
genus 0

genus 1

genus 2

Cycles on the moduli space of curves

Rahul Pandharipande
Department of Mathematics
ETH Zürich
July 2015

\S I. Nonsingular curves

Let C be a complete, nonsingular, irreducible curve of genus $g \geq 2$:

The curve C has a complex structure which we can vary (while keeping the topology fixed).

Riemann studied the moduli space \mathcal{M}_{g} of all genus g curves:

Riemann knew \mathcal{M}_{g} was (essentially) a complex manifold of dimension $3 \mathrm{~g}-3$.

Theorie der $\boldsymbol{A b e l}$ 'schen Functionen.
(Von Herrn B. Riemann.)

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen können daher beliebige Werthe annehmen; und es hăngt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen können daher beliebige Werthe annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

§II. Stable curves

Let $\overline{\mathcal{M}}_{g, n}$ be the moduli space of stable pointed curves:

Theorie der Abel'schen Functionen.

(Von Herrn B. Riemamn.)

Die $3 p-3$ übrigen Verzweigungswerthe in jenen Systemen gleichverzweigter μ werthiger Functionen können daher beliebige Werthe annehmen; und es hängt also eine Klasse von Systemen gleichverzweigter $\overline{2 p+1}$ fach zusammenhangender Functionen und die zu ihr gehörende Klasse algebraischer Gleichungen von $3 p-3$ stetig veränderlichen Gröfsen ab, welche die Moduln dieser Klasse genannt werden sollen.

§II. Stable curves

Let $\overline{\mathcal{M}}_{g, n}$ be the moduli space of stable pointed curves:

The boundary strata of the moduli $\overline{\mathcal{M}}_{g, n}$ of fixed topological type correspond to stable graphs.

The boundary strata of the moduli $\overline{\mathcal{M}}_{g, n}$ of fixed topological type correspond to stable graphs.

For a graph Γ, let $[\Gamma] \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$ denote the class of the closure of the stratum (with a multplicity related to symmetries).

Formally, a stable graph is the structure

$$
\Gamma=(\mathrm{V}, \mathrm{E}, \mathrm{~L}, \mathrm{~g})
$$

satisfying the following properties:

- V is the vertex set with a genus function $\mathrm{g}: \mathrm{V} \rightarrow \mathbb{Z}_{\geq 0}$,
- E is the edge set,
- L, the set of legs (corresponding to the set of markings),
- the pair (V, E) defines a connected graph,
- for each vertex v, the stability condition holds:

$$
2 \mathrm{~g}(v)-2+\mathrm{n}(v)>0,
$$

where $n(v)$ is the valence of Γ at v including both edges and legs.
The genus of a stable graph Γ is defined by:

$$
\mathrm{g}(\Gamma)=\sum_{v \in \mathrm{~V}} \mathrm{~g}(v)+h^{1}(\Gamma)
$$

To each stable graph Г, we associate the moduli space

$$
\overline{\mathcal{M}}_{\Gamma}=\prod_{v \in \mathrm{~V}} \overline{\mathcal{M}}_{\mathrm{g}(v), \mathrm{n}(v)}
$$

There is a canonical morphism

$$
\xi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n}, \quad \xi_{\Gamma *}\left[\overline{\mathcal{M}}_{\Gamma}\right]=[\Gamma] .
$$

Question: Are there relations in $H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$ among the [Γ] ?

To each stable graph Г, we associate the moduli space

$$
\overline{\mathcal{M}}_{\Gamma}=\prod_{v \in \mathrm{~V}} \overline{\mathcal{M}}_{\mathrm{g}(v), \mathrm{n}(v)}
$$

There is a canonical morphism

$$
\xi_{\Gamma}: \overline{\mathcal{M}}_{\Gamma} \rightarrow \overline{\mathcal{M}}_{g, n}, \quad \xi_{\Gamma *}\left[\overline{\mathcal{M}}_{\Gamma}\right]=[\Gamma] .
$$

Question: Are there relations in $H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)$ among the [Γ] ?
The first boundary relation is almost trivial:

Just an equivalence of two points in $\overline{\mathcal{M}}_{0,4}=\mathbb{C P}^{1}$.

First interesting relation was found in genus 1 by Getzler in 1996.

First interesting relation was found in genus 1 by Getzler in 1996.
A relation in genus 2, found by Belorousski-P in 1998:

First interesting relation was found in genus 1 by Getzler in 1996.
A relation in genus 2, found by Belorousski-P in 1998:

$$
\begin{aligned}
& -\frac{1}{60}\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
Q_{2}
\end{array}\right]-\frac{3}{5}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]+\frac{1}{5}\left[\begin{array}{l}
X_{1} \\
X_{2}
\end{array}\right]-\frac{1}{10}\left[\begin{array}{l}
X_{1} \\
Y_{1}
\end{array}\right]-\frac{1}{10}\left[\begin{array}{l}
X_{1} \\
X_{1}
\end{array}\right]=0 \\
& \text { in } H^{4}\left(\overline{\mathcal{M}}_{2,3}, \mathbb{Q}\right) \text {. }
\end{aligned}
$$

First interesting relation was found in genus 1 by Getzler in 1996.
A relation in genus 2, found by Belorousski-P in 1998:

$$
\begin{aligned}
& \text { in } H^{4}\left(\overline{\mathcal{M}}_{2,3}, \mathbb{Q}\right) \text {. }
\end{aligned}
$$

Question: Is there any structure to these formulas?
\S III. Pixton's relations on $\overline{\mathcal{M}}_{g, n}$
\S III. Pixton's relations on $\overline{\mathcal{M}}_{g, n}$
We define classes $\mathrm{R}_{g, A}^{d}$ associated to the data

- $g, n \in \mathbb{Z}_{\geq 0}$ in the stable range $2 g-2+n>0$,
- $A=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in\{0,1\}$,
- $d \in \mathbb{Z}_{\geq 0}$ satisfying $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$.

§III. Pixton's relations on $\overline{\mathcal{M}}_{g, n}$

We define classes $R_{g, A}^{d}$ associated to the data

- $g, n \in \mathbb{Z}_{\geq 0}$ in the stable range $2 g-2+n>0$,
- $A=\left(a_{1}, \ldots, a_{n}\right), \quad a_{i} \in\{0,1\}$,
- $d \in \mathbb{Z}_{\geq 0}$ satisfying $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$.

The elements $R_{g, A}^{d}$ are expressed as sums over stable graphs of genus g with n legs. Pixton's relations then take the form

$$
\mathrm{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

Before writing the formula for $R_{g, A}^{d}$, a few definitions are required.

Let \mathcal{L}_{i} be the cotangent line at the $i^{\text {th }}$ marking:

$$
\begin{aligned}
& \underset{\downarrow}{\mathcal{L}_{i}} \quad \partial T_{i}(\underbrace{\odot}_{\downarrow} \stackrel{0}{0}) \\
& \bar{M}_{g, n} \nexists\left[\begin{array}{c}
\stackrel{0}{0} \cdot \\
\bullet
\end{array}\right]
\end{aligned}
$$

Let \mathcal{L}_{i} be the cotangent line at the $i^{\text {th }}$ marking:

$$
\left.\begin{array}{ll}
\mathcal{L}_{i} & \supset T_{i}^{*}(\underbrace{\infty}_{0} \dot{0}) \\
\downarrow & \downarrow \\
\bar{M}_{g, n} & \ni \\
\underbrace{\infty}_{i}, 0 \\
0
\end{array}\right]
$$

We can define the cotangent line class

$$
\psi_{i}=c_{1}\left(\mathcal{L}_{i}\right) \in H^{2}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

Via the forgetful map $\pi: \overline{\mathcal{M}}_{g, n+1} \rightarrow \overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa_{i}=\pi_{*}\left(\psi_{n+1}^{i+1}\right) \in H^{2 i}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

$$
\begin{aligned}
& B_{0}(T)=\sum_{m \geq 0} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1-60 T+27720 T^{2} \cdots, \\
& B_{1}(T)=\sum_{m \geq 0} \frac{1+6 m}{1-6 m} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1+84 T-32760 T^{2} \cdots .
\end{aligned}
$$

$$
\begin{aligned}
& B_{0}(T)=\sum_{m \geq 0} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1-60 T+27720 T^{2} \cdots \\
& B_{1}(T)=\sum_{m \geq 0} \frac{1+6 m}{1-6 m} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1+84 T-32760 T^{2} \cdots
\end{aligned}
$$

These series control the original set of Faber-Zagier relations on $H^{*}\left(\mathcal{M}_{g}\right)$, but have origins much further back (in the asymptotic expansion of the Airy function).

$$
\begin{aligned}
& B_{0}(T)=\sum_{m \geq 0} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1-60 T+27720 T^{2} \cdots \\
& B_{1}(T)=\sum_{m \geq 0} \frac{1+6 m}{1-6 m} \frac{(6 m)!}{(2 m)!(3 m)!}(-T)^{m}=1+84 T-32760 T^{2} \cdots
\end{aligned}
$$

These series control the original set of Faber-Zagier relations on $H^{*}\left(\mathcal{M}_{g}\right)$, but have origins much further back (in the asymptotic expansion of the Airy function).

For a survey of the occurances of B_{0} and B_{1} :
[Buryak, Janda, P. arXiv:1502.05150]

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

For each $\overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} \pi_{m *}\left(f\left(\psi_{n+1}\right) \cdots f\left(\psi_{n+m}\right)\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

where $\pi_{m}: \overline{\mathcal{M}}_{g, n+m} \rightarrow \overline{\mathcal{M}}_{g, n}$ is the forgetful map, and

$$
\psi_{i} \in H^{2}\left(\overline{\mathcal{M}}_{g, n+m}\right)
$$

is the cotangent line class.

Let $f(T)$ be a power series with vanishing constant and linear terms,

$$
f(T) \in T^{2} \mathbb{Q}[[T]]
$$

For each $\overline{\mathcal{M}}_{g, n}$, we define

$$
\kappa(f)=\sum_{m \geq 0} \frac{1}{m!} \pi_{m *}\left(f\left(\psi_{n+1}\right) \cdots f\left(\psi_{n+m}\right)\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right)
$$

where $\pi_{m}: \overline{\mathcal{M}}_{g, n+m} \rightarrow \overline{\mathcal{M}}_{g, n}$ is the forgetful map, and

$$
\psi_{i} \in H^{2}\left(\overline{\mathcal{M}}_{g, n+m}\right)
$$

is the cotangent line class.
By the vanishing in degrees 0 and 1 of f, the sum is finite.

Let $\mathrm{G}_{g, n}$ be the finite set of stable graphs of genus g with n legs (up to isomorphism).

Let $\mathrm{G}_{g, n}$ be the finite set of stable graphs of genus g with n legs (up to isomorphism).

For each vertex $v \in \mathrm{~V}$ of a stable graph, we introduce an auxiliary variable ζ_{v} and impose the conditions

$$
\zeta_{v} \zeta_{v^{\prime}}=\zeta_{v^{\prime}} \zeta_{v}, \quad \zeta_{v}^{2}=1
$$

The variables ζ_{v} will be responsible for keeping track of a local parity condition at each vertex.

The formula for $\mathrm{R}_{g, A}^{d}$ is a sum over $\mathrm{G}_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

The formula for $\mathrm{R}_{g, A}^{d}$ is a sum over $\mathrm{G}_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.

The formula for $R_{g, A}^{d}$ is a sum over $G_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.
- For $\ell \in \mathrm{L}$, let $B_{\ell}=\zeta_{v(\ell)}^{a_{\ell}} B_{a_{\ell}}\left(\zeta_{v(\ell)} \psi_{\ell}\right)$, where $v(\ell) \in V$ is the vertex to which the leg is assigned.

The formula for $\mathrm{R}_{g, A}^{d}$ is a sum over $\mathrm{G}_{g, n}$. The summand corresponding to $\Gamma \in \mathrm{G}_{g, n}$ is a product of vertex, leg, and edge factors:

- For $v \in V$, let $\kappa_{v}=\kappa\left(T-T B_{0}\left(\zeta_{v} T\right)\right)$.
- For $\ell \in \mathrm{L}$, let $B_{\ell}=\zeta_{v(\ell)}^{a_{\ell}} B_{a_{\ell}}\left(\zeta_{v(\ell)} \psi_{\ell}\right)$, where $v(\ell) \in V$ is the vertex to which the leg is assigned.
- For $e \in \mathrm{E}$, let

$$
\begin{aligned}
\Delta_{e} & =\frac{\zeta^{\prime}+\zeta^{\prime \prime}-B_{0}\left(\zeta^{\prime} \psi^{\prime}\right) \zeta^{\prime \prime} B_{1}\left(\zeta^{\prime \prime} \psi^{\prime \prime}\right)-\zeta^{\prime} B_{1}\left(\zeta^{\prime} \psi^{\prime}\right) B_{0}\left(\zeta^{\prime \prime} \psi^{\prime \prime}\right)}{\psi^{\prime}+\psi^{\prime \prime}} \\
& =\left(60 \zeta^{\prime} \zeta^{\prime \prime}-84\right)+\left[32760\left(\zeta^{\prime} \psi^{\prime}+\zeta^{\prime \prime} \psi^{\prime \prime}\right)-27720\left(\zeta^{\prime} \psi^{\prime \prime}+\zeta^{\prime \prime} \psi^{\prime}\right)\right] \cdots,
\end{aligned}
$$

where $\zeta^{\prime}, \zeta^{\prime \prime}$ are the ζ-variables assigned to the vertices adjacent to the edge e and $\psi^{\prime}, \psi^{\prime \prime}$ are the ψ-classes corresponding to the half-edges.

The numerator of Δ_{e} is divisible by the denominator due to the identity (discovered by Pixton)

$$
B_{0}(T) B_{1}(-T)+B_{0}(-T) B_{1}(T)=2
$$

Obviously Δ_{e} is symmetric in the half-edges.

The numerator of Δ_{e} is divisible by the denominator due to the identity (discovered by Pixton)

$$
B_{0}(T) B_{1}(-T)+B_{0}(-T) B_{1}(T)=2 .
$$

Obviously Δ_{e} is symmetric in the half-edges.

Definition (Pixton 2012)

Let $A=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$. We denote by $\mathrm{R}_{g, A}^{d} \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}\right)$ the degree d component of the class

$$
\sum_{\Gamma \in \mathrm{G}_{g, n}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{2^{h^{1}(\Gamma)}}\left[\Gamma,\left[\prod \kappa_{v} \prod B_{\ell} \prod \Delta_{e}\right]_{\prod_{v} s_{v}^{\mathrm{g}}(v)-1}\right]
$$

where the products are taken over all vertices, all legs, and all edges of the graph Γ.

The subscript $\prod_{V} \zeta_{v}^{\mathrm{g}(v)-1}$ indicates the coefficient of the monomial $\prod_{v} \zeta_{v}^{g(v)-1}$ after the product inside the brackets is expanded.

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
\mathrm{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
\mathrm{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3 -spin curves).

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
\mathrm{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3-spin curves).

A second proof of Pixton's relations in Chow has been found by F. Janda using stable quotients / stable maps to $\mathbb{C P}^{1}$.

Theorem (P.-Pixton-Zvonkine 2013)

For $2 g-2+n>0, a_{i} \in\{0,1\}$, and $d>\frac{g-1+\sum_{i=1}^{n} a_{i}}{3}$, Pixton's relations hold

$$
\mathrm{R}_{g, A}^{d}=0 \in H^{2 d}\left(\overline{\mathcal{M}}_{g, n}, \mathbb{Q}\right) .
$$

Proof uses the Givental-Teleman classification of higher genus structures associated to the semi-simple Frobenius manifold A_{2} (related to 3-spin curves).

A second proof of Pixton's relations in Chow has been found by F. Janda using stable quotients / stable maps to $\mathbb{C P}^{1}$.

§IV. The double ramification cycle
§IV. The double ramification cycle
Let $\mu=\left(\mu_{1}, \ldots \mu_{\ell(\mu)}\right)$ and $\nu=\left(\nu_{1}, \ldots \nu_{\ell(\nu)}\right)$ be partitons with

$$
\sum_{i} \mu_{i}=\sum_{j} \nu_{j}
$$

§IV. The double ramification cycle
Let $\mu=\left(\mu_{1}, \ldots \mu_{\ell(\mu)}\right)$ and $\nu=\left(\nu_{1}, \ldots \nu_{\ell(\nu)}\right)$ be partitons with

$$
\sum_{i} \mu_{i}=\sum_{j} \nu_{j}
$$

We are interested in maps of genus g curves to $\mathbf{C P}{ }^{1}$ with ramification profiles μ and ν over $0, \infty \in \mathbf{C} \mathbf{P}^{1}$
§IV. The double ramification cycle
Let $\mu=\left(\mu_{1}, \ldots \mu_{\ell(\mu)}\right)$ and $\nu=\left(\nu_{1}, \ldots \nu_{\ell(\nu)}\right)$ be partitons with

$$
\sum_{i} \mu_{i}=\sum_{j} v_{j}
$$

We are interested in maps of genus g curves to $\mathbf{C P}{ }^{1}$ with ramification profiles μ and ν over $0, \infty \in \mathbf{C} \mathbf{P}^{1}$

To define a cycle on $\overline{\mathcal{M}}_{g, n}$, the degenerate curves must be considered. The moduli space

$$
\overline{\mathcal{M}}_{g}\left(\mathbf{C} \mathbf{P}^{1}, \mu, \nu\right)^{\sim}
$$

parameterizes stable relative maps to rubber with ramification profiles μ, ν.

To define a cycle on $\overline{\mathcal{M}}_{g, n}$, the degenerate curves must be considered. The moduli space

$$
\overline{\mathcal{M}}_{g}\left(\mathbf{C} \mathbf{P}^{1}, \mu, \nu\right)^{\sim}
$$

parameterizes stable relative maps to rubber with ramification profiles μ, ν.

There is a natural morphism

$$
\rho: \overline{\mathcal{M}}_{g}\left(\mathbf{C} \mathbf{P}^{1}, \mu, \nu\right)^{\sim} \rightarrow \overline{\mathcal{M}}_{g, \ell(\mu)+\ell(\nu)}
$$

forgetting everything except the marked domain curve.

There is a natural morphism

$$
\rho: \overline{\mathcal{M}}_{g}\left(\mathbf{C} \mathbf{P}^{1}, \mu, \nu\right)^{\sim} \rightarrow \overline{\mathcal{M}}_{g, \ell(\mu)+\ell(\nu)}
$$

forgetting everything except the marked domain curve.
The double ramification cycle is the push-forward of the virtual fundamental class,

$$
\mathrm{DR}_{g, \mu, \nu}=\rho_{*}\left[\overline{\mathcal{M}}_{g}\left(\mathbf{C P}^{1}, \mu, \nu\right)^{\sim}\right]^{\mathrm{vir}} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, \ell(\mu)+\ell(\nu)}\right) .
$$

There is a natural morphism

$$
\rho: \overline{\mathcal{M}}_{g}\left(\mathbf{C} \mathbf{P}^{1}, \mu, \nu\right)^{\sim} \rightarrow \overline{\mathcal{M}}_{g, \ell(\mu)+\ell(\nu)}
$$

forgetting everything except the marked domain curve.
The double ramification cycle is the push-forward of the virtual fundamental class,

$$
\mathrm{DR}_{g, \mu, \nu}=\rho_{*}\left[\overline{\mathcal{M}}_{g}\left(\mathbf{C P}^{1}, \mu, \nu\right)^{\sim}\right]^{\mathrm{vir}} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, \ell(\mu)+\ell(\nu)}\right) .
$$

Question [Eliashberg 2000]: Can we find a formula for $\mathrm{DR}_{g, \mu, \nu}$?

Best to place ramification data in a vector

$$
\left(\mu_{1}, \ldots, \mu_{\ell(\mu)},-\nu_{1}, \ldots,-\nu_{\ell(\nu)}\right)
$$

Best to place ramification data in a vector

$$
\left(\mu_{1}, \ldots, \mu_{\ell(\mu)},-\nu_{1}, \ldots,-\nu_{\ell(\nu)}\right)
$$

For any vector $A=\left(a_{1}, \ldots, a_{n}\right)$ with $\sum_{i} a_{i}=0$, we have

$$
\mathrm{DR}_{g, A} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Best to place ramification data in a vector

$$
\left(\mu_{1}, \ldots, \mu_{\ell(\mu)},-\nu_{1}, \ldots,-\nu_{\ell(\nu)}\right)
$$

For any vector $A=\left(a_{1}, \ldots, a_{n}\right)$ with $\sum_{i} a_{i}=0$, we have

$$
\mathrm{DR}_{g, A} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Pixton conjectured a beautiful formula for $\mathrm{DR}_{g, A}$ in 2014.
§V. Pixton's DR formula
\S V. Pixton's DR formula
Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be double ramification data.

§V. Pixton's DR formula

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be double ramification data.
Let 「 be a stable graph of genus g with n legs.
An admissible weighting is a function on the set of half-edges,

$$
w: H(\Gamma) \rightarrow \mathbb{Z},
$$

which satisfies:

§V. Pixton's DR formula

Let $A=\left(a_{1}, \ldots, a_{n}\right)$ be double ramification data.
Let Γ be a stable graph of genus g with n legs.
An admissible weighting is a function on the set of half-edges,

$$
w: \mathrm{H}(\Gamma) \rightarrow \mathbb{Z},
$$

which satisfies:
(i) $\forall h_{i} \in \mathrm{~L}(\Gamma), w\left(h_{i}\right)=a_{i}$,
(ii) $\forall e \in \mathrm{E}(\Gamma)$ consisting of the half-edges $h(e), h^{\prime}(e) \in \mathrm{H}(\Gamma)$,

$$
w(h)+w\left(h^{\prime}\right)=0,
$$

(iii) $\forall v \in \mathrm{~V}(\Gamma), \sum_{v(h)=v} w(h)=0$.

A stable graph 「 may have infinitely many admissible weightings w.

A stable graph 「 may have infinitely many admissible weightings w. Let r be a positive integer. An admissible weighting mod r of Γ is a function,

$$
w: \mathrm{H}(\Gamma) \rightarrow\{0, \ldots, r-1\}
$$

which satisfies (i-iii) above mod r.

A stable graph 「 may have infinitely many admissible weightings w. Let r be a positive integer. An admissible weighting mod r of Γ is a function,

$$
w: \mathrm{H}(\Gamma) \rightarrow\{0, \ldots, r-1\}
$$

which satisfies (i -iii) above mod r.
For example, for (i), we require

$$
w\left(h_{i}\right)=a_{i} \quad \bmod r
$$

A stable graph 「 may have infinitely many admissible weightings w. Let r be a positive integer. An admissible weighting mod r of Γ is a function,

$$
w: \mathrm{H}(\Gamma) \rightarrow\{0, \ldots, r-1\}
$$

which satisfies (i-iii) above mod r.
For example, for (i), we require

$$
w\left(h_{i}\right)=a_{i} \quad \bmod r .
$$

Let $W_{\Gamma, r}$ be the set of admissible weightings mod r of Γ.
The set $W_{\Gamma, r}$ is finite.

Definition (Pixton 2014)

Let r be a positive integer. We denote by $\mathcal{P}_{g, A}^{d, r} \in \mathrm{~A}^{d}\left(\overline{\mathcal{M}}_{g, n}\right)$ the degree d component of the class
$\sum_{\Gamma \in \mathrm{G}_{g, n}} \sum_{w \in \mathrm{~W}_{\Gamma, r}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{r^{h^{1}(\Gamma)}} \xi_{\Gamma *}\left[\prod_{i=1}^{n} \exp \left(a_{i}^{2} \psi_{h_{i}}\right)\right.$.

$$
\left.\prod_{\left.h, h^{\prime}\right) \in \mathrm{V}(\Gamma)} \frac{1-\exp \left(-w(h) w\left(h^{\prime}\right)\left(\psi_{h}+\psi_{h^{\prime}}\right)\right)}{\psi_{h}+\psi_{h^{\prime}}}\right]
$$

Definition (Pixton 2014)

Let r be a positive integer. We denote by $\mathcal{P}_{g, A}^{d, r} \in \mathrm{~A}^{d}\left(\overline{\mathcal{M}}_{g, n}\right)$ the degree d component of the class
$\sum_{\Gamma \in \mathrm{G}_{g, n}} \sum_{w \in \mathrm{~W}_{\Gamma, r}} \frac{1}{|\operatorname{Aut}(\Gamma)|} \frac{1}{r^{h^{1}(\Gamma)}} \xi_{\Gamma *}\left[\prod_{i=1}^{n} \exp \left(a_{i}{ }^{2} \psi_{h_{i}}\right)\right.$.

$$
\left.\prod_{\left.h, h^{\prime}\right) \in \mathrm{V}(\Gamma)} \frac{1-\exp \left(-w(h) w\left(h^{\prime}\right)\left(\psi_{h}+\psi_{h^{\prime}}\right)\right)}{\psi_{h}+\psi_{h^{\prime}}}\right]
$$

For fixed g, A, and d, the class

$$
\mathcal{P}_{g, A}^{d, r} \in \mathrm{~A}^{d}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

is polynomial in r for sufficiently large r.

We denote by $\mathrm{P}_{g, A}^{d}$ the value at $r=0$ of the polynomial, $\mathrm{P}_{g, A}^{d}$ is the constant term.

We denote by $\mathrm{P}_{g, A}^{d}$ the value at $r=0$ of the polynomial, $\mathrm{P}_{g, A}^{d}$ is the constant term.
Pixton conjectured in 2014 the following result:

We denote by $\mathrm{P}_{g, A}^{d}$ the value at $r=0$ of the polynomial, $P_{g, A}^{d}$ is the constant term.
Pixton conjectured in 2014 the following result:
Theorem (Janda-P.-Pixton-Zvonkine 2015)
$\mathrm{DR}_{g, A}=2^{-g} \mathrm{P}_{g, A}^{g} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, n}\right)$.

We denote by $\mathrm{P}_{g, A}^{d}$ the value at $r=0$ of the polynomial, $\mathrm{P}_{g, A}^{d}$ is the constant term.
Pixton conjectured in 2014 the following result:
Theorem (Janda-P.-Pixton-Zvonkine 2015)
$\mathrm{DR}_{g, A}=2^{-g} \mathrm{P}_{g, A}^{g} \in \mathrm{~A}^{g}\left(\overline{\mathcal{M}}_{g, n}\right)$.

We use the Gromov-Witten theory of the target $\mathbf{C} \mathbf{P}^{1}$ with:

- orbifold $B \mathbb{Z}_{r}$-point at $0 \in \mathbf{C} \mathbf{P}^{\mathbf{1}}$,
- relative point $\infty \in \mathbf{C} \mathbf{P}^{\mathbf{1}}$.

So the proof uses orbifold GW theory, relative GW theory, virtual localization.
§VI. Chern characters of the Verlinde bundle
\S VI. Chern characters of the Verlinde bundle
Let G be a complex, simple, simply connected Lie group.
For genus g and n irreducible representations

$$
\mu_{1}, \ldots, \mu_{n}
$$

of the Lie algebra $\widehat{\mathfrak{g}}$ at level ℓ, the Verlinde bundle

$$
\mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right) \rightarrow \overline{\mathcal{M}}_{g, n}
$$

is constructed via the theory of conformal blocks.

§VI. Chern characters of the Verlinde bundle

Let G be a complex, simple, simply connected Lie group.
For genus g and n irreducible representations

$$
\mu_{1}, \ldots, \mu_{n}
$$

of the Lie algebra $\widehat{\mathfrak{g}}$ at level ℓ, the Verlinde bundle

$$
\mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right) \rightarrow \overline{\mathcal{M}}_{g, n}
$$

is constructed via the theory of conformal blocks.
The fiber of the Verlinde bundle over $\left[C, p_{1}, \ldots, p_{n}\right] \in \mathcal{M}_{g, n}$ is the space of non-abelian theta functions: global sections of (determinant line) ${ }^{\ell}$ over the moduli of parabolic G-bundles on C.

The Verlinde formula calculates the rank

$$
\operatorname{rk} \mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right)=d_{g}\left(\mu_{1}, \ldots, \mu_{n}\right)
$$

which is the constant term of the Chern character

$$
\operatorname{ch} \mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

The Verlinde formula calculates the rank

$$
\operatorname{rk} \mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right)=d_{g}\left(\mu_{1}, \ldots, \mu_{n}\right)
$$

which is the constant term of the Chern character

$$
\operatorname{ch} \mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right) \in H^{*}\left(\overline{\mathcal{M}}_{g, n}\right)
$$

Question: Can we find a formula for ch $\mathbb{E}_{g}\left(\mu_{1}, \ldots, \mu_{n}\right)$?

Full solution found [Marian-Oprea-P.-Pixton-Zvonkine] for all G and ℓ using following geometric inputs

- the Chern character ch \mathbb{E} defines CohFT,
- the genus 0 part is semisimple (the fusion algebra),
- the bundle $\mathbb{E}_{g}(\underline{\mu})$ is projectively flat over $\mathcal{M}_{g, n}$,
- $c_{1}\left(\mathbb{E}_{g}(\underline{\mu})\right)$ is calculated over $\mathcal{M}_{g, n}$ by [Tsuchimoto 1993] together with the Givental-Teleman classification of semisimple CohFTs.

Full solution found [Marian-Oprea-P.-Pixton-Zvonkine] for all G and ℓ using following geometric inputs

- the Chern character ch \mathbb{E} defines CohFT,
- the genus 0 part is semisimple (the fusion algebra),
- the bundle $\mathbb{E}_{g}(\underline{\mu})$ is projectively flat over $\mathcal{M}_{g, n}$,
- $c_{1}\left(\mathbb{E}_{g}(\underline{\mu})\right)$ is calculated over $\mathcal{M}_{g, n}$ by [Tsuchimoto 1993]
together with the Givental-Teleman classification of semisimple CohFTs.

Example of our formula in the first non-trival case:

$$
G=\mathbb{S L}_{2} \text { and } \ell=1
$$

Theorem (Marian-Oprea-P.-Pixton-Zvonkine 2014)

Let \square be the standard representation of $\mathbb{S L}_{2}$. For $\ell=1$, ch $\mathbb{E}_{g}(\square, \ldots, \square)=$

$$
\begin{aligned}
e^{-\frac{\lambda}{2}} \sum_{\Gamma \in \mathrm{G}_{\mathrm{g}, n}^{\text {even }}} \frac{2^{g-h^{1}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \xi_{\Gamma *}[& \prod_{i=1}^{n} \exp \left(\frac{\psi_{h_{i}}}{4}\right) \\
& \left.\prod_{e=\left(h, h^{\prime}\right) \in \mathrm{V}(\Gamma)} \frac{1-\exp \left(\frac{1}{4}\left(\psi_{h}+\psi_{h^{\prime}}\right)\right)}{\psi_{h}+\psi_{h^{\prime}}}\right]
\end{aligned}
$$

$\mathrm{G}_{g, n}^{\text {even }}$ is the set of stable graphs with even valence at every vertex.

Theorem (Marian-Oprea-P.-Pixton-Zvonkine 2014)

Let \square be the standard representation of $\mathbb{S L}_{2}$. For $\ell=1$, ch $\mathbb{E}_{g}(\square, \ldots, \square)=$

$$
\begin{aligned}
e^{-\frac{\lambda}{2}} \sum_{\Gamma \in \mathrm{G}_{g, n}^{\text {even }}} \frac{2^{g-h^{1}(\Gamma)}}{|\operatorname{Aut}(\Gamma)|} \xi_{\Gamma *}[& \prod_{i=1}^{n} \exp \left(\frac{\psi_{h_{i}}}{4}\right) . \\
& \left.\prod_{e=\left(h, h^{\prime}\right) \in \mathrm{V}(\Gamma)} \frac{1-\exp \left(\frac{1}{4}\left(\psi_{h}+\psi_{h^{\prime}}\right)\right)}{\psi_{h}+\psi_{h^{\prime}}}\right],
\end{aligned}
$$

$\mathrm{G}_{\mathrm{g}, n}^{\text {even }}$ is the set of stable graphs with even valence at every vertex.

The End

