VIRASORO CONSTRAINTS FOR STABLE PAIRS ON TORIC 3-FOLDS

M. MOREIRA, A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

ABSTRACT. Using new explicit formulas for the stationary GW/PT descendent correspon-
dence for nonsingular projective toric 3-folds, we show that the correspondence intertwines
the Virasoro constraints in Gromov-Witten theory for stable maps with the Virasoro con-
straints for stable pairs proposed in [I§]. Since the Virasoro constraints in Gromov-Witten
theory are known to hold in the toric case, we establish the stationary Virasoro constraints
for the theory of stable pairs on toric 3-folds. As a consequence, new Virasoro constraints
for tautological integrals over Hilbert schemes of points on surfaces are also obtained.
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0. INTRODUCTION

0.1. Stable pairs. Let X be a nonsingular projective 3-fold. A stable pair (F,s) on X
is a coherent sheaf F' on X and a section s € H°(X, F) satisfying the following stability
conditions:

e F'is pure of dimension 1,
e the section s : Ox — F' has cokernel of dimensional 0.

To a stable pair, we associate the Euler characteristic and the class of the support C' of
the sheaf F

X(F)=neZ and [C]=p0¢e Hy(X,Z).
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For fixed n and 3, there is a projective moduli space of stable pairs P,(X, ). Unless (3 is an
effective curve class, the moduli space P,(X, ) is empty. An analysis of the deformation
theory and the construction of the virtual cycle [BP,(X, 8)]"" is given [28]. We refer the
reader to [21] 29] for an introduction to the theory of stable pairs.

Tautological descendent classes are defined via universal structures over the moduli space
of stable pairs. Let

m: X x P,(X,B) > P,(X, )
be the projection to the second factor, and let
Oxxp.xp — Fa
be the universal stable pair on X x P, (X, (). Letﬁ
chiy(Fn — Oxxp,(x,8) € H* (X x P,(X, ).

The following descendent classes are our main objects of study:

chi(v) = s (chi(Fr — Oxxp,x.8) - 7) € H*(Pa(X, 5))
for k> 0 and vy € H*(X). The summand —Oxp,(x,3) only affects chy,

(1) cho(1) = - | 7 € H(PA(X,5).
X
Since stable pairs are supported on curves, the vanishing

chi(v) =0

always holds.
We will study the following descendent series:

m

@) CUGHIEURCAYRED AN I | CYC)

HGZ 75)]1}17‘ i=1

For fixed curve class € Hy(X,Z), the moduli space P,(X, ) is empty for all sufficiently
negative n. Therefore, the descendent series (2) has only finitely many polar terms.

Conjecture 1. [28] The stable pairs descendent series

(ehis(n)+chu, (1))

is the Laurent expansion of a rational function of q for all v; € H*(X) and all k; = 0.

For Calabi-Yau 3-folds, Conjecture [Il reduces immediately to the rationality of the basic
series (1)5" proven via wall-crossing in [2, 32]. In the presence of descendent insertions,
Conjecture [Il has been proven for rich class of varieties [23] 24 25, 20, 27] including all
nonsingular projective toric 3-folds.

IWe will always take singular cohomology with Q-coefficients.
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For our study of the GW/PT descendent correspondence and the Virasoro constraints,
modified stable pair descendent insertions will be more suitable for us. Letf]

~ 1
chy(a) = chi(a) + ﬁchk,g(a - C),

where ¢y = co(Tx) is the second Chern class of the tangent bundle, and let
~ ~ X,PT mo_
(ehia(n) - chi () = D [ Tche. ()

nez ﬁpn(Xyﬂ)]vir i=1

be the corresponding descendent series.

0.2. Virasoro constraints for stable pairs. Let X be a nonsingular projective 3-fold
with only (p, p)—cohomologyE Let

C; = Ci(Tx) € H*(X) .
The simplest example is P? with
Cl = 4H , C1Cy = 24:[.'),

where H and p are the classes of the hyperplane and the point respectively.
Let D be the commutative Q-algebra with generators

{chi(y)|i=0,7e H*(X)}
subject to the natural relations

chi(A-y) = Achi(v),
chi(v +7) = chi(y) +chi(¥)
for A\e Q and v,7 € H*(X).
In order to define the Virasoro constraints for stable pairs, we require three constructions
in the algebra D

e Define the derivation Ry on Dy by fixing the action on the generators:

k

Ri(chi (7)) = (H(’L +d—3+ n)> chisn(v), 7e H*(X,Q)

n=0

for k = —1. In case k = —1, the product is empty and
R_1(chi(7)) = chi_1(7).

2We set, chy(y) = 0 for £ < 0.

30ur results will be about nonsingular projective toric varieties, but the formulas here are all well-
defined when there is no odd cohomology and the Hodge classes in the even cohomology are all (p,p).
To write the Virasoro constraints for varieties with non-(p, p) cohomology requires the Hodge grading and
signs. A treatment is presented in [I7] where the Virasoro constraints are checked in several non-(p, p)
geometries. The theory leads to surprising predictions for vanishings [17].
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e Define the element
chachy(7) = Y cha(7/)chs(~/) € Dy

where Y vF ®~f is the Kiinneth decomposition of the product,
v-Ae H (X x X),
with the diagonal A. The notation
(=) (a + d" — 3)1(b + d® — 3)! chychy(7)
will be used as shorthand for the sum
2= a + d(y) = 3B+ d(3) = 3) cha(F )ehu(1)),
where d(vF) and d(vF) are the (complex) degrees of the classes. All factorials with
negative arguments vanish.
e Define the operator Ty : D — DX, by

1 1
T=—=> > (D" (a+d"—3)I(b+d" - 3)lchochy(c) + o D7 albl chochy(cics)

a+b=k+2 a+b=k

for £ = —1. The sum here is over all ordered pairs (a,b) satisfying a + b = k + 2
with a,b > 0 (and all factorials with negative arguments vanish). Written in terms
of renormalized descendents, the formula simplifies to

(3) Ty= -2 S (LT (a4 db = 3)1(b+ dF — 3)! hudhy(cr).

a+b=k+2

Definition 2. Let L7 : DX — DY, for k > —1 be the operator

L7 =T+ Ry + (k+ 1)!R_ichi1(p).

Since X is a nonsingular projective 3-fold with only (p,p)-cohomology, Hirzebruch-
Riemman-Roch implies

C1Co 6

992 he HY(X

o1 — P,
where p € H®(X) in the point class. Hence, for our paper, we can write
(4) L7 =T, + Ry + (k+1)!R_ichyyq (%) .

The operators for more general varieties X defined in [I7] specialize to (@) when all the
cohomology is (p, p).

The operators £} T impose constraints on descendent integrals in the theory of stable
pairs which are analogous to the Virasoro constraints of Gromov-Witten theory. We for-
mulate the stable pairs Virasoro constraints as follows.
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Conjecture 3. [I8] Let X be a nonsingular projective 3-fold with only (p,p)-cohomology,
and let 3 € Hy(X,Z). For all k = —1 and D € Dy, we have

<££T(D)>;’PT ~0.

Our main result is a statement about stationary descendents for nonsingular projective
toric 3-folds. The subalgebra Dt < D, of stationary descendents is generated] by

{chi(y)|i=0,7ve H'(X,Q)}.

The operators LLT are easily seen to preserve ID)?TT . Therefore, the stationary Virasoro
constraints are well-defined. We prove that the stationary Virasoro constraints hold in the
toric case.

Theorem 4. Let X be a nonsingular projective toric 3-fold, and let f € Hy(X,Z). For all
k= —1 and D € D3, we have

<55T(D)>;’PT 0.

In the basic case of P, Theorem [ specializes to the Virasoro constraints for stable pairs
announced earlier in [21] via (]). A table of data of stable pairs descendent series for P? is
presented in Section @ The Virasoro constraints are seen to provide nontrivial relations.

0.3. The Virasoro bracket. For k£ > —1, we introduce the operators
1

T = LT a3+ R - ) chachy ()
a+b=k+2
1
+ﬂ Z alb! ch,chy(cics)
a+b=k
+Rk7

where the sum, as before, is over ordered pairs (a,b) with a,b = 0.

Our conventions with regard to the factorials in the above definition of LT differ slightly
from those of the definition of L. T. For LYT, all terms with negative factorial vanish except
for the term (—1)!chy(c;). For example, we have

LT =Ry + (=1)!chy(c1)cho(p) -

The new conventions will play a role in the exceptional cases in our analysis. We extend
the action of Ry by

Rie((—=1)!chi(c1)) = —(k — 1)! chgy1(cr).
We view (—1)!ch;(¢y) and
R_1((—=1)!chi(ey)) = —(—2)!chg(c1)

as formal symbols.

4Equivalently, ]D)ffTJr is generated by {cNhZ('y) ’z >0,ye H(X,Q) }
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We define an equivalence relation Y for operators A, B : D — D by

AYB o (AD)YETT = (B(D)HXTT forall DeDyy and Be Hy(X,Z).

Inside the bracket, chy(p) acts as —1, and chy () acts as 0 for all v € H*(X). Moreover,
the formal symbols (—1)!chy(¢;) and (—2)!chg(c;) are defined to act as 0 inside the bracket.

Using the equivalence relation <—i>, we obtain the Virasoro bracket and the following
bracket with chg(p),

AN
N

[LETLE) (k=) LEE, (LT (= 1)lchi(p)] & (n+ k) ! chy i (p).

The operators £E'T are expressed in terms of LYT by

Ler W LT+ (k+ D! LT chi(p) .

The occurrences of the negative factorial terms (—1)!ch;(c1) cancel on the right side. The
expressions LT will play a role in the proof of Theorem [l

The Virasoro algebra is the unique central extension of the Witt algebra. The Witt
algebra is the algebra of polynomial vector fields on the circle and basis

L, = —z”“a(i, neZ.
z

The relations in the Virasoro algebra Vir are generated by
c
(Lo, L] = (m = 0) Lo + 5 (m° — M),
where c is the central element. The elements L,, n > —1 generate a subalgebra Virs_;
of Vir. Only the subalgebra Vir>_; appears to be relevant in our geometric constructions.
For further discussion of the full Virasoro algebra in the context of Gromov-Witten theory
reader may consult [§].

0.4. Virasoro constraints for surfaces. Let S be a nonsingular projective toric surface.
As a consequence of the stationary Virasoro constraints for

(5) X =8 xP' and B =n[P'],

we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert
schemes of points Hilb"(S) of surfaces S in Section [l The case of all simply connected
nonsingular projective surfaces is proven in [17].

As we explain in Section [6] the descendent algebra ID(S) for the surface S is generated by
the tautological classes chy(7), v € H*(S). The classes chy(v) are definedd in terms of the
universal ideal sheaf Z on S x Hilb"(S). If X and f satisfy (H), the tautological integrals
over [P,(X,3)]"" can be expressed in terms of integrals of the tautological classes over
Hilb™(S). The Virasoro operators LT yield operators Ly (see Section ) on D(S), and we
obtain the following result.

SHere & denotes the d-function: 8, = 0 unless k = 0, 8y = 1.
6See formula (I00).
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Theorem 5. Let S be a nonsingular projective toric surface. For allk = —1 and D € D(S),
we have

f (LE + (k + 1)!R,1Chk+1(p)) (D) =0
Hilb™(5)
for allmn = 0.

Taking Theorem [l and [17] as a starting point, D. van Bree [33] has formulated parallel
Virasoro constraints for the descendent theory of moduli spaces of stable sheaves on surfaces
in higher rank (and has provided many numerical checks).

0.5. Path of the proof. Our proof of Theorem @l relies upon two central results. The first
is the Virasoro conjecture in Gromov-Witten theory which has been proven for nonsingular
projective toric varieties [8 [I0]. We refer the reader to the extensive literature on the
subject [3, [7, 8, 10, 19, 20, B0]. The second is the stationary GW/PT correspondence
of [23, 24 25] which was cast in terms of vertex operators in [I8] and has been proven
for nonsingular projective toric 3-folds. We show the stationary GW /PT correspondence
intertwines the Virasoro constraints of the two theories. Along the way, we derive a more
explicit form for the stationary GW /PT correspondence. Our proof of Theorem M yields
the following stronger statement.

Theorem 6. Let X be a nonsingular projective 3-fold with only (p, p)-cohomology for which
the following two properties are satisfied:

(i) The stationary Virasoro constraints for the Gromov-Witten theory of X hold.
(ii) The stationary GW / PT correspondence holds.

Then, the stationary Virasoro constraints for the stable pairs theory of X hold.

A challenge for the subject is to prove the Virasoro constraints for stable pairs directly
using the geometry of the moduli of sheaves. New ideas will almost certainly be required.

0.6. Gromov-Witten theory. Let X be a nonsingular projective 3-fold. Gromov-Witten
theory is defined via integration over the moduli space of stable maps.

Let C' be a possibly disconnected curve with at worst nodal singularities. The genus of
C' is defined by 1 — x(O¢). Let Mlgm(X , B) denote the moduli space of stable maps with
possibly disconnected domain curves C' of genus g with no collapsed connected components
of genus greater or equal to 2. The latter conditionl| requires each non-rational and non-
elliptic connected component of C' to represent a nonzero class in Hy(X,Z).

Let

ev; i M, . (X,8) - X,
-/
L; — M, (X, 5)

"The exclusion here of collapsed connected components of genus greater or equal to 2 matches the
conventions of [I8]. The definition of M/g’m(X , ) differs slightly from the definitions of [26] 27] where
no collapsed connected components are permitted. The difference is minor, see Section 3 of [I8] for a
discussion.
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denote the evaluation maps and the cotangent line bundles associated to the marked points.
Let v1,...,7%m € H*(X), and let

Vi = (L) € H2(M m(X,B)) .
The descendent insertions, denoted by 74(7) for k > 0, correspond to classes ¥Fev(y) on
the moduli space of stable maps. Let

X,GW

() )" = | Uhevi()
' 0.8 W@ammgl

denote the descendent Gromov-Witten invariants. The associated generating series is de-
fined by

X,GW

(6) <Tk1(71)  Th (V) >XGW = 2<H7k > T

geZ i=1 9:8

Since the domain components must map nontrivially, an elementary argument shows the
genus ¢ in the sum (@) is bounded from below. Foundational aspects of the theory are
treated, for example, in [1I, [5, [13].

Using the above deﬁnltlons the string equatlonﬁ is easily checked:

X,GW

X,GW
(7) < HTk i > = <Z H Thy—5,_; (Vi > + collapsed contributions.

j=11i=1

The Gromov-Witten descendent insertions 7 (7) in (@) are defined for & > 0. We include
the nonstandard descendent insertions 7_s(7y) and 7_1(y) by the rule:

(8) < nTk >X e 5k+2 <1_[Tk i) >X GW, for k < 0.

We impose Heisenberg relations (I02]) on the operators 75 (7):
J
© ). ()] = (-1 [ o,
b

In particular, the evaluation (8) applies only after commuting the negative descendents to
the left.

Assume now that X has only (p, p)-cohomology. Let D&, be the commutative Q-algebra
with generators

{ri(y)|i=0,ye H*(X)}
subject to the natural relations

(A7) = Am(v),

(v +7) = () +709)

8The standard correction term for the string equation occurs here since we allow collapsed connected
components of genus 0 in our definition of the Gromov-Witten descendent series.
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for A € Q and 7,7 € H*(X). The subalgebra Dy = D&y, of stationary descendents is

generated by
{Ti(’)/)‘l' >0,v€ H>0(X,@)}.

We will use Getzler’s renormalization a; of the Gromov-Witten descendentsﬁ:

0

(ruz)™ (ruz)™
10 =70 a, + —
(10) nzz_ooZT +Z (1+ ze1)y 012 (14 zc1)y
70 _ P L2y
S (%)
where we use standard notation for the Pochhammer symbol
I'(a+n)
(@), = ——=—.
I'(a)
For example@,
1
(11) To(y) = m(y)+ —f Ve,
24 )y
"
(12) n(y) = 302(7) —a(y-a).

For k > 2 and v € H>°(X), we have the general formula

()"

(13) 7(y) = mﬂm(v) - (wli! (2 %) ax(y - c1)

()k=2 ("5 1 1 9
T (‘* 2 E)“’”(“l)'

1<i<j<k-1

0.7. The GW/PT correspondence for essential descendents. The subalgebra
Dy < Dpg

of essential descendents is generated by

{chi(7)[(i>3,ve H*(X,Q)) or (i = 2,7 H*(X,Q)) } .

While closed formulas for the full GW /PT descendent transformation 0%26] are not known
=

in full generality, the stationary theory is much better understood [18]!
tion takes the simplest form when restricted to essential descendents.
The GW/PT transformation restricted to the essential descendents is a linear map

o . MXK X
¢ Do — Daw
9We use ¢ for the square root of —1. The genus variable v will usually occur together with «.

10The constant, term 27 $x 7c2 in the formula does not contribute unless v € H?(X).
USee [14, [15] for an earlier view of descendents and descendent transformations.

The transforma-
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satisfying
(1) =1

and is defined on monomials by

e (chiy (). ch, (1)) = > [Te (TTehut).

P set partition of {1,..,m} S€F €S
The operations €° on ]fo{f are
~ 1 )1 a,a - C
(14) ¢ (chk1+2(7)) = mak1+1(7) + % M_Z]ﬁl%
" (ru)? Z 0y Oy (7 - 1) n (eu)~® Z O Oyas Oy (7 - €F) ’
ky! Wiarnl Aut(p) (ky — 1)! Wharal Aut(p)

()~ ()~

(15) & (J]k1+2(7)&1k2+2(7/>) = Tl Mtk () - makwkg—l(VW/ -cr)

)2 4 a
_ (k ‘L ' Z max(max(ky, ko), max(pg + 1, o + 1))Au1t 2 (0n/ ),
T A ut(p)

I/

~ ~ o Y w) "2k
(16) € (heya(1)hissa( )Py io0) = Lo ), k] = b+ b+

Y
The above sums are over partitions p of length 2 or 3. The parts of p are positive integers,
and we always write

n = (Mh/vbz) and p = (M17M27M3)

with weakly decreasing parts. In equations (I4)-(I6]), we have k; > 0, and all occurrences
of ap and a_; are set to 0.  The automorphism factor Aut(u) is defined to equal the
product [ [,; m;(u)! where m;(p) is the multiplicity of occurrence of ¢ in .

The above formulas for the GW/PT descendent correspondence are proven here from
the vertex operator formulas of [I8] by a direct evaluation of the leading terms. In the
toric case, we have the following explicit correspondence statement[3

Theorem 7. Let X be a nonsingular projective toric 3-fold. Let

=1

12A straightforward exercise using our new conventions is to show the abstract correspondence of The-
orem [7l is a consequence of [26, Theorem 4]. The novelty of Theorem [1 is the closed formula for the
transformation.
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Let B € Hyo(X,Z) with dg = SB c1(X). Then, the GW/PT correspondence defined by
formulas (I4)-(I6]) holds:
X,PT X,GW

o (T dn0), =t (e (TTna))

after the change of variables —q = e™.

As direct consequence of the formulas (I4])-(I6), the correspondence taken essential de-
scendents on the stable pairs side to stationary descendents on the stable pairs side.

Proposition 8. Let D € DX, Under the GW/PT transformation, we have
¢ (D) e D&y -

Let S be a nonsingular projective toric surface. As a consequence of the stationary
Virasoro constraints for

X =S8 xP' and B =n[P'],

we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert
schemes of points Hilb"(S) of surfaces S in Section [ The case of all simply connected
nonsingular projective surfaces is proven in [17].

0.8. Plan of the paper. The key to our proof of Theorem Ml is an intertwining property
of €* with respect to Virasoro operators for stable pairs and the Virasoro operators for
stable maps. Via the intertwining property, Theorem [l is a consequence of the stationary
GW/PT correspondence of Theorem [Mland the Virasoro constraints for the Gromov-Witten
theory of toric 3-folds.

The algebra DX carries a bumping filtration]

(17) DOPTCD%DTCD%TCD%TC“‘CD%(T»

where D% is spanned by the monomiald"]

m

i=1
for which 7, - - -5, = 0 for all subsets
S={s1,...,sipc{l,....m}, [I>k.

In general the filtration (7)) has infinite length. But if we restrict the filtration to Dp.x,
the filtration truncates since

3 Xk _ mXk
Dpr N Dpp = Dpp
The correspondence
.. Xk X+
¢ Dpr — Daw

13The bumping filtration is a filtration of vector spaces.
14Via, the empty monomial (m = 0), D& is spanned by the unit 1.
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respects the analogous bumping filtration Dy N ]D)é(,{, on ]Dé;{, with respect to the mono-

mials
1_‘[77%(%)
i=1
for which ~, - - - v5, = 0 for all subsets
S={s1,...,si} < {l,....m}, I>k.

Our proof of the intertwining is separated into a calculation for each of the four steps of
the restriction of the bumping filtration on D.x.

We discuss the Virasoro constraints for Gromov-Witten theory in Section [Iland for stable
pairs in Section 2l The stationary Virasoro constraints of Theorem M are proven in Section
2.4l modulo the intertwining of Theorem [I3l The proof of the intertwining property is given
in four steps:

(0) We start in Section B with the special case where D € D% n D¥ is the trivial
monomial 1. The result is Proposition [13 of Section [3.3]

(1) For D € Dby n DX, the required results are proven in Section A3l

(2) Proposition [I§ and Proposition [[9 of Section [l imply the intertwining property for
D e D%, n DEX.

(3) We treat D € D n DX = DaX in Proposition 20 of Section [ to complete the
proof of Theorem [I3

After a review of the GW/PT descendent correspondence from the perspective of [18] in
Section [7l we complete the proof of Theorem [7in Section 8l A list of descendent series in
degree 1 for P3 is given in Section [
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1. VIRASORO CONSTRAINTS FOR GROMOV-WITTEN THEORY

1.1. Overview. We will discuss here the Virasoro constraints for stable maps. The con-
straints are equivalent to a procedure for removing the descendents of the canonical class.
The procedures may be interpreted as series of the reactions (similar to the reactions dis-
cussed in the context of the GW/PT descendent correspondence in [I8], Section 3]). Our
goal is to write the Virasoro constraints for Gromov-Witten theory in a form which is as
close as possible to the Virasoro constraints of Conjecture [3] for stable pairs.

1.2. Gromov-Witten constraints: original form. The Virasoro constraints in Gromov-
Witten theory were first propose in [3]. We recall here the original form following [20].
In Section [[3] a reformulation which is more suitable for the GW/PT correspondence will
be presented.

In the discussion below, we fix a basis of H*(X),

(18) Yoy Ve Vi € Hpi,Qi(X))
for which v = 1, 71 = ¢1, and ~, = [p]. We assumdq ¢; # 0. We also fix a dual basis

Vo5 W s J Yy = 0.
X

The standard method of describing of the Virasoro constraints uses the generating func-
tion for the Gromov-Witten invariants (see [20), section 4]):

X _ Z 292 Z q° 2 Z ot (e () - .Tkn(%)i’ﬁcm,

9=0 BeH2(X,Z) n=0 a1,--.an

where <,>§%}C0n is the standard integral over stable maps with connected domains (and

stable contracted components of all genera are permitted).
The degree 3 = 0 summand Fg* of FX does not require knowledge of curves in X. We
further split the degree 0 summand into summands of genus g < 1 and genus g > 2:

Ff = Ffc + Foosa -
The g < 1 summand takes the form

X =2 0“0%0 0"0“1%0 - . 0 1°0 )
FO,g<1 =u Z < 3 + o J;( ViV Vk Z o + —24 va YiC2 + ...,

i,j,k i

where the dots stand for terms divisible by (¢3)?. The g > 2 summand F(fgﬂ is determined

by the string and dilaton equations from the constant maps contributions of [4, Theorem
4).

5The full conjecture also involves ideas of S. Katz.

I6For Calabi-Yau 3-folds, the Virasoro invariants are a consequence of the string and dilaton equations
(and there are no non-trivial stationary invariants).

17Here (57;]‘ = (57;,]'.
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Let F'X be the summand of FX with B # 0. We define
Z(i(* = exp(F(f*) , ZX = exp(ﬁ) )

The Gromov-Witten bracket <, >§’ﬁGW introduced in Section [0.6 corresponds to the partition
function 7

2 ZX =3 w2 N NNt () e ()

g=Z BeH>(X,Z) n=0 a1,--9n
klv"vkn

The full partition function
2% = exp(FX) = Z& - 28y - 2%

corresponds to the standard disconnected Gromov-Witten bracket <, >;(’ﬂ.’

Z5=Yu? N YN ) ()

920 BeHy(X,Z)  n>001.an
k1,....kn

The Virasoro operators Ly, k € Z~ _; are differential operators which satisfy the Virasoro
Witt algebra relations,

[Li, Le] = (K — €))Ly .

The Virasoro conjecture 3] states that the operators annihilate the partition function

(19) L, ZX =0.
For 3-folds X, the operators are defined by:
0 k+1 ‘
= 30 3 (I O
m=0 1=0
u? A
S N (R N Ty
Wty e
+ T(C Jabtolo
O
—— | cec
24 < 162,

where the Einstein conventions for summing over repeated indices are followed,

te =te —0400m1, OCam = 0/0t;

and [x]f = epr1—j(r,x+1,...,0+ k) The tensors in the equation are defined in terms

of the dual basis:
(s = f e, (O = f " <Oi>a"=f gy
X X X

8Here e, (#1,...,2k) is the elementary symmetric polynomial of degree m.
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1.3. Gromov-Witten constraints: correspondence form. We rewrite here the Vira-
soro constraints of Section [Il in the form most natural for the GW/PT descendent corre-
spondence. Since all of our results are for toric varieties, we specialize our discussion here
to the case where X is a nonsingular projective 3-fold with only (p, p)-cohomology.

We start by defining derivations Ri and quadratic differentials B¥ on D&y, by fixing the
action on the generators:

e The action of the derivation R on 7;(v) for k > —1, 0 < j < 3, and v € H*(X) is
Ri(Ti(W)) =[i+d- 1]? Thtig (7 - ),

where [2]} = exp1—j(@,2 +1,..., 2 + k) and all terms 7,-_5(0) are set to zero. As
a special case,

Rj;l(Tz‘(V)) =0;Ti-1(7) -
We will use the notation Ry = Z?:o R] .

e The action of the quadratic differential B¥ on 79(7y)m0(v') is
B (r(0)(v) = | el
X

On all other quadratics terms, B¥ acts trivially by 0.

The differential operators LSW, for k > —1, are then defined by the formula:

u? (1u)? O

L =Ry + —-BY 4 =T — o ez,
where Ty, = Z?:o T/ and
k—j+2
(20) Th= 2, (CD)"™2=m—delf : T Tomni(e]) +
m=—1

where dj, is the degree of the left term in the co-product] (as in Section [0.2)). In formula
(20), the symbol :: stands for the normal ordering convention: all negative descendents
T-0(7y) are on the left of the positive descendents.

A calculation then yields the Virasoro bracket and the following bracket with 7 (p):

(21) LV LY = (=R L LYk D)) = (R 0+ 2)! k()

YDefine the element
TaTo(7) = ZTa(%L)Tb(Wﬁ) € Diw
where Y, vF ® 7 is the Kiinneth decomposition of the product,
v-Ae H* (X x X),
with the diagonal A.
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Theorem 9. [8,[10] Let X be a nonsingular projective toric 3-fold, and let
B€ Hy(X,Z). For all k = —1 and D € D&y, we have

<LSW(D)>§. 0.

Theorem [0 which is exactly equivalent to constraints (I9) for toric 3-folds, was proven
by Givental in two steps:

(i) Using the virtual localization formula of [9], the Gromov-Witten theory of X is
expressed in terms of graphs sums with descendent integrals over the moduli spaces
of curves Mg,n at the vertices.

(ii) The Virasoro constraints, conjectured by Witten [34] for M, and proven in [12],
are then used to establish the Virasoro constraints for X.

A second proof of Theorem [0 via the Givental-Teleman classification?] of semisimple Co-
hFTs, was given in [30]. For varieties with non-semisimple Gromov-Witten theory, the
Virasoro constraints are known in very few cases ]

1.4. Gromov-Witten constraints: stationary form. We rewrite the Virasoro con-
straints in Gromov-Witten theory of Section in a form which preserves the algebra of
stationary descendents,
b'e X
D < DGw -
We fix a basis (I8)) of the cohomology of X which satisfies the following further conven-

tions. Let
Yooy Vs € HQ(X)

be a basis with v; = ¢;. Let
Yass - Ysr1 € HH(X)
be a dual basis with respect to the Poincaré pairing. Let
=1 H(X), ~s1=peH(X)

span the rest of the cohomology The Kiinneth decomposition of the diagonal is
25+1

A= Z Vi @ Yos+1—i -

i=0
Consider the term Tj. The only place for descendents of 1 to appear in the operator
LEW is in T9. As most of the terms of T vanish by definition, we find

1
(22) §T2 =(k+1)!:7(1)m%a(p): -
We denote the rest of the term by T},
Ty =T, + TY.

20We refer the reader to [22] for an introduction.
21The main known examples are based on the Virasoro constraints for curves proven in [19].
22To match with [@R), r = 2s + 1.
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Inside the bracket (| >f§", the insertion 79(1) can be removed by the string equation ([7]).
We are therefore led to define the operator

© |
£ = Ly Ry B k4 DR (), Th= YT

7>0
where Ry = Z?:o R{; and R_; is the differentiation defined on the generators by
Roime(v) = m-1(7) -
Inside the bracket ¢, >§", we have?]
(23) £ LTV 4 ()1 - )k + 1) T (p),

where we have modified the Virasoro operators to exclude the descendents of 1:

2
(24) pow — pgw ()

0
5 k:<2) T;C—FRk—F Bk+1 kfclcg.

2 24

Though the operators L5V no longer satisfy the Virasoro bracket, the operators LW
preserve the subalgebra D3 < D&y
Proposition 10. Let X be a nonsingular projective toric 3-fold, and let
Be Hy(X,Z). For allk > —1 and D € Dy, we have
X,e
<L§W(D)> ~0.
B
Proof. The case k = 0 follows because
LSV — LW = T9 = 2 79(1)7_1(p) :
X,e
and <T8 o > = 0. For the other case the argument is below.
B
Using (23) and (24)), we have
X,
(25) (££M(D > = (LEY(D) + (u)?(k + 1! LEY (Tk1(P)D)>B
ZU 0 X,e
8 D) + 11T (7 (p)D) ).

The first bracket on the right side of (25) vanishes by Theorem [l We can write the second
bracket on the right as

X,e

WO T4D) + (4 0T (s (0)D)) =

B
<w>2<<k #7011 () + ()2 + D70 (1)72(p) 71 (p)D )

X, e

B

BNote LSV = f‘(%;w'



18 M. MOREIRA, A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

using (22). The right side of the above equation, after applying the commutator (§), is

X,

()2 (b + 1) 70 (D)7 1 ()D + (20)2(k + 1)1 Tg(p)TO(l)Tkl(p)D>B ,

which vanishes after applying ({9). O

In our study of the GW /PT descendent correspondence, we are interested in the Gromov-
Witten bracket < > W of Section LA instead of the standard disconnected bracket < >
Therefore, the followmg result is important for our study.

Proposition 11. Let X be a nonsz’ngular projective toric 3-fold, and let
Be Hy(X,Z). For allk = —1 and D € D&, we have

<£SW(D)>;’GW 0.

Proof. Since LGV preserves D¢y, we have
GW X+
£SV(D) e DX

Since the Gromov-Witten invariants corresponding to collapsed connected components of
genus at least 2 always vanish in the presence of stationary descendents,

X,o X,GW
Liv(p)) " =7, (L))
(LD " = Zial - (LEV D)),

X,e
Since <ESW(D)> vanishes by Proposition [I0] and
B

— _1)94292 x(X) J \3
#lgmgy 7 (Z( . 2w,

g=2

X

X,GW
is invertibld? </LSW(D)> also vanishes. O
B

2. THEOREM [ VIRASORO CONSTRAINTS FOR STABLE PAIRS

2.1. Intertwining property. We have already defined the operators LYT and LT on
D1 in Sections [0.2] and 0.3}

LT =Ty +Re, LT =L"+ (k+ 1)L chesi(p),
for £k = —1. We also have
(26)  [LETLET] L (k- m)LET, . [LET,(k — Dlchi(p)] £ (n+ K)lchyyi(p).
Equations (26]) are parallel to equations (2I)) in Gromov-Witten theory.

24See [, Theorem 4] for the evaluation.



VIRASORO CONSTRAINTS FOR STABLE PAIRS ON TORIC 3-FOLDS 19

The main computation of the paper is the intertwining property which relates the Vira-
soro operators for the stable pairs and Gromov-Witten theories via the descendent corre-
spondence. We separate the argument into two cases: k£ < 0 and k£ > 1. Proposition
covers the k < 0 case. The k > 1 case treated in Theorem [I3]is harder.

Proposition [I2 is proven in Section except for steps at the end of the proof which
will be completed in the proof of Theorem [I3]in Sections BHAl The argument is an intricate
calculation based on a strategy of filtration.

Proposition 12. For k = —1,0 and D € D3¥, we have
¢ o LT(D) = () FLEW o €*(D)
after the restrictions T_s(p) = 1 and 7_1(p) = 0.
Theorem 13. For all k > 1 and D € D3, we have
¢ oLy (D) = () * LW 0 (D)
after the restrictions T7_o(p) = 1 and 7_1(7) = 0 for v € H>%(X).
The evaluations of left sides of the equalities in Proposition [[2 and Theorem [13 require a
slight generalization of the formulas (I4])-(I8) which govern the descendent correspondence
n DX, Additional rules are required for
(27) cho(y), chi(7) for v € H*°(X) and chy(8) for § € H*(X).

The required rules take a very simple form since Lp T (D) is at most lineard in the classes
1) over D&x:

(28) & (Gho(7)) = — L% & (ho(4)M) = 0,

& (hn(7) =0, & (hy (1) M) =0,
where M € D3¥. For ¢°(chy(0)M) with M € DX, formulas (I4)-(I6) apply unchanged.
The above rules are compatible with the GW/PT descendent correspondence and will be
established in Section [§
The restrictions 7_2(p) = 1 and 7_1(p) = 0 in Proposition [[2] are well-defined since both
¢* o LPT(D) and LEW o €*(D), k = 0,—1 will be seen to lie in the commutative algebra
generated by 7_o(p), 7_1(7), and Dy;. The commutation with 7_5(p) and 7_,(p) follows

from ().
Similarly, the restrictions 7_o(p) = 1 and 7_1(7) = 0 for v € H>?(X) in Theorem

1
are well-defined since both €* o LET(D) and LEW o €*(D), k > 0 will be seen to lie in the
commutative algebra generated by 7_o(p), 7_1(7), and Dyw,. The algebra D3y is generated
by the essential descendents

{7(7)[(i=0,ye H"(X,Q)) or (i =0,y H?*(X,Q)) }.

25LET(D) has a single quadratic term in the classes (27) given by chy (p)chs(c1) which causes no difficulty
since chy(p) does not interact.
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Again, commutation follows from ().

2.2. Conventions for (—1)!ch;(¢;). In order to complete the definitions of the left sides
of Proposition [2 and Theorem [I3] we must also include the term (—1)!chi(c;) in the
descendent correspondence €* since such terms occur in LYT.

e The first case is

C((—=1)!chi(cq)) = 0.

e The non-vanishing bumping term is given by

29) @ ((-Diehs(en)dhi o) = ) (akl-mcw)+<w>—1ak1_2<cw-cl>
-1 Opy Apay
vk 8 Seena).

where k; > 2.

e The higher bumping term is

o ~ ~ ) 2(ky + ke — 1
€ ((—1)lchi(er)chy, +2(7)chi,+2(7')) = o) (kl'k | - >ak1+kz—2(01’w/)a
IRLPE

ki, ko = 0,k1 + ko > 1. There is also an exceptional higher bumping term
€ ((=1)lchy(er)cha(y)chs (7)) = ma(e177).
2.3. Proof of Proposition 12l The cases kK = —1,0 are special in two ways:

(i) We must use the exceptional cases of the operator €°, in the analysis for k = —1,0.
(i) While the operator L{W for & = —1,0 has quadratic part “T%Bk“, LEW is a first
order operator acting on the stationary sector of descendent algebra for £ > 0.

For these reasons, we treat the k = —1,0 cases separately here.
The restrictions in the statement of Proposition 12| allow us freely use

(30) Ch()(p) = _17
which is compatible with €*. Similarly, we can use
(31) chi(p) =0.

Let us write down the corresponding operators explicitly:

-2
LT =Roy = (<Dlchi(er), L4 =Ry + 5B

N 1 > v 1
LgT = Ry — ChQ(Cl) - —Ch1Ch1(01>, L(?W = Ro+ Bl a TO(CI) - _J ae
. 9 24 Jx

We have used [B0) for LFT. For L§™T, only the d;, = dr = 2 summand is nonzero by (3I)).
Step 1. We check the statement for D = 1.
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The left side of the equality of Proposition 12| for £k = —1 is
¢ (LFT(D)) = —€*((—1)!chy(c1)) = 0.
The right side of the equality,
wLCV (e (1) = wLEWY(1) =0,

matches. For k = 0, the left side for D =1 is

~ 1
Q:.(LOPT(].)) = —Q:.(Chg(61>> = —al(cl) = —T()(Cl) — —f C1Co .
2% |
The right side,

FOW (@ (1)) = TEW(1) = —7o(ey) — i L .

matches.
Step 2. We check the statement for D = chyo(v) with k = 0

We must expand both sides of the equality of Proposition [I2lin terms of 7. The following
formula will be used:

(32) <zu>k¢O<&wk+2<v>>:m<v>+(2%) m(v-cm( > 13) sl )

i=1 1<i<j<k

-1 pno—1
MI'MQ M1 1 1
Aut(p)k! (7“1—1@2—1(7'01)*( 2 )72 (1T (P)+( 2] 5) -1 (P) o ()
|p|=k—1 i=1 izl
il ”2 2 ! po! ! )
: IZIE , Aut(p)k! T () ¥ o Aut(p)(k — 1)17#1717”271%’71(7 ).

We split the analysis of the difference for
(33) ¢ o LPT(D) —w LEY o €*(D)

in stages according to the 7 degree of terms. The second term of the difference is simpler
since

w0 €*(D) = wR_(€°(chi(7)))

and the latter is a easy modification of (B2]). The first term is more involved since there
are two parts: the action of R_; and the interaction with (—1)!chy(cy).
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e We first study the 7 linear terms of (wu)*~1€* o LFT(D):

(= (S st s (3 L)

i=1 1<i<j<k—1
W k—2 w k—3
+ <( ;' Clk—l(V . Cl) —+ %ak—Q(’y . C%)) —
k—1 1 1
(Tk—1(7) + (Z g)Tk—Q(V e1) + < Z Z,—j)Tk_g:,(’y : cf))
i=1 1<i<j<k—1

+ %<Tk—2(7 1) + (kz_f %)Tk—B(’Y : C?)) + mTk—S(V ).

i=1

We have used here bumping with (—1)!ch;(¢;) from (29)) to obtain the expression in the
second line and an inversion?d of (@3) to justify the second equality. After collecting
together the coefficients in front of the 7’s in the last expression, we obtain R_1(€°(chy,(7))),
exactly as expected.

e We study next the 7-quadratic term of (33). Consider first the terms that have a co-
product (v-c1)¥®(y-¢;)E as argument. Bumping with (—1)!ch;(c;) does not produce such
terms — only the terms of the second line of (B2) contributes to the terms of (B3]). These
terms cancel exactly.

e The 7-quadratic terms of difference ([B3) with argument (v - c2)f ® (v - c2)F are slightly

more involved. The second term of the difference has terms:

| |Z Aut &1)!{;2! 5 ((Z D) icalr - Draa(p) + <Z ) aP)ra - c@)

//’1!/112! 2

+ 2 Ty, —1T, ,1("}/ - C ) s

. | HL 125} 1
Wt Aut(p)(k —1)!

where the term on the second line is a result of bumping with (—1)!chy(¢;). After simplify-

ing the last expression, we obtain the corresponding 7-quadratic term of R_1(€°(chgi2(7)))
as expected.

e The last step is to analyze the 7-cubic terms of the difference ([B3). Since bumping with
chy(cy) is trivial, the terms match exactly.

Similarly, we must analyze the difference

(34) ¢ o LM (D) - L§V o e* (D).

26Sce ([B) for the full formula for the inversion.
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Since both Rg on the stable pairs side and R§ on the Gromov-Witten side scale the de-
scendents by the complex cohomological degree, the difference (B4)) is equa to

(35) —¢° ((&12 +ch?/2)(cy) - D> - (R(l) + “7_2131 — 7o(e1) — i L c1c2> o¢*(D).

If D = chy.o(7) then B o €*(D) = 0. We have already proved that the difference vanishes
for D = 1. Since

¢*(chychy(c1)chysa(7)) = 0,
the difference (B3) is equal to
(36) — € (cha(er)chrsa (7)) — Ry(€*(chisa(7))

Comparing formulas (I4]) and (IH), we conclude that the latter difference vanishes.
Indeed, let us expand both terms of ([36). First,

€ (cha(er)chesa (7)) = — m,‘j!_l akw-co—%akm-c%)— (Ej“_)_f). oy %W'@
= — ()" (Tkl(’Y ce1) + (kill %) Th-2(7 - C?)) - (wk);_kaﬂV ¥e))
=1
On the other hand,
& (@na(n)) = o) + P LROE
= ()" <7k<'7) + (g %) Te-1(7- Cl)) + (zu)k¥ oy %Tm_ﬁw_l(y o)+,

where we have used dots to stand for the terms that are of complex cohomological degree
3. Since

Ro(76(7)) = Thea(v - 1)

all the omitted terms are annihilated by R}. The remaining terms of the difference (30))
cancel.

Step 3. We check the statement for D = c~hk1+2(71)&1k2+2(72) with k; = 0.

2"Note both R3 and R} are 0.
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We start with the difference (33):

(37) € (Roy(chyys2(m)chiy12(72))) — € ((—1)lchy (c1)chy +2(71)chyy12(72))

— ()R 1 (€ (chgy 42(31)chey 42(72))) — (lu)uTB()(Q:O(&‘MH(Vl))a € (chi,12(12)))) -

Vanishing of the last expression follows from Proposition [I8 and Proposition [T9
The difference ([B4) as above is equivalent to (B3]). Since we have already shown the

vanishing for D = 1 and D = chg (), we need only to check the vanishing of

(38) — € (Sho(er)D) — %(’I‘(chlchl(cl)D) _ Rl(¢*(D))

-2

u O I O T
- TBI((’i (chiy42(71)), € (chy, 42(72))) -
The vanishing follows from Propositions [I8 and [T9]
Step 4. We check the statement for D = c~hk1+2(”yl)c~|1k2+2(72)a1k3+2(73) with &; > 0.

The result follows immediately from the triple bumping relation ([@3) which holds in
complete generality. No special cases require extra attention. ]

2.4. Proof of Theorem [4. The vanishings
(39) LI D)z =0 and  {LND)T =
are simple to prove for all D € Dj;.. For
LY =R_; + R_cho(p),
the vanishing (39) is immediate from the definition of R_; and (). For

~ 1
Ly =Ro—cha(cy) — échlchl(cl) + R_1chy(p)

the vanishing (39) follows from the definition of Ry, the virtual dimension constraints, and
the divisor equation:
X,PT

<ch2(c1) chy, (71)---chy, (’Ym)>X . J ‘- <Chk1 7)o chy, (’ym)>,3

We now assume k > 1. Using the intertwining property of Theorem [I3] the stationary
GW/PT correspondence of Theorem [, and the Virasoro constraints in Gromov-Witten
theory, we can prove the stationary Virasoro constraints for stable pairs in the toric case.

Let D e ]D)ﬁf{f , so D is a monomial in the operators

{chi(7)]i=0, ye H(X,Q) }.
The first step is to check by hand that the Virasoro constraints

(10) (epm o))" =0

B
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of Theorem [] are compatible all with insertions of the form
(41) cho(y), chi(7) for y € H*°(X) and chy(8) for 6 € H*(X).

If any of the operators (AIl) appear in D, the Virasoro constraints ([40) are true if the
Virasoro constraints are true for the monomial obtained by dividing D by the occurring
operators ([AIl). We can therefore reduce to the case where D is a monomial in the operators

(i) | = 3,7 € HX(X,Q)) or (i = 2,7 € H(X, Q) }.

In other words, D € DpX.
The next step is to apply Theorem [7

(42) (=)L (D) T = () (e (LT (D)) Y

for all k > 1. By the construction of the correspondence [26], the descendents of the point
class do not interact with other descendents:

(43) €*(chys2(p)D) = (1) *7(p)€*(D) ,

for every D e DX,
By combining (42]), (43), and the intertwining statement of Theorem [I3] we see

(LT D)EY = (&(LH(D))5™ + (k +1)IE (LT (chisa (p) D)5

= () NPV (D))SY + () (ke + DILEY (e (p)€° (D)5

= () ML (€ (D))"

= 0,
where the last equality is by Proposition [l which may be applied since

¢ (D) e D&y
by Proposition 8 We conclude
LT DPYTT =0

as required. O

We could have also used the intertwining property of Proposition [I2]to prove the stable
pairs vanishings (B9) for D € Dj;, but some additional care must be taken since the
insertions cho(p) and ch;(p) which occur in the terms

(k + 1)1€ (L (chira(p) D)™
for k = —1 and 0 are not covered by Proposition We leave the details to the reader.

3. INTERTWINING I: BASIC CASE

3.1. Overview. After an explicit study of various terms of the stationary Gromov-Witten
Virasoro constraints in Section 3.2, we prove Theorem [I3]in the basic case D = 1 in Section
9. .
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3.2. Leading term. We analyze here the stationary Virasoro constraints on the Gromov-
Witten side defined in Section [[.4l
The leading term T} of T}, is of the form
1 1 k! 1 dl—1 L R
=T, = = m(cr) + = Z (—1) (a+d*—=DI(b+d* — Dramp(cy),
2 u? 2 a+b=k—-2

where a,b > 0 in the sum. By the following result, the term T} simplifies if we use the
modified descendents a;.

Proposition 14. For all k > —

aaflabfl(cl)

(a—DIb—1)"

T, = —()*2 > (=1)""(a+d" - 3)I(b+d" - 3)

a+b=k+2

where the sum over all a,b > 0 and we use convention ag = 0, a_y/(—1)! = 7_,.

Proof. Using formula (I3]), we expand T}, in terms of a; to show that the quadratic and
cubic in ¢; terms cancel. In the computation, we compare the expressions

k—a a
1 1
[—alt = (—=1)%al(k — a)! <Z;— —.), >0, k>a,

i=1 =1 v

[—a]’;=<—1>“a!<k—a>!< DY l—<21) (Zﬁ)) 050 k50

l<icj<k—a ¥ i<izj<a i=1 i=1

with the coefficients in (I3).
The transformation (I3]) simplifies if we use the following operators and short-hand
notations for the sums:

. k-l | 1
R R B NRCEI W

<i<j J

In the formulas below, all operators dg are set to be zero. We apply transformation to T},
to obtain:

(44) % (—) = (m +dp —2)W(k —m —dp, +2)! %

m=—1

(amaerk(cl) — (X=X ) Aok ()

(T g X 2(61’)) :
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To write the transformation of T%, we split the sum for T into two subsums, the first with
dr = 2 and the second with d;, = 3:

D (1m0 = m) O =) (G ()1 () = X 18 k() +

m=—1

(m+ Dk =m0 = DG = X (G ()1 (€)= X 2 ga(c])).

Finally, the transformation of T3 to a variables is

k
> (m+ DIk —m - 1)! <x§’ff1 + x5 - xi”’lx'f*m”)amﬁfmkfz(fﬁ)-

m=—1
After summing the terms Ti for 7 = 1,2,3, we find that only the first term in (44]) does

not cancel. O

3.3. Intertwining for D = 1. For the most of computations in Section B, we will require
the simplest case of the stationary GW/PT transformation €* of Section [0.7]

~ 1 (vu)~! a0, (v )
A °(h -t ) G O\~ C1)
( 5) ¢ (C k+2(/7)) (k? + 1)'ak+1(7) + k! |M|_Zk_1 Aut(,u) +

(ZU)_z Z Oy Qg (7 ) C%) (Zu)_2 Z Ay Ay Apug (7 ) C%)
| — 1)
k! W Aut(p) (k—1)! P Aut(p)
Our first result is the simplest case of Theorem [I3]
Proposition 15. For all k = 1, we have
LT (1) = () FEFV (D).
Proof. Since the operators Ry annihilate 1, we must prove
w)?
(46) et - ™ (U5
From Section [I.2] we have the following formula on the stable pairs side:
1 ~ ~
Ti=—= > (=) (a+d"—3)I(b+d" - 3)!chychy(c1).
a+b=k+2

On the Gromov-Witten side, we have

aaflabfl(cl)
(a—1D)I(b—1)!

T, = —()*2 > ()" (a+d" —3)l(b+d" - 3)

a+b=k+2

by Proposition [4l Using (@5)), the quadratic term in the a-insertions of €*(Ty) exactly
matches the full right side of ([46). We will prove the other terms of €*(Ty) all vanish.
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The stable pairs term T}y is the sum of three subsums:

(47) > ((a — 2! chy(c1)chy(p) + al(b — 2)! chy(p)chy(c1)

a+b=k+2

N | —

—(a=DIB-1! > o &a(v.)ﬁwb(%)) )

st+1<eo,x<2s
where last term use
C1* V2s+1—e = Z Now Y -
*

After applying €* to (7)) we obtain quadratic, cubic, and quartic monomials in a. We will
show the cubic and quartic terms vanish.

We start with the analysis of the quartic term of €*(Ty). The first term (47) yields the
quartic part:

g % (-5 () 5 0 P) (P )

— Cl.

2 = (b—1)! (a—23)! et Aut(p)
Gg—1(p) (1)~ 0, (P, (P)aus; (P)
+(b—2)la! - a1 b3 u;_5 A () ) .

The last term of ([@T) yields the following quartic part (with the sum over the same range
of a and b as above):

L[, ()~ a0 (P)a, () (1)~ A (P) iy (P)
“Lcl”“‘”’(b‘”!' o2 A Aa(e) - A Au)

" w|=a=3 n|=b=3

where, in both formulas, we have used convention |u| = Y. ;.
These two quartic parts cancel each other. Indeed, let us analyze the factor in front of

1
2(w)? L ¢ ax, (p)ax, (p)ar (p)ax, (p)
in both expressions. For simplicity, let us assume | Aut(A)| = 1. Then, the factor in the

first quartic part is a sum with four terms:

4
(48) Di+1) (2@ + 1)) .

i=1 i
The factor in the second formula is a sum with three terms:
(49) =200+ A +2)(A + A, +2),
where the sum is over all splittings

{1727374} = {7;171.2} v {jlan} :

2We use the subscripts e and  in order to avoid i, j, a, b which are already taken.
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The factors (@8] and ([@9) are sums of twelve monomials of \; + 1 and are opposites of each
other. The case when | Aut(\)| > 1 is analogous.
Finally, we analyze the cubic terms. Let us first analyze the cubic terms of the form
ai(p)aj(p)al(p). Since
chisa(c1)cho(p) = (—1)chii2(cr)
the cubic part of the first term of [@T) with b = 0 is:

(50) — kJ c? Z aﬂl(p)aM(p)a,u?,(p) .

2(vu)? W Aut(p)

A similar cubic part is produced by the second term of ([@T) with a = 0.
The other cubic parts of the first term of (A7) are:

a 1(p)a#2<p> b ClmClM(C%)
¢ Z 57,32 %-1(P) Z e+ s —apa(p) Z -
J a+b=k+2 Zu lul=a—4 Aut(:u) 2w |ul=a—3 AUt(IM)

Similar term is yielded by the second term of ([47]).
If Aut(p) = 1, then the factor in front of monomial

1
2(ou)?
of (BI)) is the sum of three terms
M+ +A+1)+(As+1)

and, hence, cancels with corresponding monomial from (B0J).
The cubic part of the last term of (1) is

(L — 1 Ay Oy (Cl ) 7’)
2w Za.* O-1(%) Z Aut(p)

ax (p)ax\z (p>a>\3 (p)

lul=a—3

DS e Y Gt

2w P Aut(p)
over all a,b > 0 satisfying a + b = k + 2. The sum cancels with the last term of (BI). O

4. INTERTWINING II: NON-INTERACTING INSERTIONS
4.1. Overview. The main result of Section ] is a proof of Theorem [13] for
(52) D € Dpy N Dp7
where D is a product of (:Nhkl (v;) satisfying
vi-v; =0 for @ +# 5.

We treat the singleton D = chk(p) in Proposition [[6l An intricate computation is
required for Proposition [I[7] which settles the cases D = chy(y) where

ye H(X) fori=2and 4.
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Finally, in Section [43] the general case (52) is formally deduced from the singletons.

4.2. Intertwining shift operators. We first relate the operators Ry appearing in the
Virasoro constraints on the stable pairs and Gromov-Witten sides. Recall,

(53) Shi(a) = chi(a) + ichk o),

SO cNhk(p) = chi(p).
Proposition 16. For all k > 1 and all i = 2, we have
€ (Ri(chi(p))) = ()™ Ry (€ (chi(p))) -
Proof. The left side of the equation is
(i + k)! (i + k) airk—1(p) (i + k)
‘ h; =¢* h; = = ke
& (e (p) = € (- ehilp)) = (0 EE L B o)

where we have used the definition of Ry for stable pairs and equation (I4]) for the corre-

spondence.
The right side of the equation is
. a;—1{p
Re@ene) - R (£
- Ti 2( )
- m(f55)

i+ k) Tik—a(p)
i— 1) ()2

- R e,

_
(i

where we have used ([I4]) for the correspondence, equation ([I3]), and the definition of Ry
for Gromov-Witten theory. The two sides match. U

Proposition 17. For all k > 1, ch;y(y) € DX, v € H*2(X) we have
¢ (LY (chi(7))) = () * LY (€ (chi(7)))

Proof. We start with the easiest case and proceed to the hardest case.

Case v € H%(X). The case v = p follows immediately from the previous results:
€ (Ly, (chi(p)) = €*(Tychi(p) + Rulchi(p)))
= €(T)€"(chi(p)) + (1u)"Ry(€*(chi(p))
= ()" LFY (€ (chi(p)))
The second equality follows from Proposition [[6] and ([@3]). The third equality uses (40l).
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Case v € H*(X). We compute the difference

(54) (1) €* (Ri(chi(7))) = Ri(€* (chi(7))).

Since 7 - ¢; = 0, we have chy(v) = chy(y) by [G3).
We start by expanding the first term of the difference:

¢ (Ry(chi(y))) = € ((i(tf—;)!l)!cm”m)

(E+k—1 [ air1(y) (ou) ™t 0, 0,
B (1 —2)! <(i+kk—1)!+(i+k—2)! Z T(v-a)) .

p1+p2=i+k—3

To proceed, we invert the correspondence ([L3]):

k

(59 %wpmn(;}%%1<7-c1>+< 5 Z,ij)m@.(g)_

i=1 1<i<j<k

We then obtain

(56) (m)"€ (Ru(chi()) = (i(t. f;; ! (TZ;?_@ ¥ ( > 1) %(V_ch)

g

)" To 1T
o) Z Ml!,lm!—u1 L 1(7'01)>'

+—
; —_ 9l
(7’ +k 2)' p1+pe=i+k—3 2

We write the second term of the difference as

(57) Rk(QjO(chi(v))):Rk(?Z—_l%)!+((i“i);)! 3 M(y.q)),

. 2
H1+p2=1—3

After applying the inversion (B3]), we have

i) | (L) Tis(yoe) | ()t Tyn—1Tpa—1
R <(zu):2 * (Z ;) (Zi;yi—z ) + (i —2)! Z M1!M2!T(7 . cl)> .

J=1 p1tp2=i—3

We expand the above expression fully to obtain

(i+ k=Dl 2(y)
(1u)i=2(i — 2)!

i+k—1)1 (M5 i+k—1)1 [
+ (Z(U)i_2<i _)2)! ( 2 j) Tik—3(7 1) + (z(u)’_Z(Z—)Z)' (Z j) Ti—k+3(7 - ¢1)

j=i—1 j=1

(58)

—i+4 T 1T e Tu1—1T, —
L () D (ko Dt T ) g + ke L ),
(-2, =, 2 ?
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where we have used formula

. (i+k) Ol
= (25

in the expansion of Ri(7i—2(7)).

To complete our computation of the difference (B4]), we observe several cancellations.
The first term of (B6]) cancels with first term of (G58). The second term of (B6) almost
cancels with the sum of the second and third terms of (G8]), the only terms that does not
cancel is

i+ k—2)!
- WTP%S(V -¢p)

(59)

Finally, we rewrite the last term of (B as

(ZU)7i+4 Tt 1T —1 Ty 1Tuo1
T o1t pe=i+k—3

Then, we see that the last term of (57)) cancels with the last term of (B6) if 41 > k+1 and
t2 =k + 1. Thus the difference (54) equals

(60 ((Z.“f;;( S G D

2
p1+p2=i+k—3, u1<k

Tt —1Tyo—
+ 2 pn! (g + 1)!%(%@)) :

p1+pe=it+k—3, u2<k

We now include the T} and T}, terms in the difference. We have
(61)  (vu)" e (L™ (chi(7))) — LYY (€ (chi(7))) =
(1) € (Ri(chi(7))) — Ri(€* (chi(7))) + (1u)*€* (Ti(chi(7))) —

Using ({6l), the Ty and T terms in (61)) simplify to
()" o cha(er)chi(y)
(62) = > (a—2)ble o To_o(p)

(zz)k T a2t (chb((ziacﬁ;(v)) .

a+b=k+2

(vu)?

2

T (€ (chi()))

To complete our proof, we require the bumping formula (I5):

~ ~ 1
(63) €°(chg, 42(c1)chi,42(7)) = _kllk2!<lu)_lak1+k2 (c17).-
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Since v € H*(X), all the other terms of (I5]) vanish. We apply the bumping formula (62]).
In particular, the first term of (62)),

(a —2)ble° (%) Ty_2(p) = —<ZU>_a_b_i+6%Ta+i_3(7 -c1)Ty—2(p)

cancels with the first term of (60). Similarly, the second term of (62) cancels with the
second term of ([G0]).

Let us observe that the term of last expression with a = 1 by the exceptional bumping
(29) turns into the terms of (60) with p; = k or us = k. Similarly, the term with b = 0
cancels out with the term (B9)).

Also the assumption c~hz(7) € fo%‘ implies that ¢ > 2 thus no negative factorials appear
in the above computations.

Case v € H*(X).
If v € H?(X), the Ty and T}, terms of the formula (6I]) acquires extra summands:

(64) ()€ (L (chi(7))) — LY (€ (chi(7)))
(1)*€* (Ry(chi(7))) — Ri(€* (chi(7)))
")

N (%) 1a(p) + (b Dlr, o(p)E (W)

a+b=k+2

= Y @-0-1 Y e (€ (Eha() - chi()€ (S (1))

a+b=k+2 O<e,x<2s+1

+€(cha(70))€ (chy(7.) - chi(1)) ) ] ’

where we have used?®] C1 - Yast1—e = 2., QesYx- Nevertheless, the strategy used in the
previous case can be pursued also for v € H*(X). The computation, which is carried out
below, is of course more complicated.

We will study the difference

(65) (1u)*€* (Re(chi(7))) — Ri(€* (chi(7)))

291 ([64)), the elements ., 7. are of complex cohomological degree 2.
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with v € H?(X). The expansion of the first term is:

(k+1i—2)

(66) ()" (Ra(chu(2)) = () e (b))

. g (K 4i—2)! Aivk—1(7) (Zu)_l Oy Oy
=T \Grk—1 T G ko2 M:;k_?) at(p)

(vu) Gr Qs (2

it k-2 LA Aut() Y

(Zu)72 Z Oy Oy Opug (’Y . 2)

o
(i + k—3)! ks Aut(p) !

The second term of the difference (63]) is more involved since we must transform the
descendents a to the standard descendents 7 before applying the shift operator Ry:

(67) Ri(€(chi(7))) =

() "Ry <Ti—2(7) + (Z 1) Tia(y - 1) + ( 2 lz) Ti-a(7- Cf))

Jj=1 J 1<j<i<i—2

—1 | | M1
—(i—5) (vu) - . 1
+ (ZU) Rk (’l _ 2)' —Aut(pj) (TullTuzl(’y Cl) + [(Z j Ty —2Tpa—1

lu|=i-3 s
p2—1
: 1 pa o pas!
+ <]; ;) Tu117u22] (v cf))) + (1 —3)! Wi WTH1717N2*1TM371(7 . cf)

Notice the upper limits in the first harmonic sum is p;, the terms with j = u; correspond
to the third term of (I4]).

We will study the right hand side of (64]) using (66]) and (67) in three steps corresponding
to the 7-degree.

e Consider first the 7-linear terms. The 7-linear terms of (6] are

i+ k—2)! 1 HE
(68) () =] <(zu)i+’“_2 (Tz’+k2(7) + ( Z 5) Tisk—3(c1 )

7j=1

1
+ ( 2 '_l) Ti+k—4(¢%'7))> ~
1<j<l<ith—27
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The 7-linear terms of (7)) is more complicated:

(69) (ZU)HQ% <7i+k2(’7) + ( 1) Tirk—3(7 - c1)

2

1 1—2 1 i+k—2 1
+ ( Z 'l) Tirn-a(7 - &) (Z ‘) [ka 3(7- 1) + ( 2 ‘-) Tivk-a(7 - C?)]
i—o<jl<itk—2 ) = J jmi—2J

1
+ ( Z _l) Tivk—a(7 - C%)) :
1<j<i<i—2 7

The 7Ti1;_2(7) terms of (68) and (69) match, so cancel in the difference (G3). The
Tivk—3(7 - ¢1) terms in (68) and (69) almost cancel: the difference is

(10) )

For the 7,41 4(7 - ¢2) terms, we split the prefactor in (GJ)) as

1 1 =3
+

and the last coefficient of (69) as

1 1 1 1
Z - = Z -+ = Z =
1<j<l<i—2 jl 1<j<l<i—3 gt i=2 1<j<i-3J
Then, we see the difference of the 7,4, _4(7 - ¢?) terms in (G8) and (G9) is
Lo+ k—2) (&2
71) w _”2(,— i k—4(02 )
( ( ) (Z - 2)| ]; j + 1

On the right hand side of equation (64]), the 7-linear terms ([70) and (71) of the difference
([65)) are canceled with

(“;) lk'0|€o <€hk+2(01)Chz‘(7>) 7_o(p) + Olkl7_o(p)€” <C~hk+2(01)Chi(7)> ]

(vu) =2 (vu) =2

using 7_o(p) = 1. In fact, after applying (I3]), we find

€ (Ehpa(en) (7))

(Zu)k+1

D)
k+i—3 1

= Tu- 2)'! ((k+i—2>! (Tk+i—3(7‘01)+( Z ;)Tk+i—4(7'05)> +(k+i—3)17k+i—4(7'03)> +

=1

(ak+i—2(017) + (ZU)_IC‘(C%)) +
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where the dots stand for the 7-quadratic terms. The second equality follows from the

formula ([B3).

e Consider next the 7-quadratic terms. We start with the quadratic terms of complex
cohomological degree 2. The corresponding terms from (0] are:

k+1i—2)! () 7HmH2T2 1 g !

7 st i-2) ATl €).

(72) O P Z () (i + = ) Aut(g) et ()
|pe|=i+k—3

The computation of the corresponding terms in (7)) are more involved since the action of

the shift operator Ry depends on the complex cohomological degree of the descendent:

1 i) + k)|
(73) ()L Y Stk <(‘“ e et(r- ) ()

(i —2)! Aut(p) \ (g —1)!

" |pl=i-3

('UQ—(}_M—];_!’—MT;HI(V ’ Cl)TM21+k(p)) )

The linear combination of the first term of (73]) with p; + £ — 1 = a and second term
with g1 — 1 = a is equal to the corresponding term of ([2) with 1 — 1 = a. Hence, these
cancel in the difference. Similar cancellations happen with rest of the terms. The resulting
difference of (72) and (73) is

(W)_H4 Tpr—1Tps—1
(74) — pulpp! === (7 - 1)
(i =3) |u|=i+k2—3, pi<h Aut(p)

Tpu1—1Tps—1
) mlm! R ()
|p|=i+k—3, po<k AUt(M)

We will cancel (74]) with the T-quadratic terms of complex cohomological degree 2 in the
sum

(75)
(Zg)k LH;HQ(@— 2)lple? (—Ch“ézgﬂéh)) Ty-a(p) +al(b— 2)17u_5(p)€ (%)
= Y@= D0 - 1Y aw (€(cha(r) - chi(1)€ (Chu(1))

HEODE @) ehi() |

More precisely, the first and second terms of the last expression yield

w) " (a+ i —4)(b—1)! a—1Ib+i—4)!
e = e Pl

Tati—5(7:¢1)To-2(p)+a
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and the last two terms yield@

- % l(a -l Z(ll)zg? i a0+
(b—1) a= 1();(_6 ;—)? — 4)!711—2(% : V)Tb+z‘—5(%)] -

The cancellation then follows from

Za.* Yo N @ =P c) and Y e ® (1) = (v a)®p.

We have cancelled all 7-quadratic terms of complex cohomological degree 2 in ([64]).

Let us also observe that the terms of (75) with @ = 1 and with b = 1 cancel out by
exceptional bumping with (29) with the term of (74) with pu; = k or g = k.

A longer computation is needed to deal with T-quadratic terms of complex cohomological
degree 3. Since all such terms have - ¢? as an argument, we drop the cohomology insertion
from the notation. The corresponding terms from (60) are:

(76) (zu)k% 5 Aut((m;z:‘:_ " (uﬂm! + (1 + 1)o! (Z 1)

|pu|=i+k—4 j:1‘7

iz
1
+pa!(p2 +1)! <Z 5)) Tui=1Tpa—1 -

=1

The corresponding terms from (€7 are:

(1) it ! [ (un + k). itk
(77) = N,
(i —2)! P Aut(p) | (up — 1)! J'—Zm G ) T 2Tpo—1
(p2 )} ('S5 o <(u1 k)
+— T, Tyotk—2 + - M T
(2 — 1)! ]Zuz 1 —1Tpo+k—2 ;J (1] ka1

1
po + k+1)! 1 po + k
+—( 2 >7'm—27'u2+k—1) =+ (Z —( = 13,%1 1T +k—2

! =7 ) \p2 -

t + k+1)!
+<lluf)7_ﬂl+kl7—#22 .

The expression (7)) is simplified by the following strategy. We number the six 7-
quadratic terms by their order of occurrence in (7). The first term of (7] combines
with the third term. The second term combines with the fifth term. We also split off the

30The sum over o, x with coefficient a,, is implicit.
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summands with 7 = pu; + k and 7 = ps + k from the first and second terms respectively, as
well as the summand with j = p; from the third term. Then, (T7) equals

(o)~ (1 + Kk — 1) ps! pa!(pe + k —1)!
m Z 1 - Aut(y) Tui+k—2Tpa—1 1 [2 - Aut(p) Tu1—1Tpa+k—2

k—1 po+k—1
(py + B)lpo! (&S 1 1! (pg + K)! 1
T Aut(u) Z j Titk=2Tua—1 7 2 Aut(pu) Z j T Ttk

Jj=1 Jj=1

-1
(e + E)! (IS 1
+Hpe +k+1)——— E = | T 2Tk
( 2 ) Aut(,u) Pt j u1—2" pa+k—1

(78)

(1 + k)lpa! (1511
+(,L01 +k+ I)T(,U) Z ; Ty +k—1Tpo—2

(p1 + k) po! (1 — D)2 + k+ 1)!
WTM1+I§—27—#2—1 + Aut(j0) Tur—2Tpo+k—1 | 5

where the sum is over py > o, |p| =i — 3.

Let us fix an integer a satisfying a > k — 2. We observe that the sum of the first term
from the first line (78) with 41 = @ + 2 — k and the second term in the last line with
p2 = a+ 1 —k will cancel with the first term of (76 with 1 = a + 1. Also, the sum of the
second term from the first line with s = a + 2 — k and the first term of the last line with
w1 = a+ 1 — k will cancel with the first term of (@) with us = a + 1.

Similarly, the sum of the first term for the second line of (78)) with u; = a + 2 — k and
the first term from the third line of (78) with p; = a + 2 cancels with the second term of
(76) with p; = a + 1. Finally, the sum of the second term from the second line of (78]
with g1 = a + 1 and the last term from the last line of (78]) with p; = a + 1 — k cancels
with the last term of (7€) with py = a + 1.

After all of these cancellations, we are left with

o St (1 () et (82) ) s

Jj=1 Jj=1

7j=1

where Y] is the sum of two sub sums: the first is over p; + ps =i+ k — 4, iy < k and the
second is over pu; + po =1+ k — 4, py < k.

In the difference ([64]), the expression ([[9) is canceled by the corresponding T-quadratic
terms of complex cohomological degree 3 of ([[3]). More precisely, the first and second terms

of (73)) yield

e = sl sl = oot |

after we apply (3] to these terms and drop 7-cubic terms and the terms of cohomological
degree other than 3. In particular, the factors in first and second terms are produced by
the a-linear term of (&) proportional to ¢;.
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The last two terms of ([73)) yield®]

0 oy I ot )l
(b—1) o= 1();(_17 —21_)'@ — 4)!72172(% V) Tori—6(Va - Cl)] )

after we apply only the parts of (I4) and (I3 that are not ¢;-proportional, then we use the
a to 7 the transition formula (55) and drop the 7 cubic terms and the terms of homological
degree other than 3.

Together these two sums combine and cancel the first term of (79). To cancel the last
two terms of (T9), we follow the same pattern. We first apply ¢{-part of (I3)) to the first
and second terms of (7H) and then apply ci-part of the a to 7 transition formula (B3]).
Next, we apply the c{-parts of (I4) and the (I5) and the cl-part of (53) to the last two
terms of ([[H]). After dropping the 7-cubic terms and the terms of complex cohomological
degree other than 3, we exactly cancel the remaining terms of (79).

e Consider finally the 7-cubic terms. The cohomological arguments of these terms are % -7,

so as in the previous computation, we drop the cohomology insertion from the notation.
After expanding the corresponding terms of (66]), we obtain:

(80)

()™ + k —2) pir! ! 13!
(1 —3)! Z Aut(p)

Tpur—1Tpo—1Tpg—1 -
|p|=i+k—5

On the other hand, the corresponding terms from (67) are more complicated:

(o)~ plpglpst (G k+ DV
(=3 o, Autle) gl e e
+k+1)! +k+1)!
+wzuf)7'm_17‘m+k—1m3—1 + %#)Tm—ﬁuz—ﬁuﬁk—l) )

In [®B0), we have i + k — 2 = Z?zl(uj + 1). Therefore, the difference between the last two
expressions is the sum of the monomials

(1) ™y o !
(81) Z (:uj + 2) (Z _ 3)| Aut(/ub) Tyur—1Tpo—1Tps—1 -

Jopi<k—2

Let us restrict our attention to the case when ¢ is bigger than k, the other cases are
analogous. After applying the reaction from the last line of ([I3]), we obtain a formula for

31The sum over o, x with coefficient a,, is implicit.
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the expressions in the second line of (64)):

~ ~

h h,
(82) (a—2)Wle” (%) Ty—2(p) = T-quadratic terms +
w
70 ) , L4o!
((2.)_—2)! Z max(max(puy + 1,0 + 1), — 2)%@1_17’“2_1 Thp—2

|u|=a+i—6

(83) al(b— 2)!rus(p)€ (—2

) = 7-quadratic terms +

. pa ! peo!
Z max(max(pu + 1, pg + 1), — Q)WTMATMA Ta—2 -

|u|=b+i—6

(1u)~*q!

(i—2)!

The terms of (82) and (83]) with max(py + 1, u2 + 1) < i — 2 contribute the monomials:

i ,LLN/LQ'(b— 1)' i /Ll!/,tz!(a— 1)'
b WTﬂl—lTuz—lTb—Qa (ru)"a - W%—l%—ﬂa—z-

(84) ()

Note a +b = k + 2 in (64). Since max(py + L,puo +1) < i —2and |u| =a+i—2 or

\p| = b+ 7 —2 we imply that gy + 1, ue + 1 = k — 1. Thus the corresponding terms of (82))

and (83) cancel with the monomials (8I]) such that there is only one j with p; < k — 2.
The terms in (82) and (83) with max(py + 1, e + 1) > i — 2 yield terms:

» pplps! (b —1)! » palpo!(a — 1))
() b(:u/""l)'me—le—lTb—za (2u) G(M,Jrl)‘WTm—ﬂuz—lTa_z,

where p/ = max(uq, p2). Both of these terms are of the form:

i o s
(85) (1) ™" (pa + 1) (2 + 1) - = 2)) T 1T

with g1 4+1 > i—2 and |u| = i+k—4. Since we assumed that i > k, we have p; +ps < k—4
in (8H). The discussed terms therefore combine to yield the sum of monomials:

—i falpo! !
(86) (2u) ™" (1 + po +2) (3 + 1) - mml—ﬁuz—ﬁusﬂ 7

where p3 +1 >4 — 2 and uq, uo < k — 2.

The terms (86) combine with the terms from the expansion of the last two lines of (64]).
Indeed, since ., 7, in the last two lines of (64) are of complex cohomological degree 2, the
7-terms result from use of the c}-part of (I4]) and of the c{-part of (I5]). The expansion of
these terms is a sum of monomials

y a+i— 4) !
(87) b= o= T

where |pu| =0 — 3.
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The combination of ([87) with a = ps —7+ 4, b = g + po + 3 and (86) matches (1),

since, in (87), we have

(b—1)(a—1) = (o + p2+2) (s — 1+ 3) = (1 + p2 +2)(p3 + 1) — (o + p2 +2)(i — 2).

We have cancelled all 7-cubic terms.
The assumption ch;(y) € DX implies s > 3. Therefore, in the above computations, we
do not see negative factorials in denominators. U

4.3. Proof of Theorem [[3 for DL n DiX. Theorem I3 for all D € Dby A DX, is an
immediate consequence of Proposition [I7] for singletons by the following simple argument.
Let

D = HChk (7:) € Dpp N DR,

=1
where v,7; = 0e€ H*(X) for all i # j.
By definition, for £ > 1,

¢ (LT(D) = e (UZT(ﬁ ch, (1))

= (Tkl_[Chk ’}/1 +2Rk Chk ’Yj HChk Vi > .

1#]
Since 7;7; = 0 for i # j,

¢* (Tkﬁghki(%)) = (=m+1)¢*(Ty) ﬁ €* (chy, (7)) ZQ'(Tk;CNhk:j(%‘))HC'(CTU%(%‘))-

i=1 i#j

By Proposition [I7],
() * LV (@ (chi()) = € (L (chi()))
= € (Ty)C* (CTM(%)) + €* (Tkghz(%)) + ¢ (Rk (CNhh ('Yz))) :
We conclude

¢ (LyT(D)) =

On the other hand,
() LY (€*(D)) =

(2u)™ LGW e ( ch (7)) HC chk (7)) — (m —1)(zu)_k((lg>2> Tkﬁ@(&m(%))

1 i1#]

'MS

J

The proof is completed by applying (4a). O
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5. INTERTWINING III: INTERACTING INSERTIONS

5.1. Overview. We complete here the proof of Theorem [I3] Since non-interacting inser-
tions have already been treated in Section 4], we must address the interacting cases. In the
desired equation,

(88) ¢ o LYT(D) = () *LEV o €*(D),

the stable pairs descendent insertions of D € ]D)ffT* can interact with each other via the
GW/PT descendent correspondence on both sides of (88). In addition, the stable pairs
descendents can also interact with constant term of the Virasoro constraints on the left
side. We must control all of these interactions.

5.2. Interactions among two insertions. We start with results which control the in-
teractions of two descendent insertions.

Proposition 18. Let ' € H*(X), v" € H*(X), and let i > 3, j = 2. Then, for k > —1,
we have

(1u)* & Ry (chi(v')ch; (7)) = Ri (€ (chi(v')ch;(7))) .
Proof. We first compute the left side of the equation. After applying the shifts, we obtain

~ (1+k—2)~

~ ~ (J+k—1)!~ ~
Rk(Chi(’)/)ChjCY”)) = WChi-&-k(’}/)Ch]‘(’}/”) + WChi(’}/)Chj-i-k(”Y”) .
We apply the correspondence to the both terms:
1 (j+Ek-1)

RN = 0 (g o) Serea0)

it itk —3)
= () k+4(<z'—2)!(j —2))! Tivjrr-s(Y7") -

The right side of the equation is

()~

R ()N = R "))
)i+ (i +7—4)!

(i =2)!(G—-2))

Cijpai k= 3)!
- (/Lu) J+4 (Z _ 2)‘(] _ 2))' Ti+]‘+k_5(7,/y”) ’

Ri(Ti4j-5(v7"))

= (w

which matches the left side. O
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Proposition 19. Let v',7" € H*(X), and let i,j = 3. Then, for k = —1, we have

(89) ()" & (Re(chi(v')ch; (")) - Rk(@io(ch( )ch; (")) =
>, (a=2)le(chi(y) - chy(v") - cha(cr)) € (chy(p))

+al(b — 2)!€(chi(7') - ch;(7") - chy(er)) € (cha(p))

o
- Y a=DiE-1) Zau( (ha(70) - chi(y)€ (chy(7.)ch; (+))

a+b=k+2
+ € (Cha(7)ch; (7)€ (chy(7.) - chi(7)) )
Proof. We follow the same strategy as in the proof of Proposition [[7l We first compute

(k+i—2)!

Ra(ehi(r)hs (1) = £ sy 0) + L

G )

After applying the correspondence, we obtain

o) € TR = g7 la””’“ié(”'”") e

-2 f(2+kaJ,M17M2) o B 1 ai+j+k—4(7,7”)
(1) Z Aut (1) Oy Oy (Y9" 1) (=21 —3)! ” +

|p|=i+j+k—6

aitjrk—s(y7" - c1) I (zu)_2 Z S5 + ks, o)

a.a N/
(lU,)Q |M|:i+j+k76 Aut(u) M1 ,U»2(77 ) )

where f(i, j; g1, p2) = max(max(i — 2, j — 2), max(p1 + 1, p2 + 1)).
The second term of the difference is easier:

(91) Ru(€(chi(v)ch;(7"))) = G (_ZQLQ))_E;Ji %) TR ((i +j—4) (Tm 5(7' ")+
z‘+j—41 N f(@, J; p, o) .
(; S) i-6(7'Y ) § ;J frerToy T EU PR g (4 )),

We now analyze the difference. The 7-linear terms of complex cohomological degree 2
in (su)* times ([@0) and (@) are matching sums of the monomials:

(i+j+k—4)

()

(i +J = DTirjrn-s(r"") -
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The 7-linear terms of cohomological degree 3 almost match. To be precise, the correspond-
ing terms in (@0) are sums the monomials:

i E—4) HE
(vu) i ._2;, (i+7—4) Z B Tisjrk-6(Y7" - 1)

(@ =2)1(

Respectively, the corresponding terms in (@1]) are sums of the same monomials plus an
extra term

s=1

)%ﬂ+dﬁ+j+k—4ﬂ

() =g — el

This extra term gets canceled by the term from the second line of (89) with b = 0
because of ([B0).

Therefore, the difference of (wu)* times ([@0) and (@I]) consists only of the T-quadratic

terms of complex cohomological degree 3. We omit cohomological classes since all the

cohomological arguments are v'y” - ¢;. The corresponding part of (O0) is

(92)
(vu) 942 Z fa !
— N7 — 2)!
(1—2)!1(5 —2)! it rT 6 Aut(p)
where we assume that f vanishes whenever one of the argument is negative.

We must compare ([92)) with the expansion of the last four lines of (89). The first two of
the last four lines of (89) expand to

(w>—i—j+2

B (0 =2)1 - 2)! atb=k+2

[ —=2)f(+ kg5 p) + (G —2) (@5 + K5 1)) Ty 171

i+j+a—T)(a—1)
9 Titj+a—8Th—2

@+j+a—®“

i+ j+b—T)(a—1)!
+ (Z +] +b— G)G(Z J 9 ) (a ) Titj+b—8Ta—2 -

The last two lines of the last four lines of (89) expand to

(i (_%;))';in 2)! Z (a—1)(b—1) ((a +i= b+ — ) TarisTorjs+

(a+j—4)b+i- 4>!Ta+j-5n+z-—s) -

These last two expressions are the 7-cubic contribution to the (89) which result from

the bumping of ch;(+/)ch ;(7") with the constant term T}. The corresponding coefficient in
front of 7-cubic monomial is given by the formula (94]) below.

To complete the proof, we must match the coefficients in front of the terms in sums above.
That is we need to compare two expressions below for all p satisfying |u| =i+ j + k — 6:

(93) (@ —=2)f(+k,gyp) + (G —2)f(, 5+ ki p) — (1 + 1) (3,55 0 — k, p2)
- (:u2 + 1)f(z,j,,u1,,u2 - k)a
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(94) [+ <n(pz +1) + (o + D[p2 + < — [ — 0+ 3]z0[p2 — j + 3]0

— [ — 7 + 3]z0lp2 — i + 3]0,
where [a]<, and [a]sy, are cut off functions which equal @ if a satisfies inequalities a > b
and a < b respectively (and are zero otherwise). The matching now is a long and routine
check. We give some details.

We can always assume p; > ps and ¢ > j. Let us further assume £ is small and p; > i+k.
If o = k, then the function (03) equals

((+j=4+1) =+ —k+1) = (g2 = 1) +1) = 0.

The assumed inequalities force all terms in (94]) to vanish.
Next, we assume all but last inequality are true, that is pus < k. Then the expression

[@3) becomes
(=D +1) =+ D —k+1) = (p+1)(p2 +1).

On the other hand, in (04]), only the second expression does not vanish — the second
expression matches ([@3]). Rest of the case can be treated analogously. Il

5.3. Interactions among three insertions. The last interaction to consider is among
three descendent insertions. Because of the stationary assumption, there is only one case
to control.

Proposition 20. Let v/, 7", 7" € H*(X), and let iy,is,13 = 3, Then, for k > —1, we have
() € (Ri(chy, (7/)chiy (") chiy (1)) ) = R (€ (chiy (+/)chi (1)chiy (7)) ) = 0.

For the proof, we will use the explicit correspondence formula (@) for the triple inter-
action:

(99 € Ghchichiy) (1) = 7 o)

where || = iy + i2 + 3.
Proof of Proposition [20. We first compute the left side of the equation. To start,

N N - i+ k—2)! ~ ~ ~
Ry (chi, (7)chi, (v")chiy (")) = ﬁchmk(v’)chb(v”)chig(v”’)

ih k-2~ o~ ~
i, ()b 0 (1)

iz + k —2)! ~ N .
%Chh ('Y’)Ch,;2 (’Yll)chi3+k<’y”/) '
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After applying the triple bumping and the transition from a descendents to 7 descendents,
we obtain:

96) € (R ()0 )0 (D) = (il + = o) (g
1 1 N m
T =21 —3)s —2)! (=21 — 2)1(is — 3)!> air+=7(7'7"7")
(ji| + & — 6)!

I/ //l)

_ —|i|—k+6 /] . 6 )
(’LU) (|Z| )(Zl _ 2>‘(22 _ 2)|(@3 — 2)!7—|2|+k’—8(’7 T
On the other hand, the right side of the equation equals

(2 )*2(|'|—6) 1o
B I e ] Ree(ai-7(v"""))

:(wyquﬂ_wal gﬂjf2ﬁl—zﬂm“kﬂyywm

which matches (1u)* times (@6]). O

5.4. Proof of Theorem 3. Let k > 1, and let D € DiX. To prove the equality
¢ oLy (D) = () LW o €*(D),

after the restrictions 7_5(p) = 1 and 7_; () = 0 for v € H>?(X), we will expand both sides.
The non-interacting case was already proven in Section 4.3l Equality in the general case

will use Propositions [I5], 16 17 08, 19, and 20,

In the formulas below, we will use short-hand notation for the constant term of LF'™:
Ty = Z T T,
where L and R denote the left and right sides in (3]).
For D = [[:_, D; € DX* we have
(97) €(LyH(D)) = €(TeD + Ry(D))
P//
::ZZ[LfﬁpS+Z§H? WD) [ D).
P j SeP’ P’ t=1 SeP” S#S

The first sum is over partitions P’ of {1,...,¢, L, R} and
S s
D= ] D TE,= ] T,
1€Sn{1,....0} veSn{L,R}

The second sum is over partitions P” of {1,...,¢} and P" = {Si,..., Sypr)}.
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We must compare the (@7) with (2u)~* times

(98)  LV(e(D) = LV [ [ e D)

P SeP
Z(P//)
= YT ][e@%)+> ) Re(@(D%) [[ (D).
j=% Sep’ P’ t=1 SeP”,S#S5t
where both sums run over partitions P’, P” of {1,...,¢}.

Since we only work with the stationary descendents, we can assume that the parts of
partitions in the formulas have at most three elements. We will match the terms of (O7)
and (1) ™% times (@]) depending on the size of S;.

e If |S;| = 3, then the terms in (@7) and (@8) with P” = P 1 S, are matched by Proposi-
tion

o If |5 =2 with S = {p, q}, then we use Propositions [I§ and [[9 to match the terms of
@7) with P”" = P u S; and with P’ equal to

PH{SIHL}‘—‘{R}? pl—l{St7R}u{L}7 pl—l{p7R}u{Q7L}7 Pu{p,L}l_l{q,R},
with the terms of (98) with P = P Ly S, .

o If [Sy] = 1 with S; = {p}, then we use Proposition [[fl and Proposition [I7 to identify the
terms of (7)) with P” = P 1 S; and with P’ equal to

Pud{p, L} u{R}, Pu{p,R}u{L}
with the terms of (O8) with P” = P U S,.

e The terms of ([@7) with P’ = {L} U {R} u P are equal to the terms of (@8) with P’ = P
by Proposition

The above four cases match all the terms in (97) and (97). O

6. VIRASORO CONSTRAINTS FOR HILBERT SCHEMES OF POINTS OF SURFACES
Let S be a nonsingular projective toric surface, and let
X =5xP.

As an immediate consequence of Theorem M applied to the toric variety X, we obtain the
following Virasoro constraints:

r X,PT
(99) ez -1, (e [Jehn,(ixp)) " =0,

il n[P]

where v; € H*(X), p e H?(P!) is the point class, and [P'] € Ho(X) is the fiber class.
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We can specialize the constraints (Q9) further to the case of the minimal possible Euler
characteristic,
P.(S x P' n[P']) = Hilb"™(9).
The above isomorphism of schemes is defined as follows. A point £ € Hilb"(S) corre-
sponds to a 0-dimensional subscheme of S of length n. Then,

ExPc S x P!

is a curve embedded in S x P! with Euler characteristic n and curve class n[P']. The
isomorphism sends & to the corresponding stable pair

Ogxpr — O{x]P’l .

Since the moduli space of stable pairs is nonsingular of expected dimension

J c1(S x P') = 2n,
n[P1]

the virtual class is the standard fundamental class here. The result is a new set of Virasoro
constraints for tautological classes on Hilb"(.S).

To write the Virasoro constraints for Hilb"(S) explicitly, we first define the corresponding
descendent insertions. Let

0 —Z — Omipr(s)xs — Oz — 0
be the universal sequence associated to the universal subscheme
Z < S x Hilb"(S).
For v € H*(S), let
(100) chi(y) = =7 (chi(Z) - ),

where 7 is the projection to Hilb"(S). We follow as closely as possible the descendent
notation for 3-folds in Section [0.11
Let D(S) be the commutative algebra with generators

{chi(1)[i=0, e H(S))
following Section We define derivations Ry, by their actions on the generators:

k
Ri(chi(v)) = (H(@ +d—2+ ")) chiyk(v), e H*(S).
n=0
For k = —1, we define differential operators
L = — ) (=D g 4 b — 2)1(b + d — 2)lch,chy(1)
a+b=k+2
1
+73 D7 alblchgchy(c} + ¢) + Ry
a+b=k

where the sum is over ordered pairs (a,b) with a,b = 0.
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Theorem 5. For all k = —1 and D € D(S), we have
(Ly + (k + 1)!'R_ichpya(p)) (D) = 0
Hilb™ ()
for allm = 0.

Proof. For clarity, we will use superscripts cthﬂb and cth here to indicate whether we are

referring to descendents on the Hilbert scheme of S as defined above or to stable pairs
descendents on S x P! as defined in Section [0l
The universal stable pair of P,(S x P! n[P!]) is F = O, p. Hence,

ch;(F — OSxPleilb”(S)) = (p x id)*chi(~1),

where p is the projection p : S x P! — S. By the push-pull formula, for § € H*(S x P'),
we have

ch; " () = m ((p x id)* (chi(~T) - 9))
= (chi(=Z) - ps0)
— ch™(p,5).
So, chy™(y x 1) = 0, and ch} T (y x p) = chfP(y).
Since we have the Virasoro constraints (@9), we must only check that the composition

PT
L"k

(101) D(S) = Dpy = Dpy — D(S)
is precisely
LE + (lf + 1)!R—1Chk+1(P) .

The first inclusion in (I0I]) is determined by sending generators ch™(4) to ch?(y x p),
and the last map of (I0I) sends ch! ™ (8) to ch™(p,d).

The analysis of the composition is straightforward. For the diagonal terms, we note that
(X)) =21 xp)+c(S) x1
and

%(X) = tds(X) = tdQ(S) X tdQUPl) _ %(Cl(s>2 + CQ(S)) X p.

We write the Kiinneth decomposition of the diagonal as

A1=>0/®0 e H*(S x S).
Then, the Kiinneth decomposition of A -¢; € H*(X x X) is

23 (0F x p)® (6 xp) + -,

where the remaining terms in the dots are killed by p,. The matching of operators then
follows from the definition of £} . a
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7. GW/PT DESCENDENT CORRESPONDENCE: REVIEW

7.1. Vertex operators. Our goal here is to review the results of [18] and to explain how
Theorem [7] can be derived from [18]. The full derivation is postponed to Section 8

To state the main result of [I8], we require negative descendents {ay} for k € Z_o which
are defined to satisfy the Heisenberg relations with positive descendents:

(102) [06(0), 0 (1)] = Kim L au7.

The descendents {a;} for k € Z\{0} generate the H*(X)-algebra Heisx.

For curve class § € Hy(X), there is a geometrically defined Gromov-Witten evaluation
()3 map on the algebra generated by the non-negative descendents. We can extend the
evaluation map to the whole algebra Heisy by defining

<%(7)®>?GW = U (— 10511 + 5k+2iu) -7] <(I>>;(’GW, k<0.
X

We assemble the operators a; in the following generating function:
a, /rzep\—" 1 a, [1zc1\ "
B RREEICO N
(103) ¢(2) Zn " +c12n "
n>0 n<0
The main objects of study in [I8] are the vertex operators
e¢]
Vdyd
(104) HGW(x) _ Z ngxk+1 = ReSyo (ﬂ - P9(y) =00 (w) :) 7
k=0 y—w
where y, w, and z satisfy the constraints
(105) ye! = wePe " 07% = —¢y(Tx).

Here, Res,,— denotes QLM times the integral along a small loop around w = 0.
Normally ordered monomials

Qi Ay - - Qg zlézzéézk,
form a linear basis of Heis. Respectively, we use : - : for the normal ordering operation

:HaijzzailaiQ...aik, 21<22<<Zk,
J

Extended H*(X)-linearly to the whole algebra Heisx.
Let us notice that the equation (I08]) as well as the vertex operator ([04]) have symmetry

y—w, w—y, 6O0——0 x—

This symmetry implies that the only even powers of 6 appear in the expansion of (I04]) (see

Lemma 15 from [I8] for more discussions and further properties of the vertex operator).
The operators HEW are mutually commutative. To obtain explicit formulas for HEW,

we use the Lambert function to solve equation (I05) and express y in terms of z,w. The
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integral in the definition of HEW can be interpreted as an extraction of the coefficient of
w™t. The descendent classes

HSY () € Heisx

are then obtained using the Sweedler coproduct. We also use the Sweedler coproduct
conventions in

(106) HEW(y) = ﬁHgiW(v), k= (ki,... kn).

In the Sweedler conventions [I1], we abbreviate notation for the intersection with the
small diagonal A,, ¢ X™ with the pull-back of a class v € H*(X):

H* (X" 5 [A] v =) W@ =10 ® @Y -
k

Thus, the formula (I06) expands as

m m

[ 182" = [HEY () -

i=1 i=1

7.2. Stable pairs. The stable pairs analogues of the operators ng(v) are products of

HY'T () defined as follows.
The classes H} T(y) are linear combinations of descendents on the moduli spaces of stable
pairs. Let

H. ' () = m (HT - y) e @ H*(Pu(X, 8)),

neZ

where the classes Hi, " € @, ., H*(X x P,(X,3)) are defined by

neZ

oe
HPT(ZE) _ Zxk-HHET
—0

b

e}
- St (%) Z z*chy(F — O),

k=0

where
x/2 _ —x/2
0% = —cy(Tx), S(z)= — "
x
In particular, we have
HPT = clyyy (F) + 2 chy_y (F) + 7 chy,_s(F) +
24 5760
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7.3. Equivariant correspondence. All the definitions and construction introduced in
Section [Z.I have canonical lifts to the equivariant setting with respect to a group action on
the variety X. We review here the equivariant GW/PT descendent correspondence [26].

The most natural setting is the capped vertex formalism of [16] 26] which we review
briefly here. Let the 3-dimensional torus

T=C*"xC*xC*
act on P! x P! x P! diagonally. The tangent weights of the T-action at the point
p=0x0x0eP' xP!' x P!
are si, So, s3. The T-equivariant cohomology ring of a point is
Hr(e) = C[sy, S92, s3] -
We have the following factorization of the restriction of class cico — ¢3 of X to p,
c1Cy — 3 = (81 + S2) (81 + $3) (52 + s3)

where ¢; = ¢;(T).

Let U = P! x P! x P! be the T-equivariant 3-fold obtained by removing the three
T-equivariant lines Ly, Lo, L3 passing through the point o0 x oo x 0. Let D; < U be the
divisor with i coordinate co. For a triple of partitions s, us, i3, let

GW,T PT,T

(107) <H Tk, (p) ‘ 1, f2, 43 >U’D ) < Hchki(p) ‘ M1, H2, b3 >U,D

denote the generating series of the T-equivariant relative Gromov-Witten and stable pairs
invariants of the pair

D= UiDi cU
with relative conditions u; along the divisor D;.
The stable maps spaces are always taken with no contracted connected components of

genus great than or equal to 2. The series (I0T) are the capped descendent vertices following
the conventions of [18].

Theorem 21. [I8] After the change of variables —q = €™ the following correspondence
between the 2-leg capped descendent vertices holds:
GW,T

PT, T
< [ [HEY () ‘u1,u2’@>m - q_‘ull_lm|< [ 1) ‘ ’“’“2’@>UD

mod (s1 + s3)(s2 + s3).

The result of Theorem 21] has two defects. Since the third partition is empty, the result
only covers the 2-leg case. Moreover, the equality of the correspondence is not proven
exactly, but only mod (s; + s3)(sg + s3). For the 1-leg vertex with partitions (p1, &, &),
Theorem [21] can be restricted in two ways to obtain the equality of the correspondence

mod (s1 + s3)(s1 + S2)(s2 + s3) .
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7.4. Non-equivariant limit. By following the arguments of [26], a non-equivariant GW/PT
descendent correspondence for stationary insertions is derived in [I§]. For our statements,
we will follow as closely as possible the notation of [18, 26].

Let Heis® be the Heisenberg algebra with generators aez (o}, coefficients Clcy, o], and
relations

[ak, am] = k5k+m6102 .
Let Heis} < Heis® be the subalgebra generated by the elements aj-(, and define the
Cley, co]-linear map
(108) Heis® — Heis® , & — ®
by a; = a5 for k£ > 0 and
(109) 0P = (—C10441 + Opiaiv)®, for k <0.

When restricted to the subalgebra Heis?, , the C[cy, co]-linear map (I08)) is an isomorphism.
For a nonsingular projective 3-fold X and classes 7,...,v € H*(X), the hat operation
make no difference inside the Gromov-Witten bracket,

(110) CHEW ()Y = AV (7))§W,

because the treatment of the negative descendents on the left side is compatible with the
treatment of the negative descendents by the hat operation.

Let k = (k1,...,k;) be a vector of non-negative integers. Following [26], we define the
following element of Heis, :

Hy - ﬁ 2 (~p"r (P - [ THEY,

set partitions P of {1,...,1} SeP

where HGW [ ics HGW and the element HZW € Heis® is a linear combination of monomials
ks

of a;, the expression is given by (I04)).

For classes 71,...,7 € H*(X) and a vector k= (k1, ..., k) of non-negative integers, we
define

Hk1 (71) SR Hkl (’Vl) = Z H ﬁES (’YS) )

set partitions P of {1,...,1} SeP
where vg = [ [,cq V-

Theorem 22. [I8] Let X be a nonsingular projective toric 3-fold, and let v; € H?*(X, C).
After the change of variables —q = e™, we have

PT

(Bl W), = () HER G )

where d = SB cy.
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7.5. Examples for X = P3. The prefactor S~' () in front of >},” , z¥chy(F — O) in the
formula for HT(z) has an expansion which the following initial terms:

Cy 22 703 4
1 T4 a0,
ot T et T

Therefore, the non-equivariant limit of HE T () is

() + greteastr )

On the Gromov-Witten side of the correspondence, we have

HEW (7)) = (ay (7)), <H§W(7)<I>> = L)),

1
HSY (1)) = £(as(1)®) + 5 (e o
1 i
GW _ 2
HM (7)) = ﬂ<a4(7)q)> - m@l(cl 7)®) — 144 3<C1C2 ®),
HOWE) = — oy 7)®) —
HEVB) = - (as()®) — o (a8 — o (@l 7))
1
+ m@l(ﬁ% )P — 1 4<C102 D).
The operators a; are expressed in terms of standard descendent<*]
c
(111) a = 70—2—2,
iua2/2 = T1+c¢C1- 70,
—u2a3/3 = 27’2 + 301 - T1 + C% - 70 ,
—iutay /4 = 673+ 1ley - T+ 66T +C -1,
u'as/5 = 241, +50c; - T3+ 35¢ T+ 106 - T 4+ €] - To .

The descendent correspondence of Theorem implies relations for stable pairs and
Gromov-Witten invariants of P3. For example, for 8 of degree 1,

(12) cir (1) = () + (o)~ () )
- (Cehu(b) + (o) )

(E@*(H» + %@;(L» + %@(p»
_%<7—07'1(L)> + %@hﬁ](p») :

Here, p is the class of point, L is the class of line and H is the class of hyperplane

32For a;(v), the term —£ on the right is the constant —5 { c27.
33We can also check the relations () numerically up to u® with the help of Gathmann’s code on the
Gromov-Witten side and previously known computations for stable pairs [21].
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7.6. Residues. To complete our proof of Theorem [7] we will compute the residues (104)).
More precisely, we will prove the following result.

Proposition 23. For k; € Z~ and ; € H**(X) such that CNhkiJrg(%-) e DX¥, we have:

Hia1(m) = €(chisa(n)),
ﬁk1+1,k2+1(71 ) = €O(C~hk1+2(%)&1k2+2(’72)) )
ﬁk1+17k2+1,kz3+1(71 Y2 Ys) = €O(C~hi<:1+2(71)C~hk2+2(72)C~hk:3+2(%)) )
where the right side is defined by (I4)-(I0).

8. RESIDUE COMPUTATION

8.1. Preliminary computations. Before starting the proof of the Proposition 23, we
compute the expansion of the terms of the residue formula (I04)).

Consider first the constraint equation ([I03]). Solutions of the equation are formal power
series in the variable

r = 1/9, 9_2 = —CQ(TX) .

We can solve the constraint equation iteratively in powers of r. Indeed, modulo r!, the
constraint equation implies w = y, and we start the expansion by

w(z,y) =y+0(r).
To find the next term of r in the expansion of w(z,y), we substitute
w(x,y) =y+ fl(x7y)r

into (I05) and expand the result of the substitution in powers of r. The coefficient of r!
in the expansion gives a linear equation which determines f;. After iterating the above
procedure three times, we obtain

(113) w(x,y) =y — :m’y Lt (ar Y +0(r").

9 3 2y—1
w1 g g

To see the expansion of the residue (I04]) has positive powers of ¢ = ¢1, we use a change
of variables:

(114) y=uv/t.

The residue with respect to w on right side of (I04)) is converted to a residue with respect
to y via ([13]). Using ([II4)), we will compute the residue with respect to v.
In the new variables, we have

xrt (xr)?t3(4v — 1)\ dv 5
x/dwdy=<1—2( L )T—G—O(T).

v+t)

After we normal order the elements of the Heisenberg algebra in the expression for the
vertex operator H¥W(z), the negative Heisenberg operators end up next to the vacuum
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(| inside the bracket (-)¢W. Relation ([09), which governs interaction with (|, yields the
following factor in the expression under the residue:

e ()£ (92)

<:UU) tra’v N t2r?(3zv? 4 3tzv + 4t*u) o
= exp|— — ).
P\ 2u(v + 1) 24u(v + t)3
The inverse of y — w in ({04]) becomes the factor:
r v+t t*rz t3r22%(4v + t)
116 D=- = O(r3) |
(116) w(y) —y v ( * 2(v +1)? * 12(v + t)* ) +00)

The elements of the Heisenberg algebra that participate in the residue formula are packed
into the vertex operator:

V=V, Vo, V(@) =exp (1 PO w<y>—">> ,

V_(7,y) = exp (% > (th)n(y‘” - w(:a)‘”)) :

n<0 n

Thus we need to compute the difference of powers in the expression for the vertex
operators. Using formula for w(y) (II3]), we obtain:

(yt)" — (w(y)t)™  nat s o((n+ v +nt)
(117) oy B v™(v + 1) ot v (v +t)3
N nx3r2t3n((n +1)(n + 2)v? + (2n? + 3n — 1)tz + n?t?) N 0(7’3) '

6o (v + t)°

The above calculations yield the leading terms of all algebraic expressions occurring in
formula (I04) for the vertex operator HW(x). As we will see in Section B2 the knowledge
of these leading terms almost immediately leads to the simplest case of the descendent
correspondence (I4]). For the other two cases (I3]) and (I8), we must analyze the interaction
of two and three vertex operators HSW(x). We apply standard vertex operator techniques
to complete the proof of Proposition 23] in Section B2

8.2. Proof of Proposition 23l

8.2.1. Case Hy,41(71). We start with the proof of the formula for the self-reaction. We
must analyze the r expansion of the residue

~

~ 1
(118) H(z) = H*V(2) = Resy—o -E-D-V,.
More precisely, we must compute the coefficients of

rt, i+ <2,
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By the argument of [I8], Section 3.2], the coefficient of r#/ vanishes. From the computations
of the v expansions ([I13), (II5), (II6) and (II7), the terms in front of 7%, 7 > 0 are
proportional to . The expression under the residue sign becomes:
v\ (v -+t 2t 312
exp <—> +zX+ »? 4
u t v+t (v+1)2

23) +O(t%) +tO(r?), T =) (z;Z)n .

After applying the residue operation to the last expression, we obtain the terms of formula
(I4) in the coefficients of the z-expansion. U

8.2.2. Case ﬁklﬂ,kﬁl(vl 72). We show next that the double interaction term yields for-
mula ([I3]). The new computation that is needed for understanding the interaction term is

A~

Hg, k,. It is convenient to assemble the expressions into a generating series H(zy, x).

To compute ﬁ(xl, x2), we must move all negative Heisenberg operators in the product
of the vertex operators HW (21 )HSW (z5) to the left, next to the vacuum (|. We use the
standard vertex operator commutation relation to perform this reshuffling:

(119) V+($1,yl)v—($2,y2) = B($1>yljx2vyz)v—($2,y2)v+($1,yl)>

B— (w2 — y1)(y2 — w1)

(y2 — 1) (w2 — wr)

where w; = w(z;,y;). Using the computations of Section Bl we derive the following
expansion:

Y

szlylel'z
B=1- + O(r3).
=P+ D O

The negative Heisenberg operators interact with the vacuum (|. We obtain:

H(z1, 2) = Resy, o0 (Resy,—o (VI VI DO DA EDEDBI2)Y)

where ng) =V (i, ¥i), DO = D(zi, yi), E® = E(zi, ys).
From (II8]), we see

A~

H(z1)H(2,) = (Resyloo ED . pO) . V<+1>> (Resygoo E® . D). vf)) _
Resylzoo(ReSyQZOO(VS_I)VS?)D(I)D(Q)E(I)E(Q))) :

where the second equality holds because Vf) commute. We conclude, after the change of
variables, the generating function H(zy, z2) for Hy, &, is given by

~ 1 A AN AN ~
s, m2) = — (H(:z:l, ) — H(xl)H(xg)) — Res(VOVEDOD@EDEDE2)) /(5243

where Res = Res,, —o ReSy,—o and B2 = B2 _ 1, By expanding the scalar factor

D(l)D(2)E(1)E(2)]§(12)/(r2t3)
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in the operator inside the residue operation, we obtain:

t t 2t
(120) ?2)1?)21’1332 exp (fl’wl + 952”2) v + 4o x4 1 $(D)y(1)
(v1 —v9)%(vy + ) (Vg + 1) u t

t 2t
Il x® B ses®) L or) 4 o).
t V2 + t

The residue of the coefficient in front of ¢~ in (I20) vanishes. The coefficient in front of
t0 is

(v2(1 + 21 M) + vy (1 + 2,5P)) .

(:Ulvl + x2v2> 129
U (v1 — v2)?

After applying the Res operation, we obtain:

2
T1V1 + T2U2 XTI ToVy
1 »,

Resy,—o Resy,—o0 €Xp ( 5
u (v1 — v9)

The coefficient in front of 25" *?252%% in the last expression matches with the a-linear terms

of right side of (IH) that are proportional to ¢J.
Finally, we compute the coefficient in front of ¢! in (I20):

129 T1V1 + ToU2
exp

_ ) [:12:205 4 220, 5050 1 220,55
(v1 = v2)

u

+ (l L1 ) (v2(1 + 2:2W) + 0 (1 + IQZ@)))] :

V1 V2

The residue of the terms from the first line of the last expression form the generating func-
tion of the a-quadratic terms of the right hand side of ([[H]). The residue of the terms from
the second line of the last expression form the generating function of the ¢;-proportional
a-linear terms of the right side of (IH). O

8.2.3. Case ﬁk1+1,k2+17k3+1(’yl - Yo - 73). Finally, we must analyze the triple interaction.
The computation here is parallel to computations in Sections B.2.1]1 and R.2.2l The new
ingredient for the triple bumping reaction is the residue formula:

A~

H(z1, 22, 23) = Res (V(f)\/'f)\/f’)D(l)D(Q)D(3)E(l)E(Q)E(?’)B(12)B(23)B(13) /(7«4155))

for the generating function of the operators ﬁkhk%;@. Here and below Res stands for the
triple residue

Resy, =0 Resyy—o0 Resyg—op -
The generating function ﬁ(xl, xq,x3) for the operators ﬁkl,kQ,kS is given by:

A~

H(xz1, 20, 23) — H(wy, 20)H(ws) — H(xy, 23)H(zs) — H(wa, 3)H(z1) + 2H (21 H(2o)H(zs) .
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We expand the above as
= Res (VIVEVEPDODEDOEVEDES

7’4 5
<]§<12>]§<23>]§(13> L BA2FE) L s L pe >]§<13>>)

Since BIPBEYBU3) ig proportional to 76, we can write the last expression as
4_755 Res ( Vf)D(l)D@)D(3)E(1)E(2)E(3) <§(12)]§(23) L DUD[A3) 4 [FEHIF1) ))
.

up to O(r?).

After expanding the expression inside Res, including the prefactor #, we obtain:

t t t
t2 (Ul t+ + I12(1)> <UQ:— + 1322(2)) (U3: + ZL‘32(3)>

X exp (“T”“ “32”2 +x3”3> - (f(12;23) +£(23;31) + f(31: 12)) + oW,

where
VUTURT T T,

i7;7k) = .
J33k) = o 520, = o) (o & (0, + 20 + 1)

The application of Res to the coefficient in front of t~! in the last expression yields zero.
On the other hand, the coefficient in front of t° equals

T1X2T3 (’02'1}3(1 + .1'12(1)) + 111’1)3(1 + $22(2)) + Ul’Ug(l + %32(3)))

X1V + T2V + $3U3>

xexp(
U

» ( ) n XT3 n T )
(vi —v2)*(v2 —v3)> (01 —v3)(vs —v2)®  (v3—v1)’(v1 —v2)?/)
The result of application of Res is therefore equal to the generating function of the right
side of ([I6)). O

9. DEGREE 1 SERIES FOR P?

9.1. Stationary descendent series. We provide a complete table of the stationary sta-
ble pair descendent series for projective P? in degree 1. Our notation is given by three
vectors Vp,, Vi, Vi of non-negative integers which specify the stationary descendents with
cohomology insertions

p,L,He H*(P?)
corresponding to the point, line, and hyperplane classes respectively. For example, the
data [1,2],[4, 9], [6] corresponds to the descendent

chs(p)chy(p)che(L)chy(L)chg(H) .



60 M. MOREIRA, A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

In the table, below the full descendent series is given as rational function in ¢.

[]7 [07 1]7 [1] Q(ng - 56] + 3)
[1], 0], ] a(q® — 1)/2
[01.[0,01.11 | alg+1)°

(0], [1], ] 3q(¢° — 1)/2

[]7 [07 07 1]7 [] 2Q(q2 - 1)
[]7[171]7[] 5Q(q_ 1)2/2
0.00,2,[1 | a(5¢* — 14q +5)/6
11,11, (1] 3q(q — 1)%/4

[]7 [07 07 0]7 [1] 3(]((]2 3_ 1)

[, [2]. [1] e

[01,1.[1.1] | 3¢(3¢" — 2q + 3)/4
[]> [0> 0]7 [L 1] Q<9q2 - 10q + 9)/2
[0.[1),[1,1] | detoe2es)
1,101, [1, 1, 1] q(q—l)(izlqiz)lélqm?)
[0], [, [2] 4(5¢° — 24 + 5)/4
[]7 [07 0]7 [2] ZQ(QQ —q + 1)
0.00,[2] | e
[]7[]’[1’172] q(9q2 - 14(]+9)/2
0.0 1221 | q(17¢> — 30q + 17)/8
[, [0]. 3] ) )
[.0,01,3] | a(9¢® — 22 +9)/8
[01.[0],[1] | 3q(¢® — 1)/2

[, 10 [4] a(q* — 5¢ +1)/6
0.6L0 e

2], 11,11 a(q* — 10q + 1)/12
[, [0], [1,2] | o=t
0,01, (1, [] q(q + 1)
[].10,0,0,0, ] | 24(q + 1)2
[1,1],]1,1,1,1] | ¢(81¢* — 102q + 81)/2

The symmetry in the above series is a consequence of the functional equation, see [21]
Section 1.7]. In the stationary case, the stable pairs series are equal to the corresponding
descendent series for the Donaldson-Thomas theory of ideal sheaves, see [18, Theorem 22].

9.2. Descendents of 1. We tabulate here descendent series of P? in degree 1 with descen-
dents of the identity 1 € H*(P?) together with stationary descendents specified as before
by a triple of vectors.
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e With chy(1) and the rest stationary:
q(21¢*+37q°~88¢%+37q+21)

]7 1]7[1] 6(1+q)2
L0 |7a(@=1)(1+4q)/3

q(q—1)(21¢"+79 ¢>+86 42 +79 g+21)
6(1+q)°

[

[

[

[0], Tq(g—1)(1+q) /4
[])[0)0])[1] 7q(q4_ 1) (31+q2/2

[, [0], [1, 1] q(634 +11632(—11+3;1)¢; +116 g+63)
(0], [0], [] q(T¢*+2q+7)/6

(1], [, [] Tq(g—1)(1+q)/12
(110,00, 1] | a(T¢* +2¢ +7)/3

0, 121,11 q(354 +56§6(—13+1:)¢i +56q+35)
0.0 [3] q(q—1)(63¢ +2;’)22(¢;;+—&;i8q +232+63)
0.[0)[2) | IO I arT)

0,01, [3q(g—1)(1+q)/4
(0.00,0,[] | 4¢(q—1) (1 +¢q) /3

[, 1], [] q(17 q*+24 i;ﬁ)j;%m g+17)
[.0.[1.1] | 2Rl )
(1,11, [2] dla—1) (% q4“2f( f:)?f ¢?+1124+33)
[0} [1) | e

e With chy(1)chy(1) and the rest stationary:

[1] a(g—1)(49 q*+196 ¢°+534 g2 +196 g+49)
’ [ 12(1+q)°

(494195 g+459 g2 —454 ¢>+459 ¢* +195 ¢>+49 ¢°)
18(1+¢)*

[1,10]
(O] [1,[1 | ¢(49+2q¢+49¢*) /36
[1,10,01,[] | ¢(49+2q+494*) /18
(g—1)(49 ¢* 4196 ¢>+654 ¢>+196 ¢+49
[.[)[) |t ot i)
11 q(441+1754q+4007q273252q3+4007q4+1754q5+441qﬁ)
511, [1,1] 72(14+q)*
[ [
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e With chg(1) and the rest of stationary:

q(17 ¢*+20 ¢3—114 ¢2 420 q+17
[.[o], [} | “LTete0e et s200 1)

qa(q—1)(17¢"+48 ¢>~58 ¢ +48 ¢+17)

[0.0.01] e

e With chy(1)chy(1)chy(1) and the rest stationary:

q(343 ¢5+1374 ¢5+249 ¢* +11396 ¢%+249 ¢%> +1374 q+343
000517 | « e )

q(g—1) (343 q%+2058 ¢®+3705 g4 +29900 ¢3+3705 g2 +2058 q+343)

(1. 11. 1] il

e With ch;(1)chy(1) and the rest stationary:

q(84+331 q+928 ¢ —1878 ¢%+928 ¢*+331 ¢°+84 ¢°
0.0 | 4 e )

29(q—1)(7+28 q+87 > +28¢°+7¢*)

(1,01, 1 Ty

e Without stationary descendents:

ch7(1) q(qfl)(2+31;12j5)23+3 #+24*)

chs(1)chs(1) 59(18+50-+179 42*75;5;(1)12;179 *+50°+13¢°)

Ch4(1)ch6 (1) q(119+462 q+1737 qL;fé’)fl(i;i?m g +462 ¢5+119 qe)

chy(1)chy(1)chs(1) q(—49-245¢—81 q2—63652$?:f;’>)65 g*+81 > +245 ¢°+49 ¢7 )
cha(1)chs(1)chs(1)cha(1) ¢(2401+14405 ¢-+55690 >~ 594229 q3+1&;?:14;5(:(jrz;5)6—594229 45 +55690 ¢ +14405 q7+2401 ¢

9.3. Examples of the Virasoro relations.

9.3.1. LYT. Examples of the Virasoro relations for £I'T were given in [21], Section 3]. We
consider here the operator LT for X = P3.
The Chern classes of the tangent bundle of P are

C1 = 4H , C1Cy = 24[),

The constant term for k£ = 2 is

1 1
Ty = ) Z (=) (a + d* — 3)1(b + d® — 3)! chychy(c1) + 7 Z alb! ch,chy(cicg)

a+b=4 a+b=2

—8ch4(H) + 8chy(H)chy(p) — 2chy(L)? — 4chy(p),
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where we used the evaluation chg(vy) = — SX ~ and dropped all the terms with ch;. The
Virasoro operator for k = 2 is then

£§T = T2 + R2 + 3!R,1Ch3(p)
= —8Ch4(H) + 8Ch2(H)Ch2<p) — 2Ch2(|_)2 — 4Ch2<p> + RQ + 3!R,1Ch3(p) .

Since our examples will be for curves of degree 1 in P* and since
ChQ(H) =H- 57
we can simplify the operator even further:

L55 | = —8chy(H) + 10chy(p) — 2chy(L)* + Ry + 6chs(p)R-;.

9.3.2. Stationary example. Let us check the Virasoro constraints of Theorem Ml for k£ = 2
and

D= Chg(H)ChQ(L) .

The constant term part of the relation has three summands:

—8(chy(H)chs(H)chy (L)) = ~ 8q(g — 1)1(?fZQ+ q+3) |
10¢cha(p)chs(H)cho(L))r = 15¢(¢° — 1),

—2(chy(L)%chg(H)chy(L))L = —6q(¢* —1).

The rest of the relation can be divided into two parts. The first part is Ry(D) which has
two terms:

6{chs(H)chs(L))L = %7
6(chs(H)chy(L)), = alq — 1;(8q+ ;)261 +9)

The second part is

6{chs(p)R_1 (D)) = 6{chs(p)cha(H)chy(L)) + 6{chs(p)chs(H)chy (L))
6¢chs(p)cha (L)L
= 3q(¢°—1).
Using the cancellation of poles

—8(chy(H)chs(H)cha (L)) + 6{chs(H)cha (L)) + 6{chs(H)cha (L)) = —12q(¢* — 1),

we easily verify the Virasoro relation

X,PT

<£§T<ch3(H)ch2(L))>L ~0.
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9.3.3. Non-stationary ezample. Let us check the Virasoro relation £§%_ for
D = Ch5(1> s

a non-stationary case (not covered by Theorem M but implied by Conjecture [B]).
The constant term part of the relation has three summands:

Cqg—1) (33¢* + 112¢3 + 384> + 112¢ + 33)

—8(chy(H)chs(1))L = L ;
10ehy(plehs(Dn = g~ 1)(1+4q),
AR (Ujchs(1)e = —sala—1)(1+q).

The rest of the relation can be divided into two parts:

4q(q—1)(2+3q—28¢>+3¢>+2q¢")

24(ch7(1 = ,
(ehr(D)e T
7
6(chs(p)chs(n = Falg—1)(1+4q).
After a remarkable cancellation of poles,
25

—8(chy(H )chs (1)) + 24{ch7(1))L = —EQ(Q -1 +q),

we verify the Virasoro relation
X,PT
<£§T(ch5(1))>L ~0.
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