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§I. Nonsingular curves

Let C be a complete, nonsingular, irreducible curve of genus g ≥ 2:

The curve C has a complex structure which we can vary (while
keeping the topology fixed).



Riemann studied the moduli space Mg of all genus g curves:

Riemann knew Mg was (essentially) a complex manifold of
dimension 3g-3.



Riemann constructs the variations (via moving branch points),
states the dimension, and coins the term moduli in a single
sentence.
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We are interested here in the cohomology of Mg .

There are two basic questions:

(i) What is the cohomology H∗(Mg ,Q) for fixed g?

(ii) What is the limg→∞H∗(Mg ,Q)?

Both inspired by work of Mumford in the 70s and 80s following the
previously developed Schubert calculus of the Grassmannian.
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§II. Grassmannian

Let Cn be a n-dimensional complex vector space. The
Grassmannian Gr(r , n) parameterizes all r -dimensional linear
subspaces of Cn.

(i) What is the cohomology H∗(Gr(r , n),Q) for fixed n?

(ii) What is the limn→∞H∗(Gr(r , n),Q)?

The answers to (i) and (ii) are very well-known. The study has
modern origins in Schubert’s work. The rigorization of the
Schubert calculus was Hilbert’s 15th problem.
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Let S ⊂ Cn × Gr(r , n) be the universal subbundle.

• H∗(Gr(r , n),Q) is generated by the Chern classes of S,

ci (S) ∈ H2i (Gr(r , n),Q) .

There are r Chern classes c1(S), . . . , cr (S).
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Since S is a subbundle of the trivial rank n bundle over Gr(r , n),
the quotient

0→ S→ Cn × Gr(r , n)→ Q→ 0

is a bundle Q of rank n − r . The Chern classes of Q are

c(Q) =
∑
i≥0

ci (Q) =
1

1 + c1(S) + . . .+ cr (S)
.

• The ideal of relations in H∗(Gr(r , n),Q) among the ci (S) is
generated by the vanishing of the Chern classes of Q

cn−r+i (Q) =

[
1

1 + c1(S) + . . .+ cr (S)

]
n−r+i

= 0

for 1 ≤ i ≤ r .
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The natural inclusion Cn ⊂ Cn+1, yields a natural inclusion

Gr(r , n) ⊂ Gr(r , n + 1)

and natural limit limn→∞H∗(Gr(r , n),Q).

• Since the relations in H∗(Gr(r , n),Q) start in degree n − r + 1,
the limit is free:

lim
n→∞

H∗(Gr(r , n),Q) = Q[c1(S), . . . , cr (S)] .

Can also be interpreted as the group cohomology of GL(r ,C).

For the Grassmannian, we have very satisfactory answers to the
two original questions in terms of tautological structures.
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§III. Tautological classes onMg

What is the analogue of S for the moduli space of curves?

Answer: the universal curve C :

We can not directly take Chern classes of the universal curve since

π : C →Mg

is not a vector bundle.
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Let L be the cotangent line over the universal curve,

Since L → C is a line bundle, we can define

ψ = c1(L) ∈ H2(C,Q) .
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Via integration along the fiber of π : C →Mg , we define

κi = π∗(ψ
i+1) ∈ H2i (Mg ,Q) .

Let R∗(Mg ) ⊂ H∗(Mg ,Q) denote the subring generated by the κ
classes.

Question: Is R∗(Mg ) = H∗(Mg ,Q)?

Answer: No, but yes stably.

Mumford’s Conjecture / Madsen-Weiss Theorem:

lim
g→∞

H∗(Mg ,Q) = Q[κ1, κ2, κ3, . . .] .
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For fixed genus g , we take Mumford’s Conjecture as motivation to
restriction our attention to the tautological subring

R∗(Mg ) ⊂ H∗(Mg ,Q) .

Other motivation comes from classical constructions in algebraic
geometry: most interesting classes typically lie in R∗(Mg ).

Question: What is the structure of the ring R∗(Mg )?

Question: What is the ideal of relations

0→ Ig → Q[κ1, κ2, κ3, . . .]→ R∗(Mg )→ 0 ?
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§IV. Faber-Zagier Conjecture

Results by Looijenga and Faber determine the lower end of the
tautological ring

Rg−2(Mg ) = Q , R>g−2(Mg ) = 0 .

We use here the complex grading, so Rg−2(Mg ) ⊂ H2(g−2)(Mg ).

The study of Rg−2(Mg ) and the κ proportionalities is a rich
subject, but we take a different direction here.

We are interested in the full ideal of relations

Ig ⊂ Q[κ1, κ2, κ3, . . .]

of R∗(Mg ). Mumford started the study of Ig , but the subject was
first attacked systematically by Faber starting around 1990.

Faber’s method of construction involved the classical geometry of
curves and Brill-Noether theory. The outcome in 2000 was the
following Conjecture formulated with Zagier.
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To write the Faber-Zagier relations, let the variable set

p = { p1, p3, p4, p6, p7, p9, p10, . . . }

be indexed by positive integers not congruent to 2 modulo 3.
Define the series

Ψ(t,p) = (1 + tp3 + t2p6 + t3p9 + . . .)
∞∑
i=0

(6i)!

(3i)!(2i)!
t i

+ (p1 + tp4 + t2p7 + . . .)
∞∑
i=0

(6i)!

(3i)!(2i)!

6i + 1

6i − 1
t i .

Since Ψ has constant term 1, we may take the logarithm.
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Define the constants C FZ
r (σ) by the formula

log(Ψ) =
∑
σ

∞∑
r=0

C FZ
r (σ) trpσ .

The sum is over all partitions σ of size |σ| which avoid parts
congruent to 2 modulo 3. To the partition

σ = 1n13n34n4 · · ·,

we associate the monomial pσ = pn1
1 pn3

3 pn4
4 · · ·.

Let

γFZ =
∑
σ

∞∑
r=0

C FZ
r (σ) κr t

rpσ .

For a series Θ ∈ Q[κ][[t,p]] in the variables κi , t, and pj , let

[Θ]trpσ

denote the coefficient of trpσ (which is a polynomial in the κi ).
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Theorem (P.-Pixton 2010)

In R r (Mg ), the Faber-Zagier relation[
exp(−γFZ)

]
trpσ

= 0

holds when g − 1 + |σ| < 3r and g ≡ r + |σ|+ 1 mod 2.

The g dependence in the Faber-Zagier relations of the Theorem
occurs in the inequality, the modulo 2 restriction, and

κ0 = 2g − 2 .

For a given genus g and codimension r , the Theorem provides
finitely many relations. The Q-linear span of the Faber-Zagier
relations determines an ideal

IFZg ⊂ Q[κ1, κ2, κ3, . . .] .



Theorem (P.-Pixton 2010)

In R r (Mg ), the Faber-Zagier relation[
exp(−γFZ)

]
trpσ

= 0

holds when g − 1 + |σ| < 3r and g ≡ r + |σ|+ 1 mod 2.

The g dependence in the Faber-Zagier relations of the Theorem
occurs in the inequality, the modulo 2 restriction, and

κ0 = 2g − 2 .

For a given genus g and codimension r , the Theorem provides
finitely many relations. The Q-linear span of the Faber-Zagier
relations determines an ideal

IFZg ⊂ Q[κ1, κ2, κ3, . . .] .



Theorem (P.-Pixton 2010)

In R r (Mg ), the Faber-Zagier relation[
exp(−γFZ)

]
trpσ

= 0

holds when g − 1 + |σ| < 3r and g ≡ r + |σ|+ 1 mod 2.

The g dependence in the Faber-Zagier relations of the Theorem
occurs in the inequality, the modulo 2 restriction, and

κ0 = 2g − 2 .

For a given genus g and codimension r , the Theorem provides
finitely many relations. The Q-linear span of the Faber-Zagier
relations determines an ideal

IFZg ⊂ Q[κ1, κ2, κ3, . . .] .



Question: Is IFZg the complete ideal of relations in R∗(Mg )?

Answer: For g ≤ 23, yes. For g ≥ 24, the answer is unknown.
Despite serious efforts using different methods (Faber, Q. Yin,
Randal-Williams) no relation not in IFZg has been found.

Our construction of the Faber-Zagier relations uses the moduli
space of stable quotients which mixes ingredients of Grothendieck’s
Quot scheme and the Deligne-Mumford compactification

Mg ⊂Mg .

The geometry of the virtual class of the stable quotient moduli
leads eventually to the relations.

• The proof establishes the Faber-Zagier relations in the Chow ring
(algebraic cycles).

• The proof yields the following stronger boundary result. Under
the hypotheses of the Theorem,[

exp(−γFZ)
]
trpσ
∈ R∗(∂Mg ) .
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Not only is the Faber-Zagier relation 0 on R∗(Mg ), but the
relation is equal to a tautological class on the boundary of the
moduli space Mg .
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Let Mg ,n be the moduli space of stable pointed curves:
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The boundary strata of the moduli Mg ,n of fixed topological type
correspond to stable graphs.

For such a graph Γ, let [Γ] ∈ H∗(Mg ,n,Q) denote the class of the
closure (with a multplicity related to symmetries of Γ).
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Formally, a stable graph is the structure

Γ = (V,E,L, g)

satisfying the following properties:

• V is the vertex set with a genus function g : V→ Z≥0,

• E is the edge set,

• L, the set of legs (corresponding to the set of markings),

• the pair (V,E) defines a connected graph,

• for each vertex v , the stability condition holds:

2g(v)− 2 + n(v) > 0,

where n(v) is the valence of Γ at v including both edges and
legs.

The genus of a stable graph Γ is defined by:

g(Γ) =
∑
v∈V

g(v) + h1(Γ).



To each stable graph Γ, we associate the moduli space

MΓ =
∏
v∈V
Mg(v),n(v).

There is a canonical morphism

ξΓ :MΓ →Mg ,n , ξΓ∗[MΓ] = [Γ] .

The first boundary relation is almost trivial:

Just an equivalence of two points in M0,4 = CP1.

Getzler in 1996 found the first really interesting relation:
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Of course there are more, but relations are not easy to find. The
next interesting relation (Belorousski-P in 1998) occurs in genus 2:

in H4(M2,3,Q) .

Question: Is there any structure to these formulas?

Question: Is there any relationship to the Faber-Zagier relations?
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§VI. Pixton’s relations onMg ,n

We define tautological classes Rd
g ,A associated to the data

• g , n ∈ Z≥0 in the stable range 2g − 2 + n > 0,

• A = (a1, . . ., an), ai ∈ {0, 1},

• d ∈ Z≥0 satisfying d >
g−1+

∑n
i=1 ai

3 .

The elements Rd
g ,A are expressed as sums over stable graphs of

genus g with n legs. Pixton’s relations then take the form

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Before writing the formula for Rd
g ,A, a few definitions are required.
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We have already seen the following two series:
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(−T )m = 1 + 84T − 32760T 2 · · · .

These series control the original set of Faber-Zagier relations and
continue to play a central role Pixton’s relations.



Let f (T ) be a power series with vanishing constant and linear
terms,

f (T ) ∈ T 2Q[[T ]] .

For each Mg ,n, we define

κ(f ) =
∑
m≥0

1

m!
πm∗

(
f (ψn+1) · · · f (ψn+m)

)
∈ H∗(Mg ,n,Q),

where πm :Mg ,n+m →Mg ,n is the forgetful map. By the
vanishing in degrees 0 and 1 of f , the sum is finite.

Let Gg ,n be the finite set of stable graphs of genus g with n legs
(up to isomorphism).

For each vertex v ∈ V of a stable graph, we introduce an auxiliary
variable ζv and impose the conditions

ζvζv ′ = ζv ′ζv , ζ2
v = 1 .

The variables ζv will be responsible for keeping track of a local
parity condition at each vertex.
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The formula for Rd
g ,A is a sum over Gg ,n. The summand

corresponding to Γ ∈ Gg ,n is a product of vertex, leg, and edge
factors:

• For v ∈ V , let κv = κ
(
T − TB0(ζvT )

)
.

• For ` ∈ L, let B` = ζa`v(`)Ba`

(
ζv(`)ψ`

)
, where v(`) ∈ V is the

vertex to which the leg is assigned.

• For e ∈ E, let

∆e =
ζ ′ + ζ ′′ − B0(ζ ′ψ′)ζ ′′B1(ζ ′′ψ′′)− ζ ′B1(ζ ′ψ′)B0(ζ ′′ψ′′)

ψ′ + ψ′′

= (60ζ ′ζ ′′ − 84) +
[
32760(ζ ′ψ′ + ζ ′′ψ′′)− 27720(ζ ′ψ′′ + ζ ′′ψ′)

]
· · · ,

where ζ ′, ζ ′′ are the ζ-variables assigned to the vertices adjacent to
the edge e and ψ′, ψ′′ are the ψ-classes corresponding to the
half-edges.
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The numerator of ∆e is divisible by the denominator due to the
identity (discovered by Pixton)

B0(T )B1(−T ) + B0(−T )B1(T ) = 2.

Obviously ∆e is symmetric in the half-edges.

Definition (Pixton 2012)

Let A = (a1, . . . , an) ∈ {0, 1}n. We denote by Rd
g ,A ∈ H2d(Mg ,n)

the degree d component of the class∑
Γ∈Gg,n

1

|Aut(Γ)|
1

2h1(Γ)

[
Γ,
[∏

κv
∏

B`
∏

∆e

]∏
v ζ

g(v)−1
v

]
,

where the products are taken over all vertices, all legs, and all
edges of the graph Γ.

The subscript
∏

v ζ
g(v)−1
v indicates the coefficient of the monomial∏

v ζ
g(v)−1
v after the product inside the brackets is expanded.
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Theorem (P.-Pixton-Zvonkine 2013)

For 2g − 2 + n > 0, ai ∈ {0, 1}, and d >
g−1+

∑n
i=1 ai

3 , Pixton’s
relations hold

Rd
g ,A = 0 ∈ H2d(Mg ,n,Q) .

Proof uses the Givental-Teleman classification of higher genus
structures associated to the semi-simple Frobenius manifold A2

(related to 3-spin curves). After restriction, we obtain a new proof
of the Faber-Zagier relations in R∗(Mg ).

A second proof of Pixton’s relations in Chow has been found by
Felix Janda using the stable quotient approach.
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