed

[Hilb(X, n)]vir ∈ A0(Hilb(X, n), Z),



ALGEBRAIC COBORDISM REVISITED 5

see [23, 24, 31]. The degree 0 Donaldson-Thomas invariants are defined
by

NX
n,0 =

∫

[Hilb(X,n)]vir

1.

Let
Z(X, q) = 1 +

∑

n≥1

NX
n,0 qn

be the associated partition function.

Conjecture 1. [23] Z(X, q) = M(−q)
R

X
c3(TX⊗KX).

Here, M(q) denotes the MacMahon function,

M(q) =
∏

n≥1

1

(1 − qn)n
,

the generating function of 3-dimensional partitions [30].
For a nonsingular divisor S ⊂ X, a relative Donaldson-Thomas the-

ory1 is defined via the moduli space of relative ideal sheaves I0(X/S, n).
The degree 0 relative invariants,

N
X/S
n,0 =

∫

[I0(X/S,n)]vir

1,

determine a relative partition function

Z(X/S, q) = 1 +
∑

n≥1

N
X/S
n,0 qn.

Let ΩX [S] denote the locally free sheaf of differential forms of X with
logarithmic poles along S. Let

TX [−S] = ΩX [S] ∨,

denote the dual sheaf of tangent fields with logarithmic zeros. Let

KX [S] = Λ3ΩX [S]

denote the logarithmic canonical class.

Conjecture 2. [24] Z(X/S, q) = M(−q)
R

X
c3(TX [−S]⊗KX [S]).

We prove Conjectures 1 and 2. An equivariant version of Conjecture
1 proposed in [3] is also proven. Corollary 0.3 reduces the results to
toric cases previously calculated in [23, 24]. The proofs are presented
in Section 15.

1See [23, 27] for a discussion. A full foundational treatment of the relative theory
has not yet appeared.
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0.9. Double point relations in DT theory. Double point relations
naturally arise in degree 0 Donaldson-Thomas theory by the following
construction.

Let Y ∈ SmC be a 4-dimensional projective variety, and let

π : Y → P1

be a double point degeneration over 0 ∈ P1. Let

π−1(0) = A ∪ B.

The degeneration formula in relative Donaldson-Thomas theory yields

(0.7) Z(Yζ) = Z(A/D) · Z(B/D)

for a π-regular value ζ ∈ P1, see [24].
Since the deformation to the normal cone of D ⊂ A is a double point

degeneration,

(0.8) Z(A) = Z(A/D) · Z(P(OD ⊕ NA/D)/D).

On the right, the divisor D ⊂ P(OD ⊕ NA/D) is included with normal
bundle NA/D. Similarly,

(0.9) Z(B) = Z(B/D) · Z(P(OD ⊕ NB/D)/D)

where the divisor D ⊂ P(OD ⊕ NA/D) is included with normal bundle
NB/D.

Since NA/B ⊗NB/D
∼= OD, the deformation of P(OD ⊕NA/D) to the

normal cone of D ⊂ P(OD ⊕ NA/D) yields

Z(P(π)) = Z(P(OD ⊕ NA/D)/D) · Z(P(OD ⊕ NB/D)/D).

When combined with equations (0.7)-(0.9), we find

(0.10) Z(Yζ) · Z(A)−1 · Z(B)−1 · Z(P(π)) = 1

which is the double point relation (0.5) over Spec(C) in multiplicative
form.

0.10. Gromov-Witten speculations. Let X be a nonsingular pro-
jective variety over C. Gromov-Witten theory concerns integration
against the virtual class,

[Mg,n(X, β)]vir ∈ H∗(M g,n(X, β), Q),

of the moduli space of stable maps to X.
There are two main techniques available in Gromov-Witten theory:

localization [10, 12] and degeneration [5, 11, 21, 22, 25]. Localiza-
tion is most effective for toric targets — all the Gromov-Witten data
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of products of projective spaces are accessible by localization. The de-
generation formula yields Gromov-Witten relations precisely for double
point degenerations.

By Corollary 0.3, all varieties are linked to products of projective
spaces by double point degenerations. We can expect, therefore, that
many aspects of the Gromov-Witten theory of arbitrary varieties will
follow the behavior found in toric targets. An example is the following
speculation about the virtual class — which, at present, appears out
of reach of Corollary 0.3.

Speculation. The push forward ǫ∗[M g,n(X, β)]vir via the canonical
map

ǫ : M g,n(X, β) → M g,n

lies in the tautological ring

RH∗(M g,n, Q) ⊂ H∗(M g,n, Q).

See [7, 28] for a discussion of similar (and stronger) statements. In
particular, a definition of the tautological ring can be found there.

Gromov-Witten theory is most naturally viewed as an aspect of sym-
plectic geometry. The construction of a parallel symplectic cobordism
theory based on double point degenerations appears to be a natural
path to follow.

0.11. Acknowledgments. We thank D. Maulik, A. Okounkov, and
B. Totaro for useful discussions about double point degenerations,
Gromov-Witten theory, and algebraic cobordism. We thank W. Ful-
ton for pointing out the connection to his characterization of the sheaf
Euler characteristic.

A proof of Conjecture 1 was announced in March 2005 by J. Li. Li’s
method is to show Z(X, q) depends only upon the Chern numbers of
X by an explicit (topological) study of the cones defining the virtual
class. The result is then obtained from the toric calculations of [24] via
the complex cobordism class. A proof of Conjecture 1 in case X is a
Calabi-Yau 3-fold via a study of self-dual obstruction theories appears
in [1, 2]. Our proof is direct and algebraic, but depends upon the
construction of relative Donaldson-Thomas theory (which is required
in any case for the calculations of [24]).
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gang Paul Program and the NSF via grants DMS-0140445 and DMS-
0457195. R. P. was supported by the Packard foundation and the NSF
via grant DMS-0500187. The research was partially pursued during a
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2005.

1. Oriented theories

1.1. Ω∗. Theorem 0.1 is proven for algebraic cobordism Ω∗ viewed as an
oriented Borel-Moore homology theory on Schk. We start by reviewing
the definitions of oriented homology and cohomology theories following
[20].

1.2. Notation. Let X ∈ Schk. A divisor D on X will be understood
to be Cartier unless otherwise stated. The line bundle associated to
the locally free sheaf OX(D) is denoted OX(D).

Let E be a rank n locally free sheaf E on X. Let

q : P(E) → X

denote the projective bundle ProjX(Sym∗(E)) of rank one quotients of
E with tautological quotient invertible sheaf

q∗E → O(1)E .

We let O(1)E denote the line bundle on P(E) with sheaf of sections
O(1)E . The subscript E is omitted if the context makes the meaning
clear. The notation PX(E) is used to emphasize the base scheme X.

Two morphisms f : X → Z, g : Y → Z in Schk are Tor-independent
if, for each triple of points x ∈ X, y ∈ Y , z ∈ Z with f(x) = g(y) = z,

TorOZ,z
p (OX,x,OY,y) = 0

for p > 0.
A closed immersion i : Z → X in Schk is a regular embedding if the

ideal sheaf IZ is locally generated by a regular sequence. A morphism
f : Z → X in Schk is l.c.i. if

f = p ◦ i

where i : Z → Y is a regular embedding and p : Y → X is a smooth
morphism.2 L.c.i. morphisms are closed under composition.

If f : Z → X and g : Y → X are Tor-independent morphisms in
Schk and f is an l.c.i.-morphism, then

p1 : Z ×X Y → Y

is an l.c.i. morphism.
For a full subcategory V of Schk, let V ′ denote the category with

Ob(V ′) = Ob(V)

2For us, a smooth morphism is smooth and quasi-projective.
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and arrows given by projective morphisms of schemes.
Let Ab∗ denote the category of graded abelian groups. A functor

F : Sch′k → Ab∗

is additive if F (∅) = 0 and the canonical map

F (X) ⊕ F (Y ) → F (X
∐

Y )

is an isomorphism for all X, Y in Sch′k.

1.3. Homology. We review the definition of an oriented Borel-Moore
homology theory from [20, §5.1]. We refer the reader to [20, Chapter
5] for a more leisurely discussion.

An oriented Borel-Moore homology theory A∗ on Schk consists of the
following data:

(D1) An additive functor

A∗ : Sch′k → Ab∗ , X 7→ A∗(X).

(D2) For each l.c.i. morphism f : Y → X in Schk of relative dimen-
sion d, a homomorphism of graded groups

f ∗ : A∗(X) → A∗+d(Y ).

(D3) For each pair (X, Y ) in Schk, a bilinear graded pairing

A∗(X) ⊗ A∗(Y ) → A∗(X ×k Y )

u ⊗ v 7→ u × v,

which is commutative, associative, and admits a distinguished
element 1 ∈ A0(Spec(k)) as a unit.

The pairing in (D3) is the external product. The data (D1)-(D3) are
required to satisfy six conditions:

(BM1) Let f : Y → X and g : Z → Y be l.c.i. morphisms in Schk of
pure relative dimension. Then,

(f ◦ g)∗ = g∗ ◦ f ∗.

Moreover, Id∗X = IdA∗(X).
(BM2) Let f : X → Z and g : Y → Z be Tor-independent morphisms

in Schk where f is projective and g is l.c.i. In the cartesian
square

W
g′

//

f ′

��

X

f
��

Y g
// Z ,
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f ′ is projective and g′ is l.c.i. Then,

g∗f∗ = f ′∗g
′∗.

(BM3) Let f : X ′ → X and g : Y ′ → Y be morphisms in Schk.
If f and g are projective, then

(f × g)∗(u
′ × v′) = f∗(u

′) × g∗(v
′).

for u′ ∈ A∗(X
′) and v′ ∈ A∗(Y

′).
If f and g are l.c.i., then

(f × g)∗(u × v) = f ∗(u) × g∗(u′)

for u ∈ A∗(X) and v ∈ A∗(Y ).
(PB) For a line bundle L on Y ∈ Schk with zero section

s : Y → L,

define the operator

c̃1(L) : A∗(Y ) → A∗−1(Y )

by c̃1(L)(η) = s∗(s∗(η)).

Let E be a rank n + 1 locally free sheaf on X ∈ Schk, with
associated projective bundle

q : P(E) → X.

For i = 0, . . . , n, let

ξ(i) : A∗+i−n(X) → A∗(P(E))

be the composition of

q∗ : A∗+i−n(X) → A∗+i(P(E))

followed by

c̃1(O(1)E)
i : A∗+i(P(E)) → A∗(P(E)).

Then the homomorphism

Σn−1
i=0 ξ(i) : ⊕n

i=0A∗+i−n(X) → A∗(P(E))

is an isomorphism.
(EH) Let E → X be a vector bundle of rank r over X ∈ Schk, and

let p : V → X be an E-torsor. Then

p∗ : A∗(X) → A∗+r(V )

is an isomorphism.



ALGEBRAIC COBORDISM REVISITED 11

(CD) For integers r, N > 0, let

W = PN ×S . . . ×S PN

︸ ︷︷ ︸
r

,

and let pi : W → PN be the ith projection. Let X0, . . . , XN be
the standard homogeneous coordinations on PN , let n1, . . . , nr

be non-negative integers, and let i : E → W be the subscheme
defined by

∏r
i=1 p∗i (XN)ni = 0. Then

i∗ : A∗(E) → A∗(W )

is injective.

Comments about (CD) in relation to a more natural filtration con-
dition can be found in [20, §5.2.4]

The most basic example of an oriented Borel-Moore homology theory
on Schk is the Chow group functor

X 7→ CH∗(X)

with projective push-forward and l.c.i. pull-back given by Fulton [8].

1.4. Cohomology. Oriented cohomology theories on Smk are defined
axiomatically in [20, §1.1]. The axioms are very similar to those dis-
cussed in Section 1.3.

An oriented cohomology theory A∗ on Smk can be obtained from an
oriented Borel-Moore homology theory A∗ on Schk by reindexing. If
X ∈ Smk is irreducible,

A∗(X) = Adim X−∗(X).

In the reducible case, the reindexing is applied to each component via
the additive property.

A∗(X) is a commutative graded ring with unit. The product is de-
fined by

a ∪ b = δ∗(a × b)

where δ : X → X × X is the diagonal. The unit is

1X = p∗X(1)

where pX : X → Spec(k) is the structure morphism.
The first Chern class has the following interpretation in oriented

cohomology. Let L be a line bundle on X, and let

c1(L) = c̃1(L)(1X) ∈ A1(X),

then
c̃1(L)(a) = c1(L) ∪ a

for all a ∈ A∗(X).
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Let f : Y → X be a morphism in Schk with X ∈ Smk. Then

(f, Id) : Y → X × Y

is a regular embedding. The pairing

Am(X) ⊗ An(Y ) → An−m(Y )

a ⊗ b 7→ (f, Id)∗(a × b)

makes A∗(Y ) a graded A∗(X)-module (with A−n(Y ) in degree n).

2. Algebraic cobordism theory Ω∗

2.1. Construction. Algebraic cobordism theory is constructed in [20],
and many fundamental properties of Ω∗ are verified there. The pro-
gram is completed by proving Ω∗ is a universal oriented Borel-Moore
homology theory on Schk. The result requires the construction of pull-
back maps for l.c.i. morphisms [20, Chapter 6]. We give a basic sketch
of the construction of Ω∗ here.

2.2. Ω∗. For X ∈ Schk, Ωn(X) is generated (as an abelian group) by
cobordism cycles

(f : Y → X, L1, . . . , Lr),

where f is a projective morphism, Y ∈ Smk is irreducible of dimension
n + r over k, and the Li are line bundles on Y . We identify two
cobordism cycles if they are isomorphic over X up to reorderings of
the line bundles Li.

We will impose several relations on cobordism cycles. To start, two
basic relations are imposed:

I. If there exists a smooth morphism π : Y → Z and line bundles
M1, . . . , Ms>dimk Z on Z with Li

∼= π∗Mi for i = 1, . . . , s ≤ r,
then

(f : Y → X, L1, . . . , Lr) = 0.

II. If s : Y → L is a section of a line bundle with smooth associated
divisor i : D → Y , then

(f : Y → X, L1, . . . , Lr, L) = (f ◦ i : D → X, i∗L1, . . . , i
∗Lr).

The graded group generated by cobordism cycles modulo relations I
and II is denoted Ω∗(X).

Relation II yields as a special case the naive cobordism relation. Let

π : Y → X × P1
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be a projective morphism with Y ∈ Smk for which p2 ◦ π is transverse
to the inclusion {0,∞} → P1. Let L1, . . . , Lr be line bundles on Y ,
and let

i0 : Y0 → Y, i∞ : Y∞ → Y

be the inclusions of the fibers over 0,∞. Then

(p1 ◦ π : Y0 → X, i∗0L1, . . . , i
∗
0Lr) = (p1 ◦ π : Y∞ → X, i∗∞L1, . . . , i

∗
∞Lr)

in Ω∗(X).
Several structures are easily constructed on Ω∗. For a projective

morphism g : X → X ′, define

g∗ : Ω∗(X) → Ω∗(X
′)

by the rule

g∗(f : Y → X, L1, . . . , Lr) = (g ◦ f : Y → X ′, L1, . . . , Lr).

Similarly evident pull-backs for smooth morphisms and external prod-
ucts exist for Ω∗.

The Chern class operator c̃1(L) : Ωn(X) → Ωn−1(X) is defined by
the following formula:

c̃1(L)((f : Y → X, L1, . . . , Lr)) = (f : Y → X, L1, . . . , Lr, f
∗L).

2.3. Ω∗. Contrary to the purely topological theory of complex cobor-
dism, relations I and II do not suffice to define Ω∗. One needs to impose
the formal group law.

A (commutative, rank one) formal group law over a commutative ring
R is a power series F (u, v) ∈ R[[u, v]] satisfying the formal relations of
identity, commutativity and associativity:

(i) F (u, 0) = F (0, u) = u,
(ii) F (u, v) = F (v, u),
(iii) F (F (u, v), w) = F (u, F (v, w)).

The Lazard ring L is defined by the following construction [13]. Start
with the polynomial ring

Z[{Aij , i, j ≥ 1}],

and form the power series

F̃ (u, v) := u + v +
∑

i,j≥1

Aiju
ivj.

Relation (i) is already satisfied. Relations (ii) and (iii) give polynomial
relations on the Aij . L is the quotient of Z[{Aij}] by these relations.
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Letting aij be the image of Aij in L, the universal formal group law is

FL(u, v) = u + v +
∑

i,j≥1

aiju
ivj ∈ L[[u, v]].

We grade L by giving aij degree i + j − 1. If we give u and v degrees
-1, then has FL(u, v) total degree −1.

To construct Ω∗, we take the functor L∗ ⊗Z Ω∗ and impose the rela-
tions

FL(c̃1(L), c̃1(M))(f : Y → X, L1, . . . , Lr)

= c̃1(L ⊗ M)(f : Y → X, L1, . . . , Lr)

for each pair of line bundles L, M on X.
The construction of the pull-back in algebraic cobordism for l.c.i.

morphisms is fairly technical, and is the main task of [20, Chapter 6].
The following universality statements are central results of [20] (see

[20, Theorems 7.1.1, 7.1.3]).

Theorem 2.1. Algebraic cobordism is universal in both homology and
cohomology:

(i) X 7→ Ω∗(X) is the universal oriented Borel-Moore homology
theory on Schk.

(ii) X 7→ Ω∗(X) is the universal oriented cohomology theory on
Smk.

Let A∗ be an oriented Borel-Moore homology theory on Schk. Univer-
sality (i) yields a canonical natural transformation of functors

ϑA : Ω∗ → A∗

which commutes with l.c.i pull-backs and external products. In fact,
the formula for ϑA is just

ϑA([f : Y → X, L1, . . . , Lr]) = fA
∗ (c̃A

1 (L1) ◦ . . . ◦ c̃1(Lr)(1
A
Y )),

where 1A
Y := π∗Y (1A), πY : Y → Spec k the structure morphism, and

1A ∈ A0(k) the unit. Universality (ii) is parallel. For the proof of
Theorem 2.1, the ground field k is required only to admit resolution of
singularities.

3. Formal group laws

Let A∗ be an oriented Borel-Moore homology theory on Schk. By
[20, Proposition 5.2.6], the Chern class of a tensor product is governed
by a formal group law FA(u, v) ∈ A∗(k)[[u, v]]. For each pair of line
bundles L, M on Y ∈ Smk,

(3.1) FA(c̃1(L), c̃1(M))(1Y ) = c̃1(L ⊗ M)(1Y ).
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To make sense, the (commuting) operators c̃1(L) must be nilpotent
on 1Y ∈ A∗(Y ). Nilpotency is proven in [20, Theorem 2.3.13 and
Proposition 5.2.6].

The existence of FA, using the method employed by Quillen [29],
follows from an application of the projective bundle formula (PB) to
a product of projective spaces. We use the cohomological notation
A∗(Pn × Pm). By definition

A∗(P∞ × P∞) = lim
←

n,m

A∗(Pn × Pm)

∼= lim
←

n,m

A∗(k)[u, v]/(un+1, vm+1)

= A∗(k)[[u, v]],

where the isomorphism in the second line is defined by sending

auivj 7→ c1(OPn×Pm(1, 0))ic1(OPn×Pm(0, 1))j ∪ p∗(a).

Here a ∈ A∗(k), p : Pn×Pm → Spec(k) is the structure morphism, and

OPn×Pm(i, j) = p∗1OPn(i) ⊗ p∗2OPm(j).

Clearly the elements c1(OPn×Pm(1, 1)) ∈ A1(Pn×Pm) for varying n, m
define an element c1(O(1, 1)) in the inverse limit. Therefore, there is a
uniquely defined power series FA(u, v) ∈ A∗(k)[[u, v]] with

c1(O(1, 1)) = FA(c1(O(1, 0), c1(O(0, 1)).

If Y ∈ Smk is affine, then every pair of line bundles

L, M → X

is obtained by pull-back via a map f : Y → Pn × Pm with

L ∼= f ∗(O(1, 0)), M ∼= f ∗(O(0, 1)).

We conclude

c1(L ⊗ M) = FA(c1(L), c1(M))

by functoriality. Jouanolou’s trick extends the equality to smooth
quasi-projective Y .

For each oriented Borel-Moore homology theory A∗, the universality
of (L, FL) gives a canonical graded ring homomorphism

φA : L∗ → A∗(k)

with φA(FL) = FA.

Theorem 3.1 ([20, Theorem 4.3.7]). The homomorphism φΩ : L∗ →
Ω∗(k) is an isomorphism.
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Fix an embedding σ : k → C. Complex cobordism MU∗(−) defines
an oriented Borel-Moore cohomology theory MU2∗

σ on Smk by

X 7→ MU2∗(X(C)).

By the universality of Ω∗ as an oriented Borel-Moore cohomology the-
ory on Smk, we obtain a natural transformation ϑMU,σ : Ω∗ → MU2∗

σ .
In particular,

ϑMU,σ
pt : Ω∗(k) → MU2∗(pt).

The formal group law for MU∗ is also the Lazard ring (after multiplying

the degrees by 2, see [29]), so by Theorem 3.1, the map ϑMU,σ
pt is an

isomorphism.

4. Oriented Borel-Moore functors of geometric type

4.1. Universality. Algebraic cobordism Ω∗ is also a universal theory
in the less structured setting of oriented Borel-Moore functors of geo-
metric type. Since our goal will be to map Ω∗ to the double point
cobordism theory ω∗, the less structure required for ω∗ the better. We
recall the definitions from [20, §2.1 and §2.2] here for the reader’s con-
venience.

4.2. Oriented Borel-Moore functors with product. An oriented
Borel-Moore functor with product on Schk consists of the following
data:

(D1) An additive functor H∗ : Sch′k → Ab∗.
(D2) For each smooth morphism f : Y → X in Schk of pure relative

dimension d, a homomorphism of graded groups

f ∗ : H∗(X) → H∗+d(Y ).

(D3) For each line bundle L on X, a homomorphism of graded abelian
groups

c̃1(L) : H∗(X) → H∗−1(X).

(D4) For each pair (X, Y ) in Schk, a bilinear graded pairing

× : H∗(X) × H∗(Y ) → H∗(X × Y )

(α, β) 7→ α × β

which is commutative, associative, and admits a distinguished
element 1 ∈ H0(Spec(k)) as a unit.

The pairing in (D4) is the external product. The data (D1)-(D4) are
required to satisfy eight conditions:
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(A1) Let f : Y → X and g : Z → Y be smooth morphisms in Schk

of pure relative dimension. Then,

(f ◦ g)∗ = g∗ ◦ f ∗.

Moreover, Id∗X = IdH∗(X).
(A2) Let f : X → Z and g : Y → Z be morphisms in Schk where f

is projective and g is smooth of pure relative dimension. In the
cartesian square

W
g′

//

f ′

��

X

f
��

Y g
// Z ,

f ′ is projective and g is smooth or pure relative dimension.
Then,

g∗f∗ = f ′∗g
′∗.

(A3) Let f : Y → X be projective. Then,

f∗ ◦ c̃1(f
∗L) = c̃1(L) ◦ f∗

for all line bundles L on X.
(A4) Let f : Y → X be smooth of pure relative dimension. Then,

c̃1(f
∗L) ◦ f ∗ = f ∗ ◦ c̃1(L) .

for all line bundles L on X.
(A5) For all line bundles L and M on X ∈ Schk,

c̃1(L) ◦ c̃1(M) = c̃1(M) ◦ c̃1(L) .

Moreover, if L and M are isomorphic, then c̃1(L) = c̃1(M).
(A6) For projective morphisms f and g,

× ◦ (f∗ × g∗) = (f × g)∗ ◦ × .

(A7) For smooth morphisms f and g or pure relative dimension,

× ◦ (f ∗ × g∗) = (f × g)∗ ◦ × .

(A8) For X, Y ∈ Schk,

(c̃1(L)(α)) × β = c̃1(p
∗
1(L))

(
α × β

)
,

for α ∈ H∗(X), β ∈ H∗(Y ), and all line bundles L on X.

An oriented Borel-Moore homology theory A∗ on Schk determines
an oriented Borel-Moore functor with product on Schk with the first
Chern class operator is given by

c̃1(L)(η) = s∗s∗(η)

for a a line bundle L → X with zero-section s.
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Let H∗ be an oriented Borel-Moore functor with product on Schk.
The external products make H∗(k) into a graded, commutative ring
with unit 1 ∈ H0(k). For each X, the external product

H∗(k) ⊗ H∗(X) → H∗(X)

makes H∗(X) into a graded H∗(k)-module. The pull-back and push-
forward maps are H∗(k)-module homomorphisms.

4.3. Geometric type. Let R∗ be a graded commutative ring with
unit. An oriented Borel-Moore R∗-functor with product on Schk is an
oriented Borel-Moore functor with product H∗ on Schk together with
a graded ring homomorphism

R∗ → H∗(k).

By the universal property of the Lazard ring L∗, an oriented Borel-
Moore L∗-functor with product on Schk is the same as an oriented
Borel-Moore functor with product H∗ on Schk together with a formal
group law F (u, v) ∈ H∗(k)[[u, v]]. In particular, an oriented Borel-
Moore homology theory A∗ on Schk determines an oriented Borel-
Moore L∗-functor with product on Schk.

An oriented Borel-Moore functor on Schk of geometric type (see [20,
Definition 2.2.1]) is an oriented Borel-Moore L∗-functor A∗ with prod-
uct on Schk satisfying the following three additional axioms:

(Dim) For Y ∈ Smk and line bundles L1, . . . , Lr>dimk(Y ) on Y ,

c̃1(L1) ◦ · · · ◦ c̃1(Lr)(1Y ) = 0 ∈ A∗(Y ) .

(Sect) For Y ∈ Smk and a section s ∈ H0(Y, L) of a line bundle L
transverse to the zero section of L,

c̃1(L)(1Y ) = i∗(1Z),

where i : Z → Y is the closed immersion of the zero subscheme
of s.

(FGL) For Y ∈ Smk and line bundles L, M on Y ,

FA(c̃1(L), c̃1(M))(1Y ) = c̃1(L ⊗ M)(1Y ) ∈ A∗(Y ) .

In axiom (FGL), FA ∈ A∗(k)[[u, v]] is the image of the power series FL

under the homomorphism L∗ → A∗(k) giving the L∗-structure.
By [20, Proposition 5.2.6], the oriented Borel-Moore functor with

product on Schk determined by an oriented Borel-Moore homology
theory on Schk is an oriented Borel-Moore functor of geometric type.

Theorem 4.1 ([20, Theorem 2.4.13]). The oriented Borel-Moore func-
tor of geometric type on Schk determined by Ω∗ is universal.
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Let A∗ be an oriented Borel-Moore functor of geometric type on
Schk. Universality yields a canonical natural transformation of func-
tors

Ω∗ → A∗

which commutes with smooth pull-backs, Chern class operators c̃1(L),
and external products. Again, only resolution of singularities for k is
required for Theorem 4.1.

5. The functor ω∗

5.1. Push-forward, pull-back, and external products. The as-
signment X 7→ ω∗(X) carries the following elementary structures:

Projective push-forward. Let g : X → X ′ be a projective morphism in
Schk. A map

g∗ : M∗(X)+ → M∗(X
′)+

is defined by

g∗([f : Y → X]) = [g ◦ f : Y → X ′].

By the definition of double point cobordism, g∗ descends to a functorial
push-forward

g∗ : ω∗(X) → ω∗(X
′)

satisfying

(g1 ◦ g2)∗ = g1∗ ◦ g2∗.

Smooth pull-back. Let g : X ′ → X be a smooth morphism in Schk of
pure relative dimension d. A map

g∗ : M∗(X)+ → M∗+d(X
′)+

is defined by

g∗([f : Y → X]) = [p2 : Y ×X X ′ → X ′].

Since the pull-back by g× IdP1 of a double point cobordism over X is a
double point cobordism over X ′, g∗ descends to a functorial pull-back

g∗ : ω∗(X) → ω∗+d(X
′)

satisfying

(g1 ◦ g2)
∗ = g∗2 ◦ g∗1.

External product. A double point cobordism π : Y → X × P1 over X
gives rise to a double point cobordism

Y × Y ′ → X × X ′ × P1
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for each [Y ′ → X ′] ∈ M(X ′). Hence, the external product

[f : Y → X] × [f ′ : Y ′ → X ′] = [f × f ′ : Y ×k Y ′ → X ×k X ′]

on M∗(−)+ descends to an external product on ω∗.

Multiplicative unit. The class [Id : Spec(k) → Spec(k)] ∈ ω0(k) is a
unit for the external product on ω∗.

5.2. Borel-Moore functors with product. A Borel-Moore functor
with product on Schk consists of the structures (D1), (D2), and (D4)
of Section 4.2 satisfying axioms (A1),(A2), (A6), and (A7). A Borel-
Moore functor with product is simply an oriented Borel-Moore functor
with product without Chern class operations.

Lemma 5.1. Double point cobordism ω∗ is a Borel-Moore functor with
product.

Proof. The structures (D1), (D2), and (D4) have been constructed in
Section 5.1 . Axioms (A1), (A2), (A6), and (A7) follow easily from the
definitions. �

5.3. ω∗ → Ω∗. A natural transformation of Borel-Moore functors with
product is obtained once the double point relations are shown to be
satisfied in Ω∗.

Let F (u, v) ∈ Ω∗(k)[[u, v]] be the formal group law for Ω∗. By defi-
nition,

F (u, v) = u + v +
∑

i,j≥1

ai,ju
ivj

with ai,j ∈ Ωi+j−1. Let F 1,1(u, v) =
∑

i,j≥1 ai,ju
i−1vj−1. We have

F (u, v) = u + v + uv · F 1,1(u, v).

Let Y ∈ Smk. Let E1, E2 be smooth divisors intersecting trans-
versely in Y with sum E = E1 + E2. Let

iD : D = E1 ∩ E2 → Y

be the inclusion of the intersection. Let OD(E1), OD(E2) be the re-
strictions to D of the line bundles OY (E1), OY (E2). Define an element
[E → Y ] ∈ Ω∗(Y ) by

[E → Y ] = [E1 → Y ] + [E2 → Y ]

+ iD∗

(
F 1,1

(
c̃1(OD(E1)), c̃1(OD(E2))

)
(1D)

)

(see [20, Definition 3.1.5] for the definition of [E → Y ] for an arbitrary
strict normal crossing divisor E). The following result is proven in [20,
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Definition 2.4.5 and Proposition 3.1.9] as a consequence of the formal
group law.

Lemma 5.2. Let F ⊂ Y be a smooth divisor linearly equivalent to E,
then

[F → Y ] = [E → Y ] ∈ Ω∗(Y ).

If the additional condition

OD(E1) ∼= OD(E2)
−1

is satisfied, a direct evaluation is possible. Let PD → D be the P1-
bundle P(OD ⊕ OD(E1)).

Lemma 5.3. We have

F 1,1
(
c̃1(OD(E1)), c̃1(OD(E2))

)
(1D) = −[PD → D] ∈ Ω∗(D).

Proof. Both sides of the formula depend only upon the line bundles
OD(E1) and OD(E2). To prove the Lemma, we may replace E with
any E ′ = E ′1 + E ′2 on any Y ′, so long as E ′1 ∩ E ′2 = D and OY ′(E ′i)
restricts to OD(Ei) on D.

The surjection OD⊕OD(E1) → OD(E1) defines a section s : D → PD

with normal bundle OD(E1). Let Y ′ be the deformation to the normal
cone of the closed immersion s. By definition, Y ′ is the blow-up of
PD × P1 along s(D) × 0. The blow-up of PD along D is PD and the
exceptional divisor P of Y ′ → PD × P1 is also PD.

The composition Y ′ → PD × P1 → P1 has fiber Y ′0 over 0 ∈ P1 equal
to PD∪P. The intersection PD∩P is s(D) and the line bundles OY ′(P),
OY ′(PD) restrict to OD(E1), OD(E2) on s(D) respectively. Thus, we
may use E ′ = Y ′0 , E ′1 = PD, and E ′2 = P.

By Lemma 5.2, we have the relation [Y ′∞ → Y ′] = [Y ′0 → Y ′] in
Ω∗(Y

′). By definition, [Y ′0 → Y ′] is the sum

[Y ′0 → Y ] = [PD → Y ′] + [P → Y ′]

+ iD∗

(
F 1,1

(
c̃1(OD(PD)), c̃1(OD(P))

)
(1D)

)
.

Pushing forward the relation [Y ′∞ → Y ] = [Y ′0 → Y ′] to Ω∗(D) by the
composition

Y ′ → PD × P1 p1
−→ PD → D

yields the relation

[PD → D] = [PD → D] + [P → D] + F 1,1
(
c̃1(OD(PD)), c̃1(OD(P))

)
(1D)

in Ω∗(D). Since P ∼= PD as a D-scheme, the proof is complete. �
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Corollary 5.4. Let π : Y → P1 be a double point degeneration over
0 ∈ P1. Let

π−1(0) = A ∪ B.

Suppose the fiber Y∞ = π−1(∞) is smooth. Then

[Y∞ → Y ] = [A → Y ] + [B → Y ] − [P(π) → Y ] ∈ Ω∗(Y ).

Sending [f : Y → X] ∈ M+
n (X) to the class [f : Y → X] ∈ Ωn(X)

defines a natural transformation M+
∗ → Ω∗ of Borel-Moore functors

with product on Schk.

Proposition 5.5. The map M+
∗ → Ω∗ descends to a natural transfor-

mation
ϑ : ω∗ → Ω∗

of Borel-Morel functors with product on Schk. Moreover, ϑX is surjec-
tive for each X ∈ Schk.

Proof. Let π : Y → X × P1 be a double point degeneration over X.
We obtain a canonical double point degeneration

π′ = (Id, p2 ◦ π) : Y → Y × P1.

Certainly
π = (p1 ◦ f, Id) ◦ g.

Since M+
∗ → Ω∗ is compatible with projective push-forward, the first

assertion reduces to Lemma 5.4.
The surjectivity follows from the fact that the canonical map

M∗(X)+ → Ω∗(X)

is surjective by [20, Lemma 2.5.11]. �

We will prove Theorem 0.1 by showing ϑ is an isomorphism. The
strategy of the proof is to show that ω∗ admits first Chern class opera-
tors and a formal group law and first Chern class operators, making ω∗
into an oriented Borel-Moore functor of geometric type. We then use
the universality of Ω∗ given by Theorem 4.1 to determine an inverse
Ω∗ → ω∗ to ϑ.

6. Chern classes I

Let X ∈ Schk, and let L → X be a line bundle generated by global
sections. We will define a first Chern class operator

c̃1(L) : ω∗(X) → ω∗−1(X).

A technical Lemma is required for the definition.
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Let [f : Y → X] ∈ M(X)+ with Y irreducible of dimension n. For
s ∈ H0(Y, f ∗L), let

is : Hs → Y

be the inclusion of the zero subscheme of s. Let

U ⊂ P(H0(Y, f ∗L)) = { s | Hs is smooth and of codimension 1 in Y }.

Lemma 6.1. We have

(i) U is non-empty.
(ii) For s1, s2 ∈ U(k), [Hs1 → X] = [Hs2 → X] ∈ ωn−1(X).

Proof. Since L is globally generated, so is f ∗L. Then (i) follows from
Bertini’s theorem (using the characteristic 0 assumption for k).

Let H ⊂ Y × P(H0(Y, f ∗L)) be the universal Cartier divisor. Let
y ∈ Y be a closed point with ideal sheaf mY ⊂ OY . Since f ∗L is
globally generated, the fiber of H → Y over y is the hyperplane

P(H0(Y, f ∗L ⊗ my) ⊂ P(H0(Y, f ∗L).

Hence, H is smooth over k.
For (ii), let

i : P1 → P(H0(Y, f ∗L))

be a linearly embedded P1 with i(0) = s1. By Bertini’s theorem, the
pull-back

Hi = H×P(H0(Y,f∗L)) P1

is smooth for general i. Clearly Hi → X × P1 gives a naive cobordism
between [Hs1 → X] and [Hi(t) → X] for all k-valued points t in a dense
open subset of P1. Since i is general, we have

[Hs1 → X] = [Hs → X] ∈ ωn−1(X)

for all k-valued points s in a dense open subset of U . The same result
for s2 completes the proof. �

For L globally generated, we can define the homomorphism

c̃1(L) : M∗(X)+ → ω∗−1(X)

by sending [f : Y → X] to [Hs → X] for Hs smooth and codimension
1 in Y .

Lemma 6.2. The map c̃1(L) descends to

c̃1(L) : ω∗(X) → ω∗−1(X)
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Proof. Let π : W → X × P1 be a double point cobordism with degen-
erate fiber over 0 ∈ P1 and smooth fiber over ∞ ∈ P1. Hence,

W0 = A ∪ B

with A, B smooth divisors intersecting transversely in the double point
locus D = A ∩ B. The double point relation is

(6.1) [W∞ → X] = [A → X] + [B → X] − [P(π) → X].

Let is : Hs → W be the divisor of a general section s of (p1◦π)∗L. As
in the proof of lemma 6.1, we may assume Hs, Hs∩W∞, Hs∩S, Hs∩A
and Hs ∩B are smooth divisors on W , W∞, A, B, and D respectively.
Then

π ◦ is : Hs → X × P1

is again a double point cobordism. The associated double point relation

[Hs ∩ W∞ → X] = [Hs ∩ S → X] + [Hs ∩ T → X] − [P(π ◦ is) → X].

is obtained by applying c̃1(L) term-wise to relation (6.1). �

Axioms (A3), (A4), (A5) and (A8) for an oriented Borel-Moore func-
tor with product are easily checked for our definition of c̃1(L) if all line
bundles in question are globally generated. In particular, the operators
c̃1(L) for globally generated line bundles L on X are ω∗(k)-linear and
commute pairwise.

Lemma 6.3. Let X ∈ Schk, and let

L1, . . . , Lr>dimk X → X

be globally generated line bundles. Then,

r∏

i=1

c̃1(Li) = 0

as an operator on ω∗(X).

Proof. Let [f : Y → X] ∈ M(X)+. By Bertini’s theorem, Hf∗s is
smooth for a general choice of section s ∈ H0(X, L). Thus

c̃1(L)(f) = [f : Hf∗s → X].

By induction,
∏

i c̃1(Li)(f) is represented by the restriction of f to
∩r

i=1Hf∗si
. But set-theoretically, ∩r

i=1Hf∗si
= f−1(∩r

i=1Hsi
). Since the

sections si are general, the intersection ∩r
i=1Hsi

is empty, whence the
result. �
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Let F (u1, . . . , ur) ∈ ω∗(k)[[u1, . . . , ur]] be a power series and let
L1, . . . , Lr be globally generated on X ∈ Schk. By Lemma 6.3, the ex-
pression F (c̃1(L1), . . . , c̃1(Lr)) is well defined as an operator on ω∗(X).

Lemma 6.3 is condition (Dim) for an oriented Borel-Moore functor
of geometric type in case all the line bundles in question are globally
generated.

Chern classes for arbitrary line bundle will constructed in Section
11. The axioms (FGL) and (Sect) will be verified in Section 11 and
Section 12.

7. Extending the double point relation

7.1. The blow-up relation. Before we construct the formal group
law and the rest of the Chern class operators for ω∗, we describe two
useful relations which are consequences of the basic double point cobor-
dism relation.

The first is the blow-up relation. Let F → X be a closed embedding
in Smk with conormal bundle η = IF /I2

F of rank n. Let

µ : XF → X

be the blow-up of X along F . Let PF be the Pn−1-bundle P(η) → F .
Let

P1 = P(η ⊕ OF ) → F

P2 = PPF
(OPF

⊕ O(1)).

We consider P1 and P2 as X schemes by the composition of the struc-
ture morphisms with the inclusion F → X.

Lemma 7.1. We have

[XF → X] = [Id : X → X] − [P1 → X] + [P2 → X] ∈ ω∗(X).

Proof. The Lemma follows the double point relation obtained from the
deformation to the normal cone of F → X. Indeed, let

π : Y → X × P1

be the blow-up along F × 0 with structure morphism

π2 = p2 ◦ π : Y → P1.

The fiber π−1(∞) is just X, and

π−1(0) = XF ∪ P1,

with XF and P1 intersecting transversely along the exceptional divisor
PF of µ. The normal bundle of PF in P1 is O(1). Thus the associated
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double point relation is

[Id : X → X] = [XF → X] + [P1 → X] − [P2 → X]

in ω∗(X). �

Via Proposition 5.5, one obtains the blow-up relation

[XF → X] = [Id : X → X] − [P1 → X] + [P2 → X]

in Ω∗(X) as well, first proved by Nenashev [26].

7.2. The extended double point relation. Let Y ∈ Smk. Let
A, B, C ⊂ Y be smooth divisors such that A + B + C is a reduced
strict normal crossing divisor. Let

D = A ∩ B, E = A ∩ B ∩ C.

As before, we let OD(A) denote the restriction of OY (A) to D, and use
a similar notation for the restrictions of bundles to E. Let

P1 = P(OD(A) ⊕ OD) → D

PE = P(OE(−B) ⊕ OE(−C)) → E

P2 = PPE
(O ⊕ O(1)) → PE → E

P3 = P(OE(−B) ⊕ OE(−C) ⊕ OE) → E.

We consider P1, P2 and P3 as Y -schemes by composing the structure
morphisms with the inclusions D → Y and E → Y .

Lemma 7.2. Suppose C is linearly equivalent to A + B on Y . Then,

[C → Y ] = [A → Y ] + [B → Y ] − [P1 → Y ] + [P2 → Y ] − [P3 → Y ]

in ω∗(Y )

Proof. Let Y1 → Y be the blow-up of Y along (A ∪ B) ∩ C. Since
(A ∪ B) ∩ C is a Cartier divisor on both A ∪ B and C, the proper
transforms of both A ∪ B and C define closed immersions

A ∪ B → Y1, C → Y1

lifting the inclusions A∪B → Y and C → Y . We denote the resulting
closed subschemes of Y1 by A1, B1 and C1.

Let f be a rational function on Y with Div(f) = S + T − W . We
obtain a morphism f : Y1 → P1 satisfying

f−1(0) = A1 ∪ B1, f−1(∞) = C1.

However, Y1 is singular, unless E = ∅. Indeed, if A, B and C are
defined near a point x of E by local parameters a, b and c, then locally
analytically near x ∈ A1 ∩ B1 ⊂ Y1,

Y1
∼= E × Spec (k[a, b, c, z]/(ab − cz)) .
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Here, the exceptional divisor of Y1 → Y is defined by the ideal (c), A1

is defined by (a, z) and B1 is defined by (b, z). The singular locus of Y1

is isomorphic to E. We write E1 for the singular locus of Y1.
Let µ2 : Y2 → Y1 be the blow-up of Y1 along A1. Since A1 ⊂ Y1

is a Cartier divisor off of the singular locus E1, the blow-up µ2 is an
isomorphism over Y1 \ E1. In our local description of Y1, we see that
A1 ∩ B1 is the Cartier divisor on B1 defined by (a), hence the proper
transform of B1 to Y2 is isomorphic to B. Also, since

b(a, z) = (ab, zb) = (zb, zc) = z(b, c),

the strict transform of A1 by µ2 is identified with the blow-up AE of
A along E. In particular, since E has codimension 2 in A with normal
bundle OE(B) ⊕ OE(C), we have the identification

µ−1
2 (E1) = P(OE(−B) ⊕ OE(−C)).

In addition, Y2 is smooth. Indeed, the singular locus of Y2 is contained
in

µ−1
2 (E1) ⊂ µ−1

2 (A1) = AE .

Since AE is a smooth Cartier divisor on Y2, Y2 is itself smooth, as
claimed.

The morphism π : Y2 → P1 defined by π = f ◦ µ2 is a double point
degeneration over 0 ∈ P1. with

π−1(0) = AE ∪ B

and double point locus AE ∩ B = A ∩ B = D.
Since π−1(∞) = C, we obtain the following double point relation

[C → Y ] = [AE → Y ] + [B → Y ] − [P(OD(A) ⊕ OD) → Y ].

in ω∗(Y ). Inserting the blow-up formula from Lemma 7.1 completes
the proof. �

8. Pull-backs in ω∗

8.1. Pull-backs. The most difficult part of the construction of Ω∗ is
the extension of the pull-back maps from smooth morphisms to l.c.i.
morphisms. We cannot hope to reproduce the full theory for ω∗ di-
rectly. Fortunately, only smooth pull-backs for ω∗ are required for
the construction of an oriented Borel-Moore functor of geometric type.
However, our discussion of the formal group law for ω∗ will require more
than just smooth pull-backs. The technique of moving by translation
gives us sufficiently many pull-back maps for ω∗.
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8.2. Moving by translation. We consider pull-back maps in the fol-
lowing setting. Let G1 and G2 be linear algebraic groups. Let Y ∈ Smk

admit a G1×G2-action, and let B ∈ Smk admit a transitive G2-action.
Let

p : Y → B

be a smooth morphism equivariant with respect to G1 ×G2 → G2. Let

s : B → Y

be a section of p satisfying three conditions:

(i) s is equivariant with respect to the inclusion G2 ⊂ G1 × G2,
(ii) G1 ⊂ G1 × G2 acts trivially on s(B),
(iii) G1 × G2 acts transitively on Y \ s(B).

We will assume the above conditions hold throughout Section 8.2.
A special case in which all the hypotheses are verified occurs when

G1 = 1, Y admits a transitive G2-action, and

p : Y → Y, s : Y → Y

are both the identity.

Lemma 8.1. Let i : Z → Y be a morphism in Smk transverse to
s : B → Y . Let f : W → Y × C be a projective morphism in Smk.

(1) For all g = (g1, g2) in a nonempty open set

U(i, f) ⊂ G1 × G2,

the morphisms (g · i) × IdC and f are transverse.
(2) If C = Spec (k), then for g, g′ ∈ U(i, f),

[Z ×g·i W → Z] = [Z ×g′·i W → Z] ∈ ω∗(Z).

Proof. Let G = G1 × G2. Consider the map

µ : G × Z → Y

defined by µ(g, z) = g · i(z). We first prove µ is smooth. In fact, we
will check µ is a submersion at each point (g, z).

If i(z) ∈ Y \ s(B), then G × z → Y is smooth 3 and surjective by
condition (iii), hence µ is a submersion at (g, z) for all g.

Suppose i(z) ∈ s(B). The map G2 × z → s(B) is smooth and
surjective by condition (ii), so the image of T(g,z)(G × z) contains

Ti(z)(s(B)) ⊂ Ti(z)(Y ).

3Since k has characteristic 0 and G acts transitively on Y \ s(B), the orbit map
is smooth.
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Since i is transverse to s, g · i is transverse to s for all g and the
composition

TzZ
d(g·i)
−−−→ Tg·i(z)(Y ) → Tg·i(z)(Y )/Tg·i(z)(s(B))

is surjective. Thus

T(g,z)(G × Z) = T(g,z)(G × z) ⊕ T(g,z)(g × Z)
dµ
−→ Tg·i(z)(Y )

is surjective, and µ is a submersion at (g, z).
The smoothness of µ clearly implies the smoothness of

µ × IdC : G × Z × C → Y × C.

Hence (G × Z × C) ×µ W is smooth over k, and the projection

(G × Z × C) ×µ W → G × Z × C

is a well-defined element of M(G × Z × C). Consider the projection

π : (G × Z × C) ×µ W → G.

Since the characteristic is 0, the set of regular values of π contains a
nonempty Zariski open dense subset

U(i, f) ⊂ G.

Since G is an open subscheme of an affine space, the set of k-points of
U(i, f) is dense in U(i, f). Any k-point g = (g1, g2) in U(i, f) satisfies
claim (1) of the Lemma.

For g ∈ U(i, f), denote the element of M(Z × C) corresponding to

(Z × C) ×g·i×IdC
W → Z × C

by (g · i)∗(f).
For (2), let g, g′ ∈ U(i, f) be two k-points. We may consider U(i, f)

as an open subset of an affine space AN . The pull-back π−1(ℓg,g′) of the
line ℓg,g′ through g and g′ will be a closed subscheme of (G×Z)×µ W
which smooth and projective over an open neighborhood U ⊂ ℓg,g′

containing g and g′. Then

(8.1) (U × Z) ×µ W → U

provides a naive cobordism proving

(8.2) [Z ×g·i W → Z] = [Z ×g′·i W → Z] ∈ ω∗(Z).

Technically, the naive cobordism (8.1) has been constructed only
over an open set U ⊂ P1. By taking a closure followed by a resolution
of singularities, the family (8.1) can be extended appropriately over P1.
The relation is (8.2) unaffected. �
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Let i : Z → Y be a morphism in Smk of pure codimension d trans-
verse to s : B → Y . We define

(8.3) i∗ : M∗(Y )+ → ω∗−d(Z)

using (2) of Lemma 8.1 by

i∗[f : W → Y ] = [(g · i)∗(f)]

for g ∈ U(i, f).

Proposition 8.2. The pull-back (8.3) descends to a well-defined ω∗(k)-
linear pull-back

i∗ : ω∗(Y ) → ω∗−d(Z).

Proof. The M∗(k)+-linearity of the map

i∗ : M∗(Y )+ → ω∗−d(Z)

is evident from the construction.
Given a double point cobordism f : W → Y ×P1 over 0 ∈ P1, we will

show the pull-back of f by (g · i)× IdP1 gives a double point cobordism
for all g in a dense open set of U(i, f).

Applying (1) of Lemma 8.1 with C = P1 yields an open subscheme

U1 ⊂ G1 × G2

for which (g ·i)×IdP1 pulls W back to a smooth scheme (g ·i)×IdP1(W ),
with a projective map to Z×P1. Similarly, applying Lemma 8.1 to the
smooth fiber W∞ → Y , we find a subset U2 ⊂ U1 for which the fiber
(g·i)×IdP1(W )∞ is smooth. Finally, if W0 = A∪B, applying Lemma 8.1
to A → Y , B → Y and A∩B → Y yields an open subscheme U3 ⊂ U2

for which (g · i) × IdP1(W ) gives the double point relation

(g · i)∗([W∞ → Y ]) =

(g · i)∗([A → Y ]) + (g · i)∗([B → Y ]) − (g · i)∗([P(f) → Y ]),

as desired. �

Lemma 8.3. Let L → Y be a globally generated line bundle on Y .
Then,

i∗ ◦ c̃1(L) = c̃1(i
∗L) ◦ i∗.

Proof. Since i∗L is globally generated on Z, c̃1(i
∗L) is well-defined.

Let [f : W → Y ] ∈ M(Y ) and take g ∈ G1 × G2 so g · i : Z → Y is
transverse to f . For a general section s of f ∗L, the divisor of s,

Hs → W,

is also transverse to g · i. Hence,

i∗ ◦ c̃1(L)([W → Y ]) = [Z ×g·i Hs → Z].
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Let Hp∗1(s) be the divisor of p∗1(s) on Z ×g·i W where p1 is projection to
the first factor. Then,

c̃1(i
∗L) ◦ i∗([W → Y ]) = [Hp∗1(s) → Z].

The isomorphism (as Z-schemes)

Z ×g·i Hs
∼= Hp∗1(s)

yields the Lemma. �

8.3. Examples. There are two main applications of pull-backs con-
structed in Section 8.2.

First, let Y =
∏

i PNi be a product of projective spaces. Let

G1 = 1, G2 =
∏

i

GLNi+1.

Let p : Y → Y and s : Y → Y both be the identity. For each morphism

i : Z →
∏

i

PNi

in Smk of codimension d, we have a well-defined ω∗(k)-linear pull-back

i∗ : ω∗(
∏

i

PNi) → ω∗−d(Z).

Second, let Y be the total space of a line bundle L on B =
∏

i PNi

with projection p and zero-section s,

p : L → B, s : B → L.

Here, G1 = GL1 acts by scaling L, and G2 =
∏

i GLNi+1 acts by
symmetries on B. For each morphism

i : Z → L

in Smk which is transverse to the zero-section, we have a ω∗(k)-linear
pull-back

i∗ : ω∗(L) → ω∗−d(Z).

8.4. Independence. The pull-backs constructed in Section 8.2 can be
used to prove several independence statements.

A linear embedding of PN−j → PN is an inclusion as linear subspace.
A multilinear embedding

m∏

i=1

PNi−ji →
m∏

i=1

PNi
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is a product of linear embeddings. For fixed ji, the multilinear embed-
dings are related by naive cobordism. The classes

Mj1,...,jm
=

[
m∏

i=1

PNi−ji →
m∏

i=1

PNi

]
∈ ω∗(

m∏

i=1

PNi)

are therefore well-defined.

Proposition 8.4. The classes

{Mj1,...,jm
| 0 ≤ ji ≤ Ni } ⊂ ω∗(

m∏

i=1

PNi)

are independent over ω∗(k).

Proof. Let J = (j1, . . . , jm) be a multi-index. There is a partial order-
ing defined by

J ≤ J ′

if ji ≤ j′i for all 1 ≤ i ≤ m. Let

α =
∑

J

aJMJ ∈ ω∗(

m∏

i=1

PNi)

where aJ ∈ ω∗(k).
If the aJ are not all zero, let J0 = (j1, . . . , jm) be a minimal multi-

index for which aJ 6= 0. If we take a pull-back by a multi-linear em-
bedding

i :
∏

i

Pji →
∏

i

PNi,

then

i∗(α) = aJ0 ·

[
m∏

i=1

P0 →
m∏

i=1

Pji

]
∈ ω∗(

m∏

i=1

Pji).

Pushing-forward to ω∗(k) gives aJ0 6= 0. Hence α 6= 0. �

Let Hn,m ⊂ Pn ×Pm be the hypersurface defined by the vanishing of
a general section of O(1, 1). More generally, for 0 ≤ i ≤ n, let

H(i)
n,m ⊂ Pn × Pm

be the (smooth) subscheme defined by the vanishing of i general sec-
tions of O(1, 1). Taking the linear embeddings Pm−j → Pn, we may
consider

H
(i)
n,m−j ⊂ Pn × Pm

for 0 ≤ j ≤ m. The proof of the following result is identical to the
proof of proposition 8.4.
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Lemma 8.5. The classes [H
(i)
n,m−j → Pn × Pm] ∈ ω∗(P

n × Pm) for
0 ≤ i ≤ n, 0 ≤ j ≤ m are independent over ω∗(k).

If classes H
(i)
n,j are taken for i > n, we have a partial independence

results.

Proposition 8.6. If the identity

n+2m∑

i=0

m∑

j=0

αi,j · [H
(i)
n+m,m−j → Pn+m × Pm] = 0 ∈ ω∗(P

n+m × Pm)

holds for αi,j ∈ ω∗(k), then αi,j = 0 for 0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m.

Proof. We argue by induction. Consider all pairs (i, j) satisfying

0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m

for which αi,j 6= 0. Of these, take the ones with minimal sum i + j,
and of these, take the one with minimal j, denote the resulting pair by
(a, b). Note that a ≤ a + b ≤ n + m.

Take the pull-back of the identity by a bi-linear embedding

i : Pa × Pb → Pn+m × Pm.

Then, for each pair (i, j) with i + j > a + b,

i∗[H
(i)
n+m,m−j → Pn+m × Pm] = 0,

since H
(i)
n+m,m−j has codimension i + j. Similarly

i∗[H
(i)
n+m,m−j → Pn+m × Pm] = 0

if j > b. Thus the identity in question pulls back to

αa,b · [H
(a)
a,0 → Pa × Pb] = 0

Since H
(a)
a,0 = Spec (k), pushing-forward to a point yields αa,b = 0. �

Let YN,M be the total space of the bundle O(1,−1) on PN × PM ,
and let Yi,j → YN,M be the closed immersion induced by the bi-linear
embedding

Pi × Pj → Pn × Pm.

Proposition 8.7. If the identity

N∑

i=0

M∑

j=0

αi,j · [YN−i,M−j → YN,M ] = 0 ∈ ω∗(YN,M)

holds for αi,j ∈ ω∗(k), then αi,j = 0 for 0 ≤ i + j ≤ N , 0 ≤ j ≤ M .
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Proof. The proof is similar to that of Proposition 8.6. Consider all
pairs (i, j) satisfying

0 ≤ i + j ≤ N, 0 ≤ j ≤ m

for which αi,j 6= 0. Of these, take the ones with minimal sum i + j,
and of these, take the one with minimal j, denote the resulting pair by
(a, b). Note that a ≤ a + b ≤ N .

Let s0, . . . , sN be sections of H0(Pa × Pb,O(1, 1)). Since

N + 1 ≥ a + b + 1 > dimk Pa × Pb,

we may choose the si so as to have no common zeros. Hence s0, . . . , sN

define a morphism

f : Pa × Pb → PN .

Let g : Pb → PM be a linear embedding. We obtain a morphism

h = (f, g ◦ p2) : Pa × Pb → PN × PM

satisfying h∗(O(1,−1)) ∼= O(1, 0).
A non-zero section s ∈ H0(Pa × Pb, O(1, 0)) with smooth divisor

defines a lifting

(h, s) : Pa × Pb → YN,M

of h which is transverse to the zero-section

PN × PM → YN,M .

We may therefore apply Proposition 8.2 as explained in the second
example of Section 8.3 to give a well-defined ω∗(k)-linear pull-back map

(h, s)∗ : ω∗(YN,M) → ω∗(P
a × Pb).

We have

(h, s)∗([YN−i,M−j → YN,M ]) = [H
(i)
a,b−j → Pa × Pb].

Hence,

(h, s)∗([YN−i,M−j → YN,M ]) = 0

if i + j > a + b or j > b for dimensional reasons. Also,

(h, s)∗([YN−a,M−b → YN,M ]) = [H
(a)
a,0 → Pa × Pb]

= [Spec (k) → Pa × Pb].

The pull-back of the identity stated in the Proposition by (h, s)∗ fol-
lowed by a push-forward to the point yields αa,b = 0. �
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9. Admissible towers

9.1. Overview. We would like to construct a formal group law over
ω∗(k) using the method of Quillen described in Section 3. For Quillen’s
construction, the classes

(9.1)
{

[Pi × Pj → Pn × Pm]
}

0≤i≤n, 0≤j≤m
⊂ ω∗(P

n × Pm)

are required to constitute an ω∗(k)-basis. However, Lemma 8.4 only
establishes independence. We circumvent the problem by proving a
weak version of the generation of ω∗(P

n × Pm) by the classes (9.1).
Let Y be in Smk. An admissible projective bundle over Y is a mor-

phism of the form

P(⊕iLi) → Y

where the Li are line bundles on Y . An admissible tower over Y is a
morphism P → Y which factorizes

P = Pn → Pn−1 → . . . → P1 → P0 = Y

as a sequence of admissible projective bundles. The ith step

Pi+1 → Pi

is an admissible projective bundle over Pi. We call n the length of the
admissible tower P → Y . In particular, the identity Y → Y is an
admissible tower of length 0.

We prove the span of classes (9.1) contains the classes of all admis-
sible towers over Pn × Pm.

9.2. Twisting. Our main decomposition result for admissible towers
[P → Y ] is based on twisting modifications in the various steps of the
tower.

Let Y ∈ Smk. Let E be a vector bundle on Y , let L be a line bundle
on Y , and let H a smooth divisor on Y . Let EH , LH and L(H)H denote
the restrictions to H . The projections

E ⊕ L ⊕ L(H) → E ⊕ L,

E ⊕ L ⊕ L(H) → E ⊕ L(H)

give closed immersions

P(E ⊕ L) → P(E ⊕ L ⊕ L(H)),

P(E ⊕ L(H)) → P(E ⊕ L ⊕ L(H)).

The projective bundle

P(EH ⊕ LH ⊕ L(H)H) → H
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has a closed immersion over H → Y ,

P(EH ⊕ LH ⊕ L(H)H) → P(E ⊕ L ⊕ L(H)).

The subvarieties P(E ⊕ L), P(E ⊕ L(H)), and P(EH ⊕ LH ⊕ L(H)H)
are smooth divisors in P(E ⊕ L ⊕ L(H)). The union

P(E ⊕L(H)) + P(E ⊕L) + P(EH ⊕LH ⊕L(H)H) ⊂ P(E ⊕L⊕L(H))

has strict normal crossing singularities.
We also have the bundles

P(EH ⊕ LH) → H, P(EH) → H,

with closed immersions into P(E ⊕ L ⊕ L(H)) over H → Y . The
intersections

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH ⊕ LH),

P(E ⊕ L) ∩ P(E ⊕ L(H)) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH)

are easily calculated.

Lemma 9.1. The linear equivalence

P(E ⊕ L(H)) ∼ P(E ⊕ L) + P(EH ⊕ LH ⊕ L(H)H)

holds on P(E ⊕ L ⊕ L(H)).

Proof. Let P denote P(E ⊕ L ⊕ L(H)), and let q : P → Y be the
structure morphism. As P(E ⊕L) ⊂ P is given by the vanishing of the
composition

q∗(L(H)) → q∗(E ⊕ L ⊕ L(H)) → OP (1),

we find OP (P(E ⊕ L)) ∼= q∗(L(H))∨(1). Similarly,

OP (P(E ⊕ L(H))) ∼= q∗(L)∨(1),

OP (P(EH ⊕ LH ⊕ L(H)H)) ∼= q∗(OY (H)).

The linear equivalence of the Lemma is now easily obtained. �

Let H be a smooth divisor on Y ∈ Smk. Let

P = Pn → Pn−1 → . . . → P1 → P0 = Y

be the factorization of an admissible tower P → Y as a tower of ad-
missible projective bundles. Fix an i ≤ n − 1 and write the bundle
Pi+1 → Pi as

P(⊕r
j=1Lj) → Pi

for line bundles Lj on Pi.
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Lemma 9.2. There exists an admissible tower P′ → Y which factors
as

P′ = P′n → P′n−1 → . . . → P′i+1 → Pi → . . . P1 → P0 = Y

with P′i+1 → Pi given by the bundle

P(⊕r−1
j=1Lj ⊕ Lr(H)) → Pi

and admissible towers Q0 → H, Q1 → H, Q2 → H, Q3 → H satisfying

[P′ → Y ] = [P → Y ] +
∑

ℓ

(−1)ℓiH∗([Qi → H ]) ∈ ω∗(Y ).

Proof. If X ∈ Smk is irreducible and E → X is a vector bundle,

Pic(P(E)) = Pic(X) ⊕ Z · [O(1)].

In particular, if E → F is a surjection of vector bundles on X, the
restriction map

Pic(P(E)) → Pic(P(F ))

is surjective. Hence, if PP(F ) → P(F ) is an admissible projective bundle,
then there is an admissible projective bundle PP(E) → P(E) and an
isomorphism of projective bundles over P(F )

PP(F )
∼= P(F ) ×P(E) PP(E).

By induction on the length of an admissible tower, the same holds for
each admissible tower P → P(F ).

Let E = ⊕r−1
i=1Li, and let L = Lr. Consider the admissible projective

bundle
P̂i+1 = P(E ⊕ Lr ⊕ Lr(H)) → Pi

and the closed immersions

i0 : P(E ⊕ L) → P̂i+1

i1 : P(E ⊕ L(H)) → P̂i+1.

By our remarks above, we may extend i0 to a closed embedding of
admissible towers over Y ,

ĩ0 : P → P̂,

where P̂ → Y admits a factorization

P̂ = P̂n → P̂n−1 → . . . → P̂i+1 → Pi → . . . → P1 → P0 = Y

Let ĩ1 : P′ → P̂ be the pull-back P(E⊕L(H))×Pi
P̂, and let P̂H → H

be the pull-back of P̂ → Y via H → Y . By Lemma 9.1, we have the
linear equivalence

P′ ∼ P + P̂H

on the admissible tower P̂.
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Since P(E ⊕L) + P(EH ⊕LH ⊕L(H)H) + P(E ⊕L(H)) is a reduced

strict normal crossing divisor on P(E⊕L⊕L(H)), the sum P+ P̂H +P′

is a reduced strict normal crossing divisor on P̂. Since

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) = P(EH ⊕ LH),

P(E ⊕ L) ∩ P(EH ⊕ LH ⊕ L(H)H) ∩ P(E ⊕ L(H)) = P(EH)

are both admissible projective bundles over Pi ×Y H ,

D = P ∩ P̂H , F = P ∩ P̂H ∩ P′

are both admissible towers over H . Let

Q0 = P̂H

Q1 = PD(OD(P) ⊕ OD)

Q2 = PPF (OF (−H)⊕OF (−P′))(O ⊕ O(1))

Q3 = PF (OF (−H) ⊕ OF (−P′) ⊕ OF ).

Each Qi → H is an admissible tower. Lemma 7.2 completes the proof.
�

9.3. Generation. Let ω∗(k)′ ⊂ ω∗(k) be the subgroup generated by
classes of admissible towers over Spec (k). Clearly, ω∗(k)′ is a subring.

Let H1, . . . , Hs be divisors on Y ∈ Smk for which the associated
invertible sheaves OY (Hi) are generated by global sections. Let

I = (i1, . . . , is)

be a multi-index with ir non-negative for all r. Let

[HI → Y ] ∈ ω∗(Y )

denote the class of the closed immersion HI → Y , where HI is the
closed subscheme of codimension

∑
r ir defined by the simultaneous

vanishing of i1 sections of OY (H1), i2 sections of OY (H2), . . . , and is
sections of OY (H2). By definition,

[H(0,...,0) → Y ] = [Y → Y ].

For a general choice of sections, HI is smooth. By naive cobordisms,
[HI → Y ] is independent of the choice of sections.

The subvarieties HI may not be irreducible. Let HI
1 , . . .H

I
nI

be the

irreducible components of HI .

Lemma 9.3. If the restrictions of the invertible sheaves OY (Hi) gen-
erate Pic(HI

j ) for every HI
j , then the classes of admissible towers over

Y lie in the ω∗(k)′-span of [HI
j → Y ] in ω(Y ).
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Proof. Given an admissible tower P → Y , we must find an identity

[P → Y ] =
∑

I,j

aI,j · [H
I
j → Y ] ∈ ω(Y )

with aI,j ∈ ω∗(k)′.
We may assume Y is irreducible and the divisors Hi are smooth. If

Y has dimension 0, then every line bundle on Y is trivial. By induction
on the length of the tower, every admissible tower P → Y is the pull-
back of an admissible tower P′ → Spec (k) by the structure morphism
Y → Spec (k). The result is proven in case dimk Y = 0.

We proceed by induction on dimk Y . Let ω∗(Y )′ be the subgroup
generated by the push-forward to Y of classes of the form [P′ → HI

j ],

where P′ → HI
j is an admissible tower and I 6= (0, . . . , 0). Since such

HI
j satisfy the hypotheses of the Lemma and have dimension strictly

less than Y , the push-forwards to Y of the classes [P′ → HI
j ] lie in the

ω∗(k)′-span of the classes [HI
j → Y ].

Let P → Y be an admissible tower of length n which factors as

P → Q → Y

where P → Q is an admissible tower of length n − i and Q → Y is an
admissible tower of length i < n isomorphic to a pull-back

Q ∼= Q0 ×k Y → Y

of an admissible tower Q0 → Spec (k) of length i. By twisting, we will
prove the condition

(9.2) [P → Y ] − [P′ → Y ] ∈ ω∗(Y )′

is satisfied for an admissible tower P′ → Y of length n which admits
a factorization P′ → Q′ → Y as above where Q′ → Y is an admissible
tower of length i + 1 of the form

Q′ ∼= Q′0 ×k Y → Y

for an admissible tower Q′0 → Spec (k) of length i + 1.
The construction of P′ → Y satisfying (9.2) follows directly from

Lemma 9.2. Indeed, suppose

Pi+1 → Pi = Q

is of the form PQ(⊕iLi) → Q. Since Q = Q0 ×k Y , we have

Pic(Q) = Pic(Q0) ⊕ Pic(Y ).

We can write each Li as

Li
∼= p∗1L

0
i ⊗ p∗2Mi
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for suitable line bundles L0
i on Q0, and Mi on Y . By Lemma 9.2, the

class [P → Y ] is equivalent modulo ω∗(Y )′ to a class [P̃ → Y ], where

P̃ → Y is an admissible tower of length n which factors as

P̃ → P̃i+1 → Q → Y

and where P̃i+1 = P(⊕i6=jLi ⊕ Lj(Hℓ)) for any choice of j and ℓ we
like. Since the Hℓ generate Pic(Y ), after several such applications of
Lemma 9.2, we may replace P with an admissible tower

P′ → P′i+1 → Q → Y,

where
P′i+1

∼= P(⊕i p∗1L
0
i ⊗ p∗2L) ∼= P(⊕i p∗1L

0
i )

for a line bundle L on Y . Thus P′i+1 → Q → Y is the pullback to Y
of an admissible tower Q′0 → Q0 → Spec (k), and we obtain condition
(9.2).

Repeated application of (9.2) yields the relation

[P → Y ] − [Q → Y ] ∈ ω∗(Y )′

where
Q ∼= Y ×k Q0 → Y

for an admissible tower Q0 → Spec (k) of length n. �

Corollary 9.4. Let P →
∏m

i=1 PNi be an admissible tower. Then,

[P →
m∏

i=1

PNi ] =
∑

J=(j1,...,jm)

aJ · Mj ∈ ω∗(
m∏

i=1

PNi)

for unique elements aJ ∈ ω∗(k)′.

Proof. For existence, we apply Lemma 9.3 with Y =
∏m

i=1 PNi and
the divisors Hi defined by the pull-backs of hyperplanes in PNi via the
projections Y → PNi. Uniqueness follows from Proposition 8.4. �

Corollary 9.5. Let P → Hn,m be an admissible tower. Then,

[P → Hn,m] =
∑

i,j

ai,j · [Hn−i,m−j → Hn,m]

for elements ai,j ∈ ω∗(k)′.

Here, Hn−i,m−j → Hn,m is induced by the bi-linear embedding

Pn−i × Pm−j → Pn × Pm.

The sum in Corollary 9.5 is over

0 ≤ i ≤ n, 0 ≤ j ≤ m, i + j < n + m

for dimension reasons.



ALGEBRAIC COBORDISM REVISITED 41

Proof. We apply Lemma 9.3 with Y = Hn,m and divisors H1 = Hn−1,m,
H2 = Hn,m−1. If n ≥ m, the projection

p2 : Hn,m → Pm

expresses Hn,m as a Pn−1-bundle over Pm. Hence, H1 and H2 generate
Pic(Hn,m). Since

H
(i)
1 · H

(j)
2 = Hn−i,m−j,

the hypotheses of Lemma 9.3 are satisfied and yield the desired result.
�

Proposition 9.6. Let P → Hn,m be an admissible tower. Then,

iHn,m∗([P → Hn,m]) =
∑

(i,j)6=(0,0)

ai,j · [P
n−i × Pm−j → Pn × Pm]

for unique elements ai,j ∈ ω∗(k)′.

Proof. If m = 0, then Hn,m is a hyperplane in Pn, and the result follows
from Corollary 9.4. The same argument is valid for n = 0.

We proceed by induction on (n, m). Only existence is required since
uniqueness follows from Proposition 8.4. By Corollary 9.5, we need
only construct relation of the form

iHn,m∗(a · [Hn,m → Hn,m]) =
∑

(i,j)6=(0,0)

ai,j · [P
n−i × Pm−j → Pn × Pm].

for ai,j ∈ ω∗(k)′ for every a ∈ ω∗(k). Since

iHn,m∗(a · [Hn,m → Hn,m]) = a · iHn,m∗([Hn,m → Hn,m]),

the case a = 1 suffices.
We have the linear equivalence on Pn × Pm,

Hn,m ∼ Pn−1 × Pm + Pn × Pm−1.

By the extended double point relation of Lemma 7.2, there are admis-
sible towers P1 → Pn−1 × Pm−1, P2 → Hn−1,m−1 and P3 → Hn−1,m−1

for which

[Hn,m → Pn × Pm] = [Pn−1 × Pm → Pn × Pm]

+[Pn × Pm−1 → Pn × Pm]

−[P1 → Pn × Pm]

+[P2 → Pn × Pm]

−[P3 → Pn × Pm].
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By induction, the classes [P2 → Pn−1 × Pm−1] and [P3 → Pn−1 × Pm−1]
are expressible as

[Pℓ → Pn−1 × Pm−1] =
∑

i,j

aℓ
i,j · [P

n−i−1 × Pm−j−1 → Pn−1 × Pm−1],

for aℓ
i,j ∈ ω∗(k)′ for ℓ = 2, 3. By Corollary 9.4, a similar expression is

obtained in case ℓ = 1. �

10. The formal group law over ω∗(k)

We use the classical method of Quillen to construct a formal group
law over ω∗(k). Proposition 9.6 replaces the projective bundle formula.

By Proposition 9.6, there are unique elements an,m
i,j ∈ ωi+j−1(k) for

which the identity

(10.1) [Hn,m → Pn × Pm] =
∑

(i,j)6=(0,0)

an,m
i,j · [Pn−i × Pm−j → Pn × Pm]

holds in ω∗(P
n × Pm). For convenience, we set an,m

0,0 = 0.

Lemma 10.1. If N ≥ n, M ≥ m, then

aN,M
i,j = an,m

i,j

for 0 ≤ i ≤ n, 0 ≤ j ≤ m.

Proof. Pull-back relation (10.1) for N, M by a bi-linear embedding

i : Pn × Pm → PN × PM ,

see Section 8.3 for the pull-back construction. We find

i∗([HN,M → PN × PM ]) = [Hn,m → Pn × Pm]

i∗([PN−i × PM−j → PN × PM ]) = [Pn−i × Pm−j → Pn × Pm]

for 0 ≤ i ≤ n and 0 ≤ j ≤ m. Since i∗ is ω∗(k)-linear, the result follows
from the uniqueness of the an,m

i,j . �

By Lemma 10.1, we may define ai,j ∈ ω∗(k) by

ai,j = lim
N→∞,M→∞

aN,M
i,j .

Following the convention

[Pn−i × Pm−j → Pn × Pm] = 0

if i > n or if j > m, we write ai,j for an,m
i,j in relation (10.1).

Taking n = 0 and noting H0,m = Pm−1 linearly embeds in Pm, we
find

a0,1 = 1, a0,j>1 = 0.
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As the exchange of factors Pn × Pm → Pm × Pn sends Hn,m to Hm,n,
we obtain the symmetry

ai,j = aj,i.

Let Fω(u, v) ∈ ω∗(k)[[u, v]] be the power series

Fω(u, v) = u + v +
∑

i,j≥1

ai,ju
ivj .

Proposition 10.2. Let L1 and L2 be globally generated line bundles
on X ∈ Schk. Then, L1 ⊗ L2 is globally generated and

c̃1(L1 ⊗ L2) = Fω(c̃1(L1), c̃1(L2)).

Proof. The Lemma follows from the equation

(10.2) c̃1(L1 ⊗ L2)(1Y ) = Fω(c̃1(L1), c̃1(L2))(1Y ).

for all L1, L2 on all Y ∈ Smk. Indeed, if [f : Y → X] ∈ M(X)+, then

f∗(1Y ) = [f : Y → X] ∈ ω∗(X).

By (A3), we have

c̃1(L)([f : Y → X]) = c̃1(f∗(1Y )) = f∗(c̃1(f
∗L)(1Y ))

for all globally generated L on X, which verifies the claim.
Since L1 and L2 are globally generated, we have morphisms

fi : Y → Pni

with Li
∼= f ∗i (O(1)) for i = 1, 2. Thus,

L1 ⊗ L2
∼= (f1 × f2)

∗(O(1, 1)).

By the functoriality of Lemma 8.3, we need only prove (10.2) in case

Y = Pn × Pm, L1 = O(1, 0), L2 = O(0, 1), L1 ⊗ L2 = O(1, 1).

Since

c̃1(O(1, 1))(1Pn×Pm) = [Hn,m → Pn × Pm]

c̃1(O(1, 0))i ◦ c̃1(O(0, 1))j(1Pn×Pm) = [Pn−i × Pm−j → Pn × Pm],

the defining relation (10.1) for the ai,j becomes

c̃1(O(1, 1))(1Pn×Pm) = Fω(c̃1(O(1, 0), c̃1(O(0, 1))(1Pn×Pm),

as desired. �

Proposition 10.3. Fω(u, v) defines a formal group law over ω∗(k).

Proof. Of the axioms for formal group laws, the first two have already
been established:

(i) F (u, 0) = F (0, u) = u,
(ii) F (u, v) = F (v, u).
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The last axiom

(iii) F (F (u, v), w) = F (u, F (v, w)).

will now be proven.
Let G1(u, v, w) = F (F (u, v), w) and G2(u, v, w) = F (u, F (v, w)).

For ℓ = 1, 2, write

Gℓ(u, v, w) =
∑

i,j,k

aℓ
i,j,ku

ivjwk.

For globally generated line bundles L1, L2, L3 on X ∈ Schk,

G1(c̃1(L1), c̃1(L2), c̃1(L3)) = F (c̃1(L1 ⊗ L2), c̃1(L3)) = c̃1(L1 ⊗ L2 ⊗ L3)

by Proposition 10.2. A similar equation holds for G2. Thus

G1(c̃1(L1), c̃1(L2), c̃1(L3)) = G2(c̃1(L1), c̃1(L2), c̃1(L3))

as operators on ω∗(X).
Specializing to X = Pn × Pm × Pr, we find

Gℓ(c̃1(O(1, 0, 0), c̃1(O(0, 1, 0)), c̃1(O(0, 0, 1))(1X)

=
n∑

i=0

m∑

j=0

r∑

k=0

aℓ
i,j,k · [P

n−i × Pm−j × Pr−k → Pn × Pm × Pr]

for ℓ = 1, 2. By Proposition 8.4,

a1
i,j,k = a2

i,j,k

for 0 ≤ i ≤ n, 0 ≤ j ≤ m, 0 ≤ k ≤ r. As n, m and r were arbitrary,
the proof is complete. �

11. Chern classes II

11.1. Definition. Because Fω(u, v) is a formal group law, there exists
an inverse power series χω(u) ∈ ω∗(k)[[u]] characterized by the identity

Fω(u, χω(u)) = 0.

We let F−ω (u, v) be the difference in our group law,

F−ω (u, v) = Fω(u, χω(v)).

Using F−ω (u, v), we can extend the definition of c̃1(L) given in Section
6 for globally generated L to arbitrary line bundles.

Lemma 11.1. Let L, M, N be line bundles on Y ∈ Smk where

L, M, L ⊗ N, M ⊗ N

are globally generated. Then,

F−ω (c̃1(L), c̃1(M)) = F−ω (c̃1(L ⊗ N), c̃1(M ⊗ N))
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as operators on ω∗(Y ).

Proof. We first assume N is globally generated. Then

c̃1(L ⊗ N) = Fω(c̃1(L), c̃1(N))

c̃1(M ⊗ N) = Fω(c̃1(M), c̃1(N))

by Proposition 10.2. The result then follows from the power series
identity

F−ω (Fω(u, w), Fω(v, w)) = F−ω (u, v).

In general, since Y is quasi-projective, there is a very ample line
bundle N ′ such that N ′′ = N ′ ⊗ N−1 is very ample. Then

F−ω (c̃1(L), c̃1(M)) = F−ω (c̃1(L ⊗ N ′), c̃1(M ⊗ N ′))

= F−ω (c̃1(L ⊗ N ⊗ N ′′), c̃1(M ⊗ N ⊗ N ′′))

= F−ω (c̃1(L ⊗ N), c̃1(M ⊗ N)),

completing the proof. �

Let L be an arbitrary line bundle on X ∈ Schk. Define the operator

c̃1(L) : M∗(X)+ → ω∗−1(X)

by the following construction. Let Y ∈ Smk be irreducible. Let

(11.1) [f : Y → X] ∈ M(X)+.

Let M be a very ample line bundle on Y for which f ∗(L) ⊗ M is also
very ample. Then,

c̃1(L)([f : Y → X]) = f∗

(
F−ω
(
c̃1(f

∗(L) ⊗ M), c̃1(M)
)
(1Y )

)
.

By Lemma 11.1, c̃1(L)([f ]) is independent of the choice of M . Since
M∗(X)+ is the free abelian group with generators (11.1), c̃1(L) is de-
fined on M∗(X)+.

Let X ∈ Schk, and let π : Y → X × P1 be a double point degenera-
tion over 0 ∈ P1. Let

Y0 = A ∪ B → X

be the fiber over 0, and let Y∞ → X be a regular fiber. The associated
double point relation is

[Y∞ → X] = [A → X] + [B → X] − [P(π) → X] ∈ ω∗(X).

Lemma 11.2. Let L be a line bundle on X. Then,

c̃1(L)([Y∞ → X]) = c̃1(L)
(
[A → X] + [B → X] − [P(π) → X]

)
.
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Proof. The various classes c̃1(L)([W → X]) are defined by operating
on ω∗(W ) and then pushing forward to X. Hence, we may replace X
with Y , L with π∗p∗1L, and π with

(IdY , p2 ◦ π) : Y → Y × P1.

Since Y ∈ Smk, we may choose a very ample line bundle M for
which L ⊗ M is also very ample. Then,

c̃1(L) = F−ω (c̃1(L ⊗ M), c̃1(M))

is a map from M∗(Y )+ to ω∗−1(Y ). The result follows from Lemmas 6.2
and 6.3. �

By Lemma 11.2, the operator c̃1(L) : M∗(X)+ → ω∗−1(X) descends
to

c̃1(L) : ω∗(X) → ω∗−1(X).

Hence, we have constructed first Chern class operators on ω∗ for arbi-
trary line bundles.

Lemma 11.3. Let Y ∈ Smk, and let

L1, . . . , Lr>dimk Y → Y

be line bundles. Then,
r∏

i=1

c̃1(Li) = 0

as an operator on ω∗(Y ).

Proof. Since Y quasi-projective, c̃1(Li) = F−ω (c̃1(Li ⊗ M), c̃1(M)) for
any choice of very ample line bundle M on Y for which Li ⊗M is very
ample. Since

F−ω (u, v) = u − v mod (u, v)2,

Lemma 6.3 implies the result. �

Axioms (A3), (A4), (A5) and (A8) for globally generated L imme-
diately imply these axioms for arbitrary L. Similarly, the functoriality
of Lemma 8.3 extends to arbitrary line bundles L.

Proposition 11.4. Let L and M be line bundles on X ∈ Schk. Then,

c̃1(L ⊗ M) = Fω(c̃1(L), c̃1(M)).

Proof. By the definition of Chern classes and Lemma 11.3, the operator

Fω(c̃1(L), c̃1(M)) : ω∗(X) → ω∗−1(X)

is well-defined.
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Since ω∗(X) is generated by the classes f∗(1Y ) for

[f : Y → X] ∈ M(X)+,

property (A3) can be used to reduce to the case of X ∈ Smk.
Take very ample line bundles N1, N2 on X with L⊗N1 and M ⊗N2

very ample. Then,

L ⊗ M ⊗ N1 ⊗ N2, N1 ⊗ N2

are also very ample. The Proposition follows from Proposition 10.2
and the power series identity

Fω(F−ω (u1, v1), F
−
ω (u2, v2)) = F−ω (Fω(u1, u2), Fω(v1, v2)),

after taking

u1 = c̃1(L ⊗ N1), v1 = c̃1(N1),

u2 = c̃1(M ⊗ N2), v2 = c̃1(N2).

�

11.2. Proof of Theorem 0.2. Double point cobordism theory ω∗ was
shown in Section 5.2 to define a Borel-Moore functor with product:
structures (D1), (D2), and (D4) satisfying axioms (A1), (A2), (A6),
and (A7).

We have added first Chern classes (D3) and verified axioms (A3),
(A4), (A5), and (A8). Hence, ω∗ is oriented.

The formal group law defined by Proposition 10.3 yields a canonical
ring homomorphism

L∗ → ω∗(k).

Hence, ω∗ is L∗-functor.
In order for ω∗ to be an oriented Borel-Moore L∗-functor of geomet-

ric type, the axioms of Section 4.3 must be satisfied. Axiom (Dim)
is Lemma 11.3, and axiom (FGL) is Proposition 11.4. The proof of
Theorem 0.2 will be completed by establishing the remaining axiom
(Sect).

12. Axiom (Sect)

12.1. The difference series. Since the Chern class operator c̃1(L) for
a general line bundle L is defined using the difference F−ω in our formal
group law, we will require a universal construction of F−ω along the
lines of our construction of Fω.

The variety Yn,m, defined in Section 8.4, is the total space of the line
bundle O(1,−1) on Pn × Pm with projection π and zero-section s,

π : Yn,m → Pn × Pm, s : Pn × Pm → Yn,m.
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Let Sn,m ⊂ Yn,m be the image of the zero section.
For 0 ≤ i ≤ n and 0,≤ j ≤ m, a closed immersion

Yi,j → Yn,m

is induced by a choice of bi-linear embedding Pi × Pj → Pn × Pm.

Lemma 12.1. For n, m ≥ 0,

(12.1) [Sn,m → Yn,m] =
n∑

i=0

m∑

j=0

bn,m
i,j · [Yn−i,m−j → Yn,m] ∈ ω∗(Yn,m)

for bn,m
i,j ∈ ωi+j−1(k).

Proof. If n = m = 0, then Yn,m = A1 with Sn,m → Yn,m given by the
inclusion of 0. Clearly [0 → A1] = 0 in ω0(A

1), whence the result.4

We proceed by induction on (n, m). We have the linear equivalence

Sn,m + Yn,m−1 ∼ Yn−1,m

on Yn,m. Clearly Sn,m + Yn,m−1 + Yn−1,m is a reduced strict normal
crossing divisor on Yn,m. By Lemma 7.2, we obtain the relation

[Sn,m → Yn,m] = [Yn−1,m → Yn,m] − [Yn,m−1 → Yn,m]

+ [P1 → Yn,m] − [P2 → Yn,m] + [P3 → Yn,m]

where P1 → Sn,m−1 is an admissible P1-bundle, P2 → Sn−1,m−1 is an
admissible tower, and P3 → Sn−1,m−1 is an admissible P2-bundle.

We apply Lemma 9.3 to P1 → Sn,m−1 with generators Sn−1,m−1

and Sn,m−2 for Pic(Sn,m−1). Similarly, we apply Lemma 9.3 to P2 →
Sn−1,m−1 and P3 → Sn−1,m−1. We find

[Sn,m → Yn,m] = [Yn−1,m → Yn,m] − [Yn,m−1 → Yn,m]

+
n∑

i=0

m∑

j=1

ci,j · [Sn−i,m−j → Yn,m]

with ci,j ∈ ω∗(k).
Since Sn−i,m−j → Yn,m factors through Sn−i,m−j → Yn−i,m−j, the

induction hypothesis finishes the proof. �

4Consider the morphism π : A1 → A1 × P1 determined by (Id, i) where

i : A1 → P1

is the inclusion obtained by omitting 0 ∈ P1. The projective morphism π is a double
point degeneration over 0 ∈ P1,

π−1(0) = ∅ ∪ ∅.

The associated double point cobordism shows [Spec (k) → A1] = 0 in ω∗(A
1) for

every closed point.
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For 0 ≤ i + j ≤ n, 0 ≤ j ≤ m, the elements bn,m
i,j on the right side of

(12.1) are uniquely determined by Proposition 8.7.

Lemma 12.2. If N ≥ n, M ≥ m, then

bn,m
i,j = bN,M

i,j

for 0 ≤ i + j ≤ n, 0 ≤ j ≤ m.

Proof. The bi-linear embedding Pn × Pm → PN × PM induces a closed
embedding

i : Yn,m → YN,M

which satisfies the conditions of the second example of Section 8.3.
Thus, we have a well-defined ω∗(k)-linear pull-back

i∗ : ω∗(YN,M) → ω∗−d(Yn,m)

with d = N − n + M − m. Clearly

i∗([SN,M → YN,M ]) = [Sn,m → Yn,m],

i∗([YN−i,M−j → YN,M ]) = [Yn−i,m−j → Yn,m],

so the uniqueness statement implies the result. �

By Lemma 12.2, we may define bi,j ∈ ω∗(k) by

bi,j = lim
n,m→∞

bn,m
i,j .

By the proof of Lemma 12.1, b0,0 = 0, b1,0 = 1, and b0,1 = −1.

Lemma 12.3. F−ω (u, v) =
∑

i,j bi,ju
ivj.

Proof. Let n, m ≥ 0, and let N = n + 2m, M = m. The morphism

h : Pn+m × Pm → YN,M

was constructed in the proof of Proposition 8.7. We see

h−1(SN,M) = Pn+m−1 × Pm → Pn+m × Pm

is a bi-linear embedding and

h−1(YN−i,M−j) = H
(i)
n+m,m−j → Pn+m × Pm.

The relation (12.1) for (N, M) pulls back under h to

[Pn+m−1 × Pm → Pn+m × Pm] =
∑

i,j

bN,M
i,j · [H

(i)
n+m,m−j → Pn+m × Pm].

We have bN,M
i,j = bi,j for

0 ≤ i + j ≤ N = n + 2m, 0 ≤ j ≤ M = m.
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Since H
(i)
n+m,m−j → Pn+m × Pm has codimension i + j and is empty if

j > m,

[Pn+m−1 × Pm] =
n+m∑

i=0

m∑

j=0

bi,j · [H
(i)
n+m,m−j → Pn+m × Pm].

Consider the formal group law determined by ω∗. The difference F−ω
admits a power series expansion,

F−ω (u, v) =
∑

i,j

b̃i,ju
ivj,

where b̃i,j ∈ ω∗(k). Certainly,

c̃1(O(1, 0))(1Pn+m×Pm) = F−ω (c̃1(O(1, 1)), c̃1(O(0, 1))(1Pn+m×Pm).

Since

[Pn+m−1 × Pm] = c̃1(O(1, 0))(1Pn+m×Pm),

[H
(i)
n+m,m−j → Pn+m × Pm] = c̃1(O(1, 1))ic̃1(O(0, 1))j(1Pn+m×Pm),

we find

[Pn+m−1 × Pm] =
∑

i,j

b̃i,j · [H
(i)
n+m,m−j → Pn+m × Pm].

Therefore,
∑

i,j

(b′i,j − bi,j) · [H
(i)
n+m,m−j → Pn+m × Pm] = 0.

By Proposition 8.6, bi,j = b′i,j for 0 ≤ i + j ≤ n + m, 0 ≤ j ≤ m. As n
and m were arbitrary, the proof is complete. �

12.2. Proof of Theorem 0.2. We now complete the last step in the
proof of Theorem 0.2.

Proposition 12.4. Double point cobordism ω∗ satisfies axiom (Sect).

Proof. Let Y ∈ Smk be of dimension d. Let L be a line bundle on
Y with transverse section s ∈ H0(Y, L). Let D ⊂ Y be the smooth
divisor associated to s.

Let M be a very ample line bundle on Y for which L ⊗ M is also
very ample. Let

f : Y → Pn, g : Y → Pm

be closed embeddings satisfying

L ⊗ M ∼= f ∗O(1), M ∼= g∗O(1).

Certainly, d ≤ n, d ≤ m.
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Let h = (f, g) : Y → Pn × Pm. The section s defines a lifting

(h, s) : Y → Yn,m

which satisfies the conditions of the second example of Section 8.3. We
obtain a well-defined ω∗(k)-linear pull-back

(h, s)∗ : ω∗(Yn,m) → ω∗−n−m−1+d(Y ).

By construction, (h, s)∗([Sn,m → Yn,m]) = [D → Y ].
Since c̃1(π

∗O(1, 0))ic̃1(π
∗O(0, 1)j(1Yn,m

) = [Yn−i,m−j → Yn,m] and

(h, s)∗(π∗O(1, 0)) = L ⊗ M, (h, s)∗(π∗O(0, 1)) = M,

Lemma 12.2, Lemma 12.3, and the naturality of c̃1 given by Lemma 8.3
yield

(h, s)∗(
∑

i,j

bn,m
i,j [Yn−i,m−j → Yn,m]) = F−ω (c̃1(L ⊗ M), c̃1(M))(1Y ).

The “error terms” arising from any inequalities bn,m
i,j 6= bi,j vanish be-

cause

(h, s)∗([Yn−i,m−j → Yn,m]) = 0

if i + j > n ≥ d or if j > m for dimensional reasons.
Applying (h, s)∗ to the relation (12.1) yields the identity

[D → S] = F−ω (c̃1(L ⊗ M), c̃1(M))(1Y ) = c̃1(L)(1Y ),

which verifies axiom (Sect). �

13. Theorem 0.1 and Corollary 0.3

Proof of Theorem 0.1. For clarity, we write [f : Y → X]ω for

[f : Y → X] ∈ ω∗(X)

and [f : Y → X]Ω for the associated class in Ω∗(X). Similarly, let

1ω
Y = [IdY ]ω, 1Ω

Y = [IdY ]Ω.

By Proposition 5.5, there is natural transformation

ϑ : ω∗ → Ω∗

of Borel-Moore functors on Schk,

ϑX([f : Y → X]ω) = [f : Y → X]Ω ∈ Ω∗(X).

Moreover, ϑX is surjective for every X ∈ Schk.
By Theorems 0.2 and 4.1, there is a natural transformation

τ : Ω∗ → ω∗
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of oriented Borel-Moore functors of geometric type. Let Y ∈ Smk, and
let

p : Y → Spec (k)

be the structure map. Since

1Ω
Y = p∗(1), 1ω

Y = p∗(1),

and τ respects the unit and smooth pull-back,

τ(1Ω
Y ) = 1ω

Y .

Hence,

τX([f : Y → X]Ω) = τX(f∗(1
Ω
Y ))

= f∗(τY (1Ω
Y ))

= f∗(1
ω
Y )

= [f : Y → X]ω.

Therefore τ ◦ ϑ = Idω, so ϑ is an isomorphism. �

Proof of Corollary 0.3. We may assume k ⊂ C. The canonical homo-
morphism

Ω∗(k) → MU2∗(pt)

discussed in Section 3 is an isomorphism. Since MU2∗(pt) is well-known
to have a rational basis determined by the products of projective spaces,
the Corollary is deduced from Theorem 0.1. �

14. A theorem of Fulton

Let k be an algebraically closed field. Let χ be a C-valued function
on the set of isomorphism classes of smooth projective varieties over k
normalized by

(i) χ(Spec (k)) = 1

and satisfying additivity for disjoint union,

(ii) χ(X ∐ Y ) = χ(X) + χ(Y ).

Suppose further that the relation

(iii) χ(C) = χ(A) + χ(B) − χ(A ∩ B)

holds whenever A, B, C ⊂ Y are smooth divisors satisfying the linear
equivalence

A + B ∼ C

in an ambient smooth projective variety Y over k and A ∩ B is a
transverse intersection.

As a first application, we use Theorem 0.1 to give a new proof of the
following result of Fulton.
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Theorem 14.1 ([9]). If χ satisfies (i-iii), then χ is the sheaf Euler
characteristic,

χ(Y ) =
dim Y∑

i=0

(−1)i dimk H i(Y,OY ).

The sheaf Euler characteristic is easily seen to satisfy the required
conditions (i-iii). The main point of Theorem 14.1 is uniqueness. We
will prove the result in case k has characteristic 0, but will not require
k to be algebraically closed.

For X ∈ Schk, consider the subgroup I(X) ⊂ ω∗(X) generated by
elements of the form

f∗([A → Y ] + [B → Y ] − [A ∩ B → Y ] − [C → Y ])

where f : Y → X is in M(X) and A, B, C are smooth divisors on Y
satisfying condition (iii) of Theorem 14.1. Since I(X) is not a graded
subgroup of ω∗(X), we consider also a graded version. Let

I∗(X) ⊂ ω∗(X)

be generated by elements of the form

f∗([A → Y ] + [B → Y ] − [P1 × (A ∩ B) → Y ] − [C → Y ])

with f : Y → X, A, B, C as above. Here,

P1 × (A ∩ B) → Y

is the projection P1 × (A ∩ B) → A ∩ B followed by the inclusion
A ∩ B → Y . Let

ω∗(X) = ω∗(X)/I∗(X).

Lemma 14.2. The following results hold:

(1) X 7→ ω∗(X) inherits the structure of an oriented Borel-Moore
functor of geometric type from ω∗. In particular, ω∗(X) is a
ω∗(k)-module.

(2) ω∗(k)/I(k) = ω∗(k)/([P1] − [Spec (k)]) · ω∗(k).
(3) ω∗(X)/I(X) = ω∗(X) ⊗ω∗(k) ω∗(k)/I(k).

Proof. For (1), the only non-evident point to check is the descent of the
first Chern class endomorphisms c̃1(L) on ω∗(X) to ω∗(X). We may
assume L is globally generated. Then, given f : Y → X and A, B, C
on Y as above, a general section s of f ∗L has smooth divisor i : E → Y
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intersecting A, B, C and A ∩ B transversely, so

c̃1(L)(f∗([A → Y ] + [B → Y ] − [P1 × (A ∩ B) → Y ] − [C → Y ]))

= (f ◦ i)∗([A ∩ E → E] + [B ∩ E → E]

− [P1 × (A ∩ B ∩ E) → E] − [C ∩ E → Y ]).

For (2) and (3), we need only verify ideal inclusion I∗(X) ⊂ I(X)
for each X. The inclusion follows from the claim

(14.1) [p2 : P1 × Y → Y ] − [IdY ] ∈ I(Y )

for each Y ∈ Smk. Finally (14.1) is obtained from the linear equiva-
lence

∆ × Y ∼ℓ P1 × 0 × Y + 0 × P1 × Y

on P1 × P1 × Y , where ∆ ⊂ P1 × P1 is the diagonal. �

Lemma 14.3. Take D smooth and projective over k, and let L be a
line bundle over D. Let χ be as in Theorem 14.1. Then

χ(P(OD ⊕ L)) = χ(D) = χ(P1 × D)

Proof. We need only check the first identity. As in the proof of Lemma 5.3,
we have the double point degeneration

π : Y → P1

with π−1(0) = P(OD ⊕L) ∪D P(OD ⊕L) and π−1(1) = P(OD ⊕L). By
condition (iii), we have

χ(P(OD ⊕ L)) = 2χ(P(OD ⊕ L)) − χ(D)

or χ(D) = χ(P(OD ⊕ L)). �

Lemma 14.4. Let χ : M(k) → C be as in Theorem 14.1. Then χ
descends to a group homomorphism χ : ω∗(k)/I(k) → C.

Proof. Since χ is additive, χ defines a group homomorphism

χ : M∗(k)+ → C.

By Lemma 14.3, we have

χ(Y1) = χ(A) + χ(B) − χ(P(p2 ◦ π))

for every double point cobordism π : Y → P1 over Spec (k), so χ
descends to a group homomorphism

χ : ω∗(k) → C

annihilating I(k) by assumption. �



ALGEBRAIC COBORDISM REVISITED 55

Lemma 14.5. Let Fω̄ be the formal group law of ω. Then

Fω(u, v) = u + v − [P1]uv.

Proof. It suffices to check the universal examples

OPn×Pm(1, 1) = OPn(1) ⊠ OPm(1).

The linear equivalence Hn,m ∼ℓ Pn × Pm−1 + Pn−1 × Pm on Pn × Pm

gives the relation

[Hn,m → Pn×Pm] = [Pn×Pm−1 → Pn×Pm]+[Pn−1×Pm → Pn×Pm]

− [P1] · [Pn−1 × Pm−1 → Pn × Pn]

in ω∗(P
n × Pm). Since

c̃1(OPn×Pm(1, 1))(1Pn×Pm) = [Hn,m → Pn × Pm]

c̃1(OPn×Pm(0, 1))(1Pn×Pm) = [Pn × Pm−1 → Pn × Pm]

c̃1(OPn×Pm(1, 0))(1Pn×Pm) = [Pn−1 × Pm → Pn × Pm]

and

c̃1(OPn×Pm(0, 1))◦c̃1(OPn×Pm(1, 0))(1Pn×Pm) = [Pn−1×Pm−1 → Pn×Pm],

the projective bundle formula shows that we have

Fω(u, v) = u + v − [P1]uv mod (un+1, vm+1).

Since n, m were arbitrary, the results is proven. �

Lemma 14.6. The ring homomorphism φ : Z[t] → ω∗(k) sending t
to −[P1] is surjective. In addition, the canonical ring homomorphism
Z → ω∗(k)/I(k) is an isomorphism.

Proof. The homomorphism Z → ω∗(k)/I(k) is split by Y 7→ χ(OY ),
hence the second assertion follows from the first and (2) of Lemma 14.2.

For the first assertion, write the universal group law as

FL(u, v) = u + v +
∑

i,j≥1

aiju
ivj.

By Lemma 14.5, the canonical homomorphism φω : L → ω̄∗(k) classi-
fying Fω sends a11 to −[P1] and all other aij to zero. By Theorem 0.1
and the isomorphism L∗ → Ω∗(k) [20, Theorem 4.3.7],

L∗ → ω∗(k)

is surjective, completing the proof. �
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Proof of Theorem 14.1. Let χ : M(k) → C be given. By Lemma 14.4,
χ descends to a homomorphism

χ : ω∗(k)/I(k) → C

with χ([Spec (k)]) = 1. Since ω∗(k)/I(k) ∼= Z by Lemma 14.6, there is
at most one such χ, hence χ(Y ) equals the sheaf Euler characteristic.

�

The proof improves Fulton’s result slightly (still assuming k has char-
acteristic 0). We may replace replace C with any abelian group A,

χ : M(k) → A.

If χ satisfies conditions (ii) and (iii), then

χ(Y ) = χ([Spec (k)]) ·

(
dimY∑

i=0

(−1)i dimk H i(Y,OY )

)
∈ A

for all smooth projective Y over k.
In fact, we can prove more. Denote the localization of ω∗ at [P1] by

ω̃∗ = ω∗[[P
1]−1].

Let L → Z[t] be the homomorphism classifying the group law

u + v + tuv.

For X ∈ Schk, let G0(X) denote the Grothendieck group of coherent
sheaves following the notation of [20].

Theorem 14.7. There are natural isomorphisms for X ∈ Schk:

ω∗(X) ∼= Ω∗(X) ⊗L Z[t]

ω̃∗(X) ∼= G0(X)[t, t−1]

ω∗(X)/I(X) ∼= G0(X).

Proof. We have already seen that the formal group law for ω∗ is

u + v − [P1]uv.

The canonical morphism Ω∗ → ω̄∗ therefore factors through

(14.2) Ω∗ ⊗L Z[t] → ω∗ ,

with t mapping to −[P1]. The map (14.2) is clearly surjective.
Injectivity is obtained from the formal group law

u + v − [P1]uv

of Ω∗ ⊗L Z[t]. Let f : Y → X, A, B, C be as in condition (iii) of
Theorem 14.1. As operators on Ω∗(Y ) ⊗L Z[t],

c̃1(OY (C)) = c̃1(OY (A)) + c̃1(OY (B)) − [P1]c̃1(OY (A)) ◦ c̃1(OY (B)).
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Evaluating on 1Y , using the Gysin relations, and pushing forward to
X gives the relation

[C → X] = [A → X] + [B → X] − [P1] · [A ∩ B → X]

in Ω∗(X) ⊗L Z[t]. In other words, I∗(X) = 0 in Ω∗(X) ⊗L Z[t]. Since
ω∗ = Ω∗, we conclude (14.2) is injective and hence an isomorphism.

The definition of ω̃∗ and isomorphism (14.2) together yield

ω̃∗(X) ∼= Ω∗(X) ⊗L Z[t, t−1].

In case X ∈ Smk, the natural map

Ω∗(X) ⊗L Z[t, t−1] → K0(X)[t, t−1]

is an isomorphism by [20] where K0(X) is the Grothendieck group of
locally free sheaves. For the general case X ∈ Schk, the natural map
Ω∗(X) → G0(X)[t, t−1] induces an isomorphism

Ω∗(X) ⊗L Z[t, t−1] → G0(X)[t, t−1],

by [4] proving the second isomorphism of the Theorem.
Since ω∗(X)/I(X) ∼= ω∗(X)/([P1]−1), the third isomorphism follows

from the second. �

By Theorem 14.7, we have a presentation of G0(X) for X ∈ Schk as

G0(X) ∼= M(X)+/<f∗([A → Y ]+[B → Y ]−[A∩B → Y ]−[C → Y ])>

for f : Y → X, A, B, C as in condition (iii) of Theorem 14.1. Strangely,
only the relation of linear equivalence of smooth divisors on smooth
varieties in used!

15. Donaldson-Thomas theory

15.1. Proof of Conjecture 1. Let Q[[q]]∗ ⊂ Q[[q]] denote the multi-
plicative group of power series with constant term 1. Define a group
homomorphism

Z : (M3(Spec (C))+, +) → (Q[[q]]∗, ·)

on generators by the partition function for degree 0 Donaldson-Thomas
theory defined in Section 0.8,

Z([Y ]) = Z(Y, q).

We use here the abbreviated notation

[Y ] = [Y → Spec (C)] ∈ M3(Spec (C)).

Since double point relations hold in Donaldson-Thomas theory (0.10),
the homomorphism Z descends to ω∗(C),

Z : ω∗(C) → Q[[q]]∗.
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By Corollary 0.3, the class [Y ] ∈ ω3(C) is expressible rationally in
terms of the classes

[P3], [P2 × P1], [P1 × P1 × P1].

Hence,

r[Y ] = s3[P
3] + s21[P

2 × P1] + s111[P
1 × P1 × P1] ∈ ω∗(C)

for integers r 6= 0, s3, s21, and s111. Therefore

(15.1) Z(Y, q)r =
∏

|λ|=3

Z(Pλ, q)sλ .

Conjecture 1 has been proven for 3-dimensional products of pro-
jective spaces in [23, 24]. The right side of (15.1) can therefore be
evaluated: ∏

|λ|=3

Z(Pλ, q)sλ =
∏

|λ|=3

M(−q)sλ

R

Pλ c3(TPλ⊗K
Pλ )

= M(−q)
P

|λ|=3 sλ

R

Pλ c3(T
Pλ⊗K

Pλ)

Since algebraic cobordism respects Chern numbers 5,

Z(Y, q)r = M(−q)r
R

Y
c3(TY ⊗KY ).

Finally, since Z(Y, 0) = 1 and M(0) = 1,

Z(Y, q) = M(−q)
R

Y
c3(TY ⊗KY ),

completing the proof. �

15.2. Conjecture 1′. Next, we consider an equivariant version of Con-
jecture 1 proposed in [3].

Let X be a smooth quasi-projective 3-fold over C equipped with an
action of an algebraic torus T with compact fixed locus XT . If XT is
compact, Hilb(X, n)T is also compact, and

NX
n,0 =

∫

[Hilb(X,n)T ]vir

1

e(Normvir)
∈ Q(t)

is well-defined [10]. Here

t = {t1, . . . , trk(T )}

is a set of generators of the T -equivariant cohomology of a point. Let

Z(X, q, t) = 1 +
∑

n≥1

NX
n,0 qn

be the equivariant partition function.

5For example, because complex cobordism does.
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Since XT is compact, the right side of the equality of Conjecture 1
is also well-defined via localization,

∫

X

c3(TX ⊗ KX) =

∫

XT

c3(TX ⊗ KX)

e(Norm)
∈ Q(t).

Conjecture 1′. [3] Z(X, q, t) = M(−q)
R

X
c3(TX⊗KX).

We will prove Conjecture 1′ before proving Conjecture 2 for relative
Donldson-Thomas theory.

15.3. Local geometries. Let M be a smooth projective variety over
C of pure dimension at most 3. Let

N → M

be a vector bundle of satisfying

rk(N) = 3 − dimC M.

The space total space N may be viewed as a local neighborhood6 of
M in a 3-fold embedding. If

N =

r⊕

i=1

Ni

is a direct sum decomposition, an r-dimensional torus T acts canoni-
cally on the total space N by scaling the factors of N . Since NT = M ,
the fixed locus is compact.

We will first prove Conjecture 1′ for the local geometry N . In case M
has dimension 0 or 1, Conjecture 1′ has been proven in [23, 24] and [27]
respectively. If Y has dimension 3, Conjecture 1′ reduces to Conjecture
1. Only the dimension 2 case remains.

15.4. Proof of Conjecture 1′ for local surfaces. The proof relies
upon a double point cobordism theory for local geometries. To ab-
breviate the discussion, we focus our attention on the double point
cobordism theory for local surfaces over Spec (C).

Consider the free group M2,1(C)+ generated by pairs [S, L] where S
is smooth, irreducible, projective surface and

L → S

is a line bundle. The subscript (2, 1) captures the dimension of S and
the rank of L. We define a double point cobordism theory ω2,1(C) as a
quotient of M2,1(C)+ by double point relations.

6There is no algebraic tubular neighborhood result even formally.
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Double point relations are easily defined in the local setting. Let

π : S → P1

be a projective morphism determining a double point degeneration with

S0 = A ∪ B,

and let
L → S

be a line bundle. For each regular value ζ ∈ P1 of π, define an associated
double point relation by

(15.2) [Sζ ,Lζ] − [A,LA] − [B,LB] + [P(π),LP(π)].

Here, subscripts denote restriction (or, in the case of LP(π), pull-back).
Let R2,1(C) ⊂ M2,1(C)+ be the subgroup generated by all double

point relations. Double point cobordism theory for local surfaces is
defined by

ω2,1(C) = M2,1(C)+/R2,1(C).

Lemma 15.1. Double point cobordism theory ω2,1(C) for local surfaces
is generated (over Q) by elements of the following form:

(i) [P2, OP2],
(ii) [P1 × P1, L],
(iii) [F1, L],

where F1 is the blow-up of P2 in a point.

Proof. There is a natural group homomorphism

ι : ω2(C) ⊗Z Q → ω2,1(C) ⊗Z Q

defined by ι([S]) = [S, OS]. By Corollary 0.3, the image of ι is generated
by

[P2, OP2], [P1 × P1, OP1×P1].

Let [S, OS(C)] ∈ M2,1(C)+ where C ⊂ S is smooth divisor. Consider
the deformation to the normal cone of C ⊂ S,

π : S → P1

with degenerate fiber

S0 = S ∪ P(OC ⊕ OC(C)).

Since S is the blow-up of S × P1 along C × 0, there is a canonical
morphism

ν : S → S

obtained from blow-down and projection. Let L → S be defined by

L = ν∗(OS(C + D)) ⊗ OS(−P(OC ⊕ OC(C))).
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where D is a Cartier divisor on S. The double point relation associated
to L → S is

(15.3) [S, OS(C +D)]− [S, OS(D)]− [P(OC ⊕OC(C)), L′]+ [P(π), L′′]

where L′ and L′′ are line bundles.
Let Γ ⊂ ω2,1(C) be the subgroup generated by Im(ι) and elements of

the form [P, L] where P is a P1-bundle over a smooth projective curve.
If D is taken to be 0 in (15.3), we find [S, OS(C)] ∈ Γ. For general a
Cartier divisor D,

[S, OS(C + D)] ∈ Γ ⇐⇒ [S, OS(D)] ∈ Γ.

Since, for any D, there exists smooth curves C, C ′ for which

OS(C + D) ∼= OS(C ′),

we find Γ = ω2,1(C).
By elementary degenerations, elements of type (ii) and (iii) generate

the classes [P, L] of Γ. �

The computation of the degree 0 equivariant vertex in [23, 24] proves
Conjecture 1′ for the toric generators (i-iii) of Lemma 15.1. Conjecture
1′ then follows for local surfaces by an argument parallel to the proof
of Conjecture 1. �

15.5. Proof of Conjecture 1′. Let T be an r-dimensional torus acting
on a smooth quasi-projective 3-fold X with compact fixed locus XT .
The 1-dimensional subtori of T are described by elements of the lattice
Zr. Since 1-dimensional tori T1 ⊂ T with equal fixed loci

XT1 = XT

determine a Zariski dense subset of Zr, Conjecture 1′ is implied by the
rank 1 case.

We assume T is a 1-dimensional torus. If the T -action on X is
trivial, Conjecture 1′ reduces to Conjecture 1. We assume the T -action
is nontrivial. The components of the fixed locus

XT =
⋃

i

XT
i

are of dimension 0, 1, or 2. Certainly

(15.4) Z(X, q, t) =
∏

i

Z(Xi, q, t)

where

Z(Xi, q, t) =
∑

n

qn

∫

[Hilb(X,n)T
i ]vir

1

e(Normvir)
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and Hilb(X, n)T
i ⊂ Hilb(X, n)T is locus supported on XT

i . We will
prove

(15.5) Z(Xi, q, t) = M(−q)
R

XT
i

c3(TX⊗KX )

e(Normi)

where Normi is the normal bundle of XT
i ⊂ X. Conjecture 1′ follows

from (15.4) and (15.5).
Equality (15.5) is proven separately for each possible dimension of

XT
i . The dimension 1 case is the most delicate.

Dim 0. If XT
i = p is a point, then by Theorem 2.4 of [?], the T -action

on X is analytically equivalent in a Euclidean neighborhood of p to
the T -action on the tangent space Tp(X). The T -action at a point
u ∈ U of a Euclidean neighborhood is defined only locally at 1 ∈ T .
Equality (15.5) in the dimension 0 case follows from the degree 0 vertex
evaluation of [23, 24].

Dim 2. If XT
i = S is a surface, the T -weight on the normal bundle of

S ⊂ X may be assumed positive. The Bialynicki-Birula stratification
[?] provides a T -equivariant Zariski neighborhood of S determined by
a T -equivariant affine bundle

S+ → S

of rank 1 with a T -fixed section. In the rank 1 case, S+ is the total
space of a T -equivariant line bundle over S. Equality (15.5) in the
dimension 2 case follows from Conjecture 1′ for local surfaces.

If XT
i = C is a curve, there are three possibilities. Let NC be the

rank 2 normal bundle of C ⊂ X. The T -representation on the fiber of
NC has nontrivial weights w1 and w2.

Dim 1, weights of opposite sign. If the weights w1 and w2 have
opposite signs, then there is a canonical T -equivariant splitting

N = N+ ⊕ N−

as a sum of line bundles. The Bialynicki-Birula stratification yields
quasi-projective surfaces

C+, C− ⊂ X

corresponding to the positive and negative normal directions. Since
the affine bundles

C± → C
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are of rank 1 with T -fixed sections, there are T -equivariant isomor-
phisms

φ± : C± → N±

where the total spaces of the line bundles occur on the right.
Let p ∈ C. By Theorem 2.4 of [?], the T -action on a Euclidean

neighborhood UX ⊂ X of p ∈ X is analytically equivalent to the T -
action on a Euclidean neighborhood UN ⊂ NC of p ∈ NC . Certainly
the images of C± are the intersections of U with N±.

Since the T -action on NC has weights of opposite sign, the T -equivar-
iant automorphism group of U over C which fixes U ∩N± pointwise is
trivial. In particular, there is a unique T -equivariant isomorphism

UX → UN

compatible with φ±. Patching together the isomorphisms yields an
T -equivariant analytic isomorphism between X and NC defined in a
Euclidean neighborhood of C. Equality (15.5) in the 1-dimensional op-
posite sign case then follows from Conjecture 1′ for local curves proved
in [27].

If the weights w1 and w2 are of the same sign, we may assume the
weights to be positive. The Biaylnicki-Birula stratification yields a T -
equivariant Zariski neighborhood of C determined by a T -equivariant
affine bundle

C+ → C

of rank 2. We will see C+ need not be the total space of a T -equivariant
rank 2 vector bundle on C.

The weights w1 and w1 are related if there exists an integer k ≥ 2
for which either

w1
∼= kw2 or kw1

∼= w2.

Dim 1, related weights of same sign. Without loss of generality,
we may assume the relation is w1 = kw2.

Let C2 be a T -representation with weights w1 and w2,

t · (z1, z2) = (tw1z1, t
w2z2).

The T -equivariant automorphism group G of C2 is given by 2×2 upper
triangular matrices,

(15.6) γ0

@

λ1 δ
0 λ2

1

A

(
z1, z2

)
=
(
λ1z1 + δzk

2 , λ2z2

)
.
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Every Zariski locally trivial G-torsor τ on C yields an T -equivariant
affine bundle

Aτ → C

of rank 2 over C with a T -equivariant section. The bundle Aτ is ob-
tained by the G-action (15.6). The family of homomorphisms

ρξ : G → G

for ξ ∈ C defined by

ρξ

(
λ1 δ
0 λ2

)
=

(
λ1 ξ · δ
0 λ2

)

is a algebraic deformation of the identity ρ1 to the the diagonal pro-
jection

ρ0 : G → (C∗)2.

For each G-torsor τ , let τξ be the G-torsor induced by ρξ. Then, the
algebraic family Aτξ

of G-torsors is a T -equivariant deformation of Aτ

to Aτ0 . The latter is the total space of a T -equivariant vector bundle
on C.

Bialynicki-Birula proves the T -equivariant affine bundle

C+ → C

is obtained from a G-torsor as above. Since C+ is T -equivariantly
deformation equivalent to the total space of a rank 2 vector bundle
over C, equality (15.5) follows from the local curve case together with
the deformation invariance of the virtual class.

Dim 1, unrelated weights of the same sign. If w1 and w2 are not
related,

C+ → C

is the total space of a T -equivariant rank 2 vector bundle over C, see
Section 3 of [?]. Equality (15.5) then follows from Conjecture 1′ for
local curves. �

15.6. Proof of Conjecture 2. Let X be a smooth projective 3-fold
over C, and let Let S ⊂ X be a smooth surface. Let

P = P(OS ⊕ OS(S)).

Let S+, S− ⊂ P denote the sections with respective normal bundles
OS(S), OS(−S) corresponding to the quotients OS(S), OS.

We will study the Donaldson-Thomas theory of P/S− by localization.
A 1-dimensional scaling torus T acts on P with

PT = S+ ∪ S−
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and normal weights t and −t along S+ and S− respectively. The com-
ponents of the T -fixed loci of In(P/S−, 0) lie over either S− or S+.

A Donaldson-Thomas theory of rubber naturally arises on the fixed
loci of In(P/S−, 0) over S−. Let

W− = 1 +
∑

n≥1

qn

∫

[In(P/S−∪S+,0) ˜ ]vir

1

−t − Ψ+

denote the rubber contributions. Here, In(P/S− ∪ S+, 0)˜denotes the
rubber moduli space, and Ψ+ denotes the cotangent line associated
to target degeneration. However, since the virtual dimension of the
rubber space In(P/S− ∪ S+, 0)˜is −1,

W− = 1.

A discussion of virtual localization in relative Donaldson-Thomas the-
ory and rubber moduli spaces can be found in [24]. See [25] for a
construction of Ψ+.

A local neighborhood of S+ ⊂ P is given by the total space

P+ = P \ S−

of the line bundle

OS(S) → S+.

Hence, the contributions over S+ are determined by Conjecture 1′ for
local surfaces,

W+ = M(−q)
R

P+
c3(TP+

⊗KP+
)
.

The equivariant integral in the exponent is easily computed
∫

P+

c3(TP+ ⊗ KP+) =

∫

P

c3(TP[−S−] ⊗ KP[S−]).

The product of the localization contributions over S− and S+ yields
the partition function,

Z(P/S−, q) = W− · W+

= M(−q)
R

P
c3(TP[−S−]⊗KP[S−]).

Conjecture 2 for P/S− is proven.
Deformation to the normal cone of S ⊂ X yields

(15.7) Z(X/S, q) = Z(X, q) · Z(P/S, q)−1.

Then, Conjecture 1 for Z(X, q) and Conjecture 2 for Z(P/S, q) imply
Conjecture 2 for Z(X/S, q). �



66 M. LEVINE AND R. PANDHARIPANDE

References

[1] K. Behrend, Donaldson-Thomas invariants via microlocal geometry,
math.AG/0507523.

[2] K. Behrend and B. Fantechi, Symmetric obstruction theories and Hilbert

schemes of points on threefolds, math.AG/0512556.
[3] J. Bryan and R. Pandharipande, The local Gromov-Witten theory of curves,

math.AG/0411037.
[4] S. Dai, Northeastern University Ph.D. thesis, in preparation.
[5] Y. Eliashberg, A. Givental, H. Hofer, Introduction to symplectic field theory,

GAFA 2000, 560–673.
[6] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory,

Invent. Math. 139 (2000), 173-199.
[7] C. Faber and R. Pandharipande, Relative maps and tautological classes, JEMS

7 (2005), 13–49.
[8] W. Fulton, Intersection theory. Ergebnisse der Mathematik und ihrer Grenz-

gebiete (3) 2, Springer-Verlag, Berlin-New York, 1984.
[9] W. Fulton, A note on the arithmetic genus. Amer. J. Math. 101 (1979), no. 6,

1355–1363.
[10] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math.

135 (1999), 487–518.
[11] E. Ionel and T. Parker, Relative Gromov-Witten invariants, Ann. of Math.

157 (2003), 45–96.
[12] M. Kontsevich, Enumeration of rational curves via torus actions, The moduli

space of curves (Texel Island, 1994), 335–368, Progr. Math. 129, Birkhuser:
Boston, MA, 1995.

[13] M. Lazard, Sur les groupes de Lie formels à un paramètre, Bull. Soc. Math.
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