
genus 0

genus 1

genus 2

Relations in the cohomology of $\overline{\mathcal{M}}_{g, n}$

Rahul Pandharipande

Department of Mathematics ETH Zürich

June 2014

\S I. Nonsingular curves

Let C be a complete, nonsingular, irreducible curve of genus $g \geq 2$:

The curve C has a complex structure which we can vary (while keeping the topology fixed).

Riemann studied the moduli space \mathcal{M}_{g} of all genus g curves:

Riemann knew \mathcal{M}_{g} was (essentially) a complex manifold of dimension $3 \mathrm{~g}-3$.

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemann.)

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen kőnnen daher beliebige Werthe annehmen; und es hăngt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen kőnnen daher beliebige Werthe annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

Riemann constructs the variations (via moving branch points), states the dimension, and coins the term moduli in a single sentence.

We are interested here in the cohomology of $\mathcal{M g}_{g}$.
There are two basic questions:
(i) What is the cohomology $H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$ for fixed g ?
(ii) What is the $\lim _{g \rightarrow \infty} H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$?

We are interested here in the cohomology of $\mathcal{M g}_{g}$.
There are two basic questions:
(i) What is the cohomology $H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$ for fixed g ?
(ii) What is the $\lim _{g \rightarrow \infty} H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$?

Both inspired by work of Mumford in the 70s and 80s following the previously developed Schubert calculus of the Grassmannian.

§II. Grassmannian

Let \mathbb{C}^{n} be a n-dimensional complex vector space. The Grassmannian $\operatorname{Gr}(r, n)$ parameterizes all r-dimensional linear subspaces of \mathbb{C}^{n}.
(i) What is the cohomology $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ for fixed n ?
(ii) What is the $\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$?

§II. Grassmannian

Let \mathbb{C}^{n} be a n-dimensional complex vector space. The Grassmannian $\operatorname{Gr}(r, n)$ parameterizes all r-dimensional linear subspaces of \mathbb{C}^{n}.
(i) What is the cohomology $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ for fixed n ?
(ii) What is the $\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$?

The answers to (i) and (ii) are very well-known. The study has modern origins in Schubert's work. The rigorization of the Schubert calculus was Hilbert's $15^{\text {th }}$ problem.

Let $S \subset \mathbb{C}^{n} \times \operatorname{Gr}(r, n)$ be the universal subbundle.

$$
\begin{array}{cc}
\int & \supset \\
\pi \downarrow & \downarrow \\
G_{r}(r, n) \ni & {\left[V \subset 申^{n}\right]} \\
& \\
& \operatorname{dim}_{\phi} V=r
\end{array}
$$

Let $S \subset \mathbb{C}^{n} \times \operatorname{Gr}(r, n)$ be the universal subbundle.

$$
\begin{array}{ccc}
S & \supset & \downarrow \\
\pi \downarrow & \downarrow \\
G_{r}(r, n) & \ni & {\left[V \subset 申^{n}\right]} \\
& & \operatorname{dim}_{\phi} V=r
\end{array}
$$

- $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ is generated by the Chern classes of S,

$$
c_{i}(\mathrm{~S}) \in H^{2 i}(\operatorname{Gr}(r, n), \mathbb{Q})
$$

There are r Chern classes $c_{1}(S), \ldots, c_{r}(S)$.

Since S is a subbundle of the trivial rank n bundle over $\operatorname{Gr}(r, n)$, the quotient

$$
0 \rightarrow \mathrm{~S} \rightarrow \mathbb{C}^{n} \times \operatorname{Gr}(r, n) \rightarrow \mathrm{Q} \rightarrow 0
$$

is a bundle Q of rank $n-r$. The Chern classes of Q are

$$
c(Q)=\sum_{i \geq 0} c_{i}(Q)=\frac{1}{1+c_{1}(S)+\ldots+c_{r}(S)}
$$

Since S is a subbundle of the trivial rank n bundle over $\operatorname{Gr}(r, n)$, the quotient

$$
0 \rightarrow \mathrm{~S} \rightarrow \mathbb{C}^{n} \times \operatorname{Gr}(r, n) \rightarrow \mathrm{Q} \rightarrow 0
$$

is a bundle Q of rank $n-r$. The Chern classes of Q are

$$
c(Q)=\sum_{i \geq 0} c_{i}(Q)=\frac{1}{1+c_{1}(\mathrm{~S})+\ldots+c_{r}(\mathrm{~S})}
$$

- The ideal of relations in $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ among the $c_{i}(\mathrm{~S})$ is generated by the vanishing of the Chern classes of Q

$$
c_{n-r+i}(\mathrm{Q})=\left[\frac{1}{1+c_{1}(\mathrm{~S})+\ldots+c_{r}(\mathrm{~S})}\right]_{n-r+i}=0
$$

for $1 \leq i \leq r$.

The natural inclusion $\mathbb{C}^{n} \subset \mathbb{C}^{n+1}$, yields a natural inclusion

$$
\operatorname{Gr}(r, n) \subset \operatorname{Gr}(r, n+1)
$$

and natural limit $\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$.

The natural inclusion $\mathbb{C}^{n} \subset \mathbb{C}^{n+1}$, yields a natural inclusion

$$
\operatorname{Gr}(r, n) \subset \operatorname{Gr}(r, n+1)
$$

and natural limit $\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$.

- Since the relations in $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ start in degree $n-r+1$, the limit is free:

$$
\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})=\mathbb{Q}\left[c_{1}(S), \ldots, c_{r}(S)\right]
$$

Can also be interpreted as the group cohomology of $\mathbb{G L}(r, \mathbb{C})$.

The natural inclusion $\mathbb{C}^{n} \subset \mathbb{C}^{n+1}$, yields a natural inclusion

$$
\operatorname{Gr}(r, n) \subset \operatorname{Gr}(r, n+1)
$$

and natural limit $\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$.

- Since the relations in $H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})$ start in degree $n-r+1$, the limit is free:

$$
\lim _{n \rightarrow \infty} H^{*}(\operatorname{Gr}(r, n), \mathbb{Q})=\mathbb{Q}\left[c_{1}(S), \ldots, c_{r}(S)\right]
$$

Can also be interpreted as the group cohomology of $\mathbb{G L}(r, \mathbb{C})$.
For the Grassmannian, we have very satisfactory answers to the two original questions in terms of tautological structures.

§III. Tautological classes on $\mathcal{M g}_{g}$

What is the analogue of S for the moduli space of curves?
§III. Tautological classes on $\mathcal{M g}_{g}$
What is the analogue of S for the moduli space of curves?
Answer: the universal curve \mathcal{C} :

§III. Tautological classes on \mathcal{M}_{g}
What is the analogue of S for the moduli space of curves?
Answer: the universal curve \mathcal{C} :

We can not directly take Chern classes of the universal curve since

$$
\pi: \mathcal{C} \rightarrow \mathcal{M}_{g}
$$

is not a vector bundle.

Let \mathcal{L} be the cotangent line over the universal curve,

Let \mathcal{L} be the cotangent line over the universal curve,

Since $\mathcal{L} \rightarrow \mathcal{C}$ is a line bundle, we can define

$$
\psi=c_{1}(\mathcal{L}) \in H^{2}(\mathcal{C}, \mathbb{Q})
$$

Via integration along the fiber of $\pi: \mathcal{C} \rightarrow \mathcal{M}_{g}$, we define

$$
\kappa_{i}=\pi_{*}\left(\psi^{i+1}\right) \in H^{2 i}\left(\mathcal{M}_{g}, \mathbb{Q}\right)
$$

Let $R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$ denote the subring generated by the κ classes.

Via integration along the fiber of $\pi: \mathcal{C} \rightarrow \mathcal{M}_{g}$, we define

$$
\kappa_{i}=\pi_{*}\left(\psi^{i+1}\right) \in H^{2 i}\left(\mathcal{M}_{g}, \mathbb{Q}\right) .
$$

Let $R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$ denote the subring generated by the κ classes.

Question: Is $R^{*}\left(\mathcal{M}_{g}\right)=H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$?

Via integration along the fiber of $\pi: \mathcal{C} \rightarrow \mathcal{M}_{g}$, we define

$$
\kappa_{i}=\pi_{*}\left(\psi^{i+1}\right) \in H^{2 i}\left(\mathcal{M}_{g}, \mathbb{Q}\right)
$$

Let $R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$ denote the subring generated by the κ classes.

Question: Is $R^{*}\left(\mathcal{M}_{g}\right)=H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)$?
Answer: No, but yes stably.
Mumford's Conjecture / Madsen-Weiss Theorem:

$$
\lim _{g \rightarrow \infty} H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)=\mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right]
$$

For fixed genus g, we take Mumford's Conjecture as motivation to restriction our attention to the tautological subring

$$
R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)
$$

Other motivation comes from classical constructions in algebraic geometry: most interesting classes typically lie in $R^{*}\left(\mathcal{M}_{g}\right)$.

For fixed genus g, we take Mumford's Conjecture as motivation to restriction our attention to the tautological subring

$$
R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)
$$

Other motivation comes from classical constructions in algebraic geometry: most interesting classes typically lie in $R^{*}\left(\mathcal{M}_{g}\right)$.

Question: What is the structure of the ring $R^{*}\left(\mathcal{M}_{g}\right)$?

For fixed genus g, we take Mumford's Conjecture as motivation to restriction our attention to the tautological subring

$$
R^{*}\left(\mathcal{M}_{g}\right) \subset H^{*}\left(\mathcal{M}_{g}, \mathbb{Q}\right)
$$

Other motivation comes from classical constructions in algebraic geometry: most interesting classes typically lie in $R^{*}\left(\mathcal{M}_{g}\right)$.
Question: What is the structure of the ring $R^{*}\left(\mathcal{M}_{g}\right)$?
Question: What is the ideal of relations

$$
0 \rightarrow \mathcal{I}_{g} \rightarrow \mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right] \rightarrow R^{*}\left(\mathcal{M}_{g}\right) \rightarrow 0 ?
$$

§IV. Faber-Zagier Conjecture

Results by Looijenga and Faber determine the lower end of the tautological ring

$$
R^{g-2}\left(\mathcal{M}_{g}\right)=\mathbb{Q}, \quad R^{>g-2}\left(\mathcal{M}_{g}\right)=0
$$

We use here the complex grading, so $R^{g-2}\left(\mathcal{M}_{g}\right) \subset H^{2(g-2)}\left(\mathcal{M}_{g}\right)$.
The study of $R^{g-2}\left(\mathcal{M}_{g}\right)$ and the κ proportionalities is a rich subject, but we take a different direction here.

§IV. Faber-Zagier Conjecture

Results by Looijenga and Faber determine the lower end of the tautological ring

$$
R^{g-2}\left(\mathcal{M}_{g}\right)=\mathbb{Q}, \quad R^{>g-2}\left(\mathcal{M}_{g}\right)=0
$$

We use here the complex grading, so $R^{g-2}\left(\mathcal{M}_{g}\right) \subset H^{2(g-2)}\left(\mathcal{M}_{g}\right)$.
The study of $R^{g-2}\left(\mathcal{M}_{g}\right)$ and the κ proportionalities is a rich subject, but we take a different direction here.

We are interested in the full ideal of relations

$$
\mathcal{I}_{g} \subset \mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right]
$$

of $R^{*}\left(\mathcal{M}_{g}\right)$. Mumford started the study of \mathcal{I}_{g}, but the subject was first attacked systematically by Faber starting around 1990.

§IV. Faber-Zagier Conjecture

Results by Looijenga and Faber determine the lower end of the tautological ring

$$
R^{g-2}\left(\mathcal{M}_{g}\right)=\mathbb{Q}, \quad R^{>g-2}\left(\mathcal{M}_{g}\right)=0
$$

We use here the complex grading, so $R^{g-2}\left(\mathcal{M}_{g}\right) \subset H^{2(g-2)}\left(\mathcal{M}_{g}\right)$.
The study of $R^{g-2}\left(\mathcal{M}_{g}\right)$ and the κ proportionalities is a rich subject, but we take a different direction here.

We are interested in the full ideal of relations

$$
\mathcal{I}_{g} \subset \mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right]
$$

of $R^{*}\left(\mathcal{M}_{g}\right)$. Mumford started the study of \mathcal{I}_{g}, but the subject was first attacked systematically by Faber starting around 1990.

Faber's method of construction involved the classical geometry of curves and Brill-Noether theory. The outcome in 2000 was the following Conjecture formulated with Zagier.

To write the Faber-Zagier relations, let the variable set

$$
\mathbf{p}=\left\{p_{1}, p_{3}, p_{4}, p_{6}, p_{7}, p_{9}, p_{10}, \ldots\right\}
$$

be indexed by positive integers not congruent to 2 modulo 3 .

To write the Faber-Zagier relations, let the variable set

$$
\mathbf{p}=\left\{p_{1}, p_{3}, p_{4}, p_{6}, p_{7}, p_{9}, p_{10}, \ldots\right\}
$$

be indexed by positive integers not congruent to 2 modulo 3 . Define the series

$$
\begin{aligned}
\Psi(t, \mathbf{p})=(1 & \left.+t p_{3}+t^{2} p_{6}+t^{3} p_{9}+\ldots\right) \sum_{i=0}^{\infty} \frac{(6 i)!}{(3 i)!(2 i)!} t^{i} \\
& +\left(p_{1}+t p_{4}+t^{2} p_{7}+\ldots\right) \sum_{i=0}^{\infty} \frac{(6 i)!}{(3 i)!(2 i)!} \frac{6 i+1}{6 i-1} t^{i}
\end{aligned}
$$

Since Ψ has constant term 1, we may take the logarithm.

Define the constants $C_{r}^{\text {FZ }}(\sigma)$ by the formula

$$
\log (\Psi)=\sum_{\sigma} \sum_{r=0}^{\infty} C_{r}^{\mathrm{FZ}}(\sigma) t^{r} \mathbf{p}^{\sigma}
$$

The sum is over all partitions σ of size $|\sigma|$ which avoid parts congruent to 2 modulo 3 . To the partition

$$
\sigma=1^{n_{1}} 3^{n_{3}} 4^{n_{4}} \cdots,
$$

we associate the monomial $\mathbf{p}^{\sigma}=p_{1}^{n_{1}} p_{3}^{n_{3}} p_{4}^{n_{4}} \cdots$.

Define the constants $C_{r}^{\mathrm{FZ}}(\sigma)$ by the formula

$$
\log (\Psi)=\sum_{\sigma} \sum_{r=0}^{\infty} C_{r}^{\mathrm{FZ}}(\sigma) t^{r} \mathbf{p}^{\sigma}
$$

The sum is over all partitions σ of size $|\sigma|$ which avoid parts congruent to 2 modulo 3 . To the partition

$$
\sigma=1^{n_{1}} 3^{n_{3}} 4^{n_{4}} \cdots,
$$

we associate the monomial $\mathbf{p}^{\sigma}=p_{1}^{n_{1}} p_{3}^{n_{3}} p_{4}^{n_{4}} \cdots$. Let

$$
\gamma^{\mathrm{FZ}}=\sum_{\sigma} \sum_{r=0}^{\infty} C_{r}^{\mathrm{FZ}}(\sigma) \kappa_{r} t^{r} \mathbf{p}^{\sigma}
$$

Define the constants $C_{r}^{\mathrm{FZ}}(\sigma)$ by the formula

$$
\log (\Psi)=\sum_{\sigma} \sum_{r=0}^{\infty} C_{r}^{\mathrm{FZ}}(\sigma) t^{r} \mathbf{p}^{\sigma}
$$

The sum is over all partitions σ of size $|\sigma|$ which avoid parts congruent to 2 modulo 3 . To the partition

$$
\sigma=1^{n_{1}} 3^{n_{3}} 4^{n_{4}} \cdots,
$$

we associate the monomial $\mathbf{p}^{\sigma}=p_{1}^{n_{1}} p_{3}^{n_{3}} p_{4}^{n_{4}} \cdots$. Let

$$
\gamma^{\mathrm{FZ}}=\sum_{\sigma} \sum_{r=0}^{\infty} C_{r}^{\mathrm{FZ}}(\sigma) \kappa_{r} t^{r} \mathbf{p}^{\sigma}
$$

For a series $\Theta \in \mathbb{Q}[\kappa][[t, \mathbf{p}]]$ in the variables κ_{i}, t, and p_{j}, let

$$
[\Theta]_{t^{\prime} \mathbf{p}^{\sigma}}
$$

denote the coefficient of $t^{r} \mathbf{p}^{\sigma}$ (which is a polynomial in the $\underline{\underline{\underline{x}}} \boldsymbol{i}$).

Theorem (P.-Pixton 2010)

In $R^{r}\left(\mathcal{M}_{g}\right)$, the Faber-Zagier relation

$$
\left[\exp \left(-\gamma^{\mathrm{FZ}}\right)\right]_{t^{\gamma} \mathbf{p}^{\sigma}}=0
$$

holds when $g-1+|\sigma|<3 r$ and $g \equiv r+|\sigma|+1 \bmod 2$.

Theorem (P.-Pixton 2010)

In $R^{r}\left(\mathcal{M}_{g}\right)$, the Faber-Zagier relation

$$
\left[\exp \left(-\gamma^{\mathrm{Fz}}\right)\right]_{t^{r} \mathbf{p}^{\sigma}}=0
$$

holds when $g-1+|\sigma|<3 r$ and $g \equiv r+|\sigma|+1 \bmod 2$.

The g dependence in the Faber-Zagier relations of the Theorem occurs in the inequality, the modulo 2 restriction, and

$$
\kappa_{0}=2 g-2
$$

Theorem (P.-Pixton 2010)

In $R^{r}\left(\mathcal{M}_{g}\right)$, the Faber-Zagier relation

$$
\left[\exp \left(-\gamma^{\mathrm{Fz}}\right)\right]_{t^{r} \mathbf{p}^{\sigma}}=0
$$

holds when $g-1+|\sigma|<3 r$ and $g \equiv r+|\sigma|+1 \bmod 2$.

The g dependence in the Faber-Zagier relations of the Theorem occurs in the inequality, the modulo 2 restriction, and

$$
\kappa_{0}=2 g-2 .
$$

For a given genus g and codimension r, the Theorem provides finitely many relations. The \mathbb{Q}-linear span of the Faber-Zagier relations determines an ideal

$$
\mathcal{I}_{g}^{F Z} \subset \mathbb{Q}\left[\kappa_{1}, \kappa_{2}, \kappa_{3}, \ldots\right]
$$

Question: Is $\mathcal{I}_{g}^{F Z}$ the complete ideal of relations in $R^{*}\left(\mathcal{M}_{g}\right)$?

Question: Is $\mathcal{I}_{g}^{F Z}$ the complete ideal of relations in $R^{*}\left(\mathcal{M}_{g}\right)$?
Answer: For $g \leq 23$, yes. For $g \geq 24$, the answer is unknown. Despite serious efforts using different methods (Faber, Q. Yin, Randal-Williams) no relation not in $\mathcal{I}_{g}^{F Z}$ has been found.

Question: Is $\mathcal{I}_{g}^{F Z}$ the complete ideal of relations in $R^{*}\left(\mathcal{M}_{g}\right)$?
Answer: For $g \leq 23$, yes. For $g \geq 24$, the answer is unknown. Despite serious efforts using different methods (Faber, Q. Yin, Randal-Williams) no relation not in $\mathcal{I}_{g}^{F Z}$ has been found.

Our construction of the Faber-Zagier relations uses the moduli space of stable quotients which mixes ingredients of Grothendieck's Quot scheme and the Deligne-Mumford compactification

$$
\mathcal{M}_{g} \subset \overline{\mathcal{M}}_{g}
$$

The geometry of the virtual class of the stable quotient moduli leads eventually to the relations.

Question: Is $\mathcal{I}_{g}^{F Z}$ the complete ideal of relations in $R^{*}\left(\mathcal{M}_{g}\right)$?
Answer: For $g \leq 23$, yes. For $g \geq 24$, the answer is unknown. Despite serious efforts using different methods (Faber, Q. Yin, Randal-Williams) no relation not in $\mathcal{I}_{g}^{F Z}$ has been found.

Our construction of the Faber-Zagier relations uses the moduli space of stable quotients which mixes ingredients of Grothendieck's Quot scheme and the Deligne-Mumford compactification

$$
\mathcal{M}_{g} \subset \overline{\mathcal{M}}_{g}
$$

The geometry of the virtual class of the stable quotient moduli leads eventually to the relations.

- The proof establishes the Faber-Zagier relations in the Chow ring (algebraic cycles).

Question: Is $\mathcal{I}_{g}^{F Z}$ the complete ideal of relations in $R^{*}\left(\mathcal{M}_{g}\right)$?
Answer: For $g \leq 23$, yes. For $g \geq 24$, the answer is unknown. Despite serious efforts using different methods (Faber, Q. Yin, Randal-Williams) no relation not in $\mathcal{I}_{g}^{F Z}$ has been found.

Our construction of the Faber-Zagier relations uses the moduli space of stable quotients which mixes ingredients of Grothendieck's Quot scheme and the Deligne-Mumford compactification

$$
\mathcal{M}_{g} \subset \overline{\mathcal{M}}_{g}
$$

The geometry of the virtual class of the stable quotient moduli leads eventually to the relations.

- The proof establishes the Faber-Zagier relations in the Chow ring (algebraic cycles).
- The proof yields the following stronger boundary result. Under the hypotheses of the Theorem,

$$
\left[\exp \left(-\gamma^{\mathrm{Fz}}\right)\right]_{t^{\prime} \mathbf{p}^{\sigma}} \in R^{*}\left(\partial \overline{\mathcal{M}}_{g}\right)
$$

Not only is the Faber-Zagier relation 0 on $R^{*}\left(\mathcal{M}_{g}\right)$, but the relation is equal to a tautological class on the boundary of the moduli space $\overline{\mathcal{M}}_{g}$.

Not only is the Faber-Zagier relation 0 on $R^{*}\left(\mathcal{M}_{g}\right)$, but the relation is equal to a tautological class on the boundary of the moduli space $\overline{\mathcal{M}}_{g}$.
$\S \mathrm{V}$. Relations in the cohomology of $\overline{\mathcal{M}}_{g, n}$
Let $\overline{\mathcal{M}}_{g, n}$ be the moduli space of stable pointed curves:

Not only is the Faber-Zagier relation 0 on $R^{*}\left(\mathcal{M}_{g}\right)$, but the relation is equal to a tautological class on the boundary of the moduli space $\overline{\mathcal{M}}_{g}$.
$\S \mathrm{V}$. Relations in the cohomology of $\overline{\mathcal{M}}_{g, n}$
Let $\overline{\mathcal{M}}_{g, n}$ be the moduli space of stable pointed curves:

The boundary strata of the moduli $\overline{\mathcal{M}}_{g, n}$ of fixed topological type correspond to stable graphs.

The boundary strata of the moduli $\overline{\mathcal{M}}_{g, n}$ of fixed topological type correspond to stable graphs.

For such a graph Γ, let $[\Gamma] \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$ denote the class of the closure (with a multplicity related to symmetries of Γ).

Formally, a stable graph is the structure

$$
\Gamma=(\mathrm{V}, \mathrm{E}, \mathrm{~L}, \mathrm{~g})
$$

satisfying the following properties:

- V is the vertex set with a genus function $\mathrm{g}: \mathrm{V} \rightarrow \mathbb{Z}_{\geq 0}$,
- E is the edge set,
- L, the set of legs (corresponding to the set of markings),
- the pair (V, E) defines a connected graph,
- for each vertex v, the stability condition holds:

$$
2 \mathrm{~g}(v)-2+\mathrm{n}(v)>0,
$$

where $n(v)$ is the valence of Γ at v including both edges and legs.
The genus of a stable graph Γ is defined by:

$$
\mathrm{g}(\Gamma)=\sum_{v \in V} \mathrm{~g}(v)+h^{1}(\Gamma)
$$

To each stable graph Г, we associate the moduli space

$$
\overline{\mathcal{M}}_{\Gamma}=\prod_{v \in \mathrm{~V}} \overline{\mathcal{M}}_{\mathrm{g}(v), \mathrm{n}(v)}
$$

There is a canonical morphism

$$
\xi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n}, \quad \xi_{\Gamma *}\left[\overline{\mathcal{M}}_{\Gamma}\right]=[\Gamma] .
$$

To each stable graph Г, we associate the moduli space

$$
\overline{\mathcal{M}}_{\Gamma}=\prod_{v \in \mathrm{~V}} \overline{\mathcal{M}}_{\mathrm{g}(v), \mathrm{n}(v)}
$$

There is a canonical morphism

$$
\xi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n}, \quad \xi_{\Gamma *}\left[\overline{\mathcal{M}}_{\Gamma}\right]=[\Gamma] .
$$

The first boundary relation is almost trivial:

Just an equivalence of two points in $\overline{\mathcal{M}}_{0,4}=\mathbb{C P}^{1}$.

To each stable graph Г, we associate the moduli space

$$
\overline{\mathcal{M}}_{\Gamma}=\prod_{v \in \mathrm{~V}} \overline{\mathcal{M}}_{\mathrm{g}(v), \mathrm{n}(v)}
$$

There is a canonical morphism

$$
\xi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n}, \quad \xi_{\Gamma *}\left[\overline{\mathcal{M}}_{\Gamma}\right]=[\Gamma] .
$$

The first boundary relation is almost trivial:

Just an equivalence of two points in $\overline{\mathcal{M}}_{0,4}=\mathbb{C P}^{1}$.
Getzler in 1996 found the first really interesting relation:

$$
\begin{aligned}
& 12\left[\begin{array}{l}
Y_{0} \\
\vdots \\
\vdots \\
\Lambda_{0}
\end{array}\right]-4\left[\begin{array}{c}
Y_{0} \\
\vdots \\
\vdots \\
\vdots
\end{array}\right]-2\left[\begin{array}{l}
Y_{0} \\
Y_{0} \\
\vdots
\end{array}\right] \\
& +6\left[\begin{array}{l}
Y_{0} \\
\vdots \\
!_{1}
\end{array}\right]+\left[\begin{array}{l}
Y_{0} \\
O_{0}
\end{array}\right]+\left[\begin{array}{l}
Y_{0} \\
Y_{0}
\end{array}\right]-2\left[\begin{array}{l}
O_{0} \\
O_{0} \\
O_{0}
\end{array}\right] \\
& =0 \in H^{4}\left(\bar{M}_{1,4}\right)
\end{aligned}
$$

Of course there are more, but relations are not easy to find. The next interesting relation (Belorousski-P in 1998) occurs in genus 2:

$$
\begin{aligned}
& -\frac{1}{60}\left[\begin{array}{l}
X_{1} \\
X_{1}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
Q_{2}
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\frac{1}{10}\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]-\frac{1}{10}\left[\begin{array}{ll}
X_{1} \\
X_{1}
\end{array}\right]=0 \\
& \text { in } H^{4}\left(\overline{\mathcal{M}}_{2,3}, \mathbb{Q}\right) \text {. }
\end{aligned}
$$

Of course there are more, but relations are not easy to find. The next interesting relation (Belorousski-P in 1998) occurs in genus 2:

$$
\begin{aligned}
& -\frac{1}{60}\left[Y_{2}, X_{1}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{2} \\
X_{2}
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
X_{2} \\
X_{2}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{2} \\
X_{2}
\end{array}\right]-\frac{1}{10}\left[O_{\perp} X_{2}\right]-\frac{1}{10}\left[Q_{\perp}\right]=0 \\
& \text { in } H^{4}\left(\overline{\mathcal{M}}_{2,3}, \mathbb{Q}\right) \text {. }
\end{aligned}
$$

Question: Is there any structure to these formulas?

Of course there are more, but relations are not easy to find. The next interesting relation (Belorousski-P in 1998) occurs in genus 2:

$$
\begin{aligned}
& -\frac{1}{60}\left[Y_{\Omega} X_{1}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
X_{a}
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
X_{1} \\
X_{a}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
X_{a}
\end{array}\right]-\frac{1}{10}\left[Y_{\perp} X_{2}\right]-\frac{1}{10}\left[\begin{array}{l}
X \\
X_{1}
\end{array}\right]=0 \\
& \text { in } H^{4}\left(\overline{\mathcal{M}}_{2,3}, \mathbb{Q}\right) \text {. }
\end{aligned}
$$

Question: Is there any structure to these formulas?
Question: Is there any relationship to the Faber-Zagier relations?
§VI. Pixton's relations on $\overline{\mathcal{M}}_{g, n}$
§VI. Pixton's relations on $\overline{\mathcal{M}}_{g, n}$
We define tautological classes $\mathcal{R}_{g, A}^{d}$ associated to the data

- $g, n \in \mathbb{Z}_{\geq 0}$ in the stable range $2 g-2+n>0$,
- $A=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in\{0,1\}$,
- $d \in \mathbb{Z}_{\geq 0}$ satisfying $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$.

The elements $\mathcal{R}_{g, A}^{d}$ are expressed as sums over stable graphs of genus g with n legs. Pixton's relations then take the form

$$
\mathcal{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

Before writing the formula for $\mathcal{R}_{g, A}^{d}$, a few definitions are required.

We have already seen the following two series:

$$
\begin{aligned}
& B_{0}(T)=\sum_{m \geq 0} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1-60 T+27720 T^{2} \cdots \\
& B_{1}(T)=\sum_{m \geq 0} \frac{1+6 m}{1-6 m} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1+84 T-32760 T^{2} \cdots
\end{aligned}
$$

These series control the original set of Faber-Zagier relations and continue to play a central role Pixton's relations.

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

For each $\overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} \pi_{m *}\left(f\left(\psi_{n+1}\right) \cdots f\left(\psi_{n+m}\right)\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

where $\pi_{m}: \overline{\mathcal{M}}_{g, n+m} \rightarrow \overline{\mathcal{M}}_{g, n}$ is the forgetful map. By the vanishing in degrees 0 and 1 of f, the sum is finite.

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

For each $\overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} \pi_{m *}\left(f\left(\psi_{n+1}\right) \cdots f\left(\psi_{n+m}\right)\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

where $\pi_{m}: \overline{\mathcal{M}}_{g, n+m} \rightarrow \overline{\mathcal{M}}_{g, n}$ is the forgetful map. By the vanishing in degrees 0 and 1 of f, the sum is finite.

Let $G_{g, n}$ be the finite set of stable graphs of genus g with n legs (up to isomorphism).

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

For each $\overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} \pi_{m *}\left(f\left(\psi_{n+1}\right) \cdots f\left(\psi_{n+m}\right)\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

where $\pi_{m}: \overline{\mathcal{M}}_{g, n+m} \rightarrow \overline{\mathcal{M}}_{g, n}$ is the forgetful map. By the vanishing in degrees 0 and 1 of f, the sum is finite.

Let $G_{g, n}$ be the finite set of stable graphs of genus g with n legs (up to isomorphism).

For each vertex $v \in \mathrm{~V}$ of a stable graph, we introduce an auxiliary variable ζ_{v} and impose the conditions

$$
\zeta_{v} \zeta_{v^{\prime}}=\zeta_{v^{\prime}} \zeta_{v}, \quad \zeta_{v}^{2}=1
$$

The variables ζ_{v} will be responsible for keeping track of a local parity condition at each vertex.

The formula for $\mathcal{R}_{g, A}^{d}$ is a sum over $G_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

The formula for $\mathcal{R}_{g, A}^{d}$ is a sum over $\mathrm{G}_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.

The formula for $\mathcal{R}_{g, A}^{d}$ is a sum over $G_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.
- For $\ell \in \mathrm{L}$, let $B_{\ell}=\zeta_{v(\ell)}^{a_{\ell}} B_{a_{\ell}}\left(\zeta_{v(\ell)} \psi_{\ell}\right)$, where $v(\ell) \in V$ is the vertex to which the leg is assigned.

The formula for $\mathcal{R}_{g, A}^{d}$ is a sum over $\mathrm{G}_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.
- For $\ell \in \mathrm{L}$, let $B_{\ell}=\zeta_{v(\ell)}^{a_{\ell}} B_{a_{\ell}}\left(\zeta_{v(\ell)} \psi_{\ell}\right)$, where $v(\ell) \in V$ is the vertex to which the leg is assigned.
- For $e \in \mathrm{E}$, let

$$
\begin{aligned}
\Delta_{e} & =\frac{\zeta^{\prime}+\zeta^{\prime \prime}-B_{0}\left(\zeta^{\prime} \psi^{\prime}\right) \zeta^{\prime \prime} B_{1}\left(\zeta^{\prime \prime} \psi^{\prime \prime}\right)-\zeta^{\prime} B_{1}\left(\zeta^{\prime} \psi^{\prime}\right) B_{0}\left(\zeta^{\prime \prime} \psi^{\prime \prime}\right)}{\psi^{\prime}+\psi^{\prime \prime}} \\
& =\left(60 \zeta^{\prime} \zeta^{\prime \prime}-84\right)+\left[32760\left(\zeta^{\prime} \psi^{\prime}+\zeta^{\prime \prime} \psi^{\prime \prime}\right)-27720\left(\zeta^{\prime} \psi^{\prime \prime}+\zeta^{\prime \prime} \psi^{\prime}\right)\right] \cdots,
\end{aligned}
$$

where $\zeta^{\prime}, \zeta^{\prime \prime}$ are the ζ-variables assigned to the vertices adjacent to the edge e and $\psi^{\prime}, \psi^{\prime \prime}$ are the ψ-classes corresponding to the half-edges.

The numerator of Δ_{e} is divisible by the denominator due to the identity (discovered by Pixton)

$$
B_{0}(T) B_{1}(-T)+B_{0}(-T) B_{1}(T)=2
$$

Obviously Δ_{e} is symmetric in the half-edges.

The numerator of Δ_{e} is divisible by the denominator due to the identity (discovered by Pixton)

$$
B_{0}(T) B_{1}(-T)+B_{0}(-T) B_{1}(T)=2 .
$$

Obviously Δ_{e} is symmetric in the half-edges.

Definition (Pixton 2012)

Let $A=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$. We denote by $R_{g, A}^{d} \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}\right)$ the degree d component of the class

$$
\sum_{\Gamma \in \mathrm{G}_{g, n}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{2^{h^{1}(\Gamma)}}\left[\Gamma,\left[\prod \kappa_{v} \prod B_{\ell} \prod \Delta_{e}\right]_{\prod_{v} s_{v}^{\mathrm{g}}(v)-1}\right]
$$

where the products are taken over all vertices, all legs, and all edges of the graph Γ.

The subscript $\prod_{V} \zeta_{v}^{\mathrm{g}(v)-1}$ indicates the coefficient of the monomial $\prod_{v} \zeta_{v}^{g(v)-1}$ after the product inside the brackets is expanded.

Theorem (P.-Pixton-Zvonkine 2013)
For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
R_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
R_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3-spin curves). After restriction, we obtain a new proof of the Faber-Zagier relations in $R^{*}\left(\mathcal{M}_{g}\right)$.

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
R_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3-spin curves). After restriction, we obtain a new proof of the Faber-Zagier relations in $R^{*}\left(\mathcal{M}_{g}\right)$.

A second proof of Pixton's relations in Chow has been found by Felix Janda using the stable quotient approach.

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
R_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3-spin curves). After restriction, we obtain a new proof of the Faber-Zagier relations in $R^{*}\left(\mathcal{M}_{g}\right)$.

A second proof of Pixton's relations in Chow has been found by Felix Janda using the stable quotient approach.

