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Gromov-Witten invariants

Let X be a smooth projective variety. The moduli stack M, «(X, 3) classifies
the stable maps of degree 8 from nodal curves of arithmetic genus g to X.
Gromov-Witten invariants is defined as intersections of the form

CTIEA PP /7 evi®y U+ Ueviy,
[Mg,n(X,B)]Vi*

where ev; are evaluation maps ev; : M, x(X, ) — X, and v; € H*(X).

» It is a virtual counting of genus g stable maps passing through the cycles
in general positions representing the classes 71, ...,v. (When genus
g = 0, the invariants and the associated quantum product are called
quantum cohomology).

» {v0,...,n} := a basis of H*(X).
> (T°..., TN} := the dual basis with respect to 7o, ..., Vn.

The generating function of genus g GW invariants:
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Frobenius manifolds
The genus 0 generating function F = F; satisfies the WDVV equation
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> If deggi is odd, T' is a Grassmann variable.
Data for a Frobenius manifold:

» A family of Frobenius algebra.

» Flat coordinates.

> Euler vector field E=>"" (1 )2 4+ $°F a0,

N
EF=(3—-n)F+ Zaf%c,

i=0

with

C(To,~--,T"*m):ZZZTaTTbTC/%%%.
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Gromov-Witten invariants of complete intersections

Let . : X C P"" be a smooth complete intersection of dimension n.

H:mb(X) = L*H*(PHJH)? H*(X) = H:mb(X) S ngrim(X)'

» Physicists predicted quantum cohomology of quintic 3-folds in P* as the
beginning of mirror symmetry in 1991.

» Givental and Lian-Liu-Yau proved the predictions and extended it to Fano
complete intersections in around 1996-1997.

» Genus 1 GW invariants of Calabi-Yau complete intersections, by A. Zinger,
and A. Popa.

» BCOV conjecture for quintic 3-folds in higher genera is proved by
Chang-Guo-Li-Li.



Quantum cohomology with primitive classes

Let ¢ : X < PV be a smooth complete intersection.

» 3-point genus 0 invariants, with multidegree d of X in certain range, were
computed first by Beauville for hypersurfaces, and extended to complete
intersections by Collino-Jinzenji.

» The computation of quantum cohomology with primitive insertions cannot
be done by torus localization or the usual degeneration formula.

» Quite recently, Argiiz-Bousseau-Pandharipande-Zvonkine show a new
degeneration formula, and give an algorithm to compute GW invariants of
all genera of complete intersections.

» No predictions from physics.

» The direct enumerative sense in algebraic geometry is missing in general.



Quantum cohomology with primitive classes: significance

> Knowledge of (genus 0) Gromov-Witten invariants with primitive
insertions is necessary for Dubrovin-type conjecture.

» Necessary for establishing a full (numerical) mirror symmetry for Fano
complete intersections.

» They are needed for recursions for higher genus GW invariants, even one
concerns only with the GW invariants with ambient insertions.

» They Do have interesting structures!



WDVV equation: essentially linear recursions

D0 (00,0 F)g (9,01 0,a F)
e f

=3 > (000:c0: F)g (0,6 0,00 F).
e f

Traditional way to use WDVV equations: expand the leading terms to get
recursions. E.g.
Coefft/(ataatbate F)gEf(atfatcatd F)(O)
+(0120,601e F)(0)g* Coeff i (8,7 Orc Dya F)
*Coeﬁt’(8taatcateF)gef(atfatbatd F)(0)
—(8¢2 0 Ore F)(0) g Coeft 1 (8, 0,60,a F)

= lower order terms.

More generally, we can use invariants of any fixed length 4, 5, ....



Monodromy groups

Let X be a complete intersection in P"*" of multidegree d = (di,...,d,). We
Tim(X) is a

call X exceptional if the monodromy group as a group acting on Hp,;,
finite group. The exceptional complete intersections are classified by Deligne:

» d = (2), i.e X is a quadric hypersurface.
» d=(3) and n=2, i.e. X is a cubic curface.
> d=(2,2) and n is even.
In all the other cases the Zariski closure of the monodromy group is
» (n=dim X is even) the orthogonal group O(Hp,im(X));
» (n=dim X is odd) the symplectic group Sp(Hp,im(X)).



Symmetric reduction

Suppose X is a non-exceptional complete intersection in a projective space.
» n:=dimX. Assume n > 3.
» m = rankHp,im, (X).
r
>a=n+r+1->3" d.
Let t° ..., t" be flat coordinates on of the Frobenius manifold associated to

the amblent quantum cohomology of X. Suppose n is even. Let t"*! . . "™
be the basis dual to an orthonormal basis of HJ,;, (X). Let

n+m

=32

i=n+1

By the theory of polynomial invariants of orthogonal groups, the generating

function F of quantum cohomology of X is a function of t°,...,t" and s.
When n is odd, the variable s is defined similary by a symplectic basis of
prlm(X)
n+%

s=— Z HetE

i=n+1



Symmetric reduction of WDVV

Symmetric reduction of the WDVV equations of F:

FabegEstf+25FsabFss:Fsanba OS a,bS n,

Fsegestf + 2SFSSFSS =0.
In odd dimensions,

m
2

Fabegestf + 25FsabFs = Fsanb mOd s2, 0 S a, b S n,

Fsegestf+25FsstsEO mod S%.



System of equations

» For even n,

Fabegestf + 2SFsabFs = Fsan[;'7 for 0 S a, b S n,
FsegEstf + 2sFssFss = O,
EF =(3— n)FJraa—ézlc,

» For odd n,

Fobeg® Fef + 25FsapFos = FsaFsp  mod s?, for0<a,b<n,
Feeg® For +25FsFos =0 mod s,
EF = (3—n)F +ac.

Aim: Solve F, with Fls—o = F(© as initial given data.



Reconstruction |

s=0

Expand
2

F=F94sF® 4 %F‘Z) +...

Then FO is the generating function of ambient quantum cohomology.

Theorem
»o:=>" >0, FM g ~¢ is a common eigenvector by the quantum
multiplications by all cohomology classes. This determines F).

> For k > 2, F*X) can be reconstructed from F\) for 0 < i < k, and the
constant leading term F")(0).

The remaining task is to compute F)(0) for k > 2.



F()(0) as ratios

Let Ay be the set

A2I = {((ihjl): (i27j2)7 LR (ilvj/)) |{i17j17 i27j27 Tt il’j/} = {17 o 2I}’
ik <jkfor1<k<lih<i<--<i}.
In other words, the elements of Ay parametrize the unordered pairings in a set

of cardinality 2/. For example, the elements of As can be depicted as

A1 oAl
1234 1234 1234

For 0 = (i, /1), (2, 2)s - - (it,Ji)) € Aai, and G = (gig)1<ij<ar @ 21 x 21
symmetric matrix (resp. a 2/ x 2/ skew-symmetric matrix), we define

/

P,(G) := Hgiw'k' (resp. Pf,(G) :=sgn(c Hg,k k-

k=1

Then define
P(G):= Y Po(G). (resp. PE(G) := Y Pfy(G).)

o€Ay o€Ay



F()(0) as ratios

> For skew-symmetric G, Pf(G) is the Pfaffian of G.
» For symmetric G, we call P(G) the permanent Pfaffian of G.

For a1,...,az € Hjim(X), we define G(az, ..., o) to be the matrix
G = (gij)<ij<ar with gij = (o, o).
(i) When n is even,

(a1, ..., q2)02
_ F(/)(O).P(G(al,...,OCZI));

(i) When n is odd,

<Ol1, ) a2l>0,k+2/
F(/)(O) . Pf(G(Ocl, ey az,)).

So F(0) € Q.



Expansions of symmetric-reduced WDVV

Expand

FabegEstf + 25FsabFss = Fsanb7
FsegEstf + 2SFssts — O
EF = (3—n)F+aatlc

with respect to s.

o FU) Flk—i+2)

for0<a,b<n,

k+1 F;‘,) Ft(7k7j+2)

j=0

F begefl_— k—j+1) k v B
> A G

— (=i k—j+ 1)

(resp. for k < 2 — 1 when n is odd)

k+1 efF(k+2,J) k+1

Fk+3=])

Z0—1'(k+1 i Z(1—2)'k+1—1) -0

(resp. for k < 3 — 1 when n is odd)

where 0 < a,b < n.



Equations of constant terms of F()(0)

For I = (io, 1, ..., in) € ZZ', we define
D, = (0,0)0 00 ()"

Let I = (io,i1y.--,0n) € Z"+1 be given.

Z Z Z Z (/ - 1) ( )(‘)T/aTaF(k)(o)nabaleaTb ,_—(I+17;<)(0)

k=1 0<J<I a=0 b=0
!

0-03 Y (,23) () FoF =0 o
k=2 0<J<I

2 < | < 2 when nis odd).
2



Computation of F(2)(0)

Take k=1in
Fa(gigefF;k+1) n 2k,_-a(;) FlktD) Fa(k+1),_-£1) _ Fa(1)Fl§k+1)
k k
k ) —(k—j k N e _j
_ Z (j - 1) ,_-;J)Fék J+2) _ Z (J) ,_—g))eg fF;k j+1)
j=2 j=1
(k-1
_ - () pk—j+2)
2k2(j_1>FabF :
j=2
And use

FMgF? + FOF® = o,
And the Euler vector field gives, for k > 1,

EambFY + (2 — n)kF*=Y = (3 — n)F™.



Computation of F(2)(0)

Let X be a complete intersection in P"*" of multidegree d = (d, ...

hi==hU---Uh.
———

i factors
0(d) = J [ dit, b(d) := - d.
i=1

a(n,d) > 2,

- { n
"1 h+4(d)q, a(nd)=1.

hj:==ho---oh (small quantum product)
—_———

i factors



Computation of F(2)(0)

Let M and W be the transition matrices between h; and h;:

hi= M, ﬁ,-:ZW/'hj.
j=0 j=0
The symmetric-reduced WDVYV yields
(F<2)(o) _ 1)2 —o, if nis odd and d = (2, 2);
(F<2>(0) _ 1) (F(2>(o) - 4) =0, if d = (3);
Z;’:O MW b(d) Z;:o mMwl )2 e
2 H::l % ’

0, otherwise.

(F<z>(0) __ if | =222 € Zsy;

The expression
= MW+ b(d) > MW
j=0 j=0

comes from the Euler vector field written in the basis h;'s.



Coordinates dual to small quantum cohomology

Beauville-Givental:
ﬁn+1 _ b(d)ﬁn+1—a(n,d)
This suggests us to use the coordinates 7' dual to h;.
» Length 3 genus 0 invariants in 7-coordinates has a closed formula.

» The essentially linear recursion in T-coordinates is simple:

(011 00,i-1) 0 (0, 00.4) + (071 00 i—1) 0 (0, © Ork)
*((97.1 <& 87.]) o (67,-71 o ELk) - (671 o 8.,4) o (87_,'71 < 87_1()
= 87.i87.j67.k + 8487,-87,-“ — 3.,./'71371418# — 8Tla,.j87_i+k—1.
> Application: we develop an algorithm to effectively compute F(® from the
mirror formula.

» A byproduct: a simple proof of Zinger's convergence theorem for complete
intersections.



Square root recursion

Our remaining task is to compute z, := F()(0) for k > 3. We write a package
to extract algebraic equations for F¥)(0) from

Z Z ZZ ([i_]i> ( )8718.,-3F(k)(o)nabaTl_JaTbF(/Jrlk)(o)

k=1 0<J<ZI a=0 b=0
!
00y Y (373)())Foor o o
k=2 0<J<I

(2 <1< % when nis odd).
We take a quintic 4-fold as an example.

2z — 8352000 2, + 8719488000000,

which factors as
2 (2> — 2088000) .

So F®)(0) = 2088000.



Square root recursion

46080 z2 + 8 223 + 3119454720000 2
—16704000 z; — 6714318458880000000.

Substituting z» = 2088000 we get 0, i.e. a trivial equation.

—586224 z5 + 3190863801600 22 + 1644480 2,23 + 12 22
+12 zyz4 — 7369983201945600000 2
+6501980160000 z3 — 25056000 z
+8870266887085670400000000.

Substituting z> = 2088000 we get
12 (z3 + 413985600000) ,

again a quadratic equation with two equal roots! So F®)(0) = —413985600000.



Square root recursion conjecture

Conjecture
(non-precise form) Suppose the multidegree d # (3). Recall m = rank H"(X).
» In even dimesions F (k)(O) can be recursively computed by square root
recursion.
> In odd dimensions F)(0) for k < 7 + 1 can be recursively computed by
square root recursion.

» All the other equations are trivial.

We have also a conjectural way to compute F¥)(0) for k > 7 +1when nis
odd, which suggests the existence of a new theory of invariants.



Odd dimension puzzle

Recall

/ n .,
>3 53 (12) ()oue oo a0

k=1 0<J<I a=0 b=0
!
20-0Y 3 (123)(5)FoF o0 o
k=2 0<J<I
(2 <1< % when nis odd).

Conjecture (Sqrt recursion conjecture in odd dim)
We do not use F*)(0) = 0 for k > 7. Then formally solving the
symmetric-reduced WDVV yields the correct F")(0) for | < 5.



Example
n=3,d=(22,2). m=dimH};.(X) = 28.
FP0)=4=2°, FO(0) = -8=-2°, F¥ =32=2°,

F®(0) = —200 = —2°5%, F®)(0) = 1728 = 2°3°,
F7(0) = —19208 = —2°7*, F®(0) = 262144 = 2%

FO(0) = —4251528 = —2°3'2 F(19 — 80000000 = 2'°5",
FAY(0) = —1714871048 = —2°11°, F2(0) = 41278242816 = 2*'3°,
F13(0) = —1102867934792 = —2°13%,

F9(0) = 32396521357312 = 2M47**.

Conjecture
When n=3,d = (2,2,2),

F®(0) = 8(—1)"k* 3, for1 < k < 14.



Square root recursion

> We have shown the conjecture for F()(0).

The last statement on trivial equations gives a way to get a closed formula
for F) in terms of lower F) for i < k.

For d = (3), i.e. cubic hypersurface, we compute F)(0) by geometric
methods: study the Fano variety of lines, and the reduce genus one
Gromov-Witten invariants.



Closed fomula of F(2)

Let @ be the n x n matrix with entries

a, ifi=1,i=1,
o = {@-it, ifj=1,i=>2,
L RO §iaFP =0 aFY, if2<j<n.

[T " ti—tn=i
i=1

Conjecture (= Corollary of Square root recursion conjecture)

Let X = X,(d) be an n-dimensional smooth non-exceptional complete
intersection of multidegree d, with n > 3 and d # (3). Then

0
(1)
F® = H 7 - FO 90 FWyet | ndaF
- .
04101 FYV
For cubic hypersurfaces of dimension n > 3,
n—1

FO — %(atHF“L...,atoFm)cb*l 3f15t1F(
atlatn L)



Cubic hypersurfaces: Fano variety of lines

Let X C P™™ be a smooth cubic hypersurface. Recall

(FP(0) — 1) (FP(0) - 4) = 0.

> Moo(X,1) is the Fano variety of lines in X.

> ix : Moo(X,1) < Go(C™?). This enable us to do kind of Schubert
calculus on Mo o(X, 1).

> W Hn (X) = HIG2 (Moo(X,1)).

prim
> Using Galkin-Shinder's result on the Betti number of Mo,o(X, 1), we
determine the cohomology ring structure of Mo o(X,1) and by the way we
get F@(0) =1 for X.



Cubic hypersurfaces: essentially linear recursion

Theorem
(i) For the cubic threefold X, F can be reconstructed by from F © and
F®(0), F®(0).
(ii) For cubic hypersurfaces X with dim X > 4, F can be reconstructed from
F© and F®(0).



Cubic hypersurfaces: from genus 1 to genus 0

Let v; = h; the i-th power of the hyperplane class for 0 < i < n, and

Ynt1,- > Yntm @ basis of Hpim(X). By topological recursion relation in genus
1,
(76, Ye)1,1
1 1
= 7 (¥6s Yes hn—1)0,1(h)1.0 + =7 (76, Ve, 1)o,3.0(hn) 1,11
Hi:l di Hi:l di
1 n+m n+m
+ﬂ Zofzo<ryb7’ye7ge'{7f>’yc>0vl'

Then we apply Zinger's Standard versus Reduced formula:

0
<¢EIN17 RS wakﬂkh,ﬁ - <¢EIN17 s 7wak/~“<>1,ﬁ
= genus 0 Gromov-Witten invariants

to (Y¥b,7Ye)1,1- This reproves F(2)(0) =1.



Cubic 3-folds: from genus 1 to genus 0

The cubic 3-folds are special: F*(0) cannot be computed from the
symmetric-reduced WDVV.

<’(p’707 V1,72, 73, V4, ’75)1,2

5
1 -
= 32 B0 osoths, - Froe s
i=1

5
1 N
+3 Zl:(i)ho,vf,hz)o,l(hw- SARRIES

1 A on o
+3 Do @00 hosithe, A A Al s
{i.j,k}Cl5]

1
+§<Vo, Y1572, 735 V4> 55 h2)o,7,2(h) 1,10

13

1 a
+ﬂ 2(707 Fa, T2, 91,72, 735 Y4, 75)0,8,2-



Cubic hypersurfaces: vanishing of certain reduced genus 1 GW invariants

Theorem
Let X be a smooth subvariety of PN. Let 8 € Ha(X;Z) such thath -8 =1,

where h is the hyperplane class restricted to X. Then any reduced genus one
invariant of degree (3 is 0.

Theorem
Let X be a cubic hypersurface in PN. Let a1,. .., ax € H*(X). Then

<a1, . .,Oék>?72 = 0 = <1/JO¢1,0(2, .. .7ak>(1)’2.



Cubic 3-folds: F(*)(0)

Idea: we have a factorization of the evaluation maps evjy = evi X --- X evy
M ((X,2) —2 s x*
ﬂo,[k] (X,1)

where

mo’[k](x’ 1):= MO’I(X’ 1) XMoo(x,1) X ><ﬂo,o(x,l) Moxl(xa 1).

0,0

k factors

Theorem
For cubic 3-folds, F*Y(0) = 0.



Overview

We sketch our knowledge and tools on the leading terms F¥)(0) of
non-exceptional smooth complete intersections of dimension > 3.

(oa M (o) 1 2 3< kS [P+ | k> D41
d=(3),n=3 eigen vector geometric method geometric method
d=3),n>4 eigen vector geometric method essentially linear recursion
d # (3), even n eigen vector sqrt recursion
d # (3), odd n eigen vector sqrt recursion [ sqrt recursion

An algorithm is implemented in our Macaulay2 package
QuantumCohomologyFanoCompleteIntersection.

> Exceptional complete intersections: essentially linear recursions work (the

even (2,2)-type case will be shown in the following).

» Border cases of Fano complete intersections (i.e. odd (2,2)-type, cubic

hypersurfaces): hybrid recursions on F()(0).

» Non-exceptional, non-quasiexceptional complete intersections: the square
root recursion conjecture says that essentially linear recursions NEVER do

help to F)(0).

Question

Do such observations remain true for other families of Fano manifolds, e.g.

Fano 3-folds?




Integrality and Positivity

Conjecture

Let X be a non-exceptional Fano complete intersections of dimension n and
multidegree d.

1. F(0) € Z.

2.
F®(0)=0, ifd=3, and k =n+1;
FW(0) >0, ifk iseven and (d,k) # (3,n+ 1);
FW(0) <0, ifkisoddand (d, k) # (3,n+1).

» The integrality: when n is odd we can deduce it from the integrality of
genus 0 Gromov-Witten invariants of semipositive symplectic manifolds.

» The positivity is quite mysterious. We have no geometric interpretation.



Exceptional complete intersections: n even, d = (2,2)

Theorem

Let X be an even dimensional complete intersection of two quadrics in P™2,
with n > 4. All the genus 0 Gromov-Witten invariants can be reconstructed
from a special correlator

<61, ey 6n+3>0,n+3,%'

Theorem

There exists an open (in the classical topology) neighborhood of the origin of
C?"**, on which the generating function F(to, e t2"+3) is analytic and defines
a semisimple Frobenius manifold.

By relating the special correlator to classical enumerative geometry, we obtain:

Theorem
For any 4-dimensional complete intersections of two quadrics in P®,
1

<€17 .. -7€7>0,7,2 = 5



Monodromy group and the D, 3 lattice

Let V = R™3 be the Euclidean space with the standard inner product. Let
€1,...,En+3 be an orthonormal basis, and let

aj=¢i—¢cip1 for 1 <i<n+2,

Qpi3 = Epg2 + Ent3.
The Weyl group D,y3 C GL(n+ 3,R) is generated the reflections with respect

to the a;'s. If one writes vectors in R™"3 in terms of the coordinates according
to the basis €1,...,eny3, i.€.

n+3

v=(vi,...,Vpq3) = Z Vi€j,

i=1

then the group D,+3 coincides with the group generated by the permutations of
the coordinates, and the change of signs

(Viy -y Vo, Vos2, Vag3) > (Vi - ooy Vb1, —Vat2, —Vat3).



Monodromy group and the D, 3 lattice

From now on, let n be an even integer > 4, and X be a smooth complete
intersection of two quadric hypersurfaces in P"2. By the work of Reid:

>
>

>

v

orim (X) is a standard representation of Dpys.

The integral lattice Hp,im(X) N H"(X; Z) is generated by the roots «;'s of
Dn+3.

There is an isometry
V@rC = (Hium(X), (-1)2(.,.)).

H"(X;Z) is generated by the classes of 3-planes in X.
Define
Ei, ifn=0 mod 4,
€ =
v—1le;, ifn=2 mod 4.

Then e1,. .., €nt3 is an orthonormal basis of Hpim (X).



Invariant theory of Dp3

Let t"" ..., t*™"* be the basis of H};,(X)" dual to €1, ..., €nrs. By the
invariant theory of Weyl groups, the polynomial invariants of D,;3 are
generated by si, ..., S,3, where
1 2n+3
j\2i .
= <i<
si ) Z(t’) ,for1<i<n+2,
j=n+1
and
2n+3
Sp+3 = H tj
Jj=n+1
Moreover, si, ..., s,+3 are algebraically independent.
Corollary

The genus g generating function Fgz of X can be written in a unique way as a
series of s1,...,5413.



Correlators of length 4

Theorem

Let X be an even dimensional complete intersection of two quadrics in P2,
with n > 4. Then
O°F OF

0 =1 5-0)=-2

(0s1)
Equivalently, for 1 < a,b < n+ 3,

(€a, €2y €by €b)0,1 = 1.

Ingredients of the proof:
» Monodromy group;
» From genus 1 to genus 0;

» Integrality of degree 1 invariants.



Reconstruction theorem

By the invariants of length 4, an essentially linear recursion yields

Theorem
With the knowledge of the 4-point invariants, all the invariants can be
reconstructed from the WDVV, the deformation invariance, and the special
correlator

(e1,.- -, 6n+3>o,n+3,g-



Special correlator

» There are choices of the D, 3-lattices.

» Observation:
The WDVV equations and the knowledge of correlators of length 4 can at
most determine the special correlator with a freedom of signs, unless it
vanishes.

Conjecture

Set the special correlator to be an indeterminate z. Let F(to, ..., tany3; Z) be
the generating function of primary genus 0 Gromov-Witten invariants of X
determined by the reconstruction theorem. Then F(to, ..., tont3; Z) satisfies
WDVYV and the monodromy invariance.



Semisimplicity

Theorem (Dubrovin)
A semisimple Frobenius manifold has a unique normalized Euler field.

The cutoff of F at order 3 is a function of ¢°,...,t" and
2n+3
=y ()
i=n+1

It has symmetries :O(H{,’rim(X)). On the contrary, C. Jordan's theorem: the

degree 4 form
2n+3

== ()
i=n+1
has only finitely many automorphisms. So we can expect that the information
of correlators of length 4 implies the semisimplicity.



Middle dimensional planes

Let Ao, ..., Ant2 € C be pairwise distinct. Let

n+2 n+2

L,Ol(yo,-.., I'l+2 Z \/I ) 502(Y07"'7 n+2 ZA \/r27

and X = {¢1 = ¢» = 0} C P2, Make a change of coordinates

\/Ho<1<n+z(/\ -N)

Then X contains the plane S defined by
n+2
S Xwi=o, forogkggﬂ.
i=0
» For a subset / C [0,n+ 2], let 5/ be the J-plane obtained by reversing the
sign of the i-th homogeneous coordinate of the points on S for all i € .
» Denote the complement of / by C(/). Then §; = S¢())



An explicit lattice

> Si = [5,]
» For 1 < i< n+ 3, we define

n+2

1 1
i=6Gi-1— —/ = i+ 57— hns2-
€i = Gi-1 n+1;c+2(n+1) /2

ap=cg_1—¢ for1 <ji<n+42,
Ont3 = Snt1 + Sn2 + 26 — hy o



Enumerative correlators

Denote the i-th projection from X""® to X by g;. Consider the product of the
evaluation morphisms

evy X +++€Vpt3 - Mo7n+3(x, g) — X"+3.
Let h,...,ln43 C [0, n+ 2]. We say that the correlator

<§/1? cee 7<In+3>

is enumerative if there exists an irreducible component M of Mo »:3(X, 2)
satisfying the following:



Enumerative correlators

(i) dim M equals the expected dimension.

(ii) The cycles (evi x - evas3)(M) and q; 'Sy, .., 4,.5S),,, intersect
properly, i.e. the dimension of their (scheme theoretic) intersection is 0.

(iii) Each irreducible component of Mo, n13(X, 2) other than M has empty
intersection with q; 'S, ,. . ., qn_j35/n+3.

Our strategy to compute the special correlator:

1. Select h, ..., lny3 C [0, n+ 2], such that the correlator (i, ..., ¢,.;) is
enumerative.

2. Express (<p,...,6),.3) in terms of the special correlator.

3. Solve the corresponding enumerative problem by counting curves. More
precisely, compute the intersection multiplicities of the intersection

(evi X -+ evars)u[MI N qi [Sy] N -+ N Gnis[Si, 5]

in the condition (ii) above.



Enumerative correlators

Example

The correlator
(50,5 Snt3) (1)

should not be enumerative in general. For example, let n = 4. Then the
intersection SN S; is a line, for 0 < i < 6. The moduli space of conics on S
passing through the seven lines has a positive dimension. So there are infinitely
many conics passing through S, ..., Se. Then the conditions (ii) and (jii) in
the above definition cannot be true simultaneously.



Enumerative correlators

Lemma
S is the only 3-plane in X that has non-empty intersections with each of
S[,-,,-Jrg,l], for 0 < i < n+ 2. Moreover S meets 5[i7i+571] at exactly one point.

As a consequence, we consider
<§[o,ﬂ71]7 cee 7§[n+2,n+2+§71]>0,n+3,g
as a potentially enumerative correlator.

Lemma
Let X be a 4-dim smooth complete intersection of two quadrics in P®. Then
(e1,€2,€3,€4,65,86,67) = 3 if only if

(o1, S12,5 $23, 34, S45, 56, $60)0,7,2 = 1.



Counting Conics

Lemma
For general choices of X, ..., Xe, there is no conic on S passing through the 7

points SN So1,..., 5N Ss6,S N Seo.
» Every conic in a projective space lies on a plane. When a conic is not a
double line, it spans a unique plane.

» To find conics on X passing through the planes Sp1, . .., Seo, we will first
find all the planes in P® that meets S, .. ., Seo.

» By the above results we need to find planes ¥ ¢ X that meets So1, . . ., Seo.



Counting Conics

Theorem
Let X be the 4 dimensional smooth complete intersection of two quadrics,

given by (o, ..., X6) =(1,2,3,4,5,6,7). Then
(i) There exists a unique conic C in X that meets S; 41 for i € [0, 6].
(ii) The conic C is a free curve in X.

(iii) In the ring of dual numbers C[e]/(g?), up to a common multiple, the
system of equations for conics passing through S; i1 for i € [0,6] has a
unique solution.

Key idea: solve the Pliicker coordinates of Sc, the plane spanned by C.



Counting Conics

Theorem
For any 4-dimensional complete intersections of two quadrics in P®,

(50,1 ---,6,0)0,7,2 = 1.
Corollary
For any 4-dimensional complete intersections of two quadrics in P°,
1
(e1,...,€1)0,72 = 5 (2)

By the way we obtain a result of classical flavor.

Theorem

For general 4-dimensional smooth complete intersections X of two quadrics in
IP°, there exists exactly one smooth conic that meets each of the 2-planes S; ;11
in X for0 <i<6.



Problems

Problem
Describe explicitly the conic C for general Ao, ..., X6.

Question

Is the statement the above Theorem true in an appropriate sense (e.g. allowing
singular conics or double lines), for all 4-dimensional smooth complete
intersections of two quadrics in P°?



A conjecture on the explicit conic

/‘l(/\g, ey )\5) =
MAAz — AgA1As — Ao XAz + A5 A2 + AgAads — AXads + AoAi Ao As
—A0A1X2A6 — Ao A1 A3 — Ao A1 A3 A6 + AoA1Aade + AoA1As A6 + AoA2 A3 g
FA0A2A3A5 — Ao A2 Mg A5 — Ao A2 AsAe — AoA3AgAs + AoAzAade — A1 A2 A3 s
FA1 2306 + A1 A3 A4 A5 — A1 A A5 A6 — A2 A3 dg e + A2 A5 g,
i+6

wi(Xos -5 X6) == h(Ai, Nig1, Air2, Aig3, Aiga, Nigs, Aite) - H(N — X))

Jj=i+1

for 0 < i < 6, where the subscrigts are understood in the mod 7 sense. We
define a quadric hypersurface @ by

6
§ iAo, -, Ae) WP = 0.
i=0

Then the 2-plane S¢ spanned by the conic C is contained in Q.



Genus 1 GW invariants of Fano complete intersections

Let X be a non-exceptional Fano complete intersection in a projetive space.
Let G(t°,...,t""™) be the generating function of genus 1 primary GW

invariants of X. Define
ak
(k) _

- ( )k |s 0-
By the monodromy symmetric reduction of Getzler relations, we get:
Theorem

0
G can be reconstructed from 8;:,-) (0), for 1 < i < n, and genus zero GW
invariants of X.

3(;( )
ot!

(0) via Zinger's reduced genus 1 GW

invariants.



Series associated with (modified) hypergeometric series

Let X be a Fano complete intersection of multidegree d = (d, ...,

Z H, 1 (k|d|—|—1—m)(d‘:7 )

k=0

Lo(q) :=

I

_1
2

00(q) = Lo(@) T - (1+ (1~ D )gLo(q) )

where

d| := Z d;, d*:= H d¥.
i=1 i=1

d,) in P71,



Series associated with (modified) hypergeometric series

r—1
Lo() 7 - (14 a1 — hygre(q)ld
oi(q) = ( T ) x (141 (1din — la] = 37 +1) Lo(a)

-1
2

+1dn (2\d|2 — 6ld|n — 6]d|r + 3n% + 6nr + n+ 372 — 1) Lo(q)"
+30d1%(n = 1)) (1dln — |d] = 37 +1) Lo(a)""*

2 2 2 2n
+|d|n(n — |d]) (4|d\ — 5|d|n — 12|d|r — 2n° + 6nr + n+ 672 — 2) Lo(q)
+30d|(n — [d))* (1dln — Id] = 3% + 1) Lo(a)*" "
+n(n — |d]) (2|d\2 4 |dn — 6]d|r + 372 — 1) Lo(q)®"

+(n = 1d])? (1dIn — ld] = 37 +1) Lo(a)*"*" )

2 r 1
LD S @0F (10— 1) (14 0 - @)qud\)*%
24]d| 0 0 n 70 :




Constants associated with hypergeometric series

Denote the Fano index by vq4. Following Popa-Zinger, we define ‘(J ) ~‘(7B,) eQ
with p, 8,1 > 0 by

oo oo o dﬂ
55 g 3 I I )

B=0 I=0 B=0 Hj:l(w +J)

(]

E;(),ﬁ;)clgfglﬁ = 0p,00p,1, for 8,1 € Z>o, | < p—vaf.

B1+B2=B k=0
B1,82>0



Series associated with (modified) hypergeometric series

Define
@LO)(q Z ’p udﬁq (q)° vaf3
B=0
0(q) = ®o(q) D &) 5 19 L(q)

+1(q) Y &), 59" L(a)

B=0

+5(q) Y &) a7 (p— vaB)L(q)P
B=0

+L(q)/¢ Z P Vdﬁ (p _2Vdﬂ> L(q)piydﬁig

B=0



Genus 1 GW invariant with 1 marked point

Theorem
Let X be a smooth complete intersection of multidegree d in ]P"_l, with Fano index vy > 1. For0 < b < ny;dl
(hitugb)1,b
r nz(b) 2(b)
szl di A+ b0 * g™
24 n—r H dow+1
w g (w +1)
(0) Z”*lf’ (1) (e(® E 1) (0)
1 GHde( q) =0 S G p )+ (q 1HJrP(Q)
+—-Coeft b{ }
2 q ®o(q)

oo
n n—1
1+vgb—rvypB
— T R L d dP —1
ool qb{( 2 Z Z 1+vgb,l+vgb—vg 87 ((") ))

k=1 B=0
oo
ey «(8) B+1 (1 +vab—vgB 14vgb—vgB—
L) E “I+vgb,14vgb—rgBY ( 5 LigyrramTrd
B=0
, oo
®o(a)
o~ «(8) oA _ 14vgb—rgB—1
0@ Sy ugb1tvgbrgs? (T vab = v
B=0

oo
_ =(8) B 1+vgb—vgB—1 _
Z “Ltvgb, 1+vgb—vgB—17 (L(Q) e 1) }



Conclusion

Corollary

Assuming the square root recursion conjecture, we have an effective algorithm
for Genus 1 GW invariants of non-exceptional Fano complete intersections,
with only ambient insertions.

This is covered by the work of Argiiz-Bousseau-Pandharipande-Zvonkine.
Question

What can we say about a cohomological field theory with a sufficiently large
group of symmetries (typically coming from monodromies)?



Thank You!



