

Moduli in Mathematics

Rahul Pandharipande

Zassenhaus Lecture I at The Ohio State University
25 March 2024

The moduli space of a mathematical structure parameterizes all deformations which respect the defining properties of the structure.
§।. Mechanical Linkages
As a first example, consider a mechanical linkage:

An abstract linkage Γ is a connected graph

$$
\Gamma=(\mathrm{V}, \mathrm{E}, \ell)
$$

where V and E are the vertex and edge sets and

$$
\ell: E \rightarrow \mathbb{R}_{>0}
$$

is an edge length function.

A planar linkage ϕ of type Γ is a function

$$
\phi: \vee \rightarrow \mathbb{R}^{2}
$$

which, for every edge $e=\left(v, v^{\prime}\right) \in \mathrm{E}$, satisfies the condition

$$
\ell(e)=\left|\phi(v)-\phi\left(v^{\prime}\right)\right| .
$$

For a fixed abstract linkage Γ, there could be many planar linkages:

What is the space of all planar linkages of type 「?

Let $\operatorname{Mod}(\Gamma)$ be the moduli space of planar linkages of type Γ,

$$
\operatorname{Mod}(\Gamma) \subset\left(\mathbb{R}^{2}\right)^{|\mathrm{V}|}
$$

defined by real algebraic equations corresponding to the edges.

Given a planar linkage, we can apply translations and rotations. Let

$$
\bmod (\Gamma)=\frac{\operatorname{Mod}(\Gamma)}{\mathbb{R}^{2} \rtimes \mathrm{SO}(2)}
$$

denote the quotient by these simple motions.
A first example: $\bmod \left(\prod_{0}^{0}\right)=S^{1} \times S^{1}$.

A basic exercise is to compute $\bmod (\Gamma)$ for the square:

The answer is:

What are the three singular points?

After labelling the edges:

the singular points can be drawn as:

Theorem (Kapovich-Millson 1999): For every compact smooth manifold M, there exists an abstract linkage Γ with

$$
\bmod (\Gamma) \stackrel{\text { diffeo }}{=} \mathrm{M} \sqcup \cdots \sqcup \mathrm{M}
$$

a finite disjoint union.

The result was first imagined by Thurston in the 1980s. The first step of the proof uses the Nash-Tognoli Theorem to realize M as a real algebraic set in \mathbb{R}^{n}. Once the latter is found, the proof of Kapovich-Millson is constructive.

Can we find an abstract linkage Γ with $\bmod (\Gamma)=S^{2}$?

An answer for Γ is:

The example is taken from the work of Dirk Schütz.

§II. Instantons

Let M be a compact, oriented, simply connected, smooth 4-manifold. The only interesting cohomology
of M is $H^{2}(\mathrm{M}, \mathbb{Z})$ which carries a unimodular
symmetric bilinear intersection form:

$$
H^{2}(\mathrm{M}, \mathbb{Z}) \times H^{2}(\mathbb{M}, \mathbb{Z}) \xrightarrow{\cup} H^{4}(\mathrm{M}, \mathbb{Z}) \cong \mathbb{Z}
$$

Theorem (Freedman 1982): M is classified up to homeomorphism by the intersection form on $H^{2}(\mathbb{M}, \mathbb{Z})$.

The algebraic invariants include the rank $\mathbb{Z}^{r} \cong H^{2}(\mathbb{M}, \mathbb{Z})$ and the signature σ of the intersection form. The form is definite if $\sigma= \pm \mathbf{r}$.

The intersection form

$$
H^{2}(\mathbb{M}, \mathbb{Z}) \times H^{2}(\mathbb{M}, \mathbb{Z}) \xrightarrow{\cup} H^{4}(\mathbb{M}, \mathbb{Z}) \cong \mathbb{Z}
$$

can either be defined via cup product or geometrically via intersection counts of Poincaré dual cycles:

For compact, oriented, simply connected, topological
4-manifolds, all unimodular symmetric bilinear forms can arise as intersection forms. Is this also true for smooth 4-manifolds?

Theorem (Donaldson 1983): In the smooth case, if the intersection form of M is definite, then the intersection form is diagonalizable over \mathbb{Z}.

There are many non-diagonalizable definite forms, but Donaldson rules them all out for smooth 4-manifolds.
The remarkable proof uses in a novel way the geometry of the moduli space of $\operatorname{SU}(2)$ instantons on M .

What possible path could an argument take?
Suppose there exists an oriented 5-manifold which bounds M together with a disjoint union of projective planes

$$
\mathbb{C P}^{2} \sqcup \cdots \sqcup \mathbb{C P}^{2}
$$

The supposed picture looks like:

Then, we could use properties of the oriented cobordism between M and the disjoint union

$$
\mathbb{C P}^{2} \sqcup \cdots \sqcup \mathbb{C P}^{2}
$$

A fundamental property is signature invariance,

$$
\sigma(\mathbf{M})=\sigma\left(\mathbb{C P}^{2} \sqcup \cdots \sqcup \mathbb{C P}^{2}\right)
$$

So such a cobordism yields information about the intersection form of M .

Hirzebruch's famous Signature Theorem expresses the signature of a 4 n -dimensional manifold in terms of explicit oriented cobordism invariants, the Pontryagin classes.

Donaldson's proof in the postive definite case:
Equip M with a Riemannian metric g and a principal SU (2)-bundle $\mathrm{P} \rightarrow \mathrm{M}$ with

$$
c_{2}(\mathrm{P}) \cdot[\mathrm{M}]=-1
$$

Consider a moduli space Mod of connections A on P:

- The curvature $F(A) \in \Omega^{2}(A d)$ is a 2 -form on M with values in the vector bundle on M associated to P via the adjoint representation of $\mathbf{S U}(2)$.
- The metric g together with an invariant metric on Ad yields a metric on $\Omega^{2}(A d)$.
- The Yang-Mills functional is defined by

$$
\int_{M}|F(A)|^{2} \mathrm{dvol}_{g} .
$$

- An instanton \mathbf{A} is a critical point for the Yang-Mills functional.
- We are interested in instantons A which are also self dual:

$$
F(A)=\star F(A)
$$

Mod is the moduli space of self dual instantons taken up to gauge transformation.

Mod is 5-dimensional, but is singular and not compact.
By deep results of Taubes, Uhlenbeck, and Donaldson, there is an associated compact oriented moduli space $\widetilde{\text { Mod }}$ of the following form:

- The locus $\mathrm{M} \subset$ Mod can be viewed in the following manner:

The point $x \in \mathrm{M} \subset \widetilde{\text { Mod }}$ is the limit of self-dual connections A where the amplitude $|\mathbf{F}(\mathbf{A})|^{2}$ of the curvature becomes a δ-function on M at the point x.

- The number of singularities of Mod is the number \mathbf{n} of pairs

$$
\pm \gamma \in H^{2}(\mathbf{M}, \mathbb{Z}) \quad \text { satisfying } \quad \int_{\mathbf{M}} \gamma \cup \gamma=1
$$

By simple algebra, $\mathbf{n} \leq \sigma(\mathbf{M})$ for positive definite forms with equality only in the diagonalizable case.

- \mathbf{M} is cobordant to a disjoint union of \mathbf{n} projective planes

$$
\mathbb{C P}^{2} \sqcup \cdots \sqcup \mathbb{C P}^{2}
$$

The disjoint union has signature $=\mathbf{n}$.

- Since the signature is an invariant of oriented cobordism, $\mathbf{n}=\sigma(\mathrm{M})$.

§III. Riemann surfaces

A Riemann surface C is a compact connected 1-dimensional complex manifold.

The genus g is the number of holes as a topological surface.

- genus 0: there is a unique complex structure (up to biholomorphism), the Riemann sphere.
- genus >0 : the complex structure can be varied while keeping the topology fixed.

C may also be viewed as an algebraic curve defined by the zero locus in \mathbb{C}^{2} of a single polynomial equation

$$
F(x, y)=0
$$

in the complex variables x, y (up to a few points at infinity).

For example, the cubic equation

$$
F(x, y)=y^{2}-x(x-1)(x-2)
$$

defines a Riemann surface of genus 1 with points in \mathbb{R}^{2} given by:

The complex structure can be varied by changing the coefficients of the defining polynomial:

$$
F_{\lambda}(x, y)=y^{2}-x(x-1)(x-\lambda)
$$

provides a 1-parameter family of Riemann surfaces of genus 1 .

We will also be interested in Riemann surfaces with marked points ($\mathrm{C}, \mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{n}}$):

Let \mathcal{M}_{g} be the moduli space of Riemann surfaces of genus g :

Riemann knew \mathcal{M}_{g} was (essentially) a non-compact complex manifold of dimension $3 g-3$.

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemann.)
Riemann constructs the variations of complex structure, states the dimension, and coins the term moduli in a single sentence in Crelle's Journal in 1857.

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen können daher beliebige Werthe annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

The remaining $3 p-3$ branch values of those
systems of μ-valued equally branched functions can therefore take arbitrary values; and thus a class of systems of $(2 p+1)$-connected functions and a corresponding class of algebraic equations depend upon $3 p-3$ continuously varying quantities, which should be called the moduli of these classes.

Consider degree μ coverings of the Riemann sphere with $2 p+2 \mu-2$ simple branch points:

By the Riemann-Hurwitz formula, the genus of the cover is p. The variation of complex structures of the cover is constructed by fixing $-p+2 \mu+1$ branch points in the Riemann sphere and letting the remaining $3 p-3$ branch points vary freely.

Hurwitz later studied these covers systematically around 1900 at ETH Zürich.

Deligne and Mumford in 1969 compactified the moduli space of Riemann surfaces with marked points by the moduli space $\overline{\mathcal{M}}_{g, n}$ of stable pointed curves:

Again, $\overline{\mathcal{M}}_{g, n}$ is (essentially) a complex manifold of dimension $3 g-3+n$, but is compact.
$\overline{\mathcal{M}}_{g, n}$ has been studied from several perspectives (algebraic, hyperbolic, symplectic, topological) for more than 50 years.

To each marked point $\mathbf{p}_{\mathbf{i}}$, there is an associated cotangent line

$$
\mathcal{L}_{i} \rightarrow \overline{\mathcal{M}}_{g, n}
$$

defined by:

Since $\mathcal{L}_{i} \rightarrow \overline{\mathcal{M}}_{g, n}$ is a complex line bundle, we can define

$$
\psi_{i}=c_{1}\left(\mathcal{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

The Chern class is Poincaré dual to the cycle defined by the zeros and poles of a meromorphic section of \mathcal{L}_{i}.

A fundamental question concerns the integration of these cotangent line classes:

$$
\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \cdots \psi_{n}^{k_{n}}=?
$$

For the dimensions to match: $3 g-3+n=\sum_{i=1}^{n} k_{i}$.
A beautiful answer is provided by Witten's conjecture in 1990.

We place the integrals in a generating series.

- Let $\left\langle\tau_{k_{1}} \tau_{k_{2}} \cdots \tau_{k_{n}}\right\rangle_{g}=\int_{\overline{\mathcal{M}}_{g, n}} \psi_{1}^{k_{1}} \psi_{2}^{k_{2}} \cdots \psi_{n}^{k_{n}}$.
- Introduce formal variables $t_{0}, t_{1}, t_{2}, \ldots$.
- Define the generating series of cotangent line integrals over moduli spaces of curves of genus g,

$$
\mathrm{F}_{g}\left(t_{0}, t_{1}, t_{2}, \ldots\right)=\sum_{\left\{m_{i}\right\}} \prod_{i=0}^{\infty} \frac{t_{i}^{m_{i}}}{m_{i}!}\left\langle\tau_{0}^{m_{0}} \tau_{1}^{m_{1}} \tau_{2}^{m_{2}} \cdots\right\rangle_{g}
$$

- Put them all together:

$$
\mathrm{F}\left(\lambda, t_{0}, t_{1}, t_{2}, \ldots\right)=\sum_{g=0}^{\infty} \lambda^{2 g-2} F_{g}
$$

Witten's Conjecture (1990) / Kontsevich's Theorem (1992):
Let $U\left(\lambda, t_{0}, t_{1}, t_{2}, \ldots\right)=\frac{\partial^{2} \mathrm{~F}}{\partial t_{0}^{2}}$.
The series U satisfies the Korteweg-DeVries equation,

$$
\lambda^{-2} \frac{\partial U}{\partial t_{1}}=U \frac{\partial U}{\partial t_{0}}+\frac{1}{12} \frac{\partial^{3} U}{\partial t_{0}^{3}} .
$$

The KdV equation was written in the 19th century to study shallow water waves. The connection to integration over $\overline{\mathcal{M}}_{g, n}$ was proposed by Witten via a matrix model approach to quantum gravity.

Furthermore, U satifies the KdV hierarchy which (together with the string equation) uniquely determines F.

§ Moduli in Mathematics

I. Moduli study transforms the particular to the universal in mathematics (a planar linkage is a particular object in Euclidean geometry, the moduli spaces include the study of all smooth manifolds).
II. The study of the moduli space of objects on M can reveal hidden structure of M (Donaldson's Theorem).
III. Moduli spaces themselves can have an very rich intrinsic geometry (Witten's Conjecture / Kontsevich's Theorem).

The goal of the last example will be to show:
IV. The surprising connections between seemingly unrelated moduli spaces.

§IV. Sheaves

Let S be a nonsingular projective algebraic surface.
As a topological space, S is a 4-manifold.
An algebraic analogue of the instanton moduli space is the moduli space $\mathcal{U}_{\mathrm{S}}\left(\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{2}\right)$ of rank 2 stable sheaves on S .

The moduli space $\mathcal{U}_{\mathrm{S}}\left(\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}\right)$ parameterizes stable sheaves

$$
\mathcal{E} \rightarrow \mathbf{S}
$$

of rank 2 with fixed Chern classes

$$
c_{1}(\mathcal{E})=\mathbf{c}_{1}, \quad c_{2}(\mathcal{E})=\mathbf{c}_{2} .
$$

Stablity is with respect to a fixed ample line bundle on S.

We have universal structures which we use to define cohomology classes

$$
\tau_{k}(\gamma)=\pi_{\mathcal{U} *}\left(\pi_{\mathrm{S}}^{*}(\gamma) \cup \operatorname{ch}_{k}(\mathrm{E})\right)
$$

for integers $k \geq 0$ and $\gamma \in H^{*}(S, \mathbb{Q})$.

$$
\begin{gathered}
E \\
S \times u_{S}\left(c_{1}, c_{2}\right) \\
\pi_{S} \downarrow \\
u_{S}\left(c_{1}, c_{2}\right)
\end{gathered}
$$

We can then ask the question

$$
\int_{\mathcal{U}_{\mathrm{s}}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)} \tau_{k_{1}}\left(\gamma_{1}\right) \tau_{k_{2}}\left(\gamma_{2}\right) \cdots \tau_{k_{n}}\left(\gamma_{n}\right)=?
$$

Is there any relationship to the integrals in Witten's Conjecture?

For $S=\mathbb{C P}^{2}$ and $\mathrm{H} \in H^{2}\left(\mathbb{C P}^{2}\right)$ the hyperplane class, define the following generating series of integrals over $\mathcal{U}_{\mathbf{s}}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)$:

$$
\mathrm{F}=\sum_{\ell=0}^{\infty} \sum_{j_{1}, \ldots, j_{k} k_{i}} \prod_{i=1}^{\ell} k_{i}!t_{k_{i}, \ldots, k_{\ell}}^{j_{i}} \int_{\mathcal{U}_{\mathrm{s}}\left(\mathbf{c}_{1}, \mathbf{c}_{2}\right)} \prod_{i=1}^{\ell} \tau_{k_{i}+2-j_{i}}\left(\mathrm{H}^{j}\right) .
$$

Theorem (Bojko-Lim-Moreira 2022): For all $\mathbf{n} \geq-1$,

$$
L_{n} F=0
$$

for the differential operators

$$
\begin{aligned}
\mathrm{L}_{\mathrm{n}} & =\sum_{j=0}^{2} \sum_{k=0}^{\infty}\left(k t_{k}^{j} \frac{\partial}{\partial t_{k+n}^{j}}-\frac{k}{2} \frac{\partial}{\partial t_{n+1}^{2}} t_{k}^{j} \frac{\partial}{\partial t_{k-1}^{j}}\right) \\
& +\sum_{a+b=n}\left(\frac{\partial}{\partial t_{a}^{0}} \frac{\partial}{\partial t_{b}^{2}}-\frac{\partial}{\partial t_{a}^{1}} \frac{\partial}{\partial t_{b}^{1}}+\frac{\partial}{\partial t_{a}^{2}} \frac{\partial}{\partial t_{b}^{0}}+\frac{\partial}{\partial t_{a}^{2}} \frac{\partial}{\partial t_{b}^{2}}\right) .
\end{aligned}
$$

The End

Acknowledgements

- Opening picture on page 1 by Dall-E-2,
- Diagram and animation of the Klann linkage on pages 2 and 4 by Michael Frey (Creative Commons Attribution-Share Alike 4.0 International license),
- Photo of Hurwitz from the ETH archive (1914),
- Thanks to J. Bryan, A. Cannas da Silva, R. Cavalieri, M. van Garrel, M. Moreira, J. Schmitt, and R. Thomas for many suggestions and improvements.

