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Part 1

Frobenius manifolds and Givental’s
formula



In Part 1, Frobenius manifolds are introduced and several topics re-
quired for the statement of Givental’s formula are presented. Semisim-
plicity, canonical coordinates, and fundamental solutions for Frobenius
manifolds are covered in Chapter 1. In Chapter 2, Frobenius manifolds
obtained from Gromov-Witten theory are discussed with a particular
emphasis on the equivariant case. After a presentation of localization
methods in Chapter 3, a complete development of Givental’s material-
ization of canonical coordinates in equivariant Gromov-Witten theory
is given in Chapter 4. The string and dilaton flows are treated in
Chapter 5. Part 1 ends with the statement of Givental’s formula for
higher genus potentials for semisimple conformal Frobenius manifolds
in Chapter 6. The formula for equivariant Gromov-Witten theory is
presented in Chapter 7. We restrict the discussion of Givental’s for-
mula to the case of primary fields. The full descendent formula will be
treated in Parts 2 and 3.



CHAPTER 1

Frobenius manifolds

1. Overview

Frobenius manifolds arise naturally: the quantum cohomology of
a nonsingular projective variety X determines a formal Frobenius su-
permanifold over the Novikov ring of X. In Chapter 1, we will discuss
complex Frobenius manifolds. Frobenius manifolds over the Novikov
ring will be treated in Chapter 2.

If X has only even cohomology, the Frobenius structure determined
by Gromov-Witten theory is even — we will restrict our attention here
to the even case. The supertheory in the odd case is parallel except for
the discussion of semisimplicity and canonical coordinates.

The main result of the Chapter 1 is Theorem 1 concerning flat vector
fields for the Dubrovin connection in canonical coordinates. Theorem
1 plays an essential role in the subject.

2. Frobenius manifolds

2.1. Definitions. An (even) complex Frobenius manifold F con-
sists of four mathematical structures (M, g,A, 1):

• M is a complex manifold of dimension m,
• g is a holomorphic, symmetric, non-degenerate quadratic form

on the complex tangent bundle TM ,
• A is a holomorphic symmetric tensor,

A : TM ⊗ TM ⊗ TM → OM ,

• 1 is a holomorphic vector field on M .

A and g together define a commutative product ∗ on TM by:

〈X ∗ Y, Z〉 = A(X, Y, Z),

where X, Y, Z are holomorphic vector fields and 〈, 〉 denotes the metric
g. A unit vector field is a left and right identity for the ∗-product.

A complex Frobenius manifold F is a quadruple (M, g,A, 1) satis-
fying the following conditions:

(i) Flatness: g is a flat holomorphic metric.
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(ii) Potential: M is covered by open sets U each equipped with a
commuting basis of g-flat holomorphic vector fields,

X1, . . . , Xm ∈ Γ(U, TM),

and a holomorphic potential function Φ ∈ Γ(U,OU) such that

A(Xi, Xj , Xk) = XiXjXk(Φ),

(iii) Associativity: ∗ is an associative product.
(iv) Unit: 1 is a g-flat unit vector field.

The associativity condition (iii) is equivalent to the Witten-Dijkgraaf-
Verlinde-Verlinde equations,

(1) 〈(Xi ∗Xj) ∗Xk, Xl〉 = 〈Xi ∗ (Xj ∗Xk), Xl〉,
for all indices i, j, k, and l.

Let ∇ denote the holomorphic Levi-Civita connection obtained
from the metric. For z ∈ C∗, define the Dubrovin (projective) con-
nection ∇z by

∇z,X(Y ) = ∇X(Y ) − 1

z
X ∗ Y.

The WDVV equations (1) are also equivalent to the flatness of ∇z for
all z 6= 0.

The existence and flatness of the unit vector field V are not always
required in the definition of a complex Frobenius manifold — see, for
example, [15]. We will assume condition (iv) for the complex Frobenius
manifolds considered here.

A C∞-Frobenius manifold is defined by requiring all the structures
(M, g,A, 1) to be defined in the C∞-category.

2.2. Flat coordinates and fundamental solutions. Let F be
a complex Frobenius manifold. Let p be a point of M . As g is flat,
holomorphic flat coordinates t1, . . . , tm may be found in a neighborhood
U of p. Let

∂i =
∂

∂ti

denote the corresponding flat vector fields. The convention,

1 = ∂1

will usually be followed. We not will not assume ti(p) = 0.
Let gij = 〈∂i, ∂j〉, and let gij denote the inverse matrix. The metric

functions gij, g
ij are constant on U (if U is connected).
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A holomorphic vector field F on U may be written locally as
∑

j f
j∂j .

The connection ∇z is determined by:

∇z,iF =
∑

j

∂f j

∂ti
∂j −

1

z
∂i ∗ F,

where ∇z,i denotes ∇z,∂i
.

An m × m fundamental solution matrix Sab(z, t
1, . . . , tm) may be

found near p for the differential equations defining ∇z-flat vector fields:
for all i,

(2) ∇z,i

∑

a,s

Sab(z, t)g
as∂s = 0

with the initial conditions

(3) Sab(z, p) = gab.

In fact, the matrix Sab(z, t) is uniquely defined by the flatness equations
(2) and the initial conditions (3).

In case U is simply connected, the solution matrix S is well-defined
on U with holomorphic coefficients Sab(z, t) ∈ Γ(C∗ × U,OC∗×U).

The initial conditions imply a unitary property at p:
∑

a,a′

Sab(z, p)g
aa′

Sa′b′(−z, p) = gbb′

which is equivalent to

〈
∑

a,s

Sab(z, p)g
as∂s,

∑

a′,s′

Sa′b′(−z, p)ga′s′∂s′〉p = gbb′.

A direct application of the Lemma below proves

(4)
∑

a,a′

Sab(z, t)g
aa′

Sa′b′(−z, t) = gbb′

for all t near 0.

Lemma 1. If W+ and W− are ∇z-flat and ∇−z-flat vector fields on
M , then 〈W+,W−〉 is a locally constant function on M .

Proof. Let X be any holomorphic vector field. Since ∇ is a metric
connection, we find

X〈W+,W−〉 = 〈∇XW+,W−〉 + 〈W+,∇XW−〉.
However, the flatness conditions imply

∇XW+ =
1

z
X ∗W+, ∇XW− = −1

z
X ∗W−.
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By the definition of ∗ and the symmetry of A, we conclude:

X〈W+,W−〉 =
1

z
〈X ∗W+,W−〉 −

1

z
〈W+, X ∗W−〉 = 0.

�

2.3. Conformal Frobenius manifolds. Let F = (M, g,A, 1) be
a complex Frobenius manifold. Let E be a holomorphic vector field on
M . Let LE denote the Lie derivative. E is an Euler vector field on M
if the following three conditions are satisfied:

(i) LE(g) = (2 −D)g for a constant D,
(ii) LE(∗) = r ∗ for a constant r,
(iii) LE(1) = v1 for a constant v.

The Lie derivatives in conditions (i) and (ii) may be written as

(5) LE(g)(X, Y ) = E(g(X, Y )) − g([E,X], Y ) − g(X, [E, Y ]),

X LE(∗) Y = [E,X ∗ Y ] − [E,X] ∗ Y −X ∗ [E, Y ].

A conformal complex Frobenius manifold is a complex Frobenius man-
ifold together with an Euler vector field.

An Euler field is normalized if r = 1. As an arbitrary Euler field
E can be normalized by scaling by the factor 1

r
, we will restrict our

attention to normalized Euler fields.

3. Semisimple Frobenius manifolds

3.1. Characteristic varieties. Let F = (M, g,A, 1) be a com-
plex Frobenius manifold. Let S∗(TM) = ⊕iSymi(TM) denote the
symmetric algebra of the vector bundle TM . There is canonical sur-
jection of sheaves of C-algebras over M :

(6) S∗(TM) → TM → 0,

where the algebra structure on TM is defined by the ∗-product. As
Spec(S∗(TM)) is canonically isomorphic to T ∗M , a canonical embed-
ding

Spec(TM) ⊂ T ∗M

is determined by sequence (6). Spec(TM) is the characteristic subva-
riety of T ∗M determined by the Frobenius structure.

Let p ∈ M . The fiber of the characteristic subvariety over p is

Spec(TMp) ⊂ T ∗Mp.
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A subscheme of an affine space is nondegenerate if the subscheme does
not lie in any linear hypersurface. The fiber Spec(TMp) is a non-
degenerate Artinian subscheme of length m = dimC(M) of TM∗

p . The
structure map of the characteristic variety,

π : Spec(TM) → M,

is finite and flat.

3.2. Semisimple points. An Artinian C-algebra R is semisimple
if there exists an algebra isomorphism

R
∼
= ⊕dim(R)

1 C,

where the direct sum algebra structure is taken on the right. A point
p ∈ M is semisimple if the tangent algebra (TMp, ∗) is a semisimple
algebra. Equivalently, p is semisimple if the characteristic variety is
étale over p.

Let Mss ⊂ M denote the set of semisimple points. The Frobenius
manifold F is defined to be semisimple if Mss ⊂ M is dense. If M is
connected and Mss is non-empty, then F is semisimple.

3.3. Canonical coordinates. LetMss ∈M be the locus of semisim-
ple points. Let Css = π−1(Mss) be the nonsingular open set of the
characteristic subvariety lying over Mss:

Css ⊂ T ∗Mss.

The cotangent space T ∗Mss is a holomorphic symplectic manifold with
a canonical symplectic form ω. The proof of the following result is due
to N. Reshetikhin [10].

Lemma 2. Css is a Lagrangian subvariety of (T ∗Mss, ω).

Proof. Let p ∈ Mss. Let t1, . . . , tm be flat holomorphic coordinates
near p (following the notation of Section 2.2). TM is trivialized near
p by the vector fields ∂i. Let

Ai : TM → TM

denote the endomorphism defined near p by ∗-multiplication with ∂i.
Ai is an m×m matrix of holomorphic functions via the trivialization
of TM ,

∂i ∗ ∂a =
∑

b

[Ai]
b
a∂b.

Let α =
∑

iAidt
i be a matrix valued 1-form. The constraints,

dα = 0, α ∧ α = 0,
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are easily obtained from the potential and associativity conditions in
the definition of F . Here, the wedge product denotes matrix multipli-
cation of matrix valued 1-forms.

As the characteristic subvariety is étale over p, holomorphic 1-forms

γ1, . . . , γm,

γj =
∑

i

γjidt
i

can be found such that Spec(TM) ⊂ T ∗M is the union of the graphs
of γj near p. To prove the characteristic subvariety is Lagrangian over
a neighborhood of p, it suffices to prove all the 1-forms γj are closed.

Since the characteristic subvariety is nondegenerate, a basis of in-
dependent vector fields,

(7) ǫ1, . . . , ǫm,

can be found near p satisfying:

(8) 〈ǫi, γj〉 = δij ,

where 〈, 〉 denotes the canonical pairing between vector fields and 1-
forms. Moreover, the vector fields ǫj and the 1-forms γj are in canon-
ical bijective correspondence. In Section 3.4 below, the vector fields
ǫ1, . . . , ǫm will be seen to determine a basis of idempotents for the ∗-
product.

By the construction of the characteristic subvariety, we find:

Aiǫj = γjiǫj .

The vector field basis ǫ1, . . . , ǫm simultaneously diagonalizes the trans-
formations Ai. The 1-forms γj are therefore in bijective correspon-
dence with the simultaneous eigenspaces Cǫj of the transformations
A1, . . . , Am. The eigenvalue for Ai of the eigenspace corresponding
to γj is simply γji. Since the vector fields ǫ1, . . . , ǫm are indepen-
dent, the simultaneous eigenspaces Cǫ1, . . . ,Cǫm are the complete set
of eigenspaces (each of multiplicity 1).

We will view ǫj and γj as vectors of functions (via their expressions
in the dual bases determined by ∂i and dti respectively) when found
inside the brackets 〈, 〉 on the right side in the main calculation below.
The m×m matrix of functions Ai acts on the vectors ǫj . Similarly, dǫj
and dγj will be vectors of the corresponding 1-forms inside the brackets.
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By definition, γj =
∑m

i=1〈Aiǫj , γj〉dti. The main calculation required
for the Lemma is:

dγj = d
m∑

i=1

〈Aiǫj , γj〉dti

=

m∑

i=1

〈(dAi)ǫj , γj〉dti + 〈Aidǫj, γj〉dti + 〈Aiǫj , dγj〉dti

=

m∑

i=1

〈dǫj , A†
iγj〉dti + 〈Aiǫj , dγj〉dti

= d〈ǫj , γj〉 ∧ γj

= 0.

The third equality uses the relation dα = 0. In the third line, A†
i

denotes the adjoint of Qi with respect to the canonical pairing (8).
The fourth equality uses the relation

A†
iγj = γi

jγj.

The proof of the Lemma is complete. �

The 1-forms γ1, . . . , γm are uniquely specified (up to permutation).
Since dγj = 0, we can find a holomorphic function uj near p satisfying
duj = γj. The function uj is uniquely specified (up to an integration
constant). By the nondegeneracy property, the functions

u1, . . . , um

determine a canonical coordinate system of M near p.
There are two standard methods to specify constants in the con-

struction of canonical coordinates. First, the constants may be fixed by
requiring uj(p) = 0 for all j. Second, in the conformal case, the Euler
field will be shown to provide a canonical specification of the constants
in Lemma 5 of Section 3.6. However, we will view the functions {uj}
as canonical coordinates for any choice of integration constants.

3.4. Idempotents. Let p be a semisimple point of a complex
Frobenius manifold F . Let u1, . . . , um be canonical coordinates de-
fined on an open set U containing p. Define a basis of independent
vector fields ǫ1, . . . , ǫm on U by

ǫi =
∂

∂ui
.

Lemma 3. The vector fields ǫi are idempotents for the ∗-product:
ǫi ∗ ǫj = δijǫi.
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Proof. In canonical coordinates, the characteristic subvariety is the
union of the sections du1, . . . , dum of T ∗M . The Lemma is a direct
consequence of this presentation of the characteristic subvariety. �

3.5. Metric. In the next Lemma, the metric g is shown to be
diagonal in the basis determined by the vector fields ǫi on U .

Lemma 4. Let p ∈ U . The pairing 〈ǫi, ǫj〉p vanishes if and only if
i 6= j.

Proof. Using Lemma 3 and the definition of the ∗-product, we
find:

〈ǫi, ǫj〉p = 〈ǫi ∗ ǫi, ǫj〉p = 〈ǫi, ǫi ∗ ǫj〉p.
As ǫi ∗ ǫj = 0 if i 6= j, we find 〈ǫi, ǫj〉p = 0 in this case. The non-
vanishing of 〈ǫi, ǫi〉p then follows from the nondegeneracy of g. �

3.6. Euler fields. If F is conformal, the Euler field takes a simple
form in canonical coordinates at a semisimple point p ∈M .

Lemma 5. If E is an Euler field satisfying LE(∗) = r∗, then

E = r ·
∑

i

(ui + ci)ǫi

in canonical coordinates (where ci ∈ C are constants).

Proof. Let E =
∑

iE
i(u)ǫi for holomorphic functions Ei(u). Then,

ǫj LE(∗) ǫk = [E, ǫj ∗ ǫk] − [E, ǫj ] ∗ ǫk − ǫj ∗ [E, ǫk]

= −δjk
∑

i

∂Ei

∂uj
ǫi +

∂Ek

∂uj
ǫk +

∂Ej

∂uk
ǫj .

By the conformal property,

ǫj LE(∗) ǫk = r · (ǫj ∗ ǫk) = r · δjkǫj .
Hence, ∂Ei/∂uj = r δij . �

By Lemma 5, there is a unique choice of canonical coordinates (up
to permutation) such that the Euler field takes a homogeneous form:

(9) E = r
∑

i

uiǫi.

In the conformal semisimple case, we will always select canonical coor-
dinates by requiring condition (9).
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4. Canonical coordinates and fundamental solutions

4.1. Coordinate relationships. Let F = (M, g,A, 1) be a com-
plex Frobenius manifold and let p ∈ M be a semisimple point. Let
U ⊂ M be an open set containing p where both flat coordinates and
canonical coordinates are defined. In Section 4, we will use Greek
indices exclusively for flat coordinates {tµ} and Roman indices for
canonical coordinates {ui}. There is a tension between these coor-
dinate choices for F : the metric is trivial in flat coordinates and the
∗-product is trivial in canonical coordinates.

We follow the notation of Section 2.2 for flat coordinates {tµ}. The
coordinate vector fields are {∂µ}. The metric is specified by the sym-
metric matrix gµν = 〈∂µ, ∂ν〉. The inverse matrix is denoted by gµν .

We follow the notation of Section 3.4 for canonical coordinates {ui}.
The coordinate vector fields are {ǫi}. Let

∆i = 〈ǫi, ǫi〉−1.

We assume the existence of square roots
√

∆i of ∆i near p. If U is
simply connected, there exist holomorphic square roots of ∆i since the
functions ∆i do not vanish. The square roots

√
∆i are unique up to

sign.
Define normalized vector fields ǫ̃i by a rescaling:

(10) ǫ̃i =
√

∆iǫi.

The metric pairing is
〈ǫ̃i, ǫ̃j〉 = δij,

where δij denotes the Kronecker symbol. The vector fields ǫ̃i are or-
thonormal.

4.2. The transition matrix. Let Ψ be the transition matrix be-
tween the bases ∂µ and ǫ̃i of vector fields:

∑

µ

aµ∂µ =
∑

i

∑

µ

Ψi
µa

µǫ̃i,

∑

i

biǫ̃i =
∑

µ

∑

i

(Ψ−1)µ
i b

i∂µ.

By the orthonormality of ǫ̃i, the elements of Ψ are:

Ψi
µ = 〈ǫ̃i, ∂µ〉.

By convention, the upper index denotes the row and the lower index
denotes the column.

Lemma 6. The matrix Ψ satisfies:
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(i)
∑

i Ψ
i
µΨ

i
ν = gµν,

(ii)
∑

µ,ν Ψi
µg

µνΨj
ν = δij.

Proof. Both properties follow easily from the definitions:
∑

i

Ψi
µΨ

i
ν =

∑

i,j

Ψi
µΨ

j
ν〈ǫ̃i, ǫ̃j〉

= 〈
∑

i

Ψi
µǫ̃i,

∑

j

Ψj
ν ǫ̃j〉

= 〈∂µ, ∂ν〉
= gµν ,

∑

µ,ν

Ψi
µg

µνΨj
ν =

∑

µ,ν

〈ǫ̃i, ∂µ〉gµν〈∂ν , ǫ̃j〉

= 〈ǫ̃i, ǫ̃j〉
= δij .

�

Denote the transpose of a matrix M by M t. M is skew symmetric
if M +M t = 0.

Lemma 7. ΨdΨ−1 is a skew symmetric matrix of 1-forms.

Proof. Lemma 6 part (ii) may be written in matrix from:

(11) Ψg−1Ψt = 1,

where 1 is the identity matrix. After applying d, we obtain:

(12) dΨg−1Ψt + Ψg−1dΨt = 0,

since g has constant coefficients. From (11), we also obtain

Ψ−1 = g−1Ψt,

dΨ−1 = g−1dΨt,

(13) ΨdΨ−1 = Ψg−1dΨt.

Since g is symmetric,
(dΨ−1)t = dΨg−1.

Hence,

(14) (ΨdΨ−1)t = dΨg−1Ψt

By combining equations (12)- (14), we obtain:

(15) ΨdΨ−1 + (ΨdΨ−1)t = 0,
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concluding the proof of the Lemma. �

Since the diagonal entries of skew symmetric matrices vanish, we
obtain the following result.

Lemma 8. ΨdΨ−1 vanishes along the diagonal.

4.3. Connections in flat and canonical coordinates. Addi-
tional properties of the transition matrix Ψ can be found by studying
the Levi-Civita and Dubrovin connections. We may view these con-
nections as maps:

∇,∇z : Γ(TM) → Γ(TM ⊗ TM∗).

Once a trivialization of TM is selected, the connections define maps:

∇,∇z : Cm ⊗OM → Cm ⊗ Γ(TM∗).

In the {∂µ} basis, the Levi-Civita connection is identified with the
differential,

∇ = d,

and the Dubrovin connection,

∇z = d− 1

z
α,

is determined by the matrix of 1-forms α obtained from the ∗-product
(see Section 3.3).

In the {ǫ̃i} basis, the Levi-Civita connection takes the form:

∇ = d+ ΨdΨ−1.

By the flatness of the metric, ∇2 = 0.

Lemma 9. dΨ ∧ dΨ−1 + ΨdΨ−1 ∧ ΨdΨ−1 = 0.

Proof. Expanding the operator ∇2, we find

∇2 = (d+ ΨdΨ−1)2

= dΨ ∧ dΨ−1 + ΨdΨ−1 ∧ ΨdΨ−1.

As ∇2 = 0, the Lemma follows. �

In the {ǫ̃i} basis, the Dubrovin connection may be written as:

(16) ∇z = ∇− 1

z
du,

where u is the diagonal matrix of functions,

u = Diag(u1, . . . , um).

By the flatness of the Dubrovin connection, ∇2
z = 0.
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Lemma 10. For all indices i and j:

(ΨdΨ−1)i
j ∧ (duj − dui) = 0.

Proof. We may calculate ∇2
z by expanding (16) to obtain:

∇2
z = ∇2 − 1

z
ΨdΨ−1 ∧ du− 1

z
du ∧ ΨdΨ−1 = 0.

The resulting equation,

ΨdΨ−1 ∧ du + du ∧ ΨdΨ−1 = 0,

yields the Lemma. �

4.4. The conformal case. If F is conformal with Euler field E,
we may consider the Lie derivative, LE(ΨdΨ−1), defined by the Lie
derivatives of the coefficient 1-forms.

Lemma 11. In the conformal case, LE(ΨdΨ−1) = 0.

Proof. We may assume E to be normalized. Let {ui} be canonical
coordinates defined by the conformal structure:

E =
∑

i

uiǫi.

Let LE(g) = Dg. We first prove the functions (∆i)−1 are homogeneous
of equal degree.

LE((∆i)−1) = LE(g(ǫi, ǫi))

= LE(g)(ǫi, ǫi) + g(LE(ǫi), ǫi) + g(ǫi,LE(ǫi))

= (D − 2)(∆i)−1.

Equivalently, the functions ∆i are homogeneous of degree 2 −D.
By the definition of the Levi-Civita connection in the coordinates

{ui}, the Christoffel symbols are:

Γi
kj =

1

2
(δij

∂(∆j)−1

∂uk
+ δik

∂(∆k)−1

∂ui
− δkj

∂(∆j)−1

∂ui
)∆i.

As the functions ∆i are homogeneous, we find LE(Γi
kj) = −Γi

kj.
In the basis defined by {ǫi}, the Levi-Civita connection takes the

form:
∇ = d+ Γ,

where Γ is a matrix of 1-forms with coefficients

Γi
j =

∑

k

Γi
kjdu

k.

Since LE(duk) = duk, we find LE(Γ) = 0.
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Let
√

∆ denote the diagonal matrix of functions:
√

∆ = Diag(
√

∆1, . . . ,
√

∆m).

Since the functions ∆i are homogeneous of equal degree, the functions√
∆i must also be homogeneous of equal degree. The transition matrix

from the {ǫi} basis to the {ǫ̃i} basis is
√

∆. The Levi-Civita connection
in the {ǫ̃i} basis is:

∇ = d+
√

∆ d
√

∆
−1

+
√

∆ Γ
√

∆
−1
.

We conclude:

ΨdΨ−1 =
√

∆ d
√

∆
−1

+
√

∆ Γ
√

∆
−1
.

As
√

∆ is homogeneous and LE(Γ) = 0, the Lemma follows immedi-
ately. �

A semisimple Frobenius manifold is trivial at p ∈M if the functions
∆i are constant.

Lemma 12. Let F be conformal. Let p ∈ M be a semisimple point
at which the Euler field vanishes. Then, F is trivial at p.

Proof. Since the Euler field vanishes at p, the canonical coordinates
specified by the conformal structure satisfy uj(p) = 0 for all j. Since
∆i is a holomorphic function at p, ∆i may be expanded in power series
in {uj}. ∆i is an eigenfunction for E if and only if ∆i is a homogeneous
polynomial in the variables {uj}. As ∆i does not vanish at p, ∆i must
be a constant. �

4.5. Fundamental solutions. The most technical part of the
theory of semisimple Frobenius manifolds which will be needed for
Givental’s study of higher genus structures is the study of ∇z-flat vector
fields in canonical coordinates.

Let F = (M, g,A, 1) be a semisimple complex Frobenius manifold.
Let p ∈M be a semisimple point. Let U be a simply connected neigh-
borhood of p carrying both flat {tµ} and canonical {ui} coordinates.

We have already studied the differential equation for ∇z-flat vector
fields in flat coordinates. Following the notation of Section 2.2, the
equation in flat coordinates,

∇z,µ

∑

α,γ

Sαβ(z, t)gαγ∂γ = 0,

with the initial conditions

Sαβ(z, p) = gαβ,
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has a unique solution matrix Sαβ(z, t) with coefficient functions in
Γ(C∗ × U). Let

Sγ
β =

∑

α

Sαβg
αγ,

then a basis of ∇z-flat vector fields is given by
∑

γ S
γ
β∂γ for 1 ≤ β ≤ m.

We will now study the ∇z-flat vector fields in canonical coordinates.
A matrix of functions S̃k

j (z, u) is a fundamental solution in canonical
coordinates if the vector fields

∑

k

S̃k
j ǫ̃k

for 1 ≤ j ≤ m determine a basis of ∇z-flat fields on U . Of course, S̃k
j

is a fundamental solution in canonical coordinates if and only if

Sγ
j = (Ψ−1)γ

kS̃
k
j

is a fundamental solution in flat coordinates.

Theorem 1. The differential equation in canonical coordinates for
∇z-flat fields has the following properties:

(i) Formal fundamental solutions S̃k
j may be found in the form

S̃(z, u) = R(z, u)eu/z,

where R(z, u) is an m×m matrix series in non-negative powers
of z:

R(z, u) =
∞∑

n=0

Rn(u) zn, R0 = 1,

and Rn(u) is a matrix of holomorphic functions on U .
(ii) The matrix series R(z, u) in (i) can be chosen to satisfy the

unitary condition:

R(z, u)Rt(−z, u) = 1.

(iii) If R(z, u) determines a fundamental solution in (i) and satis-
fies the unitary condition, then R(z, u) is unique up to a right
multiplication by a constant (in u) matrix

exp(
∑

k≥1

a2k−1z
2k−1)

where

{ a2k−1 = Diag(a1
1,2k−1, a

2
2,2k−1, · · · , am

m,2k−1) }
are constant diagonal matrices.
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(iv) If F is a conformal complex Frobenius manifold, then there
exists a unique matrix series R(z, u) which determines a fun-
damental solution in (i) and is homogeneous (with deg(z) = 1)
with respect to the conformal structure. The unique homoge-
neous choice R(z, u) is unitary.

Parts (i-iii) of Theorem 1 are valid for any choice of canonical coor-
dinates. For Parts (i-iii), if the canonical coordinates {ui} are chosen to
satisfy ui(p) = 0, then the matrix coefficients of the formal fundamental

solution S̃(z, u) are Laurent series,

(17) S̃k
j (z, u) =

∑

n∈Z

Cn(u) zn,

where Cn(u) ∈ C[[u1, . . . , um]]. The Laurent property (17) is obtained
by expanding the matrix functions Rn(u) at p in power series in {ui}
and then analyzing the product R(z, u)eu/z.

For Part (iv), the canonical coordinates specified by the conformal
structure are required. In this case, ui(p) 6= 0. The product R(z, u)eu/z

then can not be expanded in the form (17). The product R(z, u)eu/z

must be viewed a formal object. Nevertheless, the matrix series R(z, u)
is well-defined.

An R-calibration of a semisimple Frobenius manifold F at p is a
selection of square roots

√
∆i together with a formal fundamental so-

lution S̃k
j satisfying (i) and (ii) of Theorem 1. For fixed

√
∆i, a single

R-calibration determines all the other R-calibrations by (iii).

4.6. Proof of Theorem 1. Theorem 1 is proven by an explicit
construction of formal fundamental solutions.

Part (i). S̃k
j is a fundamental solution in canonical coordinates if and

only if

Sγ
j = (Ψ−1)γ

kS̃
k
j

is a fundamental solution in flat coordinates, or equivalently,

(zd − α)Ψ−1S̃ = 0.

The substitution S̃ = Reu/z then yields:

zdΨ−1Reu/z + zΨ−1dReu/z + Ψ−1Reu/zdu− αΨ−1Reu/z = 0.

After multiplying by e−u/z on the right, we find the main flatness equa-
tion:

zdΨ−1R + zΨ−1dR+ Ψ−1Rdu− αΨ−1R = 0.
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We will construct matrix coefficients (Rn)j
i of the series

R(z, u) =
∞∑

n=0

Rn(u) zn

satisfying the flatness equation inductively in n.
After expanding the flatness equation in powers of z, we find:

(18) Ψ−1R0du− αΨ−1R0 = 0

in degree 0 and

(19) dΨ−1Rk−1 + Ψ−1dRk−1 + Ψ−1Rkdu − αΨ−1Rk = 0

for degrees k ≥ 1.
If R0 = 1, equation (18) specializes to the relation:

(20) du = ΨαΨ−1.

Since the vector fields ǫi are idempotents for the ∗-product, equation
(20) is true. Hence, the matrix R0 = 1 guarantees S̃ = Reu/z satisfies
the flatness equation in degree 0 in z.

Equation (19) for k = 1 may be rewritten (using du = ΨαΨ−1) as:

(21) ΨdΨ−1 = [du, R1].

To construct R1, we first write equation (21) explicitly:

(22) (ΨdΨ−1)j
i = (duj − dui)(R1)

j
i .

By Lemma 10, equation (22) can be solved uniquely to determine the
off-diagonal coefficients of R1. By Lemma 8, ΨdΨ−1 vanishes on the
diagonal. The right side of (22) trivially vanishes on the diagonal for
any matrix R1. The matrix R1 (with as yet unspecified diagonal en-
tries) guarantees S̃ = Reu/z satisfies the flatness equation in degree 1
in z.

For k ≥ 2, equation (19) takes the equivalent form:

(23) ∇Rk−1 = [du, Rk].

As du is a diagonal matrix, the diagonal coefficients of [du, Rk] must
vanish. Therefore, the diagonal coefficients of R1 are constrained by
(23) for k = 2:

(dR1)
i
i +
∑

k

(ΨdΨ−1)i
k(R1)

k
i = 0.

Using, equation (22), we find:

(24) (dR1)
i
i +
∑

k

(dui − duk)(R1)
i
k(R1)

k
i = 0.
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The second term of (24) is determined by the off-diagonal coefficients
of R1. Therefore, if (24) admits a solution, the diagonal coefficients of
R1 are determined up to additive constants.

To prove that equation (24) is solvable, we must show the matrix
of 2-forms,

d(ΨdΨ−1R1),

determined by the off-diagonal coefficients of R1, vanishes along the
diagonal. The first step is a calculation:

d(ΨdΨ−1R1) = dΨ ∧ dΨ−1R1 − ΨdΨ−1 ∧ dR1

= −ΨdΨ−1 ∧ (dR1 + ΨdΨ−1R1)

= −ΨdΨ−1 ∧ ∇R1.

Lemma 9 is used in the second equality above. The computation also
shows the matrix −ΨdΨ−1 ∧ ∇R1 does not depend upon the diagonal
coefficients of R1.

It remains to show that −ΨdΨ−1∧∇R1 vanishes along the diagonal.
Another result is required for this conclusion:

(25) (duj − dui) ∧ (∇R1)
j
i = 0.

Equation (25) is obtained from the following computation:

(duj − dui) ∧ (∇R1)
j
i = (du ∧∇R1 + ∇R1 ∧ du)j

i

= −(∇[du, R1])
j
i

= −(∇(ΨdΨ−1))j
i

= 0.

The second and third equalities both use (21). The fourth equality
follows from Lemma 9. The second equality of the computation shows
that equation (25) does not depend upon the diagonal coefficients of
R1.

As Lemma 10 and equation (25) together imply the matrix

−ΨdΨ ∧ ∇R1

vanishes along the diagonal, the proof of the solvability of (24) is com-
plete. R1 is therefore well-defined up to additive constants on the
diagonals.

For the construction of Rn for n ≥ 2, we start with the following
inductive assumptions at level n:

• The matrices Rk are determined for k < n and equations (18-
19) are satisfied for k < n.

• (duj − dui) ∧ (∇Rn−1)
j
i = 0.

• (∇Rn−1)
i
i = 0.
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We will then construct a matrix Rn such that inductive assumptions
are satisfied at level n+ 1.

The constructions of R0 and R1 show the inductive assumption are
satisfied at level n = 2. The induction procedure then completes the
proof of Part (i) of Theorem 1.

To begin the construction of Rn, we first observe that equation (23)
is solvable for k = n precisely by the second and third assumptions at
level n. The off-diagonal coefficients of Rn are uniquely determined by
(23) for k = n.

The next step is to obtain the equation

(26) (duj − dui) ∧ (∇Rn)j
i = 0

from the computation:

(duj − dui) ∧ (∇Rn)j
i = (du ∧∇Rn + ∇Rn ∧ du)j

i

= −(∇[du, Rn])j
i

= −(∇2Rn−1)
j
i

= 0.

The second equality shows (26) does not depend upon the diagonal
coefficients of Rn.

The diagonal coefficients of Rn are constructed by using the equa-
tion (∇Rn)i

i = 0, or equivalently,:

(27) (dRn)i
i −
∑

k 6=i

(ΨdΨ−1)i
k(Rn)k

i = 0.

The second term of (27) is determined by the off-diagonal coefficients
of Rn. Therefore, if (24) admits a solution, the diagonal coefficients of
Rn are determined up to additive constants.

To prove that equation (24) is solvable, we must show that the
matrix of 2-forms,

d(ΨdΨ−1Rn),

determined by the off-diagonal coefficients of Rn, vanishes along the
diagonal. We start with a computation:

d(ΨdΨ−1Rn) = dΨ ∧ dΨ−1Rn − ΨdΨ−1 ∧ dRn

= −ΨdΨ−1 ∧ ∇Rn.

The matrix −ΨdΨ−1 ∧∇Rn vanishes along the diagonal by Lemma 10
and equation (26). Therefore, equation (27) is solvable.

We have constructed Rn and simultaneously verified the inductive
assumptions at level n + 1. The proof of Part (i) of Theorem 1 is
complete. �
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Part (ii). We have seen that R(z, u) is not uniquely determined by the
flatness equations: integration constants for the diagonal coefficients
of Rn are unconstrained in the induction step of the construction for
n ≥ 1. We will show that the unitary condition,

R(z, u)Rt(−z, u) = 1,

can be achieved by an appropriate selection of these constants.
Define the matrix series P (z, u) =

∑

n≥0 z
nPn(u) by:

P (z, u) = R(z, u)Rt(−z, u).
Since R0 = 1, we find P0 = 1. The unitary condition is equivalent to
Pn = 0 for n ≥ 1.

An adjustment result in the inductive construction of R(z, u) is
required for the unitary construction. Assume the matrices Rk have
been constructed for k ≤ n by the procedure of the proof of Part (i).
Assume Pn is a scalar matrix. Let Rn+1 be the next matrix determined
by the inductive construction of part (i) — well-defined up to integra-
tion constants along the diagonal. We will prove that by adjusting the
integration constants of Rn+1, the matrix Pn+1 can be forced to vanish.
Application of the adjustment result at each stage in the construction
process of part (i) yields a matrix series R(z, u) satisfying the unitary
condition.

The proof of the adjustment result starts with a Lemma also needed
in the proof of Part (iv).

Lemma 13. If Pn is a scalar, then Pn+1 is diagonal with constant
entries.

Proof. A direct computation using (21-23) yields:

(28) [du, Pk+1] = dPk + [ΨdΨ−1, Pk],

for k ≥ 0. Since Pn is a scalar, equation (28) for k = n implies the
off-diagonal coefficients of Pn+1 are zero.

There are now two cases. If n + 1 is odd, then

(Pn+1)
t = −Pn+1.

Therefore, the diagonal coefficients (Pn+1)ii vanish and Pn+1 = 0.
If n+ 1 is even, we will use equation (28) for k = n+ 1:

[du, Pn+2] = dPn+1 + [ΨdΨ−1, Pn+1].

The left side above vanishes along the diagonal. The second term on the
right side has no diagonal entries as ΨdΨ−1 vanishes along the diagonal
and Pn+1 is diagonal. Therefore, (dPn+1)ii = 0, or equivalently, Pn+1 is
diagonal with constant entires. �
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Hence, for the adjustment result, only the n+ 1 even case need be
considered. If n+ 1 is even, we find

Pn+1 = Rn+1 +Rt
n+1 +

n∑

j=1

(−1)jRn+1−jR
t
j .

Therefore, Pn+1 can be forced to vanish along the diagonal by adjusting
the integration constants along the diagonal of Rn+1. In fact, there is
a unique choice of the diagonal constants to make Pn+1 vanish. The
proof of the adjustment result is therefore complete. �

Part (iii). The proofs of Parts (i) and (ii) show the integration con-
stants along the diagonals of Rn for odd n are unconstrained in the
unitary construction. If R(z, u) is a matrix series satisfying the uni-
tary condition and a2k−1 are arbitrary diagonal matrices for k ≥ 1,
then the product series

Rnew(z, u) = R(z, u) exp(
∑

k≥1

a2k−1z
2k−1)

is easily seen to define a formal fundamental solution by Rneweu/z and
to satisfy the unitary condition.

Moreover, the matrices {a2k−1} uniquely capture the freedom of
the unconstrained diagonal integration constants in the construction
of R(z, u). The bijective correspondence between the matrices {a2k−1}
and the integration constants is proven by induction in k. �

Part (iv). In the conformal case, let E =
∑

i u
iǫi be the normalized

Euler vector field in canonical coordinates near the semisimple point
p. As R0 = 1, we have

LE(R0) = 0.

We will prove that the condition

(29) LE(Rn) = −nRn

can be satisfied at each stage in the inductive construction of R(z, u).
Moreover, the resulting homogeneous solution R(z, u) is unique and
unitary.

As LE(ΨdΨ−1) = 0 by Lemma 11, the off-diagonal coefficients of
R1 are of degree −1 with respect to E by equation (22). The diagonal
coefficients of R1 can be chosen to be of degree −1 by equation (24)
and the following Lemma.

Lemma 14. Let k 6= 0 be a constant. Let f be a holomorphic
function on U satisfying LE(df) = k · df. Then, f + c is homogeneous
of degree k for a unique constant c:
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Proof. Since dLE(f) = LE(df) = k · df , we find:

d(LE(f) − k · f) = 0.

As U is simply connected (and k 6= 0), the equation

LE(f) = k · (f + c)

holds for a unique constant c. Then, LE(f+c) = LE(f) = k(f+c). �

For the induction step, assume Rn is homogeneous of degree −n.
Equation (23) then forces the off-diagonal coefficients of Rn+1 to be
homogeneous of degree −(n+1). The diagonal coefficients of Rn+1 can
be chosen to be of degree −(n + 1) by equation (27) and Lemma 14.

Since the integration constants along the diagonal are fixed in the
inductive construction by Lemma 14, the homogeneous series R(z, u)
is uniquely determined.

To prove the unitary condition for the homogeneous series R(z, u),
we first observe that the condition

(30) LE(Pn) = −nPn

is a direct consequence of (29). Certainly P0 = 1. If Pn is a scalar,
then Pn+1 is diagonal with constant coefficients by Lemma 13. Then,
Pn+1 = 0 by equation (30). By induction, we conclude the unitary
condition: Pn = 0 for n ≥ 1. �

Corollary 1. (d+ ΨdΨ−1)R = [(du
z

), R].

Proof. The Corollary is obtained immediately from equations (19)
and (20) of the proof of Theorem 1. �

4.7. The endomorphism R. The interpretation of the matrix
series R of Theorem 1 as an endomorphism series will play an important
role. Given a formal fundamental solution,

S̃ = R eu/z,

define an endomorphism series in z,

R(z, u) : TM → TM,

by the equation:

〈ǫ̃j , Rǫ̃i〉 = Rj
i .

The initial term R(0, u) is the identity endomorphism. The unitary
condition (ii) of Theorem 1 may be written as:

R(z, u)R†(−z, u) = 1,
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where the adjoint is taken with respect to the metric. The endomor-
phism series is more natural than the matrix series.

Let F be a conformal Frobenius manifold and let p be a semisim-
ple point. Once the square roots

√
∆i have been selected, there is a

canonical homogeneous formal solution by part (iv) of Theorem 1.

Lemma 15. In the conformal case, the endomorphism series

R : TM → TM

obtained from the homogeneous formal solution is independent of the
selection of the square roots

√
∆i.

Proof. Let
√

∆i and
√

∆i′ be two choices of square roots. Let D be
the diagonal matrix with coefficients

√
∆i/

√
∆i′ . If R is the unique

homogeneous matrix series solution for
√

∆i, then a simple verification
shows that

R′ = DRD

is the unique homogeneous matrix series solution for
√

∆i′ . �

Therefore, in the conformal case, the endomorphism series

R : TM → TM

at p is absolutely canonical.
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CHAPTER 2

Frobenius manifolds and Gromov-Witten theory

1. Overview

Let X be a nonsingular complex projective variety. The Frobe-
nius structures determined by quantum cohomology are defined over
the Novikov ring of X and are formal. After a treatment of Frobenius
manifolds over arbitrary base rings and a discussion of formal Frobenius
manifolds, the Frobenius structures arising in Gromov-Witten theory
will be introduced. If X is equipped with a torus action, richer Frobe-
nius structures are determined by the equivariant Gromov-Witten the-
ory of X. The equivariant theory is discussed at the end of Chapter
2.

2. Frobenius manifolds over R

Let R be a commutative algebra over C. An (even) Frobenius man-
ifold defined over R is a quadruple (M, g,A, 1) where

• M is a smooth R-scheme of relative dimension m,
• g is an R-linear, symmetric, non-degenerate quadratic form on

the tangent bundle TM over R,
• A is R-linear symmetric tensor, A : TM ⊗ TM ⊗ TM → OM ,
• 1 is a vector field on M over R,

satisfying the following conditions:

(i) Flatness: g is a flat metric,
(ii) Potential: M is covered by open sets U each equipped with a

commuting basis of g-flat vector fields,

X1, . . . , Xm ∈ Γ(U, TM),

and a potential function Φ ∈ Γ(U,OU) such that

A(Xi, Xj , Xk) = XiXjXk(Φ),

(iii) Associativity: the ∗-product determined by g and A is asso-
ciative,

(iv) Unit: 1 is a g-flat unit vector field.
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The complex Frobenius manifolds studied in Chapter 1 are simply
(holomorphic) Frobenius manifolds over C.

Let FR = (M, g,A, 1) be a Frobenius manifold over R. Conformal
structures for FR are defined exactly as before: Euler fields E on M
are defined by conditions (i-iii) of Section 2.3 of Chapter 1.

Let p be an R-valued point of M . Let TMp denote the restriction
of TM to p. As M is smooth over R, TMp is a projective R-module.
The ∗-product determines an R-algebra structure (TMp, ∗). The point
p is semisimple over R if there exists an algebra isomorphism:

(TMp, ∗) ∼
= ⊕m

1 R,

where the direct sum algebra structure is taken on the right.
Let R be an integral domain. Let C(R) denote the algebraic closure

of the quotient field of R. The point p is geometrically semisimple if
there exists an algebra isomorphism:

(TMp ⊗R C(R), ∗) ∼
= ⊕m

1 C(R).

Canonical coordinates for Frobenius manifolds over R may be de-
fined in the étale topology. We will require canonical coordinates only
in the formal case discussed below.

If S is an R-algebra, a Frobenius manifold FS is obtained canoni-
cally by base change:

FS = (M ⊗R S, g ⊗R S, A⊗R S, 1 ⊗R S).

3. Formal Frobenius manifolds

Let R be a commutative algebra over C. An (even) formal Frobenius
manifold over R is a quadruple (M, g,A, 1),

• M = Spec(R[[K∨]]) is a formal manifold over R defined by the
completion at the origin of a free R-module K of rank m,

• g is a formal, R-linear, symmetric, non-degenerate quadratic
form on the formal tangent bundle TM over R,

• A is a formal, R-linear, symmetric tensor,

A : TM ⊗ TM ⊗ TM → OM ,

• 1 is a formal vector field on M over R,

satisfying the flatness, potential, associativity, and unit conditions.
The formal functions on M are:

Γ(M,OM )
∼
= R[[K∨]].

The potential condition requires the existence of a formal function Φ
generating A via third partial derivatives.
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Formal Euler fields E determining conformal structures on formal
Frobenius manifolds are defined by conditions (i-iii) of Section 2.3 of
Chapter 1.

Let FR = (M, g,A, 1) be a formal Frobenius manifold over R. The
origin is the only point of M . Since TM

∼
= K ⊗R OM , the ∗-product

determines an R[[K∨]]-algebra,

(K ⊗R R[[K∨]], ∗)
which specializes to an R-algebra (K, ∗) at the origin. FR is semisimple
at the origin over R if there exists an algebra isomorphism:

(K, ∗) ∼
= ⊕m

1 R,

where the product algebra structure is taken on the right. As before,
geometric semisimplicity is defined over the algebraic closure C(R).

FR is semisimple over R[[K∨]] if there exists an algebra isomor-
phism:

(31) (K ⊗R R[[K∨]], ∗) ∼
= ⊕m

1 R[[K∨]].

The basis of idempotent vector fields ǫ1, . . . , ǫm (unique up to permu-
tation) then determines m formal 1-forms γ1, . . . , γm by the equations:

〈ǫi, γj〉 = δij ,

where 〈, 〉 here denotes the canonical pairing:

TM × T ∗M → OM .

The 1-forms γ1, . . . , γm are sections of the formal characteristic sub-
variety C ⊂ T ∗M . Lemma 2 is valid (with unchanged proof) in
the context of formal Frobenius manifolds defined over a C-algebra
R. Therefore, there exist formal functions (unique up to constants)
u1, . . . , um ∈ R[[K∨]] satisfying:

duj = γj, ǫi =
∂

∂ui
.

The constants may be specified by requiring uj ∈ K∨ · R[[K∨]]. The
functions {uj} are formal canonical coordinates on M .

4. Criteria for semisimplicity

Lemmas 17 and 18 below provide basic criteria for the semisimplic-
ity of formal Frobenius manifolds. Both are derived from the lifting
Lemma 16.
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Let S be a C-algebra and let I ⊂ S be an ideal, and let Sn = S/In

for positive integers n. Let (A, ∗) be an S-algebra which is a free module
of rank m over S. Let An be the Sn-algebra,

An = A⊗S Sn,

for positive n.

Lemma 16. If An is semisimple over Sn, then An+1 is semisimple
over Sn+1. Moreover, the idempotent basis of An has a unique lift to
an idempotent basis of An+1.

Proof. Let ǫ1, . . . , ǫm be the lifts to A of an idempotent basis of An.
The projections of ǫ1, . . . , ǫm to An+1 determine a free Sn+1-module
basis of An+1. Therefore, there exist elements xik, yijk ∈ In satisfying:

ǫi ∗ ǫi = ǫi +
m∑

k=1

xikǫk ∈ An+1,

ǫi ∗ ǫj =
m∑

k=1

yijkǫk ∈ An+1,

where i 6= j in the second equation.
Ring axioms place restrictions on the coefficients xij , yijk. For ex-

ample,

ǫi ∗ ǫj = ǫj ∗ ǫi
in An+1 implies

(32) yijk = yjik

for all i, j, k. Let i, j, k be distinct indices. Then,

(ǫi ∗ ǫj) ∗ ǫk = yijkǫk,

(ǫi ∗ ǫk) ∗ ǫj = yikjǫj ,

in An+1. By commutativity and associativity, we find:

(33) yijk = 0

for distinct indices. Similarly, for indices i 6= j, we find:

(ǫi ∗ ǫj) ∗ ǫi = yijiǫi,

(ǫi ∗ ǫi) ∗ ǫj =

m∑

k=1

yijkǫk + xijǫj ,

in An+1. We conclude:

(34) yijj + xij = 0.
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After switching i and j and using (32), we obtain

(35) yiji + xji = 0.

Let ǫ′1, . . . , ǫ
′
m be an arbitrary lift to An+1 of the original idempotent

basis of An:

ǫ′i = ǫi +

m∑

k=1

aikǫk ∈ An+1,

where aik ∈ In. In order for ǫ′1, . . . , ǫ
′
m to form an idempotent basis of

An+1, the following equations must be satisfied in An+1:

ǫ′i ∗ ǫ′i = ǫi,

ǫ′i ∗ ǫ′j = 0, i 6= j.

These equations may be rewritten as:

ǫi +
m∑

k=1

xikǫk + 2aiiǫi = ǫi +
m∑

k=1

aikǫk,

m∑

k=1

yijkǫk + ajiǫi + aijǫj = 0.

The first equation can be uniquely solved by:

aii = −xii,

aik = xik, i 6= j.

The second equation is then verified using the vanishings (33-35).
Hence, there is a unique lift of the original idempotent basis of An

to an idempotent basis of An+1. �

Let R be a C-algebra, and let FR be a formal Frobenius manifold
over R (following the notation of Section 3).

Lemma 17. If FR is semisimple at the origin over R, then FR is
semisimple over R[[K∨]].

Proof. The Lemma is a direct consequence of the lifting result. Assume
FR is semisimple at the origin over R. Let S = R[[K∨]] and let I ⊂ S
be the maximal ideal K∨ · R[[K∨]]. Let (A, ∗) = (K ⊗R R[[K∨]], ∗).
Then, A1 is a semisimple over S1 by assumption. By Lemma 16, any
idempotent basis of A1 can be lifted compatibly to An for all n. Since
S and A are complete with respect to the ideal I, there exists an
idempotent basis of (A, ∗). �
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Lemma 18. Let R be a complete local C-algebra with maximal ideal
mR. If FR/mR

is semisimple at the origin over R/mR, then FR is
semisimple over R[[K∨]].

Proof. Assume FR/mR
is semisimple at the origin over R/mR. By

Lemma 17, FR/mR
is semisimple over R/mR[[K∨]]. Let S = R[[K∨]],

I = mR[[K∨]], and (A, ∗) = (K⊗RR[[K∨]], ∗). Then, A1 is semisimple
over S1. Hence, by Lemma 16, any idempotent basis of A1 can be lifted
compatibly to An for all n. Since S and A are complete with respect
to the ideal I, there exists an idempotent basis of (A, ∗). �

5. Gromov-Witten theory

5.1. Novikov rings. Let X be a nonsingular projective variety.
A class β ∈ H2(X,Z) is effective if

β = π∗[C],

where π : C → X is an algebraic map and C is a complete (possibly
disconnected) curve. Let E ⊂ H2(X,Z) denote the semigroup of effec-
tive classes. Let C[E] be the semigroup ring determined by E. Since
0 ∈ E, C[E] has a unit element. For β ∈ E, the corresponding element
of C[E] will be denoted by Qβ .

Let E∗ ⊂ E denote the set of non-zero elements. Let I ⊂ C[E]
denote the ideal generated by E∗. If β ∈ E∗, then −β /∈ E∗. Hence, I
is a proper maximal ideal. Two basic properties hold for classes β ∈ E.

Lemma 19. Let β ∈ E, then

(i) Qβ /∈ In for n >> 0,
(ii) x+ y = β has finitely many solutions for x, y ∈ E.

Proof. A projective embedding of X ⊂ Pr induces a non-negative
degree function on E. As elements of E∗ have positive degree, property
(i) is deduced immediately. Property (ii) is obtained from the finiteness
result for the degree function proven in the following Lemma. �

Lemma 20. Let d > 0. There are only finitely elements β ∈ E of
degree d.

Proof. It suffices to prove that there are finitely many elements β ∈ E
of degree d represented by maps π : C → E where C is a nonsingular,
irreducible curve and π is birational. The genus g of a birational degree
d embedding in projective space satisfies:

g ≤ (d− 1)(d− 2)/2.
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The map π represents a point [π] ∈ M g(X, β) ⊂ Mg(P
r, d) where β is

of degree d. The disjoint union of such moduli spaces of maps to X
constitutes a subscheme of the moduli space Mg(P

r, d):
⋃

β∈E, degree(β)=d

M g(X, β) ⊂M g(P
r, d).

As a subscheme has finitely many components, there are finitely many
possible β for each genus g. �

Define the Novikov ring N(X) by:

(36) N(X) = Ĉ[E],

where the completion is taken in the I-adic topology. Alternatively,
N(X) may be defined by series in Qβ:

(37) N(X) = {
∑

β∈E

cβQ
β |cβ ∈ C}.

Definitions (36) and (37) are proven to determine isomorphic rings
by Lemmas 19-20. Multiplication is well-defined in the series ring by
property (i) above of Lemma 19.

Lemma 21. If H2(X,Z) is torsion free, then C[E] and N(X) are
integral domains.

Proof. If H2(X,Z)
∼
= Zk, then C[H2(X,Z)] is easily seen to be an

integral domain. As C[E] is a subring, C[E] is also an integral domain.
N(X) is then proven be an integral domain by using the series definition
(37) and the degree function on E induced by the embedding X ⊂ Pr.
The products of the lowest degree elements of non-zero series are non-
zero. �

If X = Pr, then E = {n[L] | n ≥ 0} where L ⊂ Pr is a line. Then,

C[E] = C[Q[L]],

N(Pr) = C[[Q[L]]].

In the projective space case, we will often use the abbreviated notation
Q = Q[L].

5.2. Canonical Frobenius structures. The genus 0 Gromov-
Witten theory of X determines a formal Frobenius manifold,

F(X) = (M, g,A, 1),

defined over the ring N(X).
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Let H∗(X,C) denote the cohomology of X. We will assume the
cohomology is even to avoid a discussion of superstructure. Let

K = H∗(X,C) ⊗C N(X)

be a free N(X)-module. Then,

• M = Spec(N(X)[[K∨]]), the formal completion of the module
K at the origin.

The dimension of M over N(X) equals the rank of H∗(X,C).
The space of formal vector fields, Γ(M,TM), is canonically isomor-

phic to K ⊗C OM . As the cohomology of X is even, the intersection
pairing defines a symmetric and nondegenerate (by Poincaré duality)
bilinear form on H∗(X,C):

• g is defined on TM by the OM -linear extension of the inter-
section pairing:

〈φ1, φ2〉 =

∫

X

φ1 ∪ φ2,

for φi ∈ K ⊗C OM .

Since g has constant coefficients for the fields determined by H∗(X,C),
g is a flat metric.

The Gromov-Witten potential FX
0 (Q, t) is the generating series of

genus 0 Gromov-Witten invariants of X. Let T1, . . . , Tm be a basis
of H∗(X,C) consisting of integral classes of pure dimension, and let
t1, . . . , tm denote the corresponding formal coordinates on M . Let

γ =
m∑

i=1

tiTi.

In these coordinates,

(38) FX
0 (Q, t) =

∑

n≥0

∑

β∈E

Qβ

n!
〈γ, . . . , γ
︸ ︷︷ ︸

n

〉X0,n,β,

where the unstable degree 0 terms with n < 3 are omitted in the sum.
The brackets denote integration over the moduli space of maps,

(39) 〈γ1, . . . , γn〉Xg,n,β =

∫

[Mg,n(X,β)]vir

ev∗
1(γ1) . . . ev

∗
n(γn).

Let Tα1 , . . . , Tαl
be the cohomology basis elements of H∗(X,C)

spanning H2(X,C). Let Tα′

1
, . . . , Tα′

m−l
denote the other elements of

the cohomology basis. Let (t, e±tα) denote the set:

(t1, . . . , tm, etα1 , e−tα1 , . . . , etαl , e−tαl ).

Let t′ denote the variables (tα
′

1 , . . . , tα
′

m−l).
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Lemma 22. FX
0 (Q, t) ∈ N(X)[t, e±tα ].

Proof. Let β ∈ E be a nonzero class. Then,

(40) Qβ
∑

n≥0

1

n!
〈γ, . . . , γ〉X0,n,β = Qβp(t′)

l∏

i=1

etαi
R

β
Tαi ,

where p(t′) is a polynomial. Equation (40) is a consequence of dimen-
sion constraints, the fundamental class axiom, and the divisor equation
of Gromov-Witten theory. Since

∫

β
Tαi

∈ Z, the Lemma is proven. �

The basis elements Ti canonically determine a basis of formal vector
fields on M . The series F 0

X(Q, t) is the potential function for the formal
Frobenius manifold F(X):

• A(Ti1 , Ti2 , Ti3) is defined by the third partial derivatives the
potential, ∂3FX

0 (Q, t)/∂ti1∂ti2∂ti3 .

The last structure of F(X) is the unit field:

• 1 is defined to be the vector field of M corresponding to the
unit element of H∗(X,C).

We will usually assume the first basis element of H∗(X,C) is the unit
element.

F(X) determines a formal complex Frobenius manifold. The flat-
ness and potential conditions hold by definition. The associativity and
unit conditions follow respectively from the WDVV equations and the
fundamental class axiom of Gromov-Witten theory.

5.3. Flat coordinates and fundamental solutions. Let F(X)
be the formal Frobenius manifold associated to X. Formal Levi-Civita
and Dubrovin connections are defined on F(X) by the formulas of
Section 2.1 of Chapter 1.

A fundamental solution matrix Sab(z, t) for ∇z-flat formal vector
fields on M may be expressed in terms of the genus 0 gravitational
descendent invariants of X:

(41) Sab = gab +
∑

n≥0, β, (n,β)6=(0,0)

Qβ

n!
〈Ta,

Tb

z − ψ
, γ, . . . , γ〉X0,2+n,β

where 1 ≤ a, b ≤ m. We follow here the coordinate notations of Section
2.2 of Chapter 1 and Section 5.2.

A cotangent line class ψ appears in (41) at the second marking. The
S matrix may be written explicitly in terms of descendent invariants:

Sab = gab +
∑∑

k≥0

Qβ

n!
z−k−1〈Ta, τk(Tb), γ, . . . , γ〉X0,2+n,β
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with the same summation conventions on n and β. The descendent
τk(Tb) indicates an insertion of the class ψkev∗(Tb) in the integrand in
definition (39).

A basis ∇z-flat vector field is obtained from the raised matrix

Sc
b =

∑

a

Sabg
ac.

The flatness equations,

∇z

∑

c

Sc
a∂c = 0

are proven by the genus 0 topological recursion relations of Gromov-
Witten theory. Derivations can be found, for example, in [3], [6], and
[16]. The matrix coefficients Sab are formal functions in the ring

N(X)[[z−1, t, e±tα ]]

satisfying equation (4) — the proof of equation (4) is valid in the formal
context.

The fundamental solution (41) will play two roles. First, the so-
lution will be used explicitly in the study of Frobenius manifolds ob-
tained from equivariant Gromov-Witten theory in Chapter 7. Second,
the solution will motivate the definition of a J-calibration for Frobenius
manifolds in Part 2.

The J-calibration obtained from S is simply the raised matrix series
in 1/z,

Sj
i =

∞∑

n=0

(Jn)j
iz

−n.

The J-calibration defines an endomorphism series in 1/z,

J(z, t) =

∞∑

n=0

Jnz
−n, Jn(t) : TM → TM,

by

〈∂j , Jn∂i〉 =
∑

k

(Jn)k
i gkj.

The initial conditions of S imply the initial term in the endomor-
phism series is the identity,

J0 = 1.

A direct calculation yields the normalization condition,

(J1)
j
1 = tj.
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By Lemma 1, the J-calibration satisfies the unitary condition:

J(1/z, u)J†(−1/z, u) = 1,

where the adjoint is taken with respect to the metric.
A J-calibration for a Frobenius manifold will be defined in Part 2

to be a series expansion of Sj
i in 1/z which satisfies the identity and

normalization conditions. Frobenius manifolds obtained from Gromov-
Witten theory carry canonical J-calibrations obtained the 1/z expan-
sion (41).

5.4. Conformal structures. If X is a nonsingular projective va-
riety, F(X) is equipped with a canonical Euler field:

(42) E =

m∑

i=1

(1 − δ(Ti))t
i∂i +

m∑

i=1

ci∂i.

Here, the real dimension of the cohomology basis element Ti is 2δ(Ti),
and

c1(TX) =

m∑

i=1

ciTi.

Of course, ci = 0 unless δ(Ti) = 1.
E is an Euler field for F(X) with constants:

D = dimC(X), r = 1, v = −1.

The Lie derivatives LE(g) and LE(∗) are determined by equation (5)
and the dimension formula for the moduli space of maps,

dimC

(

M 0,n(X, β)
)

=

∫

β

c1(TX) + dimC(X) + n− 3.

The Lie derivative LE(V ) may be computed directly.

5.5. Bounded type. Let X be a nonsingular projective variety
and let E be the semigroup of effective curve classes. For l ≥ 0, let
El ⊂ E be the set:

El = {β ∈ E | dimC(M0,3(X, β)) < l}.
X is of bounded type if El is a finite set for all l. Projective spaces, flag
varieties, and Fano toric varieties are all of bounded type.

Let X be of bounded type. Let ζ ∈ C. Then, by dimension con-
straints, specialization of Q to ζ in the Gromov-Witten potential yields
a power series:

(43) FX
0 (Q = ζ, t) ∈ C[[t]].

39



A formal Frobenius manifold over C,

Fζ(X) = (Spec(C[[H∗(X,C)∨)]], g, A(Q = ζ), 1),

is defined for each ζ by the specialized potential (43).

5.6. Convergence. Let X be of bounded type. If the potential
FX

0 (ζ, t) converges in a neighborhood of the origin in H∗(X,C), then
Fζ(X) determines a conformal complex Frobenius manifold.

Proposition 1. For ζ 6= 0, Fζ(P
m) is a semisimple conformal

complex Frobenius manifold well-defined in a neighborhood of the origin
of H0(Pm,C).

Proof. The potential, FPm

0 (ζ, t), is uniquely determined by the WDVV
equations from the Gromov-Witten invariants of degrees 0 and 1 [14],
[17]. An analytic proof of the convergence of FPm

0 (ζ, t) near the origin
in H∗(Pm,C) using the WDVV equations is given in [15]. Hence,
Fζ(X) defines a complex Frobenius manifold near the origin.

The canonical Euler field, E, is well-defined on the entire space
H∗(Pm,C) and therefore determines a conformal structure on Fζ(X).

Let H ∈ H2(Pm,C) denote the hyperplane class. Let

H0, H1, . . . , Hm

define a basis of H∗(Pm,C), and let t0, . . . , tm denote the associated
coordinates. At a point p ∈ H∗(Pm,C) with coordinates pi = 0 for
i 6= 1, the ∗-product on TMp is well-known to yield the algebra:

(44) C[H ]/(Hm+1 − ζep1

).

See, for example, [5]. As the algebra (44) is semisimple at p = 0, Fζ(X)
is semisimple. �

6. Equivariant Gromov-Witten theory

Let T be an algebraic torus. Let R denote the equivariant cohomol-
ogy ring of T with C-coefficients. Let X be a nonsingular projective
variety equipped with an algebraic T-action. We will assume the T-
equivariant cohomology ring H∗

T
(X,C) is a free R-module — a condi-

tion which certainly holds for the standard torus actions on projective
spaces, flag varieties, and toric varieties.

Let NT(X) = N(X)⊗C R be the Novikov ring with R coefficients.
Let KT = H∗

T
(X,C)⊗RNT(X). The T-action on X canonically deter-

mines a formal Frobenius manifold defined over NT(X):

(45) FT(X) = (Spec(NT(X)[[K∨
T
]]), g, A, 1),
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where g is determined by the equivariant intersection pairing, A is de-
termined by the third derivatives of the genus 0 equivariant Gromov-
Witten potential, and 1 is the unit field. The flatness and potential
conditions for FT(X) hold by definition. The associativity and unit
conditions hold respectively by the WDVV equations and the funda-
mental class axiom of equivariant Gromov-Witten theory.

The construction of the Euler field for the formal Frobenius mani-
fold F(X) depends upon the dimension constraint in (non-equivariant)
Gromov-Witten theory. As there is no dimension constraint in equi-
variant Gromov-Witten theory, a corresponding Euler field can not be
constructed on FT(X). The conformal structure is lost in the equivari-
ant theory.

Localization in equivariant cohomology will play an important role
in Givental’s study. Let R∗ denote the quotient field of R. Let

N∗
T
(X) = NT(X) ⊗R R∗.

Since H∗
T
(X,C) ⊗R R∗ is always a free R∗-module,

K∗
T

= KT ⊗NT(X) N
∗
T
(X)

is always a free N∗
T
(X)-module. The free module assumptions needed

in the equivariant theory above are not required for the localized con-
struction.

A formal Frobenius manifold over N∗
T
(X) is determined by localized

equivariant data:

F∗
T
(X) = (Spec(N∗

T
[[K∗

T
(X)∨]]), g, A, 1),

The formal Frobenius manifold F∗
T
(X) is the most natural setting for

the study of equivariant Gromov-Witten theory via torus localization.
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CHAPTER 3

Localization

1. T-actions

Let T = Πm
i=0(C

∗) be an algebraic torus. Let χi be the equivariant
first Chern class of the dual of the standard representation of the ith

factor C∗. Let χ denote the set {χ0, . . . , χm}. A presentation of the
equivariant cohomology ring of T is determined by

R = C[χ].

As before, let R∗ denote the quotient field.
Let X be a nonsingular projective variety with an algebraic T-

action. Givental’s study of the higher genus T-equivariant Gromov-
Witten theory on X requires two conditions:

(i) The T-action has a finite number of 0 dimensional orbits.
(ii) The T-action has a finite number of 1 dimensional orbits.

Maximal torus actions on algebraic homogeneous spaces and nonsin-
gular toric varieties certainly satisfy (i-ii). If conditions (i-ii) hold, the
virtual localization formula for Gromov-Witten theory yields an op-
timal result: the T-equivariant Gromov-Witten invariants of X are
expressed in terms of graph sums of products of integrals over Deligne-
Mumford moduli spaces of stable pointed curves [13], [11].

We will describe the localization result in Gromov-Witten theory
for the standard torus action on projective space, X = Pm (see also
[13], [11]).

2. Localization

Let V be a nonsingular algebraic variety (or Deligne-Mumford stack)
equipped with an algebraic T-action. The localization formula ex-
presses equivariant integrals over V as a sum of contributions over the
T-fixed subloci.

Let H∗
T
(V,C) denote the equivariant cohomology of V . The equi-

variant cohomology ring H∗
T
(V,C) is canonically an R-module. Let

H∗
T
(V,C) ⊗R R∗

be the localization of the R-module.
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Let {V f
i } be the connected components of the T-fixed locus, and

let
ι : ∪iV

f
i → V

denote the inclusion morphism. The nonsingularity of V implies that
each V f

i is also nonsingular [12]. Let Ni denote the normal bundle of

V f
i in V , and let e(Ni) denote the equivariant Euler class (top Chern

class) of Ni.
The localization formula [1] is:

(46) [V ] = ι∗
∑

i

[V f
i ]

e(Ni)
∈ H∗

T
(V,C) ⊗R R∗.

The formula is well-defined as the Euler classes e(Ni) are invertible in
localized equivariant cohomology.

Let ξ ∈ H∗
T
(V,C) be a class of degree equal to (twice) the dimension

of V . The Bott residue formula [2] expresses integrals over V in terms
of fixed point data:

∫

V

ξ =
∑

i

∫

V f
i

ι∗(ξ)

e(Ni)
.

The Bott residue formula is an immediate consequence of (46). Local-
ization therefore provides an effective method of computing integrals
over V when the fixed loci V f

i are well-understood.

3. T-actions on projective spaces

Let T act on the vector space W = ⊕m
i=0C by the diagonal repre-

sentation. A T-action on

P(W ) = Pm

is canonically obtained. The T-action lifts canonically to OPm(1). Let
H ∈ H∗

T
(Pm,C) be the equivariant first Chern class of OPm(1). The

standard presentation of H∗
T
(Pm,C) is:

(47) H∗
T
(Pm,C)

∼
= C[H,χ]/(Πm

i=0(H − χi)).

The fixed points {p0, . . . , pm} of the T-action on Pm correspond to
the canonical basis vectors in W . The 1-dimensional orbits of T are
the lines Lij connecting pi and pj.

Define localized cohomology classes φi ∈ H∗
T
(Pm,C) ⊗R R∗ by:

φi =
[pi]

e(Tpi
)
,

where [pi] is (the dual of) the equivariant fundamental class of the point
pi and Tpi

is the rank m equivariant tangent space of pi. The classes
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φ0, . . . , φm determine a basis of the the localized ring H∗
T
(Pm,C)⊗RR∗

over R∗.

4. T-actions on M g,n(P
m, d)

There is a canonically induced T-action on the stack of stable maps
Mg,n(Pm, d). The torus acts on a stable map to Pm by translating the
image. Following [13], we can identify the components of the T-fixed
locus of M g,n(P

m, d) with a set of graphs.
A graph Γ ∈ Gg,n(Pm, d) consists of the data (V,E,N, γ, j, δ) where:

(i) V is the vertex set,
(ii) γ : V → Z≥0 is a genus assignment,
(iii) j : V → {0, . . . , m} is a function,
(iv) E is the edge set,

(a) If an edge e connects v, v′ ∈ V , then j(v) 6= j(v′),
in particular, there are no self edges,

(b) Γ is connected,
(v) δ : E → Z>0 is a degree assignment,
(vi) N = {1, . . . , n} is a set of markings incident to vertices,
(vii) g =

∑

v∈V γ(v) + h1(Γ),
(viii) d =

∑

e∈E δ(e).

The components of the T-fixed point set of M g,n(P
m, d) are in bijective

correspondence with the graph set Gg,n(P
m, d). The correspondence is

valid for d = 0, but here the graphs consist of single edgeless vertices.
Let π : (C, p1, . . . , pn) → Pm be a C∗-fixed stable map. The images

of all marked points, nodes, contracted components, and ramification
points must lie in the T-fixed point set {p0, . . . , pm} of Pm. Each non-
contracted irreducible component D ⊂ C must lie over a fixed line Lij .
D may be ramified only over the two fixed points {pi, pj}. Therefore
D must be nonsingular and rational. Moreover, the restriction π|D is
uniquely determined by the degree deg(π|D), π|D must be the rational
Galois cover with full ramification over pi and pj.

To an invariant stable map π : (C, p1, . . . , pn) → Pm, we associate
a graph Γ ∈ Gg,n(P

m, d) as follows:

(i) V is the set of connected components of π−1({p0, . . . , pm}),
(ii) γ(v) is the arithmetic genus of the component corresponding

to v (taken to be 0 if the component is an isolated point),
(iii) j(v) is defined by π(v) = pj(v),
(iv) E is the set of non-contracted irreducible components D ⊂ C,
(v) δ(D) = deg(π|D),
(vi) N is the marking set.
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Conditions (vii-viii) hold by definition.
The set of T-fixed stable maps with a given graph Γ is naturally

identified with a finite quotient of a product of moduli spaces of pointed
curves. Define:

MΓ =
∏

v∈V

Mγ(v),val(v).

The valence val(v) is the number of incident edges and markings. M 0,1

and M 0,2 are interpreted as points in this product. Over MΓ, there is
a canonical universal family of C∗-fixed stable maps,

ρ : U →MΓ,

π : U → Pm,

yielding a morphism of stacks τΓ : MΓ →M g,n(P
m, d).

There is a natural automorphism group A acting equivariantly on
U and MΓ with respect to the morphisms ρ and π. A acts via auto-
morphisms of the Galois covers (corresponding to the edges) and the
symmetries of the graph Γ. A is filtered by an exact sequence of groups,

1 →
∏

e∈E

Z/δ(e) → A → Aut(Γ) → 1,

where Aut(Γ) is the automorphism group of Γ: Aut(Γ) is the subgroup
of the permutation group of the vertices and edges which respects all
the structures of Γ. Aut(Γ) acts naturally on

∏

e∈E Z/δ(e) and A is
the semidirect product.

Let QΓ denote the quotient stack MΓ/A. QΓ is a nonsingular
Deligne-Mumford stack. The induced map:

τΓ/A : QΓ →M g,n(P
m, d)

is a closed immersion of Deligne-Mumford stacks.
The moduli space M g,n(P

m, d) may be singular and non-reduced in
the case g > 0. Therefore, the T-fixed substack is not guaranteed to be
nonsingular and reduced. However, via an analysis of the equivariant
perfect obstruction theory of M g,n(P

m, d), the substack QΓ is proven
in [11] to be a component of the T-fixed substack of M g,n(P

m, d).

Proposition 2. The connected components of the T-fixed substack
of the moduli space M g,n(P

m, d) are in bijective correspondence with the
graph set Gg,n(P

m, d) by the association QΓ ↔ Γ.

Components of the T-fixed substack of M g,n(X, β) may also be
described by graph data in case the T-action on X satisfies conditions
(i-ii) of Section 1.
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5. Tautological classes

Tautological classes on moduli spaces of stable curves and stable
maps are required for the localization formula in Gromov-Witten the-
ory.

Let Li denote the ith cotangent line bundle on the moduli space
Mg,n. The fiber of Li over the moduli point [C, p1, . . . , pn] ∈ M g,n is
T ∗

C,p. Let

ψi = c1(Li) ∈ H2(M g,n,C).

Let E denote the Hodge bundle onM g,n. The fiber of E over the moduli
point [C, p1, . . . , pn] is H∗(C, ωC). Let

λi = ci(E) ∈ H2i(M g,n,C).

Since the vector bundles Li and E are well-defined on M g,n(X, β), tau-
tological ψ and λ classes are determined in H∗(Mg,n(X, β),C).

The λ classes are elementary symmetric functions of the Chern
roots ρ1, . . . , ρg of E on M g,n(X, β). We will often write the λ classes
in terms of the Chern roots.

6. The Localization formula

6.1. Virtual localization. Integrals in Gromov-Witten theory are
always taken against the virtual class [M g,n(X, β)]vir of the moduli
space of maps M g,n(X, β). As the moduli space M g,n(X, β) may be
singular and non-reduced, the localization formula does not directly
apply.

However, the perfect obstruction theory ofM g,n(X, β) together with
the virtual class may be viewed as defining a virtual smooth structure
on the moduli space of maps. A localization formula for the equivariant
virtual class of M g,n(X, β) is proven in [11]. For the T-action on Pm,

(48) [M g,n(Pm, d)]vir =
∑

Γ∈Gg,n(Pm,d)

1

|AΓ|
τΓ∗[MΓ]

e(Nvir
Γ )

in localized equivariant Chow theory, AT

∗ (M g,n(Pm, d) ⊗R R∗. The
T-fixed loci QΓ enter (48) as push-forwards of MΓ via τΓ.

The Euler class of the normal complex, e(Nvir
Γ ), is specified by

the equivariant perfect obstruction theory of M g,n(P
m, d). A complete

derivation may be found in [11]. Our goal here is to explain the answer
in terms of the data of the graph Γ.
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Let Γ ∈ Gg,n(Pm, d). We will identify the τΓ pull-back of 1/e(Nvir
Γ )

to MΓ,

(49) MΓ =
∏

v∈V

Mγ(v),val(v).

We will find:

(50) τ ∗Γ(
1

e(Nvir
Γ )

) =
∏

v∈V

1

ÑΓ(v)
·
∏

e∈E

1

ÑΓ(e)
,

where the vertex and edge contributions, 1/ÑΓ(v) and 1/ÑΓ(e), lie in
localized equivariant cohomology rings:

1

ÑΓ(v)
∈ H∗

T
(Mγ(v),val(v),C) ⊗R R∗,

1

ÑΓ(e)
∈ R∗.

6.2. Vertex contributions. There are four types of vertices which
we will treat independently here. In integration formulas, a uniform
treatment of the four types is often found.

A vertex v is stable if 2γ(v) − 2 + val(v) > 0. If v is stable, the
moduli space Mγ(v),val(v) is a factor of MΓ by (49). The intermediate

contribution 1/ÑΓ(v) will be an equivariant cohomology class on the
factor Mγ(v),val(v) in this case.

• Let v be a stable vertex. Let e1, . . . , el denote the distinct edges
incident to v (in bijective correspondence to a subset of the (local)
markings of the moduli space Mγ(v),val(v)). Let ei connect v to the
vertex vi. Let ψi denote the cotangent line of the marking at v corre-
sponding to ei.

1

ÑΓ(v)
=

1

e(Tpj(v)
)
·

l∏

i=1

1
χj(v)−χj(vi)

δ(ei)
− ψi

·

γ(v)
∏

k=1

∏

j 6=j(v)

(
(χj(v) − χj) − ρk

)
.

Both the tautological ψ and λ classes enter in 1/ÑΓ(v). The Gromov-
Witten theory of Pm is therefore fundamentally related to the inter-
section theory of the moduli space of curves.

If v is an unstable vertex, then γ(v) = 0 and val(v) ≤ 2. There are
three unstable cases: two with valence 2 and one with valence 1.
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• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 2. Let e1
and e2 be the two incident edges connecting v to the vertices v1 and v2

respectively. Then:

1

ÑΓ(v)
=

1

e(Tpj(v)
)
· 1

χj(v)−χj(v1)

δ(e1)
+

χj(v)−χj(v2)

δ(e2)

• Let v be a 1-marked vertex with γ(v) = 0 and val(v) = 2. Then:

1

ÑΓ(v)
=

1

e(Tpj(v)
)

there are no contributing factors.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 1. Let e be
the unique incident edge connecting v to the vertex v′. Then:

1

ÑΓ(v)
=

1

e(Tpj(v)
)
· χj(v) − χj(v′)

δ(e)
.

6.3. Edge contributions. Let e ∈ E be an edge corresponding
to the non-contracted irreducible component D ⊂ C (where

[π : (C, p1, . . . , pn) → Pm]

is a moduli point parameterized by MΓ). Let v and v′ be the vertices
connected by e. The edge contribution is:

1

ÑΓ(e)
=

e(Tpj(v)
) e(Tpj(v′)

)

(−1)δ(e) δ(e)!2

δ(e)2δ(e) (χj(v) − χj(v′))2δ(e)
·

∏

j /∈{j(v),j(v′)}

1
∏δ(e)

i=0

(δ(e)−i)(χj(v)−χj)+i(χj(v′)−χj)

δ(e)

.

6.4. Integration. Localization yields an integration formula for
the T-equivariant Gromov-Witten theory of Pm. Let ξ be an equivari-
ant class

ξ ∈ H∗
T
(Mg,n(Pm, d),C).

The equivariant integral

(51)

∫

[Mg,n(Pm,d)]vir

ξ

is defined by
∫

[Mg,n(Pm,d)]vir

ξ =

∫

Mg,n(Pm,d)

[M g,n(Pm, d)]vir ∩ ξ ∈ R,
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where the right side is the equivariant push-forward to a point. The lo-
calization formula for the virtual class directly yields a residue formula
for the equivariant integral (51):
∫

[Mg,n(Pm,d)]vir

ξ =
∑

Γ∈Gg,n(Pm,d)

1

|A|

∫

MΓ

τ ∗Γ(ξ)
∏

v∈V ÑΓ(v) ·∏e∈E ÑΓ(e)

The right side of the above equation only involves integration over the
Deligne-Mumford moduli spaces of stable curves.

7. Gravitational descendents

The localization formula may be used to determine the the (local-
ized) T-equivariant descendent invariants of Pm:

(52) 〈
n∏

i=1

τai
(φbi

)〉Pm

g,d =

∫

[Mg,n(Pm,d)]vir

n∏

i=1

ψai
i ev∗

i (φbi
).

Let ξ denote the equivariant integrand on the right side of the above
equation.

The virtual residue formula determines the equivariant integral (52)
in terms of tautological integrals over the moduli spaces of curves:

〈
n∏

i=1

τai
(φbi

)〉Pm

g,d =
∑

Γ∈Gg,n(Pm,d)

1

|A|

∫

MΓ

τ ∗Γ(ξ)
∏

v∈V ÑΓ(v) ·∏e∈E ÑΓ(e)
.

The pull-back of ξ to MΓ factorizes over the vertices of Γ:

τ ∗Γ(ξ) =
∏

v∈V

ξ(v).

There are four types of vertex contributions ξ(v).

• Let v be a stable vertex. Let S ⊂ {1, . . . , n} denote the set of
markings incident to the vertex v. If j(v) = bi for all i, then

ξ(v) =
∏

i∈S

ψai
i ∈ H∗

T
(Mγ(v),val(v),C).

If j(v) 6= bi, for some i then ξ(v) = 0.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 2. Then,

ξ(v) = 1.

• Let v be a 1-marked vertex with γ(v) = 0 and val(v) = 2. Let i
be the unique marking incident to v. Let e denote the unique edge
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incident to v. Let e connect v to the vertex v′. If j(v) = bi, then

ξ(v) =
(

− χj(v) − χj(v′)

δ(e)

)ai

· δbi,j(v).

If j(v) 6= bi, then ξ(v) = 0.
• Let v be an unmarked vertex with γ(v) = 0 and val(v) = 1. Then,

ξ(v) = 1.

We find an explicit formula for the gravitational descendent invari-
ants of Pm in terms of tautological integrals over the moduli space of
curves.

Proposition 3. The equivariant gravitational descendents of Pm

are determined by graph sums of Hodge integrals:

〈
n∏

i=1

τai
(φbi

)〉Pm

g,d =
∑

Γ∈Gg,n(Pm,d)

1

|A|

∫

MΓ

∏

v∈V

ξ(v)

ÑΓ(v)
·
∏

e∈E

1

ÑΓ(e)
.
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CHAPTER 4

Materialization

1. Overview

Let X be a nonsingular projective variety with an algebraic T-
action. We will assume the T-action has finitely many 0 and 1 dimen-
sional orbits (conditions (i-ii) of Chapter 3). The T-action determines a
decomposition of X into affine cells by the Bialynicki-Birula Theorem.
The groupsH∗(X,Z) and A∗(X,Z) are isomorphic and freely generated
by the classes of the cell closures. The localized equivariant quantum
cohomology yields a formal Frobenius manifold F∗

T
(X) defined over the

ring N∗
T
(X) — see Chapter 2. Here, we will prove F∗

T
(X) is semisimple

by an explicit construction of formal canonical coordinates defined via
graph sums arising in the localization formula. Givental views these
graph sums as a materialization of canonical coordinates in equivariant
quantum cohomology.

2. Semisimplicity of equivariant cohomology

Let p0, . . . , pm be the T-fixed points of X. Let ei = e(Tpi
) denote

the equivariant Euler class of the tangent space representation at pi.
Let φi ∈ H∗

T
(X,C) ⊗R R∗ be defined by:

φi =
[pi]

ei
.

The classes φ0, . . . , φm determine a natural R∗-basis of the localized
equivariant cohomology ring H∗

T
(X,C) ⊗R R∗. The equivariant inter-

section form in the φ basis is:

〈φi, φj〉 =
δij
ei
,

Flat coordinates on H∗
T
(X,C) ⊗R R∗ are defined by

γ =
∑

tµφµ.

Following the conventions of Section 4.1 of Chapter 1, Greek indices
will be used for the flat coordinates {tµ}.

53



The localized equivariant cohomology ringH∗
T
(X,C)⊗RR∗ is semisim-

ple over R∗ with idempotents φi:

φi · φj = δijφi.

The identity element of the equivariant ring is
∑m

i=0 φi. For notational
convenience, we will denote the identity by φ1.

The classical semisimplicity implies the semisimplicity of the Frobe-
nius structure obtained from the localized equivariant quantum coho-
mology of X.

Lemma 23. The formal Frobenius manifold F∗
T
(X) is semisimple

over N∗
T
(X)[[K∗

T
(X)∨]]

Proof. N∗
T
(X) is a complete local C-algebra with maximal ideal gener-

ated by {Qβ | 0 6= β ∈ E} and quotient field R∗. The formal Frobenius
manifold,

F∗
T
(X) ⊗N∗

T
(X) R∗,

obtained by tensoring with the quotient field, is semisimple over R∗

at the origin — since the corresponding tangent algebra is the local-
ized equivariant cohomology ring of X. The Lemma then follows from
Lemma 18. �

By Lemmas 16 and 18, there exists a unique idempotent basis,

ǫ0, . . . , ǫm,

of formal vector fields on F∗
T
(X) which specializes to the idempotent

basis φ0, . . . , φm. Let u0, . . . , um ∈ N∗
T
[[K∗

T
(X)∨]] be the corresponding

formal canonical coordinates vanishing at the origin (see Section 3 of
Chapter 1). We will consider the formal functions ui(Q, t) as series in
the variables Q and t0, . . . , tm with coefficients in R∗.

Roman indices will be reserved for the canonical coordinates {ui}.
In fact, both the flat and the canonical coordinate sets are naturally
indexed by the fixed points p0, . . . , pm.

3. Graph contributions

The materialization of canonical coordinates is obtained from graph
sums in the genus 0 localization formula. For the T-action on projective
space, the localization graph sums are described explicitly in Section
6 of Chapter 3. Here, we assume X is a nonsingular projective variety
equipped with a T-action satisfying conditions (i-ii) of Chapter 3.
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Let FX
0 (Q, t) be the T-equivariant genus 0 Gromov-Witten poten-

tial of X:

FX
0 (Q, t) =

∑

n≥0

∑

β∈E

Qβ

n!
〈γ, . . . , γ
︸ ︷︷ ︸

n

〉X0,n,β.

For each graph Γ ∈ G0,n(X, β), let

ContΓ(FX
0 ) ∈ N∗

T
(X)[[t]]

denote the contribution of Γ to FX
0 in the localization formula,

FX
0 (Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G0,n(X,β)

ContΓ(FX
0 ).

4. Derivative notation

Derivatives of the potential FX
0 also determine generating series of

equivariant Gromov-Witten invariants:

(53)
∂rFX

0

∂tµ1 . . . ∂tµr
(Q, t) =

∑

n≥0

∑

β

Qβ

n!
〈φµ1 , . . . , φµr , γ, . . . , γ〉X0,r+n,β.

Derivatives will often be expressed by double brackets:

∂rFX
0

∂tµ1 . . . ∂tµr
(Q, t) = 〈〈φµ1, . . . , φµr〉〉X0 ,

where

〈〈φµ1, . . . , φµr〉〉X0 =
∑

β

Qβ〈〈φµ1, . . . , φµr〉〉X0,β,

〈〈φµ1 , . . . , φµr〉〉X0,β =
∑

n≥0

1

n!
〈φµ1 , . . . , φµr , γ, . . . , γ〉X0,r+n,β.

Unstable values are always omitted in the above sums.
For each graph G0,r+n(X, β), the contribution

ContΓ(
∂rFX

0

∂tµ1 . . . ∂tµr
),

is well-defined. Graphs contributing to (53) have r distinguished mark-
ing corresponding to the derivative insertions.

The differential operator ∂/∂t1, defined by

∂

∂t1
=

m∑

µ=0

∂

∂tµ
,

corresponds to the insertion of the identity element φ1.
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5. Materialization

We will define four sets of formal functions via localization graph
contributions.

• Let Gui

0,2+n(X, β) ⊂ G0,2+n(X, β) denote the set of graphs for
which markings 1 and 2 lie on a single irreducible component
contracted to pi. Let

ui(Q, t) =
∑

n≥0

∑

β∈E

∑

Γ∈Gui
0,2+n(X,β)

ContΓ(ei
∂2FX

0

∂ti∂ti
).

A direct calculation shows that the degree 0 term of ui equals
ti.

• Let G
∂ui/∂tµ

0,3+n (X, β) ⊂ G0,3+n(X, β) denote the set of graphs for
which markings 1 and 2 lie on a single irreducible component
contracted to pi. Let

∂ui

∂tµ
(Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G
∂ui/∂tµ

0,3+n (X,β)

ContΓ(ei
∂3FX

0

∂ti∂ti∂tµ
).

The function ∂ui/∂tµ defined above is easily seen to equal the
derivative of ui(Q, t) by tµ — justifying the notation.

• Let G
√

∆i

0,3+n(X, β) ⊂ G0,3+n(X, β) denote the set of graphs for
which markings 1, 2, and 3 lie on a single irreducible compo-
nent contracted to pi. Then,

√
∆i(Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G

√
∆i

0,3+n(X,β)

√
eiContΓ(ei

∂3FX
0

∂ti∂ti∂ti
).

• Let G
Ψi

µ

0,3+n(X, β) ⊂ G0,3+n(X, β) denote the set of graphs for
which marking 1 lies on an irreducible component E contracted
to pi and markings 2 and 3 lie on distinct branches off of E.
Then,

Ψi
µ(Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G
Ψi

µ
0,3+n(X,β)

1√
ei

ContΓ(ei
∂3FX

0

∂ti∂tµ∂t1
).

The main materialization results, established in Sections 6 and 7
below, provide an explicit construction of formal canonical coordinates
for F∗

T
(X).

Proposition 4. Three materialization results hold:
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(i) The functions u0(Q, t), . . . um(Q, t) determine formal canonical
coordinates at the origin of the Frobenius manifold F∗

T
(X),

ui(Q, t) = ui(Q, t),
∂

∂ui = ǫi.

(ii) The functions
√

∆i are square roots of the norms of the vector
fields ǫi:

〈ǫi, ǫi〉−1 = ∆i,

where ∆i = (
√

∆i)2.
(iii) Ψi

µ is the transition matrix between the bases ∂µ and ǫ̃i of vector

fields on F∗
T
(X), where ǫ̃i =

√
∆iǫi.

The notation here exactly matches the conventions of Section 4.1
of Chapter 1. The metric g is determined by:

gµν =
δµν

eµ

.

The only difference is that the index set here for the bases is naturally
{0, 1, . . . , m} instead of {1, . . . , m}.

6. Local splitting equations

6.1. Integral series. Let νr denote the forgetful map to the mod-
uli space of curves defined by stabilization:

νr : M 0,r+n(X, β) →M 0,r,

for r ≥ 3. Consider the following two T-equivariant Gromov-Witten
integral series,

(54) θβ
α1α2α3α4

(Q, t) =

∑

n≥0

Qβ

n!

∫

[M0,4+n(X,β)]vir

(

ν∗4([D4])

4∏

i=1

ev∗
i (φαi

)

n∏

i=1

ev∗
4+i(γ)

)

,

(55) ϑβ
α1α2α3α4α5

(Q, t) =

∑

n≥0

Qβ

n!

∫

[M0,5+n(X,β)]vir

(

ν∗5([D5])

5∏

i=1

ev∗
i (φαi

)

n∏

i=1

ev∗
5+i(γ)

)

.

The following notation is used in the above definitions (54-55):

• the indices α1, . . . , α5 are fixed (and allowed to equal 1),
• the moduli points [D4] ∈M 0,4, [D5] ∈ M0,5 are fixed,
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• the classes ν∗4([D4]), ν
∗
5([D5]) are defined in T-equivariant co-

homology (by Poincaré duality).

The series θβ
α1α211

(Q, t) and ϑβ
α1α2α311

(Q, t) can be computed by
specializing the moduli points [D4] and [D5].

Lemma 24. The following evaluations holds:

θβ
α1α211

(Q, t) = Qβ 1

eα1

δ0βδα1α2 ,

ϑβ
α1α2α311

(Q, t) = Qβ〈〈φα1, φα2 , φα3〉〉X0,β.

Proof. Since all points of M 0,4 are homologous, different points [D4]
determine the same integral series (54). Consider the boundary point,

[B4] = M 0,3 ×M 0,3 ⊂M 0,5,

where [B4] represents the 4-pointed curve:

•
• •

•
φα1

φ1 φα1

φ1

Figure 1

By the splitting axiom of Gromov-Witten theory, the integral series
(54) equals:

Qβ
∑

β1+β2=β

〈〈φα1, φ1, φi〉〉X0,β1
gii〈〈φi, φα2 , φ1〉〉X0,β2

,

when the class ν∗4([B4]) is taken in the integrand. The formula for

θβ
α1α211

(Q, t) is then obtained from the fundamental class axiom.

Similarly, [D5] ∈M 0,5 can be specialized to the the boundary point,

[B5] = M0,3 ×M 0,3 ×M 0,3 ⊂M 0,5,

where [B5] represents the 5-pointed curve:
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•
•

•
•

•
φα1

φ1

φα2

φα3

φ1

Figure 2

By the splitting axiom of Gromov-Witten theory, the integral series
(55) equals:

Qβ
∑

β1+β2+β3=β

〈〈φα1, φ1, φi〉〉X0,β1
gii〈〈φi, φα2 , φj〉〉X0,β2

gjj〈〈φj, φα3, φ1〉〉X0,β3
,

when the class ν∗5([B5]) is taken in the integrand. The formula for

ϑβ
α1α2α311

(Q, t) is obtained from the fundamental class axiom. �

6.2. Local splitting I. Let (D4, x1, . . . , x4) be a nonsingular, ir-
reducible 4-pointed curve. Let [π] ∈ M 0,4+k(X, β) represent a moduli
point

π : (C, x1, . . . , x4+k) → X,

satisfying ν4([π]) = [D4]. The curve C may be singular and reducible.
However, by the definition of ν4, there exists a unique special component
C ′ ⊂ C and a canonical isomorphism

ν4 : C ′ ∼
= D

of curves obtained by restriction. Moreover, the first 4 markings of C
determine 4 distinct points of C ′ by contraction. The data of C ′ to-
gether with the 4 contracted markings is isomorphic to (D4, x1, . . . , x4).

We will study the equivariant Gromov-Witten series θβ
α1α211

(Q, t)
via localization. Let Γ ∈ G0,4+n(X, β) be a graph in the localization
sum. Define MΓ,[D4] by the intersection:

MΓ,[D4] = MΓ ∩ ν−1
4 ([D4]).

Let G
[D4]
0,4+n(X, β) ⊂ G0,4+n(X, β) denote the set of graphs Γ satisfying

MΓ,[D4] 6= ∅.
Let Γ ∈ G

[D4]
0,4+n(X, β). There exists a unique vertex vΓ of Γ corre-

sponding to the special components C ′ of the maps

[π : (C, x1, . . . , x4+n) → X] ∈MΓ,[D].
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Let pΓ = j(vΓ) be the T-fixed point of X corresponding to vΓ. Then,
π(C ′) = pΓ. Let

G
[D4],i
0,4+n(X, β) ⊂ G

[D4]
0,4+n(X, β)

denote the set of graphs Γ satisfying pΓ = pi.
We may separate the contributions of graphs Γ to θβ

α1α211
(Q, t) into

m+ 1 types corresponding to values of pΓ:

(56) θβ
α1α211

(Q, t) =
m∑

i=0

∑

n≥0

∑

Γ∈G
[D4],i
0,4+n(X,β)

ContΓ(θβ
α1α211

).

Lemma 25. Let pi be a T-fixed point of X. Then,
∑

n≥0

∑

β∈E

∑

Γ∈G
[D4],i
0,4+n(X,β)

ContΓ(θβ
α1α211

) = Ψi
α1

Ψi
α2
.

Proof. Let Γ ∈ G
[D4],i
0,4+n(X, β). The valence of vΓ in Γ is at least 4. The

fixed locus MΓ contains the factor M0,val(vΓ). In the contribution,

(57) ContΓ(θβ
α1α211

),

the class ν∗4([D4]) is pulled back from the factor M0,val(vΓ). The con-

tribution (57) is unchanged by a different choice of [D4] ∈ M 0,4 in the
integrand.

We will now replace [D4] with the boundary point [B4] ∈ M 0,4 in

the integrand of ContΓ(θβ
α1α211

). The new choice [B4] will be used only
to analyze the contribution.

As B4 is reducible, we may apply the splitting formula for the mod-
uli space M 0,val(vΓ) to the integral ContΓ(θβ

α1α211
). As the splitting

occurs at the vertex vΓ, Givental describes the resulting equations as
local.

Let Γ1 and Γ2 denote the graphs obtained in a single term of the
local splitting of ContΓ(θβ

α1α211
):

Γ1
Γ2

•
•φα1

φ1 •
φ1

•
φα1

Figure 3
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After ordering the extra n1 markings, the graph Γ1 lies in the set

G
Ψi

α1
0,3+n1

(X, β). Similarly, after ordering the extra n2 markings, the

graph Γ2 lies in G
Ψi

α2
0,3+n2

(X, β). Then, a straightforward accounting of
graphs and factors in the virtual localization formula completes the
proof of the Lemma. �

Lemmas 24 - 25 and equation (56) together imply the first conse-
quence of the local splitting argument.

Lemma 26.
m∑

i=0

Ψi
α1

Ψi
α2
eα2 = δα1α2 .

The matrix Ψ is therefore invertible with inverse determined by

Ψ−1 = (Ψg−1)t = g−1Ψt.

6.3. Local splitting II. Let (D5, x1, . . . , x5) be a nonsingular, ir-
reducible 5-pointed curve. Let [π] ∈ M 0,5+k(X, β) represent a moduli
point,

π : (C, xl, . . . , x5+k) → X,

satisfying ν5([π]) = [D5]. As before, there exists a unique special com-
ponent C ′ ⊂ C and a canonical restriction isomorphism

ν5 : C ′ ∼
= D.

The first 5 markings of C determine 5 distinct points of C ′ by con-
traction. The data of C ′ together with the contracted 5 markings is
isomorphic to (D5, x1, . . . , x5).

We will now study the equivariant series ϑβ
α1α2α311

(q, t) via localiza-
tion. Let Γ ∈ G0,5+n(X, β) be a graph in the localization sum. Define

MΓ,[D] by the following intersection:

MΓ,[D] = MΓ ∩ ν−1
5 ([D]).

Let G
[D]
0,5+n(X, β) ⊂ G0,5+n(X, β) denote the set of graphs Γ satisfying

MΓ,[D] 6= ∅.
Let Γ ∈ G

[D]
0,5+n(X, β). There exists a unique vertex vΓ of Γ corre-

sponding to the special components C ′ of the maps

[π : (C, x1, . . . , x5+n) → X] ∈MΓ,[D].

Let pΓ = j(vΓ) be the T-fixed point of X corresponding to vΓ. As
before, let

G
[D],i
0,5+n(X, β) ⊂ G

[D]
0,5+n(X, β)
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denote the set of graphs Γ satisfying pΓ = pi.
We may separate the contributions of graphs Γ to ϑβ

α1α2α311
(Q, t)

into m+ 1 types corresponding to values of pΓ:

(58) ϑβ
α1α2α311

(Q, t) =

m∑

i=0

∑

n≥0

∑

Γ∈G
[D],i
0,5+n(X,β)

ContΓ(ϑβ
α1α2α311

).

Lemma 27. Let pi be a T-fixed point of X. Then,
∑

n≥0

∑

β∈E

∑

Γ∈G
[D5],i
0,5+n(X,β)

ContΓ(ϑβ
α1α2α311

) = Ψi
α1

∂ui

∂tα3
Ψi

α2
.

Proof. Let Γ ∈ G
[D5],i
0,5+n(X, β). The valence of vΓ in Γ is at least 5. The

fixed locus MΓ contains the factor M0,val(vΓ). In the contribution,

(59) ContΓ(ϑβ
α1α2α311

),

the class ν∗5([D5]) is pulled back from the factor M0,val(vΓ). The con-

tribution (59) is unchanged by a different choice of [D5] ∈ M 0,5 in the
integrand.

We will now replace [D5] with the boundary point [B5] ∈ M 0,5 in

the contribution integral ContΓ(ϑβ
α1α2α311

). As B5 is reducible, we may

apply the splitting formula for the moduli space M 0,val(vΓ).
Let Γ1, Γ2, and Γ3 denote the graphs obtained in a single term of

the local splitting of ContΓ(ϑβ
α1α2α311

):

•
•

• •

•
φα1

φ1

φα3

φ1

φα2

Γ1

Γ3

Γ2

Figure 4

After an ordering of the extra markings n1, n2, and n3, we see

Γ1 ∈ G
Ψi

α1
0,3+n1

(X, β1), Γ2 ∈ G
Ψi

α2
0,3+n2

(X, β2), Γ3 ∈ G
∂ui/∂tα3
0,3+n3

(X, β3).
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The Lemma then follows by an accounting of all the contributions. �

Lemmas 24, Lemma 27, and equation (58) together imply the sec-
ond consequence of the local splitting argument.

Lemma 28.
m∑

i=0

Ψi
α1

∂ui

∂tα3
Ψi

α2
eα2 =

∂3FX
0

∂tα1∂tα2∂tα3
eα2 .

6.4. Proof of Proposition 4 part (i). Let Aι denote the matrix
of multiplication by ∂ι in the ∂µ basis,

∂ι · ∂µ2 =

m∑

µ1=0

[Aι]
µ1
µ2
∂µ1 .

The coefficients of At
ι are:

[At
ι]

µ2
µ1

=
∂3FX

0

∂tµ1∂tµ2∂tι
eµ2 .

By Lemmas 26 and 28, we see

ΨtDι(Ψ
−1)t = At

ι,

Ψ−1DιΨ = Aι

where Dι is the diagonal matrix with coefficients ∂ui/∂tι. Hence, Ψ
determines a change of basis which simultaneous diagonalizes all the
matrices Aι.

Since F∗
T
(X) is semisimple over N∗

T
(X)[[K∗

T
(X)∨]], simultaneous

eigenspaces (of multiplicity 1) of the matrices Aι are determined by
the 1-form sections,

γ0, . . . , γm,

of the formal characteristic subvariety of F∗
T
(X) — see Section 3.3 of

Chapter 1. Moreover, the eigenvalues correspond to the coefficients of
the 1-forms γj in the dt0, . . . , dtm basis.

AsX carries a torus action with finitely many fixed points,H2(X,Z)
is torsion free by the Bialynicki-Birula Theorem. N∗

T
(X) is then an in-

tegral domain by Lemma 21 — applied with ground field R∗ instead
of C. Hence, N∗

T
(X)[[K∗

T
(X)∨]] is also an integral domain.

Since the matrices Aι are defined over the domainN∗
T
(X)[[K∗

T
(X)∨]],

their simultaneous eigenspaces and eigenvalues are uniquely determined
in the multiplicity 1 case. Matching the eigenvalues, we find

∂ui

∂tι
=
∂ui

∂tι
,
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for all i and ι (the degree 0 terms of the functions ui are used to fix the
permutation in the match). Since both ui(Q, t) and ui(Q, t) vanish at
the origin, we conclude

(60) ui(Q, t) = ui(Q, t).

The equation ∂/∂ui = ǫi follows from the identification (60) and the
definition ∂/∂ui = ǫi. �

7. Materialization, norms, and the transition matrix

7.1. Overview. Local splitting equations were used in Section 6
to prove two results:

• Ψi
µ is an invertible matrix,

• u0(Q, t), . . . , um(Q, t) are canonical coordinates.

The proofs of parts (ii) and (iii) of Proposition 4 require a further study
of the transition matrix Ψi

µ.

By the invertibility of Ψi
µ, independent vector fields ǫ̃i, . . . , ǫ̃m are

defined by the equations

(61) ∂µ =

m∑

i=0

Ψi
µǫ̃i.

Then, the pairing 〈∂µ, ∂ν〉 = e−1
µ δµν together with Lemma 26 implies:

(62) 〈ǫ̃i, ǫ̃j〉 = δij.

Since the vectors ǫ̃i span the simultaneous eigenspaces of the matrices
Aι, each vector ǫ̃i is proportional to ǫi. We will prove the identity,

(63) ǫ̃i =
√

∆iǫi,

via local splitting equations.
Equations (62) and (63) together yield part (ii) of Proposition 4,

〈ǫi, ǫi〉−1 = (
√

∆i)2.

Part (iii) of Proposition 4 is a consequence of definition (61) and the
equation (63).

7.2. Preliminaries. We will require a basic consequence of part
(i) Proposition 4 in the splitting analysis below.

Lemma 29.
∂ui

∂t1
= 1.
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Proof. Since u0, . . . , um are canonical coordinates and ∂/∂t1 is the unit
field,

∂

∂t1
=

m∑

i=0

∂

∂ui .

The Lemma then follows immediately. �

Following the notation of Section 5, the functions ∂ui/∂t1 have
graph theoretic expressions:

• Let G
∂ui/∂t1

0,3+n (X, β) ⊂ G0,3+n(X, β) denote the set of graphs for
which markings 1 and 2 lie on a single irreducible component
contracted to pi. Then,

∂ui

∂t1
(Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G
∂ui/∂t1

0,3+n (X,β)

ContΓ(ei
∂3FX

0

∂ti∂ti∂t1
).

While Lemma 29 is a trivial corollary of Proposition 4, a direct deriva-
tion from the definition via localization graphs does not appear to be
straightforward.

7.3. Local splitting revisited. Let Ψi
1

=
∑m

α=0 Ψi
α. The first

consequence of Lemma 29 is the following identification.

Lemma 30. Ψi
1

= (
√

∆i)−1.

Proof. We will apply the local splitting technique to deduce:

(64) Ψi
1

√
∆i =

∂ui

∂t1
∂ui

∂t1
.

By Lemma 29, the right side of (64) is 1, hence Ψi
1

= (
√

∆i)−1.
The proof of equation (64) requires a new summation of localization

graphs σi(Q, t):

• Let Gσi

0,4+n(X, β) ⊂ G0,4+n(X, β) denote the set of graphs for
which markings 1 and 2 lie on an irreducible component E
contracted to pi and markings 3 and 4 lie on distinct branches
off of E. Let

σi(Q, t) =
∑

n≥0

∑

β∈E

∑

Γ∈Gσi
0,4+n(X,β)

ContΓ(θβ
ii11

).

The series θβ
ii11

is defined by (54).

Let B4, B
′
4 be the boundary moduli points of M 0,4 defined by:
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•
•φi

φi

B4 B′
4

•φi •
φi

φ1φ1
φ1

φ1

Figure 5

By specializing the curveD4 in the integrand of θβ
ii11

to B4 and applying
the local splitting equation, we find:

σi = Ψi
1

1

ei

√
∆i.

Similarly, specialization to B′
4 yields:

σi =
∂ui

∂t1
1

ei

∂ui

∂t1
,

completing the proof of equation (64). �

The last Lemma needed in the proof of Proposition 4 is proven by
the same method used in Lemma 30.

Lemma 31. Ψi
µ = Ψi

1
∂ui/∂tµ.

Proof. We will apply the local splitting technique to deduce the equa-
tion

(65) Ψi
µ

∂ui

∂t1
= Ψi

1

∂ui

∂tµ
.

The Lemma is then a consequence of Lemma 29.
We will require a summation of localization graphs τ i

µ(Q, t) for the
derivation of equation (65):

• Let G
τ i
µ

0,4+n(X, β) ⊂ G0,4+n(X, β) denote the set of graphs for
which the marking 1 lies on an irreducible component E con-
tracted to pi and markings 2,3, and 4 lie on distinct branches
off of E. Then,

τ i
µ(Q, t) =

∑

n≥0

∑

β∈E

∑

Γ∈G
τi
µ

0,4+n(X,β)

ContΓ(θβ
iµ11

).

Let B4, B
′
4 be the boundary moduli points of M 0,4 defined by:

66



•
φi

B4 B′
4

•φi

φ1

φ1 φ1φµ
φµ

φ1

Figure 6

By specializing the curve D4 in the integrand of θβ
iµ11

to B4 and apply-
ing the local splitting equation, we find:

τ i
µ = Ψi

µ

1

ei

∂ui

∂t1
.

Similarly, specialization to B′
4 yields:

τ i
µ = Ψi

1

1

ei

∂ui

∂tµ
,

completing the proof of equation (65). �

7.4. Completion of the proof of Proposition 4. Lemmas 30
and 31 together yield the equation:

Ψi
µ = (

√
∆i)−1∂u

i

∂tµ
.

Then, the definitions

∂µ =

m∑

i=0

Ψi
µǫ̃i,

∂

∂ui
= ǫi

imply ǫ̃i =
√

∆iǫi. �
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CHAPTER 5

Quantum potentials, the string flow, and the

dilaton flow

1. Overview

We study here integrals over the moduli spaces M0,n which will
be required for our analysis of equivariant Gromov-Witten theory in
Chapter 7. We prove the integral series which arise are all functions of
a distinguished series u(T ). The series u(T ) plays an important role:
u(T ) arises as the principal vertex integral in the materialization of
canonical coordinates and as the parameter of string flow.

2. Quantum potentials in genus 0

Let Si(ψi) be a formal series in the variable ψi:

Si(ψi) = Si0ψ
0
i + Si1ψ

1
i + Si2ψ

2
i + . . . ,

where Sij are independent variables. The empty superscript after the
brackets 〈, 〉 will be used for integrals of the ψ classes over the moduli
of curves:

〈S1(ψ1), . . . , Sn(ψn)〉0,n =

∫

M0,n

n∏

i=1

Si(ψi).

On the right side, the integrals over moduli space are viewed as multi-
linear in the formal parameters Sij .

Let T denote the following set of formal variables:

T = {T0, T1, T2, . . .}.

Let T (ψ) denote the formal series:

T (ψ) = T0ψ
0 + T1ψ

1 + T2ψ
2 + . . . .

When T (ψ) occurs in the position of the ith point in a generating series,
the substitution T (ψ = ψi) will be understood.
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The study of higher genus structures requires an analysis of several
quantum potentials. Let F0(T ) denote the standard genus 0 potential:

F0(T ) =
∞∑

n=3

1

n!
〈T (ψ), · · · , T (ψ)〉0,n.

By definition, F0(T ) ∈ Q[[T ]]. However, a stronger result holds. Let
T≥2 = {T2, T3, T4, . . .} be the restricted variable set.

Lemma 32. F0(T ) ∈ Q[T≥2,
1

1−T1
][[T0]].

Proof. The T1 dependence of F0(T ) is determined by the dilaton equa-
tion,

∫

M0,n

n∏

i=1

ψai
i · ψn+1 = (−2 + n)

∫

M0,n

n∏

i=1

ψai
i .

Using the dilaton equation, the potential F0(T ) can be expressed as:

(66) F0(T ) =
∑

i≥3

T i
0

i!

∑

a

1

l(a)!

∏l(a)
j=1 Taj

(1 − T1)l(a)+i−2

∫

M0,l(a)+i

l(a)
∏

j=1

ψ
aj

j .

The second sum is over all finite ordered sequences a of length l(a) ≥ 0,

a = (a1, . . . , al(a))

satisfying aj ≥ 2.
The integral over M 0,l(a)+i in (66) vanishes unless

l(a)
∑

j=1

aj = dimC M 0,l(a)+i = l(a) + i− 3.

For each i ≥ 3, there are only finitely many sequences a which satisfy
the above dimension constraint. Hence, for each i, the second sum in
(66) defines a polynomial in the variables T≥2 and (1 − T1)

−1. �

Let u(T ) and
√

∆(T ) be defined by differentiating F0(T ),

u(T ) =
∂2F0

∂T 2
0

(T ) ∈ Q[T≥2,
1

1 − T1

][[T0]],

√
∆(T ) =

∂3F0

∂T 3
0

(T ) ∈ Q[T≥2,
1

1 − T1
][[T0]].
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Equivalently,

u(T ) =

∞∑

n=1

1

n!
〈1, 1, T (ψ), · · · , T (ψ)〉0,n+2.(67)

√
∆(T ) =

∞∑

n=0

1

n!
〈1, 1, 1, T (ψ), · · · , T (ψ)〉0,n+3.(68)

The restrictions of the series to the hypersurface T0 = 0 are obtained
from their defining integrals using dimension constraints:

u(T )|T0=0 = 0,
√

∆(T )|T0=0 =
1

1 − T1
.

A connection between u(T ),
√

∆(T ) and the series ui(Q, t),
√

∆i(Q, t)
arising in the materialization of canonical coordinates will be derived
in Chapter 7.

Two other potentials will play basic roles in the localization analysis
in Chapter 7:

v1(T, x) = 1 +

∞∑

n=1

1

n!
〈1, 1

x− ψ
, T (ψ), · · · , T (ψ)〉0,n+2,

v2(T, x, y) =
1

x+ y
+

∞∑

n=1

1

n!
〈 1

x− ψ
,

1

y − ψ
, T (ψ), · · · , T (ψ)〉0,n+2.

After extracting the T1 dependence via the dilaton equation (as in the
proof of Lemma 32), we find:

(69) v1(T, x) ∈ Q[T≥2,
1

1 − T1
,
1

x
][[T0]],

v2(T, x, y) ∈ Q[T≥2,
1

1 − T1

,
1

x
,
1

y
,

1

x+ y
][[T0]].

The series u(T ) determines all three of the series
√

∆(T ), v1(T, x)
and v2(T, x, y) by the main result of Chapter 5.

Proposition 5. The following relations hold:
√

∆(T ) =
1

1 −∑n≥0 Tn+1
un(T )

n!

,

v1(T, x) = eu(T )/x,

v2(T, x, y) =
eu(T )( 1

x
+ 1

y
)

x+ y
.

The proof of Proposition 5 will be given in Section 4 after a discussion
of the string flow.
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3. The string flow

Let ∂i = ∂/∂Ti. Define the string operator by:

L = ∂0 −
∞∑

i=0

Ti+1∂i.

L may be viewed as a vector field on the infinite dimensional manifold
T with coordinates T .

Let p ∈ T be a point with coordinates Ti(p) = pi. Consider the
formal path γ(τ) in T with parameter τ defined by the following equa-
tions:

T0(γ(τ)) = τ +
∞∑

n=0

(−1)npn
τn

n!
,

T1(γ(τ)) = 1 − dT0(τ)

dτ
,

Ti(γ(τ)) = −dTi−1(τ)

dτ
, i ≥ 2,

(70)

where Ti(γ(τ)) ∈ C[[τ ]].

Lemma 33. The path γ determines a formal integral curve of L at
p.

Proof. The evaluations τi(γ(0)) = pi for i ≥ 0 follow directly from the
definition of the formal path (70). Hence γ(0) = p.

To prove γ is an integral curve of L, we must show

(71)
d

dτ
γ = L(γ).

A direct calculation using the definitions of γ and L verifies (71). �

The integral curve γ defines the formal string flow at p in the man-
ifold T .

4. Proof of Proposition 5

The string equation in genus 0,
∫

M0,n+1

n∏

i=1

ψai
i · ψ0

n+1 =
n∑

i=1

∫

M0,n

ψai−1
i ·

∏

j 6=i

ψ
aj

j ,

is equivalent to the equation:

(72) LF0 =
T 2

0

2
.
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The action of the string operator on the series u(T ),
√

∆(T ), v1(T, z),
and v2(T, x, y) is determined by the following Lemma.

Lemma 34. We have,

Lu = 1,

L
√

∆ = 0,

Lv1 =
v1

z
,

Lv2 = (
1

x
+

1

y
)v2.

Proof. The functions Lu, L
√

∆, Lv1, and Lv2 can be directly computed
via the string equation from the definitions of the four series. An
alternative computation of Lu may be obtained as follows. Since L
and ∂0 commute, we find

Lu = L∂2
0F0 = ∂2

0LF0 = ∂2
0(
T 2

0

2
) = 1,

using (72). �

We now prove the first equality of Proposition 5:

(73)
√

∆(T ) =
1

1 −∑n≥0 Tn+1
un(T )

n!

.

Both sides of (73) specialize to 1
1−T1

when restricted to the hypersurface

T0 = 0. The function
√

∆(T ) is annihilated by L by Lemma 34. A
direct computation using Lu = 1 shows the right side of (73) is also
annihilated by L. Since series in Q[T≥2,

1
1−T1

][[T0]] annihilated by L are

determined by their restrictions to T0 = 0, equation (73) is proven.
Let p ∈ T be a point satisfying p0 = 0 and p1 6= 1. Let γ(τ) be the

string flow at p defined in Section 3.

Lemma 35. The series u is the parameter of the string flow:

u(γ(τ)) = τ.

Proof. Since u(T ) ∈ Q[T≥2,
1

1−T1
][[T0]] and,

T0(γ(0)) = p0 = 0, T1(γ(0)) = p1 6= 1,

the composition u(γ(τ)) is a well-defined formal series in τ . Moreover,
since u(T ) is divisible by T0, u(γ(0)) = 0. A differential equation is
obtained from Lemmas 33-34,

d

dτ
u(γ(τ)) = Lu(γ(τ)) = 1.
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With the initial condition u(γ(0)) = 0, we conclude u(γ(τ)) = τ . �

Lemma 36. We have,

√
∆(γ(τ)) =

1

1 − p1
,

v1(γ(τ), x) = eτ/x,

v2(γ(τ), x, y) =
eτ( 1

x
+ 1

y
)

x+ y
.

Proof. The compositions
√

∆(γ(τ)), v1(γ(τ), x) and v2(γ(τ), x, y) are
well-defined formal series in τ by (69) since p0 = 0 and p1 6= 1. The
initial conditions,

√
∆(γ(0)) =

1

1 − p1
,

v1(γ(0), z) = 1,

v2(γ(0), x, y) =
1

x+ y
,

are determined from the definitions. The Lemma is then proven by the
differential equations obtained from Lemmas 33-34,

d

dτ

√
∆(γ(τ)) = 0,

d

dτ
v1(γ(τ), x) =

v1(γ(τ), x)

x
,

d

dτ
v2(γ(τ), x, y) = (

1

x
+

1

y
)v2(γ(τ), x, y),

and the uniqueness result for their solutions. �

We now complete the proof of Proposition 5. First, consider the
two series:

v1(T, x), e
u(T )/x ∈ Q[T≥2,

1

1 − T1
,
1

x
][[T0]].

To establish the relation v1(T, x) = eu(T )/x, we will prove the equality
of derivatives,

(74)
∂k

∂T k
0

v1(T, x)|T0=0 =
∂k

∂T k
0

eu(T )/x|T0=0,

for all k.

74



Since both sides of (74) are polynomials in the ring

Q[T≥2,
1

1 − T1
,
1

x
],

it suffices to prove the equality (74) holds after evaluation at all points
p ∈ T satisfying p0 = 0 and p1 6= 1.

By Lemmas 33 and 36, the equalities,

Lkv1(T, x)|p = Lkeu(T )/x|p,
hold for all k and all points p ∈ T satisfying p0 = 0 and p1 6= 1. The
relation,

∂0 =
1

1 − T1
L +

1

1 − T1

∑

i≥1

Ti+1∂i,

then implies equation (74) holds for all k after evaluation at p.
We have proven v1(T, x) = eu(T )/x. The proof of the equality

v2(T, x, y) =
eu(T )( 1

x
+ 1

y
)

x+ y
.

is identical. �

5. The dilaton flow

Define the dilaton operator by:

D = ∂1 −
∞∑

0

Ti∂i.

The dilaton flow γ′ at a point p ∈ T is defined by:

T1(γ
′(τ)) =1 − (1 − p1)e

−τ ,

Ti(γ
′(τ)) =e−τpi, i 6= 1

(75)

A direct verification shows γ′ is an integral curve of D on T .

6. The string and dilaton flows

Let p ∈ T . We will now use the string and dilaton flows to canoni-
cally associate a point r(p) ∈ T satisfying r0 = r1 = 0.

We first follow the string flow γp for time −u(p). The result is the
point q = γp(−u(p)) with coordinates well-defined in Q[p≥2,

1
1−p1

][[p0]].

Lemma 37. q0 = 0.
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Proof. By the formula for q0, we must prove the vanishing of

−u(p) +
∑

n=0

pn
un(p)

n!
.

Since the above series vanishes along the hypersurface p0 = 0 and is
annihilated by L, the series vanishes identically. �

Lemma 38. 1
1−q1

=
√

∆(p).

Proof. The result is obtained from the formula for q1 together with
Proposition 5. Alternatively, the result may be obtained by observing
that

√
∆ is invariant under the string flow and

√
∆(q) = 1

1−q1
. �

Next, we follow the dilaton flow for time − log
√

∆(p). By the

formulas for the dilaton flow, the point r = γ′q(− log
√

∆(p)) satisfies

r0 = r1 = 0. The coordinates of r are well-defined in Q[p≥2,
1

1−p1
][[p0]].
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CHAPTER 6

Givental’s formula for higher genus potentials

1. Genus 0 potentials

Let F be a Frobenius manifold, and let p be a semisimple point. We
will study F near p, either on a open set U if F is a complex Frobenius
manifold, or on a formal neighborhood, if F is formal.

Let Φ be a potential function for F at p obtained from the poten-
tial condition. The potential Φ is uniquely specified modulo quadratic
terms. The genus 0 potential FF

0 of F is defined by

(76) FF
0 = Φ,

well-defined modulo quadratic terms.
For Frobenius manifolds F(X) obtained from Gromov-Witten the-

ory, the potential Φ is defined to equal the genus 0 Gromov-Witten
potential of X. Definition (76) is motivated by Gromov-Witten theory.

2. R-Calibrations

For the definitions of the potentials in genus g ≥ 1, we will require
further data. Let p be anR-calibrated semisimple point of F . Following
the notation of Section 4.5 of Chapter 1, an R-calibration consists of a
selection of square roots

√
∆j , where

∆j = 〈ǫj , ǫj〉−1,

and a selection of a formal fundamental solution in canonical coordi-
nates,

S̃ = R(z, u)eu/z ,

satisfying properties (i-ii) of Theorem 1. If F is conformal, the unique
fundamental solution satisfying property (iv) is selected.

3. Genus 1 potentials

The differential dFF
1 of the genus 1 potential of F is defined at p

by

(77) dFF
1 =

∑

i

1

48
d(log ∆i) +

1

2
(R1)

i
idu

i,
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where the index i parameterizes the canonical coordinates at p.
The right side of the definition is a closed 1-form by the following

calculation:

d
∑

i

1

48
d(log ∆i) +

1

2
(R1)

i
idu

i =
∑

i

1

2
d(R1)

i
i ∧ dui

=
∑

i,k

1

2
(duk − dui)(R1)

i
k(R1)

k
i ∧ dui

=
∑

i,k

1

2
(R1)

i
k(R1)

k
i du

k ∧ dui

= 0,

where equation (24) is used to deduce the second equality. Hence,
the right side of (77) is locally exact, and F1 is well-defined up to a
constant.

4. Higher genus potentials

The potential FF
g for g ≥ 2 associated to an R-calibrated Frobenius

manifold F is defined by the following formula due to Givental:

exp

(
∑

g≥2

λg−1FF
g

)

=

[

exp(
λ

2

∞∑

k,l=0

∑

i,j

Eij
kl

√
∆i

√
∆j

∂

∂Qi
k

∂

∂Qj
l

)
∏

m

τ(λ∆m, Qm)

]

Qi
k=T i

k

,

(78)

The variables and functions on the right side of the formula all
require definitions. The indices i, j, and m parameterize the canonical
coordinates at p. For each canonical coordinate um, Qm denotes the
variable set {Qm

k }k≥0. The functions Eij
kl, T

i
k, and τ are defined below.

The first two are obtained from the R-calibration and the last is the
τ -function of the moduli space of curves.

Let S be the formal fundamental solution,

(79) S = Ψ−1R(z, u)eu/z ,

obtained from the R-calibration for a choice of flat coordinates. The
notation S(z) will be used below to make the z dependence explicit.

The functions Eij
kl and T i

k are defined near p. We first define Eij
kl.

Define the matrix E(w, z) by:

(80) Eij(w, z) =
1

w + z

∑

µ,ν

(S†(w))i
µgµν(S(z))ν

j .
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Using (79) and the relation

(Ψ−1)tgΨ−1 = 1,

we find,

Eij =
eui/w+uj/z

w + z

∑

m

Rm
i (w)Rm

j (z).

Then, by the unitary property (ii) of the R-calibration,

1

w + z

∑

m

Rm
i (w)Rm

j (z)

is a power series in z and w except for an initial pole. The functions
Eij

kl are defined as coefficients of the expansion:

(81) Eij(w, z) = eui/w+uj/z

(

δij
w + z

+

∞∑

k,l=0

Eij
kl(−w)k(−z)l

)

.

While the product on the right side of (81) is formal, the functions Eij
kl

are well-defined (and independent of the flat coordinate choice).
To define T i

k, we first consider the identity 1 of the Frobenius man-
ifold in flat coordinates:

1 =
∑

i

ǫi =
∑

µ

δµ∂µ.

We then expand
∑

µ δµS
µ
i (z) in power series in z:

S1

i (z) =
∑

µ

δµS
µ
i (z)

= eui/z
∑

j

1√
∆j

Rj
i (z),

=
eui/z

√
∆i

(

1 −
∞∑

k=2

T i
k(−z)k−1

)

,

where the functions T i
k are defined by the last equality (together with

the conditions T i
0 = T i

1 = 0). Again, although the products above are
formal, the functions T i

k are well-defined.
Let Q denote the variable set {Qk}k≥0. Let

Q(ψ) =
∞∑

k=0

Qkψ
k.
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The function τ(λ,Q) is the τ -function of the moduli space of curves:

τ(λ,Q) = exp

( ∞∑

g=0

λg−1

∞∑

n=0

1

n!

∫

Mg,n

Q(ψ1) . . . Q(ψn)

)

,

where the unstable moduli spaces are omitted as usual. The function
τ(λ,Q) is independent of F .

The right side of (78) is now well-defined by the above conven-
tions. Since the evaluations of τ(λδm, Q

m) occur at Qm
0 = Qm

1 = 0, the
right side contains no terms with λ exponents less than 1. Hence, the
logarithm of the right side may be written as

exp

(
∑

g≥2

λg−1FF
g

)

,

where FF
g is the genus g Givental potential associated to F at an R-

calibrated semisimple point.

5. The conformal case

Let F be a conformal Frobenius manifold. A canonical R-calibration
at p exists up to the choice of square roots

√
∆i by part (iv) of Theorem

1.

Lemma 39. The higher genus potentials Fg≥1 for F are independent
of the square root choice.

Proof. Let
√

∆i and
√

∆i′ be two choices of square roots. Let R be the
homogeneous matrix series solution for

√
∆i. The matrix solution R′

for
√

∆i′ is
R′ = DRD,

where D is the diagonal matrix with coefficients
√

∆i/
√

∆i′ , see the
proof of Lemma 15.

Since the diagonal elements of R′ and R agree,

(R′
1)

i
i = (R1)

i
i,

the definition of the genus 1 potential is independent of the square root
choice.

By the formulas defining Eij
kl and T i

k, we see,

(E ′)ij
kl = Eij

kl

√
∆i

√
∆i′

√
∆j

√
∆j′

,

(T ′)i
k = T i

k.

Hence, formula (78) is also independent of the square root choice. �
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Therefore, canonical higher genus potentials are defined for conformal
Frobenius manifolds F at semisimple points.

Formal Frobenius manifolds F(X) obtained from Gromov-Witten
theory carry natural higher genus potentials defined by geometry:

(82) FX
g =

∑

n,β

Qβ

n!
〈γ, . . . , γ〉Xg,n,β

where γ =
∑

µ t
µTµ. These potentials encode the higher genus Gromov-

Witten invariants of X.
We now assume that F(X) is a complex semisimple Frobenius man-

ifold near the origin. Since F(X) is conformal, we have two definitions
of the potentials in genus g ≥ 1. The first is the Givental potential
obtained from the R-calibration via (77) and (78), and the second is
the Gromov-Witten potential obtained from geometry (82).

Givental’s Conjecture. The Givental and Gromov-Witten potentials
of F(X) are equal at every semisimple point of F(X).

If true, the conjecture implies all the higher genus Gromov-Witten
invariants of X in the semisimple case are determined by the genus 0
invariants together with the τ function of the moduli space of curves.

Using Getzler’s descendent relation in H4(M 1,4,Q), Dubrovin and
Zhang have proven Givental’s conjecture in genus 1. In fact, Given-
tal’s conjecture in genus 1 and the proof by Dubrovin and Zhang oc-
curred simultanenously. For all genera g ≥ 2, the conjecture remains
open. Givental’s proof of the conjecture for Pn via equivariant Gromov-
Witten theory will be explained in Part 3.

Only primary field potentials have been discussed here. In fact,
higher genus descendent potentials have been defined by Givental for
calibrated semisimple Frobenius manifolds. Formulas for the descen-
dent potentials and the descendent generalization of Givental’s conjec-
ture will be discussed in Part 2.
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CHAPTER 7

Givental’s formula in equivariant Gromov–Witten

theory

1. Overview

Let X be a nonsingular projective variety with a T-action satisfy-
ing conditions (i-ii) of Chapter 3. We consider here the formal Frobe-
nius manifold F∗

T
(X) obtained from the localized equivariant Gromov-

Witten theory ofX. Since F∗
T
(X) is semisimple at the origin by Lemma

23, each R-calibration determines a higher genus potential function by
(77) and (78). An important result proven by Givental is an equivariant
analogue of his potential conjecture: the Givental potential of F∗

T
(X)

equals the equivariant Gromov-Witten potential for a distinguished R-
calibration.

First a canonical R-calibration of F∗
T
(X) obtained from Gromov-

Witten theory will be defined. The R-calibration required for Given-
tal’s conjecture is obtained by a distinguished modification of the canon-
ical calibration.

2. The functions Ai

We will require several functions defined by sums over localization
graphs following the notation of Chapter 4.

For each fixed point pi ∈ X, the function Ai is defined as a sum
over graphs for which the first marking lies at an end of the graph over
pi:

• Let GAi

0,1+n(X, β) ⊂ G0,1+n(X, β) denote the set of graphs for
which the marking 1 lies on a valence two vertex mapped to
pi. Then,

Ai(Q, t, ψ) = ti +
∑

n≥0

∑

β∈E

∑

Γ∈GAi
0,1+n(X,β)

1

χΓ − ψ

ContΓ ei〈φi, γ
n〉

n!
,

where χΓ is the torus character corresponding to the unique
edge Γ incident to the marking 1, γ =

∑

µ t
µφµ, and γn is

shorthand for n insertions of γ.
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The valence two condition implies that the marking lies at an end of
the graph. In particular, GAi

0,1+n(X, β) contains no degree 0 graphs. The

leading term, ti, may be viewed as a degenerate degree 0 contribution.
We may expand Ai as a series in the variable ψ,

Ai(ψ) =
∑

k≥0

Ai
kψ

k,

where Ai
k are functions of Q, t.

Recall the functions u(T ) and
√

∆(T ) defined in Chapter 5. After

substitution, u(Ai) and
√

∆(Ai) are functions of Q, t.

Lemma 40. u(Ai) = ui(Q, t),
√
ei

√
∆(Ai) =

√
∆i(Q, t).

Proof. The Lemma is a direct consequence of the materialization for-
mula for ui(Q, t) and

√
∆i(Q, t), the formula for graph contributions,

and the definitions of u(T ),
√

∆(T ), and Ai. �

3. The canonical calibration

Canonical coordinates ui(Q, t) at the origin for the Frobenius man-
ifold F∗

T
(X) are defined by the materialization graph sums of Proposi-

tion 4. To define an R-calibration for F∗
T
(X) at the origin, a selection

of square roots
√

∆i must be made. We choose the canonical square
roots, √

∆i,

defined by materialization. The fundamental solution required for the
R-calibration is given by the following Lemma.

Lemma 41. The matrix series,

(83) Sµ
j = δµ

j

√
ej + 〈〈φµ,

φj

z − ψ
〉〉X0 eµ

√
ej ,

factors canonically as

(84) S = Ψ−1R(z, u)eu/z ,

where R(z, u) satisfies properties (i-ii) of Theorem 1.

Since the canonical coordinates ui(Q, t) defined by materialization
vanish at the origin, the product (84) is well-defined. Hence, we may
manipulate (84) as a true (rather than formal) object — see the dis-
cussion in Section 4.5 of Chapter 1 following the statement of Theorem
1.
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Lemma 41 defines a canonical R-calibration for F∗
T
(X). A modi-

fied R-calibration will be required for Givental’s conjecture in the equi-
variant case. We will first prove Lemma 41 and study the canonical
R-calibration.

Proof. The right side of equation (83) certainly satisfies the quantum
differential equation (the non-equivariant case was discussed in Section
5.3 of Chapter 2, see also [3], [6], [16]). Since Ψ−1 and eu/z are well-
defined and invertible, R is uniquely determined from the factorization
(84). We must prove R has a matrix series expansion in z which satisfies
parts (i-ii) of Theorem 1.

First, we will study the following series via fixed point localization:

(85) 1 + ej〈〈φj,
φj

z − ψ
〉〉X0 .

Consider the contribution,

Cj = 1 +
∑

n≥0

∑

β∈E

∑

Γ∈G
uj
0,2+n(X,β)

ContΓ ej〈〈φj,
φj

z − ψ
〉〉X0 .

Following the notation of Chapter 4, Guj

0,2+n(X, β) denotes the set of
graphs for which markings 1 and 2 lie on a single irreducible component
contracted to pj. The leading constant term is viewed as a degenerate
graph contribution of the above type.

By the localization formula and the definitions of v1(T, z) and Aj,
we obtain,

Cj = v1(A
j , z).

By Proposition 5 and Lemma 40,

v1(A
j, z) = eu(Aj)/z = euj/z.

Next, we compute the following series via fixed point localization:

(86)
1

χ+ z
+ ej〈〈

φj

χ− ψ
,
φj

z − ψ
〉〉X0 .

Consider the contribution,

Cj,χ =
1

χ+ z
+
∑

n≥0

∑

β∈E

∑

Γ∈Guj
0,2+n(X,β)

ContΓ ej〈〈
φj

χ− ψ
,
φj

z − ψ
〉〉X0 .

The leading polar term is viewed as a degenerate graph contribution.
By the localization formula and the definitions of v2(T, x, y) and

Aj, we obtain,
Cj,χ = v2(A

j , χ, z).
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By Proposition 5 and Lemma 40,

v2(A
j , χ, z) =

eu(Aj)/χ+u(Aj)/z

χ+ z
=
euj/χ+uj/z

χ+ z
.

We now study the matrix elements Sµ
j . First assume µ = j. We

will prove Sµ
j can be expressed in the following form:

(87) Sj
j = Cj

√
ej +

∑

χ∈T∗

j

Dχ(Q, t) Cj,χ(Q, t, z)
√
ej ,

where the sum in the second term is over the set T∗
j of torus characters

which occur as tangent characters for edges incident to pj .
Let G be a graph contributing to the integral

Sj
j =

√
ej + 〈〈φµ,

φj

z − ψ
〉〉X0 ej

√
ej.

There are two cases:

(i) markings 1 and 2 lie on the same vertex,
(ii) markings 1 and 2 lie on different vertices.

For graphs of type (ii), there is a unique minimal path from the vertex
carrying the first marking to the vertex carrying the second marking.
An element of T∗

j is associated to G by the last edge in the minimal
path.

We now prove equation (87). The sum of all type (i) contributions

to Sj
j is exactly Cj

√
ej (accounting also for the constant term). The

type (ii) contributions to Sj
j are summed as follows. Let χ ∈ T∗

j be
a fixed tangent character. Consider the subsummation of type (ii)
contributions for which the associated character is χ. The sum is easily
seen to factor as

Dχ(Q, t) Cj,χ(Q, t, z)
√
ej,

where the first factor does not depend upon z. A summation over χ
then yields (87).

The z dependence of Sj
j is now easily determined. Equation (87)

and the expansions,

Cj = euj/z,

Cj,χ =
(∑

k

euj/χ (−z)k

χk+1

)

euj/z,

prove Sj
j has a series expansion in positive powers of z (up to the factor

euj/z).

86



The analysis of Sµ
j for µ 6= j is identical. If µ 6= j, only type (ii)

graphs contribute, and the expression,

Sµ
j =

∑

χ∈T∗

j

Dχ(Q, t) Cj,χ(Q, t, z)
√
ej ,

is obtained.
The matrix S is canonically expressed as a product of a matrix series

in non-negative powers of z with eu/z. Since Ψ−1 has no z dependence,
R is a matrix series in z. Part (i) of Theorem 1 is established.

Part (ii) of Theorem 1 is deduced from equation (4) of Chapter 1.
The factors of

√
ej in the definition of S are inserted to satisfy the

unitary condition. �

Double parentheses will be defined to include unstable degree 0
contributions:

((φµ,
φj

z − φj
))X

0 = z 〈〈φµ,
φj

z − φj
, φ1〉〉X0

=
δµ
j

eµ
+ 〈〈φµ,

φj

z − φj
〉〉X0

The formula for S is then simply:

(88) Sµ
j = ((φµ,

φj

z − ψ
))X

0 eµ
√
ej.

4. The functions Eij
kl for the canonical calibration

The functions Eij
kl are obtained from the canonical calibration by

an expansion of

1

w + z

∑

µ

(St(w))i
µ

1

eµ
(S(z))µ

j .

We will study the above expression via localization graph sums.
Define the double parenthesized series below to contain unstable

degree 0 contributions:

(89) ((
φi

w − ψ
,
φj

z − ψ
))X

0 = (
1

w
+

1

z
)−1 〈〈 φi

w − ψ
,
φj

z − ψ
, 1〉〉X0 .

Lemma 42. Let Sµ
j be the canonical calibration. Then,

1

w + z

∑

µ

(St(w))i
µ

1

eµ
(S(z))µ

j = ((
φi

w − ψ
,
φj

z − ψ
))X

0

√
eiej.
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Proof. The Lemma is a straightforward consequence of the WDVV
equation:

∑

µ

〈〈φµ,
φi

w − ψ
, φ1〉〉X0 eµ 〈〈φµ,

φj

z − ψ
, φ1〉〉X0 =

∑

µ

〈〈 φi

w − ψ
,
φj

z − ψ
, φµ〉〉X0 eµ 〈〈φµ, φ1, φ1〉〉X0 .

By (88), the left side is:

1
√
eiej wz

∑

µ

(St(w))i
µ

1

eµ
(S(z))µ

j ,

By the axiom of the fundamental class and (89), the right side is

(
1

w
+

1

z
) ((

φi

w − ψ
,
φj

z − ψ
))X

0 ,

completing the proof. �

Define the functions Eij
kl as coefficients of a sum over localization

graphs for which the first marking lies at an end over pi and the second
marking lies at an end over pj:

• Let GEij

0,2+n(X, β) ⊂ G0,1+n(X, β) denote the set of graphs for
which the marking 1 lies on a valence two vertex mapped to
pi and the marking 2 lies on a valence two vertex mapped to
pj. Then, Eij

kl(Q, t) is defined as the coefficient of ψk
1ψ

l
2 in

∑

n≥0

∑

β∈E

∑

Γ∈GEij
0,2+n(X,β)

eui/χ1,Γ

(χ1,Γ − ψ1)

euj/χ2,Γ

(χ2,Γ − ψ2)

ContΓ
√
eiej〈φi, φj, γ

n〉
n!

,

where χ1,Γ, χ2,Γ are the torus characters corresponding to the
unique edges of Γ incident to the markings 1,2 respectively.

Lemma 43.

1

w + z

∑

µ

(St(w))i
µ

1

eµ
(S(z))µ

j =

eui/w+uj/z
( δij
z + w

+

∞∑

k,l=0

Eij
kl(−w)k(−z)l

)
.

Proof. Let G be a graph contributing to the integral,

((
φi

w − ψ
,
φj

z − ψ
))X

0

√
eiej ,
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via fixed point localization. There are two cases:

(i) markings 1 and 2 lie on the same vertex,
(ii) markings 1 and 2 lie on different vertices.

The sum of all type (i) contributions is

eui/w+uj/z δij
w + z

,

as obtained in the proof of Lemma 41.
We will prove the sum of all type (ii) contributions is

(90) eui/w+uj/z

∞∑

k,l=0

Eij
kl(−w)k(−z)l.

Each graph of G of type (ii) can be partitioned uniquely as left, central,
and right subgraphs:

• •

Γ

Figure 7

The central graph Γ is canonically an element of the setGEij

0,2+n(X, β)
for appropriate n and β. The contributions of all graphs G of type (ii)
with a fixed central graph Γ may be summed by applying Proposition
5 to the left and right subgraphs:

(91)
eui/w+ui/χ1,Γ

(w + χ1,Γ)

euj/z+uj/χ2,Γ

(z + χ2,Γ)

ContΓ
√
eiej〈φi, φj, γ

n〉
n!

,
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using the notation for Γ ∈ GEij

0,2+n(X, β) introduced above. Then, after

summing (91) over the set GEij

0,2+n(X, β) of all central graphs, we obtain
(90). �

By Lemma 43, the functions Ekl
ij (q, t) defined by localization graph

sums equal the eponymous functions canonically associated to the canon-
ical calibration S by the definitions of Chapter 6.

5. The functions T i
k for the canonical R-calibration

The functions T i
k are obtained from the canonical R-calibration by

an expansion of S1

i . By (88), we find

S1

i = ((φ1,
φi

z − ψ
))
√
ei.

We will express S1

i via localization graph sums.
Let Q denote the variable set {Qk}k≥0, and as before, let

Q(ψ) =

∞∑

k=0

Qkψ
k

Define the function fi(Q) by:

(92) fi(Q) =

1√
ei

+
Q(−z)√
eiz

+
1√
eiz

∑

n≥2

1

n!

∫

M0,n+1

Q(ψ1) . . .Q(ψn) · 1

z − ψn+1

.

Lemma 44. S1

i is obtained by evaluation of fi,

S1

i =
[
fi(Q)

]

Qk=Ai
k
,

where Ai
k(Q, t) are the graph sums defined in Section 2.

Proof. We may express S1

i as:

S1

i =
1

√
ej

+ 〈〈φ1,
φi

z − ψ
〉〉X0

√
ei

=
1

√
ej

+
ti

√
ejz

+ 〈〈 φi

z − ψ
〉〉X0

√
ej .

We will analyze the series 〈〈 φi

z − ψ
〉〉X0

√
ej by localization.

Let G be localization graphs contributing to 〈〈 φi

z − ψ
〉〉X0

√
ej . There

are two cases:

(i) marking 1 lies on a vertex of valence 2,
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(ii) marking 1 lies on a vertex of valence at least 3.

A direct check via the localization formula shows that the term ti√
ejz

and the type (i) contributions together sum exactly to Ai(−z)√
ejz

. The type

(ii) contributions exactly yield the third summand of fi(Q) evaluated
at Qk = Ai

k. �

The functions Ai define coordinates of a point of the manifold T :

p = (Ai
0, A

i
1, A

i
2, . . .) ∈ T .

By Section 6 of Chapter 5, there is a canonical point

r = (T i
0, T

i
1, T

i
2, . . .) ∈ T

obtained by the string and dilaton flows satisfying T i
0 = T i

1 = 0. The
coordinates T i

k are series in Q, t.

Lemma 45. We have

S1

i (z) =
eui/z

√
∆i

(

1 −
∞∑

k=0

T i
k(−z)k−1

)

.

Proof. We consider fi(Q) as a function on T with coordinates given

by the variables Q. It is important to distinguish the functions u,
√

∆
on T from the functions ui,

√
∆i of the Frobenius manifold.

The string operator on T is:

L = ∂0 −
∞∑

k=0

Qi
k+1∂k.

A direct check yields:

(93) Lfi = zfi.

Let q be obtained from p by following the string flow for time −u(p).
Then, by (93),

fi(q) = e−u(p)/zfi(p).

The dilaton operator on T is:

D = ∂0 −
∞∑

k=0

Qi
k∂k.

A direct check yields:

(94) Dfi = −fi.

Let r be obtained from q by following the dilaton flow for time − log
√

∆(p).
Then, by (94),

fi(r) = elog
√

∆(p)fi(q).
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We conclude

(95) S1

i =
eu(p)/z

√
∆(p)

fi(r).

We now analyze the right side of (95). Since r0 = r1 = 0, the third
summand of fi(r) vanishes for dimension reasons. Hence,

fi(r) =
1

√
ej

(

1 −
∞∑

k=0

T i
k(−z)k−1

)

.

Then, by Lemma 40, we obtain:

S1

i =
eui/z

√
∆i

(

1 −
∞∑

k=0

T i
k(−z)k−1

)

,

completing the derivation. �

By Lemma 45, the functions T i
k(Q, t) defined by flows from Ai

k equal
the eponymous functions canonically associated to the canonical cali-
bration S by the definitions of Chapter 6.

6. Modified R-calibrations

Let S be the canonical fundamental solution for F∗
T
(X) obtained

from equivariant Gromov-Witten theory in Lemma 41. All fundamen-
tal solutions satisfying part (i) and (ii) of Theorem 1 are of the form

S exp(
∑

k≥1

a2k−1z
2k−1),

where
{ a2k−1 = Diag(a1

1,2k−1, a
2
2,2k−1, · · · , am

m,2k−1) }
are constant diagonal matrices by part (iii) of Theorem 1.

The Bernoulli numbers Bm are defined by the following series:

t

et − 1
=

∞∑

m=0

Bm
tm

m!
.

We will require a canonical modification of S,

S̄ = S exp(
∑

k≥1

a2k−1z
2k−1),

where the constant diagonal matrices are defined by

ai
i,2k−1 = −N2k−1(

1

χi
)

B2k

(2k − 1)(2k)
.

Here, Nr denotes the rth Newton sum.
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The canonical square roots
√

∆i and S̄ determine a modified cali-
bration. The functions R̄, Ēij

kl, and T̄ i
k are obtained from the modified

calibration by the definitions of Chapter 6.

Theorem 2. Givental’s conjecture for equivariant Gromov-Witten
theory holds for the modified fundamental solution S̄:

(i) genus 1,

dFX
1,T =

∑

i

1

48
d(log ∆i) +

1

2
(R̄1)

i
idu

i,

(ii) higher genus,

exp

(
∑

g≥2

λg−1FX
g,T

)

=

[

exp(
λ

2

∞∑

k,l=0

∑

i,j

Ēij
kl

√
∆i

√
∆j

∂

∂Qi
k

∂

∂Qj
l

)
∏

m

τ(λ∆m, Qm)

]

Qi
k=T̄ i

k

.

Givental’s proof of Theorem 2 via localization graphs and Hodge
integral techniques will be given in Parts 3.
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