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Abstract. The double point relation defines a natural theory of
algebraic cobordism for bundles on varieties. We construct a simple
basis (over Q) of the corresponding cobordism groups over Spec(C)
for all dimensions of varieties and ranks of bundles. The basis con-
sists of split bundles over products of projective spaces. Moreover,
we prove the full theory for bundles on varieties is an extension of
scalars of standard algebraic cobordism.
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Introduction

0.1. Algebraic cobordism. A successful theory of algebraic cobor-
dism has been constructed in [6] from Quillen’s axiomatic perspective.
The result Ω∗ is the universal oriented Borel-Moore homology theory
of schemes, yielding the universal oriented Borel-Moore cohomology
theory Ω∗ for the subcategory of smooth schemes.

Let k be a field of characteristic 0. Let Schk be the category of sepa-
rated schemes of finite type over k, and let Smk be the full subcategory
of smooth quasi-projective k-schemes. A geometric presentation of al-
gebraic cobordism in characteristic 0 via double point relations is given
in [7].
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0.2. Double point degenerations. Let Y ∈ Smk be of pure dimen-
sion. A morphism

π : Y → P1

is a double point degeneration over 0 ∈ P1 if π−1(0) can be written as

π−1(0) = A ∪ B

where A and B are smooth codimension one closed subschemes of Y ,
intersecting transversely. The intersection

D = A ∩ B

is the double point locus of π over 0 ∈ P1. We do not require A, B, or
D to be connected. Moreover, A, B, and D are allowed to be empty.

Let NA/D and NB/D denote the normal bundles of D in A and B
respectively. Since OD(A + B) is trivial,

NA/D ⊗ NB/D
∼= OD.

Since OD ⊕ NA/D
∼= NA/D ⊗ (OD ⊕ NB/D), the projective bundles

(0.1) P(OD ⊕ NA/D) → D and P(OD ⊕ NB/D) → D

are isomorphic. Let

P(π) → D

denote either of (0.1).

0.3. M(X)+. For X ∈ Schk, let M(X) denote the set of isomorphism
classes over X of projective morphisms

(0.2) f : Y → X

with Y ∈ Smk. The set M(X) is a monoid under disjoint union of
domains and is graded by the dimension of Y over k. Let M∗(X)+

denote the graded group completion of M(X).
Alternatively, Mn(X)+ is the free abelian group generated by mor-

phisms (0.2) where Y is irreducible and of dimension n over k. Let

[f : Y → X] ∈ M∗(X)+

denote the element determined by the morphism.
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0.4. Double point relations. Let X ∈ Schk, and let p1 and p2 denote
the projections to the first and second factors of X × P1 respectively.

Let Y ∈ Smk be of pure dimension. Let

g : Y → X × P1

be a projective morphism for which the composition

(0.3) π = p2 ◦ g : Y → P1

is a double point degeneration over 0 ∈ P1. Let

[A → X], [B → X], [P(π) → X] ∈ M(X)+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g.

Definition 1. Let ζ ∈ P1(k) be a regular value of π. We call the map
g a double point cobordism with degenerate fiber over 0 and smooth
fiber over ζ. The associated double point relation over X is

(0.4) [Yζ → X] − [A → X] − [B → X] + [P(π) → X]

where Yζ = π−1(ζ).

The relation (0.4) depends not only on the morphism g and the point
ζ, but also on the choice of decomposition of the fiber

π−1(0) = A ∪ B.

We view (0.4) as an analog of the classical relation of rational equiva-
lence of algebraic cycles.

Let R∗(X) ⊂ M∗(X)+ be the subgroup generated by all double
point relations over X. Since (0.4) is a homogeneous element of M∗(X)+,
R∗(X) is a graded subgroup of M∗(X)+.

Definition 2. For X ∈ Schk, double point cobordism ω∗(X) is defined
by the quotient

(0.5) ω∗(X) = M∗(X)+/R∗(X).

A central result of [7] is the isomorphism

(0.6) Ω∗
∼= ω∗

which provides a geometric presentation of algebraic cobordism. Since
resolution of singularities and Bertini’s results are used, the isomor-
phism is established only when k has characteristic 0.
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0.5. Over a point. We write Ω∗(k) and ω∗(k) for Ω∗(Spec (k)) and
ω∗(Spec (k)) respectively. Let L∗ be the Lazard ring [4]. The canonical
map

L∗ → Ω∗(k)

classifying the formal group law for Ω∗ is proven to be an isomorphism
in [6, Theorem 4.3.7]. By Quillen’s result for complex cobordism (in
topology),

Ln
∼= MU−2n(pt),

and the well-known generators of MU∗(pt)Q [11, Chapter VII], we see
Ω∗(k) ⊗Z Q is generated as a Q-algebra by the classes of projective
spaces. The following result is then a consequence of (0.6),

(0.7) ω∗(k) ⊗Z Q =
⊕

λ

Q[Pλ1 × ... × Pλℓ(λ) ] ,

where the sum is over all partitions λ. The partition λ = ∅ corresponds
to [P0] in grade 0.

0.6. Bundles. For X ∈ Schk, let Mn,r(X) denote the set of isomor-
phism classes over X of pairs

[f : Y → X,E]

with Y ∈ Smk of dimension n, f projective, and E a rank r vector
bundle on Y . The set Mn,r(X) is a monoid under disjoint union of
domains. Let Mn,r(X)+ denote the group completion of Mn,r(X).

Double point relations are easily defined in the setting of pairs fol-
lowing [7, Section 13]. Let Y ∈ Smk be of pure dimension n + 1.
Let

g : Y → X × P1

be a projective morphism for which the composition

π = p2 ◦ g : Y → P1

is a double point degeneration over 0 ∈ P1. Let E be a rank r vector
bundle on Y . Let

[A → X,EA], [B → X,EB], [P(π) → X,EP(π)] ∈ Mn,r(X)+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g. Here, EA

and EB denote the restrictions of E to A and B respectively. The
restriction EP(π) is defined by pull-back from Y via

P(π) → D ⊂ Y .
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Definition 3. Let ζ ∈ P1(k) be a regular value of π. The associated
double point relation over X is

[Yζ → X,EYζ
] − [A → X,EA] − [B → X,EB] + [P(π) → X,EP(π)]

where Yζ = π−1(ζ).

For X ∈ Schk, let Rn,r(X) ⊂ Mn,r(X)+ be the subgroup gener-
ated by all double point relations. Double point cobordism theory for
bundles on varieties is defined by

ωn,r(X) = Mn,r(X)+/Rn,r(X).

The sum

ω∗,r(X) =
∞⊕

n=0

ωn,r(X)

is always a ω∗(k)-module via product (and pull-back). If X ∈ Smk,
then ω∗,r(X) is also a module over the ring ω∗(X).

0.7. Basis. The main result of the paper is the construction of a basis
of ωn,r(k) analogous to the fundamental presentation (0.7). Our basis
is indexed by pairs of partitions. A partition pair of size n and type r
is a pair (λ, µ) where

(i) λ is a partition of n,
(ii) µ is a sub-partition of λ of length ℓ(µ) ≤ r.

The sub-partition condition means µ is obtained by deleting parts of
λ. The partition µ may be empty and may equal λ if ℓ(λ) ≤ r. Sub-
partitions µ, µ′ ⊂ λ are equivalent if they differ by permuting equal
parts of λ.

Let Pn,r be the set of all partition pairs of size n and type r. For
example,

P3,2 =





(3, ∅), (3, 3),
(21, ∅), (21, 2), (21, 1), (21, 21),

(111, ∅), (111, 1), (111, 11)



 .

To each (λ, µ) ∈ Pn,r, we associate an element

φ(λ, µ) ∈ ωn,r(k)

by the following construction. Let Pλ = Pλ1 × . . .×Pλℓ(λ) . To each part
m of µ, let

Lm → Pλ

be the line bundle obtained by pulling-back OPm(1) via the projection
to the factor

Pλ → Pm
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corresponding to the part m. Since µ ⊂ λ, m is part of λ. We define

φ(λ, µ) = [Pλ, Or−ℓ(µ) ⊕
⊕

m∈µ

Lm ] .

The bundle on Pλ has a trivial factor of rank r − ℓ(µ).

Theorem 1. For n, r ≥ 0, we have

ωn,r(k) ⊗Z Q =
⊕

(λ,µ)∈Pn,r

Q · φ(λ, µ) .

In other words, the elements φ(λ, µ) determine a basis of ωn,r(k)⊗ZQ.
If r = 0, Theorem 1 specializes to (0.7). In case (n, r) = (3, 2), the
basis of Theorem 1 is given by

[P3,O2],
[P3,O ⊕O(1)],
[P2 × P1,O2],
[P2 × P1,O ⊕O(1, 0)],
[P2 × P1,O ⊕O(0, 1)],
[P2 × P1,O(1, 0) ⊕O(0, 1)],
[P1 × P1 × P1,O2],
[P1 × P1 × P1,O ⊕O(1, 0, 0)],
[P1 × P1 × P1,O(1, 0, 0) ⊕O(0, 1, 0)] .

Theorem 1 is proven in Section 3. The argument requires study-
ing an algebraic cobordism theory for lists of line bundles on varieties
developed in Section 2.

The structure of ω∗,r(k) over Z is determined by the following result
proven in Section 3.3.

Theorem 2. For r ≥ 0, ω∗,r(k) is a free ω∗(k)-module with basis

ω∗,r(k) =
⊕

λ

ω∗(k) · φ(λ, λ)

where the sum is over all partitions λ of length at most r.

0.8. Over X. In fact, ω∗,r(k) determines ω∗,r(X) for all X ∈ Schk.
There is a natural map

γX : ω∗(X) ⊗ω∗(k) ω∗,r(k) → ω∗,r(X)

of ω∗(k)-modules defined by

γX

(
[Y

f
→ X] ⊗ φ(λ, λ)

)
=

[Y × Pλ f◦pY−→ X, Or−ℓ(λ) ⊕
⊕

m∈λ

p∗Pλ(Lm) ] .
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Here, λ has length at most r, and pY and pPλ are the projections of
Y × Pλ to Y and Pλ respectively.

Theorem 3. For r ≥ 0 and X ∈ Schk, the map γX is an isomorphism

of ω∗(k)-modules.

By Theorem 3, the algebraic cobordism theory ω∗,r of bundles on
varieties is simply an extension of scalars of the original theory ω∗.

0.9. Chern invariants. let Y be a nonsingular projective variety of
dimension n, and let E be a rank r vector bundle on Y . The Chern
invariants of the pair [Y,E] are

∫

Y

Θ
(
c1(TY ), . . . , cn(TY ), c1(E), . . . , cr(E)

)

where Θ is any graded degree n polynomial (with Q-coefficients) of the
Chern classes of the tangent bundle TY and E.

Let Cn,r be the finite dimensional Q-vector space of graded degree n
polynomials in the Chern classes.

Theorem 4. The Chern invariants respect algebraic cobordism. The

resulting map

ωn,r(k) ⊗Z Q → C∗
n,r

is an isomorphism.

A simple counting argument (given in Section 1) shows the dimension
of Cn,r equals the cardinality of Pn,r. In case (n, r) = (3, 2), there are
9 basic Chern invariants of [Y,E],

c3(TY ), c2(TY )c1(TY ), c1(TY )3, c2(TY )c1(E), c1(TY )2c1(E),

c1(TY )c2(E), c1(TY )c1(E)2, c2(E)c1(E), c1(E)3 .

Theorem 4 is proven jointly with Theorem 1 in Section 3.

0.10. Applications. For studying a theory associated to pairs [Y,E]
which admits a multiplicative double point degeneration formula, al-
gebraic cobordism ωn,r(C) is a useful tool. The full theory can be
calculated from the toric basis elements specified by Theorem 1.

The determinations of ω3(C) and ω2,1(C) have been used in [7] to
prove the conjectures of [1, 9, 10] governing the degrees of virtual classes
on the Hilbert schemes of points of 3-folds. Recently, Y. Tzeng [13]
has used the 4-dimensional basis of ω2,1(C) in a beautiful proof of
Göttsche’s conjecture [3] governing nodal curve counting (interpreted
as degrees of cycles in the Hilbert schemes of points of surfaces). The
basis of ωn,r(C) will be used in [5] for the study of flop invariance of
quantum cohomology.
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0.11. Speculations. Consider the algebraic group GLr over C. We
view ω∗,r(C) as an algebraic model for MU∗(BGLr). Theorem 4 may
be interpreted as saying ω∗,r(C) is dual to

MU∗(BGLr) = MU∗(pt)[[c1, . . . , cr]] .

D. Maulik suggests defining an algebraic cobordism theory ω∗,G for
principal G-bundles on algebraic varieties by the double point relation
of Definition 3. Perhaps the resulting theory over a point for classical
groups G is dual to MU∗(BG)?

An algebraic approach to MU∗(BG) for linear algebraic groups has
been proposed in [2] by limits of Ω∗ over algebraic approximations
to BG. The construction is similar to Totaro’s definition [12] of the
Chow ring of BG, but requires also the coniveau filtration (see [8] for
an alternative limit definition). For many examples, including BGLr,
the isomorphism

Ω∗(BG) ∼= MU∗(BG)

is obtained [2]. Such isomorphisms were predicted in [14].
Another approach to our paper is perhaps possible via a limit defi-

nition of Ω∗(BGLr). There should be a map

Ω∗(BGLr) → ω∗,r(C)

which is injective by Chern invariants and surjective by Proposition 11.

0.12. Acknowledgments. We thank D. Abramovich, J. Li, D. Maulik,
B. Totaro, and Y. Tzeng for discussions about algebraic cobordism and
double point degenerations. The basis of Theorem 1 was guessed while
writing [7]. Conversations with M. Levine played an essential role. He
suggested the possibility of the extension of scalars result established
in Theorem 3.

Y.-P. L. was supported by NSF grant DMS-0901098. R. P. was
supported by NSF grant DMS-0500187.

1. Chern classes

1.1. Cobordism invariance. Let n, r ≥ 0. There is canonical bilin-
ear map

ρ : Mn,r(k)+ ⊗Z Q × Cn,r → Q

defined by integration,

ρ([Y,E], Θ) =

∫

Y

Θ
(
c1(TY ), . . . , cn(TY ), c1(E), . . . , cr(E)

)
.

Proposition 5. The pairing ρ annihilates Rn,r(k).
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Proof. In case r = 0, the invariance of the Chern numbers of the tan-
gent bundle is a well-known property of algebraic cobordism over a
Spec (C), see [6, 11].

Let Y ∈ Smk be of pure dimension n + 1. Let

(1.1) π : Y → P1

be a projective morphism which is a double point degeneration over
0 ∈ P1. Let L be a line bundle on Y . Suppose L is very ample on Y .
Cutting Y with s generic sections of L yields an nonsingular subvariety
of codimension s,

Ds ⊂ Y
π
→ P1 .

The composition Ds → P1 is a double point degeneration over 0 ∈ P1.
Let Yζ , A, B, and P(π) be the four spaces which occur in the double

point relation for (1.1) in Definition 3. Let

Yζ ∩ Ds, A ∩ Ds, B ∩ Ds, P(π) ∩ Ds

be the four spaces which occur in the relation for Ds → P1. Since the
tangent bundle of Z ∩ Ds satisfies

0 → TZ∩Ds → TZ |Z∩Ds →
s⊕

i=1

L → 0

in each of the four cases, we have

c(TZ∩Ds) =
c(TZ)

(1 + c1(L))s
,

ci(TZ∩Ds) = ci(TZ) − s · ci−1(TZ)c1(L) + · · · ,

where we have suppressed the restrictions. The application of the r = 0
case of the Proposition to the degenerations Ds → P1 for all s implies
(by descending induction) the r = 1 case for double point relations
where L is ample.

Similarly if L1, . . . , Lm are very ample line bundles on Y , we can
consider

Ds1,...,sm ⊂ Y
π
→ P1

obtained by cutting with s1 sections of L1, s2 sections of L2, . . . , and
sm sections of Lm. The application of the r = 0 case of the Proposition
to the degeneration Ds1,...,sm → P1 for all s1, . . . , sm implies invari-
ance under the double point relation of graded degree n polynomials
in the Chern classes of the tangent bundle and the Chern classes of
L1, . . . , Lm.

The r = 1 case of the Proposition follows since every line bundle L
may be written as the difference of two very ample line bundles.
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To prove the r > 1 case of the Proposition, we use a splitting argu-
ment. Let π be a double point degeneration as above (1.1). Let E be
a rank r bundle on Y . Let

F(E) → Y
π
→ P1

by the complete flag variety over Y obtained from E. The composi-
tion F(E) → P1 is a double point degeneration with tautological line
bundles L1, . . . , Lr which sum in K-theory to the pull-back of E. The
established line bundle results then yield the r > 1 case. ¤

As a consequence of Proposition 5, the pairing ρ descends,

(1.2) ρ : ωn,r(k) ⊗Z Q × Cn,r → Q .

Our first goal is to bound the rank of the pairing from below.

1.2. Independence.

1.2.1. Monomials of Cn,r. For notational convenience, we write ele-
ments Θ ∈ Cn,r as polynomials

Θ(u1, . . . , un, v1, . . . , vr)

where ui = ci(TY ) and vi = ci(E). Both ui and vi have degree i. A
canonical basis of Cn,r is obtained by monomials of graded degree n.

Let Qn,r be the set of partition pairs (ν, µ) where

(i) µ is a partition of size |µ| ≤ n with largest part at most r,
(ii) ν is a partition of n − |µ|.

The correspondence

(1.3)
n∏

i=1

uli
i

r∏

j=1

v
mj

j ↔ (1l1 · · ·nln , 1m1 · · · rmr)

yields a bijection between the monomial basis of Cn,r and the set Qn,r.
Let C(ν, µ) denote the monomial associated to (ν, µ) ∈ Qn,r.

Lemma 6. There is a natural bijection ǫ : Qn,r → Pn,r .

Proof. Given (ν, µ) ∈ Qn,r, define

ǫ(ν, µ) = (ν ∪ µt, µt) ∈ Pn,r .

Here, µt is the partition obtained by transposing the Young diagram
associated to µ. Hence, µt has length at most r. ¤
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1.2.2. Ordering. The v-degree of a monomial in Cn,r is the vector

degv

(
n∏

i=1

uli
i

r∏

j=1

v
mj

j

)
= (m1,m2, . . . ,mr) ∈ Zr

≥0 .

We define a total ordering on Zr
≥0 by the following rule:

(m1, . . . ,mr) > (m′
1, . . . ,m

′
r)

if either mr > m′
r or if mj = m′

j for all j > i and mi > m′
i. The

resulting partial order on the monomials on Cn,r (indexed by Qn,r) is
sensitive only the variables vi.

1.2.3. Bilinear pairing. Let M be the matrix with rows and columns
indexed by Qn,r and elements

Mn,r[(ν, µ), (ν ′, µ′)] = ρ
(
φ
(
ǫ(ν, µ)

)
, C(ν ′, µ′)

)

for (ν, µ), (ν ′, µ′) ∈ Qn,r. Recall, the map

φ : Pn,r → ωn,r(k)

was defined in Section 0.7. The rows and columns of Mn,r are ordered
by the partial ordering on Qn,r defined in Section 1.2.2.

Lemma 7. If (ν, µ) < (ν ′, µ′) in the partial order of Qn,r, then

Mn,r[(ν, µ), (ν ′, µ′)] = 0 .

Proof. Let µ = 1m1 · · · rmr and µ′ = 1m′

1 · · · rm′

r . If (ν, µ) < (ν ′, µ′),
then, in the highest index i where a difference occurs, mi < m′

i.
Suppose the difference occurs in the index i = r. Then, mr is the

minimal part of µt. For the pair [Y,E] = φ(ν, µ), the bundle E is a
direct sum of r line bundles pulled-back from the O(1) factors of a
product of r projective spaces (with minimal dimension mr). Since

mr < m′
r, the class c

m′

r
r (E) vanishes on Y by dimension considerations.

If the highest difference occurs in an index i < r, the argument is the
same (following again from elementary dimension considerations). ¤

Proposition 8. Mn,r is a nonsingular matrix.

Proof. By Lemma 7, the matrix Mn,r is block lower triangular with
respect to the partial ordering on Qn,r. The blocks are determined by
all (ν, µ) ∈ Qn,r with the same µ.

Let µ = 1m1 . . . rmr . Consider the bundle

E =
⊕

m∈µt

Lm −→ Pµt

,
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following the notation of Section 0.7. Since

(1.4)

∫

Pµt
c1(E)m1c2(E)m2 . . . cr(E)mr = 1 ,

the block in Mn,r corresponding to µ is the matrix Mn−|µ|,0. The latter
is nonsingular by well-known results about the usual r = 0 theory of
algebraic cobordism [6, 11]. ¤

As a consequence of Proposition 8, the generators proposed in The-
orem 1 span a subspace of ωn,r(k) ⊗Z Q of rank at least |Pn,r|. In
particular,

dim (ωn,r(k) ⊗Z Q) ≥ |Pn,r| .

Moreover, the pairing (1.2) has rank at least |Pn,r|. To complete the
proofs of Theorem 1 and 4, we will prove the reverse inequality

dim (ωn,r(k) ⊗Z Q) ≤ |Pn,r|

in Section 3.

2. Lists of line bundles

2.1. Lists. For X ∈ Schk, let Mn,1r(X) denote the set of isomorphism
classes over X of tuples

[f : Y → X,L1, . . . , Lr]

with Y ∈ Smk of dimension n, f projective, and L1, . . . , Lr an ordered
list of line bundles on Y . The set Mn,1r(X) is a monoid under disjoint
union of domains. Let Mn,1r(X)+ denote the group completion of
Mn,1r(X).

Let Y ∈ Smk be of pure dimension n + 1, and let

g : Y → X × P1

be a projective morphism for which the composition

π = p2 ◦ g : Y → P1

is a double point degeneration over 0 ∈ P1. Let L1, . . . , Lr be a list of
line bundles on Y . Let

[A → X,L1,A, . . . Lr,A], [B → X,L1,B . . . Lr,B],

[P(π) → X,L1,P(π), . . . , L1,P(π)] ∈ Mn,1r(X)+

be obtained from the fiber π−1(0) and the morphism p1 ◦ g.
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Definition 4. Let ζ ∈ P1(k) be a regular value of π. The associated
double point relation over X is

[Yζ → X, {Li,Yζ
}] − [A → X, {Li,A}]

− [B → X, {Li,B}] + [P(π) → X, {Li,P(π)}]

where Yζ = π−1(ζ).

For X ∈ Schk, let Rn,1r(X) ⊂ Mn,1r(X)+ be the subgroup generated
by all double point relations. Double point cobordism theory for lists
of line bundles on varieties is defined by

ωn,1r(X) = Mn,1r(X)+/Rn,1r(X).

The sum

ω∗,1r(X) =
∞⊕

n=0

ωn,1r(X)

is always a ω∗(k)-module via product. If X ∈ Smk, then ω∗,1r(X) is
also a module over the ring ω∗(X).

2.2. Basis. A partition list of size n and type r is a tuple (λ, (m1, . . . ,mr))
where

(i) λ is a partition of n,
(ii) (m1, . . . ,mr) is a list with mi ≥ 0 whose union of non-zero parts

is a sub-partition µ ⊂ λ.

Let Pn,1r be the set of all partition lists of size n and type r. For
example,

P3,12 =





(3, (0, 0)), (3, (3, 0)), (3, (0, 3)),
(21, (0, 0)), (21, (2, 0)), (21, (1, 0)),

(21, (0, 1)), (21, (0, 2)), (21, (2, 1)), (21, (1, 2)),
(111, (0, 0)), (111, (1, 0)), (111, (0, 1)), (111, (1, 1))





.

To each (λ, (m1, . . . ,mr)) ∈ Pn,1r , we associate an element

φ(λ, (m1, . . . ,mr)) ∈ ωn,r(k)

by the following construction. Let Pλ = Pλ1 × . . . × Pλℓ(λ) . To each
non-zero part mi , let

Lmi
→ Pλ

be the line bundle obtained by pulling-back OPmi (1) via the projection
to the factor

Pλ → Pmi
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corresponding to the part mi. If mi = 0, let Lmi
be the trivial line

bundle on Pλ. We define

φ(λ, (m1, . . . ,mr)) = [Pλ, (Lm1 , . . . , Lmr
) ] .

Theorem 9. For n, r ≥ 0, we have

ωn,1r ⊗Z Q =
⊕

(λ,(m1,...,mr))∈Pn,1r

Q · φ(λ, (m1, . . . ,mr)) .

Theorem 9 will be proven in Section 2.6 with a mix of techniques
from [6, 7] and new methods for studying algebraic cobordism relations
for line bundles on varieties.

2.3. Chern invariants. Let Cn,1r be the Q-vector space of graded de-
gree n polynomials in the Chern classes

c1(TY ), . . . , cn(TY ), c1(L1), . . . , c1(Lr) .

There is canonical bilinear map

ρ : Mn,1r(k)+ ⊗Z Q × Cn,1r → Q

defined by integration,

ρ([Y,E], Θ) =

∫

Y

Θ
(
c1(TY ), . . . , cn(TY ), c1(L1), . . . , c1(Lr)

)
.

The proof of Proposition 5 implies the pairing ρ annihilates Rn,1r(k).
Hence, ρ descends,

ρ : ωn,1r(k) ⊗Z Q × Cn,1r → Q .

The monomial basis of Cn,1r is easily seen to have the same cardinality
as the set Pn,1r . A straightforward extension of the methods of Section
1.2.3 implies the elements of

{φ(λ, (m1, . . . ,mr)) | (λ, (m1, . . . ,mr)) ∈ Pn,1r} ⊂ ωn,1r ⊗Z Q

span a subspace of dimension |Pn,1r |. In particular,

dim(ωn,1r ⊗Z Q) ≥ |Pn,1r | .

2.4. Globally generated line bundles. Let m ⊂ ω∗(k) be the ideal
generated by all elements of positive dimension,

0 → m → ω∗(k) → Z → 0 .

Since ω∗,1r(k) is a ω∗(k)-module, we can define the graded quotient

ω̃∗,1r(k) =
ω∗,1r(k)

m · ω∗,1r(k)
, ω̃∗,1r(k) =

∞⊕

n=0

ω̃n,1r(k) .
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For (λ, (m1, . . . ,mr)) ∈ Pn,1r , let

φ̃(λ, (m1, . . . ,mr)) ∈ ω̃n,1r(k)

denote the class of φ(λ, (m1, . . . ,mr)) in the quotient.

Proposition 10. Let Y ∈ Smk be a projective variety of dimension n
with line bundles L1, . . . , Lr all generated by global sections. Then,

[Y, L1, . . . , Lr] ∈ ω̃n,1r(k)

lies in the Z-linear span of
{

φ̃(λ, (m1, . . . ,mr))
∣∣∣ (λ, (m1, . . . ,mr)) ∈ Pn,1r ,

r∑

i=1

mi = n

}

in ω̃n,1r(k).

Proof. Since L1, . . . , Lr are all generated by global sections on Y , there
exists a projective morphism

f : Y → Pd1 × · · · × Pdr , Li = f ∗(OPdi (1)) .

We view f as determining an element of algebraic cobordism,

[f : Y → Pd1 × · · · × Pdr ] ∈ ωn(Pd1 × · · · × Pdr) .

A fundamental result of [6, Theorem 1.2.19] is the isomorphism

(2.1) A∗(X) ∼= ω̃∗(X) =
ω∗(X)

m · ω∗(X)
,

where A∗(X) is the Chow theory of X (with Z coefficients). The Chow
group

An(Pd1 × · · · × Pdr)

is generated by linear subvarieties

ιm1,...,mr
: Pm1 × · · · × Pmr →֒ Pd1 × · · · × Pdr

where
∑r

i=1 mi = n. We conclude [f ] is a Z-linear combination of the
elements

[ιm1,...,mr
] ∈ ω̃n(Pd1 × · · · × Pdr).

Relations in ωn(Pd1×· · ·×Pdr) lift canonically to ωn,1r(Pd1×· · ·×Pdr)
by pulling-back the list

(2.2) OPd1 (1), . . . ,OPdr (1)

everywhere. Since all double point relations in ωn(Pd1×· · ·×Pdr) occur
over Pd1 × · · · × Pdr , the pull-back of the list (2.2) is well-defined and
canonical. The pull-back of the list (2.2) via ιm1,...,mr

yields the element

φ(λ, (m1, . . . ,mr)) ∈ ωn,1r(k) ,
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where
∑r

i=1 mi = n. Here, λ is obtained simply by removing the 0 parts
mi. Hence, after pushing-forward from Pd1 × · · · × Pdr to Spec (k), the
argument is complete. ¤

2.5. Projective bundles. We will need auxiliary results on projective
bundles to remove the global generation hypothesis of Proposition 10.

Let Z ∈ Smk be a projective variety equipped with a list of line
bundles L1, . . . , Lr and a split rank 2 vector bundle

B = OZ ⊕ N.

We are interested in the classes

[P(B), L1, . . . , Lr], [P(B), L1(±1), . . . , Lr(±1)] ∈ ω∗,1r(k) .

Here, P(B) denotes the projectivization by sub-lines, and Li(±1) stands
for Li ⊗OP(B)(±1).

Let s be the section Z → P(B) determined by the factor N ⊂ B. The
divisor s is an element of the linear series associated to OP(B)(1). The
degeneration to the normal cone of s yields a double point relation in
ω∗(Z). After pulling-back the list L1, . . . , Lr, we obtain a double point
relation in ω∗,1r(Z). Twisting the list by the exceptional divisor of the
degeneration yields the relation

[P(B), L1, . . . , Lr]

−[P(B), L1(1), . . . , Lr(1)]

−[P(OZ ⊕ N∗), L1(−1), . . . Lr(−1)]

+[P(B), L1 ⊗ N∗, . . . , Lr ⊗ N∗] = 0 ∈ ω∗,1r(Z) .

Since (OZ ⊕N∗)⊗N ∼= B, we may rewrite the above relation in the
following form:

[P(B), L1, . . . , Lr]

−[P(B), L1(1), . . . , Lr(1)]

−[P(B), L1 ⊗ N∗(−1), . . . Lr ⊗ N∗(−1)]

+[P(B), L1 ⊗ N∗, . . . , Lr ⊗ N∗] = 0 ∈ ω∗,1r(Z) .

After replacing Li with Li ⊗ N everywhere, we obtain our main pro-
jective bundle relation in ω∗,1r(Z):

[P(B), L1(−1), . . . Lr(−1)] = [P(B), L1 ⊗ N, . . . , Lr ⊗ N ]

−[P(B), L1 ⊗ N(1), . . . , Lr ⊗ N(1)]

+[P(B), L1, . . . , Lr] .
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Proposition 11. Let Y ∈ Smk be a projective variety of dimension n
with arbitrary line bundles L1, . . . , Lr . Then,

[Y, L1, . . . , Lr] ∈ ω̃n,1r(k)

lies in the Z-linear span of
{

φ̃(λ, (m1, . . . ,mr))
∣∣∣ (λ, (m1, . . . ,mr)) ∈ Pn,1r ,

r∑

i=1

mi = n

}

in ω̃n,1r(k).

Proof. Let Z ⊂ Y be a nonsingular divisor such that L1(Z), . . . , Lr(Z)
are all globally generated. Consider the double point relation in ωn,1r(Y )
obtained from degenerating to the normal cone of Z, pulling-back the
list L1, . . . , Lr, and twisting by the exceptional divisor of the degener-
ation:

[Y, L1, . . . , Lr](2.3)

−[Y, L1(Z), . . . , Lr(Z)]

−[P(OZ ⊕OZ(Z)), L1(−1), . . . Lr(−1)]

+[P(OZ ⊕OZ(Z)), L1(Z), . . . , Lr(Z)] = 0 ∈ ωn,1r(Y ) .

Proposition 10 applies to the second and fourth term of relation
(2.3). The third term, however, requires further analysis. Using our
main projective bundle relation in ωn,1r(Z), we can trade the third term
for

−[P(OZ ⊕OZ(Z)), L1(Z), . . . , Lr(Z)]

+[P(OZ ⊕OZ(Z)), L1(Z)(1), . . . , Lr(Z)(1)]

−[P(OZ ⊕OZ(Z)), L1, . . . , Lr] .

The last two terms are not covered by Proposition 10.
We have proven the Proposition modulo elements of the form

[P(B), L′
1, . . . , L

′
r], [P(B), L′

1(1), . . . , L′
r(1)] ∈ ωn,1r(Z)

where B = OZ ⊕ N is a split rank 2 bundle and L′
i are arbitrary line

bundles on Z. Let

π : P(B) → Z

be the projection. Let Z ′ ⊂ Z be a nonsingular divisor such that

L′
1(Z

′), . . . , L′
r(Z

′), L′
1(Z

′)(1), . . . , L′
r(Z

′)(1)

are all globally generated on P(B).
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Consider the double point relation in ωn,1r(Z) obtained from degen-
erating to the normal cone of π−1(Z ′) ⊂ P(B), pulling-back the list
L′

1, . . . , L
′
r, and twisting by the exceptional divisor of the degeneration:

[P(B), L′
1, . . . , L

′
r](2.4)

−[P(B), L′
1(Z

′), . . . , L′
r(Z

′)]

−[P(BZ′) ×Z′ P(OZ′ ⊕OZ′(Z ′)), L′
1(0,−1), . . . L′

r(0,−1)]

+[P(BZ′) ×Z′ P(OZ′ ⊕OZ′(Z ′)), L′
1(Z

′), . . . , L′
r(Z

′)] = 0

in ωn,1r(Z) . A similar relation holds for [P(B), L′
1(1), . . . , L′

r(1)]. We
treat the third term of (2.4) in both cases with our main projective
bundle relation for the P(OZ′ ⊕OZ′(Z ′)) projectivization.

We now have proven the Proposition modulo elements of the form

[P(B1) ×Z′ P(B2), L
′′
1, . . . , L

′′
r ],

[P(B1) ×Z′ P(B2), L
′′
1(1, 0), . . . , L′′

r(1, 0)],

[P(B1) ×Z′ P(B2), L
′′
1(0, 1), . . . , L′′

r(0, 1)],

[P(B1) ×Z′ P(B2), L
′′
1(1, 1), . . . , L′′

r(1, 1)] ∈ ωn,1r(Z ′)

where Bi = OZ′⊕Ni are split rank 2 bundles and L′′
i are arbitrary lines

bundles on Z ′.
We iterate the procedure by selecting a sufficiently positive divisor

Z ′′ ⊂ Z ′. Since the dimensions of the divisors are dropping, the proce-
dure terminates when dimension 0 is reached with the elements

[P1 × · · · × P1

︸ ︷︷ ︸
n

,O(l1, . . . , ln), . . . ,O(l1, . . . , ln)︸ ︷︷ ︸
r

] ∈ ωn,1r(k)

with li ∈ {0, 1}. These elements are covered by Proposition 10. ¤

2.6. Proof of Theorem 9. We prove the result by induction on n.
The n = 0 case is clear. We assume the result for all n′ < n.

Using Theorem 9 for n′ < n, we conclude the grade n part of

m · ω∗,1r ⊗Z Q

is equal to the Q-linear span of
{

φ(λ, (m1, . . . ,mr))
∣∣∣ (λ, (m1, . . . ,mr)) ∈ Pn,1r ,

r∑

i=1

mi < n

}

in ωn,1r(k) ⊗Z Q. By Proposition 11, we see

dim(ωn,1r(k) ⊗Z Q) ≤ |Pn,1r | .

Since we have already established the reverse inequality in Section 2.3,
we obtain

dim(ωn,1r(k) ⊗Z Q) = |Pn,1r | ,
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concluding the proof of Theorem 9. ¤

3. Higher rank

3.1. Splitting. As before, let m ⊂ ω∗(k) be the ideal generated by all
elements of positive dimension. Since ω∗,r(k) is a ω∗(k)-module, we can
define the graded quotient

ω̃∗,r(k) =
ω∗,r(k)

m · ω∗,r(k)
, ω̃∗,r(k) =

∞⊕

n=0

ω̃n,r(k) .

For (λ, µ) ∈ Pn,r, let

φ̃(λ, µ) ∈ ω̃n,r(k)

denote the class of φ(λ, µ) in the quotient.

Proposition 12. Let Y ∈ Smk be a projective variety of dimension n
with rank r vector bundle E. Then,

[Y,E] ∈ ω̃n,r(k)

lies in the Z-linear span of
{

φ̃(λ, µ)
∣∣∣ (λ, µ) ∈ Pn,r, |µ| = n

}

in ω̃n,r(k).

For the proof of Proposition 12, we will require the following basic
result.

Lemma 13. There exists a nonsingular projective variety Ŷ and a

birational morphism

Ŷ → Y

for which the pull-back of E to Ŷ has a filtration by sub-bundles

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

satisfying rank(Ei/Ei−1) = 1.

Proof. Consider the complete flag variety over Y ,

π : F(E) → Y .

There is a rational section s of π. The variety Ŷ is obtained from the
resolution of singularities of the graph closure of s in Y × F(E). ¤

To prove Proposition 12, let [Y,E] be given. Since

[Ŷ → Y ] = [Y → Y ] ∈ ω̃n(Y )

by (2.1), we conclude

[Ŷ → Y,E] = [Y → Y,E] ∈ ω̃n,r(Y )
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as before. After pushing-forward to Spec (k), we obtain

[Ŷ , E] = [Y,E] ∈ ω̃n,r(k).

On Ŷ , let L1, . . . , Lr be the list of line bundle obtained from the
subquotients of the filtration of E. Sending the extension parameters
to 0, we see

[Ŷ , E] = [Ŷ , L1 ⊕ · · · ⊕ Lr] ∈ ωn,r(k).

Finally, Proposition 11 applied to the list [Ŷ , L1, . . . , Lr] concludes the
proof of Proposition 12. ¤

3.2. Proofs of Theorems 1 and 4. We prove the result by induction
on n. The n = 0 case is clear. We assume the result for all n′ < n.

Using Theorem 1 for n′ < n, we conclude the grade n part of

m · ω∗,r ⊗Z Q

is equal to the Q-linear span of
{

φ̃(λ, µ)
∣∣∣ (λ, µ) ∈ Pn,r, |µ| < n

}

in ωn,r(k) ⊗Z Q. By Proposition 12, we see

dim(ωn,r(k) ⊗Z Q) ≤ |Pn,r| .

Since we have already established the reverse inequality in Section 1.2.3,
we obtain

dim(ωn,r(k) ⊗Z Q) = |Pn,r| ,

concluding the proof of Theorems 1 and 4. ¤

3.3. Proof of Theorem 2. Since Proposition 12 holds over Z, we see
ωn,r(k) is generated over Z by

{
φ(λ, µ)

∣∣∣ (λ, µ) ∈ Pn,r, |µ| = n
}

and the subgroups

ωn(k) · ω0,r(k), ωn−1(k) · ω1,r(k), . . . , ω1(k) · ωn−1,r(k) .

We now prove Theorem 2 by induction on n. Certainly, ωi(k) is a
free Z-module of rank equal to the number of partitions of i. Using
the induction hypothesis, we see ωn,r(k) has |Pn,r| generators over Z.
Since we know

dim(ωn,r(k) ⊗Z Q) = |Pn,r|,

no relations among these generators are possible. ¤



ALGEBRAIC COBORDISM OF BUNDLES ON VARIETIES 21

3.4. Product structure. There is a natural commutative ring struc-
ture on

ω∗,+(k) =
∞⊕

r=1

ω∗,r(k) =
∞⊕

n=0

∞⊕

r=1

ωn,r(k)

given by external product

[Y1, E1] · [Y2, E2] = [Y1 × Y2, p∗1(E1) ⊗ p∗2(E2)] .

Here, p1 and p2 are the projections of Y1 ×Y2 onto the first and second
factors respectively. There is an inclusion of rings

ω∗(k) →֒ ω∗,+(k), [Y ] 7→ [Y,O] .

By the basis result of Theorem 1, the product on ω∗,+(k) ⊗Z Q is
completely determined by the special case

[Pa,O(1)] · [Pb,O(1)] = [Pa × Pb,O(1, 1)] .

Question. What is the decomposition of [Pa ×Pb,O(1, 1)] in the basis

of ωa+b,1(k) ⊗Z Q given in Theorem 1 ?

Of course, Theorem 4 provides a computational approach to the
question for any fixed a and b. Is there a closed formula or any structure
in the answer?

4. Results over X

4.1. Surjectivity. Following the notation of Section 2.4, let

ω̃∗,1r(X) =
ω∗,1r(X)

m · ω∗,1r(X)
, ω̃∗,1r(X) =

∞⊕

n=0

ω̃n,1r(X) .

Consider the element

[Y → X,L1, . . . , Lr] ∈ ωn,1r(X) .

If all the Li are globally generated on Y , then there exists a projective
morphism

f : Y → X × Pd1 × · · · × Pdr , Li = f ∗(OPdi (1)) .

We view f as determining an element of algebraic cobordism,

[f : Y → X × Pd1 × · · · × Pdr ] ∈ ωn(X × Pd1 × · · · × Pdr) .

The Chow group An(X × Pd1 × · · · × Pdr) is generated over A∗(X)
by linear subvarieties

ιm1,...,mr
: Pm1 × · · · × Pmr →֒ Pd1 × · · · × Pdr
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where
∑r

i=1 mi ≤ n. Using (2.1) for X × Pd1 × · · · × Pdr , we see [f ] is
a Z-linear combination of elements of the form

[ι × ιm1,...,mr
] ∈ ω̃n(X × Pd1 × · · · × Pdr)

where ι : W → X is a resolution of singularities of an irreducible
subvariety of X and

n = dim(W ) +
r∑

i=1

mi .

Concluding as in the proof of Proposition 10, we find

[Y → X,L1, . . . , Lr] ∈ ω̃n,1r(X)

lies in the subspace spanned by products of elements of ωδ(X) with
basis terms of ωn−δ,1r(k).

The projective bundle analysis in the proof of Proposition 11 occurs
entirely over Y and thus over X. Hence, we can remove the global
generation hypothesis on the bundles Li just as before.

Since the splitting of Lemma 13 also occurs over Y , we conclude the
composition

ω∗(X) ⊗ω∗(k) ω∗,r(k)
γX−→ ω∗,r(X) −→ ω̃∗,r(X)

is surjective.

Proposition 14. The natural map

γX : ω∗(X) ⊗ω∗(k) ω∗,r(k) → ω∗,r(X)

is surjective.

Proof. We have already seen γX surjects onto ω∗,r(X)/m ·ω∗,r(X). But
then,

m · ω∗(X) ⊗ω∗(k) ω∗,r(k)

surjects via γX onto

m · ω∗,r(X)

m
2 · ω∗,r(X)

.

The result follows by iteration since
⋂

i≥1 m
i = 0. ¤

4.2. Injectivity. Let c1, . . . , cr be variables with ci of degree i. Let
Ψ be the space of polynomials in c1, . . . , cr with Z-coefficients. For
homogeneous ψ ∈ Ψ of degree d, there are natural Chern operations

Cψ : ω∗,r(X) → ω∗−d(X)
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defined by

(4.1) Cψ([Y
f

−→ X,E]) =

f∗

(
ψ(c1(E), . . . , cr(E)) ∩ [Y → Y ]

)
∈ ω∗−d(X)

where the action of ψ on the right is via the standard Chern class
operations [6, Section 7.4] in algebraic cobordism.

To show definition (4.1) respects the double point relation in ω∗,r(X),
we argue as follows. Suppose

g : Y → X × P1

is a projective morphism for which the composition

π = p2 ◦ g : Y → P1

is a double point degeneration over 0 ∈ P1, and E is a rank r vector
bundle on Y . The Chern operation ψ(c1(E), . . . , cr(E)) is well-defined
on ω∗(Y ),

ψ : ω∗(Y ) → ω∗−d(Y ) .

Hence, for regular values ζ ∈ P1(k) of π,

ψ ∩
(
[Yζ → Y ] − [A → Y ] − [B → Y ] + [P(π) → Y ]

)
= 0 ∈ ω∗(Y ) .

Pushing-forward to X and using the functoriality of the Chern class,
we obtain

Cψ([Yζ → X,EYζ
]) − Cψ([A → X,EA])

− Cψ([B → X,EB]) + Cψ([P(π) → X,EP(π)]) = 0 ∈ ω∗(X)

which is the required compatibility.
By the characterization of ω∗,r(k) in Theorem 2, we have

(4.2) ω∗(X) ⊗ω∗(k) ω∗,r(k) =
⊕

λ

ω∗(X) ⊗ φ(λ, λ)

where the sum is over all partitions λ of length at most r. Consider
the pairing

ρX : ω∗(X) ⊗ω∗(k) ω∗,r(k) × Ψ → ω∗(X)

defined by

ρX
(
ζ, ψ) = Cψ(γX(ζ)) .

Using the basis (4.2), we see the pairing ρX is triangular with 1’s on
the diagonal by calculation (1.4). We have proven the following result.
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Proposition 15. The natural map

γX : ω∗(X) ⊗ω∗(k) ω∗,r(k) → ω∗,r(X)

is injective.

Propositions 14 and 15 together complete the proof of Theorem 3. In
fact, the proof of Theorem 3 is just a slight abstraction of the original
proof of Theorem 1.
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