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Gromov-Witten invariants

Let X be a smooth projective variety. The moduli stack Mg,k (X , β) classifies
the stable maps of degree β from nodal curves of arithmetic genus g to X .
Gromov-Witten invariants is defined as intersections of the form

〈γ1, . . . , γk〉Xg,k,β :=
∫

[Mg,n(X ,β)]vir
ev1
∗γ1 ∪ · · · ∪ ev∗kγk ,

where evi are evaluation maps evi :Mg,k (X , β)→ X , and γi ∈ H∗(X).
I It is a virtual counting of genus g stable maps passing through the cycles

in general positions representing the classes γ1, . . . , γk . (When genus
g = 0, the invariants and the associated quantum product are called
quantum cohomology).

I {γ0, . . . , γN} := a basis of H∗(X).
I {T 0, . . . ,T N} := the dual basis with respect to γ0, . . . , γN .

The generating function of genus g GW invariants:

Fg (T 0, . . . ,T N , q) =
∑
k≥0

∑
β

1
k!
〈 N∑

i=0

γi T i , . . . ,

N∑
i=0

γi T i〉
g,k,β

qβ .



Frobenius manifolds
The genus 0 generating function F = F0 satisfies the WDVV equation

N∑
e=0

N∑
f =0

∂3F
∂T a∂T b∂T e g ef ∂3F

∂T f ∂T c∂T d

=
N∑

e=0

N∑
f =0

(±) ∂3F
∂T a∂T c∂T e g ef ∂3F

∂T f ∂T b∂T d .

I If degRγi is odd, T i is a Grassmann variable.
Data for a Frobenius manifold:
I A family of Frobenius algebra.
I Flat coordinates.
I Euler vector field E =

∑N
i=0(1− |γi |

2 ) ∂
∂T i +

∑N
i=0 ai

∂
∂T i .

EF = (3− n)F +
N∑

i=0

ai
∂

∂T i c,

with

c(T0, · · · ,T n+m) =
∑

a

∑
b

∑
c

T aT bT c

6

∫
X
γaγbγc .



Gromov-Witten invariants of complete intersections

Let ι : X ⊂ Pn+r be a smooth complete intersection of dimension n.

H∗amb(X) := ι∗H∗(Pn+r ), H∗(X) = H∗amb(X)⊕ Hn
prim(X).

I Physicists predicted quantum cohomology of quintic 3-folds in P4 as the
beginning of mirror symmetry in 1991.

I Givental and Lian-Liu-Yau proved the predictions and extended it to Fano
complete intersections in around 1996-1997.

I Genus 1 GW invariants of Calabi-Yau complete intersections, by A. Zinger,
and A. Popa.

I BCOV conjecture for quintic 3-folds in higher genera is proved by
Chang-Guo-Li-Li.



Quantum cohomology with primitive classes

Let ι : X ↪→ PN be a smooth complete intersection.
I 3-point genus 0 invariants, with multidegree d of X in certain range, were

computed first by Beauville for hypersurfaces, and extended to complete
intersections by Collino-Jinzenji.

I The computation of quantum cohomology with primitive insertions cannot
be done by torus localization or the usual degeneration formula.

I Quite recently, Argüz-Bousseau-Pandharipande-Zvonkine show a new
degeneration formula, and give an algorithm to compute GW invariants of
all genera of complete intersections.

I No predictions from physics.
I The direct enumerative sense in algebraic geometry is missing in general.



Quantum cohomology with primitive classes: significance

I Knowledge of (genus 0) Gromov-Witten invariants with primitive
insertions is necessary for Dubrovin-type conjecture.

I Necessary for establishing a full (numerical) mirror symmetry for Fano
complete intersections.

I They are needed for recursions for higher genus GW invariants, even one
concerns only with the GW invariants with ambient insertions.

I They Do have interesting structures!



WDVV equation: essentially linear recursions

∑
e

∑
f

(∂ta∂tb∂te F )g ef (∂tf ∂tc∂td F )

=
∑

e

∑
f

(∂ta∂tc∂te F )g ef (∂tf ∂tb∂td F ).

Traditional way to use WDVV equations: expand the leading terms to get
recursions. E.g.

CoefftI (∂ta∂tb∂te F )g ef (∂tf ∂tc∂td F )(0)
+(∂ta∂tb∂te F )(0)g ef CoefftI (∂tf ∂tc∂td F )
−CoefftI (∂ta∂tc∂te F )g ef (∂tf ∂tb∂td F )(0)
−(∂ta∂tc∂te F )(0)g ef CoefftI (∂tf ∂tb∂td F )

= lower order terms.

More generally, we can use invariants of any fixed length 4, 5, . . . .



Monodromy groups

Let X be a complete intersection in Pn+r of multidegree d = (d1, . . . , dr ). We
call X exceptional if the monodromy group as a group acting on Hn

prim(X) is a
finite group. The exceptional complete intersections are classified by Deligne:
I d = (2), i.e X is a quadric hypersurface.
I d = (3) and n = 2, i.e. X is a cubic curface.
I d = (2, 2) and n is even.

In all the other cases the Zariski closure of the monodromy group is
I (n = dim X is even) the orthogonal group O(Hn

prim(X));
I (n = dim X is odd) the symplectic group Sp(Hn

prim(X)).



Symmetric reduction

Suppose X is a non-exceptional complete intersection in a projective space.
I n := dim X . Assume n ≥ 3.
I m := rankHn

prim(X).
I a = n + r + 1−

∑r
i=1 di .

Let t0, . . . , tn be flat coordinates on of the Frobenius manifold associated to
the ambient quantum cohomology of X . Suppose n is even. Let tn+1, . . . , tn+m

be the basis dual to an orthonormal basis of Hn
prim(X). Let

s = 1
2

n+m∑
i=n+1

(t i )2.

By the theory of polynomial invariants of orthogonal groups, the generating
function F of quantum cohomology of X is a function of t0, . . . , tn and s.
When n is odd, the variable s is defined similary by a symplectic basis of
Hn

prim(X):

s = −
n+ m

2∑
i=n+1

t i t i+ m
2 .



Symmetric reduction of WDVV

Symmetric reduction of the WDVV equations of F :

Fabeg ef Fsf + 2sFsabFss = FsaFsb, 0 ≤ a, b ≤ n,

Fseg ef Fsf + 2sFssFss = 0.

In odd dimensions,

Fabeg ef Fsf + 2sFsabFss ≡ FsaFsb mod s
m
2 , 0 ≤ a, b ≤ n,

Fseg ef Fsf + 2sFssFss ≡ 0 mod s
m
2 .



System of equations

I For even n,
Fabeg ef Fsf + 2sFsabFss = FsaFsb, for 0 ≤ a, b ≤ n,
Fseg ef Fsf + 2sFssFss = 0,
EF = (3− n)F + a ∂

∂t1 c,

I For odd n,
Fabeg ef Fsf + 2sFsabFss = FsaFsb mod s m

2 , for 0 ≤ a, b ≤ n,
Fseg ef Fsf + 2sFssFss = 0 mod s m

2 ,

EF = (3− n)F + a ∂
∂t1 c.

Aim: Solve F , with F |s=0 = F (0) as initial given data.



Reconstruction I

F (k)(t0, · · · , tn) :=
(
∂k

∂sk F
)∣∣∣

s=0
,

Expand

F = F (0) + sF (1) + s2

2 F (2) + . . .

Then F (0) is the generating function of ambient quantum cohomology.

Theorem
I Θ :=

∑n
e=0

∑n
f =0 F (1)

e g ef γf is a common eigenvector by the quantum
multiplications by all cohomology classes. This determines F (1).

I For k ≥ 2, F (k) can be reconstructed from F (i) for 0 ≤ i < k, and the
constant leading term F (k)(0).

The remaining task is to compute F (k)(0) for k ≥ 2.



F (l)(0) as ratios

Let A2l be the set

A2l =
{(

(i1, j1), (i2, j2), . . . , (il , jl )
)
|{i1, j1, i2, j2, . . . , il , jl} = {1, . . . , 2l},

ik < jk for 1 ≤ k ≤ l , i1 < i2 < · · · < il
}
.

In other words, the elements of A2l parametrize the unordered pairings in a set
of cardinality 2l . For example, the elements of A4 can be depicted as

1234 1234 1234 .

For σ =
(

(i1, j1), (i2, j2), . . . , (il , jl )
)
∈ A2l , and G = (gi,j )1≤i,j≤2l a 2l × 2l

symmetric matrix (resp. a 2l × 2l skew-symmetric matrix), we define

Pσ(G) :=
l∏

k=1

gik ,jk .
(

resp. Pfσ(G) := sgn(σ)
l∏

k=1

gik ,jk .
)

Then define

P(G) :=
∑
σ∈A2l

Pσ(G).
(

resp. Pf(G) :=
∑
σ∈A2l

Pfσ(G).
)



F (l)(0) as ratios

I For skew-symmetric G , Pf(G) is the Pfaffian of G .
I For symmetric G , we call P(G) the permanent Pfaffian of G .

For α1, . . . , α2l ∈ H∗prim(X), we define G(α1, . . . , α2l ) to be the matrix
G = (gi,j )1≤i,j≤2l with gi,j = (αi , αj ).

(i) When n is even,

〈α1, . . . , α2l〉0,2l

= F (l)(0) · P
(

G(α1, . . . , α2l )
)

;

(ii) When n is odd,

〈α1, . . . , α2l〉0,k+2l

= F (l)(0) · Pf
(

G(α1, . . . , α2l )
)
.

So F (l)(0) ∈ Q.



Expansions of symmetric-reduced WDVV

Expand 
Fabeg ef Fsf + 2sFsabFss = FsaFsb, for 0 ≤ a, b ≤ n,
Fseg ef Fsf + 2sFssFss = 0,
EF = (3− n)F + a ∂

∂t1 c,

with respect to s.

k∑
j=0

F (j)
abeg ef F (k−j+1)

f
j!(k − j)! +

k∑
j=1

2F (j)
ab F (k−j+2)

(j − 1)!(k − j)! =
k+1∑
j=1

F (j)
a F (k−j+2)

b
(j − 1)!(k − j + 1)! ,

(resp. for k ≤ m
2 − 1 when n is odd)

k+1∑
j=1

F (j)
e g ef F (k+2−j)

f
(j − 1)!(k + 1− j)! + 2

k+1∑
j=2

F (j)F (k+3−j)

(j − 2)!(k + 1− j)! = 0,

(resp. for k ≤ m
2 − 1 when n is odd)

where 0 ≤ a, b ≤ n.



Equations of constant terms of F (l)(0)

For I = (i0, i1, . . . , in) ∈ Zn+1
≥0 , we define

∂τ I := (∂τ0 )i0 ◦ · · · ◦ (∂τn )in .

Let I = (i0, i1, . . . , in) ∈ Zn+1
≥0 be given.

l∑
k=1

∑
0≤J≤I

n∑
a=0

n∑
b=0

(
l − 1
k − 1

)(
I
J

)
∂τ I∂τa F (k)(0)ηab∂τ I−J∂τb F (l+1−k)(0)

+2(l − 1)
l∑

k=2

∑
0≤J≤I

(
l − 2
k − 2

)(
I
J

)
F (k)(0)F (l+2−k)(0) = 0.

(2 ≤ l ≤ m
2 when n is odd).



Computation of F (2)(0)

Take k = 1 in

F (0)
abeg ef F (k+1)

f + 2kF (1)
ab F (k+1) − F (k+1)

a F (1)
b − F (1)

a F (k+1)
b

=
k∑

j=2

(
k

j − 1

)
F (j)

a F (k−j+2)
b −

k∑
j=1

(
k
j

)
F (j)

abeg ef F (k−j+1)
f

−2k
k∑

j=2

(
k − 1
j − 1

)
F (j)

ab F (k−j+2).

And use

F (1)
e g ef F (2)

f + F (2)F (2) = 0.

And the Euler vector field gives, for k ≥ 1,

EambF (k) + (2− n)kF (k−1) = (3− n)F (k).



Computation of F (2)(0)

Let X be a complete intersection in Pn+r of multidegree d = (d1, . . . , dr ).

hi := h ∪ · · · ∪ h︸ ︷︷ ︸
i factors

.

`(d) :=
r∏

i=1

di !, b(d) := dd1
1 · · · d

dr
r .

h̃ =
{

h, a(n, d) ≥ 2,
h + `(d)q, a(n, d) = 1.

h̃i := h̃ � · · · � h̃︸ ︷︷ ︸
i factors

(small quantum product)



Computation of F (2)(0)

Let M and W be the transition matrices between hi and h̃i :

hi =
n∑

j=0

M j
i h̃j , h̃i =

n∑
j=0

W j
i hj .

The symmetric-reduced WDVV yields

(
F (2)(0)− 1

)2
= 0, if n is odd and d = (2, 2);(

F (2)(0)− 1
)(

F (2)(0)− 4
)

= 0, if d = (3);(
F (2)(0)−

−
∑n

j=0
jM1

j W j
n+b(d)

∑n
j=0

jM1
j W j

n−a

a
∏r

i=1
di

)2
= 0 , if l = n−1

a ∈ Z≥2;

0, otherwise.

The expression

−
n∑

j=0

jM1
j W j

n + b(d)
n∑

j=0

jM1
j W j

n−a

comes from the Euler vector field written in the basis h̃i ’s.



Coordinates dual to small quantum cohomology

Beauville-Givental:
h̃n+1 = b(d)h̃n+1−a(n,d).

This suggests us to use the coordinates τ i dual to h̃i .
I Length 3 genus 0 invariants in τ -coordinates has a closed formula.
I The essentially linear recursion in τ -coordinates is simple:

(∂τ1 � ∂τ i−1 ) ◦ (∂τ j ◦ ∂τk ) + (∂τ1 ◦ ∂τ i−1 ) ◦ (∂τ j � ∂τk )
−(∂τ1 � ∂τ j ) ◦ (∂τ i−1 ◦ ∂τk )− (∂τ1 ◦ ∂τ j ) ◦ (∂τ i−1 � ∂τk )

= ∂τ i∂τ j∂τk + ∂τ1∂τ i∂τ j+k − ∂τ i−1∂τ j+1∂τk − ∂τ1∂τ j∂τ i+k−1 .

I Application: we develop an algorithm to effectively compute F (0) from the
mirror formula.

I A byproduct: a simple proof of Zinger’s convergence theorem for complete
intersections.



Square root recursion

Our remaining task is to compute zk := F (k)(0) for k ≥ 3. We write a package
to extract algebraic equations for F (k)(0) from

l∑
k=1

∑
0≤J≤I

n∑
a=0

n∑
b=0

(
l − 1
k − 1

)(
I
J

)
∂τ I∂τa F (k)(0)ηab∂τ I−J∂τb F (l+1−k)(0)

+2(l − 1)
l∑

k=2

∑
0≤J≤I

(
l − 2
k − 2

)(
I
J

)
F (k)(0)F (l+2−k)(0) = 0.

(2 ≤ l ≤ m
2 when n is odd).

We take a quintic 4-fold as an example.

2 z2
2 − 8352000 z2 + 8719488000000,

which factors as
2 (z2 − 2088000)2 .

So F (2)(0) = 2088000.



Square root recursion

46080 z2
2 + 8 z2z3 + 3119454720000 z2

−16704000 z3 − 6714318458880000000.

Substituting z2 = 2088000 we get 0, i.e. a trivial equation.

−586224 z3
2 + 3190863801600 z2

2 + 1644480 z2z3 + 12 z2
3

+12 z2z4 − 7369983201945600000 z2

+6501980160000 z3 − 25056000 z4

+8870266887085670400000000.

Substituting z2 = 2088000 we get

12 (z3 + 413985600000)2 ,

again a quadratic equation with two equal roots! So F (3)(0) = −413985600000.



Square root recursion conjecture

Conjecture
(non-precise form) Suppose the multidegree d 6= (3). Recall m = rank Hn(X).
I In even dimesions F (k)(0) can be recursively computed by square root

recursion.
I In odd dimensions F (k)(0) for k ≤ m

4 + 1 can be recursively computed by
square root recursion.

I All the other equations are trivial.

We have also a conjectural way to compute F (k)(0) for k > m
4 + 1 when n is

odd, which suggests the existence of a new theory of invariants.



Odd dimension puzzle

Recall
l∑

k=1

∑
0≤J≤I

n∑
a=0

n∑
b=0

(
l − 1
k − 1

)(
I
J

)
∂τ I∂τa F (k)(0)ηab∂τ I−J∂τb F (l+1−k)(0)

+2(l − 1)
l∑

k=2

∑
0≤J≤I

(
l − 2
k − 2

)(
I
J

)
F (k)(0)F (l+2−k)(0) = 0.

(2 ≤ l ≤ m
2 when n is odd).

Conjecture (Sqrt recursion conjecture in odd dim)
We do not use F (k)(0) = 0 for k > m

2 . Then formally solving the
symmetric-reduced WDVV yields the correct F (l)(0) for l ≤ m

2 .



Example

n = 3, d = (2, 2, 2). m = dim H3
prim(X) = 28.

F (2)(0) = 4 = 22, F (3)(0) = −8 = −23, F (4) = 32 = 25,

F (5)(0) = −200 = −2352,F (6)(0) = 1728 = 2633,

F (7)(0) = −19208 = −2374, F (8)(0) = 262144 = 218,

F (9)(0) = −4251528 = −23312, F (10) = 80000000 = 21057,

F (11)(0) = −1714871048 = −23118, F (12)(0) = 41278242816 = 22139,

F (13)(0) = −1102867934792 = −231310,

F (14)(0) = 32396521357312 = 214711.

Conjecture
When n = 3, d = (2, 2, 2),

F (k)(0) = 8(−1)k kk−3, for 1 ≤ k ≤ 14.



Square root recursion

I We have shown the conjecture for F (2)(0).
I The last statement on trivial equations gives a way to get a closed formula

for F (k) in terms of lower F (i) for i < k.
I For d = (3), i.e. cubic hypersurface, we compute F (k)(0) by geometric

methods: study the Fano variety of lines, and the reduce genus one
Gromov-Witten invariants.



Closed fomula of F (2)

Let Φ be the n × n matrix with entries

Φi
j =


a, if j = 1, i = 1,
(1− i)t i , if j = 1, i =≥ 2,

1∏r
i=1

di
F (0)

1,j−1,n−i − δi,1F (1)
j−1 − δi,j−1F (1)

1 , if 2 ≤ j ≤ n.

Conjecture (= Corollary of Square root recursion conjecture)
Let X = Xn(d) be an n-dimensional smooth non-exceptional complete
intersection of multidegree d, with n ≥ 3 and d 6= (3). Then

F (2) = 1∏r
i=1 di

(∂tn−1 F (1), . . . , ∂t0 F (1))Φ−1

 0
∂t1∂t1 F (1)

. . .

∂t1∂tn−1 F (1)

 .

For cubic hypersurfaces of dimension n ≥ 3,

F (2) = 1
3 (∂tn−1 F (1), . . . , ∂t0 F (1))Φ−1


− n−1

3

∂t1∂t1 F (1)

. . .

∂t1∂tn−1 F (1)

 .



Cubic hypersurfaces: Fano variety of lines

Let X ⊂ Pn+1 be a smooth cubic hypersurface. Recall(
F (2)(0)− 1

)(
F (2)(0)− 4

)
= 0.

I M0,0(X , 1) is the Fano variety of lines in X .
I ιX :M0,0(X , 1) ↪→ G2(Cn+2). This enable us to do kind of Schubert

calculus on M0,0(X , 1).
I Ψ : Hn

prim(X) ∼−→ Hn−2
prim
(
M0,0(X , 1)

)
.

I Using Galkin-Shinder’s result on the Betti number of M0,0(X , 1), we
determine the cohomology ring structure of M0,0(X , 1) and by the way we
get F (2)(0) = 1 for X .



Cubic hypersurfaces: essentially linear recursion

Theorem
(i) For the cubic threefold X, F can be reconstructed by from F (0) and

F (2)(0), F (4)(0).
(ii) For cubic hypersurfaces X with dim X ≥ 4, F can be reconstructed from

F (0) and F (2)(0).



Cubic hypersurfaces: from genus 1 to genus 0

Let γi = hi the i-th power of the hyperplane class for 0 ≤ i ≤ n, and
γn+1, · · · , γn+m a basis of H∗prim(X). By topological recursion relation in genus
1,

〈ψγb, γc〉1,1

= 1∏r
i=1 di

〈γb, γc , hn−1〉0,1〈h〉1,0 + 1∏r
i=1 di

〈γb, γc , 1〉0,3,0〈hn〉1,1,1

+ 1
24

n+m∑
e=0

n+m∑
f =0

〈γb, γe , g ef γf , γc〉0,1.

Then we apply Zinger’s Standard versus Reduced formula:

〈ψa1µ1, . . . , ψ
akµk〉1,β − 〈ψa1µ1, . . . , ψ

akµk〉01,β
= genus 0 Gromov-Witten invariants

to 〈ψγb, γc〉1,1. This reproves F (2)(0) = 1.



Cubic 3-folds: from genus 1 to genus 0

The cubic 3-folds are special: F (4)(0) cannot be computed from the
symmetric-reduced WDVV.

〈ψγ0, γ1, γ2, γ3, γ4, γ5〉1,2

= 1
3

5∑
i=1

(±)〈γ0, γi , 1〉0,3,0〈h3, · · · , γ̂i , · · · 〉1,5,2

+ 1
3

5∑
i=1

(±)〈γ0, γi , h2〉0,1〈h, · · · , γ̂i , · · · 〉1,5,1

+ 1
3

∑
{i,j,k}⊂[5]

(±)〈γ0, γi , γj , γk , h〉0,5,1〈h2, · · · , γ̂i , γ̂j , γ̂k · · · 〉1,3,1

+ 1
3 〈γ0, γ1, γ2, γ3, γ4, γ5, h2〉0,7,2〈h〉1,1,0

+ 1
24

13∑
a=0

〈γ0, Γa, Γa, γ1, γ2, γ3, γ4, γ5〉0,8,2.



Cubic hypersurfaces: vanishing of certain reduced genus 1 GW invariants

Theorem
Let X be a smooth subvariety of PN . Let β ∈ H2(X ;Z) such that h · β = 1,
where h is the hyperplane class restricted to X. Then any reduced genus one
invariant of degree β is 0.

Theorem
Let X be a cubic hypersurface in PN . Let α1, . . . , αk ∈ H∗(X). Then

〈α1, . . . , αk〉01,2 = 0 = 〈ψα1, α2, . . . , αk〉01,2.



Cubic 3-folds: F (4)(0)

Idea: we have a factorization of the evaluation maps ev[k] = ev1 × · · · × evk

M0
1,k (X , 2)

ev[k] //

Φk

��

X k

M0,[k](X , 1)

ev[k]

::

where

M0,[k](X , 1) :=M0,1(X , 1)×M0,0(X ,1) × · · · ×M0,0(X ,1)M0,1(X , 1)︸ ︷︷ ︸
k factors

.

Theorem
For cubic 3-folds, F (4)(0) = 0.



Overview
We sketch our knowledge and tools on the leading terms F (k)(0) of
non-exceptional smooth complete intersections of dimension ≥ 3.

(n, d)
F (k)(0) 1 2 3 ≤ k ≤ bm

4 c + 1 k > m
4 + 1

d = (3), n = 3 eigen vector geometric method geometric method
d = (3), n ≥ 4 eigen vector geometric method essentially linear recursion
d 6= (3), even n eigen vector sqrt recursion sqrt recursion
d 6= (3), odd n eigen vector sqrt recursion sqrt recursion sqrt recursion

An algorithm is implemented in our Macaulay2 package
QuantumCohomologyFanoCompleteIntersection.
I Exceptional complete intersections: essentially linear recursions work (the

even (2,2)-type case will be shown in the following).
I Border cases of Fano complete intersections (i.e. odd (2, 2)-type, cubic

hypersurfaces): hybrid recursions on F (l)(0).
I Non-exceptional, non-quasiexceptional complete intersections: the square

root recursion conjecture says that essentially linear recursions NEVER do
help to F (l)(0).

Question
Do such observations remain true for other families of Fano manifolds, e.g.
Fano 3-folds?



Integrality and Positivity

Conjecture
Let X be a non-exceptional Fano complete intersections of dimension n and
multidegree d.

1. F (k)(0) ∈ Z.
2. 

F (k)(0) = 0, if d = 3, and k = n + 1;
F (k)(0) > 0, if k is even and (d, k) 6= (3, n + 1);
F (k)(0) < 0, if k is odd and (d, k) 6= (3, n + 1).

I The integrality: when n is odd we can deduce it from the integrality of
genus 0 Gromov-Witten invariants of semipositive symplectic manifolds.

I The positivity is quite mysterious. We have no geometric interpretation.



Exceptional complete intersections: n even, d = (2, 2)

Theorem
Let X be an even dimensional complete intersection of two quadrics in Pn+2,
with n ≥ 4. All the genus 0 Gromov-Witten invariants can be reconstructed
from a special correlator

〈ε1, . . . , εn+3〉0,n+3, n
2
.

Theorem
There exists an open (in the classical topology) neighborhood of the origin of
C2n+4, on which the generating function F (t0, . . . , t2n+3) is analytic and defines
a semisimple Frobenius manifold.
By relating the special correlator to classical enumerative geometry, we obtain:

Theorem
For any 4-dimensional complete intersections of two quadrics in P6,

〈ε1, . . . , ε7〉0,7,2 = 1
2 .



Monodromy group and the Dn+3 lattice

Let V = Rn+3 be the Euclidean space with the standard inner product. Let
ε1, . . . , εn+3 be an orthonormal basis, and let{

αi = εi − εi+1 for 1 ≤ i ≤ n + 2,
αn+3 = εn+2 + εn+3.

The Weyl group Dn+3 ⊂ GL(n + 3,R) is generated the reflections with respect
to the αi ’s. If one writes vectors in Rn+3 in terms of the coordinates according
to the basis ε1, . . . , εn+3, i.e.

v = (v1, . . . , vn+3) =
n+3∑
i=1

viεi ,

then the group Dn+3 coincides with the group generated by the permutations of
the coordinates, and the change of signs

(v1, . . . , vn+1, vn+2, vn+3) 7→ (v1, . . . , vn+1,−vn+2,−vn+3).



Monodromy group and the Dn+3 lattice

From now on, let n be an even integer ≥ 4, and X be a smooth complete
intersection of two quadric hypersurfaces in Pn+2. By the work of Reid:
I Hn

prim(X) is a standard representation of Dn+3.
I The integral lattice Hn

prim(X) ∩ Hn(X ;Z) is generated by the roots αi ’s of
Dn+3.

I There is an isometry

V ⊗R C ∼−→
(

Hn
prim(X), (−1)

n
2 (., .)

)
.

I Hn(X ;Z) is generated by the classes of n
2 -planes in X .

I Define

εi =
{
εi , if n ≡ 0 mod 4;√
−1εi , if n ≡ 2 mod 4.

Then ε1, . . . , εn+3 is an orthonormal basis of Hn
prim(X).



Invariant theory of Dn+3

Let tn+1, . . . , t2n+3 be the basis of H∗prim(X)∨ dual to ε1, . . . , εn+3. By the
invariant theory of Weyl groups, the polynomial invariants of Dn+3 are
generated by s1, . . . , sn+3, where

si = 1
(2i)!

2n+3∑
j=n+1

(t j )2i , for 1 ≤ i ≤ n + 2,

and

sn+3 =
2n+3∏

j=n+1

t j .

Moreover, s1, . . . , sn+3 are algebraically independent.

Corollary
The genus g generating function Fg of X can be written in a unique way as a
series of s1, . . . , sn+3.



Correlators of length 4

Theorem
Let X be an even dimensional complete intersection of two quadrics in Pn+2,
with n ≥ 4. Then

∂2F
(∂s1)2 (0) = 1, ∂F

∂s2
(0) = −2.

Equivalently, for 1 ≤ a, b ≤ n + 3,

〈εa, εa, εb, εb〉0,1 = 1.

Ingredients of the proof:
I Monodromy group;
I From genus 1 to genus 0;
I Integrality of degree 1 invariants.



Reconstruction theorem

By the invariants of length 4, an essentially linear recursion yields

Theorem
With the knowledge of the 4-point invariants, all the invariants can be
reconstructed from the WDVV, the deformation invariance, and the special
correlator

〈ε1, . . . , εn+3〉0,n+3, n
2
.



Special correlator

I There are choices of the Dn+3-lattices.
I Observation:

The WDVV equations and the knowledge of correlators of length 4 can at
most determine the special correlator with a freedom of signs, unless it
vanishes.

Conjecture
Set the special correlator to be an indeterminate z. Let F (t0, . . . , t2n+3; z) be
the generating function of primary genus 0 Gromov-Witten invariants of X
determined by the reconstruction theorem. Then F (t0, . . . , t2n+3; z) satisfies
WDVV and the monodromy invariance.



Semisimplicity

Theorem (Dubrovin)
A semisimple Frobenius manifold has a unique normalized Euler field.
The cutoff of F at order 3 is a function of t0, . . . , tn and

s1 =
2n+3∑

i=n+1

(t i )2.

It has symmetries =O
(

Hn
prim(X)

)
. On the contrary, C. Jordan’s theorem: the

degree 4 form

s2 =
2n+3∑

i=n+1

(t i )4

has only finitely many automorphisms. So we can expect that the information
of correlators of length 4 implies the semisimplicity.



Middle dimensional planes

Let λ0, . . . , λn+2 ∈ C be pairwise distinct. Let

ϕ1(Y0, . . . ,Yn+2) =
n+2∑
i=0

Y 2
i , ϕ2(Y0, . . . ,Yn+2) =

n+2∑
i=0

λi Y 2
i ,

and X = {ϕ1 = ϕ2 = 0} ⊂ Pn+2. Make a change of coordinates

Wi = Yi√∏
0≤j≤n+2

j 6=i
(λi − λj )

.

Then X contains the plane S defined by

n+2∑
i=0

λk
i Wi = 0, for 0 ≤ k ≤ n

2 + 1.

I For a subset I ⊂ [0, n + 2], let SI be the n
2 -plane obtained by reversing the

sign of the i-th homogeneous coordinate of the points on S for all i ∈ I.
I Denote the complement of I by C(I). Then SI = SC(I).



An explicit lattice

I ςi := [Si ].
I For 1 ≤ i ≤ n + 3, we define

εi = ςi−1 −
1

n + 1

n+2∑
i=0

ςi + 1
2(n + 1) hn/2.

I {
αi = ςi−1 − ςi for 1 ≤ i ≤ n + 2,
αn+3 = ςn+1 + ςn+2 + 2ς − hn/2.



Enumerative correlators

Denote the i-th projection from X n+3 to X by qi . Consider the product of the
evaluation morphisms

ev1 × · · · evn+3 :M0,n+3(X , n
2 )→ X n+3.

Let I1, . . . , In+3 ⊂ [0, n + 2]. We say that the correlator

〈ςI1 , . . . , ςIn+3〉

is enumerative if there exists an irreducible component M of M0,n+3(X , n
2 )

satisfying the following:



Enumerative correlators

(i) dim M equals the expected dimension.
(ii) The cycles (ev1 × · · · evn+3)(M) and q−1

1 SI1 ,. . . , q−1
n+3SIn+3 intersect

properly, i.e. the dimension of their (scheme theoretic) intersection is 0.
(iii) Each irreducible component of M0,n+3(X , n

2 ) other than M has empty
intersection with q−1

1 SI1 ,. . . , q−1
n+3SIn+3.

Our strategy to compute the special correlator:
1. Select I1, . . . , In+3 ⊂ [0, n + 2], such that the correlator 〈ςI1 , . . . , ςIn+3〉 is

enumerative.
2. Express 〈ςI1 , . . . , ςIn+3〉 in terms of the special correlator.
3. Solve the corresponding enumerative problem by counting curves. More

precisely, compute the intersection multiplicities of the intersection

(ev1 × · · · evn+3)∗[M] ∩ q∗1 [SI1 ] ∩ · · · ∩ q∗n+3[SIn+3 ]

in the condition (ii) above.



Enumerative correlators

Example
The correlator

〈ς0, . . . , ςn+3〉 (1)

should not be enumerative in general. For example, let n = 4. Then the
intersection S ∩ Si is a line, for 0 ≤ i ≤ 6. The moduli space of conics on S
passing through the seven lines has a positive dimension. So there are infinitely
many conics passing through S0, . . . , S6. Then the conditions (ii) and (iii) in
the above definition cannot be true simultaneously.



Enumerative correlators

Lemma
S is the only n

2 -plane in X that has non-empty intersections with each of
S[i,i+ n

2−1], for 0 ≤ i ≤ n + 2. Moreover S meets S[i,i+ n
2−1] at exactly one point.

As a consequence, we consider

〈ς[0, n
2−1], . . . , ς[n+2,n+2+ n

2−1]〉0,n+3, n
2

as a potentially enumerative correlator.

Lemma
Let X be a 4-dim smooth complete intersection of two quadrics in P6. Then
〈ε1, ε2, ε3, ε4, ε5, ε6, ε7〉 = 1

2 if only if

〈ς01, ς12, ς23, ς34, ς45, ς56, ς60〉0,7,2 = 1.



Counting Conics

Lemma
For general choices of λ0, . . . , λ6, there is no conic on S passing through the 7
points S ∩ S01, . . . , S ∩ S56, S ∩ S60.

I Every conic in a projective space lies on a plane. When a conic is not a
double line, it spans a unique plane.

I To find conics on X passing through the planes S01, . . . , S60, we will first
find all the planes in P6 that meets S01, . . . , S60.

I By the above results we need to find planes Σ 6⊂ X that meets S01, . . . , S60.



Counting Conics

Theorem
Let X be the 4 dimensional smooth complete intersection of two quadrics,
given by (λ0, . . . , λ6) = (1, 2, 3, 4, 5, 6, 7). Then

(i) There exists a unique conic C in X that meets Si,i+1 for i ∈ [0, 6].
(ii) The conic C is a free curve in X.
(iii) In the ring of dual numbers C[ε]/(ε2), up to a common multiple, the

system of equations for conics passing through Si,i+1 for i ∈ [0, 6] has a
unique solution.

Key idea: solve the Plücker coordinates of SC , the plane spanned by C .



Counting Conics

Theorem
For any 4-dimensional complete intersections of two quadrics in P6,

〈ς0,1, . . . , ς6,0〉0,7,2 = 1.

Corollary
For any 4-dimensional complete intersections of two quadrics in P6,

〈ε1, . . . , ε7〉0,7,2 = 1
2 . (2)

By the way we obtain a result of classical flavor.

Theorem
For general 4-dimensional smooth complete intersections X of two quadrics in
P6, there exists exactly one smooth conic that meets each of the 2-planes Si,i+1
in X for 0 ≤ i ≤ 6.



Problems

Problem
Describe explicitly the conic C for general λ0, . . . , λ6.

Question
Is the statement the above Theorem true in an appropriate sense (e.g. allowing
singular conics or double lines), for all 4-dimensional smooth complete
intersections of two quadrics in P6?



A conjecture on the explicit conic

h(λ0, . . . , λ6) :=

λ
2
0λ1λ3 − λ2

0λ1λ5 − λ2
0λ2λ3 + λ

2
0λ2λ6 + λ

2
0λ4λ5 − λ2

0λ4λ6 + λ0λ1λ2λ5

−λ0λ1λ2λ6 − λ0λ1λ3λ4 − λ0λ1λ3λ6 + λ0λ1λ4λ6 + λ0λ1λ5λ6 + λ0λ2λ3λ4

+λ0λ2λ3λ5 − λ0λ2λ4λ5 − λ0λ2λ5λ6 − λ0λ3λ4λ5 + λ0λ3λ4λ6 − λ1λ2λ3λ5

+λ1λ2λ3λ6 + λ1λ3λ4λ5 − λ1λ4λ5λ6 − λ2λ3λ4λ6 + λ2λ4λ5λ6,

µi (λ0, . . . , λ6) := h(λi , λi+1, λi+2, λi+3, λi+4, λi+5, λi+6) ·
i+6∏

j=i+1

(λi − λj )

for 0 ≤ i ≤ 6, where the subscripts are understood in the mod 7 sense. We
define a quadric hypersurface Q by

6∑
i=0

µi (λ0, . . . , λ6)W 2
i = 0.

Then the 2-plane SC spanned by the conic C is contained in Q.



Genus 1 GW invariants of Fano complete intersections

Let X be a non-exceptional Fano complete intersection in a projetive space.
Let G(t0, . . . , tn+m) be the generating function of genus 1 primary GW
invariants of X . Define

G (k) = ∂k G
(∂s)k |s=0.

By the monodromy symmetric reduction of Getzler relations, we get:

Theorem
G (0) can be reconstructed from ∂G(0)

∂t i (0), for 1 ≤ i ≤ n, and genus zero GW
invariants of X.
Then we compute the initial values ∂G(0)

∂t i (0) via Zinger’s reduced genus 1 GW
invariants.



Series associated with (modified) hypergeometric series

Let X be a Fano complete intersection of multidegree d = (d1, . . . , dr ) in Pn−1.

L0(q) :=
∞∑

k=0

∏k−1
i=1 (k|d|+ 1− in)

k! ( ddq
n )k ,

Φ0(q) := L0(q)
r+1

2 ·
(

1 + dd(1− |d|n )qL0(q)|d|
)− 1

2 ,

where

|d| :=
r∑

i=1

di , dd :=
r∏

i=1

ddi
i .



Series associated with (modified) hypergeometric series

Φ1(q) :=
L0(q)

r−1
2 ·
(

1 + dd(1− |d|n )qL0(q)|d|
)− 7

2

24|d|n3 ×
(
|d|3
(
|d|n − |d| − 3r2 + 1

)
L0(q)

+|d|2n
(

2|d|2 − 6|d|n − 6|d|r + 3n2 + 6nr + n + 3r2 − 1
)

L0(q)n

+3|d|2(n − |d|)
(
|d|n − |d| − 3r2 + 1

)
L0(q)n+1

+|d|n(n − |d|)
(

4|d|2 − 5|d|n − 12|d|r − 2n2 + 6nr + n + 6r2 − 2
)

L0(q)2n

+3|d|(n − |d|)2
(
|d|n − |d| − 3r2 + 1

)
L0(q)2n+1

+n(n − |d|)2
(

2|d|2 + |d|n − 6|d|r + 3r2 − 1
)

L0(q)3n

+(n − |d|)3
(
|d|n − |d| − 3r2 + 1

)
L0(q)3n+1

)
+

3r2 − 2|d|
∑r

k=1
1

dk
− 1

24|d|
L0(q)

r−1
2
(

L0(q)− 1
)(

1 + dd(1−
|d|
n

)qL|d|0

)− 1
2 .



Constants associated with hypergeometric series

Denote the Fano index by νd. Following Popa-Zinger, we define c(β)
p,l , c̃ (β)

p,l ∈ Q
with p, β, l ≥ 0 by

∞∑
β=0

∞∑
l=0

c(β)
p,l w l qβ =

∞∑
β=0

qβ
(w + β)p∏r

k=1

∏dkβ
i=1 (dk w + i)∏β

j=1(w + j)n
,

∑
β1+β2=β
β1,β2≥0

p−νdβ1∑
k=0

c̃(β1)
p,k c(β2)

k,l = δβ,0δp,l , for β, l ∈ Z≥0, l ≤ p − νdβ.



Series associated with (modified) hypergeometric series

Define

Θ(0)
p (q) := Φ0(q)

∞∑
β=0

c̃(β)
p,p−νdβ

qβL(q)p−νdβ .

Θ(1)
p (q) := Φ0(q)

∞∑
β=0

c̃(β)
p,p−νdβ−1qβL(q)p−νdβ−1

+Φ1(q)
∞∑
β=0

c̃(β)
p,p−νdβ

qβL(q)p−νdβ

+Φ′0(q)
∞∑
β=0

c̃(β)
p,p−νdβ

qβ+1(p − νdβ)L(q)p−νdβ−1

+L(q)′Φ0(q)
∞∑
β=0

c̃(β)
p,p−νdβ

qβ+1
(

p − νdβ

2

)
L(q)p−νdβ−2.



Genus 1 GW invariant with 1 marked point

Theorem
Let X be a smooth complete intersection of multidegree d in Pn−1 , with Fano index νd ≥ 1. For 0 ≤ b ≤ n−1

νd
,

〈h1+νdb〉1,b

= −

∏r
k=1

dk

24
Resw=0

{ (1 + w)n(c̃(b)
1+νdb,0 + c̃(b)

1+νdb,1w)

wn−r
∏r

k=1
(dk w + 1)

}
+

1

2
Coeffqb

{Θ(0)
1+νdb (q)

(∑n−1−r
p=0

Θ(1)
p (q)Θ(0)

n−1−r−p (q) +
∑r

p=1
Θ(1)

n−p (q)Θ(0)
n−1−r+p (q)

)
Φ0(q)

}
+

n

24
Coeffqb

{( n − 1

2
−

r∑
k=1

1

dk

)(
1 −

∞∑
β=0

c̃(β)
1+νdb,1+νdb−νdβ

qβ
(

L(q)1+νdb−νdβ − 1
))

−L(q)′

∞∑
β=0

c̃(β)
1+νdb,1+νdb−νdβ

qβ+1
(1 + νdb − νdβ

2

)
L(q)1+νdb−νdβ−2

−
Φ′0(q)

Φ0(q)

∞∑
β=0

c̃(β)
1+νdb,1+νdb−νdβ

qβ+1(1 + νdb − νdβ)L(q)1+νdb−νdβ−1

−

∞∑
β=0

c̃(β)
1+νdb,1+νdb−νdβ−1qβ

(
L(q)1+νdb−νdβ−1 − 1

)}
.



Conclusion

Corollary
Assuming the square root recursion conjecture, we have an effective algorithm
for Genus 1 GW invariants of non-exceptional Fano complete intersections,
with only ambient insertions.
This is covered by the work of Argüz-Bousseau-Pandharipande-Zvonkine.

Question
What can we say about a cohomological field theory with a sufficiently large
group of symmetries (typically coming from monodromies)?



Thank You!


