
VIRASORO CONSTRAINTS FOR STABLE PAIRS ON TORIC 3-FOLDS
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Abstract. Using new explicit formulas for the stationary GW{PT descendent correspon-
dence for nonsingular projective toric 3-folds, we show that the correspondence intertwines
the Virasoro constraints in Gromov-Witten theory for stable maps with the Virasoro con-
straints for stable pairs proposed in [18]. Since the Virasoro constraints in Gromov-Witten
theory are known to hold in the toric case, we establish the stationary Virasoro constraints
for the theory of stable pairs on toric 3-folds. As a consequence, new Virasoro constraints
for tautological integrals over Hilbert schemes of points on surfaces are also obtained.
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0. Introduction

0.1. Stable pairs. Let X be a nonsingular projective 3-fold. A stable pair pF, sq on X

is a coherent sheaf F on X and a section s P H0pX,F q satisfying the following stability
conditions:

‚ F is pure of dimension 1,
‚ the section s : OX Ñ F has cokernel of dimensional 0.

To a stable pair, we associate the Euler characteristic and the class of the support C of
the sheaf F ,

χpF q “ n P Z and rCs “ β P H2pX,Zq .
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For fixed n and β, there is a projective moduli space of stable pairs PnpX, βq. Unless β is an
effective curve class, the moduli space PnpX, βq is empty. An analysis of the deformation
theory and the construction of the virtual cycle rPnpX, βqsvir is given [28]. We refer the
reader to [21, 29] for an introduction to the theory of stable pairs.
Tautological descendent classes are defined via universal structures over the moduli space

of stable pairs. Let

π : X ˆ PnpX, βq Ñ PnpX, βq
be the projection to the second factor, and let

OXˆPnpX,βq Ñ Fn

be the universal stable pair on X ˆ PnpX, βq. Let1

chkpFn ´ OXˆPnpX,βqq P H˚pX ˆ PnpX, βqq .
The following descendent classes are our main objects of study:

chkpγq “ π˚

`
chkpFn ´ OXˆPnpX,βqq ¨ γ

˘
P H˚pPnpX, βqq

for k ě 0 and γ P H˚pXq. The summand ´OXˆPnpX,βq only affects ch0,

(1) ch0pγq “ ´
ż

X

γ P H0pPnpX, βqq .

Since stable pairs are supported on curves, the vanishing

ch1pγq “ 0

always holds.
We will study the following descendent series:

(2)
A
chk1pγ1q ¨ ¨ ¨ chkmpγmq

EX,PT

β
“

ÿ

nPZ

qn
ż

rPnpX,βqsvir

mź

i“1

chkipγiq .

For fixed curve class β P H2pX,Zq, the moduli space PnpX, βq is empty for all sufficiently
negative n. Therefore, the descendent series (2) has only finitely many polar terms.

Conjecture 1. [28] The stable pairs descendent series
A
chk1pγ1q ¨ ¨ ¨ chkmpγmq

EX,PT

β

is the Laurent expansion of a rational function of q for all γi P H˚pXq and all ki ě 0.

For Calabi-Yau 3-folds, Conjecture 1 reduces immediately to the rationality of the basic
series x 1 yPTβ proven via wall-crossing in [2, 32]. In the presence of descendent insertions,
Conjecture 1 has been proven for rich class of varieties [23, 24, 25, 26, 27] including all
nonsingular projective toric 3-folds.

1We will always take singular cohomology with Q-coefficients.
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For our study of the GW{PT descendent correspondence and the Virasoro constraints,
modified stable pair descendent insertions will be more suitable for us. Let2

rchkpαq “ chkpαq ` 1

24
chk´2pα ¨ c2q ,

where c2 “ c2pTXq is the second Chern class of the tangent bundle, and let

A
rchk1pγ1q ¨ ¨ ¨ rchkmpγmq

EX,PT

β
“

ÿ

nPZ

qn
ż

rPnpX,βqsvir

mź

i“1

rchkipγiq

be the corresponding descendent series.

0.2. Virasoro constraints for stable pairs. Let X be a nonsingular projective 3-fold
with only pp, pq-cohomology.3 Let

ci “ cipTXq P H˚pXq .
The simplest example is P3 with

c1 “ 4H , c1c2 “ 24p ,

where H and p are the classes of the hyperplane and the point respectively.
Let DX

PT be the commutative Q-algebra with generators
 
chipγq

ˇ̌
i ě 0 , γ P H˚pXq

(

subject to the natural relations

chipλ ¨ γq “ λ chipγq ,
chipγ ` pγq “ chipγq ` chippγq

for λ P Q and γ, pγ P H˚pXq.
In order to define the Virasoro constraints for stable pairs, we require three constructions

in the algebra DX
PT:

‚ Define the derivation Rk on DX
PT by fixing the action on the generators:

Rkpchipγqq “
˜

kź

n“0

pi ` d ´ 3 ` nq
¸
chi`kpγq , γ P H2dpX,Qq

for k ě ´1. In case k “ ´1, the product is empty and

R´1pchipγqq “ chi´1pγq .
2We set chℓpγq “ 0 for ℓ ă 0.
3Our results will be about nonsingular projective toric varieties, but the formulas here are all well-

defined when there is no odd cohomology and the Hodge classes in the even cohomology are all pp, pq.
To write the Virasoro constraints for varieties with non-pp, pq cohomology requires the Hodge grading and
signs. A treatment is presented in [17] where the Virasoro constraints are checked in several non-pp, pq
geometries. The theory leads to surprising predictions for vanishings [17].
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‚ Define the element

chachbpγq “
ÿ

i

chapγLi qchbpγRi q P DX
PT

where
ř

i γ
L
i b γRi is the Künneth decomposition of the product,

γ ¨ ∆ P H˚pX ˆ Xq ,
with the diagonal ∆. The notation

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! chachbpγq
will be used as shorthand for the sumÿ

i

p´1qdpγL
i qdpγR

i qpa ` dpγLi q ´ 3q!pb ` dpγRi q ´ 3q! chapγLi qchbpγRi q ,

where dpγLi q and dpγRi q are the (complex) degrees of the classes. All factorials with
negative arguments vanish.

‚ Define the operator Tk : D
X
PT Ñ DX

PT by

Tk “ ´1

2

ÿ

a`b“k`2

p´1qdLdRpa` dL ´ 3q!pb ` dR ´ 3q! chachbpc1q ` 1

24

ÿ

a`b“k

a!b! chachbpc1c2q

for k ě ´1. The sum here is over all ordered pairs pa, bq satisfying a ` b “ k ` 2
with a, b ě 0 (and all factorials with negative arguments vanish). Written in terms
of renormalized descendents, the formula simplifies to

(3) Tk “ ´1

2

ÿ

a`b“k`2

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! rcha rchbpc1q .

Definition 2. Let LPT
k : DX

PT Ñ DX
PT for k ě ´1 be the operator

L
PT
k “ Tk ` Rk ` pk ` 1q! R´1chk`1ppq .

Since X is a nonsingular projective 3-fold with only pp, pq-cohomology, Hirzebruch-
Riemman-Roch implies

c1c2

24
“ p P H6pXq ,

where p P H6pXq in the point class. Hence, for our paper, we can write

(4) L
PT
k “ Tk ` Rk ` pk ` 1q! R´1chk`1

´c1c2
24

¯
.

The operators for more general varieties X defined in [17] specialize to (4) when all the
cohomology is pp, pq.
The operators LPT

k impose constraints on descendent integrals in the theory of stable
pairs which are analogous to the Virasoro constraints of Gromov-Witten theory. We for-
mulate the stable pairs Virasoro constraints as follows.
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Conjecture 3. [18] Let X be a nonsingular projective 3-fold with only pp, pq-cohomology,
and let β P H2pX,Zq. For all k ě ´1 and D P DX

PT, we have
A
L

PT
k pDq

EX,PT

β
“ 0 .

Our main result is a statement about stationary descendents for nonsingular projective
toric 3-folds. The subalgebra DX`

PT Ă DX
PT of stationary descendents is generated4 by

 
chipγq

ˇ̌
i ě 0 , γ P Hą0pX,Qq

(
.

The operators LPT
k are easily seen to preserve DX`

PT . Therefore, the stationary Virasoro
constraints are well-defined. We prove that the stationary Virasoro constraints hold in the
toric case.

Theorem 4. Let X be a nonsingular projective toric 3-fold, and let β P H2pX,Zq. For all
k ě ´1 and D P DX`

PT , we have
A
L

PT
k pDq

EX,PT

β
“ 0 .

In the basic case of P3, Theorem 4 specializes to the Virasoro constraints for stable pairs
announced earlier in [21] via (4). A table of data of stable pairs descendent series for P3 is
presented in Section 9. The Virasoro constraints are seen to provide nontrivial relations.

0.3. The Virasoro bracket. For k ě ´1, we introduce the operators

LPT
k “ ´1

2

ÿ

a`b“k`2

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! chachbpc1q

` 1

24

ÿ

a`b“k

a!b! chachbpc1c2q

`Rk ,

where the sum, as before, is over ordered pairs pa, bq with a, b ě 0.
Our conventions with regard to the factorials in the above definition of LPT

k differ slightly
from those of the definition of LPT

k . For LPT
k , all terms with negative factorial vanish except

for the term p´1q! ch1pc1q. For example, we have

LPT
´1 “ R´1 ` p´1q! ch1pc1qch0ppq .

The new conventions will play a role in the exceptional cases in our analysis. We extend
the action of Rk by

Rkpp´1q! ch1pc1qq “ ´pk ´ 1q! chk`1pc1q.
We view p´1q!ch1pc1q and

R´1pp´1q!ch1pc1qq “ ´p´2q!ch0pc1q
as formal symbols.

4Equivalently, DX`

PT
is generated by

 rchipγq
ˇ̌
i ě 0 , γ P Hą0pX,Qq

(
.
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We define an equivalence relation
x,y“ for operators A,B : DX

PT Ñ DX
PT by

A
x,y“ B Ø xApDqyX,PT

β “ xBpDqyX,PT
β for all D P DX

PT and β P H2pX,Zq .
Inside the bracket, ch0ppq acts as ´1, and ch1pγq acts as 0 for all γ P H˚pXq. Moreover,
the formal symbols p´1q!ch1pc1q and p´2q!ch0pc1q are defined to act as 0 inside the bracket.

Using the equivalence relation
x,y“, we obtain the Virasoro bracket and the following

bracket with chkppq,

rLPT
n ,LPT

k s x,y“ pk ´ nqLPT
n`k , rLPT

n , pk ´ 1q! chkppqs x,y“ pn ` kq! chn`kppq .
The operators LPT

k are expressed in terms of LPT
k by

L
PT
k

x,y“ LPT
k ` pk ` 1q! LPT

´1 chk`1ppq .
The occurrences of the negative factorial terms p´1q!ch1pc1q cancel on the right side. The
expressions LPT

k will play a role in the proof of Theorem 4.
The Virasoro algebra is the unique central extension of the Witt algebra. The Witt

algebra is the algebra of polynomial vector fields on the circle and basis

Ln “ ´zn`1 B
Bz , n P Z .

The relations in the Virasoro algebra Vir are generated by

rLm,Lns “ pm ´ nqLm`n ` c

12
pm3 ´ mqδm`n

5,

where c is the central element. The elements Ln, n ě ´1 generate a subalgebra Virě´1

of Vir. Only the subalgebra Virě´1 appears to be relevant in our geometric constructions.
For further discussion of the full Virasoro algebra in the context of Gromov-Witten theory
reader may consult [8].

0.4. Virasoro constraints for surfaces. Let S be a nonsingular projective toric surface.
As a consequence of the stationary Virasoro constraints for

(5) X “ S ˆ P1 and β “ nrP1s ,
we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert
schemes of points HilbnpSq of surfaces S in Section 6. The case of all simply connected
nonsingular projective surfaces is proven in [17].
As we explain in Section 6, the descendent algebra DpSq for the surface S is generated by

the tautological classes chkpγq, γ P H˚pSq. The classes chkpγq are defined6 in terms of the
universal ideal sheaf I on S ˆ HilbnpSq. If X and β satisfy (5), the tautological integrals
over rPnpX, βqsvir can be expressed in terms of integrals of the tautological classes over
HilbnpSq. The Virasoro operators LPT

k yield operators LS
k (see Section 6) on DpSq, and we

obtain the following result.

5Here δ denotes the δ-function: δk “ 0 unless k “ 0, δ0 “ 1.
6See formula (100).
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Theorem 5. Let S be a nonsingular projective toric surface. For all k ě ´1 and D P DpSq,
we have ż

HilbnpSq

`
LS
k ` pk ` 1q!R´1chk`1ppq

˘
pDq “ 0

for all n ě 0.

Taking Theorem 5 and [17] as a starting point, D. van Bree [33] has formulated parallel
Virasoro constraints for the descendent theory of moduli spaces of stable sheaves on surfaces
in higher rank (and has provided many numerical checks).

0.5. Path of the proof. Our proof of Theorem 4 relies upon two central results. The first
is the Virasoro conjecture in Gromov-Witten theory which has been proven for nonsingular
projective toric varieties [8, 10]. We refer the reader to the extensive literature on the
subject [3, 7, 8, 10, 19, 20, 30]. The second is the stationary GW/PT correspondence
of [23, 24, 25] which was cast in terms of vertex operators in [18] and has been proven
for nonsingular projective toric 3-folds. We show the stationary GW/PT correspondence
intertwines the Virasoro constraints of the two theories. Along the way, we derive a more
explicit form for the stationary GW/PT correspondence. Our proof of Theorem 4 yields
the following stronger statement.

Theorem 6. Let X be a nonsingular projective 3-fold with only pp, pq-cohomology for which
the following two properties are satisfied:

(i) The stationary Virasoro constraints for the Gromov-Witten theory of X hold.
(ii) The stationary GW/ PT correspondence holds.

Then, the stationary Virasoro constraints for the stable pairs theory of X hold.

A challenge for the subject is to prove the Virasoro constraints for stable pairs directly
using the geometry of the moduli of sheaves. New ideas will almost certainly be required.

0.6. Gromov-Witten theory. LetX be a nonsingular projective 3-fold. Gromov-Witten
theory is defined via integration over the moduli space of stable maps.
Let C be a possibly disconnected curve with at worst nodal singularities. The genus of

C is defined by 1 ´ χpOCq. Let M 1

g,mpX, βq denote the moduli space of stable maps with
possibly disconnected domain curves C of genus g with no collapsed connected components
of genus greater or equal to 2. The latter condition7 requires each non-rational and non-
elliptic connected component of C to represent a nonzero class in H2pX,Zq.
Let

evi :M
1

g,mpX, βq Ñ X ,

Li Ñ M
1

g,mpX, βq
7The exclusion here of collapsed connected components of genus greater or equal to 2 matches the

conventions of [18]. The definition of M
1

g,mpX,βq differs slightly from the definitions of [26, 27] where
no collapsed connected components are permitted. The difference is minor, see Section 3 of [18] for a
discussion.
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denote the evaluation maps and the cotangent line bundles associated to the marked points.
Let γ1, . . . , γm P H˚pXq, and let

ψi “ c1pLiq P H2pM 1

g,mpX, βqq .
The descendent insertions, denoted by τkpγq for k ě 0, correspond to classes ψk

i ev
˚
i pγq on

the moduli space of stable maps. Let

A
τk1pγ1q ¨ ¨ ¨ τkmpγmq

EX,GW

g,β
“
ż

rM
1

g,mpX,βqsvir

mź

i“1

ψki
i ev˚

i pγ
i
q

denote the descendent Gromov-Witten invariants. The associated generating series is de-
fined by

(6)
A
τk1pγ1q ¨ ¨ ¨ τkmpγmq

EX,GW

β
“

ÿ

gPZ

A mź

i“1

τkipγiq
EX,GW

g,β
u2g´2.

Since the domain components must map nontrivially, an elementary argument shows the
genus g in the sum (6) is bounded from below. Foundational aspects of the theory are
treated, for example, in [1, 5, 13].
Using the above definitions, the string equation8 is easily checked:

(7)
A
τ0p1q

mź

i“1

τkipγiq
EX,GW

β
“
A mÿ

j“1

mź

i“1

τki´δi´j
pγiq

EX,GW

β
` collapsed contributions.

The Gromov-Witten descendent insertions τkpγq in (6) are defined for k ě 0. We include
the nonstandard descendent insertions τ´2pγq and τ´1pγq by the rule:

(8)
A
τkpγq

mź

i“1

τkipγiq
EX,GW

β
“ δk`2

u2

ż

X

γ ¨
A mź

i“1

τkipγiq
EX,GW

β
, for k ă 0.

We impose Heisenberg relations (102) on the operators τkpγq:

(9) rτkpαq, τlpβqs “ p´1qk δk`l`1

u2

ż

X

α ¨ β .

In particular, the evaluation (8) applies only after commuting the negative descendents to
the left.
Assume now that X has only pp, pq-cohomology. Let DX

GW be the commutative Q-algebra
with generators  

τipγq
ˇ̌
i ě 0 , γ P H˚pXq

(

subject to the natural relations

τipλ ¨ γq “ λ τipγq ,
τipγ ` pγq “ τipγq ` τippγq

8The standard correction term for the string equation occurs here since we allow collapsed connected
components of genus 0 in our definition of the Gromov-Witten descendent series.
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for λ P Q and γ, pγ P H˚pXq. The subalgebra DX`
GW Ă DX

GW of stationary descendents is
generated by  

τipγq
ˇ̌
i ě 0 , γ P Hą0pX,Qq

(
.

We will use Getzler’s renormalization ak of the Gromov-Witten descendents9:

(10)
8ÿ

n“´8

znτn “ Z0 `
ÿ

ną0

pıuzqn´1

p1 ` zc1qn
an ` 1

c1

ÿ

nă0

pıuzqn´1

p1 ` zc1qn
an ,

Z0 “ z´2u´2

S
`
zu
θ

˘ ´ z´2u´2,

where we use standard notation for the Pochhammer symbol

paqn “ Γpa` nq
Γpaq .

For example10,

τ0pγq “ a1pγq ` 1

24

ż

X

γc2 ,(11)

τ1pγq “ ıu

2
a2pγq ´ a1pγ ¨ c1q .(12)

For k ě 2 and γ P Hą0pXq, we have the general formula

(13) τkpγq “ pıuqk
pk ` 1q!ak`1pγq ´ pıuqk´1

k!

˜
kÿ

i“1

1

i

¸
akpγ ¨ c1q

` pıuqk´2

pk ´ 1q!

˜
k´1ÿ

i“1

1

i2
`

ÿ

1ďiăjďk´1

1

ij

¸
ak´1pγ ¨ c21q .

0.7. The GW{PT correspondence for essential descendents. The subalgebra

DX‹

PT Ă DX`
PT

of essential descendents is generated by
 rchipγq | pi ě 3, γ P Hą0pX,Qqq or pi “ 2, γ P Hą2pX,Qqq

(
.

While closed formulas for the full GW/PT descendent transformation of [26] are not known
in full generality, the stationary theory is much better understood [18].11 The transforma-
tion takes the simplest form when restricted to essential descendents.
The GW/PT transformation restricted to the essential descendents is a linear map

C
‚ : DX‹

PT Ñ DX
GW

9We use ı for the square root of ´1. The genus variable u will usually occur together with ı.
10The constant term 1

24

ş
X
γc2 in the formula does not contribute unless γ P H2pXq.

11See [14, 15] for an earlier view of descendents and descendent transformations.
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satisfying

C
‚p1q “ 1

and is defined on monomials by

C
‚
´
rchk1pγ1q . . . rchkmpγmq

¯
“

ÿ

P set partition of t1,...,mu

ź

SPP

C
˝
´ź

iPS

rchkipγiq
¯
.

The operations C˝ on DX‹

PT are

(14) C
˝
´
rchk1`2pγq

¯
“ 1

pk1 ` 1q!ak1`1pγq ` pıuq´1

k1!

ÿ

|µ|“k1´1

aµ1
aµ2

pγ ¨ c1q
Autpµq

` pıuq´2

k1!

ÿ

|µ|“k1´2

aµ1
aµ2

pγ ¨ c21q
Autpµq ` pıuq´2

pk1 ´ 1q!
ÿ

|µ|“k1´3

aµ1
aµ2

aµ3
pγ ¨ c21q

Autpµq ,

(15) C
˝
´
rchk1`2pγq rchk2`2pγ1q

¯
“ ´pıuq´1

k1!k2!
ak1`k2pγγ1q ´ pıuq´2

k1!k2!
ak1`k2´1pγγ1 ¨ c1q

´ pıuq´2

k1!k2!

ÿ

|µ|“k1`k2´2

maxpmaxpk1, k2q,maxpµ1 ` 1, µ2 ` 1qq aµ1
aµ2

Autpµqpγγ1 ¨ c1q ,

(16) C
˝
´
rchk1`2pγq rchk2`2pγ1q rchk3`2pγ2q

¯
“ pıuq´2|k|
k1!k2!k3!

a|k|´1pγγ1γ2q , |k| “ k1 ` k2 ` k3 .

The above sums are over partitions µ of length 2 or 3. The parts of µ are positive integers,
and we always write

µ “ pµ1, µ2q and µ “ pµ1, µ2, µ3q
with weakly decreasing parts. In equations (14)-(16), we have ki ě 0, and all occurrences
of a0 and a´1 are set to 0. The automorphism factor Autpµq is defined to equal the
product

ś
iě1mipµq! where mipµq is the multiplicity of occurrence of i in µ.

The above formulas for the GW/PT descendent correspondence are proven here from
the vertex operator formulas of [18] by a direct evaluation of the leading terms. In the
toric case, we have the following explicit correspondence statement.12

Theorem 7. Let X be a nonsingular projective toric 3-fold. Let

mź

i“1

rchkipγiq P DX‹

PT .

12A straightforward exercise using our new conventions is to show the abstract correspondence of The-
orem 7 is a consequence of [26, Theorem 4]. The novelty of Theorem 7 is the closed formula for the
transformation.
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Let β P H2pX,Zq with dβ “
ş
β
c1pXq. Then, the GW{PT correspondence defined by

formulas (14)-(16) holds:

p´qq´dβ{2
A mź

i“1

rchkipγiq
EX,PT

β
“ p´ıuqdβ

A
C

‚
´ mź

i“1

rchkipγiq
¯EX,GW

β
,

after the change of variables ´q “ eıu.

As direct consequence of the formulas (14)-(16), the correspondence taken essential de-
scendents on the stable pairs side to stationary descendents on the stable pairs side.

Proposition 8. Let D P DX‹

PT . Under the GW{PT transformation, we have

C
‚pDq P DX`

GW .

Let S be a nonsingular projective toric surface. As a consequence of the stationary
Virasoro constraints for

X “ S ˆ P1 and β “ nrP1s ,
we obtain new Virasoro constraints for the integrals of the tautological classes over Hilbert
schemes of points HilbnpSq of surfaces S in Section 6. The case of all simply connected
nonsingular projective surfaces is proven in [17].

0.8. Plan of the paper. The key to our proof of Theorem 4 is an intertwining property
of C‚ with respect to Virasoro operators for stable pairs and the Virasoro operators for
stable maps. Via the intertwining property, Theorem 4 is a consequence of the stationary
GW{PT correspondence of Theorem 7 and the Virasoro constraints for the Gromov-Witten
theory of toric 3-folds.
The algebra DX

PT carries a bumping filtration13

(17) D0
PT Ă D1

PT Ă D2
PT Ă D3

PT Ă ¨ ¨ ¨ Ă DX
PT ,

where Dk
PT is spanned by the monomials14

mź

i“1

rchkipγiq

for which γs1 ¨ ¨ ¨ γsl “ 0 for all subsets

S “ ts1, . . . , slu Ă t1, . . . ,mu , l ą k .

In general the filtration (17) has infinite length. But if we restrict the filtration to DX‹

PT ,
the filtration truncates since

D3
PT X DX‹

PT “ DX‹

PT .

The correspondence

C
‚ : DX‹

PT Ñ DX`
GW

13The bumping filtration is a filtration of vector spaces.
14Via the empty monomial pm “ 0q, D0

PT
is spanned by the unit 1.
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respects the analogous bumping filtration Dk
GW X DX`

GW on DX`
GW with respect to the mono-

mials
mź

i“1

τkipγiq

for which γs1 ¨ ¨ ¨ γsl “ 0 for all subsets

S “ ts1, . . . , slu Ă t1, . . . ,mu , l ą k .

Our proof of the intertwining is separated into a calculation for each of the four steps of
the restriction of the bumping filtration on DX‹

PT .
We discuss the Virasoro constraints for Gromov-Witten theory in Section 1 and for stable

pairs in Section 2. The stationary Virasoro constraints of Theorem 4 are proven in Section
2.4 modulo the intertwining of Theorem 13. The proof of the intertwining property is given
in four steps:

(0) We start in Section 3 with the special case where D P D0
PT X DX‹

PT is the trivial
monomial 1. The result is Proposition 15 of Section 3.3.

(1) For D P D1
PT X DX‹

PT , the required results are proven in Section 4.3.
(2) Proposition 18 and Proposition 19 of Section 5 imply the intertwining property for

D P D2
PT X DX‹

PT .
(3) We treat D P D3

PT X DX‹

PT “ DX‹

PT in Proposition 20 of Section 5 to complete the
proof of Theorem 13.

After a review of the GW{PT descendent correspondence from the perspective of [18] in
Section 7, we complete the proof of Theorem 7 in Section 8. A list of descendent series in
degree 1 for P3 is given in Section 9.
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1. Virasoro constraints for Gromov-Witten theory

1.1. Overview. We will discuss here the Virasoro constraints for stable maps. The con-
straints are equivalent to a procedure for removing the descendents of the canonical class.
The procedures may be interpreted as series of the reactions (similar to the reactions dis-
cussed in the context of the GW{PT descendent correspondence in [18, Section 3]). Our
goal is to write the Virasoro constraints for Gromov-Witten theory in a form which is as
close as possible to the Virasoro constraints of Conjecture 3 for stable pairs.

1.2. Gromov-Witten constraints: original form. The Virasoro constraints in Gromov-
Witten theory were first proposed15 in [3]. We recall here the original form following [20].
In Section 1.3, a reformulation which is more suitable for the GW{PT correspondence will
be presented.
In the discussion below, we fix a basis of H˚pXq,

(18) γ0, . . . , γr , γi P Hpi,qipXq ,
for which γ0 “ 1, γ1 “ c1, and γr “ rps. We assume16 c1 ‰ 0. We also fix a dual basis

γ_
0 , . . . , γ

_
r ,

ż

X

γiγ
_
j “ δij

17 .

The standard method of describing of the Virasoro constraints uses the generating func-
tion for the Gromov-Witten invariants (see [20, section 4]):

FX “
ÿ

gě0

u2g´2
ÿ

βPH2pX,Zq

qβ
ÿ

ně0

ÿ
a1,...,an

k1,...,kn

ta1k1 . . . t
a1
k1
. . . tankn

@
τk1pγ1q . . . τknpγnq

DX,Con

g,β
,

where
@
,
DX,Con

g,β
is the standard integral over stable maps with connected domains (and

stable contracted components of all genera are permitted).
The degree β “ 0 summand FX

0 of FX does not require knowledge of curves in X. We
further split the degree 0 summand into summands of genus g ď 1 and genus g ě 2:

FX
0 “ FX

0,gď1 ` FX
0,gě2 .

The g ď 1 summand takes the form

FX
0,gď1 “ u´2

ÿ

i,j,k

ˆ
ti0t

j
0t

k
0

3!
` ti0t

j
0t

k
1t

0
0

2!

˙ż

X

γiγjγk ´
ÿ

i

ˆ
ti0
24

` ti1t
0
0

24

˙ż

X

γic2 ` . . . ,

where the dots stand for terms divisible by pt00q2. The g ě 2 summand FX
0,gě2 is determined

by the string and dilaton equations from the constant maps contributions of [4, Theorem
4].

15The full conjecture also involves ideas of S. Katz.
16For Calabi-Yau 3-folds, the Virasoro invariants are a consequence of the string and dilaton equations

(and there are no non-trivial stationary invariants).
17Here δij “ δi´j .
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Let rFX be the summand of FX with β ‰ 0. We define

ZX
0,˚ “ exppFX

0,˚q , rZX “ expp rF q .

The Gromov-Witten bracket
@
,
DX,GW

g,β
introduced in Section 0.6 corresponds to the partition

function

ZX
0,gď1 ¨ rZX “

ÿ

gěZ

u2g´2
ÿ

βPH2pX,Zq

qβ
ÿ

ně0

ÿ
a1,...,an

k1,...,kn

ta1k1 . . . t
a1
k1
. . . tankn

@
τk1pγ1q . . . τknpγnq

DX,GW

g,β
.

The full partition function

ZX “ exppFXq “ ZX
0,gď1 ¨ ZX

0,gě2 ¨ rZX

corresponds to the standard disconnected Gromov-Witten bracket
@
,
DX,‚

g,β
,

ZX “
ÿ

gě0

u2g´2
ÿ

βPH2pX,Zq

qβ
ÿ

ně0

ÿ
a1,...,an

k1,...,kn

ta1k1 . . . t
a1
k1
. . . tankn

@
τk1pγ1q . . . τknpγnq

DX,‚

g,β
.

The Virasoro operators Lk, k P Zě´1 are differential operators which satisfy the ✭
✭

✭
✭✭Virasoro

Witt algebra relations,

rLk,Lℓs “ pk ´ ℓqLk`ℓ .

The Virasoro conjecture [3] states that the operators annihilate the partition function

(19) Lk Z
X “ 0 .

For 3-folds X, the operators are defined by:

Lk “
8ÿ

m“0

k`1ÿ

i“0

ˆ
rpa ` m ´ 1ski pC iqbat̃amBb,m`k´i

` u2

2
p´1qm`1r´pa ` 1 ´ mski pC iqabBa,mBb,k´m´i´1

˙

` u´2

2
pCk`1qabta0tb0

´ δk

24

ż

X

c1c2 ,

where the Einstein conventions for summing over repeated indices are followed,

t̃am “ tam ´ δa0δm1 , Ba,m “ B{Btam ,
and rxskj “ ek`1´jpx, x ` 1, . . . , x ` kq18. The tensors in the equation are defined in terms
of the dual basis:

pC iqab “
ż

X

γ_
a c

i
1γb , pC iqab “

ż

X

γac
i
1γb , pC iqab “

ż

X

γ_
a c

i
1γ

_
b .

18Here empz1, . . . , zkq is the elementary symmetric polynomial of degree m.
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1.3. Gromov-Witten constraints: correspondence form. We rewrite here the Vira-
soro constraints of Section 1 in the form most natural for the GW{PT descendent corre-
spondence. Since all of our results are for toric varieties, we specialize our discussion here
to the case where X is a nonsingular projective 3-fold with only pp, pq-cohomology.
We start by defining derivations Rj

k and quadratic differentials Bk on DX
GW by fixing the

action on the generators:

‚ The action of the derivation Rj
k on τipγq for k ě ´1, 0 ď j ď 3, and γ P H2dpXq is

Rj
kpτipγqq “ ri ` d ´ 1skj τk`i´jpγ ¨ cj1q ,

where rxskj “ ek`1´jpx, x ` 1, . . . , x ` kq and all terms τℓă´2pθq are set to zero. As
a special case,

Rj
´1pτipγqq “ δj τi´1pγq .

We will use the notation Rk “ ř3

j“0 R
j
k .

‚ The action of the quadratic differential Bk on τ0pγqτ0pγ1q is

Bkpτ0pγqτ0pγ1qq “
ż

X

γγ1ck1 .

On all other quadratics terms, Bk acts
✘
✘
✘

✘✘trivially by 0.

The differential operators LGW
k , for k ě ´1, are then defined by the formula:

LGW
k “ Rk ` u´2

2
Bk`1 ` pıuq2

2
Tk ´ δk

24

ż

X

c1c2 ,

where Tk “ ř3

j“0T
j
k and

(20) Tj
k “

k´j`2ÿ

m“´1

p´1qm`1r2 ´ m ´ dLskj : τm´1τ´m`k´jpcj1q : ,

where dL is the degree of the left term in the co-product19 (as in Section 0.2). In formula
(20), the symbol :: stands for the normal ordering convention: all negative descendents
τă0pγq are on the left of the positive descendents.
A calculation then yields the Virasoro bracket and the following bracket with τkppq:

(21) rLGW
n ,LGW

k s “ pn ´ kqLGW
n`k , rLGW

n , pk ` 1q! τkppqs “ pk ` n ` 2q! τn`kppq .

19Define the element

τaτbpγq “
ÿ

i

τapγL
i qτbpγR

i q P DX
GW

where
ř

i γ
L
i b γR

i is the Künneth decomposition of the product,

γ ¨ ∆ P H˚pX ˆ Xq ,

with the diagonal ∆.
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Theorem 9. [8, 10] Let X be a nonsingular projective toric 3-fold, and let
β P H2pX,Zq. For all k ě ´1 and D P DX

GW, we have
A
LGW
k pDq

EX,‚

β
“ 0 .

Theorem 9, which is exactly equivalent to constraints (19) for toric 3-folds, was proven
by Givental in two steps:

(i) Using the virtual localization formula of [9], the Gromov-Witten theory of X is
expressed in terms of graphs sums with descendent integrals over the moduli spaces
of curves M g,n at the vertices.

(ii) The Virasoro constraints, conjectured by Witten [34] for M g,n and proven in [12],
are then used to establish the Virasoro constraints for X.

A second proof of Theorem 9, via the Givental-Teleman classification20 of semisimple Co-
hFTs, was given in [30]. For varieties with non-semisimple Gromov-Witten theory, the
Virasoro constraints are known in very few cases.21

1.4. Gromov-Witten constraints: stationary form. We rewrite the Virasoro con-
straints in Gromov-Witten theory of Section 1.3 in a form which preserves the algebra of
stationary descendents,

DX`
GW Ă DX

GW .

We fix a basis (18) of the cohomology of X which satisfies the following further conven-
tions. Let

γ1, . . . , γs P H2pXq
be a basis with γ1 “ c1. Let

γ2s, . . . , γs`1 P H4pXq
be a dual basis with respect to the Poincaré pairing. Let

γ0 “ 1 P H0pXq , γ2s`1 “ p P H6pXq
span the rest of the cohomology.22 The Künneth decomposition of the diagonal is

∆ “
2s`1ÿ

i“0

γi b γ2s`1´i .

Consider the term Tk. The only place for descendents of 1 to appear in the operator
LGW
k is in T0

k. As most of the terms of T0
k vanish by definition, we find

(22)
1

2
T0

k “ pk ` 1q! : τ0p1qτk´1ppq : .

We denote the rest of the term by T1
k,

Tk “ T1
k ` T0

k .

20We refer the reader to [22] for an introduction.
21The main known examples are based on the Virasoro constraints for curves proven in [19].
22To match with (18), r “ 2s ` 1.
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Inside the bracket x, yX,‚
β , the insertion τ0p1q can be removed by the string equation (7).

We are therefore led to define the operator

L
GW
k “ pıuq2

2
T1

k ` Rk ` u´2

2
Bk`1 ` pıuq2pk ` 1q! R´1τk´1ppq , T1

k “
ÿ

ją0

Tj
k ,

where Rk “ ř3

j“0 R
j
k and R´1 is the differentiation defined on the generators by

R´1τkpγq “ τk´1pγq .
Inside the bracket x, yX,‚

β , we have23

(23) L
GW
k

x,y“ rLGW
k ` pıuq2p1 ´ δkqpk ` 1q! rLGW

´1 τk´1ppq ,
where we have modified the Virasoro operators to exclude the descendents of 1:

(24) rLGW
k “ LGW

k ´ pıuq2
2

T0
k “ pıuq2

2
T1

k ` Rk ` u´2

2
Bk`1 ´ δk

24

ż

X

c1c2 .

Though the operators LGW
k no longer satisfy the Virasoro bracket, the operators LGW

k

preserve the subalgebra DX`
GW Ă DX

GW.

Proposition 10. Let X be a nonsingular projective toric 3-fold, and let
β P H2pX,Zq. For all k ě ´1 and D P DX`

GW˝, we have
A
L

GW
k pDq

EX,‚

β
“ 0 .

Proof. The case k “ 0 follows because

L
GW
0 ´ LGW

0 “ T0
0 “ 2 : τ0p1qτ´1ppq :

and
A
T0

0 . . .
EX,‚

β
“ 0. For the other case the argument is below.

Using (23) and (24), we have

(25)
A
L

GW
k pDq

EX,‚

β
“
A
LGW
k pDq ` pıuq2pk ` 1q! LGW

´1 pτk´1ppqDq
EX,‚

β

´ pıuq2
2

A
T0

kpDq ` pıuq2pk ` 1q! T0
´1pτk´1ppqDq

EX,‚

β
.

The first bracket on the right side of (25) vanishes by Theorem 9. We can write the second
bracket on the right as

pıuq2
2

A
T0

kpDq ` pıuq2pk ` 1q! T0
´1pτk´1ppqDq

EX,‚

β
“

pıuq2
A

pk ` 1q! τ0p1qτk´1ppqD ` pıuq2pk ` 1q! τ0p1qτ´2ppqτk´1ppqD
EX,‚

β

23Note LGW
0 “ rLGW

0 .
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using (22). The right side of the above equation, after applying the commutator (8), is

pıuq2
A

pk ` 1q! τ0p1qτk´1ppqD ` pıuq2pk ` 1q! τ´2ppqτ0p1qτk´1ppqD
EX,‚

β
,

which vanishes after applying (9). �

In our study of the GW{PT descendent correspondence, we are interested in the Gromov-

Witten bracket
@
,
DX,GW

g,β
of Section 0.6 instead of the standard disconnected bracket

@
,
DX,‚

g,β
.

Therefore, the following result is important for our study.

Proposition 11. Let X be a nonsingular projective toric 3-fold, and let
β P H2pX,Zq. For all k ě ´1 and D P DX`

GW˝, we have
A
L

GW
k pDq

EX,GW

β
“ 0 .

Proof. Since LGW
k preserves DX`

GW, we have

L
GW
k pDq P DX`

GW .

Since the Gromov-Witten invariants corresponding to collapsed connected components of
genus at least 2 always vanish in the presence of stationary descendents,

A
L

GW
k pDq

EX,‚

β
“ ZX

0,gě2

ˇ̌
ˇ
tti

k
“0u

¨
A
L

GW
k pDq

EX,GW

β
.

Since
A
LGW

k pDq
EX,‚

β
vanishes by Proposition 10 and

ZX
0,gě2

ˇ̌
ˇ
tti

k
“0u

“ exp

˜
8ÿ

g“2

p´1qgu2g´2 χpXq
2

ż

Mg

λ3g´1

¸

is invertible24,
A
LGW

k pDq
EX,GW

β
also vanishes. �

2. Theorem 4: Virasoro constraints for stable pairs

2.1. Intertwining property. We have already defined the operators LPT
k and LPT

k on
DX

PT in Sections 0.2 and 0.3:

LPT
k “ Tk ` Rk , L

PT
k “ LPT

k ` pk ` 1q! LPT
´1chk`1ppq ,

for k ě ´1. We also have

(26) rLPT
n ,LPT

k s x,y“ pk ´ nqLPT
n`k , rLPT

n , pk ´ 1q! chkppqs x,y“ pn ` kq! chn`kppq .
Equations (26) are parallel to equations (21) in Gromov-Witten theory.

24See [4, Theorem 4] for the evaluation.
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The main computation of the paper is the intertwining property which relates the Vira-
soro operators for the stable pairs and Gromov-Witten theories via the descendent corre-
spondence. We separate the argument into two cases: k ď 0 and k ě 1. Proposition 12
covers the k ď 0 case. The k ě 1 case treated in Theorem 13 is harder.
Proposition 12 is proven in Section 2.3 except for steps at the end of the proof which

will be completed in the proof of Theorem 13 in Sections 3-5. The argument is an intricate
calculation based on a strategy of filtration.

Proposition 12. For k “ ´1, 0 and D P DX‹

PT , we have

C
‚ ˝ LPT

k pDq “ pıuq´k rLGW
k ˝ C

‚pDq
after the restrictions τ´2ppq “ 1 and τ´1ppq “ 0.

Theorem 13. For all k ě 1 and D P DX‹

PT , we have

C
‚ ˝ LPT

k pDq “ pıuq´k rLGW
k ˝ C

‚pDq
after the restrictions τ´2ppq “ 1 and τ´1pγq “ 0 for γ P Hą2pXq.
The evaluations of left sides of the equalities in Proposition 12 and Theorem 13 require a

slight generalization of the formulas (14)-(16) which govern the descendent correspondence
on DX‹

PT . Additional rules are required for

(27) rch0pγq, rch1pγq for γ P Hą0pXq and rch2pδq for δ P H2pXq.
The required rules take a very simple form since LPT

k pDq is at most linear25 in the classes
(27) over DX‹

GW:

(28) C
˝p rch0pγqq “ ´

ż

X

γ , C
˝p rch0pγqMq “ 0 ,

C
˝p rch1pγqq “ 0 , C

˝p rch1pγqMq “ 0 ,

where M P DX‹

PT . For C
˝p rch2pδqMq with M P DX‹

PT , formulas (14)-(16) apply unchanged.
The above rules are compatible with the GW{PT descendent correspondence and will be
established in Section 8.
The restrictions τ´2ppq “ 1 and τ´1ppq “ 0 in Proposition 12 are well-defined since both

C
‚ ˝ LPT

k pDq and rLGW
k ˝ C

‚pDq, k “ 0,´1 will be seen to lie in the commutative algebra
generated by τ´2ppq, τ´1pγq, and DX`

GW. The commutation with τ´2ppq and τ´1ppq follows
from (9).
Similarly, the restrictions τ´2ppq “ 1 and τ´1pγq “ 0 for γ P Hą2pXq in Theorem 13

are well-defined since both C
‚ ˝ LPT

k pDq and rLGW
k ˝ C

‚pDq, k ą 0 will be seen to lie in the
commutative algebra generated by τ´2ppq, τ´1pγq, and DX‹

GW. The algebra DX‹

GW is generated
by the essential descendents 

τipγq | pi ě 0, γ P Hą0pX,Qqq or pi “ 0, γ P Hą2pX,Qqq
(
.

25LPT
1 pDq has a single quadratic term in the classes (27) given by rch1ppq rch2pc1q which causes no difficulty

since rch1ppq does not interact.
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Again, commutation follows from (9).

2.2. Conventions for p´1q!ch1pc1q. In order to complete the definitions of the left sides
of Proposition 12 and Theorem 13, we must also include the term p´1q!ch1pc1q in the
descendent correspondence C

‚ since such terms occur in LPT
k .

‚ The first case is
C

˝pp´1q!ch1pc1qq “ 0 .

‚ The non-vanishing bumping term is given by

(29) C
˝
´

p´1q!ch1pc1q rchk1`2pγq
¯

“ ´pıuq´1

k1!

˜
ak1´1pc1γq ` pıuq´1

ak1´2pc1γ ¨ c1q

` pıuq´1k1
ÿ

|µ|“k1´3

aµ1
aµ2

Autpµqpc1γ ¨ c1q
¸
,

where k1 ě 2.

‚ The higher bumping term is

C
˝pp´1q!ch1pc1q rchk1`2pγq rchk2`2pγ1qq “ pıuq´2pk1 ` k2 ´ 1q

k1!k2!
ak1`k2´2pc1γγ1q ,

k1, k2 ě 0, k1 ` k2 ą 1. There is also an exceptional higher bumping term

C
˝pp´1q!ch1pc1q rch2pγq rch3pγ1qq “ τ´2pc1γγ1q .

2.3. Proof of Proposition 12. The cases k “ ´1, 0 are special in two ways:

(i) We must use the exceptional cases of the operator C˝, in the analysis for k “ ´1, 0.

(ii) While the operator rLGW
k for k “ ´1, 0 has quadratic part u´2

2
Bk`1, rLGW

k is a first
order operator acting on the stationary sector of descendent algebra for k ą 0.

For these reasons, we treat the k “ ´1, 0 cases separately here.
The restrictions in the statement of Proposition 12 allow us freely use

(30) ch0ppq “ ´1 ,

which is compatible with C
‚. Similarly, we can use

(31) ch1ppq “ 0 .

Let us write down the corresponding operators explicitly:

LPT
´1 “ R´1 ´ p´1q! ch1pc1q, rLGW

´1 “ R´1 ` u´2

2
B0 .

LPT
0 “ R0 ´ rch2pc1q ´ 1

2
ch1ch1pc1q, rLGW

0 “ R0 ` u´2

2
B1 ´ τ0pc1q ´ 1

24

ż

X

c1c2 .

We have used (30) for LPT
´1 . For L

PT
0 , only the dL “ dR “ 2 summand is nonzero by (31).

Step 1. We check the statement for D “ 1.
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The left side of the equality of Proposition 12 for k “ ´1 is

C
‚pLPT

´1 pDqq “ ´C
‚pp´1q!ch1pc1qq “ 0 .

The right side of the equality,

ıu rLGW
´1 pC‚p1qq “ ıu rLGW

´1 p1q “ 0 ,

matches. For k “ 0, the left side for D “ 1 is

C
‚pLPT

0 p1qq “ ´C
‚p rch2pc1qq “ ´a1pc1q “ ´τ0pc1q ´ 1

24

ż

X

c1c2 .

The right side,

rLGW
0 pC‚p1qq “ rLGW

0 p1q “ ´τ0pc1q ´ 1

24

ż

X

c1c2 ,

matches.

Step 2. We check the statement for D “ rchk`2pγq with k ě 0.

We must expand both sides of the equality of Proposition 12 in terms of τ . The following
formula will be used:

(32) pıuqkC˝p rchk`2pγqq “ τkpγq `
˜

kÿ

i“1

1

i

¸
τk´1pγ ¨ c1q `

˜ ÿ

1ďiăjďk

1

ij

¸
τk´2pγ ¨ c21q

`
ÿ

|µ|“k´1

µ1!µ2!

Autpµqk!

ˆ
τµ1´1τµ2´1pγ¨c1q`

` µ1´1ÿ

i“1

1

i

˘
τµ1´2pγ¨c21qτµ2´1ppq`

` µ2´1ÿ

i“1

1

i

˘
τµ1´1ppqτµ2´2pγ¨c21q

˙

`
ÿ

|µ|“k´2

µ1!µ2!

Autpµqk!τµ1´1τµ2´1pγ ¨ c21q `
ÿ

|µ|“k´3

µ1!µ2!µ3!

Autpµqpk ´ 1q!τµ1´1τµ2´1τµ3´1pγ ¨ c21q .

We split the analysis of the difference for

(33) C
‚ ˝ LPT

´1 pDq ´ ıu rLGW
´1 ˝ C

‚pDq

in stages according to the τ degree of terms. The second term of the difference is simpler
since

ıu rLGW
´1 ˝ C

‚pDq “ ıuR´1pC˝p rchkpγqqq

and the latter is a easy modification of (32). The first term is more involved since there
are two parts: the action of R´1 and the interaction with p´1q!ch1pc1q.
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‚ We first study the τ linear terms of pıuqk´1
C

‚ ˝ LPT
´1 pDq:

ˆ
τk´1pγq `

´ k´1ÿ

i“1

1

i

¯
τk´2pγ ¨ c1q `

´ ÿ

1ďiăjďk´1

1

ij

¯
τk´3pγ ¨ c21q

˙

`
ˆpıuqk´2

k!
ak´1pγ ¨ c1q ` pıuqk´3

k!
ak´2pγ ¨ c21q

˙
“

ˆ
τk´1pγq `

´ k´1ÿ

i“1

1

i

¯
τk´2pγ ¨ c1q `

´ ÿ

1ďiăjďk´1

1

ij

¯
τk´3pγ ¨ c21q

˙

` 1

k

ˆ
τk´2pγ ¨ c1q `

´ k´2ÿ

i“1

1

i

¯
τk´3pγ ¨ c21q

˙
` 1

kpk ´ 1qτk´3pγ ¨ c21q .

We have used here bumping with p´1q!ch1pc1q from (29) to obtain the expression in the
second line and an inversion26 of (13) to justify the second equality. After collecting

together the coefficients in front of the τ ’s in the last expression, we obtain R´1pC˝p rchkpγqqq,
exactly as expected.

‚ We study next the τ -quadratic term of (33). Consider first the terms that have a co-
product pγ ¨c1qLi bpγ ¨c1qRi as argument. Bumping with p´1q!ch1pc1q does not produce such
terms – only the terms of the second line of (32) contributes to the terms of (33). These
terms cancel exactly.

‚ The τ -quadratic terms of difference (33) with argument pγ ¨ c21qLi b pγ ¨ c21qRi are slightly
more involved. The second term of the difference has terms:

ÿ

|µ|“k´2

µ1!µ2!

Autpµqpk ´ 1q!

ˆ´ µ1´1ÿ

i“1

1

i

¯
τµ1´2pγ ¨ c21qτµ2´1ppq `

´ µ2´1ÿ

i“1

1

i

¯
τµ1´1ppqτµ2´2pγ ¨ c21q

˙

`
ÿ

|µ|“k´3

µ1!µ2!

Autpµqpk ´ 1q!τµ1´1τµ2´1pγ ¨ c21q ,

where the term on the second line is a result of bumping with p´1q!ch1pc1q. After simplify-

ing the last expression, we obtain the corresponding τ -quadratic term of R´1pC˝p rchk`2pγqqq
as expected.

‚ The last step is to analyze the τ -cubic terms of the difference (33). Since bumping with
ch1pc1q is trivial, the terms match exactly.

Similarly, we must analyze the difference

(34) C
‚ ˝ LPT

0 pDq ´ rLGW
0 ˝ C

‚pDq .

26See (55) for the full formula for the inversion.
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Since both R0 on the stable pairs side and R0
0 on the Gromov-Witten side scale the de-

scendents by the complex cohomological degree, the difference (34) is equal27 to

(35) ´ C
‚
´

p rch2 ` ch21{2qpc1q ¨ D
¯

´
ˆ
R1

0 ` u´2

2
B1 ´ τ0pc1q ´ 1

24

ż

X

c1c2

˙
˝ C

‚pDq .

If D “ rchk`2pγq then B1 ˝C‚pDq “ 0. We have already proved that the difference vanishes
for D “ 1. Since

C
‚pch1ch1pc1q rchk`2pγqq “ 0 ,

the difference (35) is equal to

(36) ´ C
˝p rch2pc1q rchk`2pγqq ´ R1

0pC˝p rchk`2pγqqq .

Comparing formulas (14) and (15), we conclude that the latter difference vanishes.
Indeed, let us expand both terms of (36). First,

C
˝p rch2pc1q rchk`2pγqq “ ´pıuq´1

k!
akpγ ¨c1q´ pıuq´2

k!
ak´1pγ ¨c21q´ pıuq´2

pk ´ 1q!
ÿ

|µ|“k´2

aµ1
aµ2

Autpµqpγ ¨c21q

“ ´pıuq´k

˜
τk´1pγ ¨ c1q `

˜
k´1ÿ

i“1

1

i

¸
τk´2pγ ¨ c21q

¸
´ pıuq´k

k
τk´2pγ ¨ c21q

´ pıuq´k`2

pk ´ 1q!
ÿ

|µ|“k´2

µ1!µ2!

Autpµqτµ1´1τµ2´1pγ ¨ c21q .

On the other hand,

C
˝p rchk`2pγqq “ 1

pk ` 1q!ak`1pγq ` pıuq´1

k!

ÿ

|µ|“k´1

aµ1
aµ2

Autpµqpγ ¨ c1q ` . . .

“ pıuq´k

˜
τkpγq `

˜
kÿ

i“1

1

i

¸
τk´1pγ ¨ c1q

¸
` pıuq´k`2

k!

ÿ

|µ|“k´1

µ1!µ2!

Autpµqτµ1´1τµ2´1pγ ¨ c1q ` . . . ,

where we have used dots to stand for the terms that are of complex cohomological degree
3. Since

R1
0pτkpγqq “ τk´1pγ ¨ c1q ,

all the omitted terms are annihilated by R1
0. The remaining terms of the difference (36)

cancel.

Step 3. We check the statement for D “ rchk1`2pγ1q rchk2`2pγ2q with ki ě 0.

27Note both R2
0 and R3

0 are 0.
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We start with the difference (33):

(37) C
˝pR´1p rchk1`2pγ1q rchk2`2pγ2qqq ´ C

˝pp´1q! rch1pc1q rchk1`2pγ1q rchk2`2pγ2qq

´ pıuqR´1pC˝p rchk1`2pγ1q rchk2`2pγ2qqq ´ pıuqu
´2

2
B0pC˝p rchk1`2pγ1qq,C˝p rchk2`2pγ2qqqq .

Vanishing of the last expression follows from Proposition 18 and Proposition 19.
The difference (34) as above is equivalent to (35). Since we have already shown the

vanishing for D “ 1 and D “ rchk`2pγq, we need only to check the vanishing of

(38) ´ C
˝p rch2pc1qDq ´ 1

2
C

‚pch1ch1pc1qDq ´ R1
0pC˝pDqq

´ u´2

2
B1pC˝p rchk1`2pγ1qq,C˝p rchk2`2pγ2qqq .

The vanishing follows from Propositions 18 and 19.

Step 4. We check the statement for D “ rchk1`2pγ1q rchk2`2pγ2q rchk3`2pγ3q with ki ě 0.

The result follows immediately from the triple bumping relation (95) which holds in
complete generality. No special cases require extra attention. �

2.4. Proof of Theorem 4. The vanishings

(39) xLPT
´1 pDqyX,PT

β “ 0 and xLPT
0 pDqyX,PT

β “ 0

are simple to prove for all D P DX
PT. For

L
PT
´1 “ R´1 ` R´1ch0ppq ,

the vanishing (39) is immediate from the definition of R´1 and (1). For

L0 “ R0 ´ rch2pc1q ´ 1

2
ch1ch1pc1q ` R´1ch1ppq

the vanishing (39) follows from the definition of R0, the virtual dimension constraints, and
the divisor equation:

A
ch2pc1q chk1pγ1q ¨ ¨ ¨ chkmpγmq

EX,PT

β
“

ż

β

c1 ¨
A
chk1pγ1q ¨ ¨ ¨ chkmpγmq

EX,PT

β
.

We now assume k ě 1. Using the intertwining property of Theorem 13, the stationary
GW{PT correspondence of Theorem 7, and the Virasoro constraints in Gromov-Witten
theory, we can prove the stationary Virasoro constraints for stable pairs in the toric case.
Let D P DX`

PT , so D is a monomial in the operators
 rchipγq | i ě 0, γ P Hą0pX,Qq

(
.

The first step is to check by hand that the Virasoro constraints

(40)
A
L

PT
k pDq

EX,PT

β
“ 0
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of Theorem 4 are compatible all with insertions of the form

(41) rch0pγq, rch1pγq for γ P Hą0pXq and rch2pδq for δ P H2pXq.
If any of the operators (41) appear in D, the Virasoro constraints (40) are true if the
Virasoro constraints are true for the monomial obtained by dividing D by the occurring
operators (41). We can therefore reduce to the case where D is a monomial in the operators

 rchipγq | pi ě 3, γ P Hą0pX,Qqq or pi “ 2, γ P Hą2pX,Qqq
(
.

In other words, D P DX‹

PT .
The next step is to apply Theorem 7:

(42) p´qqdβ{2 xLPT
k pDqyX,PT

β “ p´ıuqdβ xC‚pLPT
k pDqqyX,GW

β

for all k ě 1. By the construction of the correspondence [26], the descendents of the point
class do not interact with other descendents:

(43) C
‚p rchk`2ppqDq “ pıuq´kτkppqC‚pDq ,

for every D P DX‹

PT .
By combining (42), (43), and the intertwining statement of Theorem 13, we see

xC‚pLPT
k pDqqyGW

β “ xC‚pLPT
k pDqqyGW

β ` pk ` 1q! xC‚pLPT
´1 pchk`1ppqDqqyGW

β

“ pıuq´kxrLGW
k pC‚pDqqyGW

β ` pıuq2´kpk ` 1q! xrLGW
´1 pτk´1ppqC‚pDqqyGW

β

“ pıuq´kxLGW
k pC‚pDqqyGW

β

“ 0 ,

where the last equality is by Proposition 11 which may be applied since

C
‚pDq P DX`

GW

by Proposition 8. We conclude

xLPT
k pDqyX,PT

β “ 0

as required. �

We could have also used the intertwining property of Proposition 12 to prove the stable
pairs vanishings (39) for D P DX`

PT , but some additional care must be taken since the
insertions ch0ppq and ch1ppq which occur in the terms

pk ` 1q! xC‚pLPT
´1 pchk`1ppqDqqyGW

β

for k “ ´1 and 0 are not covered by Proposition 12. We leave the details to the reader.

3. Intertwining I: Basic case

3.1. Overview. After an explicit study of various terms of the stationary Gromov-Witten
Virasoro constraints in Section 3.2, we prove Theorem 13 in the basic case D “ 1 in Section
3.3.
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3.2. Leading term. We analyze here the stationary Virasoro constraints on the Gromov-
Witten side defined in Section 1.4.
The leading term T1

k of T1
k is of the form

1

2
T1

k “ k!

u2
τkpc1q ` 1

2

ÿ

a`b“k´2

p´1qdL´1pa ` dL ´ 1q!pb ` dR ´ 1q!τaτbpc1q ,

where a, b ě 0 in the sum. By the following result, the term T1
k simplifies if we use the

modified descendents ai.

Proposition 14. For all k ě ´1,

T1
k “ ´pıuqk´2

ÿ

a`b“k`2

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! aa´1ab´1pc1q
pa ´ 1q!pb ´ 1q! ,

where the sum over all a, b ě 0 and we use convention a0 “ 0, a´1{p´1q! “ τ´2.

Proof. Using formula (13), we expand T1
k in terms of ai to show that the quadratic and

cubic in c1 terms cancel. In the computation, we compare the expressions

r´ask2 “ p´1qaa!pk ´ aq!
˜

k´aÿ

i“1

1

i
´

aÿ

i“1

1

i

¸
, a ě 0 , k ě a ,

r´ask3 “ p´1qaa!pk ´ aq!
˜ ÿ

1ďiăjďk´a

1

ij
`

ÿ

1ďiăjďa

1

ij
´
˜

k´aÿ

i“1

1

i

¸˜
aÿ

i“1

1

i

¸¸
, a ě 0, k ě a

with the coefficients in (13).
The transformation (13) simplifies if we use the following operators and short-hand

notations for the sums:

ãk “ pıuqk´1

k!
ak , χk

l “
kÿ

j“1

1

jl
, χk

1,1 “
ÿ

1ďiăjďk

1

ij
.

In the formulas below, all operators ã0 are set to be zero. We apply transformation to T1
k

to obtain:

(44)
k`1ÿ

m“´1

p´1qdL´1pm ` dL ´ 2q!pk ´ m ´ dL ` 2q! ˆ
˜
ãmã´m`kpc1q ´

`
χm
1 ´ χk´m´1

1

˘
ãmã´m`k´1pc21q

`
´
χm
1 χ

k´m´2
1 ` χm

2 ` χm
1,1 ` χ´m`k´2

2 ` χ´m`k´2
1,1

¯
ãmã´m`k´2pc31q

¸
.
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To write the transformation of T2
k, we split the sum for T2

k into two subsums, the first with
dL “ 2 and the second with dL “ 3:

kÿ

m“´1

p´1qpmq!pk ´ mq!pχk´m
1 ´ χm

1 q
´
ãmpc21qã´m`k´1ppq ´ χm´1

1 ãm´1ã´m´k´1pc31q
¯

`

pm ` 1q!pk ´ m ´ 1q!pχk´m´1
1 ´ χm´1

1 q
´
ãmppqã´m`k´1pc21q ´ χk´m´2

1 ãmã´m´k´2pc21q
¯
.

Finally, the transformation of T3
k to a variables is

kÿ

m“´1

pm ` 1q!pk ´ m ´ 1q!
´
χm´1
1,1 ` χk´m´1

1,1 ´ χm´1
1 χk´m´1

1

¯
ãmã´m`k´2pc31q.

After summing the terms Tj
k for j “ 1, 2, 3, we find that only the first term in (44) does

not cancel. �

3.3. Intertwining for D “ 1. For the most of computations in Section 3, we will require
the simplest case of the stationary GW{PT transformation C

‚ of Section 0.7,

(45) C
˝p rchk`2pγqq “ 1

pk ` 1q!ak`1pγq ` pıuq´1

k!

ÿ

|µ|“k´1

aµ1
aµ2

pγ ¨ c1q
Autpµq `

pıuq´2

k!

ÿ

|µ|“k´2

aµ1
aµ2

pγ ¨ c21q
Autpµq ` pıuq´2

pk ´ 1q!
ÿ

|µ|“k´3

aµ1
aµ2

aµ3
pγ ¨ c21q

Autpµq .

Our first result is the simplest case of Theorem 13.

Proposition 15. For all k ě 1, we have

C
‚pLPT

k p1qq “ pıuq´k rLGW
k p1q .

Proof. Since the operators Rk annihilate 1, we must prove

(46) C
‚pTkq “ pıuq´k

ˆpıuq2
2

T1
k

˙
.

From Section 0.2, we have the following formula on the stable pairs side:

Tk “ ´1

2

ÿ

a`b“k`2

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! rcha rchbpc1q .

On the Gromov-Witten side, we have

T1
k “ ´pıuqk´2

ÿ

a`b“k`2

p´1qdLdRpa ` dL ´ 3q!pb ` dR ´ 3q! aa´1ab´1pc1q
pa ´ 1q!pb ´ 1q!

by Proposition 14. Using (45), the quadratic term in the a-insertions of C‚pTkq exactly
matches the full right side of (46). We will prove the other terms of C‚pTkq all vanish.
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The stable pairs term Tk is the sum of three subsums:

(47)
1

2

ÿ

a`b“k`2

ˆ
pa´ 2q!b! rchapc1q rchbppq ` a!pb ´ 2q! rchappq rchbpc1q

´ pa´ 1q!pb ´ 1q!
ÿ

s`1ď‚,‹ď2s

α‚‹
rchapγ‚q rchbpγ‹q

˙
,

where last term uses28

c1 ¨ γ2s`1´‚ “
ÿ

‹

α‚‹γ‹ .

After applying C
‚ to (47) we obtain quadratic, cubic, and quartic monomials in a. We will

show the cubic and quartic terms vanish.
We start with the analysis of the quartic term of C‚pTkq. The first term (47) yields the

quartic part:

1

2

ż

X

c31 ¨
ÿ

a`b“k`2

ˆ
pa ´ 2q!b! ¨ ab´1ppq

pb ´ 1q! ¨ pıuq´2

pa ´ 3q!
ÿ

|µ|“a´5

aµ1
ppqaµ2

ppqaµ3
ppq

Autpµq

`pb ´ 2q!a! ¨ aa´1ppq
pa ´ 1q! ¨ pıuq´2

pb ´ 3q!
ÿ

|µ|“b´5

aµ1
ppqaµ2

ppqaµ3
ppq

Autpµq

˙
.

The last term of (47) yields the following quartic part (with the sum over the same range
of a and b as above):

´1

2

ż

X

c31 ¨ pa ´ 1q!pb ´ 1q! ¨ pıuq´1

pa ´ 2q!
ÿ

|µ1|“a´3

aµ1

1
ppqaµ1

2
ppq

Autpµ1q ¨ pıuq´1

pb ´ 2q!
ÿ

|µ2|“b´3

aµ2

1
ppqaµ2

2
ppq

Autpµ2q ,

where, in both formulas, we have used convention |µ| “ ř
i µi.

These two quartic parts cancel each other. Indeed, let us analyze the factor in front of

1

2pıuq2
ż

X

c31 ¨ aλ1
ppqaλ2

ppqaλ3
ppqaλ4

ppq

in both expressions. For simplicity, let us assume |Autpλq| “ 1. Then, the factor in the
first quartic part is a sum with four terms:

(48)
4ÿ

i“1

pλi ` 1q
˜ÿ

j‰i

pλj ` 1q
¸
.

The factor in the second formula is a sum with three terms:

(49) ´
ÿ

pλi1 ` λi2 ` 2qpλj1 ` λj2 ` 2q ,
where the sum is over all splittings

t1, 2, 3, 4u “ ti1, i2u Y tj1, j2u .
28We use the subscripts ‚ and ‹ in order to avoid i, j, a, b which are already taken.
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The factors (48) and (49) are sums of twelve monomials of λi ` 1 and are opposites of each
other. The case when |Autpλq| ą 1 is analogous.
Finally, we analyze the cubic terms. Let us first analyze the cubic terms of the form

aippqajppqalppq. Since
chk`2pc1qch0ppq “ p´1qchk`2pc1q ,

the cubic part of the first term of (47) with b “ 0 is:

(50) ´ k

ż

X

c31
2pıuq2

ÿ

|µ|“k´1

aµ1
ppqaµ2

ppqaµ3
ppq

Autpµq .

A similar cubic part is produced by the second term of (47) with a “ 0.
The other cubic parts of the first term of (47) are:

(51)

ż

X

c31

ÿ

a`b“k`2

b

2pıuq2ab´1ppq
ÿ

|µ|“a´4

aµ1
ppqaµ2

ppq
Autpµq ` b

2ıu
ab´1ppq

ÿ

|µ|“a´3

aµ1
aµ2

pc21q
Autpµq .

Similar term is yielded by the second term of (47).
If Autpµq “ 1, then the factor in front of monomial

1

2pıuq2aλ1
ppqaλ2

ppqaλ3
ppq

of (51) is the sum of three terms

pλ1 ` 1q ` pλ2 ` 1q ` pλ3 ` 1q
and, hence, cancels with corresponding monomial from (50).
The cubic part of the last term of (47) is

´ pa´ 1q
2ıu

ÿ

‚,‹

α‚‹ ab´1pγ‹q
ÿ

|µ|“a´3

aµ1
aµ2

pc1 ¨ γ‚q
Autpµq

´ pb ´ 1q
2ıu

ÿ

‚,‹

α‚‹ aa´1pγ‹q
ÿ

|µ|“b´3

aµ1
aµ2

pc1 ¨ γ‚q
Autpµq ,

over all a, b ě 0 satisfying a ` b “ k ` 2. The sum cancels with the last term of (51). �

4. Intertwining II: Non-interacting insertions

4.1. Overview. The main result of Section 4 is a proof of Theorem 13 for

(52) D P D1
PT X DX‹

PT˝ ,

where D is a product of rchkipγiq satisfying

γi ¨ γj “ 0 for i ‰ j .

We treat the singleton D “ rchkppq in Proposition 16. An intricate computation is

required for Proposition 17 which settles the cases D “ rchkpγq where

γ P H ipXq for i “ 2 and 4.
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Finally, in Section 4.3, the general case (52) is formally deduced from the singletons.

4.2. Intertwining shift operators. We first relate the operators Rk appearing in the
Virasoro constraints on the stable pairs and Gromov-Witten sides. Recall,

(53) rchkpαq “ chkpαq ` 1

24
chk´2pα ¨ c2q ,

so rchkppq “ chkppq.
Proposition 16. For all k ě 1 and all i ě 2, we have

C
‚pRkpchippqqq “ pıuq´k RkpC‚pchippqqq .

Proof. The left side of the equation is

C
‚pRkpchippqqq “ C

‚

ˆpi ` kq!
pi ´ 1q!chi`kppq

˙
“ pi ` kq!

pi ´ 1q!
ai`k´1ppq

pi ` k ´ 1q! “ pi ` kq
pi ´ 1q! ai`k´1ppq ,

where we have used the definition of Rk for stable pairs and equation (14) for the corre-
spondence.
The right side of the equation is

RkpC‚pchippqqq “ Rk

ˆ
ai´1ppq
pi ´ 1q!

˙

“ Rk

ˆ
τi´2ppq
pıuqi´2

˙

“ pi ` kq!
pi ´ 1q!

τi`k´2ppq
pıuqi´2

“ pi ` kq
pi ´ 1q!pıuqk ai`k´1ppq ,

where we have used (14) for the correspondence, equation (13), and the definition of Rk

for Gromov-Witten theory. The two sides match. �

Proposition 17. For all k ě 1, rchipγq P D‹X
PT , γ P Hě2pXq we have

C
‚pLPT

k p rchipγqqq “ pıuq´k rLGW
k pC‚p rchipγqqq .

Proof. We start with the easiest case and proceed to the hardest case.

Case γ P H6pXq. The case γ “ p follows immediately from the previous results:

C
‚pLPT

k pchippqqq “ C
‚pTk chippq ` Rkpchippqqq

“ C
‚pTkqC‚pchippqq ` pıuq´kRkpC‚pchippqq

“ pıuq´kL̃GW
k pC‚pchippqqq .

The second equality follows from Proposition 16 and (43). The third equality uses (46).
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Case γ P H4pXq. We compute the difference

(54) pıuqkC‚pRkp rchipγqqq ´ RkpC‚p rchipγqqq .

Since γ ¨ c2 “ 0, we have rchkpγq “ chkpγq by (53).
We start by expanding the first term of the difference:

C
˝pRkpchipγqqq “ C

˝

ˆpi ` k ´ 1q!
pi ´ 2q! chk`ipγq

˙

“ pi ` k ´ 1q!
pi ´ 2q!

˜
ai`k´1pγq

pi ` k ´ 1q! ` pıuq´1

pi ` k ´ 2q!
ÿ

µ1`µ2“i`k´3

aµ1
aµ2

2
pγ ¨ c1q

¸
.

To proceed, we invert the correspondence (13):

(55)
pıuqkak`1

pk ` 1q! pγq “ τkpγq `
˜

kÿ

i“1

1

i

¸
τk´1pγ ¨ c1q `

˜ ÿ

1ďiăjďk

1

ij

¸
τk´2pγ ¨ c21q .

We then obtain

(56) pıuqkC˝pRkpchipγqqq “ pi ` k ´ 1q!
pi ´ 2q!

˜
τi`k´2pγq

pıuqi´2
`
˜

i`k´2ÿ

j“1

1

j

¸
τi`k´3pγ ¨ c1q

pıuqi´2

` pıuq´i`4

pi ` k ´ 2q!
ÿ

µ1`µ2“i`k´3

µ1!µ2!
τµ1´1τµ2´1

2
pγ ¨ c1q

¸
.

We write the second term of the difference as

(57) RkpC˝pchipγqqq “ Rk

˜
ai´1pγq
pi ´ 1q! ` pıuq´1

pi ´ 2q!
ÿ

µ1`µ2“i´3

aµ1
aµ2

2
pγ ¨ c1q

¸
.

After applying the inversion (55), we have

Rk

˜
τi´2pγq
pıuqi´2

`
˜

i´2ÿ

j“1

1

j

¸
τi´3pγ ¨ c1q

pıuqi´2
` pıuq4´i

pi ´ 2q!
ÿ

µ1`µ2“i´3

µ1!µ2!
τµ1´1τµ2´1

2
pγ ¨ c1q

¸
.

We expand the above expression fully to obtain

(58)
pi ` k ´ 1q!τi`k´2pγq

pıuqi´2pi ´ 2q!

`
pi ` k ´ 1q!

pıuqi´2pi ´ 2q!

˜
k`i´1ÿ

j“i´1

1

j

¸
τi`k´3pγ ¨ c1q `

pi ` k ´ 1q!

pıuqi´2pi ´ 2q!

˜
i´2ÿ

j“1

1

j

¸
τi´k`3pγ ¨ c1q

`
pıuq´i`4

pi ´ 2q!

ÿ

µ1`µ2“i´3

´
pµ1 ` k ` 1q!µ2!

τµ1`k´1τµ2´1

2
pγ ¨ c1q ` µ1!pµ2 ` k ` 1q!

τµ1´1τµ2`k´1

2
pγ ¨ c1q

¯
,
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where we have used formula

risk1 “ pi ` kq!
pi ´ 1q!

i`kÿ

j“i

1

j

in the expansion of Rkpτi´2pγqq.
To complete our computation of the difference (54), we observe several cancellations.

The first term of (56) cancels with first term of (58). The second term of (56) almost
cancels with the sum of the second and third terms of (58), the only terms that does not
cancel is

(59) ´ pi ` k ´ 2q!
pıuqi´2pi ´ 2q!τi`k´3pγ ¨ c1q

Finally, we rewrite the last term of (56) as

pıuq´i`4

pi ´ 2q!
ÿ

µ1`µ2“i`k´3

pµ1 ` 1q!µ2!
τµ1´1τµ2´1

2
pγ ¨ c1q ` µ1!pµ2 ` 1q!τµ1´1τµ2´1

2
pγ ¨ c1q .

Then, we see that the last term of (57) cancels with the last term of (56) if µ1 ě k` 1 and
µ2 ě k ` 1. Thus the difference (54) equals

(60)
pıuq´i`4

pi ´ 2q!

˜ ÿ

µ1`µ2“i`k´3, µ1ďk

pµ1 ` 1q!µ2!
τµ1´1τµ2´1

2
pγ ¨ c1q

`
ÿ

µ1`µ2“i`k´3, µ2ďk

µ1!pµ2 ` 1q!τµ1´1τµ2´1

2
pγ ¨ c1q

¸
.

We now include the Tk and T1
k terms in the difference. We have

(61) pıuqkC‚pLPT
k pchipγqqq ´ rLGW

k pC‚pchipγqqq “

pıuqkC‚pRkpchipγqqq ´ RkpC‚pchipγqqq ` pıuqkC‚pTkpchipγqqq ´ pıuq2
2

T1
kpC‚pchipγqqq

Using (46), the Tk and T1
k terms in (61) simplify to

(62)
pıuqk
2

ÿ

a`b“k`2

pa ´ 2q!b!C˝

˜
rchapc1qchipγq

pıuqb´2

¸
τb´2ppq

pıuqk
2

ÿ

a`b“k`2

a!pb ´ 2q!τa´2ppqC˝

˜
rchbpc1qchipγq

pıuqa´2

¸
.

To complete our proof, we require the bumping formula (15):

(63) C
˝p rchk1`2pc1q rchk2`2pγqq “ ´ 1

k1!k2!
pıuq´1

ak1`k2pc1γq .
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Since γ P H4pXq, all the other terms of (15) vanish. We apply the bumping formula (62).
In particular, the first term of (62),

pa´ 2q!b!C˝

˜
rchapc1qchipγq

pıuqb´2

¸
τb´2ppq “ ´pıuq´a´b´i`6 pa` i ´ 2q!b!

pi ´ 2q! τa`i´3pγ ¨ c1qτb´2ppq

cancels with the first term of (60). Similarly, the second term of (62) cancels with the
second term of (60).
Let us observe that the term of last expression with a “ 1 by the exceptional bumping

(29) turns into the terms of (60) with µ1 “ k or µ2 “ k. Similarly, the term with b “ 0
cancels out with the term (59).

Also the assumption rchipγq P DX‹

PT implies that i ě 2 thus no negative factorials appear
in the above computations.

Case γ P H2pXq.
If γ P H2pXq, the Tk and T1

k terms of the formula (61) acquires extra summands:

(64) pıuqkC‚pLPT
k p rchipγqqq ´ rLGW

k pC‚p rchipγqqq “
pıuqkC‚pRkp rchipγqqq ´ RkpC‚p rchipγqqq

` pıuqk
2

„ ÿ

a`b“k`2

pa´2q!b!C˝

˜
rchapc1qchipγq

pıuqb´2

¸
τb´2ppq`a!pb´2q!τa´2ppqC˝

˜
rchbpc1qchipγq

pıuqa´2

¸

´
ÿ

a`b“k`2

pa´ 1q!pb ´ 1q!
ÿ

0ă‚,‹ă2s`1

α‚‹

´
C

˝p rchapγ‚q ¨ chipγqqC˝p rchbpγ‹qq

`C
˝p rchapγ‚qqC˝p rchbpγ‹q ¨ chipγqq

¯
,

where we have used29 c1 ¨ γ2s`1´‚ “ ř
‹ α‚‹γ‹. Nevertheless, the strategy used in the

previous case can be pursued also for γ P H2pXq. The computation, which is carried out
below, is of course more complicated.
We will study the difference

(65) pıuqkC‚pRkp rchipγqqq ´ RkpC‚p rchipγqqq

29In (64), the elements γ‚, γ‹ are of complex cohomological degree 2.
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with γ P H2pXq. The expansion of the first term is:

(66) pıuqkC˝pRkp rchipγqqq “ pıuqk pk ` i ´ 2q!
pi ´ 3q! C

˝p rchi`kpγqq

“ pıuqk pk ` i ´ 2q!
pi ´ 3q!

¨
˝ ai`k´1pγq

pi ` k ´ 1q! ` pıuq´1

pi ` k ´ 2q!
ÿ

|µ|“i`k´3

aµ1
aµ2

Autpµqpγ ¨ c1q

` pıuq´2

pi ` k ´ 2q!
ÿ

|µ|“i`k´4

aµ1
aµ2

Autpµqpγ ¨ c21q

` pıuq´2

pi ` k ´ 3q!
ÿ

|µ|“i`k´5

aµ1
aµ2

aµ3

Autpµq pγ ¨ c21q

˛
‚ .

The second term of the difference (65) is more involved since we must transform the
descendents a to the standard descendents τ before applying the shift operator Rk:

(67) RkpC˝p rchipγqqq “

pıuq´pi´2qRk

˜
τi´2pγq `

˜
i´2ÿ

j“1

1

j

¸
τi´3pγ ¨ c1q `

˜ ÿ

1ďjălďi´2

1

jl

¸
τi´4pγ ¨ c21q

¸

` pıuq´pi´5qRk

¨
˝ pıuq´1

pi ´ 2q!

¨
˝ ÿ

|µ|“i´3

µ1!µ2!

Autpµq

˜
τµ1´1τµ2´1pγ ¨ c1q `

«˜
µ1ÿ

j“1

1

j

¸
τµ1´2τµ2´1

`
˜

µ2´1ÿ

j“1

1

j

¸
τµ1´1τµ2´2

ff
pγ ¨ c21q

¸¸
` 1

pi ´ 3q!
ÿ

|µ|“i´5

µ1!µ2!µ3!

Autpµq τµ1´1τµ2´1τµ3´1pγ ¨ c21q

˛
‚ .

Notice the upper limits in the first harmonic sum is µ1, the terms with j “ µ1 correspond
to the third term of (14).
We will study the right hand side of (64) using (66) and (67) in three steps corresponding

to the τ -degree.

‚ Consider first the τ -linear terms. The τ -linear terms of (66) are

(68) pıuqk pi ` k ´ 2q!
pi ´ 3q!

˜
1

pıuqi`k´2

˜
τi`k´2pγq `

˜
i`k´2ÿ

j“1

1

j

¸
τi`k´3pc1 ¨ γq

`
˜ ÿ

1ďjălďi`k´2

1

jl

¸
τi`k´4pc21 ¨ γq

¸¸
.
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The τ -linear terms of (67) is more complicated:

(69) pıuq´i`2 pi ` k ´ 2q!
pi ´ 3q!

˜
τi`k´2pγq `

˜
i`k´2ÿ

j“i´2

1

j

¸
τi`k´3pγ ¨ c1q

`
˜ ÿ

i´2ďjălďi`k´2

1

jl

¸
τi`k´4pγ ¨ c21q `

˜
i´2ÿ

j“1

1

j

¸«
τi`k´3pγ ¨ c1q `

˜
i`k´2ÿ

j“i´2

1

j

¸
τi`k´4pγ ¨ c21q

ff

`
˜ ÿ

1ďjălďi´2

1

jl

¸
τi`k´4pγ ¨ c21q

¸
.

The τi`k´2pγq terms of (68) and (69) match, so cancel in the difference (65). The
τi`k´3pγ ¨ c1q terms in (68) and (69) almost cancel: the difference is

(70) pıuq´i`2 pi ` k ´ 2q!
pi ´ 2q! τi`k´3pγ ¨ c1q .

For the τi`k´4pγ ¨ c21q terms, we split the prefactor in (69) as

i´2ÿ

j“1

1

j
“ 1

i ´ 2
`

i´3ÿ

j“1

1

j

and the last coefficient of (69) as
ÿ

1ďjălďi´2

1

jl
“

ÿ

1ďjălďi´3

1

jl
` 1

i ´ 2

ÿ

1ďjďi´3

1

j
.

Then, we see the difference of the τi`k´4pγ ¨ c21q terms in (68) and (69) is

(71) pıuq´i`2 pi ` k ´ 2q!
pi ´ 2q!

˜
i`k´2ÿ

j“1

1

j

¸
τi`k´4pc21 ¨ γq .

On the right hand side of equation (64), the τ -linear terms (70) and (71) of the difference
(65) are canceled with

pıuqk
2

„
k!0!C˝

˜
rchk`2pc1qchipγq

pıuq´2

¸
τ´2ppq ` 0!k!τ´2ppqC˝

˜
rchk`2pc1qchipγq

pıuq´2

¸

using τ´2ppq “ 1. In fact, after applying (15), we find

pıuqk k!

pıuq´2
C

˝p rchk`2pc1q rchipγqq

“ ´ pıuqk`1

pi ´ 2q!

ˆ
ak`i´2pc1γq ` pıuq´1

apc21γq
˙

` . . .

“ ´ pıuq2´i

pi ´ 2q!

ˆ
pk`i´2q!

ˆ
τk`i´3pγ¨c1q`p

k`i´3ÿ

i“1

1

i
qτk`i´4pγ¨c21q

˙
`pk`i´3q!τk`i´4pγ¨c21q

˙
`. . . .
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where the dots stand for the τ -quadratic terms. The second equality follows from the
formula (55).

‚ Consider next the τ -quadratic terms. We start with the quadratic terms of complex
cohomological degree 2. The corresponding terms from (66) are:

(72) pıuqk pk ` i ´ 2q!
pi ´ 3q!

ÿ

|µ|“i`k´3

pıuq´µ1´µ2`2µ1!µ2!

pıuqpi ` k ´ 2q! Autpµqτµ1´1τµ2´1pγ ¨ c1q .

The computation of the corresponding terms in (67) are more involved since the action of
the shift operator Rk depends on the complex cohomological degree of the descendent:

(73) pıuq´i`4 1

pi ´ 2q!
ÿ

|µ|“i´3

µ1!µ2!

Autpµq

ˆpµ1 ` kq!
pµ1 ´ 1q! τµ1`k´1pγ ¨ c1qτµ2´1ppq`

pµ2 ` k ` 1q!
pµ2q!

τµ1´1pγ ¨ c1qτµ2´1`kppq
˙
.

The linear combination of the first term of (73) with µ1 ` k ´ 1 “ a and second term
with µ1 ´ 1 “ a is equal to the corresponding term of (72) with µ1 ´ 1 “ a. Hence, these
cancel in the difference. Similar cancellations happen with rest of the terms. The resulting
difference of (72) and (73) is

(74)
pıuq´i`4

pi ´ 3q!

¨
˝ ÿ

|µ|“i`k´3, µ1ďk

µ1!µ2!
τµ1´1τµ2´1

Autpµq pγ ¨ c1q

`
ÿ

|µ|“i`k´3, µ2ďk

µ1!µ2!
τµ1´1τµ2´1

Autpµq pγ ¨ c1q

˛
‚

We will cancel (74) with the τ -quadratic terms of complex cohomological degree 2 in the
sum

(75)

pıuqk
2

„ ÿ

a`b“k`2

pa´2q!b!C˝

˜
rchapc1qchipγq

pıuqb´2

¸
τb´2ppq `a!pb´2q!τa´2ppqC˝

˜
rchbpc1qchipγq

pıuqa´2

¸

´
ÿ

a`b“k`2

pa ´ 1q!pb ´ 1q!
ÿ

‚,‹

α‚‹

´
C

˝p rchapγ‚q ¨ chipγqqC˝p rchbpγ‹qq

`C
˝p rchapγ‚qqC˝p rchbpγ‹q ¨ chipγqq

¯
.

More precisely, the first and second terms of the last expression yield

pıuq´i`4

2

„
b

pa` i ´ 4q!pb ´ 1q!
pi ´ 2q! τa`i´5pγ¨c1qτb´2ppq`apa ´ 1q!pb ` i ´ 4q!

pi ´ 2q! τa´2ppqτb`i´5pγ¨c1q

,
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and the last two terms yield30

´ pıuq´i´4

2

„
pa´ 1qpa` i ´ 4q!pb ´ 1q!

pi ´ 2q! τa`i´5pγ‚ ¨ γqτb´2pγ‹q`

pb ´ 1qpa´ 1q!pb ` i ´ 4q!
pi ´ 2q! τa´2pγ‚ ¨ γqτb`i´5pγ‹q


.

The cancellation then follows from
ÿ

‚,‹

α‚‹ pγ‚ ¨ γq b γ‹ “ pbpγ ¨ c1q and
ÿ

‚,‹

α‚‹ γ‚ b pγ‹ ¨ γq “ pγ ¨ c1q b p .

We have cancelled all τ -quadratic terms of complex cohomological degree 2 in (64).
Let us also observe that the terms of (75) with a “ 1 and with b “ 1 cancel out by

exceptional bumping with (29) with the term of (74) with µ1 “ k or µ2 “ k.
A longer computation is needed to deal with τ -quadratic terms of complex cohomological

degree 3. Since all such terms have γ ¨c21 as an argument, we drop the cohomology insertion
from the notation. The corresponding terms from (66) are:

(76) pıuqk pk ` i ´ 2q!
pi ´ 3q!

ÿ

|µ|“i`k´4

pıuq´µ1´µ2

Autpµqpi` k ´ 2q!

˜
µ1!µ2! ` pµ1 ` 1q!µ2!

˜
µ1ÿ

j“1

1

j

¸

`µ1!pµ2 ` 1q!
˜

µ2ÿ

j“1

1

j

¸¸
τµ1´1τµ2´1 .

The corresponding terms from (67) are:

(77)
pıuq´i`4

pi ´ 2q!
ÿ

|µ|“i´3

µ1!µ2!

Autpµq

«
pµ1 ` kq!
pµ1 ´ 1q!

˜
µ1`kÿ

j“µ1

1

j

¸
τµ1`k´2τµ2´1

`pµ2 ` kq!
pµ2 ´ 1q!

˜
µ2`kÿ

j“µ2

1

j

¸
τµ1´1τµ2`k´2 `

˜
µ1ÿ

j“1

1

j

¸ˆpµ1 ` kq!
pµ1 ´ 1q!τµ1`k´2τµ2´1

`pµ2 ` k ` 1q!
µ2!

τµ1´2τµ2`k´1

˙
`
˜

µ2´1ÿ

j“1

1

j

¸ˆpµ2 ` kq!
pµ2 ´ 1q! τµ1´1τµ2`k´2

`pµ1 ` k ` 1q!
µ1!

τµ1`k´1τµ2´2

˙
.

The expression (77) is simplified by the following strategy. We number the six τ -
quadratic terms by their order of occurrence in (77). The first term of (77) combines
with the third term. The second term combines with the fifth term. We also split off the

30The sum over ‚, ‹ with coefficient α‚‹ is implicit.
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summands with j “ µ1 ` k and j “ µ2 ` k from the first and second terms respectively, as
well as the summand with j “ µ1 from the third term. Then, (77) equals

(78)
pıuq´i`4

pi ´ 2q!

ˆÿ
µ1

pµ1 ` k ´ 1q!µ2!

Autpµq τµ1`k´2τµ2´1 ` µ2

µ1!pµ2 ` k ´ 1q!
Autpµq τµ1´1τµ2`k´2

`µ1

pµ1 ` kq!µ2!

Autpµq

˜
µ1`k´1ÿ

j“1

1

j

¸
τµ1`k´2τµ2´1 ` µ2

µ1!pµ2 ` kq!
Autpµq

˜
µ2`k´1ÿ

j“1

1

j

¸
τµ1´1τµ2`k´2

`pµ2 ` k ` 1qµ1!pµ2 ` kq!
Autpµq

˜
µ1´1ÿ

j“1

1

j

¸
τµ1´2τµ2`k´1

`pµ1 ` k ` 1qpµ1 ` kq!µ2!

Autpµq

˜
µ2´1ÿ

j“1

1

j

¸
τµ1`k´1τµ2´2

`pµ1 ` kq!µ2!

Autpµq τµ1`k´2τµ2´1 ` pµ1 ´ 1q!pµ2 ` k ` 1q!
Autpµq τµ1´2τµ2`k´1

˙
,

where the sum is over µ1 ě µ2, |µ| “ i ´ 3.
Let us fix an integer a satisfying a ą k ´ 2. We observe that the sum of the first term

from the first line (78) with µ1 “ a ` 2 ´ k and the second term in the last line with
µ2 “ a` 1´ k will cancel with the first term of (76) with µ1 “ a` 1. Also, the sum of the
second term from the first line with µ2 “ a` 2 ´ k and the first term of the last line with
µ1 “ a ` 1 ´ k will cancel with the first term of (76) with µ2 “ a` 1.
Similarly, the sum of the first term for the second line of (78) with µ1 “ a ` 2 ´ k and

the first term from the third line of (78) with µ1 “ a ` 2 cancels with the second term of
(76) with µ1 “ a ` 1. Finally, the sum of the second term from the second line of (78)
with µ1 “ a ` 1 and the last term from the last line of (78) with µ1 “ a ` 1 ´ k cancels
with the last term of (76) with µ1 “ a ` 1.
After all of these cancellations, we are left with

(79)
ÿ pıuq´i`4µ1!µ2!

Autpµqpi´ 3q!

˜
1 ` pµ1 ` 1q

˜
µ1ÿ

j“1

1

j

¸
` pµ2 ` 1q

˜
µ2ÿ

j“1

1

j

¸¸
τµ1´1τµ2´1 ,

where
ř

is the sum of two sub sums: the first is over µ1 ` µ2 “ i` k ´ 4, µ1 ď k and the
second is over µ1 ` µ2 “ i ` k ´ 4, µ2 ď k.
In the difference (64), the expression (79) is canceled by the corresponding τ -quadratic

terms of complex cohomological degree 3 of (75). More precisely, the first and second terms
of (75) yield

pıuq´i`4

2

„
b

pa` i ´ 4q!pb ´ 1q!
pi ´ 2q! τa`i´6pγ¨c21qτb´2ppq`apa ´ 1q!pb ` i ´ 4q!

pi ´ 2q! τa´2ppqτb`i´6pγ¨c21q

,

after we apply (15) to these terms and drop τ -cubic terms and the terms of cohomological
degree other than 3. In particular, the factors in first and second terms are produced by
the a-linear term of (15) proportional to c1.
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The last two terms of (75) yield31

´ pıuq´i`4

2

„
pa´ 1qpa` i ´ 4q!pb ´ 1q!

pi ´ 2q! τa`i´6pγ‚ ¨ γqτb´2pγ‹ ¨ c1q`

pb ´ 1qpa´ 1q!pb ` i ´ 4q!
pi ´ 2q! τa´2pγ‚ ¨ γqτb`i´6pγ‹ ¨ c1q


,

after we apply only the parts of (14) and (15) that are not c1-proportional, then we use the
a to τ the transition formula (55) and drop the τ cubic terms and the terms of homological
degree other than 3.
Together these two sums combine and cancel the first term of (79). To cancel the last

two terms of (79), we follow the same pattern. We first apply c01-part of (15) to the first
and second terms of (75) and then apply c1-part of the a to τ transition formula (55).
Next, we apply the c01-parts of (14) and the (15) and the c11-part of (55) to the last two
terms of (75). After dropping the τ -cubic terms and the terms of complex cohomological
degree other than 3, we exactly cancel the remaining terms of (79).

‚ Consider finally the τ -cubic terms. The cohomological arguments of these terms are c21 ¨γ,
so as in the previous computation, we drop the cohomology insertion from the notation.
After expanding the corresponding terms of (66), we obtain:

(80)
pıuq´ipi ` k ´ 2q

pi ´ 3q!
ÿ

|µ|“i`k´5

µ1!µ2!µ3!

Autpµq τµ1´1τµ2´1τµ3´1 .

On the other hand, the corresponding terms from (67) are more complicated:

pıuq´i

pi ´ 3q!
ÿ

|µ|“i´5

µ1!µ2!µ3!

Autpµq

ˆpµ1 ` k ` 1q!
µ1!

τµ1`k´1τµ2´1τµ3´1

`pµ2 ` k ` 1q!
µ2!

τµ1´1τµ2`k´1τµ3´1 ` pµ3 ` k ` 1q!
µ3!

τµ1´1τµ2´1τµ3`k´1

˙
,

In (80), we have i ` k ´ 2 “ ř3

j“1pµj ` 1q. Therefore, the difference between the last two
expressions is the sum of the monomials

(81)

¨
˝ ÿ

j,µjďk´2

pµj ` 2q

˛
‚pıuq´iµ1!µ2!µ3!

pi ´ 3q! Autpµqτµ1´1τµ2´1τµ3´1 .

Let us restrict our attention to the case when i is bigger than k, the other cases are
analogous. After applying the reaction from the last line of (15), we obtain a formula for

31The sum over ‚, ‹ with coefficient α‚‹ is implicit.
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the expressions in the second line of (64):

(82) pa ´ 2q!b!C˝

˜
rchapc1q rchipγq

pıuqb´2

¸
τb´2ppq “ τ -quadratic terms `

pıuq´k´ib!

pi ´ 2q!

¨
˝ ÿ

|µ|“a`i´6

maxpmaxpµ1 ` 1, µ2 ` 1q, i ´ 2q µ1!µ2!

Autpµqτµ1´1τµ2´1

˛
‚τb´2 ,

(83) a!pb ´ 2q!τa´2ppqC˝

˜
rchbpc1q rchipγq

pıuqa´2

¸
“ τ -quadratic terms `

pıuq´k´ia!

pi ´ 2q!

¨
˝ ÿ

|µ|“b`i´6

maxpmaxpµ1 ` 1, µ2 ` 1q, i ´ 2q µ1!µ2!

Autpµqτµ1´1τµ2´1

˛
‚τa´2 .

The terms of (82) and (83) with maxpµ1 ` 1, µ2 ` 1q ď i´ 2 contribute the monomials:

(84) pıuq´ib ¨ µ1!µ2!pb ´ 1q!
pi ´ 3q! τµ1´1τµ2´1τb´2 , pıuq´ia ¨ µ1!µ2!pa ´ 1q!

pi ´ 3q! τµ1´1τµ2´1τa´2 .

Note a ` b “ k ` 2 in (64). Since maxpµ1 ` 1, µ2 ` 1q ď i ´ 2 and |µ| “ a ` i ´ 2 or
|µ| “ b` i´ 2 we imply that µ1 ` 1, µ2 ` 1 ě k´ 1. Thus the corresponding terms of (82)
and (83) cancel with the monomials (81) such that there is only one j with µj ď k ´ 2.
The terms in (82) and (83) with maxpµ1 ` 1, µ2 ` 1q ą i ´ 2 yield terms:

pıuq´ibpµ1`1q¨µ1!µ2!pb ´ 1q!
pi ´ 2q! τµ1´1τµ2´1τb´2 , pıuq´iapµ1`1q¨µ1!µ2!pa ´ 1q!

pi ´ 2q! τµ1´1τµ2´1τa´2 ,

where µ1 “ maxpµ1, µ2q. Both of these terms are of the form:

(85) pıuq´ipµ1 ` 1qpµ2 ` 1q ¨ µ1!µ2!µ3!

pi ´ 2q! τµ1´1τµ2´1τµ3´1 ,

with µ1`1 ą i´2 and |µ| “ i`k´4. Since we assumed that i ą k, we have µ1`µ2 ă k´4
in (85). The discussed terms therefore combine to yield the sum of monomials:

(86) pıuq´ipµ1 ` µ2 ` 2qpµ3 ` 1q ¨ µ1!µ2!µ3!

pi ´ 2q! τµ1´1τµ2´1τµ3´1 ,

where µ3 ` 1 ą i ´ 2 and µ1, µ2 ď k ´ 2.
The terms (86) combine with the terms from the expansion of the last two lines of (64).

Indeed, since γ‚, γ‹ in the last two lines of (64) are of complex cohomological degree 2, the
τ -terms result from use of the c11-part of (14) and of the c01-part of (15). The expansion of
these terms is a sum of monomials

(87) ´ pıuq´ipb ´ 1qpa ´ 1qpa ` i ´ 4q!µ1!µ2!

pi ´ 2q! τa`i´5τµ1´1τµ2´1 ,

where |µ| “ b ´ 3.
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The combination of (87) with a “ µ3 ´ i ` 4, b “ µ1 ` µ2 ` 3 and (86) matches (81),
since, in (87), we have

pb ´ 1qpa ´ 1q “ pµ1 ` µ2 ` 2qpµ3 ´ i ` 3q “ pµ1 ` µ2 ` 2qpµ3 ` 1q ´ pµ1 ` µ2 ` 2qpi ´ 2q .
We have cancelled all τ -cubic terms.
The assumption rchipγq P DX‹

PT implies i ě 3. Therefore, in the above computations, we
do not see negative factorials in denominators. �

4.3. Proof of Theorem 13 for D1
PT X DX‹

PT . Theorem 13, for all D P D1
PT X DX‹

PT , is an
immediate consequence of Proposition 17 for singletons by the following simple argument.
Let

D “
mź

i“1

rchkipγiq P D1
PT X DX‹

PT ,

where γiγj “ 0 P H˚pXq for all i ‰ j.
By definition, for k ě 1,

C
‚
`
LPT
k pDq

˘
“ C

‚
´
LPT
k

` mź

i“1

rchkipγiq
˘¯

“ C
‚

˜
Tk

mź

i“1

rchkipγiq `
mÿ

j“1

Rkp rchkjpγjqq
ź

i‰j

rchkipγiq
¸
.

Since γiγj “ 0 for i ‰ j,

C
‚
´
Tk

mź

i“1

rchkipγiq
¯

“ p´m`1qC‚pTkq
mź

i“1

C
‚p rchkipγiqq `

mÿ

j“1

C
‚pTk

rchkjpγjqq
ź

i‰j

C
‚p rchkipγiqq .

By Proposition 17,

pıuq´k rLGW
k pC‚p rchipγiqqq “ C

‚
´
LPT
k p rchipγiqq

¯

“ C
‚ pTkqC‚

` rchipγiq
˘

` C
‚
`
Tk

rchipγiq
˘

` C
‚
´
Rk

` rchkipγiq
˘¯

.

We conclude

C
‚
`
LPT
k pDq

˘
“

mÿ

j“1

pıuq´k rLGW
k pC‚p rchjpγjqqq

ź

i‰j

C
‚p rchkipγiqq ´ pm ´ 1qC‚pTkq

mź

i“1

C
‚p rchkipγiqq .

On the other hand,

pıuq´k rLGW
k pC‚pDqq “

mÿ

j“1

pıuq´k rLGW
k pC‚p rchjpγjqqq

ź

i‰j

C
‚p rchkipγiqq ´ pm ´ 1qpıuq´k

ˆpıuq2
2

˙
Tk

mź

i“1

C
‚p rchkipγiqq .

The proof is completed by applying (46). �
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5. Intertwining III: Interacting insertions

5.1. Overview. We complete here the proof of Theorem 13. Since non-interacting inser-
tions have already been treated in Section 4, we must address the interacting cases. In the
desired equation,

(88) C
‚ ˝ LPT

k pDq “ pıuq´k rLGW
k ˝ C

‚pDq ,

the stable pairs descendent insertions of D P DX‹

PT can interact with each other via the
GW{PT descendent correspondence on both sides of (88). In addition, the stable pairs
descendents can also interact with constant term of the Virasoro constraints on the left
side. We must control all of these interactions.

5.2. Interactions among two insertions. We start with results which control the in-
teractions of two descendent insertions.

Proposition 18. Let γ1 P H2pXq, γ2 P H4pXq, and let i ě 3, j ě 2. Then, for k ě ´1,
we have

pıuqk C˝pRkp rchipγ1q rchjpγ2qqq “ RkpC˝p rchipγ1q rchjpγ2qqq .

Proof. We first compute the left side of the equation. After applying the shifts, we obtain

Rkp rchipγ1q rchjpγ2qq “ pi ` k ´ 2q!
pi ´ 3q!

rchi`kpγ1q rchjpγ2q ` pj ` k ´ 1q!
pj ´ 2q!

rchipγ1q rchj`kpγ2q .

We apply the correspondence to the both terms:

C
˝pRkp rchipγ1q rchjpγ2qqq “ pıuq´1

ˆ
1

pi ´ 3q!pj ´ 2q! ` pj ` k ´ 1q
pi ´ 2q!pj ´ 2q!

˙
ai`j`k´4pγ1γ2q

“ pıuq´i´j´k`4 pi ` j ` k ´ 3q!
pi ´ 2q!pj ´ 2q! τi`j`k´5pγ1γ2q .

The right side of the equation is

RkpC˝p rchipγ1q rchjpγ2qqq “ Rk

ˆ pıuq´1

pi ´ 2q!pj ´ 2q!ai`j´4pγ1γ2q
˙

“ pıuq´i´j`4 pi ` j ´ 4q!
pi ´ 2q!pj ´ 2q!qRkpτi`j´5pγ1γ2qq

“ pıuq´i´j`4 pi ` j ` k ´ 3q!
pi ´ 2q!pj ´ 2q! τi`j`k´5pγ1γ2q ,

which matches the left side. �
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Proposition 19. Let γ1, γ2 P H2pXq, and let i, j ě 3. Then, for k ě ´1, we have

(89) pıuqk C˝pRkp rchipγ1q rchjpγ2qqq ´ RkpC˝p rchipγ1qchjpγ2qqq “
ÿ

a`b“k`2

pa ´ 2q!b!C˝p rchipγ1q ¨ rchjpγ2q ¨ rchapc1qqC˝pchbppqq

` a!pb ´ 2q!C˝p rchipγ1q ¨ rchjpγ2q ¨ rchbpc1qqC˝pchappqq

´
ÿ

a`b“k`2

pa´ 1q!pb ´ 1q!
ÿ

‚,‹

α‚‹

´
C

˝p rchapγ‚q ¨ rchipγ1qqC˝p rchbpγ‹q rchjpγ2qq

`C
˝p rchapγ‚q rchjpγ2qqC˝p rchbpγ‹q ¨ rchipγ1qq

¯
.

Proof. We follow the same strategy as in the proof of Proposition 17. We first compute

Rkp rchipγ1q rchjpγ2qq “ pk ` i ´ 2q!
pi ´ 3q!

rchi`kpγ1q rchjpγ2q ` pk ` j ´ 2q!
pj ´ 3q!

rchipγ1q rchj`kpγ2q .

After applying the correspondence, we obtain

(90) C
˝pRkp rchipγ1q rchjpγ2qqq “ ´ 1

pi ´ 3q!pj ´ 2q!

„
ai`j`k´4pγ1γ2q

ıu
` ai`j`k´5pγ1γ2 ¨ c1q

pıuq2 `

pıuq´2
ÿ

|µ|“i`j`k´6

fpi ` k, j;µ1, µ2q
Autpµq aµ1

aµ2
pγ1γ2 ¨ c1q

fi
fl ´ 1

pi ´ 2q!pj ´ 3q!

„
ai`j`k´4pγ1γ2q

ıu
`

ai`j`k´5pγ1γ2 ¨ c1q
pıuq2 ` pıuq´2

ÿ

|µ|“i`j`k´6

fpi, j ` k;µ1, µ2q
Autpµq aµ1

aµ2
pγ1γ2 ¨ c1q

fi
fl ,

where fpi, j;µ1, µ2q “ maxpmaxpi ´ 2, j ´ 2q,maxpµ1 ` 1, µ2 ` 1qq.
The second term of the difference is easier:

(91) RkpC˝p rchipγ1q rchjpγ2qqq “ ´ pıuq´i´j`4

pi ´ 2q!pj ´ 2q!Rk

ˆ
pi ` j ´ 4q!

ˆ
τi`j´5pγ1γ2q`

˜
i`j´4ÿ

s“1

1

s

¸
τi`j´6pγ1γ2 ¨ c1q

˙
` pıuq´2

ÿ

|µ|“i`j´6

fpi, j;µ1, µ2q
Autpµq aµ1

aµ2
pγ1γ2 ¨ c1q

˙
.

We now analyze the difference. The τ -linear terms of complex cohomological degree 2
in pıuqk times (90) and (91) are matching sums of the monomials:

pıuq´i´j`4 pi ` j ` k ´ 4q!
pi ´ 2q!pj ´ 2q! pi ` j ´ 4qτi`j`k´5pγ1γ2q .
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The τ -linear terms of cohomological degree 3 almost match. To be precise, the correspond-
ing terms in (90) are sums the monomials:

pıuq´i´j`4 pi ` j ` k ´ 4q!
pi ´ 2q!pj ´ 2q! pi ` j ´ 4q

˜
i`j`k´4ÿ

s“1

1

s

¸
τi`j`k´6pγ1γ2 ¨ c1q .

Respectively, the corresponding terms in (91) are sums of the same monomials plus an
extra term

pıuq´i´j`4 pi ` j ` k ´ 4q!
pi ´ 2q!pj ´ 2q! τi`j`k´6pγ1γ2 ¨ c1q .

This extra term gets canceled by the term from the second line of (89) with b “ 0
because of (30).
Therefore, the difference of pıuqk times (90) and (91) consists only of the τ -quadratic

terms of complex cohomological degree 3. We omit cohomological classes since all the
cohomological arguments are γ1γ2 ¨ c1. The corresponding part of (90) is

(92)

pıuq´i´j`2

pi ´ 2q!pj ´ 2q!
ÿ

|µ|“i`j`k´6

µ1!µ2!

Autpµq rpi ´ 2qfpi ` k, j;µq ` pj ´ 2qfpi, j ` k;µqs τµ1´1τµ2´1 ,

where we assume that f vanishes whenever one of the argument is negative.
We must compare (92) with the expansion of the last four lines of (89). The first two of

the last four lines of (89) expand to

´ pıuq´i´j`2

pi ´ 2q!pj ´ 2q!
ÿ

a`b“k`2

pi ` j ` a ´ 6qbpi ` j ` a ´ 7q!pa ´ 1q!
2

τi`j`a´8τb´2

` pi ` j ` b ´ 6qapi ` j ` b ´ 7q!pa ´ 1q!
2

τi`j`b´8τa´2 .

The last two lines of the last four lines of (89) expand to

pıuq´i´j`2

pi ´ 2q!pj ´ 2q!
ÿ

a`b“k`2

pa ´ 1qpb ´ 1q
ˆ

pa` i ´ 4q!pb ` j ´ 4q!τa`i´5τb`j´5`

pa ` j ´ 4q!pb ` i ´ 4q!τa`j´5τb`i´5

˙
.

These last two expressions are the τ -cubic contribution to the (89) which result from

the bumping of rchipγ1q rchjpγ2q with the constant term Tk. The corresponding coefficient in
front of τ -cubic monomial is given by the formula (94) below.
To complete the proof, we must match the coefficients in front of the terms in sums above.

That is we need to compare two expressions below for all µ satisfying |µ| “ i ` j ` k ´ 6:

(93) pi ´ 2qfpi ` k, j;µq ` pj ´ 2qfpi, j ` k;µq ´ pµ1 ` 1qfpi, j;µ1 ´ k, µ2q
´ pµ2 ` 1qfpi, j;µ1, µ2 ´ kq ,
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(94) rµ1 ` 1sďkpµ2 ` 1q ` pµ1 ` 1qrµ2 ` 1sďk ´ rµ1 ´ i ` 3sě0rµ2 ´ j ` 3sě0

´ rµ1 ´ j ` 3sě0rµ2 ´ i ` 3sě0 ,

where rasďb and rasěb are cut off functions which equal a if a satisfies inequalities a ě b

and a ď b respectively (and are zero otherwise). The matching now is a long and routine
check. We give some details.
We can always assume µ1 ě µ2 and i ě j. Let us further assume k is small and µ1 ě i`k.

If µ2 ě k, then the function (93) equals

pi ` j ´ 4qpµ1 ` 1q ´ pµ1 ` 1qpµ1 ´ k ` 1q ´ pµ2 ´ 1qpµ1 ` 1q “ 0 .

The assumed inequalities force all terms in (94) to vanish.
Next, we assume all but last inequality are true, that is µ2 ă k. Then the expression

(93) becomes

pi ` j ´ 4qpµ1 ` 1q ´ pµ1 ` 1qpµ1 ´ k ` 1q “ pµ1 ` 1qpµ2 ` 1q .

On the other hand, in (94), only the second expression does not vanish – the second
expression matches (93). Rest of the case can be treated analogously. �

5.3. Interactions among three insertions. The last interaction to consider is among
three descendent insertions. Because of the stationary assumption, there is only one case
to control.

Proposition 20. Let γ1, γ2, γ3 P H2pXq, and let i1, i2, i3 ě 3, Then, for k ě ´1, we have

pıuqk C˝
´
Rkp rchi1pγ1q rchi2pγ2q rchi3pγ3qq

¯
´ Rk

´
C

˝
` rchi1pγ1q rchi2pγ2q rchi3pγ3q

˘¯
“ 0 .

For the proof, we will use the explicit correspondence formula (16) for the triple inter-
action:

(95) C
˝p rchi1 rchi2 rchi3qpγq “ p|i| ´ 6qpıuq´2

pi1 ´ 2q!pi2 ´ 2q!pi3 ´ 2q!a|i|´7pγq

where |i| “ i1 ` i2 ` i3.

Proof of Proposition 20. We first compute the left side of the equation. To start,

Rkp rchi1pγ1q rchi2pγ2q rchi3pγ3qq “ pi1 ` k ´ 2q!
pi1 ´ 3q!

rchi1`kpγ1q rchi2pγ2q rchi3pγ3q

`pi2 ` k ´ 2q!
pi2 ´ 3q!

rchi1pγ1q rchi2`kpγ2q rchi3pγ3q

`pi3 ` k ´ 2q!
pi3 ´ 3q!

rchi1pγ1q rchi2pγ2q rchi3`kpγ3q .
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After applying the triple bumping and the transition from a descendents to τ descendents,
we obtain:

(96) C
˝pRkp rchi1pγ1q rchi2pγ2q rchi3pγ3qqq “ p|i| ` k ´ 6qpıuq´2

ˆ
1

pi1 ´ 3q!pi2 ´ 2q!pi3 ´ 2q!

` 1

pi1 ´ 2q!pi2 ´ 3q!pi3 ´ 2q! ` 1

pi1 ´ 2q!pi2 ´ 2q!pi3 ´ 3q!

˙
a|i|`k´7pγ1γ2γ3q

“ pıuq´|i|´k`6p|i| ´ 6q p|i| ` k ´ 6q!
pi1 ´ 2q!pi2 ´ 2q!pi3 ´ 2q!τ|i|`k´8pγ1γ2γ3q .

On the other hand, the right side of the equation equals

RkpC˝p rchi1pγ1q rchi2pγ2q rchi3pγ3qqq “ pıuq´2p|i| ´ 6q
pi1 ´ 2q!pi2 ´ 2q!pi3 ´ 2q!Rkpa|i|´7pγ1γ2γ3qq

“ pıuq´|i|`6p|i| ´ 6q p|i| ` k ´ 6q!
pi1 ´ 2q!pi2 ´ 2q!pi3 ´ 2q!τ|i|`k´8pγ1γ2γ3q ,

which matches pıuqk times (96). �

5.4. Proof of Theorem 13. Let k ě 1, and let D P DX‹

PT . To prove the equality

C
‚ ˝ LPT

k pDq “ pıuq´k rLGW
k ˝ C

‚pDq ,

after the restrictions τ´2ppq “ 1 and τ´1pγq “ 0 for γ P Hą2pXq, we will expand both sides.
The non-interacting case was already proven in Section 4.3. Equality in the general case
will use Propositions 15, 16, 17, 18, 19, and 20.
In the formulas below, we will use short-hand notation for the constant term of LPT

k :

Tk “
ÿ

j

TL
k,jT

R
k,j ,

where L and R denote the left and right sides in (3).

For D “ śℓ

i“1Di P DX‹

PT , we have

C
‚pLPT

k pDqq “ C
‚pTkD ` RkpDqq(97)

“
ÿ

P 1

ÿ

j

ź

SPP 1

C
˝pTS

k,jD
Sq `

ÿ

P 2

ℓpP 2qÿ

t“1

C
˝pRkpDStqq

ź

SPP 2, S‰St

C
˝pDSq .

The first sum is over partitions P 1 of t1, . . . , ℓ, L,Ru and

DS “
ź

iPSXt1,...,ℓu

Di , TS
k,j “

ź

γPSXtL,Ru

Tγ
k,j .

The second sum is over partitions P 2 of t1, . . . , ℓu and P 2 “ tS1, . . . , SℓpP 2qu.



VIRASORO CONSTRAINTS FOR STABLE PAIRS ON TORIC 3-FOLDS 47

We must compare the (97) with pıuq´k times

LGW
k pC‚pDqq “ LGW

k p
ÿ

P

ź

SPP

C
˝pDSqq(98)

“
ÿ

P 1

Tk

ź

SPP 1

C
˝pDSq `

ÿ

P 2

ℓpP 2qÿ

t“1

RkpC˝pDStqq
ź

SPP 2, S‰St

C
˝pDSq .

where both sums run over partitions P 1, P 2 of t1, . . . , ℓu.
Since we only work with the stationary descendents, we can assume that the parts of

partitions in the formulas have at most three elements. We will match the terms of (97)
and pıuq´k times (98) depending on the size of St.

‚ If |St| “ 3, then the terms in (97) and (98) with P 2 “ P̃ \ St are matched by Proposi-
tion 20.

‚ If |St| “ 2 with St “ tp, qu, then we use Propositions 18 and 19 to match the terms of
(97) with P 2 “ P̃ \ St and with P 1 equal to

P̃ \ tSt, Lu \ tRu , P̃ \ tSt, Ru \ tLu , P̃ \ tp,Ru \ tq, Lu , P̃ \ tp, Lu \ tq, Ru ,

with the terms of (98) with P 2 “ P̃ \ St .

‚ If |St| “ 1 with St “ tpu, then we use Proposition 16 and Proposition 17 to identify the
terms of (97) with P 2 “ P̃ \ St and with P 1 equal to

P̃ \ tp, Lu \ tRu , P̃ \ tp,Ru \ tLu

with the terms of (98) with P 2 “ P̃ \ St.

‚ The terms of (97) with P 1 “ tLu \ tRu \ P̃ are equal to the terms of (98) with P 1 “ P̃

by Proposition 15.

The above four cases match all the terms in (97) and (97). �

6. Virasoro constraints for Hilbert schemes of points of surfaces

Let S be a nonsingular projective toric surface, and let

X “ S ˆ P1 .

As an immediate consequence of Theorem 4 applied to the toric variety X, we obtain the
following Virasoro constraints:

(99) @k ě ´1 ,
A
L

PT
k

rź

i“1

chmi
pγi ˆ pq

EX,PT

nrP1s
“ 0 ,

where γi P H˚pXq, p P H2pP1q is the point class, and rP1s P H2pXq is the fiber class.
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We can specialize the constraints (99) further to the case of the minimal possible Euler
characteristic,

PnpS ˆ P1, nrP1sq – HilbnpSq .
The above isomorphism of schemes is defined as follows. A point ξ P HilbnpSq corre-

sponds to a 0-dimensional subscheme of S of length n. Then,

ξ ˆ P1 Ď S ˆ P1

is a curve embedded in S ˆ P1 with Euler characteristic n and curve class nrP1s. The
isomorphism sends ξ to the corresponding stable pair

OSˆP1 Ñ OξˆP1 .

Since the moduli space of stable pairs is nonsingular of expected dimension
ż

nrP1s

c1pS ˆ P1q “ 2n ,

the virtual class is the standard fundamental class here. The result is a new set of Virasoro
constraints for tautological classes on HilbnpSq.
To write the Virasoro constraints for HilbnpSq explicitly, we first define the corresponding

descendent insertions. Let

0 Ñ I Ñ OHilbnpSqˆS Ñ OZ Ñ 0

be the universal sequence associated to the universal subscheme

Z Ă S ˆ HilbnpSq .
For γ P H˚pSq, let
(100) chkpγq “ ´π˚

`
chkpIq ¨ γ

˘
,

where π is the projection to HilbnpSq. We follow as closely as possible the descendent
notation for 3-folds in Section 0.1.
Let DpSq be the commutative algebra with generators

 
chipγq | i ě 0 , γ P H˚pSq

(

following Section 0.2. We define derivations Rk by their actions on the generators:

Rkpchipγqq “
˜

kź

n“0

pi ` d ´ 2 ` nq
¸
chi`kpγq , γ P H2dpSq .

For k ě ´1, we define differential operators

LS
k “ ´

ÿ

a`b“k`2

p´1qpdL`1qpdR`1qpa ` dL ´ 2q!pb ` dR ´ 2q!chachbp1q

` 1

12

ÿ

a`b“k

a!b!chachbpc21 ` c2q ` Rk .

where the sum is over ordered pairs pa, bq with a, b ě 0.
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Theorem 5. For all k ě ´1 and D P DpSq, we have
ż

HilbnpSq

`
LS
k ` pk ` 1q!R´1chk`1ppq

˘
pDq “ 0

for all n ě 0.

Proof. For clarity, we will use superscripts chHilb
i and chPTi here to indicate whether we are

referring to descendents on the Hilbert scheme of S as defined above or to stable pairs
descendents on S ˆ P1 as defined in Section 0.1.
The universal stable pair of PnpS ˆ P1, nrP1sq is F “ OZˆP1 . Hence,

chipF ´ OSˆP1ˆHilbnpSqq “ pρ ˆ idq˚chip´Iq ,
where ρ is the projection ρ : S ˆ P1 Ñ S. By the push-pull formula, for δ P H˚pS ˆ P1q,
we have

chPTi pδq “ π˚ ppρ ˆ idq˚ pchip´Iq ¨ δqq
“ π˚ pchip´Iq ¨ ρ˚δq
“ chHilb

i pρ˚δq .

So, chPTi pγ ˆ 1q “ 0, and chPTi pγ ˆ pq “ chHilb
i pγq.

Since we have the Virasoro constraints (99), we must only check that the composition

(101) DpSq ãÑ DX`
PT

LPT

kÑ DX`
PT Ñ DpSq

is precisely

LS
k ` pk ` 1q!R´1chk`1ppq .

The first inclusion in (101) is determined by sending generators chHilb
i pγq to chPTi pγ ˆ pq,

and the last map of (101) sends chPTi pδq to chHilb
i pρ˚δq.

The analysis of the composition is straightforward. For the diagonal terms, we note that

c1pXq “ 2p1 ˆ pq ` c1pSq ˆ 1

and
c1c2

24
pXq “ td3pXq “ td2pSq ˆ td2pP1q “ 1

12
pc1pSq2 ` c2pSqq ˆ p .

We write the Künneth decomposition of the diagonal as

∆ ¨ 1 “
ÿ

i

θLi b θRi P H˚pS ˆ Sq .

Then, the Künneth decomposition of ∆ ¨ c1 P H˚pX ˆ Xq is

2
ÿ

i

pθLi ˆ pq b pθRi ˆ pq ` ¨ ¨ ¨ ,

where the remaining terms in the dots are killed by ρ˚. The matching of operators then
follows from the definition of LPT

k . �



50 M. MOREIRA, A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

7. GW{PT descendent correspondence: review

7.1. Vertex operators. Our goal here is to review the results of [18] and to explain how
Theorem 7 can be derived from [18]. The full derivation is postponed to Section 8.
To state the main result of [18], we require negative descendents taku for k P Ză0 which

are defined to satisfy the Heisenberg relations with positive descendents:

(102) rakpαq, ampγqs “ kδk`m

ż

X

α Y γ .

The descendents taku for k P Zzt0u generate the H˚pXq-algebra HeisX .
For curve class β P H2pXq, there is a geometrically defined Gromov-Witten evaluation

x¨yβ map on the algebra generated by the non-negative descendents. We can extend the
evaluation map to the whole algebra HeisX by defining

@
akpγqΦ

DX,GW

β
“
„ż

X

`
´ c1δk`1 ` δk`2iu

˘
¨ γ

 @
Φ
DX,GW

β
, k ă 0 .

We assemble the operators ak in the following generating function:

(103) φpzq “
ÿ

ną0

an

n

´ ızc1
u

¯´n

` 1

c1

ÿ

nă0

an

n

´ ızc1
u

¯´n

.

The main objects of study in [18] are the vertex operators

(104) HGWpxq “
8ÿ

k“0

HGW
k xk`1 “ Resw“8

ˆ?
dydw

y ´ w
: eθφpyq´θφpwq :

˙
,

where y, w, and x satisfy the constraints

(105) yey “ wewe´x{θ , θ´2 “ ´c2pTXq .
Here, Resw“8 denotes 1

2πı
times the integral along a small loop around w “ 8.

Normally ordered monomials

ai1ai2 . . . aik , i1 ď i2 ď ¨ ¨ ¨ ď ik,

form a linear basis of Heis. Respectively, we use : ¨ : for the normal ordering operation

:
ź

j

aij : “ ai1ai2 . . . aik , i1 ď i2 ď ¨ ¨ ¨ ď ik,

Extended H˚pXq-linearly to the whole algebra HeisX .
Let us notice that the equation (105) as well as the vertex operator (104) have symmetry

y ÞÑ w, w ÞÑ y, θ ÞÑ ´θ, x ÞÑ x.

This symmetry implies that the only even powers of θ appear in the expansion of (104) (see
Lemma 15 from [18] for more discussions and further properties of the vertex operator).
The operators HGW

k are mutually commutative. To obtain explicit formulas for HGW
k ,

we use the Lambert function to solve equation (105) and express y in terms of x, w. The
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integral in the definition of HGW
k can be interpreted as an extraction of the coefficient of

w´1. The descendent classes

HGW
k pγq P HeisX

are then obtained using the Sweedler coproduct. We also use the Sweedler coproduct
conventions in

(106) HGW
~k

pγq “
mź

i“1

HGW
ki

pγq , ~k “ pk1, . . . , kmq .

In the Sweedler conventions [11], we abbreviate notation for the intersection with the
small diagonal ∆n Ă Xn with the pull-back of a class γ P H˚pXq:

H˚pXnq Q r∆ns ¨ γ “
ÿ

k

γk1 b . . . γkn “ γp1q b ¨ ¨ ¨ b γpnq .

Thus, the formula (106) expands as

mź

i“1

HGW
ki

pγq “
mź

i“1

HGW
ki

pγpiqq .

7.2. Stable pairs. The stable pairs analogues of the operators HGW
~k

pγq are products of

HPT
k pγq defined as follows.
The classes HPT

k pγq are linear combinations of descendents on the moduli spaces of stable
pairs. Let

HPT
k pγq “ π˚

`
HPT

k ¨ γ
˘

P
à
nPZ

H˚pPnpX, βqq ,

where the classes HPT
k P À

nPZH
˚pX ˆ PnpX, βqq are defined by

HPTpxq “
8ÿ

k“0

xk`1HPT
k

“ S
´1

´x
θ

¯ 8ÿ

k“0

xkchkpF ´ Oq ,

where

θ´2 “ ´c2pTXq , Spxq “ ex{2 ´ e´x{2

x
.

In particular, we have

HPT
k “ chk`1pFq ` c2

24
chk´1pFq ` 7c22

5760
chk´3pFq ` . . . .
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7.3. Equivariant correspondence. All the definitions and construction introduced in
Section 7.1 have canonical lifts to the equivariant setting with respect to a group action on
the variety X. We review here the equivariant GW{PT descendent correspondence [26].
The most natural setting is the capped vertex formalism of [16, 26] which we review

briefly here. Let the 3-dimensional torus

T “ C˚ ˆ C˚ ˆ C˚

act on P1 ˆ P1 ˆ P1 diagonally. The tangent weights of the T-action at the point

p “ 0 ˆ 0 ˆ 0 P P1 ˆ P1 ˆ P1

are s1, s2, s3. The T-equivariant cohomology ring of a point is

HTp‚q “ Crs1, s2, s3s .
We have the following factorization of the restriction of class c1c2 ´ c3 of X to p,

c1c2 ´ c3 “ ps1 ` s2qps1 ` s3qps2 ` s3q ,
where ci “ cipTXq.
Let U Ă P1 ˆ P1 ˆ P1 be the T-equivariant 3-fold obtained by removing the three

T-equivariant lines L1, L2, L3 passing through the point 8 ˆ 8 ˆ 8. Let Di Ă U be the
divisor with ith coordinate 8. For a triple of partitions µ1, µ2, µ3, let

(107)
Aź

i

τkippq
ˇ̌
ˇµ1, µ2, µ3

EGW,T

U,D
,

A ź

i

chkippq
ˇ̌
ˇµ1, µ2, µ3

EPT,T

U,D

denote the generating series of the T-equivariant relative Gromov-Witten and stable pairs
invariants of the pair

D “ YiDi Ă U

with relative conditions µi along the divisor Di.
The stable maps spaces are always taken with no contracted connected components of

genus great than or equal to 2. The series (107) are the capped descendent vertices following
the conventions of [18].

Theorem 21. [18] After the change of variables ´q “ eiu the following correspondence
between the 2-leg capped descendent vertices holds:

A ź

i

HGW
ki

ppq
ˇ̌
ˇµ1, µ2,H

EGW,T

U,D
“ q´|µ1|´|µ2|

A ź

i

HPT
ki

ppq
ˇ̌
ˇµ1, µ2,H

EPT,T

U,D

mod ps1 ` s3qps2 ` s3q.
The result of Theorem 21 has two defects. Since the third partition is empty, the result

only covers the 2-leg case. Moreover, the equality of the correspondence is not proven
exactly, but only mod ps1 ` s3qps2 ` s3q. For the 1-leg vertex with partitions pµ1,H,Hq,
Theorem 21 can be restricted in two ways to obtain the equality of the correspondence

mod ps1 ` s3qps1 ` s2qps2 ` s3q .
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7.4. Non-equivariant limit. By following the arguments of [26], a non-equivariant GW{PT
descendent correspondence for stationary insertions is derived in [18]. For our statements,
we will follow as closely as possible the notation of [18, 26].
Let Heisc be the Heisenberg algebra with generators akPZzt0u, coefficients Crc1, c2s, and

relations

rak, ams “ kδk`mc1c2 .

Let Heisc` Ă Heisc be the subalgebra generated by the elements aką0, and define the
Crc1, c2s-linear map

(108) Heisc Ñ Heisc` , Φ ÞÑ pΦ

by pak “ ak for k ą 0 and

(109) yakΦ “ p´c1δk`1 ` δk`2iuqpΦ , for k ă 0 .

When restricted to the subalgebra Heisc`, the Crc1, c2s-linear map (108) is an isomorphism.
For a nonsingular projective 3-fold X and classes γ1, . . . , γl P H˚pXq, the hat operation

make no difference inside the Gromov-Witten bracket,

(110) xHGW
~k

pγqyX,GW

β “ xpHGW
~k

pγqyGW
β ,

because the treatment of the negative descendents on the left side is compatible with the
treatment of the negative descendents by the hat operation.

Let ~k “ pk1, . . . , klq be a vector of non-negative integers. Following [26], we define the
following element of Heisc`:

rH~k “ 1

pc1c2ql´1

ÿ

set partitions P of {1,. . . ,l}

p´1q|P |´1p|P | ´ 1q!
ź

SPP

pHGW
~kS

,

where HGW
~kS

“ ś
iPS H

GW
ki

and the element HGW
k P Heisc is a linear combination of monomials

of ai, the expression is given by (104).

For classes γ1, . . . , γl P H˚pXq and a vector ~k “ pk1, . . . , klq of non-negative integers, we
define

Hk1pγ1q . . .Hklpγlq “
ÿ

set partitions P of {1,. . . ,l}

ź

SPP

rH~kS
pγSq ,

where γS “ ś
iPS γi.

Theorem 22. [18] Let X be a nonsingular projective toric 3-fold, and let γi P Hě2pX,Cq.
After the change of variables ´q “ eiu, we have

A
Hk1pγ1q . . .Hklpγlq

EGW

β
“ q´d{2

A
HPT

k1
pγ1q . . .HPT

kl
pγlq

EPT

β
,

where d “
ş
β
c1.



54 M. MOREIRA, A. OBLOMKOV, A. OKOUNKOV, AND R. PANDHARIPANDE

7.5. Examples for X “ P3. The prefactor S´1
`
x
θ

˘
in front of

ř8
k“0 x

kchkpF ´ Oq in the

formula for HPTpxq has an expansion which the following initial terms:

1 ` c2

24
x2 ` 7c22

5760
x4 ` . . . .

Therefore, the non-equivariant limit of HPT
k pγq is

ˆ
chk`1pγq ` 1

24
chk´1pγ ¨ c2q

˙
.

On the Gromov-Witten side of the correspondence, we have

xHGW
1 pγqΦy “ xa1pγqΦy , xHGW

2 pγqΦy “ 1

2
xa2pγqΦy ,

xHGW
3 pγqΦy “ 1

6
xa3pγqΦy ` 1

24u2
xc21c2 ¨ Φy ,

xHGW
4 pγqΦy “ 1

24
xa4pγqΦy ´ i

12u
xa21pc1 ¨ γqΦy ´ 5i

144u3
xc31c2 ¨ Φy ,

xHGW
5 Φy “ 1

120
xa5pγqΦy ´ i

24u
xa1a2pc1 ¨ γqΦy ´ 1

48u2
xa21pc21 ¨ γqΦy

` 1

24u2
xa1pc21c2 ¨ γqΦy ´ 1

64u4
xc41c2 ¨ Φy .

The operators ak are expressed in terms of standard descendents32

a1 “ τ0 ´ c2

24
,(111)

iua2{2 “ τ1 ` c1 ¨ τ0 ,
´u2a3{3 “ 2τ2 ` 3c1 ¨ τ1 ` c21 ¨ τ0 ,

´iu3a4{4 “ 6τ3 ` 11c1 ¨ τ2 ` 6c21τ1 ` c31 ¨ τ0 ,
u4a5{5 “ 24τ4 ` 50c1 ¨ τ3 ` 35c21 ¨ τ2 ` 10c31 ¨ τ1 ` c41 ¨ τ0 .

The descendent correspondence of Theorem 22 implies relations for stable pairs and
Gromov-Witten invariants of P3. For example, for β of degree 1,

´iq´2xch5pLqy “
ˆ

1

u3
xτ3pLqy ` 22

3u3
xτ2ppqy ´ 1

3u
xτ0τ0ppqy

˙
,(112)

q´2

ˆ
xch6pHqy ` 1

4
xch4ppqy

˙
“

ˆ
1

u4
xτ4pHqy ` 25

3u4
xτ3pLqy ` 70

3u4
xτ2ppqy

´ 1

3u2
xτ0τ1pLqy ` 5

3u2
xτ0τ0ppqy

˙
.

Here, p is the class of point, L is the class of line and H is the class of hyperplane.33

32For a1pγq, the term ´ c2
24

on the right is the constant ´ 1

24

ş
X
c2γ.

33We can also check the relations (112) numerically up to u8 with the help of Gathmann’s code on the
Gromov-Witten side and previously known computations for stable pairs [21].
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7.6. Residues. To complete our proof of Theorem 7, we will compute the residues (104).
More precisely, we will prove the following result.

Proposition 23. For ki P Zě0 and γi P Hě2pXq such that rchki`2pγiq P DX‹

PT , we have:

rHk1`1pγ1q “ C
˝p rchk1`2pγ1qq ,

rHk1`1,k2`1pγ1 ¨ γ2q “ C
˝p rchk1`2pγ1q rchk2`2pγ2qq ,

rHk1`1,k2`1,k3`1pγ1 ¨ γ2 ¨ γ3q “ C
˝p rchk1`2pγ1q rchk2`2pγ2q rchk3`2pγ3qq ,

where the right side is defined by (14)-(16).

8. Residue computation

8.1. Preliminary computations. Before starting the proof of the Proposition 23, we
compute the expansion of the terms of the residue formula (104).
Consider first the constraint equation (105). Solutions of the equation are formal power

series in the variable

r “ 1{θ , θ´2 “ ´c2pTXq .
We can solve the constraint equation iteratively in powers of r. Indeed, modulo r1, the
constraint equation implies w “ y, and we start the expansion by

wpx, yq “ y ` Oprq .
To find the next term of r in the expansion of wpx, yq, we substitute

wpx, yq “ y ` f1px, yqr
into (105) and expand the result of the substitution in powers of r. The coefficient of r1

in the expansion gives a linear equation which determines f1. After iterating the above
procedure three times, we obtain

(113) wpx, yq “ y ´ xr
y

y ` 1
` pxrq2 y

2py ` 1q3 ` pxrq3 2y ´ 1

6py ` 1q5 ` Opr4q .

To see the expansion of the residue (104) has positive powers of t “ c1, we use a change
of variables:

(114) y “ v{t .
The residue with respect to w on right side of (104) is converted to a residue with respect
to y via (113). Using (114), we will compute the residue with respect to v.
In the new variables, we have

a
dwdy “

ˆ
1 ´ xrt

2pv ` tq ´ pxrq2t3p4v ´ tq
8pv ` tq4

˙
dv

t
` Opr3q .

After we normal order the elements of the Heisenberg algebra in the expression for the
vertex operator HGWpxq, the negative Heisenberg operators end up next to the vacuum
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x | inside the bracket x¨yGW. Relation (109), which governs interaction with x |, yields the
following factor in the expression under the residue:

E “ exp

ˆ
´ t

2u

ˆ
wpyq2 ´ y2

r

˙
´ t

u

ˆ
wpyq ´ y

r

˙˙
(115)

“ exp
´xv
u

¯ˆ
1 ´ trx2v

2upv ` tq ` t2r2p3xv2 ` 3txv ` 4t2uq
24upv ` tq3

˙
` Opr3q .

The inverse of y ´ w in (104) becomes the factor:

(116) D “ ´ r

wpyq ´ y
“ v ` t

v

ˆ
1 ` t2rx

2pv ` tq2 ` t3r2x2p4v ` tq
12pv ` tq4

˙
` Opr3q .

The elements of the Heisenberg algebra that participate in the residue formula are packed
into the vertex operator:

V “ V` ¨ V´ , V`px, yq “ exp

˜
1

r

ÿ

ną0

an

npıutqn py´n ´ wpyq´nq
¸
,

V´px, yq “ exp

˜
1

rt

ÿ

nă0

an

npıutqn py´n ´ wpyq´nq
¸
.

Thus we need to compute the difference of powers in the expression for the vertex
operators. Using formula for wpyq (113), we obtain:

(117)
pytq´n ´ pwpyqtq´n

tnr
“ nxt

vnpv ` tq ` nx2rt2
ppn ` 1qv ` ntq
vnpv ` tq3

` nx3r2t3
nppn ` 1qpn ` 2qv2 ` p2n2 ` 3n ´ 1qtz ` n2t2q

6vnpv ` tq5 ` Opr3q .

The above calculations yield the leading terms of all algebraic expressions occurring in
formula (104) for the vertex operator HGWpxq. As we will see in Section 8.2, the knowledge
of these leading terms almost immediately leads to the simplest case of the descendent
correspondence (14). For the other two cases (15) and (16), we must analyze the interaction
of two and three vertex operators HGWpxq. We apply standard vertex operator techniques
to complete the proof of Proposition 23 in Section 8.2.

8.2. Proof of Proposition 23.

8.2.1. Case rHk1`1pγ1q. We start with the proof of the formula for the self-reaction. We
must analyze the r expansion of the residue

(118) rHpxq “ pHGWpxq “ Resv“8
1

t
E ¨ D ¨ V` .

More precisely, we must compute the coefficients of

ritj , i ` j ď 2 .
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By the argument of [18, Section 3.2], the coefficient of rtj vanishes. From the computations
of the v expansions (113), (115), (116) and (117), the terms in front of ri, i ą 0 are
proportional to t. The expression under the residue sign becomes:

exp
´xv
u

¯ˆv ` t

t
` xΣ ` x2t

v ` t
Σ2 ` x3t2

pv ` tq2Σ
3

˙
` Opt3q ` tOpr2q , Σ “

ÿ

ną0

an

pıuvqn .

After applying the residue operation to the last expression, we obtain the terms of formula
(14) in the coefficients of the x-expansion. �

8.2.2. Case rHk1`1,k2`1pγ1 ¨ γ2q. We show next that the double interaction term yields for-
mula (15). The new computation that is needed for understanding the interaction term is
pHk1,k2 . It is convenient to assemble the expressions into a generating series pHpx1, x2q.
To compute pHpx1, x2q, we must move all negative Heisenberg operators in the product

of the vertex operators HGWpx1qHGWpx2q to the left, next to the vacuum x |. We use the
standard vertex operator commutation relation to perform this reshuffling:

(119) V`px1, y1qV´px2, y2q “ Bpx1, y1, x2, y2qV´px2, y2qV`px1, y1q ,

B “ pw2 ´ y1qpy2 ´ w1q
py2 ´ y1qpw2 ´ w1q ,

where wi “ wpxi, yiq. Using the computations of Section 8.1, we derive the following
expansion:

B “ 1 ´ r2y1y2x1x2

py1 ´ y2q2py1 ` 1qpy2 ` 1q ` Opr3q .

The negative Heisenberg operators interact with the vacuum x |. We obtain:

pHpx1, x2q “ Resy1“8pResy2“8pVp1q
` V

p2q
` Dp1qDp2qEp1qEp2qBp12qqq ,

where V
piq
` “ V`pxi, yiq, Dpiq “ Dpxi, yiq, Epiq “ Epxi, yiq.

From (118), we see

pHpx1qpHpx2q “
ˆ
Resy1“8 Ep1q ¨ Dp1q ¨ Vp1q

`

˙ˆ
Resy2“8 Ep2q ¨ Dp2q ¨ Vp2q

`

˙
“

Resy1“8pResy2“8pVp1q
` V

p2q
` Dp1qDp2qEp1qEp2qqq ,

where the second equality holds because V
piq

` commute. We conclude, after the change of

variables, the generating function rHpx1, x2q for rHk1,k2 is given by

rHpx1, x2q “ 1

r2t

´
pHpx1, x2q ´ pHpx1qpHpx2q

¯
“ RespVp1q

` V
p2q
` Dp1qDp2qEp1qEp2qrBp12qq{pr2t3q ,

where Res “ Resv1“8 Resv2“8 and rBp12q “ Bp12q ´ 1. By expanding the scalar factor

Dp1qDp2qEp1qEp2qrBp12q{pr2t3q
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in the operator inside the residue operation, we obtain:

(120)
tv1v2x1x2

pv1 ´ v2q2pv1 ` tqpv2 ` tq exp
´x1v1 ` x2v2

u

¯ˆv1 ` t

t
` x1Σ

p1q ` x21t

v2 ` t
Σp1qΣp1q

˙

ˆ
v2 ` t

t
` x2Σ

p2q ` x22t

v2 ` t
Σp2qΣp2q

˙
` Opt2q ` Opr2q .

The residue of the coefficient in front of t´1 in (120) vanishes. The coefficient in front of
t0 is

exp
´x1v1 ` x2v2

u

¯ x1x2

pv1 ´ v2q2
`
v2p1 ` x1Σ

p1qq ` v1p1 ` x2Σ
p2qq

˘
.

After applying the Res operation, we obtain:

Resv1“8 Resv2“8 exp
´x1v1 ` x2v2

u

¯ x21x2v2

pv1 ´ v2q2Σ
p1q.

The coefficient in front of xk1`2
1 xk2`2

2 in the last expression matches with the a-linear terms
of right side of (15) that are proportional to c01.
Finally, we compute the coefficient in front of t1 in (120):

x1x2

pv1 ´ v2q2
exp

´x1v1 ` x2v2

u

¯ “
x1x2Σ

p1qΣp2q ` x21v2Σ
p1qΣp1q ` x22v1Σ

p2qΣp2q

`
ˆ
1

v 1
` 1

v 2

˙`
v2p1 ` x1Σ

p1qq ` v1p1 ` x2Σ
p2qq

˘
.

The residue of the terms from the first line of the last expression form the generating func-
tion of the a-quadratic terms of the right hand side of (15). The residue of the terms from
the second line of the last expression form the generating function of the c1-proportional
a-linear terms of the right side of (15). �

8.2.3. Case rHk1`1,k2`1,k3`1pγ1 ¨ γ2 ¨ γ3q. Finally, we must analyze the triple interaction.
The computation here is parallel to computations in Sections 8.2.1 and 8.2.2. The new
ingredient for the triple bumping reaction is the residue formula:

pHpx1, x2, x3q “ Res
´
V

p1q
` V

p2q
` V

p3q
` Dp1qDp2qDp3qEp1qEp2qEp3qBp12qBp23qBp13q{pr4t5q

¯

for the generating function of the operators pHk1,k2,k3 . Here and below Res stands for the
triple residue

Resv1“8 Resv2“8 Resv3“8 .

The generating function rHpx1, x2, x3q for the operators rHk1,k2,k3 is given by:

pHpx1, x2, x3q ´ pHpx1, x2qpHpx3q ´ pHpx1, x3qpHpx2q ´ pHpx2, x3qpHpx1q ` 2pHpx1qpHpx2qpHpx3q .
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We expand the above as

1

r4t5
Res

´
V

p1q
` V

p2q
` V

p3q
` Dp1qDp2qDp3qEp1qEp2qEp3q

´
rBp12qrBp23qrBp13q ` rBp12qrBp23q ` rBp12qrBp13q ` rBp23qrBp13q

¯¯
.

Since rBp12qrBp23qrBp13q is proportional to r6, we can write the last expression as

1

r4t5
Res

´
V

p1q
` V

p2q
` V

p3q
` Dp1qDp2qDp3qEp1qEp2qEp3q

´
rBp12qrBp23q ` rBp12qrBp13q ` rBp23qrBp13q

¯¯

up to Opr2q.
After expanding the expression inside Res, including the prefactor 1

r4t5
, we obtain:

t2
ˆ
v1 ` t

t
` x1Σ

p1q

˙ˆ
v2 ` t

t
` x2Σ

p2q

˙ˆ
v3 ` t

t
` x3Σ

p3q

˙

ˆ exp
´x1v1 ` x2v2 ` x3v3

u

¯
¨
´
fp12; 23q ` fp23; 31q ` fp31; 12q

¯
` Optq ,

where

fpij; jkq “
viv

2
j vkxix

2
jxk

pvi ´ vjq2pvj ´ vkq2pvi ` tqpvj ` tq2pvk ` tq .

The application of Res to the coefficient in front of t´1 in the last expression yields zero.
On the other hand, the coefficient in front of t0 equals

x1x2x3
`
v2v3p1 ` x1Σ

p1qq ` v1v3p1 ` x2Σ
p2qq ` v1v2p1 ` x3Σ

p3qq
˘

ˆ exp
´x1v1 ` x2v2 ` x3v3

u

¯

ˆ
ˆ

x2

pv1 ´ v2q2pv2 ´ v3q2
` x3

pv1 ´ v3q2pv3 ´ v2q2
` x1

pv3 ´ v1q2pv1 ´ v2q2
˙
.

The result of application of Res is therefore equal to the generating function of the right
side of (16). �

9. Degree 1 series for P3

9.1. Stationary descendent series. We provide a complete table of the stationary sta-
ble pair descendent series for projective P3 in degree 1. Our notation is given by three
vectors Vp, VL, VH of non-negative integers which specify the stationary descendents with
cohomology insertions

p, L,H P H˚pP3q
corresponding to the point, line, and hyperplane classes respectively. For example, the
data r1, 2s, r4, 9s, r6s corresponds to the descendent

ch3ppqch4ppqch6pLqch11pLqch8pHq .
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In the table, below the full descendent series is given as rational function in q.

rs, r0, 1s, r1s qp3q2 ´ 5 q ` 3q
r1s, r0s, rs qpq2 ´ 1q{2
r0s, r0, 0s, rs qpq ` 1q2
r0s, r1s, rs 3qpq2 ´ 1q{2
rs, r0, 0, 1s, rs 2qpq2 ´ 1q
rs, r1, 1s, rs 5qpq ´ 1q2{2
rs, r0, 2s, rs qp5q2 ´ 14q ` 5q{6
r1s, rs, r1s 3qpq ´ 1q2{4
rs, r0, 0, 0s, r1s 3qpq2 ´ 1q
rs, r2s, r1s 5qpq´1q3

4p1`qq

r0s, rs, r1, 1s 3qp3q2 ´ 2q ` 3q{4
rs, r0, 0s, r1, 1s qp9q2 ´ 10q ` 9q{2
rs, r1s, r1, 1s qpq´1qp9q2´2q`9q

2p1`qq

rs, r0s, r1, 1, 1s qpq´1qp27q2`14q`27q
4p1`qq

r0s, rs, r2s qp5q2 ´ 2q ` 5q{4
rs, r0, 0s, r2s 2qpq2 ´ q ` 1q
rs, r1s, r2s qpq´1qp9q2´2q`9q

4p1`qq

rs, rs, r1, 1, 2s qp9q2 ´ 14q ` 9q{2
rs, rs, r2, 2s qp17q2 ´ 30q ` 17q{8
rs, r0s, r3s qpq´1qp9q2´2q`9q

12p1`qq

rs, rs, r1, 3s qp9q2 ´ 22q ` 9q{8
r0s, r0s, r1s 3qpq2 ´ 1q{2
rs, rs, r4s qpq2 ´ 5q ` 1q{6
rs, r3s, rs qpq´1qpq2´8q`1q

6p1`qq

r2s, rs, rs qpq2 ´ 10q ` 1q{12
rs, r0s, r1, 2s qpq´1qp3q2`q`3q

p1`qq

r0, 0s, rs, rs qpq ` 1q2
rs, r0, 0, 0, 0s, rs 2qpq ` 1q2
rs, rs, r1, 1, 1, 1s qp81q2 ´ 102q ` 81q{2

The symmetry in the above series is a consequence of the functional equation, see [21,
Section 1.7]. In the stationary case, the stable pairs series are equal to the corresponding
descendent series for the Donaldson-Thomas theory of ideal sheaves, see [18, Theorem 22].

9.2. Descendents of 1. We tabulate here descendent series of P3 in degree 1 with descen-
dents of the identity 1 P H˚pP3q together with stationary descendents specified as before
by a triple of vectors.
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‚ With ch4p1q and the rest stationary:

rs, r1s, r1s qp21 q4`37 q3´88 q2`37 q`21q
6p1`qq2

rs, r0, 1s, rs 7 q pq ´ 1q p1 ` qq {3
rs, rs, r1, 2s qpq´1qp21 q4`79 q3`86 q2`79 q`21q

6p1`qq3

r0s, rs, r1s 7 q pq ´ 1q p1 ` qq {4
rs, r0, 0s, r1s 7 q pq ´ 1q p1 ` qq {2
rs, r0s, r1, 1s qp63 q4`116 q3´134 q2`116 q`63q

12p1`qq2

r0s, r0s, rs q p7 q2 ` 2 q ` 7q {6
r1s, rs, rs 7 q pq ´ 1q p1 ` qq {12
rs, r0, 0, 0s, rs q p7 q2 ` 2 q ` 7q {3
rs, r2s, rs qp35 q4`56 q3´318 q2`56 q`35q

36p1`qq2

rs, rs, r3s qpq´1qp63 q4`232 q3`218 q2`232 q`63q
72p1`qq3

rs, r0s, r2s qp7 q4`13 q3´18 q2`13 q`7q
3p1`qq2

‚ With ch5p1q and the rest stationary:

r0s, rs, rs 3 q pq ´ 1q p1 ` qq {4
rs, r0, 0s, rs 4 q pq ´ 1q p1 ` qq {3
rs, r1s, rs qp17 q4`24 q3´106 q2`24 q`17q

12p1`qq2

rs, rs, r1, 1s qpq´1qp9 q4`31 q3`14 q2`31 q`9q
3p1`qq3

rs, rs, r2s qpq´1qp33 q4`112 q3`38 q2`112 q`33q
24p1`qq3

rs, r0s, r1s qp3 q`1qpq`3qp4 q2´7 q`4q
6p1`qq2

‚ With ch4p1qch4p1q and the rest stationary:

rs, r0s, r1s qpq´1qp49 q4`196 q3`534 q2`196 q`49q
12p1`qq3

r0s, rs, rs q p49 ` 2 q ` 49 q2q {36
rs, r0, 0s, rs q p49 ` 2 q ` 49 q2q {18
rs, r1s, rs qpq´1qp49 q4`196 q3`654 q2`196 q`49q

18p1`qq3

rs, rs, r1, 1s qp441`1754 q`4007 q2´3252 q3`4007 q4`1754 q5`441 q6q
72p1`qq4

rs, rs, r2s qp49`195 q`459 q2´454 q3`459 q4`195 q5`49 q6q
18p1`qq4
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‚ With ch6p1q and the rest of stationary:

rs, r0s, rs qp17 q4`20 q3´114 q2`20 q`17q
36p1`qq2

rs, rs, r1s qpq´1qp17 q4`48 q3´58 q2`48 q`17q
24p1`qq3

‚ With ch4p1qch4p1qch4p1q and the rest stationary:

rs, r0s, rs qp343 q6`1374 q5`249 q4`11396 q3`249 q2`1374 q`343q
108p1`qq4

rs, rs, r1s qpq´1qp343 q6`2058 q5`3705 q4`29900 q3`3705 q2`2058 q`343q
72p1`qq5

‚ With ch5p1qch4p1q and the rest stationary:

rs, rs, r1s qp84`331 q`928 q2´1878 q3`928 q4`331 q5`84 q6q
36p1`qq4

rs, r0s, rs 2qpq´1qp7`28 q`87 q2`28 q3`7 q4q
9p1`qq3

‚ Without stationary descendents:

ch7p1q qpq´1qp2`3 q´28 q2`3 q3`2 q4q
18p1`qq3

ch5p1qch5p1q 5qp13`50 q`179 q2´580 q3`179 q4`50 q5`13 q6q
72p1`qq4

ch4p1qch6p1q qp119`462 q`1737 q2´5852 q3`1737 q4`462 q5`119 q6q
216p1`qq4

ch4p1qch4p1qch5p1q qp´49´245 q´81 q2´6365 q3`6365 q4`81 q5`245 q6`49 q7q
27p1`qq5

ch4p1qch4p1qch4p1qch4p1q qp2401`14405 q`55690 q2´594229 q3`1834570 q5´594229 q5`55690 q6`14405 q7`2401 q8q
648p1`qq6

9.3. Examples of the Virasoro relations.

9.3.1. LPT
2 . Examples of the Virasoro relations for LPT

1 were given in [21, Section 3]. We
consider here the operator LPT

2 for X “ P3.
The Chern classes of the tangent bundle of P3 are

c1 “ 4H , c1c2 “ 24p ,

The constant term for k “ 2 is

T2 “ ´1

2

ÿ

a`b“4

p´1qdLdRpa` dL ´ 3q!pb ` dR ´ 3q! chachbpc1q ` 1

24

ÿ

a`b“2

a!b! chachbpc1c2q

“ ´8ch4pHq ` 8ch2pHqch2ppq ´ 2ch2pLq2 ´ 4ch2ppq,
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where we used the evaluation ch0pγq “ ´
ş
X
γ and dropped all the terms with ch1. The

Virasoro operator for k “ 2 is then

L
PT
2 “ T2 ` R2 ` 3!R´1ch3ppq

“ ´8ch4pHq ` 8ch2pHqch2ppq ´ 2ch2pLq2 ´ 4ch2ppq ` R2 ` 3!R´1ch3ppq .

Since our examples will be for curves of degree 1 in P3 and since

ch2pHq “ H ¨ β ,

we can simplify the operator even further:

L
PT
2,β“L “ ´8ch4pHq ` 10ch2ppq ´ 2ch2pLq2 ` R2 ` 6ch3ppqR´1.

9.3.2. Stationary example. Let us check the Virasoro constraints of Theorem 4 for k “ 2
and

D “ ch3pHqch2pLq .
The constant term part of the relation has three summands:

´8xch4pHqch3pHqch2pLqyL “ ´8qpq ´ 1qp3q2 ` q ` 3q
1 ` q

,

10xch2ppqch3pHqch2pLqyL “ 15qpq2 ´ 1q ,
´2xch2pLq2ch3pHqch2pLqyL “ ´6qpq2 ´ 1q .

The rest of the relation can be divided into two parts. The first part is R2pDq which has
two terms:

6xch3pHqch4pLqyL “ 15qpq ´ 1q3
2p1 ` qq ,

6xch5pHqch2pLqyL “ qpq ´ 1qp9q2 ´ 2q ` 9q
2p1 ` qq .

The second part is

6xch3ppqR´1pDqyL “ 6xch3ppqch2pHqch2pLqyL ` 6xch3ppqch3pHqch1pLqyL
“ 6xch3ppqch2pLqyL
“ 3qpq2 ´ 1q .

Using the cancellation of poles

´8xch4pHqch3pHqch2pLqyL ` 6xch3pHqch4pLqyL ` 6xch5pHqch2pLqyL “ ´12qpq2 ´ 1q ,

we easily verify the Virasoro relation
A
L

PT
2 pch3pHqch2pLqq

EX,PT

L
“ 0 .
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9.3.3. Non-stationary example. Let us check the Virasoro relation LPT
2,β“L for

D “ ch5p1q ,
a non-stationary case (not covered by Theorem 4, but implied by Conjecture 3).
The constant term part of the relation has three summands:

´8xch4pHqch5p1qyL “ ´ q pq ´ 1q p33 q4 ` 112 q3 ` 38 q2 ` 112 q ` 33q
3 p1 ` qq3

,

10xch2ppqch5p1qyL “ 15

2
q pq ´ 1q p1 ` qq ,

´2xch22pLqch5p1qyL “ ´8

3
q pq ´ 1q p1 ` qq .

The rest of the relation can be divided into two parts:

24xch7p1qyL “ 4q pq ´ 1q p2 ` 3 q ´ 28 q2 ` 3 q3 ` 2 q4q
3 p1 ` qq3

,

6xch3ppqch4p1qyL “ 7

2
q pq ´ 1q p1 ` qq .

After a remarkable cancellation of poles,

´8xch4pHqch5p1qyL ` 24xch7p1qyL “ ´25

3
qpq ´ 1qp1 ` qq ,

we verify the Virasoro relation
A
L

PT
2 pch5p1qq

EX,PT

L
“ 0 .

References

[1] K. Behrend and B. Fantechi, The intrinsic normal cone, Invent. Math. 128 (1997), 45–88.
[2] T. Bridgeland, Hall algebras and curve-counting invariants, JAMS 24 (2011), 969–998.
[3] T. Eguchi, K. Hori, Ch. Xiong, Quantum cohomology and Virasoro algebra, Phys. Lett. B 402 (1997),

no. 1-2, 71–80.
[4] C. Faber and R. Pandharipande, Hodge integrals and Gromov-Witten theory, Invent. Math. 139

(2000), 173–199.
[5] W. Fulton and R. Pandharipande, Notes on stable maps and quantum cohomology, in Proceedings of

Algebraic Geometry – Santa Cruz (1995), Proc. Sympos. Pure Math. 62, 45–96.
[6] E. Getzler, The equivariant Toda lattice, Publ. Res. Inst. Math. Sci. 40 (2004), no. 2, 507–536.
[7] E. Getzler and R. Pandharipande, Virasoro constraints and the Chern classes of the Hodge bundle,

Nuclear Phys. B 530 (1998), 701–714.
[8] A. Givental, Gromov-Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J.

1 (2001), no. 4, 551–568.
[9] T. Graber and R. Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999), no. 2,

487–518.
[10] H. Iritani, Convergence of quantum cohomology by quantum Lefschetz, Journal für die Reine und

Angewandte Mathematik 610 (2007), 29–69.
[11] Ch. Kassel, Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995.



VIRASORO CONSTRAINTS FOR STABLE PAIRS ON TORIC 3-FOLDS 65

[12] M. Kontsevich, Intersection theory on the moduli space of curves and the matrix Airy function, Comm.
Math. Phys. 147 (1992), no. 1, 1—23.

[13] J. Li and G. Tian, Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, JAMS
11 (1998), 119–174.

[14] D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-
Thomas theory. I, Compos. Math. 142, (2006), no. 5, 1263–1285.

[15] D. Maulik, N. Nekrasov, A. Okounkov, R. Pandharipande, Gromov-Witten theory and Donaldson-
Thomas theory. II, Compos. Math. 142, (2006), no. 5, 1286–1304.

[16] D. Maulik, A. Oblomkov, A. Okounkov, R. Pandharipande, GW/DT correspondence for toric vari-
eties, Invent. Math. 186, (2011), no. 2, 435–479.

[17] M. Moreira, Virasoro constraints for the stable pairs descendent theory of simply connected 3-folds
(with applications to the Hilbert scheme of points of a surface), J. Lond. Math. Soc. (to appear),
arXiv:2008.13746.

[18] A. Oblomkov, A. Okounkov, and R. Pandharipande. GW/PT descendent correspondence via vertex
operators, Comm. Math. Phys 374 (2020), 1321–1359.

[19] A. Okounkov and R. Pandharipande, Virasoro constraints for target curves, Invent. Math. 163, (2006),
no. 1, 47–108.

[20] R. Pandharipande. Three questions in Gromov-Witten theory, Proceedings of the ICM (Beijing 2002),
Vol. II, 503–512.

[21] R. Pandharipande, Descendents for stable pairs on 3-folds, Modern Geometry: A celebration of the
work of Simon Donaldson, Proc. Sympos. Pure Math. 99 (2018), 251–288. arXiv:1703.01747.

[22] R. Pandharipande, Cohomological field theory calculations, Proceedings of the ICM (Rio de Janeiro
2018), Vol I, Plenary lectures, 869–898, World Sci. Publications: Hackensack, NJ, 2018.

[23] R. Pandharipande and A. Pixton, Descendents on local curves: Rationality, Comp. Math. 149 (2013),
81–124.

[24] R. Pandharipande and A. Pixton, Descendents on local curves: Stationary theory in Geometry and
arithmetic, 283–307, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2012.
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