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§I. Abelian varieties

A complex torus X of dimension g is a quotient

X = Cg/Λ ,

where Λ ⊂ Cg is a lattice Λ ∼= Z2g (independent over R).

Topologically,
X ∼= S1 × · · · × S1︸ ︷︷ ︸

2g

.

In dimension g = 1, complex tori are elliptic curves:

X = C / 〈1, τ〉 , Im(τ) > 0 .



The moduli space of elliptic curves A1 = H1/SL2(Z) is a quotient
of the upper half space

H1 = { τ ∈ C | Im(τ) > 0 }

by the action of SL2(Z) via linear fractional transformations:



While complex tori are always compact complex manifolds,
complex tori of dimension g ≥ 2 are not always algebraic varieties.

A complex torus with an ample line bundle is an abelian variety.
The existence of an ample line bundle (a polarization) imposes
further conditions on the lattice Λ.

Abelian varieties with principal polarizations are of the form

X = Cg/Λ ,

where Λ ⊂ Cg is generated by the g basis vectors

(1, 0, . . . , 0) , (0, 1, 0, . . . , 0) , . . . , (0, . . . , 0, 1)

together with the columns of a g × g symmetric matrix τ with
positive definite imaginary part

Im(τ) > 0 .



The upper half plane for τ in dimension 1 generalizes to the Siegel
upper half space for τ in higher dimensions:

Hg = { τ ∈ SymMatg×g (C) | Im(τ) > 0 } .

The moduli space of principally polarized abelian varieties

Ag = Hg/Sp2g (Z) , dimC Ag =

(
g + 1

2

)
,

is a quotient of the Siegel upper half space by the action of
Sp2g (Z) by a sort of linear fractional transformation:

For

(
A B
C D

)
∈ Sp2g (Z) and τ ∈ Hg ,

(
A B
C D

)
· τ =

Aτ + B

Cτ + D
∈ Hg .



§II. Tautological classes on Ag

The Hodge bundle E on Ag is a C-vector bundle of rank g :

The Chern classes of E are

λi = ci (E) ∈ H2i (Ag ,Q) .



A result parallel to the Madsen-Weiss Theorem for the moduli
space of curves holds:

Theorem (Borel 1974):

lim
g→∞

H∗(Ag ,Q) = Q[λ1, λ3, λ5, . . .] .

Question: Why are no λ classes of even degree needed?

Answer: Because of Mumford’s relation

c(E⊕ E∗) = 1 ∈ H∗(Ag ,Q)

which expands fully as

(1 + λ1 + λ2 + . . .+ λg ) · (1− λ1 + λ2 + . . .+ (−1)gλg ) = 1 .



For fixed dimension g , we take Borel’s result as motivation to
restrict our attention to the tautological algebra

R∗(Ag ) ⊂ CH∗(Ag ,Q)

defined (by van der Geer (1996)) to be generated by the λ classes.



Question: What is the structure of the algebra R∗(Ag )?

Question: What is the ideal of relations

0→ Jg → Q[λ1, λ2, . . . , λg ]→ R∗(Ag )→ 0 ?

Theorem (van der Geer 1996):

R∗(Ag ) =
Q[λ1, λ2, . . . , λg ]〈

λg = 0 , c(E⊕ E∗) = 1
〉 .

The beautiful proof depends upon the
algebra satisfying Poincaré duality with
socle in degree

(g
2

)
.



§III.Cycle questions

Question: Are there any classes of algebraic cycles in CH∗(Ag )
which are not tautological?

• Are the classes of products

Ag1 ×Ag2 → Ag1+g2

tautological in CH∗(Ag1+g2)?

The product loci are the simplest Nother-Lefschetz loci:
loci of abelian varieties with extra line bundles.

• Are the classes of more general Noether-Lefschetz loci
tautological?



The moduli of curves and abelian varieties are related via the
Torelli map:

Tor :Mc
g → Ag

defined by the Jacobian of stable curves of compact type,

Tor([C ]) = [Jac(C )] .

A stable curve [C ] ∈Mc
g of compact type is a connected nodal

curve with only separating nodes:

The Jacobian of multidegree 0 line bundles on C is a principally
polarized abelian variety of dimension g , [Jac(C )] ∈ Ag .



For a nonsingular curve C of genus g ,

Jac(C ) = H0(C ,Ω1
C )∗/H1(C ,Z) .

Question: Is Tor∗[Mc
g ] ∈ CH∗(Ag ) tautological?

Question: Does the pull-back

Tor∗ : CH∗(Ag )→ CH∗(Mc
g )

yield information about tautological cycles?

To say more, we return to cycles on the moduli space of curves.



§IV. Pixton’s relations onMg ,n

We define tautological classes Rd
g ,A associated to the data:

• g , n ∈ Z≥0 satisfying 2g − 2 + n > 0 ,

• A = (a1, . . ., an), ai ∈ {0, 1} ,

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3 .

Pixton’s relations then take the form

Rd
g ,A = 0 ∈ CHd(Mg ,n,Q) .

The formula for Rd
g ,A requires more detail than can be given here,

but the shape can be easily shown.



We saw the following two series yesterday:

B0(T ) =
∞∑
i=0

(6i)!

(2i)!(3i)!
(−T )i = 1− 60T + 27720T 2 · · · ,

B1(T ) =
∞∑
i=0

(6i)!

(2i)!(3i)!

1 + 6i

1− 6i
(−T )i = 1 + 84T − 32760T 2 · · · .

• These series control the original set of Faber-Zagier relations.

• These series control Pixton’s relations.

Let Gg ,n be the finite set of stable graphs of genus g with n legs.
For example, G1,2 has 5 elements:



The formula for Rd
g ,A is a sum over stable graphs,

Rd
g ,A =

∑
Γ∈Gg,n

1

2h1(Γ)

[
Γ,
∏
Kv

∏
Ψ`

∏
∆e

]
d

where MΓ is the moduli space associated to Γ,

Kv , Ψ` , ∆e ∈ H∗(MΓ) ,

[Γ,
∏
Kv
∏

Ψ`
∏

∆e ] is the push-forward to Mg ,n of

1

|Aut(Γ)|
∏

v∈Vertex(Γ)

Kv

∏
`∈Leg(Γ)

Ψ`

∏
e∈Edge(Γ)

∆e ∩ [MΓ]

and [...]d extracts the part in CHd(Mg ,n).



Rd
g ,A =

∑
Γ∈Gg,n

1

2h1(Γ)

[
Γ,
∏
Kv

∏
Ψ`

∏
∆e

]
d

• Vertex Kv , leg Ψv , and edge ∆e factors have explicit formulas in
terms of the κ and ψ classes and the series B0 and B1.

• Edge factor is the most interesting:



For e ∈ Edge(Γ), the formula for the edge factor is:

∆e =
2− B0(ψ′)B1(ψ′′)− B1(ψ′)B0(ψ′′)

ψ′ + ψ′′

= −24 + 5040(ψ′ + ψ′′) + . . . .

The numerator of ∆e is divisible by the denominator by the identity

B0(T )B1(−T ) + B1(T )B0(−T ) = 2 .

Warning: A parity factor has been omitted for simplicity.



Theorem (P-Pixton-Zvonkine 2013): For 2g − 2 + n > 0,

ai ∈ {0, 1}, and d >
g−1+

∑n
i=1 ai

3 , the Pixton relation holds

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

• Proof is by the 3-spin CohFT path used for the Faber-Zagier
relations. The geometry there naturally concerns Mg ,n.

• The Theorem captures everything we have seen: the cross-ratio,
the Getzler relation, the Belorousski-P relation, and the
Faber-Zagier relations (by restriction).

• By Janda’s results, Pixton’s relations hold in the Chow theory of
algebraic cycles:

Rd
g ,A = 0 ∈ CHd(Mg ,n,Q) .



Mumford, in his foundational paper (1983)

Towards an enumerative geometry of the moduli space of curves,

opened the study of the algebra of tautological classes.

Pixton’s relations provide the first proposal for their calculus

parallel to the Schubert calculus for Gr(r , n).

Conjecture (Pixton 2012): These relations are the complete

set of relations among tautological classes on Mg ,n.

Pixton’s relation can be restricted to the moduli space Mc
g of

curves of compact type (by setting to 0 all terms associated to
graphs Γ with non-separating edges).



Three Conjectures from Pixton’s relations:

For nonsingular and compact type curves, tautological classes are
defined by restriction from stable curves

Mg ,n ⊂Mc
g ,n ⊂Mg ,n .

• The restriction to Mg ,n is the complete set of relations among
tautological classes on Mg ,n.

[The n = 0 case recovers the Faber-Zagier relations and
Conjecture A from yesterday.]

• The restriction to Mc
g ,n is the complete set of relations among

tautological classes on Mc
g ,n.

• On Mg ,n, the relations are the complete set of relations among
tautological classes on Mg ,n.



§V. Pull-back via Torelli

The Hodge bundle E on Mc
g is defined by

The Torelli map Tor :Mc
g → Ag respects the Hodge bundles

Tor∗(E) = E .



The Chern classes of E→Mc
g lie in the tautological algebra by

Mumford’s calculations:

λi = ci (E) ∈ R i (Mc
g ) .

Let Λ∗(Mc
g ) ⊂ R∗(Mc

g ) be generated by λ1, . . . , λg , then

Tor∗ : R∗(Ag )→ Λ∗(Mc
g ) .

In genus g = 5, we have

dimQ Λ∗(Mc
5) = 11 , dimQ R∗(Mc

5) = 66 ,

so Λ∗(Mc
g ) is a small subspace of R∗(Mc

g ).



We return to the simplest question about cycles on Ag :

[A1 ×Ag−1]
?
∈ Rg−1(Ag ) .

The idea is to compute the Torelli pull-back and ask

Tor∗[A1 ×Ag−1]
?
∈ Λg−1(Mc

g ) .

A refined statement is possible using various tricks:

Lemma (Canning-Oprea-P 2022): If [A1×Ag−1] ∈ Rg−1(Ag ),
then we must have

Tor∗[A1 ×Ag−1] =
(−1)gg

6B2g
λg−1 ∈ Rg−1(Mc

g ).



Motivated by the Lemma, define

∆g = Tor∗[A1 ×Ag−1]− (−1)gg

6B2g
λg−1 ∈ CHg−1(Mc

g ) .

The outcome is an obstruction:

[A1 ×Ag−1] ∈ Rg−1(Ag ) ⇒ ∆g = 0 ∈ CHg−1(Mc
g )

Can we calculate Tor∗[A1 ×Ag−1]?

Yes, using Fulton’s excess intersection theory.



We must study the subscheme

Tor−1(A1 ×Ag−1) ⊂ Mc
g .

• Irreducible components of Tor−1(A1 ×Ag−1) are in bijective

correspondence with Part(g − 1):

• Irreducible components are usually excess dimensional and
intersect in a complicated configuration of strata in Mc

g .



• In genus g = 6, a complete list of strata (indexing intersections
of irreducible components) is:



Excess intersection theory ⇒

Tor∗[A1 ×Ag−1] =
∑

All strata Γ

Cont(Γ) .

• Sum is over all strata of Tor−1(A1 ×Ag−1).

• Cont(Γ) is a tautological class on MΓ.



We are now in a position to check

∆g
?
= 0 ∈ Rg−1(Mc

g )

using Admcycles (a SAGE package which calculates in the

tautological algebra of the moduli of curves using Pixton’s

relations).

Admcycles calculations show

∆g=0 for g = 1, 2, 3, 4, 5 .

We know Pixton’s relations are complete for Mc
g≤5.

The most interesting case is g = 6.



§VI. Genus g = 6

The first result provides full knowledge of R∗(Mc
6).

Theorem (Canning-Larson-Schmitt 2023): Pixton’s relations
are complete for Mc

6.

• For all g , by Faber-P (2003),

R2g−3(Mc
g ) ∼= Q , R>2g−3(Mc

g ) = 0 .

• For Pixton’s conjecture, non-vanishing must be proven after his
relations are imposed. The ranks of the pairings

Rk(Mc
6)× R9−k(Mc

6)→ R9(Mc
6) ∼= Q

can be computed by Admcycles and show Pixton’s relations are
complete in all cases with the possible exception of R5(Mc

6).



• Pixton predicts dimQ R5(Mc
6) = 72, but the corresponding

pairing rank has dimension 71.

• The proof is completed by establishing the exact sequence

R4(M5,2)
α−→ R5(M6) −→ R5(Mc

6) −→ 0

and computing with Admcycles:

dimQ Im(α) = 916 , dimQ R5(M6) = 988 .

cycles

• The result is the first case where Pixton’s conjecture is proven
without relying only upon the non-vanishings obtained from the
ranks of the pairings.



We can now use Admcycles to calculate ∆6:

Theorem (Canning-Oprea-P 2023): ∆6 6= 0 ∈ R5(Mc
6), so

[A1 ×A5] /∈ R5(A6) .

• The relevant pairing is

R4(Mc
6)× R5(Mc

6)→ R9(Mc
6) ∼= Q

is of rank 71. By Canning-Larson-Schmitt,

dimQ R4(Mc
6) = 71 , dimQ R5(Mc

6) = 72 .

Hence, there is a 1 dimensional kernel of the paring in R5(Mc
6).

• The calculation shows that ∆6 6= 0 is the generator of the kernel
of the pairing.



§VII. Extensions

We may consider extending the tautological algebra

R∗(Ag ) ⊂ H∗(Ag )

by including all classes of product loci

Ag1 ×Ag2 → Ag

where g1 + g2 = g .



Perhaps all Noether-Lefschetz loci with extra line bundles should

be added (and then all loci with extra algebraic Hodge classes).

The difficulty is to say something about the resulting algebra.

From Hodge theory, all Noether-Lefschetz loci carry virtual

fundamental classes of codimension
(g

2

)
. There is a hope here for

further structure:

Speculation (Canning-Oprea-P 2022): The virtual fundamental

classes of the Noether-Lefschetz loci lie in R(g2)(Ag ).



§VIII. Map:
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An abelian variety drawn by Dall-E 2.
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