Big quantum cohomology of Fano complete intersections

Xiaowen Hu

2021.11.17

## References

- Hu, Xiaowen. Big quantum cohomology of Fano complete intersections. arXiv:1501.03683 (2015). v4 (2021).
- Hu, Xiaowen. Big quantum cohomology of even dimensional intersections of two quadrics. arXiv: 2109.11469.
- Packages:
https://github.com/huxw06/Quantum-cohomology-of-Fano-completeintersections

Related:

- Argüz, H., Bousseau, P., Pandharipande, R., Zvonkine, D. Gromov-Witten Theory of Complete Intersections. arXiv:2109.13323v2.
- Giosuè's localization package: https://github.com/mgemath/AtiyahBott.jl.


## Gromov-Witten invariants

Let $X$ be a smooth projective variety. The moduli stack $\overline{\mathcal{M}}_{g, k}(X, \beta)$ classifies the stable maps of degree $\beta$ from nodal curves of arithmetic genus $g$ to $X$. Gromov-Witten invariants is defined as intersections of the form

$$
\left\langle\gamma_{1}, \ldots, \gamma_{k}\right\rangle_{g, k, \beta}^{X}:=\int_{\left[\overline{\mathcal{M}}_{g, n}(X, \beta)\right]^{\mathrm{vir}}} \operatorname{ev}_{1}^{*} \gamma_{1} \cup \cdots \cup \operatorname{ev}_{k}^{*} \gamma_{k}
$$

where $\mathrm{ev}_{i}$ are evaluation maps $\mathrm{ev}_{i}: \overline{\mathcal{M}}_{g, k}(X, \beta) \rightarrow X$, and $\gamma_{i} \in H^{*}(X)$.

- It is a virtual counting of genus $g$ stable maps passing through the cycles in general positions representing the classes $\gamma_{1}, \ldots, \gamma_{k}$. (When genus $g=0$, the invariants and the associated quantum product are called quantum cohomology).
- $\left\{\gamma_{0}, \ldots, \gamma_{N}\right\}:=$ a basis of $H^{*}(X)$.
- $\left\{T^{0}, \ldots, T^{N}\right\}:=$ the dual basis with respect to $\gamma_{0}, \ldots, \gamma_{N}$.

The generating function of genus $g$ GW invariants:

$$
\mathcal{F}_{g}\left(T^{0}, \ldots, T^{N}, \mathrm{q}\right)=\sum_{k \geq 0} \sum_{\beta} \frac{1}{k!}\left\langle\sum_{i=0}^{N} \gamma_{i} T^{i}, \ldots, \sum_{i=0}^{N} \gamma_{i} T^{i}\right\rangle_{g, k, \beta} q^{\beta}
$$

## Frobenius manifolds

The genus 0 generating function $\mathrm{F}=\mathcal{F}_{0}$ satisfies the WDVV equation

$$
\begin{aligned}
& \sum_{e=0}^{N} \sum_{f=0}^{N} \frac{\partial^{3} \mathrm{~F}}{\partial T^{a} \partial T^{b} \partial T^{e}} g^{e f} \frac{\partial^{3} \mathrm{~F}}{\partial T^{f} \partial T^{c} \partial T^{d}} \\
= & \sum_{e=0}^{N} \sum_{f=0}^{N}( \pm) \frac{\partial^{3} \mathrm{~F}}{\partial T^{a} \partial T^{c} \partial T^{e}} g^{e f} \frac{\partial^{3} \mathrm{~F}}{\partial T^{f} \partial T^{b} \partial T^{d}} .
\end{aligned}
$$

- If $\operatorname{deg}_{\mathbb{R}} \gamma_{i}$ is odd, $T^{i}$ is a Grassmann variable.

Data for a Frobenius manifold:

- A family of Frobenius algebra.
- Flat coordinates.
- Euler vector field $E=\sum_{i=0}^{N}\left(1-\frac{\left|\gamma_{i}\right|}{2}\right) \frac{\partial}{\partial T^{i}}+\sum_{i=0}^{N} a_{i} \frac{\partial}{\partial T^{i}}$.

$$
E F=(3-n) F+\sum_{i=0}^{N} a_{i} \frac{\partial}{\partial T^{i}} c,
$$

with

$$
c\left(T_{0}, \cdots, T^{n+m}\right)=\sum_{a} \sum_{b} \sum_{c} \frac{T^{a} T^{b} T^{c}}{6} \int_{X} \gamma_{a} \gamma_{b} \gamma_{c}
$$

## Gromov-Witten invariants of complete intersections

Let $\iota: X \subset \mathbb{P}^{n+r}$ be a smooth complete intersection of dimension $n$.

$$
H_{\mathrm{amb}}^{*}(X):=\iota^{*} H^{*}\left(\mathbb{P}^{n+r}\right), H^{*}(X)=H_{\mathrm{amb}}^{*}(X) \oplus H_{\mathrm{prim}}^{n}(X) .
$$

- Physicists predicted quantum cohomology of quintic 3 -folds in $\mathbb{P}^{4}$ as the beginning of mirror symmetry in 1991.
- Givental and Lian-Liu-Yau proved the predictions and extended it to Fano complete intersections in around 1996-1997.
- Genus 1 GW invariants of Calabi-Yau complete intersections, by A. Zinger, and A. Popa.
- BCOV conjecture for quintic 3 -folds in higher genera is proved by Chang-Guo-Li-Li.


## Quantum cohomology with primitive classes

Let $\iota: X \hookrightarrow \mathbb{P}^{N}$ be a smooth complete intersection.

- 3-point genus 0 invariants, with multidegree $\mathbf{d}$ of $X$ in certain range, were computed first by Beauville for hypersurfaces, and extended to complete intersections by Collino-Jinzenji.
- The computation of quantum cohomology with primitive insertions cannot be done by torus localization or the usual degeneration formula.
- Quite recently, Argüz-Bousseau-Pandharipande-Zvonkine show a new degeneration formula, and give an algorithm to compute GW invariants of all genera of complete intersections.
- No predictions from physics.
- The direct enumerative sense in algebraic geometry is missing in general.


## Quantum cohomology with primitive classes: significance

- Knowledge of (genus 0) Gromov-Witten invariants with primitive insertions is necessary for Dubrovin-type conjecture.
- Necessary for establishing a full (numerical) mirror symmetry for Fano complete intersections.
- They are needed for recursions for higher genus GW invariants, even one concerns only with the GW invariants with ambient insertions.
- They Do have interesting structures!

WDVV equation: essentially linear recursions

$$
\begin{aligned}
& \sum_{e} \sum_{f}\left(\partial_{t^{a}} \partial_{t^{b}} \partial_{t^{e}} F\right) g^{e f}\left(\partial_{t^{f}} \partial_{t^{c}} \partial_{t^{d}} F\right) \\
= & \sum_{e} \sum_{f}\left(\partial_{t^{a}} \partial_{t^{c}} \partial_{t^{e}} F\right) g^{e f}\left(\partial_{t^{f}} \partial_{t^{b}} \partial_{t^{d}} F\right) .
\end{aligned}
$$

Traditional way to use WDVV equations: expand the leading terms to get recursions. E.g.

$$
\begin{aligned}
& \text { Coeff }_{t^{\prime}}\left(\partial_{t^{a}} \partial_{t^{b}} \partial_{t^{e}} F\right) g^{e f}\left(\partial_{t^{f}} \partial_{t^{c}} \partial_{t^{d}} F\right)(0) \\
& +\left(\partial_{t^{a}} \partial_{t^{b}} \partial_{t^{e}} F\right)(0) g^{\text {ef }} \operatorname{Coeff}_{t^{\prime}}\left(\partial_{t^{f}} \partial_{t^{c}} \partial_{t^{d}} F\right) \\
& -\operatorname{Coeff}_{t^{\prime}}\left(\partial_{t^{a}} \partial_{t^{c}} \partial_{t^{e}} F\right) g^{e e f}\left(\partial_{t^{f}} \partial_{t^{b}} \partial_{t^{d}} F\right)(0) \\
& -\left(\partial_{t^{a}} \partial_{t^{c}} \partial_{t^{e}} F\right)(0) g^{\text {ef }} \operatorname{Coeff}_{t^{\prime}}\left(\partial_{t^{f}} \partial_{t^{b}} \partial_{t^{d}} F\right) \\
= & \text { lower order terms. }
\end{aligned}
$$

More generally, we can use invariants of any fixed length $4,5, \ldots$.

## Monodromy groups

Let $X$ be a complete intersection in $\mathbb{P}^{n+r}$ of multidegree $\mathbf{d}=\left(d_{1}, \ldots, d_{r}\right)$. We call $X$ exceptional if the monodromy group as a group acting on $H_{\text {prim }}^{n}(X)$ is a finite group. The exceptional complete intersections are classified by Deligne:

- $\mathbf{d}=(2)$, i.e $X$ is a quadric hypersurface.
- $\mathbf{d}=(3)$ and $n=2$, i.e. $X$ is a cubic curface.
- $\mathbf{d}=(2,2)$ and $n$ is even.

In all the other cases the Zariski closure of the monodromy group is

- $\left(n=\operatorname{dim} X\right.$ is even) the orthogonal group $\mathrm{O}\left(H_{\text {prim }}^{n}(X)\right)$;
- $\left(n=\operatorname{dim} X\right.$ is odd) the symplectic group $\operatorname{Sp}\left(H_{\text {prim }}^{n}(X)\right)$.


## Symmetric reduction

Suppose $X$ is a non-exceptional complete intersection in a projective space.

- $n:=\operatorname{dim} X$. Assume $n \geq 3$.
- $m:=\operatorname{rank} H_{\text {prim }}^{n}(X)$.
$-\mathrm{a}=n+r+1-\sum_{i=1}^{r} d_{i}$.
Let $t^{0}, \ldots, t^{n}$ be flat coordinates on of the Frobenius manifold associated to the ambient quantum cohomology of $X$. Suppose $n$ is even. Let $t^{n+1}, \ldots, t^{n+m}$ be the basis dual to an orthonormal basis of $H_{\text {prim }}^{n}(X)$. Let

$$
s=\frac{1}{2} \sum_{i=n+1}^{n+m}\left(t^{i}\right)^{2}
$$

By the theory of polynomial invariants of orthogonal groups, the generating function $F$ of quantum cohomology of $X$ is a function of $t^{0}, \ldots, t^{n}$ and $s$. When $n$ is odd, the variable $s$ is defined similary by a symplectic basis of $H_{\text {prim }}^{n}(X)$ :

$$
s=-\sum_{i=n+1}^{n+\frac{m}{2}} t^{i} t^{i+\frac{m}{2}}
$$

## Symmetric reduction of WDVV

Symmetric reduction of the WDVV equations of $F$ :

$$
\begin{gathered}
F_{a b e} g^{e f} F_{s f}+2 s F_{s a b} F_{s s}=F_{s a} F_{s b}, \quad 0 \leq a, b \leq n, \\
F_{s e} g^{e f} F_{s f}+2 s F_{s s} F_{s s}=0 .
\end{gathered}
$$

In odd dimensions,

$$
\begin{gathered}
F_{a b e} g^{e f} F_{s f}+2 s F_{s a b} F_{s s} \equiv F_{s a} F_{s b} \quad \bmod s^{\frac{m}{2}}, \quad 0 \leq a, b \leq n, \\
F_{s e} g^{e f} F_{s f}+2 s F_{s s} F_{s s} \equiv 0 \quad \bmod s^{\frac{m}{2}} .
\end{gathered}
$$

## System of equations

- For even $n$,

$$
\left\{\begin{array}{l}
F_{a b e} g^{e f} F_{s f}+2 s F_{s a b} F_{s s}=F_{s a} F_{s b}, \quad \text { for } 0 \leq a, b \leq n, \\
F_{s e} g^{e f} F_{s f}+2 s F_{s s} F_{s s}=0, \\
E F=(3-n) F+\mathrm{a} \frac{\partial}{\partial t^{1}} c,
\end{array}\right.
$$

- For odd $n$,

$$
\left\{\begin{array}{l}
F_{a b e} g^{e f} F_{s f}+2 s F_{s a b} F_{s s}=F_{s a} F_{s b} \quad \bmod s^{\frac{m}{2}}, \quad \text { for } 0 \leq a, b \leq n, \\
F_{s e} g^{e f} F_{s f}+2 s F_{s s} F_{s s}=0 \quad \bmod s^{\frac{m}{2}} \\
E F=(3-n) F+a \frac{\partial}{\partial t^{1}} c
\end{array}\right.
$$

Aim: Solve $F$, with $\left.F\right|_{s=0}=F^{(0)}$ as initial given data.

## Reconstruction I

$$
F^{(k)}\left(t^{0}, \cdots, t^{n}\right):=\left.\left(\frac{\partial^{k}}{\partial s^{k}} F\right)\right|_{s=0}
$$

Expand

$$
F=F^{(0)}+s F^{(1)}+\frac{s^{2}}{2} F^{(2)}+\ldots
$$

Then $F^{(0)}$ is the generating function of ambient quantum cohomology.
Theorem

- $\Theta:=\sum_{e=0}^{n} \sum_{f=0}^{n} F_{e}^{(1)} g^{\text {ef }} \gamma_{f}$ is a common eigenvector by the quantum multiplications by all cohomology classes. This determines $F^{(1)}$.
- For $k \geq 2, F^{(k)}$ can be reconstructed from $F^{(i)}$ for $0 \leq i<k$, and the constant leading term $F^{(k)}(0)$.

The remaining task is to compute $F^{(k)}(0)$ for $k \geq 2$.

## $F^{(I)}(0)$ as ratios

Let $A_{2 l}$ be the set

$$
\begin{aligned}
& A_{2 l}=\left\{\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{l}, j_{l}\right)\right) \mid\left\{i_{1}, j_{1}, i_{2}, j_{2}, \ldots, i_{l}, j_{l}\right\}=\{1, \ldots, 2 /\}\right. \\
& i_{k}\left.<j_{k} \text { for } 1 \leq k \leq I, i_{1}<i_{2}<\cdots<i_{l}\right\} .
\end{aligned}
$$

In other words, the elements of $A_{2 /}$ parametrize the unordered pairings in a set of cardinality 21 . For example, the elements of $A_{4}$ can be depicted as

$$
\begin{array}{ccc}
\lceil\sqcap & \sqcap \sqcap & \sqcap \\
1234 & 1234 & 1234
\end{array}
$$

For $\sigma=\left(\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \ldots,\left(i_{l}, j_{l}\right)\right) \in A_{2 l}$, and $G=\left(g_{i, j}\right)_{1 \leq i, j \leq 2 l}$ a $2 l \times 2 l$ symmetric matrix (resp. a $2 l \times 2 l$ skew-symmetric matrix), we define

$$
\mathrm{P}_{\sigma}(G):=\prod_{k=1}^{\prime} g_{i_{k}, j_{k}} \cdot\left(\operatorname{resp} . \operatorname{Pf}_{\sigma}(G):=\operatorname{sgn}(\sigma) \prod_{k=1}^{\prime} g_{i_{k}, j_{k}} \cdot\right)
$$

Then define

$$
\mathrm{P}(G):=\sum_{\sigma \in A_{2 \prime}} \mathrm{P}_{\sigma}(G) .\left(\text { resp. } \operatorname{Pf}(G):=\sum_{\sigma \in A_{21}} \operatorname{Pf}_{\sigma}(G) .\right)
$$

## $F^{(I)}(0)$ as ratios

- For skew-symmetric $G, \operatorname{Pf}(G)$ is the Pfaffian of $G$.
- For symmetric $G$, we call $\mathrm{P}(G)$ the permanent Pfaffian of $G$.

For $\alpha_{1}, \ldots, \alpha_{2 l} \in H_{\text {prim }}^{*}(X)$, we define $G\left(\alpha_{1}, \ldots, \alpha_{2 l}\right)$ to be the matrix $G=\left(g_{i, j}\right)_{1 \leq i, j \leq 2 /}$ with $g_{i, j}=\left(\alpha_{i}, \alpha_{j}\right)$.
(i) When $n$ is even,

$$
\begin{aligned}
& \left\langle\alpha_{1}, \ldots, \alpha_{2 \prime}\right\rangle_{0,2 \prime} \\
= & F^{(I)}(0) \cdot \mathrm{P}\left(G\left(\alpha_{1}, \ldots, \alpha_{2 l}\right)\right)
\end{aligned}
$$

(ii) When $n$ is odd,

$$
\begin{aligned}
& \left\langle\alpha_{1}, \ldots, \alpha_{2 \prime}\right\rangle_{0, k+2 \prime} \\
= & F^{(\prime)}(0) \cdot \operatorname{Pf}\left(G\left(\alpha_{1}, \ldots, \alpha_{2 \prime}\right)\right)
\end{aligned}
$$

So $F^{(I)}(0) \in \mathbb{Q}$.

## Expansions of symmetric-reduced WDVV

## Expand

$$
\left\{\begin{array}{l}
F_{\text {abe }} g^{e f} F_{s f}+2 s F_{s a b} F_{s s}=F_{s a} F_{s b}, \quad \text { for } 0 \leq a, b \leq n, \\
F_{s e} g^{e f} F_{s f}+2 s F_{s s} F_{s s}=0, \\
E F=(3-n) F+\mathrm{a} \frac{\partial}{\partial t^{1}} c,
\end{array}\right.
$$

with respect to $s$.

$$
\begin{array}{r}
\sum_{j=0}^{k} \frac{F_{a b e}^{(j)} e^{e f} F_{f}^{(k-j+1)}}{j!(k-j)!}+\sum_{j=1}^{k} \frac{2 F_{a b}^{(j)} F^{(k-j+2)}}{(j-1)!(k-j)!}=\sum_{j=1}^{k+1} \frac{F_{a}^{(j)} F_{b}^{(k-j+2)}}{(j-1)!(k-j+1)!} \\
\quad \text { (resp. for } k \leq \frac{m}{2}-1 \text { when } n \text { is odd) } \\
\sum_{j=1}^{k+1} \frac{F_{e}^{(j)} g^{e f} F_{f}^{(k+2-j)}}{(j-1)!(k+1-j)!}+2 \sum_{j=2}^{k+1} \frac{F^{(j)} F^{(k+3-j)}}{(j-2)!(k+1-j)!}=0 \\
\text { (resp. for } k \leq \frac{m}{2}-1 \text { when } n \text { is odd) }
\end{array}
$$

where $0 \leq a, b \leq n$.

Equations of constant terms of $F^{(I)}(0)$

For $I=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$, we define

$$
\partial_{\tau^{\prime}}:=\left(\partial_{\tau^{0}}\right)^{i_{0}} \circ \cdots \circ\left(\partial_{\tau^{n}}\right)^{i_{n}} .
$$

Let $I=\left(i_{0}, i_{1}, \ldots, i_{n}\right) \in \mathbb{Z}_{\geq 0}^{n+1}$ be given.

$$
\begin{aligned}
& \sum_{k=1}^{\prime} \sum_{0 \leq J \leq 1} \sum_{a=0}^{n} \sum_{b=0}^{n}\binom{l-1}{k-1}\binom{I}{J} \partial_{\tau^{\prime}} \partial_{\tau^{a}} F^{(k)}(0) \eta^{a b} \partial_{\tau^{\prime}-J} \partial_{\tau^{b}} F^{(l+1-k)}(0) \\
& +2(I-1) \sum_{k=2}^{\prime} \sum_{0 \leq J \leq I}\binom{I-2}{k-2}\binom{I}{J} F^{(k)}(0) F^{(l+2-k)}(0)=0 .
\end{aligned}
$$

( $2 \leq I \leq \frac{m}{2}$ when $n$ is odd).

## Computation of $F^{(2)}(0)$

Take $k=1$ in

$$
\begin{aligned}
& F_{a b e}^{(0)} g^{e f} F_{f}^{(k+1)}+2 k F_{a b}^{(1)} F^{(k+1)}-F_{a}^{(k+1)} F_{b}^{(1)}-F_{a}^{(1)} F_{b}^{(k+1)} \\
= & \sum_{j=2}^{k}\binom{k}{j-1} F_{a}^{(j)} F_{b}^{(k-j+2)}-\sum_{j=1}^{k}\binom{k}{j} F_{a b e}^{(j)} g^{e f} F_{f}^{(k-j+1)} \\
& -2 k \sum_{j=2}^{k}\binom{k-1}{j-1} F_{a b}^{(j)} F^{(k-j+2)} .
\end{aligned}
$$

And use

$$
F_{e}^{(1)} g^{e f} F_{f}^{(2)}+F^{(2)} F^{(2)}=0
$$

And the Euler vector field gives, for $k \geq 1$,

$$
E_{\mathrm{amb}} F^{(k)}+(2-n) k F^{(k-1)}=(3-n) F^{(k)}
$$

## Computation of $F^{(2)}(0)$

Let $X$ be a complete intersection in $\mathbb{P}^{n+r}$ of multidegree $\mathbf{d}=\left(d_{1}, \ldots, d_{r}\right)$.

$$
\mathrm{h}_{i}:=\underbrace{\mathrm{h} \cup \cdots \cup \mathrm{~h}}_{i \text { factors }} .
$$

$$
\begin{gathered}
\ell(\mathbf{d}):=\prod_{i=1}^{r} d_{i}!, \mathrm{b}(\mathbf{d}):=d_{1}^{d_{1}} \cdots d_{r}^{d_{r}} . \\
\tilde{\mathrm{h}}=\left\{\begin{array}{cc}
\mathrm{h}, & \mathrm{a}(n, \mathbf{d}) \geq 2, \\
\mathrm{~h}+\ell(\mathbf{d}) \mathrm{q}, & \mathrm{a}(n, \mathbf{d})=1 .
\end{array}\right. \\
\tilde{\mathrm{h}}_{i}:=\underbrace{\tilde{h} \diamond \cdots \diamond \tilde{\mathrm{~h}}}_{i \text { factors }} \text { (small quantum product) }
\end{gathered}
$$

## Computation of $F^{(2)}(0)$

Let $M$ and $W$ be the transition matrices between $h_{i}$ and $\tilde{h}_{i}$ :

$$
\mathrm{h}_{i}=\sum_{j=0}^{n} M_{i}^{j} \tilde{\mathrm{~h}}_{j}, \tilde{\mathrm{~h}}_{i}=\sum_{j=0}^{n} W_{i}^{j} \mathrm{~h}_{j} .
$$

The symmetric-reduced WDVV yields

$$
\left\{\begin{array}{cc}
\left(F^{(2)}(0)-1\right)^{2}=0, & \text { if } n \text { is odd and } \mathbf{d}=(2,2) ; \\
\left(F^{(2)}(0)-1\right)\left(F^{(2)}(0)-4\right)=0, & \text { if } \mathbf{d}=(3) ; \\
\left(F^{(2)}(0)-\frac{-\sum_{j=0}^{n}{ }^{j M_{j}^{1} w_{n}^{j}+\mathrm{b}(\mathbf{d})} \sum_{j=0}^{n}{ }^{j} M_{j}^{1} w_{n-\mathrm{a}}^{j}}{{ }^{\mathrm{a}} \prod_{i=1}^{r} d_{i}}\right)^{2}=0, & \text { if } I=\frac{n-1}{\mathrm{a}} \in \mathbb{Z}_{\geq 2 ;} \\
0, & \text { otherwise. }
\end{array}\right.
$$

The expression

$$
-\sum_{j=0}^{n} j M_{j}^{1} W_{n}^{j}+\mathrm{b}(\mathbf{d}) \sum_{j=0}^{n} j M_{j}^{1} W_{n-\mathrm{a}}^{j}
$$

comes from the Euler vector field written in the basis $\tilde{h}_{i}$ 's.

## Coordinates dual to small quantum cohomology

Beauville-Givental:

$$
\tilde{\mathrm{h}}^{n+1}=\mathrm{b}(\mathbf{d}) \tilde{\mathrm{h}}^{n+1-\mathrm{a}(n, \mathbf{d})}
$$

This suggests us to use the coordinates $\tau^{i}$ dual to $\tilde{h}_{i}$.

- Length 3 genus 0 invariants in $\tau$-coordinates has a closed formula.
- The essentially linear recursion in $\tau$-coordinates is simple:

$$
\begin{aligned}
& \left(\partial_{\tau^{1}} \diamond \partial_{\tau^{i-1}}\right) \circ\left(\partial_{\tau^{j}} \circ \partial_{\tau^{k}}\right)+\left(\partial_{\tau^{1}} \circ \partial_{\tau^{i-1}}\right) \circ\left(\partial_{\tau^{j}} \diamond \partial_{\tau^{k}}\right) \\
& -\left(\partial_{\tau^{1}} \diamond \partial_{\tau^{j}}\right) \circ\left(\partial_{\tau^{i-1}} \circ \partial_{\tau^{k}}\right)-\left(\partial_{\tau^{1}} \circ \partial_{\tau^{j}}\right) \circ\left(\partial_{\tau^{i-1}} \diamond \partial_{\tau^{k}}\right) \\
= & \partial_{\tau^{i}} \partial_{\tau^{j}} \partial_{\tau^{k}}+\partial_{\tau^{1}} \partial_{\tau^{i}} \partial_{\tau^{j+k}}-\partial_{\tau^{i-1}} \partial_{\tau^{j+1}} \partial_{\tau^{k}}-\partial_{\tau^{1}} \partial_{\tau^{j}} \partial_{\tau^{i+k-1}} .
\end{aligned}
$$

- Application: we develop an algorithm to effectively compute $F^{(0)}$ from the mirror formula.
- A byproduct: a simple proof of Zinger's convergence theorem for complete intersections.


## Square root recursion

Our remaining task is to compute $z_{k}:=F^{(k)}(0)$ for $k \geq 3$. We write a package to extract algebraic equations for $F^{(k)}(0)$ from

$$
\begin{aligned}
& \sum_{k=1}^{I} \sum_{0 \leq J \leq I} \sum_{a=0}^{n} \sum_{b=0}^{n}\binom{I-1}{k-1}\binom{I}{J} \partial_{\tau^{\prime}} \partial_{\tau^{a}} F^{(k)}(0) \eta^{a b} \partial_{\tau^{\prime}-J} \partial_{\tau^{b}} F^{(I+1-k)}(0) \\
& +2(I-1) \sum_{k=2}^{I} \sum_{0 \leq J \leq I}\binom{I-2}{k-2}\binom{I}{J} F^{(k)}(0) F^{(I+2-k)}(0)=0
\end{aligned}
$$

$\left(2 \leq I \leq \frac{m}{2}\right.$ when $n$ is odd).
We take a quintic 4 -fold as an example.

$$
2 z_{2}^{2}-8352000 z_{2}+8719488000000
$$

which factors as

$$
2\left(z_{2}-2088000\right)^{2}
$$

So $F^{(2)}(0)=2088000$.

## Square root recursion

$$
\begin{array}{r}
46080 z_{2}^{2}+8 z_{2} z_{3}+3119454720000 z_{2} \\
-16704000 z_{3}-6714318458880000000
\end{array}
$$

Substituting $z_{2}=2088000$ we get 0 , i.e. a trivial equation.

$$
\begin{gathered}
-586224 z_{2}^{3}+3190863801600 z_{2}^{2}+1644480 z_{2} z_{3}+12 z_{3}^{2} \\
+12 z_{2} z_{4}-7369983201945600000 z_{2} \\
+6501980160000 z_{3}-25056000 z_{4} \\
+ \\
+8870266887085670400000000
\end{gathered}
$$

Substituting $z_{2}=2088000$ we get

$$
12\left(z_{3}+413985600000\right)^{2}
$$

again a quadratic equation with two equal roots! So $F^{(3)}(0)=-413985600000$.

## Square root recursion conjecture

## Conjecture

(non-precise form) Suppose the multidegree $\mathbf{d} \neq(3)$. Recall $m=\operatorname{rank} H^{n}(X)$.

- In even dimesions $F^{(k)}(0)$ can be recursively computed by square root recursion.
- In odd dimensions $F^{(k)}(0)$ for $k \leq \frac{m}{4}+1$ can be recursively computed by square root recursion.
- All the other equations are trivial.

We have also a conjectural way to compute $F^{(k)}(0)$ for $k>\frac{m}{4}+1$ when $n$ is odd, which suggests the existence of a new theory of invariants.

## Odd dimension puzzle

Recall

$$
\begin{aligned}
& \sum_{k=1}^{I} \sum_{0 \leq J \leq I} \sum_{a=0}^{n} \sum_{b=0}^{n}\binom{I-1}{k-1}\binom{I}{J} \partial_{\tau^{\prime}} \partial_{\tau^{a}} F^{(k)}(0) \eta^{a b} \partial_{\tau^{\prime-J}} \partial_{\tau^{b}} F^{(I+1-k)}(0) \\
& +2(I-1) \sum_{k=2}^{I} \sum_{0 \leq J \leq I}\binom{I-2}{k-2}\binom{I}{J} F^{(k)}(0) F^{(I+2-k)}(0)=0
\end{aligned}
$$

( $2 \leq I \leq \frac{m}{2}$ when $n$ is odd).
Conjecture (Sqrt recursion conjecture in odd dim)
We do not use $F^{(k)}(0)=0$ for $k>\frac{m}{2}$. Then formally solving the symmetric-reduced WDVV yields the correct $F^{(I)}(0)$ for $I \leq \frac{m}{2}$.

Example

$$
\begin{gathered}
n=3, \mathbf{d}=(2,2,2) . m=\operatorname{dim} H_{\text {prim }}^{3}(X)=28 \\
F^{(2)}(0)=4=2^{2}, F^{(3)}(0)=-8=-2^{3}, F^{(4)}=32=2^{5}, \\
F^{(5)}(0)=-200=-2^{3} 5^{2}, F^{(6)}(0)=1728=2^{6} 3^{3} \\
F^{(7)}(0)=-19208=-2^{3} 7^{4}, F^{(8)}(0)=262144=2^{18}, \\
F^{(9)}(0)=-4251528=-2^{3} 3^{12}, F^{(10)}=80000000=2^{10} 5^{7} \\
F^{(11)}(0)=-1714871048=-2^{3} 11^{8}, F^{(12)}(0)=41278242816=2^{21} 3^{9}, \\
F^{(13)}(0)=-1102867934792=-2^{3} 13^{10} \\
F^{(14)}(0)=32396521357312=2^{14} 7^{11}
\end{gathered}
$$

Conjecture
When $n=3, \mathbf{d}=(2,2,2)$,

$$
F^{(k)}(0)=8(-1)^{k} k^{k-3}, \text { for } 1 \leq k \leq 14
$$

## Square root recursion

- We have shown the conjecture for $F^{(2)}(0)$.
- The last statement on trivial equations gives a way to get a closed formula for $F^{(k)}$ in terms of lower $F^{(i)}$ for $i<k$.
- For $\mathbf{d}=(3)$, i.e. cubic hypersurface, we compute $F^{(k)}(0)$ by geometric methods: study the Fano variety of lines, and the reduce genus one Gromov-Witten invariants.


## Closed fomula of $F^{(2)}$

Let $\Phi$ be the $n \times n$ matrix with entries

$$
\Phi_{j}^{i}= \begin{cases}\mathrm{a}, & \text { if } j=1, i=1 \\ (1-i) t^{i}, & \text { if } j=1, i=\geq 2 \\ \frac{1}{\prod_{i=1}^{r} d_{i}} F_{1, j-1, n-i}^{(0)}-\delta_{i, 1} F_{j-1}^{(1)}-\delta_{i, j-1} F_{1}^{(1)}, & \text { if } 2 \leq j \leq n\end{cases}
$$

Conjecture ( $=$ Corollary of Square root recursion conjecture)
Let $X=X_{n}(\mathbf{d})$ be an n-dimensional smooth non-exceptional complete intersection of multidegree $\mathbf{d}$, with $n \geq 3$ and $\mathbf{d} \neq(3)$. Then

$$
F^{(2)}=\frac{1}{\prod_{i=1}^{r} d_{i}}\left(\partial_{t^{n-1}} F^{(1)}, \ldots, \partial_{t^{0}} F^{(1)}\right) \Phi^{-1}\left(\begin{array}{c}
0 \\
\partial_{t^{1}} \partial_{t^{1}} F^{(1)} \\
\ldots \\
\partial_{t^{1}} \partial_{t^{n-1}} F^{(1)}
\end{array}\right)
$$

For cubic hypersurfaces of dimension $n \geq 3$,

$$
F^{(2)}=\frac{1}{3}\left(\partial_{t^{n-1}} F^{(1)}, \ldots, \partial_{t^{0}} F^{(1)}\right) \Phi^{-1}\left(\begin{array}{c}
-\frac{n-1}{3} \\
\partial_{t^{1}} \partial_{t^{1}} F^{(1)} \\
\ldots \\
\partial_{t^{1}} \partial_{t^{n-1}} F^{(1)}
\end{array}\right)
$$

## Cubic hypersurfaces: Fano variety of lines

Let $X \subset \mathbb{P}^{n+1}$ be a smooth cubic hypersurface. Recall

$$
\left(F^{(2)}(0)-1\right)\left(F^{(2)}(0)-4\right)=0 .
$$

- $\overline{\mathcal{M}}_{0,0}(X, 1)$ is the Fano variety of lines in $X$.
- $\iota_{X}: \overline{\mathcal{M}}_{0,0}(X, 1) \hookrightarrow G_{2}\left(\mathbb{C}^{n+2}\right)$. This enable us to do kind of Schubert calculus on $\overline{\mathcal{M}}_{0,0}(X, 1)$.
- $\Psi: H_{\text {prim }}^{n}(X) \xrightarrow{\sim} H_{\text {prim }}^{n-2}\left(\overline{\mathcal{M}}_{0,0}(X, 1)\right)$.
- Using Galkin-Shinder's result on the Betti number of $\overline{\mathcal{M}}_{0,0}(X, 1)$, we determine the cohomology ring structure of $\overline{\mathcal{M}}_{0,0}(X, 1)$ and by the way we get $F^{(2)}(0)=1$ for $X$.


## Cubic hypersurfaces: essentially linear recursion

Theorem
(i) For the cubic threefold $X, F$ can be reconstructed by from $F^{(0)}$ and $F^{(2)}(0), F^{(4)}(0)$.
(ii) For cubic hypersurfaces $X$ with $\operatorname{dim} X \geq 4, F$ can be reconstructed from $F^{(0)}$ and $F^{(2)}(0)$.

## Cubic hypersurfaces: from genus 1 to genus 0

Let $\gamma_{i}=h_{i}$ the $i$-th power of the hyperplane class for $0 \leq i \leq n$, and $\gamma_{n+1}, \cdots, \gamma_{n+m}$ a basis of $H_{\text {prim }}^{*}(X)$. By topological recursion relation in genus 1 ,

$$
\begin{aligned}
& \left\langle\psi \gamma_{b}, \gamma_{c}\right\rangle_{1,1} \\
= & \frac{1}{\prod_{i=1}^{r} d_{i}}\left\langle\gamma_{b}, \gamma_{c}, \mathrm{~h}_{n-1}\right\rangle_{0,1}\langle\mathrm{~h}\rangle_{1,0}+\frac{1}{\prod_{i=1}^{r} d_{i}}\left\langle\gamma_{b}, \gamma_{c}, 1\right\rangle_{0,3,0}\left\langle\mathrm{~h}_{n}\right\rangle_{1,1,1} \\
& +\frac{1}{24} \sum_{e=0}^{n+m} \sum_{f=0}^{n+m}\left\langle\gamma_{b}, \gamma_{e}, g^{e f} \gamma_{f}, \gamma_{c}\right\rangle_{0,1} .
\end{aligned}
$$

Then we apply Zinger's Standard versus Reduced formula:

$$
\left\langle\psi^{a_{1}} \mu_{1}, \ldots, \psi^{a_{k}} \mu_{k}\right\rangle_{1, \beta}-\left\langle\psi^{a_{1}} \mu_{1}, \ldots, \psi^{a_{k}} \mu_{k}\right\rangle_{1, \beta}^{0}
$$

$=$ genus 0 Gromov-Witten invariants
to $\left\langle\psi \gamma_{b}, \gamma_{c}\right\rangle_{1,1}$. This reproves $F^{(2)}(0)=1$.

## Cubic 3-folds: from genus 1 to genus 0

The cubic 3 -folds are special: $F^{(4)}(0)$ cannot be computed from the symmetric-reduced WDVV.

$$
\begin{aligned}
& \left\langle\psi \gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}\right\rangle_{1,2} \\
= & \frac{1}{3} \sum_{i=1}^{5}( \pm)\left\langle\gamma_{0}, \gamma_{i}, 1\right\rangle_{0,3,0}\left\langle\mathrm{~h}_{3}, \cdots, \hat{\gamma}_{i}, \cdots\right\rangle_{1,5,2} \\
& +\frac{1}{3} \sum_{i=1}^{5}( \pm)\left\langle\gamma_{0}, \gamma_{i}, \mathrm{~h}_{2}\right\rangle_{0,1}\left\langle\mathrm{~h}, \cdots, \hat{\gamma}_{i}, \cdots\right\rangle_{1,5,1} \\
& +\frac{1}{3} \sum_{\{i, j, k\} \subset[5]}( \pm)\left\langle\gamma_{0}, \gamma_{i}, \gamma_{j}, \gamma_{k}, \mathrm{~h}\right\rangle_{0,5,1}\left\langle\mathrm{~h}_{2}, \cdots, \hat{\gamma}_{i}, \hat{\gamma}_{j}, \hat{\gamma}_{k} \cdots\right\rangle_{1,3,1} \\
& +\frac{1}{3}\left\langle\gamma_{0}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \mathrm{~h}_{2}\right\rangle_{0,7,2}\langle\mathrm{~h}\rangle_{1,1,0} \\
& +\frac{1}{24} \sum_{a=0}^{13}\left\langle\gamma_{0}, \Gamma_{a}, \Gamma^{a}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}\right\rangle_{0,8,2} .
\end{aligned}
$$

## Cubic hypersurfaces: vanishing of certain reduced genus 1 GW invariants

Theorem
Let $X$ be a smooth subvariety of $\mathbb{P}^{N}$. Let $\beta \in H_{2}(X ; \mathbb{Z})$ such that $\mathrm{h} \cdot \beta=1$, where h is the hyperplane class restricted to $X$. Then any reduced genus one invariant of degree $\beta$ is 0 .

Theorem
Let $X$ be a cubic hypersurface in $\mathbb{P}^{N}$. Let $\alpha_{1}, \ldots, \alpha_{k} \in H^{*}(X)$. Then

$$
\left\langle\alpha_{1}, \ldots, \alpha_{k}\right\rangle_{1,2}^{0}=0=\left\langle\psi \alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right\rangle_{1,2}^{0} .
$$

Cubic 3-folds: $F^{(4)}(0)$

Idea: we have a factorization of the evaluation maps $\mathrm{ev}_{[k]}=\mathrm{ev}_{1} \times \cdots \times \mathrm{ev}_{k}$

where

$$
\overline{\mathcal{M}}_{0,[k]}(X, 1):=\underbrace{\overline{\mathcal{M}}_{0,1}(X, 1) \times \overline{\mathcal{M}}_{0,0}(X, 1) \times \cdots \times \overline{\mathcal{M}}_{0,0}(X, 1)}_{k \text { factors }} \overline{\mathcal{M}}_{0,1}(X, 1) .
$$

Theorem
For cubic 3-folds, $F^{(4)}(0)=0$.

## Overview

We sketch our knowledge and tools on the leading terms $F^{(k)}(0)$ of non-exceptional smooth complete intersections of dimension $\geq 3$.

| $(n, \mathbf{d})$ | 1 | 2 | $3 \leq k \leq\left\lfloor\frac{m}{4}\right\rfloor+1$ | $k>\frac{m}{4}+1$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{d}=(3), n=3$ | eigen vector | geometric method | geometric method |  |
| $\mathbf{d}=(3), n \geq 4$ | eigen vector | geometric method | essentially linear recursion |  |
| $\mathbf{d} \neq(3)$, even $n$ | eigen vector | sqrt recursion | sqrt recursion |  |
| $\mathbf{d} \neq(3)$, odd $n$ | eigen vector | sqrt recursion | sqrt recursion | sqre recursion |

An algorithm is implemented in our Macaulay2 package QuantumCohomologyFanoCompleteIntersection.

- Exceptional complete intersections: essentially linear recursions work (the even (2,2)-type case will be shown in the following).
- Border cases of Fano complete intersections (i.e. odd (2, 2)-type, cubic hypersurfaces): hybrid recursions on $F^{(I)}(0)$.
- Non-exceptional, non-quasiexceptional complete intersections: the square root recursion conjecture says that essentially linear recursions NEVER do help to $F^{(I)}(0)$.


## Question

Do such observations remain true for other families of Fano manifolds, e.g.
Fano 3-folds?

## Integrality and Positivity

## Conjecture

Let $X$ be a non-exceptional Fano complete intersections of dimension $n$ and multidegree $\mathbf{d}$.

1. $F^{(k)}(0) \in \mathbb{Z}$.
2. 

$$
\begin{cases}F^{(k)}(0)=0, & \text { if } \mathbf{d}=3, \text { and } k=n+1 ; \\ F^{(k)}(0)>0, & \text { if } k \text { is even and }(\mathbf{d}, k) \neq(3, n+1) ; \\ F^{(k)}(0)<0, & \text { if } k \text { is odd and }(\mathbf{d}, k) \neq(3, n+1)\end{cases}
$$

- The integrality: when $n$ is odd we can deduce it from the integrality of genus 0 Gromov-Witten invariants of semipositive symplectic manifolds.
- The positivity is quite mysterious. We have no geometric interpretation.


## Exceptional complete intersections: $n$ even, $\mathbf{d}=(2,2)$

## Theorem

Let $X$ be an even dimensional complete intersection of two quadrics in $\mathbb{P}^{n+2}$, with $n \geq 4$. All the genus 0 Gromov-Witten invariants can be reconstructed from a special correlator

$$
\left\langle\epsilon_{1}, \ldots, \epsilon_{n+3}\right\rangle_{0, n+3, \frac{n}{2}}
$$

## Theorem

There exists an open (in the classical topology) neighborhood of the origin of $\mathbb{C}^{2 n+4}$, on which the generating function $F\left(t^{0}, \ldots, t^{2 n+3}\right)$ is analytic and defines a semisimple Frobenius manifold.
By relating the special correlator to classical enumerative geometry, we obtain:
Theorem
For any 4-dimensional complete intersections of two quadrics in $\mathbb{P}^{6}$,

$$
\left\langle\epsilon_{1}, \ldots, \epsilon_{7}\right\rangle_{0,7,2}=\frac{1}{2}
$$

## Monodromy group and the $D_{n+3}$ lattice

Let $V=\mathbb{R}^{n+3}$ be the Euclidean space with the standard inner product. Let $\varepsilon_{1}, \ldots, \varepsilon_{n+3}$ be an orthonormal basis, and let

$$
\left\{\begin{array}{l}
\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1} \text { for } 1 \leq i \leq n+2 \\
\alpha_{n+3}=\varepsilon_{n+2}+\varepsilon_{n+3}
\end{array}\right.
$$

The Weyl group $D_{n+3} \subset \mathrm{GL}(n+3, \mathbb{R})$ is generated the reflections with respect to the $\alpha_{i}$ 's. If one writes vectors in $\mathbb{R}^{n+3}$ in terms of the coordinates according to the basis $\varepsilon_{1}, \ldots, \varepsilon_{n+3}$, i.e.

$$
\mathbf{v}=\left(v_{1}, \ldots, v_{n+3}\right)=\sum_{i=1}^{n+3} v_{i} \varepsilon_{i}
$$

then the group $D_{n+3}$ coincides with the group generated by the permutations of the coordinates, and the change of signs

$$
\left(v_{1}, \ldots, v_{n+1}, v_{n+2}, v_{n+3}\right) \mapsto\left(v_{1}, \ldots, v_{n+1},-v_{n+2},-v_{n+3}\right)
$$

## Monodromy group and the $D_{n+3}$ lattice

From now on, let $n$ be an even integer $\geq 4$, and $X$ be a smooth complete intersection of two quadric hypersurfaces in $\mathbb{P}^{n+2}$. By the work of Reid:

- $H_{\text {prim }}^{n}(X)$ is a standard representation of $D_{n+3}$.
- The integral lattice $H_{\text {prim }}^{n}(X) \cap H^{n}(X ; \mathbb{Z})$ is generated by the roots $\alpha_{i}$ 's of $D_{n+3}$.
- There is an isometry

$$
V \otimes_{\mathbb{R}} \mathbb{C} \xrightarrow{\sim}\left(H_{\text {prim }}^{n}(X),(-1)^{\frac{n}{2}}(., .)\right)
$$

- $H^{n}(X ; \mathbb{Z})$ is generated by the classes of $\frac{n}{2}$-planes in $X$.
- Define

$$
\epsilon_{i}= \begin{cases}\varepsilon_{i}, & \text { if } n \equiv 0 \bmod 4 \\ \sqrt{-1} \varepsilon_{i}, & \text { if } n \equiv 2 \bmod 4\end{cases}
$$

Then $\epsilon_{1}, \ldots, \epsilon_{n+3}$ is an orthonormal basis of $H_{\text {prim }}^{n}(X)$.

## Invariant theory of $D_{n+3}$

Let $t^{n+1}, \ldots, t^{2 n+3}$ be the basis of $H_{\text {prim }}^{*}(X)^{\vee}$ dual to $\epsilon_{1}, \ldots, \epsilon_{n+3}$. By the invariant theory of Weyl groups, the polynomial invariants of $D_{n+3}$ are generated by $s_{1}, \ldots, s_{n+3}$, where

$$
s_{i}=\frac{1}{(2 i)!} \sum_{j=n+1}^{2 n+3}\left(t^{j}\right)^{2 i}, \text { for } 1 \leq i \leq n+2
$$

and

$$
s_{n+3}=\prod_{j=n+1}^{2 n+3} t^{j}
$$

Moreover, $s_{1}, \ldots, s_{n+3}$ are algebraically independent.
Corollary
The genus $g$ generating function $\mathcal{F}_{g}$ of $X$ can be written in a unique way as a series of $s_{1}, \ldots, s_{n+3}$.

## Correlators of length 4

Theorem
Let $X$ be an even dimensional complete intersection of two quadrics in $\mathbb{P}^{n+2}$, with $n \geq 4$. Then

$$
\frac{\partial^{2} F}{\left(\partial s_{1}\right)^{2}}(0)=1, \quad \frac{\partial F}{\partial s_{2}}(0)=-2 .
$$

Equivalently, for $1 \leq a, b \leq n+3$,

$$
\left\langle\epsilon_{a}, \epsilon_{a}, \epsilon_{b}, \epsilon_{b}\right\rangle_{0,1}=1
$$

Ingredients of the proof:

- Monodromy group;
- From genus 1 to genus 0 ;
- Integrality of degree 1 invariants.


## Reconstruction theorem

By the invariants of length 4, an essentially linear recursion yields
Theorem
With the knowledge of the 4-point invariants, all the invariants can be reconstructed from the WDVV, the deformation invariance, and the special correlator

$$
\left\langle\epsilon_{1}, \ldots, \epsilon_{n+3}\right\rangle_{0, n+3, \frac{n}{2}} .
$$

## Special correlator

- There are choices of the $D_{n+3}$-lattices.
- Observation:

The WDVV equations and the knowledge of correlators of length 4 can at most determine the special correlator with a freedom of signs, unless it vanishes.

## Conjecture

Set the special correlator to be an indeterminate z. Let $F\left(t_{0}, \ldots, t_{2 n+3} ; z\right)$ be the generating function of primary genus 0 Gromov-Witten invariants of $X$ determined by the reconstruction theorem. Then $F\left(t_{0}, \ldots, t_{2 n+3} ; z\right)$ satisfies WDVV and the monodromy invariance.

## Semisimplicity

Theorem (Dubrovin)
A semisimple Frobenius manifold has a unique normalized Euler field.
The cutoff of $F$ at order 3 is a function of $t^{0}, \ldots, t^{n}$ and

$$
s_{1}=\sum_{i=n+1}^{2 n+3}\left(t^{i}\right)^{2}
$$

It has symmetries $=\mathrm{O}\left(H_{\text {prim }}^{n}(X)\right)$. On the contrary, C. Jordan's theorem: the degree 4 form

$$
s_{2}=\sum_{i=n+1}^{2 n+3}\left(t^{i}\right)^{4}
$$

has only finitely many automorphisms. So we can expect that the information of correlators of length 4 implies the semisimplicity.

## Middle dimensional planes

Let $\lambda_{0}, \ldots, \lambda_{n+2} \in \mathbb{C}$ be pairwise distinct. Let

$$
\varphi_{1}\left(Y_{0}, \ldots, Y_{n+2}\right)=\sum_{i=0}^{n+2} Y_{i}^{2}, \varphi_{2}\left(Y_{0}, \ldots, Y_{n+2}\right)=\sum_{i=0}^{n+2} \lambda_{i} Y_{i}^{2}
$$

and $X=\left\{\varphi_{1}=\varphi_{2}=0\right\} \subset \mathbb{P}^{n+2}$. Make a change of coordinates

$$
W_{i}=\frac{Y_{i}}{\sqrt{\prod_{\substack{0 \leq j \leq n+2 \\ j \neq i}}\left(\lambda_{i}-\lambda_{j}\right)}} .
$$

Then $X$ contains the plane $S$ defined by

$$
\sum_{i=0}^{n+2} \lambda_{i}^{k} W_{i}=0, \text { for } 0 \leq k \leq \frac{n}{2}+1
$$

- For a subset $I \subset[0, n+2]$, let $S$, be the $\frac{n}{2}$-plane obtained by reversing the sign of the $i$-th homogeneous coordinate of the points on $S$ for all $i \in I$.
- Denote the complement of $I$ by $C(I)$. Then $S_{I}=S_{C(I)}$.


## An explicit lattice

- $s_{i}:=\left[S_{i}\right]$.
- For $1 \leq i \leq n+3$, we define

$$
\begin{gathered}
\varepsilon_{i}=\varsigma_{i-1}-\frac{1}{n+1} \sum_{i=0}^{n+2} \varsigma_{i}+\frac{1}{2(n+1)} \mathrm{h}_{n / 2} . \\
\left\{\begin{array}{l}
\alpha_{i}=\varsigma_{i-1}-\varsigma_{i} \text { for } 1 \leq i \leq n+2, \\
\alpha_{n+3}=\varsigma_{n+1}+\varsigma_{n+2}+2 \varsigma-\mathrm{h}_{n / 2} .
\end{array}\right.
\end{gathered}
$$

## Enumerative correlators

Denote the $i$-th projection from $X^{n+3}$ to $X$ by $q_{i}$. Consider the product of the evaluation morphisms

$$
\mathrm{ev}_{1} \times \cdots \mathrm{ev}_{n+3}: \overline{\mathcal{M}}_{0, n+3}\left(X, \frac{n}{2}\right) \rightarrow X^{n+3}
$$

Let $I_{1}, \ldots, I_{n+3} \subset[0, n+2]$. We say that the correlator

$$
\left\langle\varsigma_{1}, \ldots, \varsigma \varsigma_{n+3}\right\rangle
$$

is enumerative if there exists an irreducible component $M$ of $\overline{\mathcal{M}}_{0, n+3}\left(X, \frac{n}{2}\right)$ satisfying the following:

## Enumerative correlators

(i) $\operatorname{dim} M$ equals the expected dimension.
(ii) The cycles $\left(\mathrm{ev}_{1} \times \cdots \mathrm{ev}_{n+3}\right)(M)$ and $q_{1}^{-1} S_{l_{1}}, \ldots, q_{n+3}^{-1} S_{I_{n+3}}$ intersect properly, i.e. the dimension of their (scheme theoretic) intersection is 0 .
(iii) Each irreducible component of $\overline{\mathcal{M}}_{0, n+3}\left(X, \frac{n}{2}\right)$ other than $M$ has empty intersection with $q_{1}^{-1} S_{1}, \ldots, q_{n+3}^{-1} S_{I_{n}+3}$.
Our strategy to compute the special correlator:

1. Select $I_{1}, \ldots, I_{n+3} \subset[0, n+2]$, such that the correlator $\left\langle\varsigma_{1}, \ldots, \varsigma_{n+3}\right\rangle$ is enumerative.
2. Express $\left\langle\varsigma_{1}, \ldots, \varsigma_{I_{n+3}}\right\rangle$ in terms of the special correlator.
3. Solve the corresponding enumerative problem by counting curves. More precisely, compute the intersection multiplicities of the intersection

$$
\left(\mathrm{ev}_{1} \times \cdots \mathrm{ev}_{n+3}\right)_{*}[M] \cap q_{1}^{*}\left[S_{l_{1}}\right] \cap \cdots \cap q_{n+3}^{*}\left[S_{I_{n+3}}\right]
$$

in the condition (ii) above.

## Enumerative correlators

## Example

The correlator

$$
\begin{equation*}
\left\langle\varsigma_{0}, \ldots, \varsigma_{n+3}\right\rangle \tag{1}
\end{equation*}
$$

should not be enumerative in general. For example, let $n=4$. Then the intersection $S \cap S_{i}$ is a line, for $0 \leq i \leq 6$. The moduli space of conics on $S$ passing through the seven lines has a positive dimension. So there are infinitely many conics passing through $S_{0}, \ldots, S_{6}$. Then the conditions (ii) and (iii) in the above definition cannot be true simultaneously.

## Enumerative correlators

Lemma
$S$ is the only $\frac{n}{2}$-plane in $X$ that has non-empty intersections with each of $S_{\left[i, i+\frac{n}{2}-1\right]}$, for $0 \leq i \leq n+2$. Moreover $S$ meets $S_{\left[i, i+\frac{n}{2}-1\right]}$ at exactly one point.
As a consequence, we consider

$$
\left\langle\varsigma_{\left[0, \frac{n}{2}-1\right]}, \ldots, \varsigma_{\left[n+2, n+2+\frac{n}{2}-1\right]}\right\rangle_{0, n+3, \frac{n}{2}}
$$

as a potentially enumerative correlator.
Lemma
Let $X$ be a 4-dim smooth complete intersection of two quadrics in $\mathbb{P}^{6}$. Then $\left\langle\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}\right\rangle=\frac{1}{2}$ if only if

$$
\left\langle\varsigma_{01}, \varsigma_{12}, \varsigma_{23}, \varsigma_{34}, \varsigma_{45}, \varsigma_{56}, \varsigma_{60}\right\rangle_{0,7,2}=1
$$

## Counting Conics

Lemma
For general choices of $\lambda_{0}, \ldots, \lambda_{6}$, there is no conic on $S$ passing through the 7 points $S \cap S_{01}, \ldots, S \cap S_{56}, S \cap S_{60}$.

- Every conic in a projective space lies on a plane. When a conic is not a double line, it spans a unique plane.
- To find conics on $X$ passing through the planes $S_{01}, \ldots, S_{60}$, we will first find all the planes in $\mathbb{P}^{6}$ that meets $S_{01}, \ldots, S_{60}$.
- By the above results we need to find planes $\Sigma \not \subset X$ that meets $S_{01}, \ldots, S_{60}$.


## Counting Conics

## Theorem

Let $X$ be the 4 dimensional smooth complete intersection of two quadrics, given by $\left(\lambda_{0}, \ldots, \lambda_{6}\right)=(1,2,3,4,5,6,7)$. Then
(i) There exists a unique conic $C$ in $X$ that meets $S_{i, i+1}$ for $i \in[0,6]$.
(ii) The conic $C$ is a free curve in $X$.
(iii) In the ring of dual numbers $\mathbb{C}[\varepsilon] /\left(\varepsilon^{2}\right)$, up to a common multiple, the system of equations for conics passing through $S_{i, i+1}$ for $i \in[0,6]$ has a unique solution.

Key idea: solve the Plücker coordinates of $S_{C}$, the plane spanned by $C$.

## Counting Conics

## Theorem

For any 4-dimensional complete intersections of two quadrics in $\mathbb{P}^{6}$,

$$
\left\langle\varsigma_{0,1}, \ldots, \varsigma_{6,0}\right\rangle_{0,7,2}=1 .
$$

Corollary
For any 4-dimensional complete intersections of two quadrics in $\mathbb{P}^{6}$,

$$
\begin{equation*}
\left\langle\epsilon_{1}, \ldots, \epsilon_{7}\right\rangle_{0,7,2}=\frac{1}{2} . \tag{2}
\end{equation*}
$$

By the way we obtain a result of classical flavor.
Theorem
For general 4-dimensional smooth complete intersections $X$ of two quadrics in $\mathbb{P}^{6}$, there exists exactly one smooth conic that meets each of the 2-planes $S_{i, i+1}$ in $X$ for $0 \leq i \leq 6$.

## Problems

## Problem

Describe explicitly the conic C for general $\lambda_{0}, \ldots, \lambda_{6}$.
Question
Is the statement the above Theorem true in an appropriate sense (e.g. allowing singular conics or double lines), for all 4-dimensional smooth complete intersections of two quadrics in $\mathbb{P}^{6}$ ?

## A conjecture on the explicit conic

$$
\begin{aligned}
& h\left(\lambda_{0}, \ldots, \lambda_{6}\right):= \\
& \lambda_{0}^{2} \lambda_{1} \lambda_{3}-\lambda_{0}^{2} \lambda_{1} \lambda_{5}-\lambda_{0}^{2} \lambda_{2} \lambda_{3}+\lambda_{0}^{2} \lambda_{2} \lambda_{6}+\lambda_{0}^{2} \lambda_{4} \lambda_{5}-\lambda_{0}^{2} \lambda_{4} \lambda_{6}+\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{5} \\
& -\lambda_{0} \lambda_{1} \lambda_{2} \lambda_{6}-\lambda_{0} \lambda_{1} \lambda_{3} \lambda_{4}-\lambda_{0} \lambda_{1} \lambda_{3} \lambda_{6}+\lambda_{0} \lambda_{1} \lambda_{4} \lambda_{6}+\lambda_{0} \lambda_{1} \lambda_{5} \lambda_{6}+\lambda_{0} \lambda_{2} \lambda_{3} \lambda_{4} \\
& +\lambda_{0} \lambda_{2} \lambda_{3} \lambda_{5}-\lambda_{0} \lambda_{2} \lambda_{4} \lambda_{5}-\lambda_{0} \lambda_{2} \lambda_{5} \lambda_{6}-\lambda_{0} \lambda_{3} \lambda_{4} \lambda_{5}+\lambda_{0} \lambda_{3} \lambda_{4} \lambda_{6}-\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{5} \\
& +\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{6}+\lambda_{1} \lambda_{3} \lambda_{4} \lambda_{5}-\lambda_{1} \lambda_{4} \lambda_{5} \lambda_{6}-\lambda_{2} \lambda_{3} \lambda_{4} \lambda_{6}+\lambda_{2} \lambda_{4} \lambda_{5} \lambda_{6},
\end{aligned}
$$

$$
\mu_{i}\left(\lambda_{0}, \ldots, \lambda_{6}\right):=h\left(\lambda_{i}, \lambda_{i+1}, \lambda_{i+2}, \lambda_{i+3}, \lambda_{i+4}, \lambda_{i+5}, \lambda_{i+6}\right) \cdot \prod_{j=i+1}^{i+6}\left(\lambda_{i}-\lambda_{j}\right)
$$

for $0 \leq i \leq 6$, where the subscripts are understood in the mod 7 sense. We define a quadric hypersurface $Q$ by

$$
\sum_{i=0}^{6} \mu_{i}\left(\lambda_{0}, \ldots, \lambda_{6}\right) W_{i}^{2}=0
$$

Then the 2-plane $S_{C}$ spanned by the conic $C$ is contained in $Q$.

## Genus 1 GW invariants of Fano complete intersections

Let $X$ be a non-exceptional Fano complete intersection in a projetive space. Let $G\left(t^{0}, \ldots, t^{n+m}\right)$ be the generating function of genus 1 primary GW invariants of $X$. Define

$$
G^{(k)}=\left.\frac{\partial^{k} G}{(\partial s)^{k}}\right|_{s=0} .
$$

By the monodromy symmetric reduction of Getzler relations, we get:
Theorem
$G^{(0)}$ can be reconstructed from $\frac{\partial G^{(0)}}{\partial t^{i}}(0)$, for $1 \leq i \leq n$, and genus zero $G W$ invariants of $X$.
Then we compute the initial values $\frac{\partial G^{(0)}}{\partial t^{\prime}}(0)$ via Zinger's reduced genus 1 GW invariants.

## Series associated with (modified) hypergeometric series

Let $X$ be a Fano complete intersection of multidegree $\mathbf{d}=\left(d_{1}, \ldots, d_{r}\right)$ in $\mathbb{P}^{n-1}$.

$$
\begin{gathered}
L_{0}(q):=\sum_{k=0}^{\infty} \frac{\prod_{i=1}^{k-1}(k|\mathbf{d}|+1-i n)}{k!}\left(\frac{\mathbf{d}^{\mathbf{d}} q}{n}\right)^{k}, \\
\Phi_{0}(q):=L_{0}(q)^{\frac{r+1}{2}} \cdot\left(1+\mathbf{d}^{\mathbf{d}}\left(1-\frac{|\mathbf{d}|}{n}\right) q L_{0}(q)^{|\mathbf{d}|}\right)^{-\frac{1}{2}},
\end{gathered}
$$

where

$$
|\mathbf{d}|:=\sum_{i=1}^{r} d_{i}, \mathbf{d}^{\mathbf{d}}:=\prod_{i=1}^{r} d_{i}^{d_{i}} .
$$

## Series associated with (modified) hypergeometric series

$$
\begin{aligned}
\Phi_{1}(q):= & \frac{L_{0}(q)^{\frac{r-1}{2}} \cdot\left(1+\mathbf{d}^{\mathbf{d}}\left(1-\frac{|\mathbf{d}|}{n}\right) q L_{0}(q)^{|\mathbf{d}|}\right)^{-\frac{7}{2}}}{24|\mathbf{d}| n^{3}} \times\left(|\mathbf{d}|^{3}\left(|\mathbf{d}| n-|\mathbf{d}|-3 r^{2}+1\right) L_{0}(q)\right. \\
& +|\mathbf{d}|^{2} n\left(2|\mathbf{d}|^{2}-6|\mathbf{d}| n-6|\mathbf{d}| r+3 n^{2}+6 n r+n+3 r^{2}-1\right) L_{0}(q)^{n} \\
& +3|\mathbf{d}|^{2}(n-|\mathbf{d}|)\left(|\mathbf{d}| n-|\mathbf{d}|-3 r^{2}+1\right) L_{0}(q)^{n+1} \\
& +|\mathbf{d}| n(n-|\mathbf{d}|)\left(4|\mathbf{d}|^{2}-5|\mathbf{d}| n-12|\mathbf{d}| r-2 n^{2}+6 n r+n+6 r^{2}-2\right) L_{0}(q)^{2 n} \\
& +3|\mathbf{d}|(n-|\mathbf{d}|)^{2}\left(|\mathbf{d}| n-|\mathbf{d}|-3 r^{2}+1\right) L_{0}(q)^{2 n+1} \\
& +n(n-|\mathbf{d}|)^{2}\left(2|\mathbf{d}|^{2}+|\mathbf{d}| n-6|\mathbf{d}| r+3 r^{2}-1\right) L_{0}(q)^{3 n} \\
& \left.+(n-|\mathbf{d}|)^{3}\left(|\mathbf{d}| n-|\mathbf{d}|-3 r^{2}+1\right) L_{0}(q)^{3 n+1}\right) \\
& +\frac{3 r^{2}-2|\mathbf{d}| \sum_{k=1}^{r} \frac{1}{d_{k}}-1}{24|\mathbf{d}|} L_{0}(q)^{\frac{r-1}{2}}\left(L_{0}(q)-1\right)\left(1+\mathbf{d}^{\mathbf{d}}\left(1-\frac{|\mathbf{d}|}{n}\right) q L_{0}^{|\mathbf{d}|}\right)^{-\frac{1}{2}} .
\end{aligned}
$$

## Constants associated with hypergeometric series

Denote the Fano index by $\nu_{\mathbf{d}}$. Following Popa-Zinger, we define $c_{p, l}^{(\beta)}, \tilde{c}_{p, l}^{(\beta)} \in \mathbb{Q}$ with $p, \beta, I \geq 0$ by

$$
\begin{aligned}
& \sum_{\beta=0}^{\infty} \sum_{l=0}^{\infty} c_{p, l}^{(\beta)} w^{\prime} q^{\beta}=\sum_{\beta=0}^{\infty} q^{\beta} \frac{(w+\beta)^{p} \prod_{k=1}^{r} \prod_{i=1}^{d_{k} \beta}\left(d_{k} w+i\right)}{\prod_{j=1}^{\beta}(w+j)^{n}} \\
& \sum_{\substack{\beta_{1}+\beta_{2}=\beta \\
\beta_{1}, \beta_{2} \geq 0}} \sum_{k=0}^{p-\nu_{\mathbf{d}} \beta_{1}} \tilde{c}_{p, k}^{\left(\beta_{1}\right)} c_{k, l}^{\left(\beta_{2}\right)}=\delta_{\beta, 0} \delta_{p, l}, \text { for } \beta, I \in \mathbb{Z}_{\geq 0}, I \leq p-\nu_{\mathbf{d}} \beta
\end{aligned}
$$

## Series associated with (modified) hypergeometric series

Define

$$
\begin{aligned}
& \Theta_{p}^{(0)}(q):=\Phi_{0}(q) \sum_{\beta=0}^{\infty} \tilde{c}_{p, p-\nu_{\mathrm{d}} \beta}^{(\beta)} q^{\beta} L(q)^{p-\nu_{\mathrm{d}} \beta} . \\
& \Theta_{\rho}^{(1)}(q):= \Phi_{0}(q) \sum_{\beta=0}^{\infty} \tilde{c}_{p, p-\nu_{\mathrm{d}} \beta-1}^{(\beta)} q^{\beta} L(q)^{p-\nu_{\mathrm{d}} \beta-1} \\
&+\Phi_{1}(q) \sum_{\beta=0}^{\infty} \tilde{c}_{p, p-\nu_{\mathrm{d}} \beta}^{(\beta)} q^{\beta} L(q)^{p-\nu_{\mathrm{d}} \beta} \\
&+\Phi_{0}^{\prime}(q) \sum_{\beta=0}^{\infty} \tilde{c}_{p, p-\nu_{\mathrm{d}} \beta}^{(\beta)} q^{\beta+1}\left(p-\nu_{\mathrm{d}} \beta\right) L(q)^{p-\nu_{\mathrm{d}} \beta-1} \\
&+L(q)^{\prime} \Phi_{0}(q) \sum_{\beta=0}^{\infty} \tilde{\tau}_{\rho, p-\nu_{\mathrm{d}} \beta}^{(\beta)} q^{\beta+1}\binom{p-\nu_{\mathrm{d}} \beta}{2} L(q)^{p-\nu_{\mathrm{d}} \beta-2} .
\end{aligned}
$$

## Genus 1 GW invariant with 1 marked point

## Theorem

Let $X$ be a smooth complete intersection of multidegree $\mathbf{d}$ in $\mathbb{P}^{n-1}$, with Fano index $\nu_{\mathbf{d}} \geq 1$. For $0 \leq b \leq \frac{n-1}{\nu_{\mathbf{d}}}$,

$$
\begin{aligned}
& \left\langle h_{1+\nu_{\mathbf{d}}} b\right\rangle_{1, b} \\
& =-\frac{\prod_{k=1}^{r} d_{k}}{24} \operatorname{Res}_{w=0}\left\{\frac{(1+w)^{n}\left(\tilde{c}_{1+\nu_{\mathbf{d}} b, 0}^{(b)}+\tilde{c}_{1+\nu_{\mathbf{d}} b, 1}^{(b)} w\right)}{w^{n-r} \prod_{k=1}^{r}\left(d_{k} w+1\right)}\right\} \\
& +\frac{1}{2} \operatorname{Coeff}_{q} b\left\{\frac{\left.\Theta_{1+\nu_{\mathbf{d}} b^{(q)}\left(\sum_{p=0}^{n-1-r} \Theta_{p}^{(1)}(q) \Theta_{n-1-r-p}^{(0)}(q)+\sum_{p=1}^{r} \Theta_{n-p}^{(1)}(q) \Theta_{n-1-r+p}^{(0)}(q)\right)}^{\Phi_{0}(q)}\right\}, ~(0)}{(0)}\right. \\
& +\frac{n}{24} \text { Coeff }_{q^{b}}\left\{( \frac { n - 1 } { 2 } - \sum _ { k = 1 } ^ { r } \frac { 1 } { d _ { k } } ) \left(1-\sum_{\beta=0}^{\infty} \tilde{c}_{\left.1+\nu_{\mathbf{d}} b, 1+\nu_{\mathbf{d}} b-\nu_{\mathbf{d}} \beta^{(\beta)} q^{\beta}\left(L(q)^{1+\nu_{\mathbf{d}} b-\nu_{\mathbf{d}} \beta}-1\right)\right), ~(1)}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\sum_{\beta=0}^{\infty} \tilde{c}_{1+\nu_{\mathbf{d}}}^{\left(\beta, 1+\nu_{\mathbf{d}} b-\nu_{\mathbf{d}} \beta-1\right.} q^{\beta}\left(L(q)^{1+\nu_{\mathbf{d}} b-\nu_{\mathbf{d}} \beta-1}-1\right)\right\} .
\end{aligned}
$$

## Conclusion

## Corollary

Assuming the square root recursion conjecture, we have an effective algorithm for Genus 1 GW invariants of non-exceptional Fano complete intersections, with only ambient insertions.
This is covered by the work of Argüz-Bousseau-Pandharipande-Zvonkine.

## Question

What can we say about a cohomological field theory with a sufficiently large group of symmetries (typically coming from monodromies)?

## Thank You!

